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THE GROMOV WIDTH OF COADJOINT ORBITS OF
THE SYMPLECTIC GROUP

IVA HALACHEVA AND MILENA PABINIAK

We prove that the Gromov width of a coadjoint orbit of the symplectic group
through a regular point λ, lying on some rational line, is at least equal to:

min{|〈α∨, λ〉| : α∨ a coroot}.

Together with the results of Zoghi and Caviedes concerning the upper bounds,
this establishes the actual Gromov width. This fits in the general conjecture
that for any compact connected simple Lie group G, the Gromov width of
its coadjoint orbit through λ ∈ Lie(G)∗ is given by the above formula. The
proof relies on tools coming from symplectic geometry, algebraic geometry
and representation theory: we use a toric degeneration of a coadjoint orbit
to a toric variety whose polytope is the string polytope arising from a string
parametrization of elements of a crystal basis for a certain representation of
the symplectic group.

1. Introduction

The nonsqueezing theorem of Gromov motivated the question of finding the biggest
ball that could be symplectically embedded into a given symplectic manifold (M, ω).
Consider the ball of capacity a:

B2N
a =

{
(x1, y1, . . . , xN , yN ) ∈ R2N |π

N∑
i=1
(x2

i + y2
i ) < a

}
⊂ R2N,

with the standard symplectic form ωstd =
∑

dx j ∧ dy j . The Gromov width of a
2N -dimensional symplectic manifold (M, ω) is the supremum of the set of a’s such
that B2N

a can be symplectically embedded in (M, ω). It follows from Darboux’s
theorem that the Gromov width is positive unless M is a point.

Coadjoint orbits form an important class of symplectic manifolds. Let K be a
compact Lie group. It acts on itself by conjugation

K 3 g : K → K , g(h)= ghg−1.
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Associating to g ∈ K the derivative of the above map, taken at the identity,
dge : Te K → Te K , one obtains the adjoint action of K on k = Lie(K ) = Te K .
This induces the action of K on k∗ = Lie(K )∗, the dual of its Lie algebra, called
the coadjoint action. Each orbit O ⊂ Lie(K )∗ of the coadjoint action is naturally
equipped with the Kostant–Kirillov–Souriau symplectic form:

ωξ (X#, Y #)= 〈ξ, [X, Y ]〉, ξ ∈O ⊂ Lie(K )∗, X, Y ∈ Lie(K ),

where X#, Y # are the vector fields on Lie(K )∗ corresponding to X, Y ∈ Lie(K ),
induced by the coadjoint K action. The coadjoint action of K on O is Hamiltonian,
and the momentum map is the inclusion O ↪→ Lie(K )∗. Every coadjoint orbit
intersects a chosen positive Weyl chamber in a single point. Therefore there is a bi-
jection between the coadjoint orbits and points in the positive Weyl chamber. Points
in the interior of the positive Weyl chamber are called regular points. The orbits
corresponding to regular points are of maximal dimension. They are diffeomorphic
to K/T, for T a maximal torus of K, and are called generic orbits. For example,
when K =U (n,C), the group of (complex) unitary matrices, a coadjoint orbit can
be identified with the set of Hermitian matrices with a fixed set of eigenvalues. The
generic orbits are diffeomorphic to the manifold of full flags in Cn.

In this note we concentrate on the (compact) symplectic group

K = Sp(n)=U (n,H).

The main result of this manuscript is the following theorem.

Theorem 1.1. Let M :=Oλ be the coadjoint orbit of K = Sp(n) through a regular
point λ lying on some rational line in k∗, equipped with the Kostant–Kirillov–Souriau
symplectic form. The Gromov width of M is at least the minimum,

min{|〈α∨, λ〉| : α∨ a coroot}.

If λ = λ1ω1 + · · · + λnωn where ω1, . . . , ωn are the fundamental weights,
and λ j > 0, then the above minimum is equal to, as we explain in Section 3,
min{λ1, . . . , λn}.

This particular lower bound is important because it coincides with the known
upper bound. Zoghi [2010] proved that for a compact connected simple Lie group K,
the above formula gives an upper bound for the Gromov width of a regular inde-
composable coadjoint K -orbit through λ ([Zoghi 2010, Proposition 3.16]). This
result was later extended to nonregular orbits by Caviedes.

Theorem 1.2 [Caviedes 2016, Theorem 8.3; Zoghi 2010, Proposition 3.16, regular
orbits]. Let K be a compact connected simple Lie group. The Gromov width
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of a coadjoint orbit Oλ through λ, equipped with the Kostant–Kirillov–Souriau
symplectic form, is at most

min{|〈α∨, λ〉| : α∨ a coroot and 〈α∨, λ〉 6= 0}.

Putting these results together we obtain the following corollary.

Corollary 1.3. The Gromov width of a coadjoint orbit Oλ of Sp(n) through a
regular point λ lying on some rational line in k∗, is exactly

min{|〈α∨, λ〉| : α∨ a coroot}.

What adds importance to our result is the fact that it is a special case of a
general conjecture about the Gromov width of coadjoint orbits of compact Lie
groups. Namely, it has been conjectured, and by now proved in many cases, that
for any compact connected simple Lie group K, the Gromov width of its coadjoint
orbit through λ ∈ Lie(K )∗ is given by the formula from Theorem 1.2, i.e., it is
the minimum over the positive results of pairings of λ with coroots in the system.
Karshon and Tolman [2005], and independently Lu [2006a], showed that the Gromov
width of complex Grassmannians (which are degenerate coadjoint orbits of U (n,C))
is given by the above formula. Combining the results of Zoghi [2010] and Caviedes
[2016] about upper bounds, and the results of [Pabiniak 2014] about lower bounds,
one proves that the Gromov width of (not necessarily regular) coadjoint orbits of
U (n,C), SO(2n,R) and SO(2n+ 1,R) is also given by that formula. (The result
for SO(2n+ 1,R) works only for orbits satisfying one mild technical condition;
see [Pabiniak 2014] for more details).

To prove the main result we use tools from symplectic geometry, algebraic
geometry and representation theory. Here is a brief outline. Using the work of
[Harada and Kaveh 2015] one can construct a toric degeneration from the given
coadjoint orbit Oλ to a toric variety. By “pulling back” the toric action from the
toric variety one equips (an open dense subset of ) Oλ with a toric action and can
use its flow to construct embeddings of balls. If λ is a dominant weight, there
exists a particularly nice toric degeneration to a toric variety whose associated
Newton–Okounkov body is the string polytope parametrizing a crystal basis for
(the dual of ) the irreducible representation with highest weight λ ([Kaveh 2015a]).
Such string polytopes have been studied by Littelmann [1998], and using his work
we prove Theorem 1.1 for orbits Oλ with λ a dominant weight. We then further
extend this result to any regular λ lying on a rational line in k∗.

The techniques used in this paper could be applied to other compact connected
simple Lie groups to obtain a lower bound for the Gromov width by studying the
structure of (more general) string polytopes. We do not pursue this idea here for
the following reason. As the formula for the conjectured Gromov width is given in
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purely Lie-theoretic language, we believe that there should be a way of proving the
(lower bound part of the) conjecture for all groups at once, by a proof described in
purely Lie-theoretic language.

In Section 2 we introduce the tools that are used in Section 3 to prove the
main result.

2. Tools

2A. Using a toric action to construct symplectic embeddings of balls. Toric ge-
ometry proves to be very helpful in finding lower bounds for the Gromov width.
When a manifold (M, ω) is equipped with a Hamiltonian (so also effective) action
of a torus T, one can use the flow of the vector field generated by this action to
construct explicit embeddings of balls and therefore to obtain a lower bound for
the Gromov width (a construction by Karshon and Tolman [2005]). If additionally
the action is toric, that is dim T = 1

2 dim M, then more constructions are available
(see, for example, [Traynor 1995; Schlenk 2005; Latschev et al. 2013]).

Recall that a Hamiltonian action of a torus T on a symplectic manifold (M, ω)
gives rise to a momentum map µ : M → Lie(T )∗ =: 3R, from M to the dual
of the Lie algebra of T, which we denote by 3R. This map is unique up to
a translation in 3R. A manifold M equipped with a Hamiltonian T action is
often called a Hamiltonian T -space. When M is compact, the image µ(M) is a
Delzant polytope. Identifying 3R with Rdim T, we can view µ(M) as a polytope
in Rdim T. Such an identification is not unique: it depends on the choice of a
splitting of T into a product of circles, and on the choice of an identification of
the Lie algebra of S1 with the real line R. Changing the splitting of T results in
applying a GL(dim T,Z) transformation to Rdim T, while changing the identification
Lie(S1)∼= R results in rescaling. In this work, S1

= R/Z, that is, the exponential
map exp : R = Lie(S1)→ S1 is given by t 7→ e2π i t . With this convention, the
momentum map for the standard S1-action on C by rotation with speed 1 is given
(up to the addition of a constant) by z 7→ −π |z|2.

Consider the standard T n
= (S1)n action on Cn where each circle rotates a

corresponding copy of C with speed 1, with a momentum map

(z1, . . . , zn) 7→ −π(|z1|
2, . . . , |zn|

2).

The image of the n-dimensional ball of capacity a (radius
√

a/π) centered at the
origin is (−1) times the standard simplex of size a;

1n(a) :=
{
(x1, . . . , xn) ∈ Rn

≥0 |
n∑

k=1

xk < π · (
√

a/π)2 = a
}
.

Moreover, simplices embedded in the momentum map image signify the existence
of embeddings of balls, as the following result explains.
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Proposition 2.1 [Lu 2006b, Proposition 1.3; Pabiniak 2014, Proposition 2.5]. For
any connected, proper (not necessarily compact) Hamiltonian T n-space M2n of
dimension 2n let

W(8(M))= sup
{
a > 0 | there exists 9 ∈ GL(n,Z), x ∈ Rn,

such that 9(1n(a))+ x ⊂8(M)
}
,

where 8 is some choice of momentum map. Then the Gromov width of M is at least
W(8(M)).

2B. Coadjoint orbits as flag varieties. Coadjoint orbits of compact Lie groups can
be viewed as flag manifolds of complex reductive groups. This interpretation allows
us to later construct toric degenerations of coadjoint orbits (Section 2C).

Let G be a connected reductive group over C and B a Borel subgroup. Denote
by 3 the weight lattice of G and by 3+ the dominant weights. Let K be the
compact form of G and T its maximal torus. A generic coadjoint orbit of K,
K/T, is diffeomorphic to the flag manifold G/B. To equip the manifold G/B
with a symplectic structure, fix λ ∈ 3+ and let Vλ denote the finite dimensional
irreducible representation of G with highest weight λ. There exists a very ample
G-equivariant line bundle Lλ on G/B whose space of sections H 0(G/B,Lλ) is
isomorphic to V ∗λ (Borel–Weil theorem). Embed G/B into P(H 0(G/B,Lλ)∗) (the
Kodaira embedding), and use this embedding to pull back to G/B the Fubini–Study
symplectic structure. If ωλ denotes the symplectic structure on G/B obtained
this way, then (G/B, ωλ) is symplectomorphic to the coadjoint orbit Oλ with the
Kostant–Kirillov–Souriau symplectic structure defined in the introduction.

In this manuscript, G = Sp(2n,C) and K = Sp(n)=U (n,H).

2C. Obtaining a toric action via a toric degeneration. Coadjoint orbits of a com-
pact Lie group K are naturally equipped with a Hamiltonian action of a maximal
torus of K. This action, however, is rarely toric. We note that for U (n,C),SO(n,R)

a toric action can be constructed by Thimm’s trick [Pabiniak 2014].
To obtain a toric action on a dense open subset of a coadjoint orbit of Sp(n), we

apply a method developed by Harada and Kaveh [2015] using toric degenerations.
We briefly sketch the main ingredients of their construction and for details direct
the reader to [Harada and Kaveh 2015].

Consider the situation where X is a d-dimensional projective algebraic variety,
L an ample line bundle over X, L = H 0(X,L), and let C(X) denote the field of
rational functions on X. Given a valuation ν : C(X)\{0}→Zd with one-dimensional
leaves, one builds an additive semigroup

S = S(X, L , v, h)=
⋃
k>0

{
(k, v( f/hk)) | f ∈ L⊗k

\ {0}
}
.
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and a convex body

1(S)= conv
(⋃

k>0

{
x/k | (k, x) ∈ S

})
,

in Rd, called an Okounkov (or Newton–Okounkov) body. Here h is a fixed section
of L and L⊗k denotes the image of the k-fold product L ⊗ · · ·⊗ L in H 0(X,L⊗k).

Theorem 2.2 [Anderson 2013, Proposition 5.1 and Corollary 5.3; Harada and
Kaveh 2015, Corollary 3.14]. With the notation as above, assume in addition
that S is finitely generated. Then there exists a finitely generated, N-graded, flat
C[t]-subalgebra R⊂ C(X)[t] inducing a flat family π : X= ProjR→ C such that:

• For any z 6= 0 the fiber Xz = π
−1(z) is isomorphic to X = Proj C(X), i.e.,

π−1(C \ {0}) is isomorphic to X × (C \ {0}).

• The special fiber X0 = π
−1(0) is isomorphic to Proj C[S] and is equipped

with an action of (C∗)d, where d = dimC X. The normalization of the variety
Proj C[S] is the toric variety associated to the rational polytope 1(S).

Fix a Hermitian structure on the very ample line bundle L and equip X with the
symplectic structure ω induced from the Fubini–Study form on P(H 0(X,L)∗) via
the Kodaira embedding.

Theorem 2.3 [Harada and Kaveh 2015, Theorem 3.25]. With the notation as above,
assume in addition that (X, ω) is smooth and that the semigroup S is finitely
generated. Then:

(1) There exists an integrable system µ= (F1, . . . , Fd) : X→Rd on (X, ω) in the
sense of [Harada and Kaveh 2015, Definition 1], and the image of µ coincides
with the Newton–Okounkov body 1=1(S).

(2) The integrable system generates a torus action on the inverse image under µ
of the interior of the moment polytope 1.1

In this manuscript we use valuations (with one-dimensional leaves) coming from
the following examples.

Example 2.4 [Harada and Kaveh 2015, Example 3.3]. Fix a linear ordering on Zd.
Let p be a smooth point in X, and let u1, . . . , ud be a regular system of parameters
in a neighborhood of p. Using this system, we can construct the lowest and the
highest term valuations on C(X): the lowest (resp. highest) term valuation vlow

(resp. vhigh) assigns to each f (u1, . . . , ud)=
∑

j=( j1,..., jd ) c j u
j1
1 · · · u

jd
d ∈ C(X) a

d-tuple of integers which is the smallest (resp. biggest) among j = ( j1, . . . , jd)
with c j 6= 0, in the fixed order. To a rational function f/h ∈ C(X) this valuation

1In fact the action is defined on the set U introduced in [Harada and Kaveh 2015, Definition 1],
which contains, but might be strictly bigger than, the inverse image under µ of the interior of the
moment polytope 1.
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assigns vlow( f )−vlow(h) (resp. vhigh( f )−vhigh(h)). Both of these valuations have
one-dimensional leaves.

Example 2.5. What will be very relevant for this manuscript is a special case of the
previous example. In the situation we consider here, X is the flag variety G/B of
the symplectic group G = Sp(2n,C), with B a fixed Borel subgroup of G. Choose
a reduced decomposition w0= (αi1, . . . , αiN ) of the longest word in the Weyl group
w0 = sαi1

· · · sαiN
, where sαi is the reflection through the hyperplane orthogonal to

the simple root αi :

sαi (β)= β − 2
〈β, αi 〉

〈αi , αi 〉
αi .

It defines a sequence of (Schubert) subvarieties, i.e., a Parshin point

{o} = XwN ⊂ · · · ⊂ Xw0 = X,

where Xwk is the Schubert variety corresponding to the Weyl group element
wk = sαik+1

· · · sαiN
, and {o} is the unique B-fixed point in X. This sequence of

varieties, in turn, gives rise to a regular system of parameters u1, . . . , ud , in which
Xwk = {u1 = · · · = uk = 0} (see Section 2.2 of [Kaveh 2015a]). Following Kaveh
[2015a], we denote the associated highest term valuation (as in Example 2.4) on
C(X) \ {0} by vw0 .

2D. Crystal bases and Newton–Okounkov bodies. We now return to analyzing
the flag manifold. With G, B, λ ∈ 3+, Vλ, and Lλ as in Section 2B, recall that
G acts on the space of sections H 0(G/B,Lλ) giving a representation isomorphic
to the dual representation V ∗λ . There exists a particular toric degeneration of the
flag variety G/B for which the associated Okounkov body is the string polytope
parametrizing the elements of a crystal basis of the representation V ∗λ . Before
analyzing this toric degeneration, we recall some basic facts about crystal bases.

Let I denote the Dynkin diagram, and {αi }i∈I , {α
∨

i }i∈I denote the simple roots
and coroots respectively. We will look at the perfect basis for V ∗λ coming from the
specialization of Lusztig’s canonical basis to q = 1 for the quantum enveloping
algebra, which Kaveh [2015a] refers to as a crystal basis for V ∗λ . Note that this
differs from Kashiwara’s notion of crystal basis being the specialization at q = 0.

A perfect basis for a finite-dimensional representation V of G is a weight
basis BV of the vector space V together with a pair of operators, called Kashiwara
operators, Ẽα, F̃α : BV → BV ∪ {0} for each simple root α, and maps ε̃α, φ̃α :
V \ {0} → Z satisfying certain compatibility conditions. For further information,
we refer the reader to [Kaveh 2015a, Section 3.1].

One can associate to a perfect basis BV a directed labeled graph, called the
crystal graph of the representation V , whose vertices are the elements of BV ∪ {0},
and whose directed edges are labeled by the simple roots following the rule: There
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is an edge from b to b′ labeled α if and only if Ẽα(b)= b′ (equivalently, F̃α(b′)= b).
Also there is an edge from b to 0 if Ẽα(b)= 0, and from 0 to b if F̃α(b)= 0. The
graphs obtained in this way are isomorphic for each perfect basis of the given
G-representation V [Berenstein and Kazhdan 2007, Theorem 5.55].

A perfect basis Bλ for the representation Vλ with highest weight vector vλ can
be obtained by considering the nonzero elements gvλ where g is an element in the
specialization to q = 1 of the Lusztig canonical basis of the quantum enveloping
algebra of G. The dual basis B∗λ is then a perfect basis for the dual representation V ∗λ ,
and will be referred to as the dual crystal basis (see [Berenstein and Kazhdan 2007,
Lemma 5.50]). The crystal Bλ can be thought of as a combinatorial realization of Vλ
and reflects its internal structure. For more information about crystals see [Beren-
stein and Kazhdan 2007; Hong and Kang 2002; Henriques and Kamnitzer 2006].

There exists a nice parametrization of the elements of a (dual) crystal basis, called
the string parametrization, by integral points in ZN where N is the length of the
longest word in the Weyl group W. This parametrization depends on a choice of a re-
duced decompositionw0= (αi1, . . . , αiN ) of the longest wordw0= sαi1

· · · sαiN
in W :

ιw0 :

∐
λ∈3+

B∗λ→3+×ZN
≥0, ιw0(B

∗

λ)⊂ {λ}×ZN
≥0.

The image of ιw0 is the intersection of a rational convex polyhedral cone Cw0 in
3R×RN with the lattice3×ZN. The projection of Cw0 to RN is a rational polyhedral
cone in RN, called the string cone, and will be denoted by Cw0 . Littelmann [1998]
analyzed the image of string parametrizations (see also [Alexeev and Brion 2004,
Theorem 1.1; Kaveh 2015a, Theorem 3.4]).

Theorem 2.6 [Littelmann 1998, Proposition 1.5]. For any dominant weight λ, the
string parametrization is one-to-one. Moreover, Sλ := ιw0(B

∗

λ) is the set of integral
points of a convex rational polytope 1w0(λ)⊂ RN obtained as the intersection of
the string cone, Cw0 , and the N half-spaces

xk ≤ 〈λ, α
∨

ik
〉−

N∑
l=k+1

xl〈αil , α
∨

ik
〉, k = 1, . . . , N .

(Note that in [Kaveh 2015a] the symbol Cw0 denotes a slightly different object:
the projection of Cw0 from [Kaveh 2015a] to RN is “our” Cw0 already intersected
with the above N half-spaces).

Definition 2.7. The polytope 1w0(λ)⊂RN is called the string polytope associated
to λ.

For integral λ, the vertices of the polytope 1w0(λ) are rational, so

Cone(1w0(λ))= {(t, t x); t ∈ R≥0, x ∈1w0(λ)} ⊂ R×RN,
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the cone over 1w0(λ), is a strongly convex rational polyhedral cone.
Kaveh [2015a] observed the following relation between the string polytopes and

Newton–Okounkov bodies associated to certain valuations that we have described
in Section 2C.

Theorem 2.8 [Kaveh 2015a, Theorem 1]. The string parametrization for a dual
crystal basis of V ∗λ = H 0(G/B,Lλ) is the restriction of the valuation vw0 and the
string polytope 1w0(λ) coincides with the Newton–Okounkov body of the algebra
of sections of Lλ and the valuation vw0 .

Corollary 2.9. The semigroup associated to the valuation vw0 is finitely generated.

This is a consequence of Theorem 2.8, the observation above that the cone
Cone(1w0(λ)) ⊂ R× RN over 1w0(λ) is a strongly convex rational polyhedral
cone, and Gordon’s Lemma.

3. Proof of the main result

We aim to prove that the Gromov width of a generic coadjoint orbit Oλ of Sp(n),
passing through a point λ in the interior of a chosen positive Weyl chamber and on
a rational line, equipped with the Kostant–Kirillov–Souriau symplectic form, is

min{|〈λ, α∨| : α∨ a coroot}.

Recall that all generic coadjoint orbits Oλ are diffeomorphic to the flag mani-
fold G/B, for G = Sp(2n,C). For i = 1, . . . , 2n, let εi : sp(2n,C)→C denote the
linear functional assigning to a matrix its i-th diagonal entry, εi (x)= xi i . With this
notation we can express the simple roots as:

(3-1) αn = ε1− ε2, αn−1 = ε2− ε3, . . . , α2 = εn−1− εn, α1 = 2εn.

Note that the above enumeration is nonstandard. We follow Littelmann’s enu-
meration, as we are going to quote some results from [Littelmann 1998]. All the
roots are given by ±2εi and ±(εi ± ε j ), i 6= j. The fundamental weights are
ωi = ε1+ ε2+ · · ·+ εi , i = 1, 2, . . . , n, and each λ ∈3+R can be expressed as

λ= λ1ω1+ λ2ω2+ · · ·+ λnωn (λi ≥ 0)

= (λ1+ λ2+ · · ·+ λn)ε1+ (λ2+ · · ·+ λn)ε2+ · · ·+ λnεn.

Then
min{|〈λ, α∨〉| : α∨ a coroot} =min{λ1, . . . , λn}.

We first analyze the situation when λ is integral. Then λ is a dominant weight
and thus there exists a very ample line bundle Lλ on G/B whose space of sections
H 0(G/B,Lλ) is isomorphic to V ∗λ . The very ample line bundle Lλ induces the
Kodaira embedding jλ : G/B ↪→ P(H 0(G/B,Lλ)∗) and one can use jλ to pull
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back the Fubini–Study symplectic structure from the projective space to G/B. The
thus obtained symplectic manifold (G/B, ωλ = j∗λ (ωF S)) is symplectomorphic to
Oλ with the standard Kostant–Kirillov–Souriau symplectic structure.

As explained in Section 2 (page 409), a choice of a reduced decomposition
w0 = (αi1, . . . , αiN ) of the longest word w0 = sαi1

· · · sαiN
in the Weyl group gives

rise to a highest term valuation vw0 with one-dimensional leaves, and to a semigroup
S with the associated Newton–Okounkov body 1(S). This semigroup is finitely
generated (Corollary 2.9). Theorems 2.2, 2.3 and 2.8 imply the following:

Corollary 3.1. For integral λ, there exists a toric action on an open dense subset
of Oλ. Its moment map image is the interior of the string polytope 1w0(λ)⊂ Rn2

.

We prove the main theorem by exhibiting an embedding of (a GL(n2,Z) image
of ) a simplex 1n2

(min{λ1, . . . , λn}), of size equal to min{λ1, . . . , λn}, in the string
polytope 1w0(λ). The polytope 1w0(λ) for the longest word decomposition

w0 = s1(s2s1s2) · · · (sn−1 · · · s1 · · · sn−1)(snsn−1 · · · s1 · · · sn−1sn),

(where s j = sα j , with the numbering of the simple roots from (3-1)), was described
by Littelmann ([1998, Section 6, Theorem 6.1 and Corollary 6]; note the misprint
in Corollary 6: λm− j+1 should be λ j as can be deduced from [Littelmann 1998,
Proposition 1.5]).

Proposition 3.2 [Littelmann 1998]. Fix a dominant weight,

λ= λ1ω1+ · · ·+ λnωn = (λ1+ · · ·+ λn)ε1+ · · ·+ λnεn.

Then the associated string polytope 1w0(λ) is the convex polytope in Rn2
given by

n2-tuples {ai, j | 1≤ i ≤ n, i ≤ j ≤ 2n− i} which satisfy

ai,i ≥ ai,i+1 ≥ · · · ≥ ai,2n−i ≥ 0, for all i = 1, . . . n,

and

āi, j ≤ λ j + s(āi, j−1)− 2s(ai−1, j )+ s(ai−1, j+1),

ai, j ≤ λ j + s(āi, j−1)− 2s(āi, j )+ s(ai, j+1),

ai,n ≤ λn + s(āi,n−1)− s(ai−1,n),

for all 1≤ i, j ≤ n, where we use the notation

āi, j := ai,2n− j for 1≤ j ≤ n,

and

s(āi, j ) := āi, j +

i−1∑
k=1

(ak, j + āk, j ), s(ai, j ) :=

i∑
k=1

(ak, j + āk, j ),

for j < n (so s(ai,n)= 2
∑i

k=1 ak,n).
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l1 l2 l3

z1,1

y2,2

z2,2

y3,3

z3,3

z1,2 z1,3

y2,3

z2,3

Figure 1. A graphical presentation of a Gelfand–Tsetlin pattern
(for n = 3).

In the above formula we use the convention that ai, j = āi, j = 0 if j < i . Note that
if i > 1 then for j < i the expression s(āi, j ) is not 0 but equals

∑i−1
k=1(ak, j + āk, j ).

Moreover, Littelmann [1998] defines a map from Rn2
to Rn2

which maps 1w0(λ)

to the polytope GT(λ), obtained from a Gelfand–Tsetlin pattern,2 which induces
a bijection between the integral points of 1w0(λ) and GT(λ). We first recall from
[Littelmann 1998] the definition of the polytope GT(λ). For simplicity of notation let

l j := λ j + · · ·+ λn

so that λ= l1ε1+ · · · + lnεn . Let {yi, j }, 2 ≤ i ≤ j ≤ n, and {zi, j }, 1 ≤ i ≤ j ≤ n,
denote coordinates in Rn2

. A point

(y, z) := (z1,1, . . . , z1,n, y2,2, . . . , y2,n, z2,2, . . . , z2,n, . . . , yn,n, zn,n)

in Rn2

≥0 is called a Gelfand–Tsetlin pattern for λ= l1ε1+ · · ·+ lnεn if the entries
satisfy the “betweenness ” condition:

(3-2) lk ≥ z1,k ≥ lk+1, zi−1, j−1 ≥ yi, j ≥ zi−1, j , yi, j ≥ zi, j ≥ yi, j+1

for 1≤ k≤ n, 1≤ i ≤ j ≤ n, where y1, j = l j for simplicity of notation. A convenient
way to visualize these conditions is to organize the coordinates of Rn2

as in Figure 1
(for n = 3). The value of each coordinate must be between the values of its top
right and top left neighbors. Littelmann’s map from the string polytope 1w0(λ) to
the Gelfand–Tsetlin polytope GT(λ) associates to each element a ∈ Rn2

the pattern
P(a)= (yi, j , zi, j ) of highest weight λ= y1,1ε1+· · ·+y1,nεn defined by the equations

2Remark on notation: Performing Thimm’s trick for the sequence of subgroups Sp(1) ⊂ · · · ⊂
Sp(n − 1) ⊂ Sp(n) produces a Hamiltonian action of a torus of dimension 1

2 n(n − 1) on Oλ. The
image of the momentum map for this torus (not toric) action is a polytope of dimension 1

2 n(n− 1)
which is sometimes called a Gelfand–Tsetlin polytope. This polytope can be obtained from GT(λ)
described here via a projection forgetting the {zi, j } coordinates.
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in [Littelmann 1998] (note the misprint therein: αm−k+1 should be αm− j+1):

(3-3)

yi,1ε1+ · · ·+ yi,nεn = λ−

i−1∑
k=1

(
ak,nα1+

n−1∑
j=k

(ak, j + āk, j )αn− j+1

)

zi,1ε1+ · · ·+ zi,nεn =

n∑
k=1

yi,kεk −
ai,n

2
α1−

n−1∑
j=i

āi, jαn− j+1,

where α j are the simple roots as in (3-1):

αn = ε1− ε2, αn−1 = ε2− ε3, . . . , α2 = εn−1− εn, α1 = 2εn.

In fact this map is a GL(n2,Z)-transformation followed by a translation, as we now
show.

Proposition 3.3. The map (3-3) which maps the polytope 1w0(λ) to the Gelfand–
Tsetlin polytope GT(λ) is a GL(n2,Z)-transformation followed by a translation.

We are grateful to the referee for suggesting we replace our original proof (by
direct computation) with the following one.

Proof. Clearly (3-3) defines a composition of a linear map8∈GL(n2,R), defined by
a matrix with integral entries (remember that α1 = 2εn) and a translation. It suffices
to show that |det8| = 1 as this will imply that 8−1 is also a matrix with integral
entries, proving that 8 ∈ GL(n2,Z). The fact that (3-3) is a bijection between
integral points of 1w0(kλ)= k1w0(λ) and integral points of GT(kλ)= k GT(λ) for
any k ∈ N, together with the fact that the volume of any integral polytope 1 ∈ Rn2

,
is the limit

vol(1)= lim
k→∞

#(k1∩Zn2
)

kn2 ,

implies that vol(1w0(λ))= vol GT(λ). Therefore, we must have that |det8|= 1. �

Example 3.4. Let’s take a closer look at the case n = 2 and reprove the above
proposition by direct computation. In this case, the simple roots are: α1 = 2ε2,
α2 = ε1 − ε2. We fix a reduced word decomposition w0 = s1 s2 s1 s2, and fix a
weight

λ= λ1w1+ λ2w2 = (λ1+ λ2)ε1+ λ2ε2.

The associated string polytope 1 = 1w0(λ) is a subset of R4, for which we use
coordinates a22, a11, a12, a13, and is defined by the inequalities

a22 ≥ 0, a11 ≥ a12 ≥ a13 ≥ 0,



THE GROMOV WIDTH OF COADJOINT ORBITS OF THE SYMPLECTIC GROUP 415

and
a13 = ā11 ≤ λ1,

a11 ≤ λ1− 2s(ā11)+ s(a12)= λ1− 2a13+ 2a12,

a12 ≤ λ2+ s(ā11)= λ2+ a13,

a22 ≤ λ2+ s(ā21)− s(a12)= λ2+ a11+ a13− 2a12.

We derive the second set of inequalities for the symplectic group (see also Corollary 6
of [Littelmann 1998]) from the description of the string polytope for a general G
given in [Littelmann 1998, definition on page 5, Proposition 1.5]. According to this
description (using our fixed reduced word decomposition and numbering of simple
roots):

a13 ≤ 〈λ, α
∨

2 〉 = 〈λ, (ε1− ε2)
∨
〉 = (λ1+ λ2)− λ2 = λ1,

a12 ≤ 〈λ− a13α2, α
∨

1 〉 = 〈λ, 2ε∨2 〉− a13〈ε1− ε2, 2ε∨2 〉 = λ2+ a13,

a11 ≤ 〈λ− a13α2− a12α1, α
∨

2 〉

= 〈λ, (ε1− ε2)
∨
〉− a13〈ε1− ε2, (ε1− ε2)

∨
〉− a12〈2ε2, (ε1− ε2)

∨
〉

= λ1− 2a13− a12(−2),

a22 ≤ 〈λ− a13α2− a12α1− a11α2, α
∨

1 〉

= λ2+ a13− a12〈2ε2, 2ε∨2 〉− a11〈ε1− ε2, 2ε∨2 〉

= λ2+ a13− 2a12+ a11.

We now analyze the map from the above string polytope to the Gelfand–Tsetlin
polytope, given by equations (3-3). As

z11ε1+ z12ε2 = (λ1+ λ2)ε1+ λ2ε2−
a12

2
(2ε2)− a13(ε1− ε2),

we get

z11 = λ1+ λ2− a13,

z12 = λ2− a12+ a13.

The value of y22 is the coefficient of ε2 in λ− a12(2ε2)− (a11+ a13)(ε1− ε2), and
z22 is the coefficient of ε2 in y21ε1+ y22ε2−

1
2a22(2ε2), thus

y22 = λ2+ a11− 2a12+ a13,

z22 = y22− a22,

i.e., 
z11

z12

y22

z22

=


0 0 0 −1
0 0 −1 1
0 1 −2 1
−1 1 −2 1

 ·


a22

a11

a12

a13

+

λ1+ λ2

λ2

λ2

λ2

 .
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Therefore, the inequalities describing the string polytope translate to the following
inequalities:

a22≥ 0⇐⇒ y22≥ z22,

a11≥ a12⇐⇒ y22+2a12−a13−λ2≥ a12⇐⇒ y22≥−a12+a13+λ2= z12,

a12≥ a13⇐⇒ 0≤ λ2− z12,

a13≥ 0⇐⇒ λ1+λ2 ≥ z11,

a13≤ λ1⇐⇒ z11≥ λ2,

a12−a13≤ λ2⇐⇒ λ2− z12≤ λ2⇐⇒ 0≤ z12,

a11−2a12+2a13≤ λ1⇐⇒ y22− z11+λ1≤ λ1⇐⇒ y22≤ z11,

a22−a11+2a12−a13≤ λ2⇐⇒ λ2− z22≤ λ2⇐⇒ 0≤ z22.

The inequalities on the right are exactly the inequalities describing the Gelfand–
Tsetlin polytope.

Theorem 3.5. Let r = min{λ1, . . . , λn} and 1(r) be an n2-dimensional simplex
of size (the lattice length of the edges) r . There exist 9 ∈ GL(n2,Z) and x ∈ Rn2

such that
9(1(r))+ x ⊂ GT(λ).

Proof. Recall from (3-2) the definition of GT(λ). Let V0 := V0(λ) be a vertex of
GT(λ) where all the coordinates yi, j , zi, j are equal to their upper bounds, i.e.,

zi, j = yi, j = zi−1, j−1 = yi−1, j−1 = · · · = z1, j−i+1 = l j−i+1.

We will analyze the edges starting from V0. To obtain an edge starting from V0,
we pick one of the inequalities (3-2) defining GT(λ) which is an equality at V0,
and consider the set of points in GT(λ) satisfying all the same equations that V0

l1 l2 l3

l1

l1

l1

l1

l1

l2 l3

y2;3

y2;3

y2;3 2 [l3; l2]

l1 l2 l3

l1

l1

z2;2

l2 l3

z2;2 2 [l2; l1]

l2

l2

z2;2

z2;2

Figure 2. The edges E2,3 and F2,2, where y2,3 ∈ [l3, l2] (left) and
z2,2 ∈ [l2, l1] (right).
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satisfies, except possibly this chosen one. More precisely, each of the 1
2 n(n− 1)

pairs (i0, j0) with 2≤ i0 ≤ j0 ≤ n gives us an edge Ei0, j0 defined as the set of points
(y, z) ∈ Rn2

satisfying

yi, j = zi, j = l j−i+1 unless j − i = j0− i0 and i ≥ i0,

yi0, j0 = zi0, j0 = yi0+1, j0+1 = · · · = zn− j0+i0,n ∈ [l j0−i0+2, l j0−i0+1].

The lattice length of this edge is l j0−i0+1− l j0−i0+2 = λ j0−i0+1. An example of such
an edge is presented in Figure 2, on the left.

Moreover, each of the 1
2 n(n+ 1) pairs (i0, j0) with 1≤ i0 ≤ j0 ≤ n gives us an

edge Fi0, j0 defined as the set of points (y, z) ∈ Rn2
satisfying

yi, j = zi, j = l j−i+1 unless j − i = j0− i0 and i ≥ i0,

yi0, j0 = l j0−i0+1,

zi0, j0 = yi0+1, j0+1 = zi0+1, j0+1 = · · · = zn− j0+i0,n ∈ [l j0−i0+2, l j0−i0+1].

The lattice length of this edge is also l j0−i0+1− l j0−i0+2 = λ j0−i0+1. An example
of such an edge is presented in Figure 2, on the right.

The above collection gives 1
2 n(n− 1)+ 1

2 n(n+ 1)= n2 edges. Observe that the
directions of these n2 edges from V0 form a Z-basis of Zn2

⊂ Rn2
. Indeed, if we

keep the ordering

z1,1, z1,2, . . . , z1,n, y2,2, y2,3, . . . , y2,n, z2,2, . . . , z2,n, . . .

of our usual coordinates on Rn2
and order the edge generators by

F1,1, F1,2, . . . , F1,n, E2,2, E2,3, . . . , E2,n, F2,2, . . . , F2,n, . . . ,

then the matrix of edge generators expressed in our usual basis is an upper triangular
matrix with (−1)’s on the diagonal. Therefore, there exist 9 ∈ GL(n2,Z) and
x ∈ Rn2

such that

9(1(min{λ j | j = 1, . . . , n}))+ x ⊂ GT(λ). �

Combining the above claims, we prove our main result.

Proof of Theorem 1.1. Let

λ= λ1ω1+ · · ·+ λnωn = (λ1+ · · ·+ λn)ε1+ · · ·+ λnεn

be a point in the interior of the chosen Weyl chamber 3+R for the symplectic
group Sp(n), which lies on some rational line. We want to show that the Gromov
width of the coadjoint orbit Oλ through λ is at least min{λ1, . . . , λn}.

Recall that 3+ denotes the integral points of the positive Weyl chamber and let
3+

Q
denote the rational ones. If λ is integral then, by Corollary 3.1, an open dense



418 IVA HALACHEVA AND MILENA PABINIAK

subset of Oλ is equipped with a toric action. The momentum map image is the inte-
rior of a polytope equivalent under the action of GL(n2,Z) and a translation to the
Gelfand–Tsetlin polytope GT(λ) (see Propositions 3.2 and 3.3). Then Theorem 3.5
and Proposition 2.1 together with Theorem 1.2 prove that the Gromov width of Oλ
is exactly min{λ1, . . . , λn}.

If λ is not integral, let a ∈ R+ be such that aλ is integral. Observe that the
coadjoint orbits Oaλ and Oλ are diffeomorphic and differ only by a rescaling of
their symplectic forms. Thus the Gromov width of Oaλ, which is min{aλ1, . . . , aλn},
is a times bigger than the Gromov width of Oλ. This proves that the Gromov width
of Oλ for λ rational is exactly min{λ1, . . . , λn}. �

3A. Further comments. Note that the Gromov width of Oλ is lower semicontinu-
ous as a function of λ, which one can prove by adjusting a “Moser type” argument
from [Mandini and Pabiniak 2018]. However, to extend our result to orbits Oλ with
arbitrary λ, what is in fact needed is upper semicontinuity. We are very grateful to
the referee for this remark. It is not known in general if the Gromov width of Oλ is
upper semicontinuous. It would be if, for example, all obstructions to embeddings
of balls came from J -holomorphic curves. (The last condition is often called the
“Biran Conjecture”.) Note that an implication of the above conjecture of Biran is
that the Gromov width of integral symplectic manifolds must be greater than or
equal to 1. This statement was proved, under certain assumptions: using Seshadri
constants by Lazarsfeld [2004a; 2004b] and by McDuff and Polterovich [1994],
and also, using degenerations, by Kaveh [2015b].
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