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FOUR-DIMENSIONAL STATIC AND RELATED CRITICAL
SPACES WITH HARMONIC CURVATURE

JONGSU KIM AND JINWOO SHIN

We study any four-dimensional Riemannian manifold (M, g)with harmonic
curvature which admits a smooth nonzero solution f to the equation

∇ d f = f
(

Rc−
R

n− 1
g
)
+ xRc+ y(R)g,

where Rc is the Ricci tensor of g, x is a constant and y(R) a function of
the scalar curvature R. We show that a neighborhood of any point in some
open dense subset of M is locally isometric to one of the following five types:
(i) S2( R

6

)
×S2( R

3

)
with R> 0, (ii) H2( R

6

)
×H2( R

3

)
with R< 0, where S2(k)

and H2(k) are the two-dimensional Riemannian manifolds with constant
sectional curvatures k > 0 and k < 0, respectively, (iii) the static spaces
we describe in Example 3, (iv) conformally flat static spaces described by
Kobayashi (1982), and (v) a Ricci flat metric.

We then get a number of corollaries, including the classification of the
following four-dimensional spaces with harmonic curvature: static spaces,
Miao–Tam critical metrics and V -static spaces.

For the proof we use some Codazzi-tensor properties of the Ricci tensor
and analyze the equation displayed above depending on the various cases of
multiplicity of the Ricci-eigenvalues.

1. Introduction

In this article we consider an n-dimensional Riemannian manifold (M, g) with
constant scalar curvature R which admits a smooth nonzero solution f to the
equation

(1-1) ∇ d f = f
(

Rc−
R

n− 1
g
)
+ x ·Rc+ y(R)g,
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where Rc is the Ricci curvature of g, x is a constant and y(R) a function of R.
There are several well-known classes of spaces which admit such solutions. Be-
low we describe them and briefly explain their geometric significance and recent
developments.

A static space admits by definition a smooth nonzero solution f to

(1-2) ∇ d f = f
(

Rc−
R

n− 1
g
)
.

A Riemannian geometric interest of a static space comes from the fact that
the scalar curvature functional S, defined on the space M of smooth Riemannian
metrics on a closed manifold, is locally surjective at g ∈M if there is no nonzero
smooth function satisfying (1-2); see Chapter 4 of [Besse 1987].

This interpretation also holds in a local sense. Roughly speaking, if no nonzero
smooth function on a compactly contained subdomain � of a smooth manifold
satisfies (1-2) for a Riemannian metric g on �, then the scalar curvature functional
defined on the space of Riemannian metrics on � is locally surjective at g in a
natural sense; see Theorem 1 of [Corvino 2000]. This local viewpoint has been
developed to make remarkable progress in Riemannian and Lorentzian geometry
[Chruściel et al. 2005; Corvino 2000; Corvino et al. 2013; Corvino and Schoen
2006; Qing and Yuan 2016].

Kobayashi [1982] studied a classification of conformally flat static spaces. In
his study the list of complete ones is made. Moreover, all local ones are described
for all varying parameter conditions and initial values of the static space equation.
Indeed, they belong to the cases I–VI in Section 2 of [Kobayashi 1982] and the
existence of solutions in each case is thoroughly discussed. Lafontaine [1983]
independently proved a classification of closed conformally flat static spaces. Qing
and Yuan [2013] classified complete Bach-flat static spaces which contain compact
level hypersurfaces.

Next to static spaces we consider a Miao–Tam critical metric [2009; 2011], which
is a compact Riemannian manifold (M, g) that admits a smooth nonzero solution f ,
vanishing at the smooth boundary of M, to

(1-3) ∇ d f = f
(

Rc−
R

n− 1
g
)
−

g
n− 1

.

In [Miao and Tam 2011], Miao–Tam critical metrics are classified when they are
Einstein or conformally flat. In [Barros et al. 2015], Barros, Diógenes and Ribeiro
proved that if (M4, g, f ) is a Bach-flat simply connected, compact Miao–Tam
critical metric with boundary isometric to a standard sphere S3, then (M4, g) is
isometric to a geodesic ball in a simply connected space form R4, H4 or S4.
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In [Corvino et al. 2013], Corvino, Eichmair and Miao defined a V -static space
to be a Riemannian manifold (M, g) which admits a nontrivial solution ( f, c), for
a constant c, to the equation

(1-4) ∇ d f = f
(

Rc−
R

n− 1
g
)
−

c
n− 1

g.

Note that (M, g) is a V -static space if and only if it admits a solution f to (1-2)
or (1-3) on M, seen by scaling constants. Under a natural assumption, a V -static
metric g is a critical point of a geometric functional, as explained in Theorem 2.3
of [Corvino et al. 2013]. Like static spaces, local V -static spaces are still important;
see, e.g., Theorems 1.1, 1.6 and 2.3 in [Corvino et al. 2013].

Lastly, one may consider Riemannian metrics (M, g) which admit a nonconstant
solution f to

(1-5) ∇ d f = f
(

Rc−
R

n− 1
g
)
+Rc−

R
n

g.

If M is a closed manifold, then g is a critical point of the total scalar curvature
functional defined on the space of Riemannian metrics with unit volume and
with constant scalar curvature on M. By an abuse of terminology we shall call a
metric g satisfying (1-5) a critical point metric even when M is not closed. There
are a number of works on this subject, including [Besse 1987, Section 4.F] and
[Lafontaine 1983; Yun et al. 2014; Barros and Ribeiro 2014; Qing and Yuan 2013].

Finally we note that the existence of a nonzero or nonconstant solution to any
of (1-2)–(1-5) guarantees the scalar curvature is constant. Indeed, it is shown for
(1-2)–(1-4) in [Corvino 2000; Miao and Tam 2009; Corvino et al. 2013] and can be
shown similarly for (1-5). But it does not hold true generally for (1-1).

In this paper we study spaces with harmonic curvature having a nonzero solution
to (1-1). It is confined to four-dimensional spaces here, but our study may be
extendible to higher dimensions. As motivated by Corvino’s local deformation
theory of scalar curvature, we study local (i.e., not necessarily complete) classifica-
tion. We completely characterize nonconformally flat spaces, so that together with
Kobayashi’s work on conformally flat ones we get a full classification as follows.

Theorem 1.1. Let (M, g) be a four-dimensional (not necessarily complete) Rie-
mannian manifold with harmonic curvature, satisfying (1-1) with nonconstant f .
Then for each point p in some open dense subset M̃ of M, there exists a neighbor-
hood V of p with one of the following properties:

(i) (V, g) is isometric to a domain in
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with R > 0,

where S2(k) is the two-dimensional sphere with constant sectional curvature k > 0
and gk is the Riemannian metric of constant curvature k, and f = c1 cos

(√ R
6 s
)
− x
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for any constant c1, where s is the distance from a point on S2
( R

6

)
. The constant R

equals the scalar curvature of g. It holds that 1
3 x R+ y(R)= 0.

(ii) (V, g) is isometric to a domain in
(
H2
( R

6

)
×H2( R

3 ), gR/6+ gR/3
)

with R < 0,
where H2(k) is the hyperbolic plane with constant sectional curvature k < 0. The
metric gR/6 can be written as gR/6= ds2

+ p(s)2 dt2 with p(s)= k1 sinh
(√
−

R
6 s
)
+

k2 cosh
(√
−

R
6 s
)

for constants k1, k2, and then f =c2 p′(s)−x for any constant c2. It
holds that 1

3 x R+ y(R)= 0.

(iii) (V, g) is isometric to a domain in one of the static spaces in Example 3 of
Section 2A2, which is the Riemannian product (R1

×W 3, dt2
+ ds2

+ h(s)2g̃) of
(R1,dt2)and some three-dimensional conformally flat static space (W 3,ds2

+h(s)2g̃)
with zero scalar curvature, and f = c · h′(s)− x for any constant c. It holds that
R = 0 and y(0)= 0.

(iv) (V, g) is conformally flat. It is one of the metrics whose existence is described
in Section 2 of [Kobayashi 1982]; g = ds2

+ h(s)2gk , where h is a solution of

(1-6) h′′+ 1
12 Rh = ah−3 for a constant a.

For the constant k, the function h satisfies

(1-7) (h′)2+ ah−2
+

1
12 Rh2

= k,

and f is a nonconstant solution to the following ordinary differential equation for f :

(1-8) h′ f ′− f h′′ = x
(
h′′+ 1

3 Rh
)
+ y(R)h.

Conversely, any (V, g, f ) from (i)–(iv) has harmonic curvature and satisfies (1-1).

Theorem 1.1 only considers the case when f is a nonconstant solution, but the
other case of f being a nonzero constant solution is easier, which is described in
Section 2A1.

Theorem 1.1 yields a number of classification theorems on four-dimensional
spaces with harmonic curvature as follows. Theorem 8.2 classifies complete spaces
satisfying (1-1). Then Theorems 9.1, 10.2 and 11.1 state the classification of local
static spaces, V -static spaces and critical point metrics, respectively. Theorems 9.2
and 11.2 classify complete static spaces and critical point metrics, respectively.
Theorem 10.3 gives a characterization of some four-dimensional Miao–Tam critical
metrics with harmonic curvature, which is comparable to the aforementioned Bach-
flat result [Barros et al. 2015].

To prove Theorem 1.1 we look into the eigenvalues of the Ricci tensor, which
is a Codazzi tensor under the harmonic curvature condition. This Codazzi tensor
encodes some geometric information, as investigated by Derdziński [1980]. In [Kim
2017], one of us has analyzed it in the Ricci soliton setting. We shall work in the
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same framework of arguments: we show that all Ricci-eigenvalues λi , i = 1, 2, 3, 4,
locally depend on the function f only, and then analyze case I when the three
λ2, λ3, λ4 are pairwise distinct and case II when exactly two of them are equal.

Our contribution in this paper is first to show the dependence of all Ricci-
eigenvalues on f in the setting of (1-1) by modifying the original soliton proof.
Then in analyzing cases I and II, we manage to prove the desired key arguments
of Propositions 4.2, 6.3 and 6.4 using involved formulas, which turns out to be
fairly different from the soliton proof. Finally in the last five sections we discuss
local-to-global results ranging from static spaces to critical point metrics.

This paper is organized as follows. In Section 2, we discuss examples and
some properties from (1-1) and harmonic curvature. In Section 3, we prove that
all Ricci-eigenvalues locally depend on only one variable. We study in Section 4
the case when the three eigenvalues λ2, λ3, λ4 are pairwise distinct. In Sections 5
and 6 we analyze the case when exactly two of the three are equal. In Section 7
we characterize the case when all the three are equal, and then prove the local
classification theorem as Theorem 1.1. We discuss the classification of complete
spaces in Section 8. In Sections 9, 10 and 11 we treat static spaces, Miao–Tam
critical and V -static spaces and critical point metrics respectively.

2. Examples and properties from (1-1) and harmonic curvature

We are going to describe some examples of spaces which satisfy (1-1) in Section 2A
and state basic properties of spaces with harmonic curvature satisfying (1-1) in
Section 2B.

2A. Examples of spaces satisfying (1-1).

2A1. Spaces with a nonzero constant solution to (1-1). When (M, g) has a constant
solution f =−x to (1-1), then y(R)+x R/(n−1)= 0. Conversely, any metric with
its scalar curvature satisfying y(R)+ x R/(n− 1)= 0 admits the constant solution
f =−x to (1-1) because

∇ d f = f
(

Rc−
R

n− 1
g
)
+ xRc+ y(R)g = ( f + x)

(
Rc−

R
n− 1

g
)
.

This proves the following lemma.

Lemma 2.1. An n-dimensional Riemannian manifold (M, g) of constant scalar
curvature R admits the constant solution f = −x if and only if it satisfies
y(R)+ x R/(n− 1)= 0.

If (M, g) has a constant solution f = c0, which does not equal −x , then g is an
Einstein metric. Conversely, if g is Einstein, i.e., Rc= (R/n)g with R 6= 0, then
any constant c0 satisfying c0 R = (n− 1)x R+ y(R)n(n− 1) is a solution to (1-1);
but if g is Ricci-flat, then f = c0 is a solution exactly when y(0)= 0.
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2A2. Some examples of spaces which satisfy (1-1) with nonconstant f .

Example 1 (Einstein spaces satisfying (1-1) with nonconstant f ). Let (M, g, f )
be a four-dimensional space satisfying (1-1), where g is an Einstein metric. We
shall show that g has constant sectional curvature. We may use the argument in
Section 1 of [Cheeger and Colding 1996]. In fact, the relation (1.6) of that paper
corresponds to the equation

(2-1) ∇ d f =
[
−

1
12 R f + x 1

4 R+ y(R)
]
g

in our Einstein case. One can readily see that their argument to get their (1.19) still
works; in some neighborhood of any point in M we can write g = ds2

+ ( f ′(s))2g̃,
where s is a function such that ∇s =∇ f/|∇ f | and g̃ is considered as a Riemannian
metric on a level surface of f .

As g is Einstein, so is g̃ from Lemma 4 in [Derdziński 1980]. As g̃ is three-
dimensional, it has constant sectional curvature, say k. Moreover, f satisfies
f ′′ =− 1

12 R f + 1
4 x R+ y(R), by feeding (∂/∂s, ∂/∂s) to (2-1).

Since g is Einstein, we can readily see that our warped product metric g has
constant sectional curvature. In particular, a four-dimensional complete positive
Einstein space satisfying (1-1) with nonconstant f is a round sphere; see [Obata
1962; Yano and Nagano 1959].

Example 2. Assume 1
3 x R+ y(R)= 0. Then (1-1) reduces to

∇d f = ( f + x)
(

Rc−
R

n− 1
g
)
.

This is the static space equation for g and F = f + x . We recall one example
from [Lafontaine 1983]. On the round sphere S2(1) of sectional curvature 1, we
consider the local coordinates (s, t)∈ (0, π)×S1 so that the round metric is written
ds2
+ sin2(s) dt2. Let f (s) = c1 cos s − x for any constant c1. Then the product

metric of S2(1)×S2(2) with f satisfies (1-1). This example is neither Einstein nor
conformally flat.

Example 3. Here we shall describe some four-dimensional nonconformally flat
static space gW + dt2. We first recall some spaces among Kobayashi’s warped
product static spaces [1982] on I × N (k) with the metric g = ds2

+ r(s)2ḡ, where
I is an interval and (ḡ, N (k)) is an (n−1)-dimensional Riemannian manifold of
constant sectional curvature k. Moreover, f = cr ′ for a nonzero constant c.

In order for g to be a static space, the next equation needs to be satisfied; for a
constant α
(2-2) r ′′+

R
n(n− 1)

r = αr1−n,

along with an integrability condition: for a constant k,

(2-3) (r ′)2+
2α

n− 2
r2−n
+

R
n(n− 1)

r2
= k.
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Existence of solutions depends on the values of α, R, k. Here we consider only
when R = 0. Then there are three cases:

(i) R = 0, α > 0.

(ii) R = 0, α < 0.

(iii) R = 0, α = 0.

The above (i), (ii) and (iii) correspond respectively to the cases IV.1, III.1 and II
in Section 2 of [Kobayashi 1982]. The solutions for these cases are discussed in
Proposition 2.5, Example 5 and Proposition 2.4 in that paper. In particular, if R = 0,
α > 0 (then k > 0) and n = 3, we get the warped product metric on R1

×S2(1)
which contains the spatial slice of a Schwarzschild space-time. Next, if R = 0,
α < 0, then there is an incomplete metric on I × N (k). If R = 0, α = 0, then g is
readily seen to be a flat metric.

Let (W 3, gW , f ) be one of the three-dimensional static spaces (g, f ) in the above
paragraph. We now consider the four-dimensional product metric gW + dt2 on
W 3
×R1. One can check that (W 3

×R1, gW + dt2, f ◦ pr1) is a static space, where
pr1 is the projection of W 3

×R1 onto the first factor. When R= 0 and α 6= 0 for gW ,
the metric gW + dt2 is not conformally flat and has three distinct Ricci-eigenvalues.

2B. Spaces with harmonic curvature. A Riemannian metric is said to have har-
monic curvature [Besse 1987, Chapter 16] if the divergence of the curvature tensor
is zero. The Ricci tensor Rc of a Riemannian metric, when evaluated on two vectors
(X, Y ), shall be denoted by R(X, Y ) rather than Rc(X, Y ), and its components in
vector frames shall be written as Ri j .

By the differential Bianchi identity, the Ricci tensor of a Riemannian metric with
harmonic curvature is a Codazzi tensor, written in local coordinates as ∇k Ri j =

∇i Rk j . A Riemannian metric with harmonic curvature has constant scalar curvature.
We begin with a basic formula.

Lemma 2.2. For a four-dimensional manifold (M4, g, f ) with harmonic curvature
satisfying (1-1), it holds that

−R(X, Y, Z ,∇ f )=−R(X, Z)g(∇ f, Y )+ R(Y, Z)g(∇ f, X)

−
1
3 R{g(∇ f, X)g(Y, Z)− g(∇ f, Y )g(X, Z)}.

Proof. By the Ricci identity, ∇i∇j∇k f −∇j∇i∇k f =−
∑

l Ri jkl∇l f . The equation
(1-1) gives∑

l

− Ri jkl∇l f =∇i
{

f
(
Rjk −

1
3 Rgjk

)
+ x Rjk + y(R)gjk

}
−∇j

{
f
(
Rik −

1
3 Rgik

)
+ x Rik + y(R)gik

}
=∇i f

(
Rjk −

1
3 Rgjk

)
−∇j f

(
Rik −

1
3 Rgik

)
,

which yields the lemma. �
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A Riemannian manifold with harmonic curvature is real analytic in harmonic
coordinates [DeTurck and Goldschmidt 1989]. Equation (1-1) then implies that f
is real analytic in harmonic coordinates.

One may mimic arguments in [Cao and Chen 2013] and get the next lemma. We
shall often denote the metric g(X, Y ) by 〈X, Y 〉.

Lemma 2.3. Let (Mn, g, f ) have harmonic curvature, satisfying (1-1) with non-
constant f . Let c be a regular value of f and 6c = {x | f (x) = c} be the level
surface of f . Then the following hold:

(i) E1 := ∇ f/|∇ f | is an eigenvector field of Rc, where ∇ f 6= 0.

(ii) |∇ f | is constant on any connected component of 6c.

(iii) There is a function s locally defined with s(x) =
∫

d f/|∇ f |, so that ds =
d f/|∇ f | and E1 =∇s.

(iv) R(E1, E1) is constant on any connected component of 6c.

(v) Near a point in 6c, the metric g can be written as

g = ds2
+

∑
i, j>1

gi j (s, x2, . . . , xn) dxi ⊗ dx j ,

where x2, . . . , xn is a local coordinate system on 6c.

(vi) ∇E1 E1 = 0.

Proof. In Lemma 2.2, put Y = Z =∇ f and X ⊥∇ f to get

0=−R(X,∇ f,∇ f,∇ f )=−R(X,∇ f )g(∇ f,∇ f ).

So, R(X,∇ f ) = 0. Hence E1 = ∇ f/|∇ f | is an eigenvector of Rc. By (1-1),
1
2∇X |∇ f |2 = 〈∇X∇ f,∇ f 〉 = f R(∇ f, X)= 0 for X ⊥∇ f . This proves (ii). Next

d
(

d f
|∇ f |

)
=−

1

2|∇ f |
3
2

d|∇ f |2 ∧ d f = 0

as ∇X (|∇ f |2)= 0 for X ⊥ ∇ f . So, (iii) is proved. As ∇ f and the level surfaces
of f are perpendicular, one gets (v). One uses (v) to compute Christoffel symbols
and gets (vi).

Now we shall prove (iv). Locally, f is a function of the local variable s only.
We can write

E1( f )= d f (E1)=
d f
ds

ds(E1)=
d f
ds

g(∇s,∇s)=
d f
ds
,

which again depends on s only. Similarly we get E1 E1( f )= d2 f/ds2. By (1-1),
we have

E1 E1 f = E1 E1 f − (∇E1 E1) f

=∇ d f (E1, E1)= ( f + x)R(E1, E1)−
1

n− 1
R f + y(R).
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Since f + x is not zero on an open subset,

R(E1, E1)=
1

( f + x)

{
E1 E1 f +

1
n− 1

R f − y(R)
}

depends on s only. So R(E1, E1) is constant on any connected component of 6c.
This proves (iv). �

As (M, g) has harmonic curvature, the Ricci tensor Rc is a Codazzi tensor.
Following [Derdziński 1980], for x ∈ M, let ERc(x) be the number of distinct
eigenvalues of Rcx , and set MRc={x ∈M | ERc is constant in a neighborhood of x}.
The open subset MRc is dense in M. To see this, one may argue as follows. For each
point x ∈ M, consider any open ball B centered at x . As the range of the map ERc

is finite, there is a point q ∈ B where ERc(q) equals the maximum of ERc on B. By
definition ERc ≥ ERc(q) near q. So, ERc ≡ ERc(q) near q. Then q ∈ MRc. This
implies that MRc is dense.

Now we have:

Lemma 2.4. For a Riemannian metric g of dimension n ≥ 4 with harmonic cur-
vature, consider orthonormal vector fields Ei , i = 1, . . . , n, such that R(Ei , · )=

λi g(Ei , · ). Then the following hold in each connected component of MRc:

(i) (λj−λk)〈∇Ei E j ,Ek〉+Ei {R(E j ,Ek)}=(λi−λk)〈∇E j Ei ,Ek〉+E j {R(Ek,Ei )},
for any i, j, k = 1, . . . , n.

(ii) If k 6= i and k 6= j , then (λj − λk)〈∇Ei E j , Ek〉 = (λi − λk)〈∇E j Ei , Ek〉.

(iii) Given distinct Ricci-eigenvalues λ,µ and local vector fields v, u such that
R(v, · )= λg(v, · ) and R(u, · )= µg(u, · ) with |u| = 1, it holds that v(µ)=
(µ− λ)〈∇uu, v〉.

(iv) For each eigenvalue λ, the λ-eigenspace distribution is integrable and its leaves
are totally umbilic submanifolds of M.

Proof. The statement (i) was proved in [Kim 2017]. Parts (ii) and (iii) follow
from (i). Parts (iii) and (iv) are from Section 2 of [Derdziński 1980]. �

Given (Mn, g, f ) with harmonic curvature satisfying (1-1), f is real analytic
in harmonic coordinates, so {∇ f 6= 0} is open and dense in M. Lemma 2.3 gives
that for any point p in the open dense subset Mr ∩ {∇ f 6= 0} of Mn, there is a
neighborhood U of p where there exist orthonormal Ricci-eigenvector fields Ei ,
i = 1, . . . , n, such that

(i) E1 =∇ f/|∇ f |,

(ii) Ei is tangent to smooth level hypersurfaces of f for i > 1.

These local orthonormal Ricci-eigenvector fields {Ei } shall be called an adapted
frame field of (M, g, f ).
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3. Constancy of λi on level hypersurfaces of f

For an adapted frame field of (Mn, g, f ) with harmonic curvature satisfying (1-1),
we set ζi := −〈∇Ei Ei , E1〉 = 〈Ei ,∇Ei E1〉 for i > 1. Then by (1-1),

∇Ei E1 =∇Ei

(
∇ f
|∇ f |

)
=
∇Ei∇ f
|∇ f |

=
f R(Ei , · )− f R/(n− 1)g(Ei , · )+ x R(Ei , · )+ y(R)g(Ei , · )

|∇ f |
.

So we may write

(3-1) ∇Ei E1 = ζi Ei , where ζi =
( f + x)R(Ei , Ei )− f R/(n− 1)+ y(R)

|∇ f |
.

Due to Lemma 2.3, in a neighborhood of a point p ∈ MRc ∩ {∇ f 6= 0}, f may be
considered as a function of s only, and we write the derivative in s by a prime:
f ′ = d f/ds.

Lemma 3.1. Let (M, g, f ) be a four-dimensional space with harmonic curvature,
satisfying (1-1) with nonconstant f . Then the Ricci-eigenvalue λi associated to an
adapted frame field Ei is constant on any connected component of a regular level
hypersurface 6c of f , and so depend on the local variable s only. Moreover, ζi ,
i=2, 3, 4, in (3-1) also depend on s only. In particular, we have Ei (λj )= Ei (ζk)=0
for i, k > 1 and any j .

Proof. We denote ∇Ei f by fi and ∇E j∇Ei f by fi j . We have

4∑
j=1

1
2∇E j∇E j (|∇ f |2)=

∑
i, j

1
2∇E j∇E j ( fi fi )=

∑
i, j

∇E j ( fi fi j ).

We use fi j = f
(
Ri j −

1
3 Rgi j

)
+ x Ri j + y(R)gi j from (1-1) to compute:∑

i, j

∇E j ( fi fi j )=
∑
i, j

∇E j

{
f fi
(
Ri j−

1
3 Rgi j

)
+x fi Ri j+y(R) fi gi j

}
=

∑
i, j

f j fi
(
Ri j−

1
3 Rgi j

)
+ f fi j

(
Ri j−

1
3 Rgi j

)
+x fi j Ri j+y(R) fi j gi j

=
(
R11−

1
3 R
)
|∇ f |2+

∑
i, j

( f+x)2 Ri j Ri j−
2
9 R2 f 2

−
2
3 x R2 f

+
(
2x−2

3 f
)
y(R)R+4y(R)2,

where in obtaining the second equality we use the Bianchi identity ∇k Rjk =
1
2∇k R

and the fact that R is constant.
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Meanwhile,
4∑

j=1

∇E j∇E j (|∇ f |2)=
4∑

j=1

E j E j (|∇ f |2)− (∇E j E j )(|∇ f |2)

= (|∇ f |2)′′+
4∑

j=2

ζj (|∇ f |2)′.

Since R and λ1 = R11 depend on s only by Lemma 2.3, the function
∑4

j=2 ζj

depends only on s by (3-1). We compare the above two expressions of
4∑

j=1

∇E j∇E j (|∇ f |2)

to see that ∑
i, j

( f + x)2 Ri j Ri j

depends only on s. As f is nonconstant real analytic,
∑

i, j Ri j Ri j depends only
on s.

We compute∑
i, j,k

∇k( fi fi j Rjk)

=

∑
i, j,k

∇k
[

fi Rjk
{

f (Ri j −
1
3 Rgi j )+ x Ri j + y(R)gi j

}]
=

∑
i, j,k

∇k
[

fi
{
( f + x)Ri j Rjk −

( 1
3 f R− y(R)

)
gi j Rjk

}]
=

∑
i, j,k

fik
{
( f + x)Ri j Rjk −

( 1
3 f R− y(R)

)
gi j Rjk

}
+

∑
i, j,k

fi
{

fk Ri j Rjk + ( f + x)Rjk∇k Ri j −
1
3 fk Rgi j Rjk

}
=

∑
i, j,k

{
( f +x)Rik−

( 1
3 f R−y(R)

)
gik
}{
( f +x)Ri j Rjk−

( 1
3 f R−y(R)

)
gi j Rjk

}
+

∑
i, j,k

fi fk Ri j Rjk + ( f + x) fi Rjk∇k Ri j −
1
3 fi fk Rgi j Rjk

=

∑
i, j,k

( f + x)2 Rik Ri j Rjk + ( f + x) fi Rjk∇k Ri j + L(s),

where L(s) is a function of s only, and the Bianchi identity ∇k Rjk =
1
2∇k R = 0 is

used in obtaining the third equality.

Using ∇k Ri j =∇i Rjk , we get

(3-2)
∑
i, j,k

∇k( fi fi j Rjk)=
∑
i, j,k

( f +x)2 Rik Ri j Rjk+
1
2( f +x) fi∇i (Rjk Rjk)+L(s).
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All terms except ( f + x)2 Ri j Rjk Rik in the right-hand side of (3-2) depend on s
only. From the constancy of R and (3-1) we also get

(3-3)
∑
i, j,k

2∇k( fi fi j Rjk)

=

∑
i, j,k

∇k(2 fi fi j ) · Rjk =
∑
i, j,k

∇k∇j ( fi fi ) · Rjk

=

∑
i, j,k

Ek E j ( fi fi ) · Rjk − (∇Ek E j )( fi fi ) · Rjk

=

∑
j,i

E j E j ( fi fi ) · Rj j − (∇E j E j )( fi fi ) · Rj j

=

∑
i

E1 E1( fi fi ) · R11+

4∑
j=2

ζj E1(|∇ f |2) · Rj j

= (|∇ f |2)′′ · R11+

4∑
j=2

( f + x)Rj j Rj j −
1
3 R f Rj j + y(R)Rj j

|∇ f |
E1(|∇ f |2),

which depends only on s.
So, we compare (3-2) with (3-3) to see that Ri j Rjk Rik depends only on s. Now

λ1 and
∑4

i=1(λi )
k, k = 1, 2, 3, depend only on s. This implies that each λi ,

i = 1, 2, 3, 4, depends only on s. By (3-1), ζi , i = 2, 3, 4, depends on s only. �

4. Four-dimensional space with distinct λ2, λ3, λ4

Let (M, g, f ) be a four-dimensional Riemannian manifold with harmonic curvature
satisfying (1-1). For an adapted frame field {E j } with its eigenvalue λj in an open
subset of MRc ∩ {∇ f 6= 0}, we may only consider three cases depending on the
distinctiveness of λ2, λ3, λ4; the first case is when λi , i = 2, 3, 4, are all equal (on
an open subset), and the second is when exactly two of the three are equal. And the
last is when the three λi , i = 2, 3, 4, are mutually distinct. In this section we shall
study the last case. Note that by (3-1) two eigenvalues λi and λj are distinct if and
only if ζi and ζj are. We set 0k

i j := 〈∇Ei E j , Ek〉.

Lemma 4.1. Let (M, g, f ) be a four-dimensional Riemannian manifold with har-
monic curvature satisfying (1-1) with nonconstant f . Suppose that for an adapted
frame field E j , j = 1, 2, 3, 4, in an open subset W of MRc ∩ {∇ f 6= 0}, the
eigenvalues λ2, λ3, λ4 are distinct from each other. Then the following hold in W :

R1i j1 = 0 for distinct i, j > 1,

R1i i1 =−ζ
′

i − ζ
2
i ,

R1i i1 =−Ri i +
1
3 R,
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where
R11 =−ζ

′

2− ζ
2
2 − ζ

′

3− ζ
2
3 − ζ

′

4− ζ
2
4 ,

R22 =−ζ
′

2− ζ
2
2 − ζ2ζ3− ζ2ζ4− 202

340
2
43,

R33 =−ζ
′

3− ζ
2
3 − ζ3ζ2− ζ3ζ4+ 2

ζ2− ζ4

ζ3− ζ4
02

340
2
43,

R44 =−ζ
′

4− ζ
2
4 − ζ4ζ2− ζ4ζ3+ 2

ζ2− ζ3

ζ4− ζ3
02

340
2
43,

Proof. Now ∇E1 E1 = 0 from Lemma 2.3(vi) and ∇Ei E1 = ζi Ei from (3-1). Let
i, j > 1 be distinct. From Lemma 2.4(iii) and Lemma 3.1, 〈∇Ei Ei , E j 〉 = 0. Since
〈∇Ei Ei , E1〉 = −〈Ei ,∇Ei E1〉 = −ζi , we get ∇Ei Ei =−ζi E1. Now,

〈∇Ei E j , Ei 〉 = −〈∇Ei Ei , E j 〉 = 0,

〈∇Ei E j , E j 〉 = 0,

〈∇Ei E j , E1〉 = −〈∇Ei E1, E j 〉 = 0.

So, ∇Ei E j = 0
k
i j Ek , where k is the number such that {2, 3, 4} = {i, j, k}. Clearly

0k
i j =−0

j
ik . From Lemma 2.4(ii), (λi − λj )〈∇E1 Ei , E j 〉 = (λ1− λj )〈∇Ei E1, E j 〉.

As 〈∇Ei E1, E j 〉=0, we have 〈∇E1 Ei , E j 〉=0. This gives∇E1 Ei =0. Summarizing,
we have the following for i, j > 1, i 6= j :

∇E1 E1 = 0, ∇Ei E1 = ζi Ei , ∇Ei Ei =−ζi E1, ∇E1 Ei = 0,

∇Ei E j = 0
k
i j Ek, where k is the number such that {2, 3, 4} = {i, j, k}.

One uses Lemma 3.1 in computing curvature components. For i > 1, we get
R1i i1 =−ζ

′

i − ζ
2
i , and for distinct i, j, k > 1, we get

Rj i i j =−ζjζi −0
k
ji0

j
ik −0

k
ji0

j
ki +0

k
i j0

j
ki ,

Rki jk = Ek(0
k
i j ),

R1i j1 = 0.

From Lemma 2.4, for distinct i, j, k > 1, we have

(4-1) (ζj − ζk)0
k
i j = (ζi − ζk)0

k
ji ,

which helps to express Ri i . Lemma 2.2 gives

−R(E1, Ei , Ei ,∇ f )=
(
Ri i −

1
3 R
)
g(∇ f, E1)

for i > 1. From this we get

(4-2) R1i i1 =−Ri i +
1
3 R. �
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From the proof of the above lemma, we may write

(4-3) [E2, E3] = αE4, [E3, E4] = βE2, [E4, E2] = γ E3.

From the Jacobi identity [[E1, E2], E3] + [[E2, E3], E1] + [[E3, E1], E2] = 0,
we have

(4-4) E1(α)= α(ζ4− ζ2− ζ3).

Moreover, (4-1) gives

(4-5) β =
(ζ3− ζ4)

2

(ζ2− ζ3)2
α, γ =

(ζ2− ζ4)
2

(ζ2− ζ3)2
α.

We set a := ζ2, b := ζ3 and c := ζ4. Lemma 4.1 states two formulas for R1i i1:
R1i i1 = −ζ

′

i − ζ
2
i and R1i i1 = −Ri i +

1
3 R for i > 1. So we have R22 − R33 =

a′+ a2
− b′− b2. The Ricci curvature formulas in Lemma 4.1 also give

R22− R33 =−a′− a2
+ b′+ b2

− ac− 202
340

2
43+ bc− 2

a− c
b− c

02
340

2
43.

Adding the last two equalities, we obtain

2(R22− R33)= (b− a)c− 202
340

2
43− 2

a− c
b− c

02
340

2
43.

From (1-1), ζi f ′ = f
(
Ri i −

1
3 R
)
+ x Ri i + y(R) for i > 1. Then we get

(a−b)
f ′

f
=

(
1+

x
f

)
(R22− R33)=

1
2

(
1+

x
f

)[
(b−a)c−2

{
1+

a− c
b− c

}
02

340
2
43

]
.

So,

(4-6) −
f ′

f
=

1
2

(
1+

x
f

)[
c+ 2

a+ b− 2c
(a− b)(b− c)

02
340

2
43

]
.

Similarly,

(a− c)
f ′

f
=

1
2

(
1+

x
f

)[
(c− a)b− 2

{
1+

a− b
c− b

}
02

340
2
43

]
.

So,

(4-7) −
f ′

f
=

1
2

(
1+

x
f

)[
b+ 2

a+ c− 2b
(a− c)(c− b)

02
340

2
43

]
.

From (4-6) and (4-7), we get

402
340

2
43 =

(a− b)(a− c)(b− c)2

(a2+ b2+ c2− ab− bc− ac)
,(4-8)

−
f ′

f
=

1
2

(
1+

x
f

)
a2b+ a2c+ ab2

+ ac2
+ b2c+ c2b− 6abc

2(a2+ b2+ c2− ab− bc− ac)
.(4-9)
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The formula (4-2) gives R1212− R1313 = R22− R33, which reduces to

(4-10) 2(a′−b′)=−2(a2
−b2)+bc−ac+

(a−b)(b−c)(c−a)(a+b−2c)
2(a2+b2+c2−ab−bc−ac)

=−2(a2
−b2)+

a−b
2P

A,

where we set P := a2
+ b2
+ c2
− ab− bc− ac, and A := 6abc− a2b− ab2

−

a2c− ac2
− b2c− bc2. By symmetry, we get

(4-11) ζ ′i − ζ
′

j =−(ζ
2
i − ζ

2
j )+

ζi − ζj

4P
A for i, j ∈ {2, 3, 4}.

The formula (4-11) looks different from the corresponding one in the soliton
case in [Kim 2017]: ζ ′i − ζ

′

j =−(ζ
2
i − ζ

2
j ). But surprisingly the next proposition

still works in resolving (1-1); refer to Proposition 3.4 in [Kim 2017]. Here the
formula (4-9) is crucial.

Proposition 4.2. Let (M, g, f ) be a four-dimensional Riemannian manifold with
harmonic curvature, satisfying (1-1) with nonconstant f . For any adapted frame
field E j , j = 1, 2, 3, 4, in an open dense subset MRc ∩ {∇ f 6= 0} of M, the three
eigenfunctions λ2, λ3, λ4 cannot be pairwise distinct, i.e., at least two of the three
coincide.

Proof. Suppose that λ2, λ3, λ4 are pairwise distinct. We shall prove then that f
should be a constant, a contradiction to the hypothesis.

From (4-8) and (4-1),

(α− γ +β)2 = 4(02
34)

2
= 402

340
2
43

a− b
a− c

=
(a− b)2(b− c)2

(a2+ b2+ c2− ab− bc− ac)
.

From (4-5),

(α− γ +β)2 = α2
{

1−
(a− c)2

(a− b)2
+
(b− c)2

(a− b)2

}2

=
4α2(b− c)2

(a− b)2
.

So, α2
= (a− b)4/(4P). Since a, b, c are all functions of s only, so is α. We

compute from (4-11)

(4-12) (a− b)(a′− b′)+ (a− c)(a′− c′)+ (b− c)(b′− c′)

=−(a− b)(a2
− b2)− (a− c)(a2

− c2)− (b− c)(b2
− c2)

+
A

4P
{(a− b)2+ (a− c)2+ (b− c)2}

= −2(a3
+ b3
+ c3)+ a2b+ ab2

+ a2c+ ac2
+ b2c+ bc2

+
1
2 A

=−2(a3
+ b3
+ c3
− 3abc)− 1

2 A.
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Differentiating α2
= (a− b)4/(4P) in s and using (4-11) and (4-12),

2αα′=
(a−b)3(a′−b′)

P
−
(a−b)4(2aa′+2bb′+2cc′−ab′−ba′−ac′−ca′−cb′−bc′)

4P2

=
−(a−b)3(a2

−b2)

P
+
(a−b)4

4P2 A

−
(a−b)4{(a−b)(a′−b′)+(a−c)(a′−c′)+(b−c)(b′−c′)}

4P2

=−
(a−b)4(a+b)

P
+
(a−b)4

4P2 A+
(a−b)4{2(a3

+b3
+c3
−3abc)}

4P2 +
(a−b)4

{1
2 A
}

4P2

=−
(a−b)4

P
(a+b−c)

2
+

3(a−b)4

8P2 A.

Meanwhile, from (4-4) and α2
= (a− b)4/(4P),

2αα′ = 2α2(c− a− b)=−
(a− b)4

2P
(a+ b− c).

Equating these two expressions for 2αα′, we get A = 0. From (4-9), f ′ = 0. �

5. Four-dimensional space with λ2 6= λ3 = λ4

In this section we study when exactly two of λ2, λ3, λ4 are equal. We may well
assume that λ2 6= λ3 = λ4. By (3-1) we then have ζ2 6= ζ3 = ζ4. We use (3-1),
Lemma 2.4 and Lemma 3.1 to compute ∇Ei E j and get the next lemma.

Lemma 5.1. Let (M, g, f ) be a four-dimensional Riemannian manifold with har-
monic curvature satisfying (1-1) with nonconstant f . Suppose that λ2 6= λ3 = λ4 for
an adapted frame field E j , j = 1, 2, 3, 4, on an open subset U of MRc ∩ {∇ f 6= 0}.
Then we have

[E1, E2] = −ζ2 E2,

〈∇Ei E j , E2〉 = 0 and 〈∇Ei E j , E1〉 = −δi jζ3 for i, j ∈ {3, 4}.

In particular, the distribution spanned by E1 and E2 is integrable. So is that
spanned by E3 and E4.

Proof. From Lemma 2.4 (ii) and (3-1),

(λ2− λi )〈∇E1 E2, Ei 〉 = (λ1− λi )〈∇E2 E1, Ei 〉 = (λ1− λi )〈ζ2 E2, Ei 〉 = 0

for i = 3, 4. This gives ∇E1 E2 = 0, and so [E1, E2] = −ζ2 E2.
From Lemma 2.4 (ii), (λ2− λ4)〈∇E3 E2, E4〉 = (λ3− λ4)〈∇E2 E3, E4〉 = 0. So,
〈∇E3 E2, E4〉 = −〈E2,∇E3 E4〉 = 0. This and (3-1) yield ∇E3 E4 = β3 E3 for some
function β3. Similarly, ∇E4 E3 = −β4 E4 for some function β4. Then [E3, E4] =
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β3 E3+β4 E4. For i = 3, 4, Lemma 2.4(iii) and Lemma 3.1 give 〈∇Ei Ei , E2〉 = 0
and (3-1) gives 〈∇Ei E j , E1〉 = −δi jζ3 for i, j ∈ {3, 4}. �

We shall express the metric g in a simple form as in the next lemma.

Lemma 5.2. Under the same hypothesis as Lemma 5.1, for each point p0 in U,
there exists a neighborhood V of p0 in U with coordinates (s, t, x3, x4) such that
∇s =∇ f/|∇ f | and g can be written on V as

(5-1) g = ds2
+ p(s)2 dt2

+ h(s)2g̃,

where p := p(s) and h := h(s) are smooth functions of s and g̃ is (a pull-back of )
a Riemannian metric of constant curvature, say k, on a two-dimensional domain
with x3, x4 coordinates.

Proof. Once Lemma 5.1 is in hand, this lemma may follow from the proof of
Lemma 4.3 in [Kim 2017]. We produce a simplified proof for the sake of complete-
ness.

We let D1 be the two-dimensional distribution spanned by E1 = ∇s and E2,
and let D2 be the one spanned by E3 and E4. Then D1 and D2 are both in-
tegrable by Lemma 5.1. We may consider the coordinates (x1, x2, x3, x4) from
Lemma 4.2 of [Kim 2017], so that D1 is tangent to the two-dimensional level sets
{(x1, x2, x3, x4)|x3, x4 constants} and D2 is tangent to the level sets {(x1, x2, x3, x4)|

x1, x2 constants}. We may write g as

g = g11 dx2
1 + g12 dx1� dx2+ g22 dx2

2 + g33 dx2
3 + g34 dx3� dx4+ g44 dx2

4 ,

where � is the symmetric tensor product and gi j are functions of (x1, x2, x3, x4).

Defining a 1-form ω2( · ) := g(E2, · ), we can see that

ds2
+ω2

2 = g11 dx2
1 + g12 dx1� dx2+ g22 dx2

2 .

Setting a function
p(s) := e

∫ s
s0
ζ2(u) du

for a constant s0, we can check that d(ω2/p)= 0 from Lemma 5.1. So, ω2/p = dt
for some local function t modulo a constant. The metric g can be now written as

(5-2) g = ds2
+ p(s)2 dt2

+ g33 dx2
3 + g34 dx3� dx4+ g44 dx2

4 .

Writing ∂i :=∂/∂xi in new coordinates (x1 := s, x2 := t, x3, x4), from Lemma 5.1,
we compute 0= 〈∇∂i ∂j , ∂2〉 = −

1
2∂2gi j for i, j ∈ {3, 4}.

We consider the second fundamental form of a leaf for D2 with respect to E1:
H E1(u, v)=−〈∇uv, E1〉. For i, j ∈ {3, 4}, from Lemma 5.1

ζ3gi j = H E1(∂i , ∂j )=−
〈
∇∂i ∂j ,

∂

∂s

〉
=

1
2
∂

∂s
gi j .
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If g34 > 0 or g34 < 0 in a neighborhood of p0, we can integrate the above and get

ln |gi j | =

∫ s

c0

2ζ3(u) du+Ci j (x3, x4)

for i, j ∈ {3, 4} and a constant c0. Setting

h(s) := e
∫ s

c0
ζ3(u) du

,

we have |gi j | = (h(s))2eCi j (x3,x4). Then we may write

G := g33 dx2
3 + g34 dx3� dx4+ g44 dx2

4 = (h(s))
2g̃,

where g̃ is a Riemannian metric in a domain of the (x3, x4)-plane.
If g34(p0)= 0, by changing coordinates as x3 = z3 and x4 = z3+ z4, we get

G = g33 dz2
3+ g34 dz3� (dz3+ dz4)+ g44(dz3+ dz4)

2

= a33 dz2
3+ a34 dz3� dz4+ a44 dz2

4,

where ai j = g(∂/∂zi , ∂/∂z j ). As g44(p0) > 0, we have a34(p0) 6= 0. So, a34 6= 0 in
a neighborhood of p0. In zi -coordinates we can still have ∂2ai j = 0 and ζ3ai j =
1
2(∂/∂s)ai j . Arguing as the above paragraph, we can write G in the form G =
(h(s))2g̃, where

h(s) := e
∫ s

c1
ζ3(u) du

for a constant c1 and g̃ is a Riemannian metric in a domain of the (z3, z4)-plane
which is also a domain of the (x3, x4)-plane.

In any case g can be written as g = ds2
+ p(s)2 dt2

+ h(s)2g̃, where g̃ can be
viewed as a Riemannian metric in a domain of the (x3, x4)-plane.

The argument used in the proof of Lemma 4 in [Derdziński 1980] can prove that
g̃ has constant curvature, say k. �

6. Analysis of the metric when λ2 6= λ3 = λ4

We continue to suppose that λ2 6=λ3=λ4 for an adapted frame field E j , j=1, 2, 3, 4.
The metric g̃ in (5-1) can be written locally: g̃ = dr2

+u(r)2dθ2 on a domain in
R2 with polar coordinates (r, θ), where u′′(r)=−ku. We set an orthonormal basis

e3 =
∂

∂r
and e4 =

1
u(r)

∂

∂θ
.

Lemma 6.1. For the local metric g = ds2
+ p(s)2 dt2

+ h(s)2g̃ with harmonic
curvature satisfying (1-1) with nonconstant f , obtained in Lemma 5.2, if we set

E1 =
∂

∂s
, E2 =

1
p(s)

∂

∂t
, E3 =

1
h(s)

e3, E4 =
1

h(s)
e4,
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where e3 and e4 are as in the above paragraph, then we have the following. Here
Ri j = R(Ei , E j ) and Ri jkl = R(Ei , E j , Ek, El):

∇E1 E1 = 0,

for i = 2, 3, 4, ∇E1 Ei = 0, ∇Ei E1 = ζi Ei , where ζ2 =
p′

p
, ζ3 = ζ4 =

h′

h
,

∇E2 E2 =−ζ2 E1, ∇E2 E3 = 0, ∇E2 E4 = 0, ∇E3 E2 = 0,

∇E3 E3 =−ζ3 E1, ∇E3 E4 = 0, ∇E4 E2 = 0, ∇E4 E3 =−β4 E4,

∇E4 E4 =−ζ4 E1+β4 E3 for some function β4,

and

R1221 =−
p′′

p
=−ζ ′2− ζ

2
2 ,

R1i i1 =−ζ
′

i − ζ
2
i =−

h′′

h
for i = 3, 4,

R11 =−ζ
′

2− ζ
2
2 − 2ζ ′3− 2ζ 2

3 =−
p′′

p
− 2

h′′

h
,

R22 =−ζ
′

2− ζ
2
2 − 2ζ2ζ3 =−

p′′

p
− 2

p′

p
h′

h
,

R33 = R44 =−ζ
′

3− ζ
2
3 − ζ3ζ2− (ζ3)

2
+

k
h2 =−

h′′

h
−

p′

p
h′

h
−
(h′)2

h2 +
k
h2 ,

Ri j = 0 for i 6= j.

Proof. Now ∇E1 E1 = 0 from Lemma 2.3(vi) and ∇Ei E1 = ζi Ei , i > 1, from (3-1).
From the proof of Lemma 5.1, we already have ∇E1 E2 = 0, ∇E3 E4 = β3 E3 and
∇E4 E3 =−β4 E4.

As 〈∇E1 E3, E2〉 = −〈E3,∇E1 E2〉 = 0, one can readily get ∇E1 E3 = ρE4 for
some function ρ and ∇E1 E4 = −ρE3. We get ρ = 0 by computing directly (in
coordinates)

∇E1 E3 =∇∂/∂s
1

h(s)
∂

∂r
= 0.

From Lemma 3.1 and Lemma 2.4(iii), we have

(λ2− λi )〈∇E2 E2, Ei 〉 = Ei (λ2)= 0 for i = 3, 4,

〈∇E2 E2, E1〉 = −〈E2,∇E2 E1〉 = −ζ2(s).

So, ∇E2 E2 = −ζ2(s)E1. By a similar argument, ∇E3 E3 = −ζ3 E1 − β3 E4 and
∇E4 E4 =−ζ4 E1+β4 E3. Direct computation of the coordinates gives β3 = 0.

Then ∇E2 E3 = q E4 for some function q and ∇E2 E4 = −q E3. One computes
directly that q = 0. We similarly get ∇E3 E2 = 0 and ∇E4 E2 = 0.
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We compute directly that∇E2 E1= (p′/p)E2 and∇E3 E1= (h′/h)E3 so that (3-1)
gives ζ2= p′/p and ζ3= ζ4= h′/h. We now get ∇E3 E4= 0 and ∇E4 E3=−β4 E4,

where β4 = u′(r)/(h(s)u(r)).
With these computations in hand, it is straightforward to compute the curvature

components. �

We set a := ζ2 and b := ζ3.

Lemma 6.2. For the local metric g = ds2
+ p(s)2 dt2

+ h(s)2g̃ with harmonic
curvature satisfying (1-1) with nonconstant f , obtained in Lemma 5.2, it holds that

(6-1)
(
ab+ 1

12 R
)
b = 0.

Proof. Equation (4-2) gives
2a′+ 2a2

+ 2ab+ 1
3 R = 0,(6-2)

2b′+ 3b2
+ ab−

k
h2 +

1
3 R = 0.(6-3)

From ∇d f (Ei , Ei )= f
(
Rc− 1

3 Rg
)
(Ei , Ei )+ x R(Ei , Ei )+ y(R), we get

−(∇Ei Ei ) f = f
(
Ri i −

1
3 R
)
+ x Ri i + y(R)=− f R1i i1+ x Ri i + y(R)

for i = 2, 3. From Lemma 6.1 we have

f ′a = f (a′+ a2)− x(a′+ a2
+ 2ab)+ y(R),(6-4)

f ′b = f (b′+ b2)− x
(

b′+ 2b2
+ ab−

k
h2

)
+ y(R).(6-5)

From the harmonic curvature condition we have

(6-6) 0=∇E1 R22−∇E2 R12 =∇E1(R22)+ R(∇E2 E1, E2)+ R(∇E2 E2, E1)

= (R22)
′
+ a(R22− R11)

= (−a′− a2
− 2ab)′+ a(−2ab+ 2b′+ 2b2)

=−a′′− 2aa′− 2a′b− 2a2b+ 2ab2.

We differentiate (6-2) to get a′′+ 2aa′+ a′b+ ab′ = 0. Together with (6-6) we
obtain

(6-7) ab′− a′b− 2a2b+ 2ab2
= 0.

Putting (6-2) and (6-3) into (6-7) we get

0=−a
(

3b2
+ ab−

k
h2 +

1
3 R
)
+ 2

(
a2
+ ab+ 1

6 R
)
b− 4a2b+ 4ab2

= a
k
h2 +

1
3 R(b− a)+ 3ab(b− a).
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Then, as a 6= b,

(6-8)
a

a− b
k
h2 =

1
3 R+ 3ab.

From (6-4) and (6-5) we get

f ′

f
(a− b)= (a′+ a2

− b′− b2)−
x
f

(
a′+ a2

+ 2ab− b′− 2b2
− ab+

k
h2

)
.

With (6-3) and (6-2), the above gives

2
f ′

f
(a− b)=

(
1+

x
f

)(
b2
− ab−

k
h2

)
.

Then by (6-8),

2
f ′

f
a =

(
1+

x
f

)(
−ab−

ka
h2(a− b)

)
=

(
1+

x
f

)(
−4ab− 1

3 R
)
.

Meanwhile, (6-4) and (6-2) give f ′a =− f
(
ab+ 1

6 R
)
− x

(
ab− 1

6 R
)
+ y(R), so

−2
(
ab+ 1

6 R
)
−

2x
f

(
ab− 1

6 R
)
+

2y(R)
f
= 2

f ′

f
a =

(
1+

x
f

)(
−4ab− 1

3 R
)
.

So we obtain

(6-9) x
(
ab+ 1

3 R
)
+ y(R)=− f ab.

Differentiating (6-9) and dividing by f ,

f ′

f
ab =−

x
f
(a′b+ ab′)− (a′b+ ab′).

From (6-4) we get

f ′

f
ab = (a′+ a2)b−

x
f
(a′+ a2

+ 2ab)b+
yb
f
.

Equating the above and arranging terms, we get

x
f
(−ab′+ a2b+ 2ab2)= 2a′b+ ab′+ a2b+

yb
f
.

Using (6-9) we get

(6-10)
x
f

(
−ab′+ a2b+ 3ab2

+
1
3 Rb

)
= 2a′b+ ab′+ a2b− ab2.

Using (6-7) and (6-2), the left-hand side of (6-10) equals (x/ f )
(
6ab2
+

1
2 Rb

)
,

while the right-hand side equals −
(
6ab2
+

1
2 Rb

)
.

So we get (1+ x/ f )
(
6ab+ 1

2 R
)
b = 0. Then (ab+ 1

12 R)b = 0. �
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Proposition 6.3. For the local metric g = ds2
+ p(s)2 dt2

+ h(s)2g̃ with harmonic
curvature satisfying (1-1) with nonconstant f , obtained in Lemma 5.2, suppose that
ab =− 1

12 R.
Then R = 0, y(0)= 0 and p is a constant. The metric g is locally isometric to a

domain in the nonconformally flat static space (W 3
×R1, gW + dt2) of Example 3

in Section 2A2. Moreover, f = ch′(s)− x.

Proof. As ab =− 1
12 R, (6-9) gives 1

4 Rx + y(R)= 1
12 R f .

If R 6= 0, then f is a constant, a contradiction to the hypothesis. Therefore R= 0.
Then y(0)= 0 from the preceding equation. From (6-2), a′+ a2

= 0 and we have
two cases: (i) a = 1/(s+ c) for a constant c or (ii) a = 0.

Case (i): a = 1/(s+ c). From (6-4), f ′a = 0, so f is a constant, a contradiction to
the hypothesis.

Case (ii): a = 0, i.e., p is a constant. From (6-5) and (6-3), we get f ′(h′/h) =
( f + x)(h′′/h). If h′ vanishes, we get λ2 = λ3, a contradiction. So we may assume
that h is not constant. Then ch′ = f + x for a constant c 6= 0. Evaluating (1-1) at
(E1, E1),

(6-11) f ′′ = ( f + x)R(E1, E1)−
1
3 R f + y(R).

Here we get f ′′=−2( f +x)(h′′/h), so h′′′=−2h′(h′′/h). Hence, for a constant α,

(6-12) h2h′′ = α.

From (6-3),

0= 2b′+ 3b2
−

k
h2 = 2

(
h′′

h

)
+

(
h′

h

)2

−
k
h2 =

2α
h3 +

(
h′

h

)2

−
k
h2 .

So we have

(6-13) (h′)2+
2α
h
− k = 0.

We have exactly (2-2) and (2-3) in the case R = 0 and n = 3. At this point we
may write

g = ds2
+ dt2

+ h(s)2g̃ =
(

k−
2α
h

)−1

dh2
+ dt2

+ h(s)2g̃.

When α = 0, we have (h′)2 = k ≥ 0. As h is not constant, k > 0. When
h′ =±

√
k 6= 0, we have h =±

√
ks+ c0 for a constant c0. One can see that g is a

flat metric, a contradiction to λ2 6= λ3.

When α > 0, then k > 0 from (6-13). We set r := h/
√

k, and then

g =
(

1−
2α

k
√

kr

)−1

dr2
+ dt2

+ r2g̃1,
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where g̃1 is the metric of constant curvature 1 on S2. When α < 0, the three-
dimensional metric (1 − 2α/(k

√
kr))−1dr2

+ r2g̃1 corresponds to case III.1 of
Kobayashi’s conditions [1982, p. 670]. It is incomplete as explained in his Proposi-
tion 2.4.

In these two cases of α > 0 and α < 0, we get the same Riemannian metrics as
those of static spaces (W 3

×R1, gW+dt2) explained in Example 3, and f = ch′−x .
Conversely, these metrics have harmonic curvature and satisfy (1-1) with the

above f . Indeed, nontrivial components of (1-1) are (6-4), (6-5) and (6-11), whereas
the harmonic curvature condition essentially consists of (6-6) and the equation
∇E1 R33−∇E3 R13 = 0; all these can be verified from a = R = y(0)= 0 and h, f
which satisfy (6-12), (6-13) and f = ch′− x . �

Proposition 6.4. For the local metric g = ds2
+ p(s)2 dt2

+ h(s)2g̃ with harmonic
curvature satisfying (1-1) with nonconstant f , obtained in Lemma 5.2, suppose that
b = 0 and that ab = 0 6= − 1

12 R. Then the following hold:

(i) 1
3 x R+ y(R)= 0.

(ii) If R>0, then g is locally isometric to the Riemannian product
(
S2
( R

6

)
×S2

( R
3

)
,

gR/6+ gR/3
)
, where gδ is the two-dimensional Riemannian metric of constant

curvature δ, and f = c1 cos
(√ R

6 s
)
− x for any constant c1, where s is the

distance from a point on S2
( R

6

)
.

(iii) If R < 0, then g is locally isometric to
(
H2
( R

6

)
×H2

( R
3

)
,gR/6+gR/3

)
. The met-

ric gR/6 can be written as gR/6=ds2
+p(s)2 dt2 with p(s)=k1 sinh

(√
−

R
6 s
)
+

k2 cosh
(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′−x for any constant c2.

Proof. As b = 0, (6-9) gives (i). Next, (6-3) gives k/h2
=

1
3 R and (6-2) gives

a′+ a2
+

1
6 R = p′′/p+ 1

6 R = 0. Along with (6-4) these give

(6-14) f ′a =− 1
6 R( f + x).

Assume R > 0. Set r0 =
√

R
6 . For some constants C1 6= 0 and s0, we have

p = C1 sin(r0(s + s0)) so that a = r0 cot(r0(s + s0)). Then (6-14) and (i) give
f = c1 cos(r0(s+s0))−x . Then g= ds2

+sin2(r0(s+s0)) dt2
+ g̃R/3 by absorbing

a constant into dt2 and using k/h2
=

1
3 R.

Replacing s + s0 by a new s, we have g = ds2
+ sin2(r0s) dt2

+ g̃R/3. Here s
becomes the distance from a point on S2

( R
6

)
. And f = c1 cos(r0s)− x .

Assume R < 0. From p′′/p+ 1
6 R = 0 we get p(s)= k1 sinh(r1s)+ k2 cosh(r1s)

for constants k1, k2, where r1 =
√
−

R
6 , and f = c2 p′− x for any constant c2.

Conversely, the above product metrics clearly have harmonic curvature. One can
check they satisfy (1-1). Indeed, as in the proof of Proposition 6.3 one may check
(6-4), (6-5) and (6-11). �
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7. Local four-dimensional space with harmonic curvature

We first treat the remaining case of λ2 = λ3 = λ4 and then give the proof of
Theorem 1.1.

Proposition 7.1. Let (M, g, f ) be a four-dimensional Riemannian manifold with
harmonic curvature satisfying (1-1) with nonconstant f . Suppose that λ2 = λ3 =

λ4 6= λ1 for an adapted frame field in an open subset U of MRc ∩ {∇ f 6= 0}.

Then for each point p0 in U, there exists a neighborhood V of p0 in U where g
is a warped product,
(7-1) g = ds2

+ h(s)2g̃,

where h is a positive function and the Riemannian metric g̃ has constant curvature,
say k. In particular, g is conformally flat.

As a Riemannian manifold, (M, g) is locally one of Kobayashi’s warped product
spaces, as described in Sections 2 and 3 of [Kobayashi 1982], so that

(7-2) h′′+ 1
12 Rh = ah−3

for a constant a, so that by integration we have for some constant k

(7-3) (h′)2+ ah−2
+

1
12 Rh2

= k.

Moreover, f is a nonconstant solution to

(7-4) h′ f ′− f h′′ = x
(
h′′+ 1

3 Rh
)
+ y(R)h.

Conversely, any (h, f ) satisfying (7-2), (7-3) and (7-4) gives rise to (g, f ) which
has harmonic curvature and satisfies (1-1).

Proof. To prove that g is in the form of (7-1), we may use Lemma 2.3(v) and
Lemma 2.4(iii)–(iv). For a detailed proof we refer to that of Proposition 7.1 of
[Kim 2017] since the argument is almost the same as in the gradient Ricci soliton
case. To prove that g̃ has constant curvature, we use Lemma 4 in [Derdziński 1980].
It then follows that the metric g in (7-1) is conformally flat.

In the setting of Lemma 2.3, f is a function of s only. For g = ds2
+ h(s)2g̃, in

a local adapted frame field, we have

(7-5)

R11 =−3
h′′

h
, Ri i =−

h′′

h
− 2

(h′)2

h2 + 2
k
h2 ,

Ri j = 0 for i 6= j,

R =−6
h′′

h
− 6

(h′)2

h2 + 6
k
h2 .

Feeding (Ei , Ei ), i = 1, 2 to (1-1) we obtain

f ′′ =−3 f
h′′

h
− f 1

3 R− 3x
h′′

h
+ y(R),(7-6)

h′ f ′− f h′′ = x
(
h′′+ 1

3 Rh
)
+ y(R)h.(7-7)
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Differentiating (7-7) and using (7-6), we get

( f + x)
{

h′′′+ 3
h′′h′

h
+

1
3 Rh′

}
= 0.

As f 6= −x , we get

h′′′+ 3
h′′h′

h
+

1
3 Rh′ = 0.

Multiplying this by h3, we get
(
h3h′′+ 1

12 Rh4
)′
= 0. Then we have (7-2) and then

(7-3). Kobayashi solved these completely according to each parameter and initial
condition.

One can check that any h and f satisfying (7-7), (7-2) and (7-3) satisfy (7-5)
and (7-6). �

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that we have already discussed the case λ1 = λ2 =

λ3 = λ4 in Example 1 of Section 2A2. The conformally flat spaces in Example 1
belong to the type (iv) of Theorem 1.1; in particular a = 0 in (1-6) and (1-7).

As the metrics g and f are real analytic, the Ricci-eigenvalues λi are real
analytic on MRc ∩ {∇ f 6= 0}. And ζi ’s are real analytic from (3-1). So we can
combine Proposition 4.2, Lemma 6.2, Propositions 6.3, 6.4, 7.1 and Example 1
of Section 2A2, to obtain a classification of four-dimensional local spaces with
harmonic curvature satisfying (1-1) as Theorem 1.1. �

Remark 7.2. In the statement of Theorem 1.1, among the types (i)–(iv), there is
possibly only one type of neighborhood V on a connected space (M, g, f ); this
holds by a continuity argument of Riemannian metrics. Then one can prove that
M̃ = M if M is of type (i), (ii) or (iii).

8. Complete four-dimensional space with harmonic curvature

It is not hard to describe complete spaces corresponding to parts (i), (ii), (iii) of
Theorem 1.1.

For the complete conformally flat case corresponding to (iv) of Theorem 1.1,
we may use Theorem 3.1 of Kobayashi’s classification [1982]. Then (M, g) can
be either S4, H4, a flat space or one of the spaces in Examples 1–5 in [Kobayashi
1982]. Now our task is to determine f , which is described by (1-8).

We first recall the spaces in Examples 3–5 in [Kobayashi 1982]. Any space in
Examples 3 and 4 in that paper is a quotient of a warped product R×h N (1) where
h is a smooth periodic function on R; recall that N (k) is a Riemannian manifold of
constant sectional curvature k. Any space in Example 5 in that paper is a quotient
of a warped product R×h N (k) where h is smooth on R. Here h ≥ ρ1 > 0.

We verify the following lemma.
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Lemma 8.1. For any one of the spaces in Examples 3, 4 and 5 in [Kobayashi 1982],
the following hold:

(i) The solution f to (1-1) can be defined and is smooth on R.

(ii) If h is periodic and 1
3 x R+ y(R)= 0, then f is periodic.

Proof. As stated in Proposition 7.1, any (h, f ) satisfying (7-2), (7-3) and (7-4)
gives rise to (g, f ) which satisfies (1-1). So, (h, f ) satisfies (7-6).

Choose some point s0 with h′′(s0) 6= 0. For any constant c, we consider the
initial-value problem

(8-1) f ′′ =− f
( 1

12 R+ 3ah−4)
+ 3x

( 1
12 R− ah−4)

+ y(R),

with initial conditions f ′(s0)= c and

f (s0)=
ch′(s0)−

{
x(h′′(s0)+

1
3 Rh(s0))+ y(R)h(s0)

}
h′′(s0)

so that (1-8) holds at s0. Note that (8-1) is equivalent to (7-6) since h satisfies (1-6).
As h exists smoothly on R as a solution of (1-6), by global Lipschitz continuity

of the right-hand side of (8-1), the solution f exists globally on R.
From (1-6) we obtain

(8-2) h′′′ =−
( 1

12 R+ 3ah−4)h′.
Then by (8-1) and (8-2) it satisfies

h′ f ′′− f h′′′ = x
(
h′′′+ 1

3 Rh′
)
+ y(R)h′,

which is the derivative of (1-8). So, (1-8) holds on R. As h and f satisfy (1-8), the
induced (g, f ) satisfies (1-1) on R.

If 1
3 x R+ y(R)= 0, then from (1-8) we get f (s)=−x+Ch′(s) for a constant C ,

which is periodic as h. �

About Lemma 8.1(ii), we note that if 1
3 x R+ y(R) 6= 0 and h is periodic, then

the periodicity of f should be checked by computation.
We are ready to state the following result.

Theorem 8.2. Let (M, g) be a four-dimensional complete Riemannian manifold
with harmonic curvature satisfying (1-1) with nonconstant f . Then it is one of the
following:

(8.2-i) (M, g) is isometric to a quotient of
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with

R > 0, where f = c1 cos
(√ R

6 s
)
− x for any constant c1, where s is the distance

from a point on S2
( R

6

)
. It holds that 1

3 x R+ y(R)= 0.
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(8.2-ii) (M, g) is isometric to a quotient of
(
H2
( R

6

)
×H2

( R
3

)
, gR/6+ gR/3

)
with

R < 0. The metric gR/6 can be written as gR/6 = ds2
+ p(s)2 dt2 with p(s) =

k1 sinh
(√
−

R
6 s
)
+ k2 cosh

(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′− x for
any constant c2. It holds that 1

3 x R+ y(R)= 0.

(8.2-iii) (M, g) is isometric to a quotient of one of the static spaces in Example 3 of
Section 2A2, which is the Riemannian product (R1

×W 3, dt2
+ ds2

+ h(s)2g̃) of
R1 and some three-dimensional conformally flat static space (W 3

= R1
×S2(1),

ds2
+ h(s)2g̃) with zero scalar curvature, which contains the spatial slice of the

Schwarzschild space-time
And f = c · h′(s)− x for a constant c. It holds that R = y(0)= 0.

(8.2-iv) (M, g) is conformally flat. It is either S4, H4, a flat space or one of the
spaces in Examples 1–5 in [Kobayashi 1982]. Below we describe f in each subcase:

(8.2-iv-1) S4(k2) with the metric g = ds2
+ (sin(ks)2/k2)g1 for any constant c,

f (s)= c · cos(ks)+ 3x +
y(12k2)

k2 .

(8.2-iv-2) H4(−k2) with g = ds2
+ (sinh(ks)2/k2)g1 for any constant c,

f (s)= c · cosh(ks)+ 3x −
y(−12k2)

k2 .

(8.2-iv-3) A flat space, f = a +
∑

i +bi xi +
1
2 y(0)x2

i in local Euclidean coordi-
nates xi for constants a and bi .

(8.2-iv-4) Examples 1 and 2 in [Kobayashi 1982]: the Riemannian product (R×N(k),
ds2
+ gk) or its quotient, k 6= 0, where N (k) is three-dimensional complete space

of constant sectional curvature k,

f =

{
c1 sin

√
R
3 s+ c2 cos

√
R
3 s− x when R > 0,

c1 sinh
√
−

R
3 s+ c2 cosh

√
−

R
3 s− x when R < 0.

It holds that 1
3 x R+ y(R)= 0 and R = 6k.

(8.2-iv-5) Examples 3 and 4 in [Kobayashi 1982]: a warped product R×h N (1) or
its quotient, where h is a periodic function on R, f is on R, satisfying (1-8).

(8.2-iv-6) Example 5 in [Kobayashi 1982]: a warped product R×h N (k) where h
is defined on R, f is on R, satisfying (1-8).

Proof. To obtain (8.2-i), (8.2-ii) and (8.2-iii), we use the continuity argument of
Riemannian metrics from Theorem 1.1. To describe f in the subcases of (8.2-iv),
we use (1-8) and (7-6). �
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9. Four-dimensional static spaces with harmonic curvature

In this section we study static spaces, i.e., those satisfying (1-2). As explained in
the Introduction, studying local static spaces is interesting due to Corvino’s local
deformation theory of scalar curvature. Qing and Yuan’s work [2016] on local scalar
curvature rigidity arouses another motivation. Here we state a local classification
which can be read off from Theorem 1.1:

Theorem 9.1. Let (M, g, f ) be a four-dimensional (not necessarily complete) static
space with harmonic curvature and nonconstant f . Then for each point p in some
open dense subset M̃ of M, there exists a neighborhood V of p with one of the
following properties:

(9.1-i) (V, g) is isometric to a domain in
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with R>0.

And f = c1 cos
(√ R

6 (s + s0)
)
, where s is the distance from a point on S2

( R
6

)
and

c1, s0 are constants.

(9.1-ii) (V, g) is isometric to a domain in
(
H2
( R

6

)
×H2

( R
3

)
, gR/6+ gR/3

)
with

R < 0. The metric gR/6 can be written as gR/6 = ds2
+ p(s)2 dt2 with p(s) =

k1 sinh
(√
−

R
6 s
)
+ k2 cosh

(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′ for any
constant c2.

(9.1-iii) (V, g) is isometric to a domain in one of the static spaces in Example 3
of Section 2A2, which is the Riemannian product R1

×W 3 of R1 and some three-
dimensional conformally flat static space (W 3, ds2

+ h(s)2g̃) with zero scalar
curvature, and f = ch′.

(9.1-iv) (V, g) is conformally flat. So, it is one of the warped product metrics of the
form ds2

+ h(s)2gk whose existence is described in Section 2 of [Kobayashi 1982].
The function h satisfies (1-6) and (1-7), and we have f (s)= Ch′(s).

For complete conformally flat case corresponding to (9.1-iv) in Theorem 9.1, if
we use Theorem 3.1 of Kobayashi’s classification, we get either S4, H4, a flat space
or one of the spaces in Examples 1–5 in [Kobayashi 1982]. We may thus obtain
classification of complete four-dimensional static spaces with harmonic curvature:

Theorem 9.2. Let (M, g, f ) be a complete four-dimensional static space with
harmonic curvature. Then it is one of the following:

(9.2-i) (M, g) is isometric to a quotient of
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with

R > 0. And f = c1 cos
(√ R

6 s
)
, where s is the distance function from a point on

S2
( R

6

)
.

(9.2-ii) (M, g) is isometric to a quotient of
(
H2
( R

6

)
×H2

( R
3

)
, gR/6+ gR/3

)
with

R < 0. The metric gR/6 can be written as gR/6 = ds2
+ p(s)2 dt2 with p(s) =

k1 sinh
(√
−

R
6 s
)
+ k2 cosh

(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′ for any
constant c2.



4-D STATIC AND RELATED SPACES WITH HARMONIC CURVATURE 457

(9.2-iii) (M, g) is isometric to a quotient of the Riemannian product (R1
×W 3,

dt2
+g̃), where (W 3, g̃) denotes the warped product manifold on the smooth product

R1
×S2(1) which contains the spatial slice of the Schwarzschild space-time; see

Example 3 of Section 2A2.

(9.2-iv) (M, g, f ) is S4, H4, a flat space or one of the spaces in Examples 1–5 in
[Kim 2017].

(9.2-v) g is a complete Ricci-flat metric with f a constant function.

Proof. It follows from Theorem 8.2. When f is a nonzero constant, g is clearly
Ricci-flat. So we get (v). �

Fischer and Marsden [1974] made the conjecture that any closed static space is
Einstein. But it was disproved by conformally flat examples in [Lafontaine 1983;
Kobayashi 1982]. Now we ask:

Question 1. Does there exist a closed static space which does not have harmonic
curvature?

The space in (9.2-iii) of Theorem 9.2 has three distinct Ricci-eigenvalues. We
only know examples of static spaces with at most three distinct Ricci-eigenvalues.
So we ask the following:

Question 2. Does there exist a static space with more than three distinct Ricci-
eigenvalues? Is there a limit on the number of distinct Ricci-eigenvalues for a static
space?

10. Miao–Tam critical metrics and V -critical spaces

In this section we treat Miao–Tam critical metrics. These metrics originate from
[Miao and Tam 2009], where they studied the critical points of the volume func-
tional on the space MK

γ of metrics with constant scalar curvature K on a compact
manifold M with a prescribed metric γ at the boundary of M. Miao–Tam critical
metrics are precisely described [Miao and Tam 2011] in case they are Einstein or
conformally flat.

Here we first describe four-dimensional metrics with harmonic curvature which
have a nonzero solution f to (1-3). We do not assume the condition f|6 = 0 but
still can show that any such metric must be conformally flat;

Theorem 10.1. Let (M, g) be a four-dimensional (not necessarily complete) Rie-
mannian manifold with harmonic curvature, satisfying (1-3) with nonconstant f .
Then (M, g) is conformally flat. It is one of the warped product metrics of the form
ds2
+ h(s)2gk whose existence is described in Section 2 of [Kobayashi 1982]. The

function h satisfies (1-6) and (1-7), and f satisfies h′ f ′− f h′′ =−h/(n− 1).
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Proof. The proof is immediate from Theorem 1.1; the cases (i)–(ii) of Theorem 1.1
require 1

3 x R+ y(R)= 0 and (iii) requires y(0)= 0, which contradict the conditions
x = 0 and y(R)=− 1

3 that (1-3) has. The description of Theorem 1.1(iv) holds for
g and f of Theorem 10.1, and in particular g is conformally flat. �

Theorem 10.1 shows an advantage of our local approach over [Barros et al. 2015]
in analyzing (1-3). In fact, the integration argument of Lemma 5 of that paper only
works for compact manifolds, but our analysis can resolve local solutions.

From Theorems 9.1 and 10.1 we can classify local four-dimensional V -static
spaces with harmonic curvature:

Theorem 10.2. Let (M, g, f ) be a four-dimensional (not necessarily complete)
V -static space with harmonic curvature and nonconstant f . Then for each point p
in some open dense subset M̃ of M, there exists a neighborhood V of p with one of
the following properties:

(10.2-i) (V, g) is isometric to a domain in
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with

R > 0. And f = c1 cos
(√ R

6 (s+ s0)
)
, where s is the distance function from a point

on S2
( R

6

)
and c1, s0 are constants.

(10.2-ii) (V, g) is isometric to a domain in
(
H2
( R

6

)
×H2

( R
3

)
, gR/6+ gR/3

)
with

R < 0. The metric gR/6 can be written as gR/6 = ds2
+ p(s)2 dt2 with p(s) =

k1 sinh
(√
−

R
6 s
)
+ k2 cosh

(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′ for any
constant c2.

(10.2-iii) (V, g) is isometric to a domain in one of the static spaces in Example 3
of Section 2A2 which is the Riemannian product R1

×W 3 of R1 and some three-
dimensional conformally flat static space (W 3, ds2

+ h(s)2g̃) with zero scalar
curvature. And f = ch′ for any constant c.

(10.2-iv) (V, g) is conformally flat. It is one of the warped product metrics of
the form ds2

+ h(s)2gk whose existence is described in Section 2 of [Kobayashi
1982]. The function h satisfies (1-6) and (1-7), and we have f (s)= ch′(s) for any
constant c.

(10.2-v) (V, g) is conformally flat. It is one of the warped product metrics of the
form ds2

+ h(s)2gk whose existence is described in Section 2 of [Kobayashi 1982].
The function h satisfies (1-6) and (1-7) and f is any constant multiple of a solution
f0 satisfying h′ f ′0− f0h′′ =−h/(n− 1).

Note that the last equation in (10.2-v) comes from (1-4), which allows any
constant multiple of one solution.

As a corollary of Theorem 10.1, we could state an extension of Theorem 1.2 in
[Miao and Tam 2011] to the case of harmonic curvature. Instead we choose to state
the following version, which is a twin to Corollary 1 of [Barros et al. 2015].
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Theorem 10.3. If (M4, g, f ) is a simply connected, compact Miao–Tam critical
metric of harmonic curvature with boundary isometric to a standard sphere S3, then
(M4, g) is isometric to a geodesic ball in a simply connected space form R4, H4

or S4.

One can also make classification statements of complete spaces with harmonic
curvature satisfying (1-3) or (1-4). We omit them.

Theorem 10.1 gives a speculation that it might hold in general dimension. So,
we ask the following:

Question 3. Let (M, g) be an n-dimensional Miao–Tam critical metric with har-
monic curvature. Is it conformally flat?

It is also interesting to find examples of nonconformally flat Miao–Tam critical
metrics in any dimension.

11. On critical point metrics

In this section we study a critical point metric, i.e., a Riemannian metric g on a
manifold M which admits a nonzero solution f to (1-5). According to [Yun et al.
2014], these critical point metrics with harmonic curvature on closed manifolds in
any dimension are Einstein.

On a closed manifold, by taking the trace of this equation, R must be positive
and f satisfies

∫
M f dv = 0. Here M is not necessarily closed and g may have

nonpositive scalar curvature. From Theorem 1.1, we can easily obtain the next
theorem.

Theorem 11.1. Let (M, g) be a four-dimensional (not necessarily complete) Rie-
mannian manifold with harmonic curvature, satisfying (1-5) with nonconstant f .
Then one of the following holds:

(11.1-i) (M, g) is locally isometric to a domain in one of the static spaces of
Example 3 in Section 2A2, which is the Riemannian product (R1

×W 3, dt2
+ ds2

+

h(s)2g̃) of R1 and a three-dimensional conformally flat static space (W 3, ds2
+

h(s)2g̃) with zero scalar curvature. And f = c · h′(s)− 1.

(11.1-ii) (M, g) is conformally flat and is locally one of the metrics whose existence
is described in Section 2 of [Kobayashi 1982]: g = ds2

+ h(s)2gk where h and f
satisfy (1-6), (1-7) and (1-8).

Proof. We have 1
3 x R+ y(R) = 0 and R 6= 0 in the cases (i), (ii) of Theorem 1.1.

This is not compatible with (1-5). �

Complete spaces with harmonic curvature which admit a solution f to (1-5) are
described in the next theorem. We obtain nonconformally flat examples with zero
scalar curvature in (11.2-i), which is in contrast to the above result of [Yun et al.
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2014] for closed manifolds. The case (11.2-v) is also noteworthy; it is conformally
flat with positive scalar curvature and the metric g can exist on a compact quotient
but the function f can survive on the universal cover R×h N (1).

Theorem 11.2. Let (M, g) be a four-dimensional complete Riemannian manifold
with harmonic curvature, satisfying (1-5) with nonconstant f . Then (M, g) is one
of the following:

(11.2-i) (M, g) is isometric to a quotient of one of the static spaces of Example 3 in
Section 2A2, which is the Riemannian product (R1

×W 3, dt2
+ds2

+h(s)2g̃) of R1

and a three-dimensional conformally flat static space (W 3, ds2
+ h(s)2g̃) with zero

scalar curvature which contains the spatial slice of the Schwarzschild space-time.
And f = c · h′(s)− 1 for a constant c.

(11.2-ii) S4(k2) with the metric g= ds2
+ (sin2(ks)/k2)g1, with f (s)= c ·cos(ks).

(11.2-iii) H4(−k2) with g = ds2
+ (sinh(ks)2/k2)g1, with f (s)= c · cosh(ks).

(11.2-iv) A flat space, f = a +
∑

i bi xi in a local Euclidean coordinate xi and
constants a, bi .

(11.2-v) Example 3 in [Kobayashi 1982]: a warped product R×h N (1) where h is
a periodic function on R, f is smooth on R but is not periodic. Here R > 0.

(11.2-vi) Example 5 in [Kobayashi 1982]: a warped product R×h N (k) where h is
defined on R, f is smooth on R. Here R ≤ 0.

Proof. We may check the list in Theorem 8.2. The spaces of (8.2-i) and (8.2-ii)
in Theorem 8.2 are excluded as in the proof of Theorem 11.1. The space for
(8.2-iv-4) of Theorem 8.2, where R 6= 0, does not satisfy the equation h′ f ′− f h′′=
x
(
h′′+ 1

3 Rh
)
+ y(R)h; when x = 1, y(R)=− 1

4 R and h = 1, it reduces to 0= 1
12 R.

On the space of (8.2-iv-5) in Theorem 8.2, f is defined and smooth on R by
Lemma 8.1 (i). As 1

3 x R+ y(R) 6= 0, Lemma 8.1(ii) does not apply. According to
Section E.2 of [Lafontaine 1983], f cannot be periodic. This yields (11.2-v). �
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[Chruściel et al. 2005] P. T. Chruściel, J. Isenberg, and D. Pollack, “Initial data engineering”, Comm.
Math. Phys. 257:1 (2005), 29–42. MR Zbl

[Corvino 2000] J. Corvino, “Scalar curvature deformation and a gluing construction for the Einstein
constraint equations”, Comm. Math. Phys. 214:1 (2000), 137–189. MR Zbl

[Corvino and Schoen 2006] J. Corvino and R. M. Schoen, “On the asymptotics for the vacuum
Einstein constraint equations”, J. Differential Geom. 73:2 (2006), 185–217. MR Zbl

[Corvino et al. 2013] J. Corvino, M. Eichmair, and P. Miao, “Deformation of scalar curvature and
volume”, Math. Ann. 357:2 (2013), 551–584. MR Zbl
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