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MINIMAL BRAID REPRESENTATIVES
OF QUASIPOSITIVE LINKS

KYLE HAYDEN

We show that every quasipositive link has a quasipositive minimal braid
representative, partially resolving a question posed by Orevkov. These
quasipositive minimal braids are used to show that the maximal self-
linking number of a quasipositive link is bounded below by the negative
of the minimal braid index, with equality if and only if the link is an
unlink. This implies that the only amphichiral quasipositive links are the
unlinks, answering a question of Rudolph’s.

1. Introduction

Quasipositive links in S3 were introduced by Rudolph [1983] and defined in terms of
special braid diagrams, the details of which we recall below. These links possess a
variety of noteworthy features. Perhaps most strikingly, results from [Rudolph 1983;
Boileau and Orevkov 2001] show that quasipositive links are precisely those links
which arise as transverse intersections of the unit sphere S3

⊂C2 with complex plane
curves 6⊂C2. The hierarchy of braid-positive, positive, strongly quasipositive, and
quasipositive links interacts in compelling ways with conditions such as fiberedness
[Etnyre and Van Horn-Morris 2011; Hedden 2010], sliceness [Rudolph 1993],
homogeneity [Baader 2005], and symplectic or Lagrangian fillability [Boileau and
Orevkov 2001; Hayden and Sabloff 2015]. Quasipositive links also have well-
understood behavior with respect to invariants such as the four-ball genus, the
maximal self-linking number, and the Ozsváth–Szabó concordance invariant τ
[Hedden 2010]. For a different perspective, we can view quasipositive braids as a
monoid in the mapping class group of a disk with marked points, where they lie in-
side the contact-geometrically important monoid of right-veering diffeomorphisms;
see [Etnyre and Van Horn-Morris 2015] for more details.

The braid-theoretic description of quasipositivity is as follows: A braid is called
quasipositive if it is the closure of a word∏

i

ωiσ jiω
−1
i ,
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where ωi is any word in the braid group and σ ji is a positive standard generator.
A link is then called quasipositive if it has a quasipositive braid representative.
However, an arbitrary braid representative of a quasipositive link need not be a
quasipositive braid. Along these lines, Orevkov [2000] posed the following question:

Question 1.1 (Orevkov). Let L be a quasipositive link and β a minimal braid index
representative of L. Is β quasipositive?

Partial resolutions to this question have appeared in [Etnyre and Van Horn-Morris
2011; Feller and Krcatovich 2017]. The first of these showed that the answer to
Question 1.1 is “yes” for fibered strongly quasipositive links. (In contrast, the
answer to the analogue of Question 1.1 for positive braids is “no”, as Stoimenow
[2002] has provided examples of braid positive knots that have no positive minimal
braid representatives. See also [Stoimenow 2006, §1].) The main purpose of this
note is to provide another partial answer to Question 1.1.

Theorem 1.2. Every quasipositive link has a quasipositive minimal braid index
representative.

This claim follows quickly from the proof of the generalized Jones conjecture
in [LaFountain and Menasco 2014] — a substantial result in the theory of braid
foliations. Our method of proof is similar to that of [Etnyre and Van Horn-Morris
2011; 2015].

A few simple consequences follow from Theorem 1.2. First, by considering
the self-linking number of a quasipositive minimal braid index representative of a
quasipositive link, we obtain a lower bound on the maximal self-linking number sl
in terms of the minimal braid index b:

Theorem 1.3. If L is a quasipositive link, then

sl(L)≥−b(L),

with equality if and only L is an unlink.

The calculation underlying Theorem 1.3 also lets us resolve an earlier question
of Rudolph’s from [Morton 1988, Problem 9.2]:

Question 1.4 (Rudolph). Are there any amphichiral quasipositive links other than
the unlinks?

At the time this question was asked, it was already known that nontrivial strongly
quasipositive knots were chiral; see [Rudolph 1999, Remark 4] for a discussion of
precedent results. Additional evidence for a negative answer came in the form of
strong constraints on invariants of amphichiral quasipositive links (including their
being slice [Wu 2011]). We confirm that the answer to Rudolph’s question is “no”.
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Corollary 1.5. If a link L and its mirror m(L) are both quasipositive, then L is an
unlink. In particular, the unlinks are the only amphichiral quasipositive links.

After recalling the necessary background in Section 2, we supply proofs for the
above results in Section 3.

2. Background

The generalized Jones conjecture, first confirmed by Dynnikov and Prasolov [2013],
relates the writhe w and braid index n of braids with a given link type.

Theorem 2.1 [Dynnikov and Prasolov 2013, generalized Jones conjecture]. Let β
and β0 be closed braids with the same link type L, where n(β0) is minimal for L.
Then there is an inequality

|w(β)−w(β0)| ≤ n(β)− n(β0).

Recall Bennequin’s formula for the self-linking number of a braid β:

sl(β)= w(β)− n(β).

It follows from the generalized Jones conjecture, Bennequin’s formula, and the
transverse Alexander theorem that a minimal braid index representative of L
achieves the maximal self-linking number among all transverse representatives
of L, denoted sl(L). For any braid β representing a link type L, we can plot the
pair (w(β), n(β)) in a plane. The cone of β is the collection of all pairs (w, n)
realized by braids which are stabilizations of β; see Figure 1 for an example. If
β0 is a minimal braid index representative of L, we see that the right edge of its
cone consists of all pairs (w, n) corresponding to braids achieving the maximal
self-linking number of L.

The other tool central to the proof of Theorem 1.2 is due to Orevkov and concerns
braid moves that preserve quasipositivity.

Theorem 2.2 [Orevkov 2000]. Suppose the braids β and β ′ are related by positive
(de)stabilization. Then β is quasipositive if and only if β ′ is quasipositive.

−2 0 2 4 6 8 10

(w(β), n(β))
2

4

6

n

w

Figure 1. The cone of a braid β with (w(β), n(β))= (4, 2).
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Remark 2.3. In [Orevkov 2000], an n-stranded braid is viewed as an isotopy class
of n-valued functions f : [0, 1]→ C where f (0) and f (1) equal {1, 2, . . . , n} ⊂ C.
A braid is then quasipositive if one of its representatives can be expressed as a
product of conjugates of the standard generators. For us, it is more convenient to
study closed braids (up to isotopy through closed braids). Two closed braids are
equivalent if and only if they can be expressed as closures of conjugate open braids.
Since quasipositivity is a property of conjugacy classes of open braids, Theorem 2.2
holds equally well for closed braids.

3. Quasipositive minimal braids

We proceed to the proof of the of the main result, namely that every quasipositive
link has a quasipositive minimal braid representative.

Proof of Theorem 1.2. Let L be a quasipositive link with a minimal braid index
representative β0 and a quasipositive braid representative β+. Since the slice-
Bennequin inequality is sharp for quasipositive links [Rudolph 1993; Hedden 2010],
β+ achieves the maximal self-linking number for L. As noted above, it follows
that (w(β+), n(β+)) lies along the right edge of the cone of β0. The braids β0 and
β+ have the same link type, so [LaFountain and Menasco 2014, Proposition 1.1]
implies that there are braids β ′0 and β ′

+
obtained from β0 and β+ by negative and

positive stabilization, respectively, such that β ′0 and β ′
+

cobound embedded annuli.
Note that β ′0 and β ′

+
lie along the left and right edges of the cone, respectively, as

depicted on the left side of Figure 2. We also note that β ′
+

is quasipositive since it
is obtained from β+ by positive stabilization.

Next, as in the proof of [LaFountain and Menasco 2014, Proposition 3.2], we can
find braids β ′′0 and β ′′

+
obtained from β ′0 and β ′

+
by braid isotopy, destabilization,

and exchange moves such that w(β ′′
+
)= w(β ′′0 ) and n(β ′′

+
)= n(β ′′0 ). We claim that

β ′′
+

has minimal braid index (as does β ′′0 ). Indeed, since β ′0 and β ′
+

lie on the left
and right edges of the cone of β0, the destabilizations applied to them must be
negative and positive, respectively. Given this and the fact that exchange moves
preserve writhe and braid index, we see that β ′′0 and β ′′

+
must also lie on the left

and right edges of the cone of β0, respectively. But since these braids occupy the
same (w, n)-point, they must lie where the edges of the cone meet. As depicted
on the right side of Figure 2, this implies that β ′′0 and β ′′

+
have minimal braid

index.
Finally, we show that the braid β ′′

+
is quasipositive. As noted above, any destabi-

lizations of β ′
+

must be positive, and these preserve quasipositivity by Theorem 2.2.
An exchange move also preserves quasipositivity, since it can be expressed as a
combination of one positive stabilization, one positive destabilization, and a number
of conjugations; see [Birman and Wrinkle 2000, Figure 8]. �
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Figure 2. On the left, β ′0 and β ′
+

are obtained from β0 and β+ by
negative and positive stabilization, respectively. Then, on the right,
β ′′0 and β ′′

+
are obtained from β ′0 and β ′

+
by negative and positive

destabilization, respectively.

Remark 3.1. The question of whether or not all minimal braid index representatives
of a quasipositive link are quasipositive remains open. The answer is seen to be “yes”
for transversely simple link types: beginning with a quasipositive braid representa-
tive of a transversely simple link, the transverse Markov theorem implies that any
minimal braid index representative can be related to it by positive (de)stabilization,
which preserves quasipositivity. By the same reasoning, the answer to Question 1.1
is “yes” for any link type that has a unique transverse class achieving its maximal
self-linking number (but is not necessarily transversely simple). This is the case
for fibered strongly quasipositive links, as shown by Etnyre and Van Horn-Morris.
But it fails to hold even for nonfibered strongly quasipositive links; as pointed out
by Etnyre and Van Horn-Morris, there are infinite families of 3-braids found by
Birman and Menasco [2006] which are (strongly) quasipositive and of minimal
braid index but not transversely isotopic.

Remark 3.2. As pointed out by Eli Grigsby, the proof of Theorem 1.2 can be
mirrored to show that any property of closed braids that is

(1) preserved under transverse isotopy, and

(2) satisfied by at least one braid representative of L with maximal self-linking
number

is also satisfied by at least one minimal braid index representative of L.

Now we obtain the lower bound in Theorem 1.3 by applying Bennequin’s formula
to a quasipositive minimal braid.

Proof of Theorem 1.3. Recall that a quasipositive braid always achieves the maximal
self-linking number of its link type. Thus if β is a quasipositive minimal braid
index representative of L, we have

sl(L)= sl(β)= w(β)− n(β)= w(β)− b(L).
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The desired inequality now follows from the fact that the writhe of a quasipositive
braid is nonnegative, vanishing if and only if the braid is trivial. �

Finally, we prove the corollary that resolves Question 1.4.

Proof of Corollary 1.5. Observe that if β is a minimal braid index representative
of L, then its mirror m(β) is minimal for m(L). Now suppose L and m(L) are both
quasipositive. The preceding proof implies that w(β) and w(m(β))=−w(β) are
both nonnegative, so w(β) must be zero. Since we can choose the braid β to be
quasipositive, the vanishing of its writhe implies that the braid itself is trivial. �
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