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THE PROJECTIVE LINEAR SUPERGROUP AND THE
SUSY-PRESERVING AUTOMORPHISMS OF P1|1

RITA FIORESI AND STEPHEN D. KWOK

The purpose of this paper is to describe the projective linear supergroup, its
relation with the automorphisms of the projective superspace and to deter-
mine the supergroup of SUSY-preserving automorphisms of P1|1.

1. Introduction

The works of Manin [1988; 1991] and more recently of Witten et al. [Witten 2012;
Donagi and Witten 2015] have drawn attention to projective supergeometry and
more specifically to SUSY curves and their moduli superspaces.

In this paper we study the automorphisms of the projective superspace Pm|n

and its SUSY-preserving subsupergroup. We start by defining the projective linear
supergroup PGLm|n , using the functor of points formalism, and then we show that
this supergroup functor is indeed representable, that is, it is the functor of points
of a superscheme. We achieve this by realizing PGLm|n as a closed subsupergroup
scheme of GLm2+n2|2mn , mimicking the ordinary procedure.

In relating this supergroup scheme to the automorphism supergroup of Pm|n we
encounter a difficulty, not present in the ordinary setting, namely the fact that the
Picard group of the projective superspace is not known in general and involves some
difficulties. This is a consequence of the fact that the supergroup of automorphisms
of the projective superspace is larger than PGLm|n for n > 1. Nevertheless, going
to the special case of n = 1, we are able to give the projective linear supergroup
quite explicitly and to prove it coincides with the automorphisms of the projective
superspace.

The question of singling out the SUSY-preserving automorphisms inside this
supergroup was already settled over the complex field by Manin [1991] and Witten
[2012]; we extend their considerations to an arbitrary algebraically closed field k,
char(k) 6= 2, and provide some extra details of their proofs.

The organization of this paper is as follows. In Section 2 we start by reviewing
some generally known facts on the projective superspace and its functor of points
to establish our notation. We then discuss line bundles and projective morphisms,
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proving, in Proposition 2.3, that the Picard group of Pm|1 is Z. To our knowledge
this result is new and gives insight into projective supergeometry. In Section 3 we
define the projective linear supergroup in terms of functor of points and we prove
its representability by realizing it as a closed subsuperscheme of the general linear
supergroup. Then, in Section 4 we prove that the projective linear supergroup is
the supergroup of automorphisms of the projective superspace in the case of one
odd dimension. Though the approach in both Sections 3 and 4 closely resembles
the ordinary one, the results are novel in the supergeometric context. In Section 5,
we use the machinery developed previously to prove that the subsupergroup of
Aut(P1|1) of SUSY-preserving automorphisms of P1|1 consists precisely of the
irreducible component (SpO2|1)

0 of the 2|1-symplectic-orthogonal supergroup
SpO2|1 containing the identity. This section is a generalization of the claims made
in [Manin 1991] regarding complex supergeometry and provides proofs for such
claims for a generic algebraically closed field.

2. The projective superspace Pm|n

In this section we want to recall different, but equivalent definitions of projective
superspace and we describe the line bundles on it. For all of our notation and main
definitions of supergeometry, we refer the reader to [Manin 1988; Deligne and
Morgan 1999; Carmeli et al. 2011].

Let k be our ground ring.
We recall that, by definition, the functor of points of a superscheme X= (|X |,OX )

is the functor

X : (sschemes)o→ (sets), X (S)= Hom(sschemes)(S, X), X (φ)( f )= f ◦φ,

where (sschemes) denotes the category of superschemes (it is customary to use the
same letter for X and its functor of points). Equivalently (see [Carmeli et al. 2011,
Chapter 10]), we can view the functor of points of X as X : (salg)→ (sets):

X (R)= Hom(sschemes)(Spec R, X), X (φ)( f )= f ◦Spec (φ),

where (salg) denotes the category of superalgebras (over k), (we shall use the
same letter for this functor also). In fact the functor of points of a superscheme is
determined by its behavior on the affine superscheme subcategory, which in turn is
equivalent to the category of superalgebras; see [Carmeli et al. 2011, Chapter 10,
Theorem 10.2.5]. If X = SpecO(X), that is, X is affine, we have that

X (R)= Hom(sschemes)(Spec R, X)= Hom(salg)(O(X), R),

where O(X) denotes the superalgebra of global sections of the sheaf of superalge-
bras OX . We say that the X (R) are the R-points of the superscheme X.
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The algebraic superscheme Pm|n is defined as the patching of the m+ 1 affine
superspaces Ui=SpecO(Ui ), with O(Ui )=Spec k[x i

0, . . . , x̂ i
i , . . . , x i

m, ξ
i
1, . . . , ξ

i
n]

through the change of charts:

(1)

φi j :O(U j )[(x
j

i )
−1
] 7→O(Ui )[(x i

j )
−1
]

x j
k 7→ x i

k/x i
j

x j
i 7→ 1/x i

j

ξ
j

k 7→ ξ i
k/x i

j ,

(where as usual x̂ i
i means that we are omitting the indeterminate x i

i ). Notice that
O(U j )[(x

j
i )
−1
] is the superalgebra representing the open subscheme U j ∩Ui of U j

(and similarly for O(Ui )[(x i
j )
−1
]).

Proposition 2.1. The R-points of Pm|n, R ∈ (salg) are given equivalently by:

(i) Pm|n(R)= {α : Rm+1|n
→ L , R-linear, surjective}/∼,

Pm|n(ψ) : Rm+1|n
⊗R T → L ⊗R T,

where L is locally free of rank 1|0, ψ : R → T and α : Rm+1|n
→ L ∼

α′ : Rm+1|n
→ L ′ if and only if ker(α) = ker(α′) (or equivalently, α ∼ α′ if

they differ by an automorphism of L by multiplication of an element in R×).

(ii) Pm|n(R)= {α : L ↪→ Rm+1|n R-linear, injective},

Pm|n(ψ) : L ⊗R T → Rm+1|n
⊗R T,

where L is locally free of rank 1|0.

Let Om+1|n
S = OS ⊗ km+1|n. The S-points of Pm|n, S ∈ (sschemes) are given

equivalently by:

(a) Pm|n(S)= {α :Om+1|n
S → L, surjective}/∼,

Pm|n(ψ) : (ψ∗OS)
m+1|n

→ ψ∗(L),

where ψ : T → S, L is a line bundle on S (of rank 1|0) and

α :Om+1|n
S → L∼ α′ :Om+1|n

S → L′

if and only if ker(α) = ker(α′) (or equivalently, α ∼ α′ if they differ by an
automorphism of L by multiplication of an element in O×S ).

(b) Pm|n(S)= {α : L ↪→Om+1|n
S },

Pm|n(ψ) : ψ∗L→ (ψ∗OS)
m+1|n.

Proof. The proof relative to (i) and (a) works as in the ordinary setting and it is
detailed in [Carmeli et al. 2011, Chapter 10]. The equivalence with (ii) and (b)
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is immediate. The equivalence between (i) and (ii) is essentially the same as
in the ordinary setting (see [Eisenbud and Harris 2000, Chapter III, Section 2,
Proposition III-40, Corollary III-42]). �

For every A ∈ (salg), we denote by (salg)A the category of superalgebras over A.
We will need to consider also P

m|n
A , that is, the projective superspace over a base

A ∈ (salg). This means that we are considering the superscheme obtained by
patching the affine superspaces Ui = A[x i

j , ξ
i
k ], i, j =0, . . . ,m, j 6= i , k=1, . . . , n

as above. For example, in the second case in Proposition 2.1 each of the T -points,
T ∈ (salg)A, is identified with a morphism α : L→ T m+1|n of A-modules, where
L and T m+1|n are T -modules which become A-modules via the map φ : A→ T :

(2) P
m|n
A (T )= Hom(sschemes)A

(
Spec T,P

m+1|n
A

)
= {α : L ↪→ T m+1|n

}.

Notice that the functor of points of P
m|n
A is defined on the category of A-superalgebras

or equivalently on the category of A-superschemes (that is, superschemes equipped
with a morphism to the superscheme Spec A and morphisms compatible with it).

We leave to the reader the generalization of the other cases of Proposition 2.1
since it is straightforward.

We end this section with some observations on line bundles and morphisms
on P

m|n
A . We start with a result completely similar to the ordinary counterpart, left

to the reader as a simple exercise; see also [Carmeli et al. 2011, Chapter 9].

Proposition 2.2. We have a bijective correspondence between the following:

(i) The set of equivalence classes of m+n+2-tuples (L , s0, . . . , sm, σ1, . . . , σn),
where L is a line bundle on P

m|n
A globally generated by the global sections

s0, . . . , sm, σ1, . . . , σn of L , under the relation

(L , s0, . . . , sm, σ1, . . . , σn)∼ (L , s ′0, . . . , s ′m, σ
′

1, . . . , σ
′

n)

if and only if there exists some c ∈O(Pm|n
A )∗0 such that s ′i = csi and σ ′i = cσi

for all i .

(ii) The set of A-morphisms P
m|n
A → P

m|n
A .

In the ordinary setting we have that a line bundle on Pm
A is of the form O(n)⊗L,

where L is a line bundle on Spec A. This nontrivial fact is still true in supergeometry
for P

m|1
A , and it will turn out to be crucial in our treatment.

Proposition 2.3. Every line bundle on P
m|1
A is isomorphic to O(n)⊗L, where L is

a line bundle on Spec A.

Proof. A line bundle on P
m|1
A is determined once we know its transition functions,

say gi j ∈OP
m|1
A
(Ui ∪U j )

∗

0, which are even. We then need to prove that any such set
of transition functions is equivalent, up to a coboundary, to a set of transition
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functions for a line bundle of the form O(n)⊗L, for L a line bundle on Spec A. In
other words we need to show

hi |Ui∩U j gi j h−1
j |Ui∩U j = (x

i
j )

n, hi ∈OP
m|1
A
(Ui )

∗

0.

Notice that

O
P

m|1
A
(Up)

∗
= (A[x p

k , ξ
p
])∗0 = (A[ξ

p
][x p

k ])
∗

0, p = i, j.

Since φi j (ξ
j ) = ξ i/x i

j , φi j (x
j

i ) = 1/x i
j and φi j (x

j
k ) = x i

k/x i
j , where φi j is the

change of chart as in (1), we can view the restrictions of the h p’s (p = i, j) to
Ui ∩U j , through this identification, as both belonging to (A[ξ i

][x i
j , (x

i
j )
−1
])∗0. We

now apply the classical result and obtain h′p ∈ (A[ξ
i
][x i

j , (x
i
j )
−1
])∗0 such that

h′i gi j (h′j )
−1
= (x i

j )
n.

The h′p’s thus obtained are not yet the sections we want; since the odd dimension is
one by hypothesis, the most general possible form for h′j is

h′j = a0+α0ξ
i
+

∑
K

aK x i
K (x

i
j )
−|K |
+

∑
L

αL x i
L(x

i
j )
−|L|ξ i

+

∑
k

βk(x i
j )
−kξ i ,

where K and L are multi-indices, K = (k1, . . . , kr ), kl 6= j (r ∈ N) and x i
K :=

x i
k1
· · · x i

kr
(similarly for L).

In order to eliminate the term α0ξ
i which is not well defined on U j , we define:

hi := (a0+α0ξ
i )h′i , h j := (a−1

0 − a−2
0 α0ξ

i )h′j ,

and this gives the required sections. �

Notice that it was absolutely fundamental for our argument that there is only
one odd dimension. This calculation will give us key information when we want to
determine the automorphism supergroup of the projective linear supergroup.

3. The projective linear supergroup

In this section we want to define the supergroup functor of the projective linear
supergroup and to show it is representable by producing an embedding of it as a
closed subgroup into the general linear supergroup.

Let M m|n(R) denote the associative superalgebra of supermatrices of order
m|n by m|n with entries in a commutative superalgebra R. More intrinsically,
M m|n(R)= EndR(R

m|n).

Definition 3.1. The automorphism supergroup of supermatrices is the supergroup
functor Aut(M m|n) : (salg)→ (grps),

[Aut(M m|n)](R) :=

{ f :M m|n(R)→M m|n(R) | f is an R-superalgebra automorphism}.



390 RITA FIORESI AND STEPHEN D. KWOK

In analogy with the ordinary setting we also will call this supergroup functor the
projective linear supergroup and denote it with PGLm|n .

Since M m|n(R) is itself a free R-module of rank M |N, where M =m2
+ n2 and

N = 2mn, Aut(M m|n) is a subfunctor of GLM |N in a natural way. We want to
prove this is the functor of points of a closed subsuperscheme of GLM |N . Before
proceeding we need a lemma characterizing the morphisms of the superalgebra of
supermatrices.

Lemma 3.2. (i) An R-linear parity-preserving map ψ :M m|n(R)→M m|n(R) is
a morphism of the superalgebra of supermatrices M m|n(R) if and only if
(a) ψ(id)= id;
(b) ψ(ei j )ψ(ekl)= δk jψ(eil),
where ei j are the elementary matrices in M m|n(R).

(ii) If R is a local superalgebra, all of the automorphisms of the superalgebra
M m|n(R) are of the form

Mm|n(R)→Mm|n(R), (T, X) 7→ T XT−1,

for a suitable T ∈ GLm|n(R).

(iii) Aut(M m|n) is a closed subsuperscheme of GLM |N = Spec k[xi j,kl][d−1
1 , d−1

2 ],
M = m2

+ n2 and N = 2mn, defined by the equations:

(3)
∑

k

xi j,kk = δi j ,
∑

s

xrs,i j xst,kl = δ jk xr t,il,

where GLM |N (R) is identified with the parity-preserving automorphisms of the
free R-module M m|n(R).

Proof. (i) If ψ is an R-superalgebra endomorphism of M m|n(R) then the two
relations are obviously satisfied and vice versa.

(ii) Now assume ψ is an automorphism of Mm|n(R), R local, which satisfies the
relations (a) and (b). We need to find T ∈ GLm|n(R) such that ψ(ei j )= T ei j T−1.
This is an application of super Morita theory (see [Kwok 2013]), however we shall
recall the main idea to make this proof self-contained. By (a) and (b) we have∑

ψ(ei i )= id, ψ(ei i )
2
= ψ(ei i ), ψ(ei i )ψ(e j j )= 0, i 6= j,

hence we can write
Rm|n
=⊕ψ(ei i )Rm|n.

Since by (b),ψ(e j i )ψ(ei i )=ψ(e j i )=ψ(e j j )ψ(e j i )we haveψ(e j i ) :ψ(ei i )Rm|n
→

ψ(e j j )Rm|n (recall that R is local so projective implies free). Hence there exists a
basis {ti } of the free module Rm|n such that

ψ(ei i )Rm|n
= spanR{ti }
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and ψ(e j i )ti = t j . Let T be the matrix whose columns are the ti ’s, T =
∑

ti ⊗ e∗i ,
T−1
=
∑

ei ⊗ t∗i . It is then immediate to verify ψ(ei j )= T ei j T−1.

(iii). This is immediate from (i). �

Let us view the multiplicative algebraic supergroup G
1|0
m : (salg)→ (grps) as the

following subsupergroup of GLm|n:

G1|0
m (R)= {aI | a ∈ R∗0} ⊂ GLm|n(R).

(Here I denotes the identity matrix).
We do not specify the definition on the arrows whenever it is clear, as in this case.

Definition 3.3. We define the supergroup functor: P̂GLm|n : (salg)→ (grps),

P̂GLm|n(R)= GLm|n(R)/G1|0
m (R),

and we call its sheafification (as customary) GLm|n/G
1|0.

We wish to show that GLm|n/G
1|0 is representable and coincides with the projec-

tive linear supergroup, that is, with the automorphism supergroup of supermatrices.

Definition 3.4. We say that a functor F : (salg) → (grps) is stalky if for any
superalgebra R, the natural map

lim
−−→
f /∈p

F(R f )→ F(Rp)

is an isomorphism for any prime ideal p ∈ R0.

The next two lemmas are standard and their proof is the same as in the ordinary
case; see [Sun 2009].

Lemma 3.5. GLm|n/G
1|0 and Aut(M m|n) are stalky.

Lemma 3.6. Let F,G be stalky Zariski sheaves (salg)→ (grps) and α : F→ G be
a morphism. If αR : F(R)→ G(R) is an isomorphism for all local superrings R,
then α is an isomorphism of sheaves.

Proposition 3.7. The supergroup functor GLm|n/G
1|0 is representable and is re-

alized as the closed subsupergroup Aut(M m|n) of GLM |N for M = m2
+ n2

and N = 2mn.

Proof. We need to establish an isomorphism of sheaves between GLm|n/G
1|0 and

a closed subsupergroup of GLM |N . We will first give a morphism of sheaves and
then show it is an isomorphism on local superalgebras; since GLm|n/G

1|0 is a stalky
sheaf, this will be enough. We start by giving a morphism of presheaves P̂GLm|n

and GLM |N ; since GLM |N is a sheaf then such a morphism will factor through the
sheafification of P̂GLm|n thus giving us a sheaf morphism.
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Consider the action of GLM |N on supermatrices M m|n , where M = m2
+ n2,

N = 2mn:

φ : GLm|n(R)×M m|n(R)→M m|n(R), (T, X) 7→ T XT−1.

This clearly factors through G
1|0
m (R) and hence gives a well defined action ρ of

P̂GLm|n and then in turn of GLm|n/G
1|0 (see comments at the beginning of the

proof ). Since X 7→ T XT−1 and T ∈ (GLm|n/G
1|0)(R) is a parity-preserving R-

superalgebra morphism, it is immediate to verify we have a morphism of sheaves,

GLm|n/G
1|0
→ Aut

(
M m|n

)
.

By the first part of Lemma 3.2, we know that Aut(M m|n) is represented by the closed
subsuperscheme H of GLM |N = Spec k[xi j,kl][d−1

1 , d−1
2 ] defined by the equations

(4)
∑

k

xi j,kk = δi j ,
∑

s

xrs,i j xst,kl = δ jk xr t,il .

(Here di denotes as usual the determinants of the diagonal blocks of indetermi-
nates). We want to show that the group homomorphism (GLm|n/G

1|0)(R) →
[Aut(M m|n)](R) is an isomorphism for R local. The automorphism ψ ∈GLM |N (R)
belongs to H(R) if and only if its entries ψ(ei j )kl satisfy the above relations (4)
(where in our convention xi j,kl corresponds to ψ(ei j )kl). Hence by Lemma 3.2 we
have the result for R local. By Lemmas 3.5 and 3.6, it is true for any superalgebra
R and this concludes the proof. �

Remark 3.8. The projective linear supergroup may also be obtained through the
Chevalley supergroup recipe as detailed in [Fioresi and Gavarini 2011; 2012; 2013].
It corresponds to the choice of the adjoint action of the Lie superalgebra slm|n . In
fact one may readily check that the Lie superalgebra of PGLm|n is indeed slm|n and
(PGLm|n)0 = PGLm ×PGLn × k×.

4. The automorphisms of the projective superspace

We want to define the automorphism supergroup of the superscheme Pm|n.

Definition 4.1. We define the supergroup functor of automorphisms of the projective
superspace:

Aut(Pm|n)(A) := AutA(P
m|n
×Spec A)= AutAP

m|n
A , A ∈ (salg).

Aut(Pm|n) is defined in an obvious way on the morphisms.

The equality in the definition is straightforward, noticing that we can identify
the T -points of Pm|n

×Spec A and of P
m|n
A . In fact, a T -point of Pm|n

×Spec A is
a morphism φ : A→ T and a morphism L→ T m|n of A-modules via φ. This is
exactly an element of P

m|n
A (T ) and vice versa.
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An automorphism ψ ∈ AutAP
m|n
A is a family of automorphisms ψT for all

T ∈ (salg)A, which is functorial in T. The automorphism ψT :P
m|n
A (T )→P

m|n
A (T )

must assign to a T -point of P
m|n
A (T ), that is, a morphism α : L→ T m|n, another

morphism α′ : L ′ → T m|n, where L and L ′ are projective rank 1|0 T -modules,
where the morphisms are interpreted as A-module morphisms. Similarly for the
other characterizations of T -points as in Proposition 2.1.

We are now ready to relate the supergroup scheme PGLm|n with the automor-
phisms of Pm−1|n.

Proposition 4.2. There is an embedding of supergroup functors

PGLm|n ↪→ Aut(Pm−1|n).

Proof. We first establish a morphism φ′ : GLm|n→ Aut(Pm−1|n). If X ∈ GLm|n(A)
and α ∈ P

m−1|n
A (T )= {T m|n

→ L}/∼, ψ : A→ T we define

φ′(X)= α ◦GLm|n(ψ)(X).

Clearly φ′ factors through Gm(A). Since Aut(Pm−1|1) is a sheaf, we have defined
a morphism

φ : PGLm|n→ Aut(Pm−1|n).

The injectivity is clear. �

Remark 4.3. In general we cannot expect to get an isomorphism between PGLm|n

and Aut(Pm−1|n) for n> 1 and this is because of the peculiarity of the odd elements.
Let us see this in a simple example, P1|2. Consider the morphism φ ∈ P

1|2
A given

on the affine pieces U0 = Spec A[u, µ1, µ2] and U1 = A[v, ν1, ν2] by

φ|U0(u, µ1, µ2)= (u+µ1µ2, µ1, µ2), φ|U1(v, ν1, ν2)= (v− ν1ν2, ν1, ν2).

As φ is invertible, φ ∈ Aut(Pm|n)(A), but it is not obtained through an element
of PGL2|2(A). In fact the coefficient in φ|U0 of µ1µ2 in an automorphism induced
by a PGL2|2(A) transformation must be nilpotent. Hence φ 6∈ PGL2|2(A).

We now want to show that we have an isomorphism between the projective
linear supergroup and the automorphism of the super projective when n = 1. The
argument we give follows along the lines of the calculation of Aut(Pn) given in
[Hartshorne 1977, Chapter 2, Section 7].

Proposition 4.4. We have an isomorphism of supergroup functors:

PGLm+1|1 ∼= Aut(Pm|1).

In particular, Aut(Pm|1) is a supergroup scheme.

Proof. Proposition 4.2 gives us an embedding of supergroup functors PGLm+1|1 ↪→

Aut(Pm|1). Now let f ∈ Aut(Pm|1
A ) and let g be its inverse. We want to show

f ∈ PGLm+1|1(A). The automorphism f induces the two line bundle morphisms
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f ∗OA(1) → OA(1) and g∗OA(1) → OA(1), where OA(1) := p∗1(O(1)), with
p1 : P

m|1
A → Pm|1 being the natural projection. By Proposition 2.3, we know that

f ∗OA(1)=O(k)⊗L f and g∗OA(1)=O(l)⊗Lg. Let us choose a suitable open
cover of A in which both L f and Lg are trivial. By a common abuse of notation
we shall still write A to denote the ring of global sections of an element of the
open cover, so we in fact are replacing A with its localization. With such a choice
we have f ∗OA(1) ∼= OA(k) and g∗OA(1) ∼= OA(l). Since f and g are mutually
inverse, we have

OA(1)= ( f ∗ ◦ g∗)(OA(1))= f ∗(g∗(OA(1)))= f ∗(OA(l))=OA(kl).

Hence kl = 1, whence k = l = 1, because for k = l = −1 we do not have global
sections.

So f ∗(O(1)) ∼= O(1), and choosing an isomorphism F : f ∗(O(1))→ O(1)
yields an isomorphism of the global sections 0(Pm, f ∗OA(1))∼= 0(Pm,OA(1)).
By composing such an isomorphism with the natural isomorphism

f ∗ : 0(Pm,OA(1))→ 0(Pm, f ∗OA(1))

we obtain an A-linear automorphism,

TF : 0(P
m,OA(1))→ 0(Pm,OA(1)),

and identifying 0(Pm,OA(1)) with Am+1|1 we see that TF ∈GLm+1|1(A). However,
TF depends on F. Suppose G : f ∗(O(1))→ O(1) is another isomorphism, then
F−1
◦G is an automorphism of O(1). Since Hom(L , L)= L∗⊗ L =O for any line

bundle L , we see that an automorphism of O(1) is the same thing as an invertible
even function on P

m|1
A , and F and G differ by composing with multiplication by

such a function.
Therefore f determines TF only up to multiplication by an invertible even

function, i.e., f uniquely determines an element T := [TF ] of PGLm+1|1(A).
Now in suitable coordinates we have that T induces (up to scalar multiplication)

an automorphism of the Z-graded superalgebra A[z0, . . . , zm, ζ ]. We leave to the
reader the check that φ(T ) is indeed f . �

5. The SUSY-preserving automorphisms of P
1|1
k

In this section we want to consider those automorphisms of P
1|1
k which preserve

its unique (up to isomorphism) SUSY structure. For all of the standard notation of
supergeometry refer to [Carmeli et al. 2011].

Let k be our ground field, char(k) 6= 2, k algebraically closed. All algebraic
supergroups discussed below will be algebraic supergroups over k.

We recall that if X is a smooth algebraic supervariety over k of dimension 1|1,
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we define a SUSY structure on X as a 0|1 distribution D on X such that the
Frobenius map

D⊗D→ T X/D, Y ⊗ Z 7→ [Y, Z ] mod D

is an isomorphism (see, for example, [Manin 1991] for the definition of a SUSY
structure in the complex analytic case). If X→ S is a smooth family of algebraic
supervarieties of relative dimension 1|1 over an algebraic k-supervariety S, then
the notion of relative SUSY structure may be defined in the analogous way, as a
relative distribution in the relative tangent sheaf T X/S. In this case we say that
X→ S is a relative SUSY family.

Our discussion is based on [Witten 2012].
We start by interpreting P

1|1
k as a homogeneous superspace. Let k2|1

= (k2,Ok2|1)

denote the affine superspace canonically associated to the k-super vector space k2|1.
Let us consider the action of the algebraic group k× on k2|1

\ {0}, given in the
functor of points notation by

t · (z0, z1, ζ )= (t z0, t z1, tζ ).

Consider the projection (as topological map)

π : k2
\ {0} → k2

\ {0}/k× ∼= P1.

Define the sheaf on the topological space P1
k consisting of the k×-invariant sections

F(U ) :=Ok2|1(π−1(U )))k
×

.

One can readily check that (P1
k,F) is the superscheme P

1|1
k as defined in Section 2.

Let z0, z1, ζ be global coordinates on k2|1. We now consider the Euler vector
field E = z0∂z0 + z1∂z1 + ζ∂ζ , which represents (in the chosen coordinates) the
infinitesimal generator for the k× action on k2|1

\ {0}. Since E is everywhere
nonsingular, it generates a trivial 1|0 line bundle. As in the classical case, we have
the Euler exact sequence of vector bundles on P

1|1
k :

(5) 0→O1|0 i
→O(1)⊗Der(S) j

→ T P
1|1
k → 0,

where i is the inclusion of the trivial 1|0 line bundle 〈E〉 with global basis the
Euler vector field. Here Der(S) is the k-super vector space of k-linear derivations
on S := Sym((k2|1)∗); it has as basis the derivations ∂zi , ∂ζ . Thus O(1)⊗Der(S)
is the sheaf whose sections on U are the linear vector fields on π−1(U ). Any local
section of O(1)⊗Der(S) induces a corresponding local k-linear derivation on O

P
1|1
k

by restricting it to act on k×-invariant functions; this defines j. Injectivity of i and
the inclusion im(i) ⊆ ker( j) follow from the fact that E is nonsingular and the
infinitesimal generator for the k×-action; a standard calculation in the usual affine
cells shows that ker( j) ⊆ im(i) and that j is surjective. Note that the sequence
continues to remain exact on P

1|1
A after base change to any affine k-supervariety
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Spec (A), with T P
1|1
k replaced by the relative tangent bundle T P

1|1
A /Spec(A). We

will denote the A-superalgebra S⊗k A by SA.
We now come to the SUSY structure.

Definition 5.1. Let (X→ S,D) be a relative SUSY family. An S-automorphism
f : X→ X is SUSY structure-preserving (or simply SUSY-preserving) if and only
if (d f p)(Dp)= D f (p) for any p ∈ X.

We will consider SUSY structures given by sections of OA(1)⊗�S/A. Here�S/A

denotes the A-module of Kähler differentials on SA, i.e., the A-dual to Der(SA); it
has as basis the differentials dzi , dζ . When we speak of the kernel of a section ω
of OA(1)⊗�S/A, we mean the kernel of ω when ω is interpreted as a morphism of
sheaves of O

P
1|1
A

-modules from OA(1)⊗Der(SA)→OA(2).

Proposition 5.2. Let s := z1 dz0− z0 dz1−ζ dζ . Then the image of ker(s) under j
is a SUSY structure on P

1|1
k .

Proof. In the affine open subsupervariety U1 := {z1 6= 0} ⊂ P
1|1
k , one calculates that

the Euler vector field E and the linear vector field Ẑ1 = ζ∂z0 + z1∂ζ lie in ker(s)
and are linearly independent. At any point p ∈ P

1|1
k , s induces a linear map of super

vector spaces, sp : [O(1)⊗Der(S)]p→ [O(2)]p, on the fibers. It is clear that s is
a basepoint-free section, hence sp is always surjective. By linear algebra, ker(sp)

is 1|1 dimensional and hence E p and Ẑ1,p span ker(sp). By the super Nakayama’s
lemma, E and Ẑ1 span ker(s) near p. Since p was arbitrary, E and Ẑ1 form a basis
for ker(s) in U1.

One sees that Z1 := j (Ẑ1)= ∂η+ η∂w, where w = z0/z1 and η = ζ/z1 are the
usual affine coordinates in U1. Z2

1 = ∂w and so Z1 defines a SUSY structure in U1.
A similar calculation with the linear vector field Ẑ0 := −ζ∂z1 + z0∂ζ shows that
j (ker(s)) defines a SUSY structure on U0 = {z0 6= 0}, hence the image of ker(s)
under j defines a SUSY structure on P

1|1
k . �

We note that by the considerations of [Fioresi and Lledó 2015], this is the unique
SUSY structure on P

1|1
k , up to SUSY-isomorphism.

We now need the following proposition. The proof is completely similar to the
one in [Fioresi and Lledó 2015, Proposition 5.2], however since the context here is
more general, we include it for completeness.

Lemma 5.3. Let A be an affine k-superalgebra. Let ω,ω′ be two global sections of
OA(1)⊗�S/A such that D := j (ker(ω)) and D′ := j (ker(ω′)) are 0|1 distributions
on P

1|1
A . Suppose D=D′. Then ω′= hω for some even invertible function h on P

1|1
A .

Proof. Let p∈P
1|1
A be a point. D is locally a direct summand of T P

1|1
A /Spec (A), so

we have a local splitting D|U⊕E= (T P
1|1
A /Spec(A))|U in some neighborhood U 3 p.

Via the Euler exact sequence (base changed to Spec(A)), we may lift D|U (resp. E)
uniquely to a rank 1|1 (resp. 2|0) submodule D̂ (resp. Ê) of [OA(1)⊗Der(SA)]|U
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containing the 1|0 line bundle 〈E〉 spanned by the Euler vector field, such that
D̂ ∩ Ê = 〈E〉. We may therefore find local sections Ẑ (resp. X̂ ) of D̂ (resp. Ê)
such that Ẑ , E (resp. X̂ , E) form a basis for D̂ (resp. Ê). Note that the condition
D̂∩ Ê = 〈E〉 implies X̂ , Ẑ , E form a basis of [OA(1)⊗Der(SA)]|U .

Viewing ω|U as an O
P

1|1
A

-linear map from [OA(1)⊗Der(SA)]|U to OA(2)|U , we
have an induced linear map of super vector spaces,

ωp : (OA(1)⊗Der(SA))p→ (OA(2))p.

As ker(ωp) = span{Ẑ p, E p}, we see by linear algebra that ωp is a surjection,
and that ωp(X̂ p) is a basis for (OA(2))p; the analogous conclusion holds for ω′p
and ω′p(X̂ p). Hence by the super Nakayama’s lemma, ω(X̂) is a basis for OA(2)|U ,
and the same is true of ω′(X̂) (shrinking U if necessary). Hence ω′(X̂)/ω(X̂) is an
invertible even function on U ; let us denote it by h.

To show that h is independent of the local complement E and the choice of
basis element X̂ , suppose E ′ is another local complement to D on U, and let
X̂ ′, E be a basis of the lift Ê ′ of E ′. Then we have X̂ ′ = a X̂ + bE + α Ẑ for
some a, b, α ∈O

P
1|1
A
(U ), with a, b even and α odd. As X̂ , E, Ẑ and X̂ ′, E, Ẑ ′ are

both local bases for OA(1)⊗Der(SA), a must be a unit.
Then we have

ω′(X̂ ′)/ω(X̂ ′)= ω′(a X̂ + bE +α Ẑ)/ω(a X̂ + bE +α Ẑ)= ω′(X̂)/ω(X̂),

since ω,ω′ both annihilate E and Ẑ . This proves that the expression ω′(X̂)/ω(X̂)
is independent of all choices and hence h is a well-defined function on all of P

1|1
A .

The equality ω′ = hω clearly holds locally, and since h is now known to be globally
defined, it holds globally. �

Proposition 5.4. Let f be an automorphism of P
1|1
A . Then f preserves the SUSY

structure defined by s if and only if for some (hence every) lift f̃ of f to GL2|1(A),
f̃ ∗(s)= ts for some invertible function t.

Proof. We begin by noting that GL2|1(A) preserves A∗0-invariant open subsets of
A

2|1
A \ {0}, hence it acts naturally by pullback of functions on OA(1)⊗Der(SA),

where we interpret the latter as the sheaf assigning to any open subset U ⊆ P
1|1
A the

linear vector fields on π−1(U )⊆ A
2|1
A \ {0}.

The subsupergroup of invertible scalar matrices {cI : c ∈ A∗0} is central in
GL2|1(A), hence this GL2|1(A)-action preserves the subalgebra of A∗0-invariant
functions on any A∗0-invariant open subset of A

2|1
A \ {0}. Hence we have an induced

GL2|1(A)-action on the sheaf O
P

1|1
A

. Clearly, invertible scalar matrices act trivially
on O

P
1|1
A

, thus the GL2|1(A)-action on O
P

1|1
A

factors through PGL2|1(A).
We see from the above that the action of GL2|1(A) on OA(1)⊗ Der(SA) by

pullback of functions induces naturally a PGL2|1(A)-action on O
P

1|1
A

, hence on
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T P
1|1
A /Spec (A), also given by pullback of functions. But this is precisely the

PGL2|1(A)-action on T P
1|1
A /Spec (A) induced by the action of PGL2|1(A) on P

1|1
A

by automorphisms.
Since the sheaf morphism j :OA(1)⊗Der(SA)→ T P

1|1
A /Spec (A) is just given

by restricting a linear vector field to act on A∗0-invariant functions, we see j is
equivariant with respect to the GL2|1(A)- and PGL2|1(A)-actions previously defined.

We also have a GL2|1(A)-action on OA(1)⊗�S/A by the natural action on both
factors, and for ω∈0(OA(1)⊗�S/A)=0(OA(1))⊗�S/A, we write g∗(ω) for g ·ω.

Since the action of GL2|1(A) on OA(1)⊗Der(SA) is the same as the natural
action on the individual factors, and the GL2|1(A)-action on �S/A is dual to that
on Der(SA), it follows that the evaluation pairing

[OA(1)⊗Der(SA)]⊗ [OA(1)⊗�S/A] →OA(2)

is GL2|1(A)-equivariant, where OA(2) is endowed with the natural GL2|1(A)-action.
From the preceding discussion, we see that f is SUSY-preserving if and only if

j [ker(ω)]p = j [ker( f̃ ∗(ω)]p for any point p.
We claim this is true if and only if j [ker(ω)] = j [ker( f̃ ∗(ω))]. One direction is

clear. For the other, suppose j [ker(ω)]p = j [ker( f̃ ∗(ω))]p for any point p. Then
by the super Nakayama’s lemma j [ker(ω)] = j [ker( f̃ ∗(ω))] in a neighborhood
of p, hence globally. The claim then follows from Lemma 5.3. �

In order to determine the supergroup of SUSY-preserving automorphisms of P
1|1
k

we must discuss various other supergroups. We follow closely the discussion in
[Manin 1991].

Definition 5.5. The 2|1-dimensional conformal symplectic-orthogonal supergroup
C2|1 is the subfunctor of GL2|1 that preserves, up to multiplication by an even
invertible constant, the split nondegenerate supersymplectic form on k2|1 given by
(v,w)= vt Hw, where

(6) H :=

 0 1 0
−1 0 0

0 0 −1

,
and t denotes the super transpose of a matrix. More precisely, for every k-
superalgebra A, C2|1 is the functor (salg)k→ (grps) given by

(7) C2|1(A) := {B ∈ GL2|1(A) : B t H B = Z(B)H},

where Z : GL2|1→ G
1|0
m is a fixed homomorphism.

The 2|1-dimensional projective conformal symplectic-orthogonal supergroup
PC2|1 is the image of C2|1 in PGL2|1, i.e, it is the sheafification of the group-valued
functor A→ C2|1(A)/{aI : a ∈ A∗0}.
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Proposition 5.6. C2|1 and PC2|1 are representable.

Proof. Taking the Berezinian of both sides of (7), one sees that Z(B)= Ber(B)2.
Thus, given

B =

a b α

c d β

γ δ e

 ∈ GL2|1(A),

a direct calculation shows that B satisfies (7) if and only if the following equa-
tions hold: e2

+ 2αβ = Ber(B)2, aβ − cα − eγ = 0, ad − bc− γ δ = Ber(B)2,
bβ − dα− eδ = 0. Thus these equations define C2|1 as a closed affine algebraic
subsupergroup of GL2|1.

To prove that PC2|1 is representable, we use the trick of [Manin 1991]. Let SC2|1

denote the functor (salg)k→ (grps) given by

SC2|1(A) := {B ∈ C2|1(A) : Ber(B)= 1}.

Since its defining equations are those of C2|1 together with Ber(B)= 1, SC2|1 is
a closed affine algebraic subsupergroup of GL2|1. There is a short exact sequence
of supergroups,

(8) 0→ SC2|1→ C2|1
Ber
−→G1|0

m → 0.

There is a splitting of this sequence, given on A-points by sending a ∈ A∗0 to aI,
and the image of G

1|0
m under the splitting is clearly normal in C2|1, hence C2|1 is

the internal direct product of SC2|1 and the subsupergroup {aI : a ∈ A∗0}. This
direct product decomposition allows us to naturally identify the functor PC2|1 with
the functor of points of SC2|1; in particular, we see PC2|1 is an affine algebraic
supergroup, isomorphic to SC2|1. �

Definition 5.7. The 2|1-dimensional symplectic-orthogonal supergroup SpO2|1 is
the functor (salg)k→ (grps),

(9) SpO2|1(A) := {B ∈ GL2|1(A) : B t H B = H}.

Remark 5.8. SpO2|1 is well known to be representable; the reader may readily
write down defining equations for SpO2|1, completely analogous to those for C2|1,
which show that SpO2|1 is a closed affine algebraic subsupergroup of GL2|1.

Proposition 5.9. PC2|1 is isomorphic to the irreducible component (SpO2|1)
0 of

SpO2|1 containing the identity.

Proof. Taking the Berezinian of both sides of (9) shows that Ber(B)=±1 for any
B ∈ SpO2|1(A). This yields a short exact sequence of supergroups

(10) 0→ SC2|1→ SpO2|1
Ber
−→{±1} → 0,
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which is split by the morphism ±1 7→ ±I and {±I } is obviously normal in SpO2|1.
Thus SpO2|1 is the internal direct product of {±I } and SC2|1. Note that SC2|1 is
irreducible (one sees from its defining equations that its reduced algebraic group
is SL2, which is known to be irreducible). Let (SpO2|1)

0 denote the irreducible
component of SpO2|1 that contains the identity. We claim SC2|1 = (SpO2|1)

0.
Since I ∈ SC2|1 ∩ (SpO2|1)

0, it is clear SC2|1 ⊆ (SpO2|1)
0. Conversely, we see

that (SpO2|1)
0
⊆ SC2|1: the restriction of the morphism Ber to the irreducible

supervariety (SpO2|1)
0 must be constant, hence equal to 1. Since we previously

showed PC2|1 is isomorphic to SC2|1, the proposition is proven. �

Theorem 5.10. The algebraic supergroup AutSUSY(P
1|1
k ) of SUSY-preserving auto-

morphisms of P
1|1
k is isomorphic to (SpO2|1)

0.

Proof. As AutSUSY(P
1|1
k ) is a sheaf, the theorem reduces to the case of calculating

AutSUSY(P
1|1
k )(A) where A is a k-superalgebra. For this, we note that P

1|1
A has the

SUSY structure over A induced by base change from P
1|1
k , given by s.

Let g ∈ PGL2|1(A) be an automorphism of P
1|1
A , and ĝ a lift of g to GL2|1(A).

Recall that we have a natural action of the group of A-points of GL2|1(A) on
0(OA(1)⊗ �S/A). More concretely, in the given coordinates we have for any
matrix ĝ ∈ GL2|1(A),

ĝ ·

z0

z1

ζ

= ĝ

z0

z1

ζ

, ĝ ·

dz0

dz1

dζ

= ĝ

dz0

dz1

dζ

,
where we write zi for zi ⊗ 1 and so on.

By Lemma 5.3, g is SUSY-preserving if and only if ĝ sends

s = z1dz0− z0dz1− ζdζ =
(
z0 z1 ζ

)
H

dz0

dz1

dζ

, H =

 0 1 0
−1 0 0
0 0 −1

,
to a multiple of s by an invertible even function. Hence

(
z0 z1 ζ

)
ĝt H ĝ

dz0

dz1

dζ

= (z0 z1 ζ
)

Z(ĝ)H

dz0

dz1

dζ

,
i.e., ĝ ∈ C2|1(A). It follows from (8) that g lies in PC2|1(A), which is naturally
identified with (SpO2|1)

0(A) by Proposition 5.9. �
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