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NONEQUIDIMENSIONAL HOLOMORPHIC MAPPINGS
AND ITS APPLICATION

YANG L1U, ZHIHUA CHEN AND YIFEI PAN

In this paper, we give a boundary Schwarz lemma for holomorphic map-
pings between nonequidimensional unit balls. As an application, a new
boundary rigidity result is presented.

1. Introduction

Let B" be the unit ball in C" for n > 1. Denote by Hol(B", BY) the set of all
holomorphic mapping from the unit ball B* C C" into BY c CV. For a bounded
domain V C C", let C'T%(V) be the set of all functions f on V whose first order
partial derivatives exist and are Holder continuous. For zg € dB", the tangent space
T;,(0B™) and holomorphic tangent space TZIO’O(E)B") at zo are defined by

T,,(B") = {B € C" |Re(’ ) =0}, TP @B ={BeC"|Z =0}
respectively. In this paper, we give a general boundary Schwarz lemma for holo-
morphic mappings between unit balls in any dimensions as follows.

Theorem 1.1. Let f € Hol(B", BM) forany n, N > 1, and denote by J;(z) the
Jacobian matrix of f at z. If f is C'** at zo € dB" and f(z9) = wo € dBY, then
we have:

(D) J;(z0)B € Ty (9BY) for any B € T, (0B"), and J;(z0)B € Ty * (9B™) for any
g e 70 3B,

(II) There exists A € R such that
Jr(20) " wo = 120
with & > |1 —a’wol?/(1 — ||a||?) > 0, where a = £(0).

Remark 1.2. For the case of biholomorphic mapping, item (I) holds; see Chapter 3
of [Krantz 1992]. Here we conclude the same result for holomorphic mappings
between unit balls of different dimensions. For n = N = 1, the theorem says

MSC2010: primary 32H02; secondary 30C80.
Keywords: Boundary Schwarz lemma, boundary rigidity, holomorphic mapping, unit ball.

463


http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2018.295-2
http://dx.doi.org/10.2140/pjm.2018.295.463

464 YANG LIU, ZHIHUA CHEN AND YIFEI PAN

f'(z0) > 0, so the image f(aBl) at wg is always smooth. For n > 1, if f(0B") is a
smooth manifold, then conclusion (I) is almost trivial. However, we would like to
point out that f(dB") may be not a smooth manifold.

In the special case when n = N, Theorem 1.1 reduces to (1) and (2) in Theorem
3.1 of [Liu et al. 2015]. For n = N = 1, part (II) of the theorem gives the classical
boundary Schwarz lemma in [Garnett 1981].

As an application of Theorem 1.1, we will present a new boundary rigidity result.
First, recall the following famous rigidity result for holomorphic self-mappings
on B".

Theorem 1.3 [Burns and Krantz 1994]. Let f € Hol(B", B") with n > 1 such that
f@=2+0(0z-1"
asz — 1, where 1 = (1,0, ...,0)T € 3B". Then f(z) = z.

Notice that the order of the estimation O (|z — 1]*) is sharp in Theorem 1.3, as
shown by the example [Burns and Krantz 1994]

f@=z—1G—-1° zeD,

where D is the unit disk.

On the other hand, Huang [1995] shows that if f € Hol(B", B") satisfies f(z) =
z4+ O0(z—1) as z —> 1, and f(z0) = zo with zg € B", then f(z) = z on the
unit ball. This result gives a condition under which the order of the estimation
O(]z —1/*) in [Burns and Krantz 1994] can be lower with a fixed point.

A problem of the boundary rigidity for nonequidimensional mappings was given
by Krantz [2011]. Using Theorem 1.1, we give a positive answer to this problem,
and provide a new boundary rigidity result for holomorphic mappings between
nonequidimensional unit balls. In fact, we find conditions under which the order
of the estimation can be lower and is also sharp without internal fixed point. Our
result is given as follows.

Theorem 1.4. Let f € Hol(B", BY) for N > n > 1, such that
(1-1) f@Q=0C"0"+0(z-1

asz— L If fis C? at 1 and fi(z) = z1, where f) is the first component of f, then
f@=E" 0

Example. Let f(z1, z2) = (21, zzz'f, 0)" € Hol(B?, B?) for integer k > 1. Since
f(@) = (z1,22,07 =0, 22z} — 1), 0)7, and

f@ = @1L2.0] _ la@-Dl  _1l—1P+al _ L4 1)
2 =12 2t =12+ 122 = 20z = 1P+ [z ~ 2 ’
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it satisfies f(z) = (z1, 22, 0)T + O(]z — 1|?). However, it is obvious that f(z) #
(z1, 22, 0), which indicates that the order of O(|z — 1|3) is sharp.

2. Proof of Theorem 1.1

To prove the main result, we first give some notation and lemmas. For any z =

(z1, ..., Zn)T, w=(wg,..., w,,)T € C", the inner product and the corresponding
1

norm are given by (z, w) = Z?:l zjw; and ||z]| = (z, z) 2 respectively. dB" denotes

the boundary of B".

Lemma 2.1 [Rudin 1980]. Let f € Hol(B", BN) withn, N > 1. If £(0) = 0, then

If @I = lzll, z € B

Lemma 2.2 [Dai et al. 2010; Liu et al. 2016]. For given p € B" U9dB" and g € C"

withg #0, let L(§) = p+E&q for& € C. Then

L(D,,) CB", L(®D,,)CdB",

where D, ; ={& € C| & —cpyl <7p g}, with

2

o :\/1—||p||2+'<p,q>
P g2 llg11? 112

Proof. Assume ||L(D1,,’,1,)||2 < 1, which means

IplI* +2Re(p Eq) + llEqN < 1,

and 5 ;
Re(p 1
||p||2 ,Re(p gs)+|§|2< y
gl gl lqll
i.e.,
(o) 1=1lpl> |(p.a) |
S+ 2 2 2 D
lqll gl gl

Proof of Theorem 1.1. We prove the theorem in five steps.

Step 1. Denote by e} the i-th column of the n x n identity matrix. Assume
zp=e}=1€0B",and fis C I+ ina neighborhood V of zyg. Moreover, assume
f(0)=0and f(z0) =wo=ef.

We first show that for any g € H = {z € C" | Rez; < 0}, there existsar, > 0
such that

2-1) 14+tqeB", O0<t<ry.
Assume g = (q1, - - .,qn)T € H and Reg; < 0. Then for ¢ € R,

n
1+tgeB" & [1+1q|> <1 < [1+tReqi*+|tImg |+ ) |q; 1 < 1,
j=2
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which is equivalent to
—2Re q1

Zj'=1 ;1>

Letting r, = —2Req1 /(3" lg; ) implies the claim.

Let p =z0, ¢ = (—1+ik)z for any given k € R. Then from (2-1), when t — 07,
p+tq € B"NV. For such ¢, taking the Taylor expansion of f((1 —¢ +ikt)zp) at
t =0, we have

O<t<

F((A =t 4ikt)zo) = wo + Jf(z0) (—1 +ik)zot + O (¢ %).
By Lemma 2.1,
I £ (L=t +ikt)z0) 1> = llwo+ T (20) (= 14+ik)zot + O (¢t "F) |2 < || (1=t +ikt) 2o,

i.e.,
1+2Re(wo" Jr(z0) (=1 +ik)zot) + Ot T*) <1 =21+ O ().

Substituting wo = el, zo = e} and let t — 0™, we have
Re(e] T Jp(z0)(—1 +ik)el) < —1,

0

Re< fi@o) +ik)) <-1.

021

Let 0f1(z9)/0z1 = Re(0f1(z0)/0z1) + i Im(9f1(z0)/dz1). Then from the above

inequality, one gets

1.e.,

Re 9/1(zo)  tIm 3f1(z0) -1
1.€.,
(2-2) ki 2@ _ R 0N@)

071 071

Since (2-2) is valid for any k € R, we have

d
Im f1(z0) _ 0.
071
which implies
0
0 <Re f1(z0) 1
071
and
d 0
(2:3) f1(z0) CRe f1(z0) -

azl aZl
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Step 2. Let p = z0, ¢ = —z9 +ikej for2 < j <nand k € R. Then as r — 0%,
p+1tq € B*NV. Similarly, taking the Taylor expansion of f((1 —1)zo +-ikte’}) at
t =0, we have

f((=0)zo+ ikte;?) = wo + Jr(20)(—z0 + ike)t + o',
By Lemma 2.1,

. 2 .
| (1 =Dzo +ikee) | = llwo + Ty (z0) (=20 + ket + O )|
<|I(1 = zo+ ikee] |,

ie.,
14+ 2Re(wo" J5(z0)(—20 + ike)t) + O (') < 1 -2t + 0 ().
Substituting wg = e{v , 2o = €/ and letting r — 0, we have
Re(e_{VTJf(zQ)(—e’f + ike?)) <1,

Re(_afl(Zo) +ik3f1(zo)) -1

071 3Zj

1.€.,

From the above inequality as well as inequality (2-3), one has

a a
ke 1m 10 < fizo)
0z 071
With an argument similar to Step 1, we have
a
Im /1(z0) =0, 2<j<n.
0z

Meanwhile, if we assume p = z9, ¢ = —29 +ke;? for2 < j<nandanyk eR. It
is easy to find

d
Re /1(z0) =0, 2<j<n.
0z
Therefore,
0
(2-4) N&) o 5<j<n,
0z;

as well. As a result of (2-3) and (2-4), we have

(2-5) Jr(z0) T wo = Aszo

for wo = ey, zo =} and Ay = 3f1(20) /921 > 1.
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Step 3. Now let zg be any given point at dB". Then there exists a unitary matrix U,
such that U, (zo) = e}. Assume f(0) =0, f(z0) = wo and wy is not necessarily
ef’ at 9BY . Similarly, there is a unitary matrix Uy, such that Uy, (wo) = ef’ . Let

() =Uyyo fols,';
then g(0) =0, g(e}) = eiv . Moreover,
(2-6) Jo(2) = Uy Jr (U 2) U, T
From Steps 1 and 2, we have
Jo@Dl el = hgel

for zo =€ and A = 0g(e})/dz1 > 1, which implies

Uy Jy Uz " €D Uz, T e’ = Agel,
ie.,
U, Jf(ZO)TUoneiV = )‘gerll'
After multiplying by U,” on both sides of the above equation, we obtain
Uz Uz I (20)" Uny " € =g Uz, €],
ie.,
2-7) J5(z0)" wo = Agz0,
where A, = dgi(ef)/dz1 > 1.

Step 4. Let f(z0) = wo with zg € dB", wo € dBN. If £(0) =a # 0, then we use
the automorphism of BY to get the result. Assume ¢, (w) is an automorphism of
BY such that ¢, (a) = 0. Then ¢, (wo) € BN as well. With a similar analysis to
Step 3, there exists a Uy, (w,) such that Uy, (¢, (wp)) = wo. Let

h=U¢a°¢aOfa

then 4 (0) =0, h(zg) = wp. As a result of Step 3, there is a real number y > 1 such
that

Jn(z0) " wo = ¥ z20.

Using the expression for A, we obtain

(2-8)  Jn(z0) wo = Ug, Iy, o) J5 (20) wo = Jr(z0)" Jg, (o) Ug,” wo = y 2.

Since Uy, (¢pa(wo)) = wo, we have U_%Two = ¢, (wp). From the expression for the
automorphism ¢, given by [Rudin 1980], we have the following equality:
1= lal?

J T[]_T =7 T _ o hew )
6. (Wo)" Ug," wo = Jg, (Wo)" ¢pa(wo) |1—51Two|2w0
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Therefore, combining with (2-8) we get

T o” 1—al? wo =2
PR T =aTwe2 0 7

Consequently,
(2-9) Tr(z0) " wo = 220,
where
N 11 —a” wol? - 11 —a’ wol? 0 and £(0)
= y > > and a= .
1—lal? 1—|a|?

The proof of (II) is completed.
Step 5. For any B € T,(0B"), we have

(2-10) Re(zo! B) =0.

To prove Jr(z0)B € TwO(BBN ), it is sufficient to verify
(2-11) Re(wo" J5(20)B) =0.

From (2-9), J¢(z0)T wo = Azo, which means

(2-12) @o" Jp(z0) = Iy o) wo” = Az

Then
Re(wo” J;(z0)B) =Re(rzp’ B) = ARe(z' B) =0,

469

where the last equality comes from (2-10). Therefore, (2-11) is proved and hence

J5(20)B € Tuy (3B™).

On the other hand, for any 8 € TZ(OI’O)(EJB”), we have
(2-13) Z0'p=0.
To J(1,0) (1,0) Ny 3¢ .

prove J, (z0)B € Ty, " (dB™), it is sufficient to get

wo' Jr(z0)B = 0.
From (2-12) and (2-13),
wo' Jy(z0)B =220' B =220 B =0,

Therefore, J¢(z0)B € T,f)};(”(aBN ). The proof of (I) is completed.
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3. Proof of Theorem 1.4
For any fixed point b € B", let L, be the complex (straight) line joining b and 1:
Ly={zeC"|z=1+&1—-b), V& € C},
and let dj, be the complex disc given by £, N B”. In particular,
dy={zeB"|zp=---=2z,=0}
From Lemma 2.2, it is found that d, = L(D1,1-5).

Lemma 3.1. Let f = (f1,..., fv)T e Hol(B", BN) with N >n > 1, and fi(z) =
71,2 € B". Then

f(Z]’O""’O)z(Z170’""O)T’ ZEdO'

Proof. Restricting £(z) = (21, f2, -, fn)! on dy, then f|4, can be regarded as a
holomorphic mapplng from D into BN which implies |z;|? + Z j=2 | fi@P? <1,
Z € dy and then Z - Ifj(z)l2 <1—1z11%, z € dy. By z; — 1, the maximum
principle of subharmomc function guarantees f;j|4, =0 for any 2 < j < N. Therefore,
flay=(z1,0,...,0)7. O
Proof of Theorem 1.4. Step 1. Given f = (fi, ..., fy)T € Hol(B", BV) such that
(1-1) holds and f1(z) =z; on B". From Lemma 3.1, one gets fl|4, = (21,0, ..., 07,
We aim to prove fj(z) =zj for2 < j <nand fj(z) =0forn4+1<j < N on the
unit ball.
Represent f; by

(3-1) f@=Y ¢u@u.  zeB". 2<j=N,
k=2

where ¢ (z) are all holomorphic functions on the unit ball. In fact, taking the
Taylor expansion for fj(z) at O for 2 < j < N, one gets

fi@=f0)+> > Cyz'. zeB"

k=1 |v|=k

Let ¢j1(z1) = 2,021 C ,-z"l. Then there are holomorphic functions ¢ (z) satisfying

o0 n
H@Q=F0+) > Ct’=fi0)+¢1c)+ Y dj@zk. z€B"
k=1 |v|=k k=2
We notice that, for 2 <k <n, the ¢, (z) are not necessarily unique in this expression
for f;(z). Since fj(z1,0,...,0) =0 for any (21,0, ..., 0)7 € B* U {1}, we have
fi(0)=0and ¢;i(z1) =0, z € B" U{1}, so that (3-1) holds.
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In particular, if

(3-2) Gji(z) =Sk, 2<j<N, 2<k=n,

then the theorem is proved. If not, due to f(z) € BV,

N n
(3-3) P+ D di@u

j=2"k=2

2
<1, zeB"

Given a b € B" with b = (by,...,by)T # 0, there at least exists one b; # 0 for
2 < j < n; without loss of generality, let b, # 0. We consider d, = L(Dj,1—p) from
Lemma 2.2, where the expression for Dj 1—, can be given by

- |1 — b }
11— b]?
Notice that £ = 0 € 9D;1,1—p and z = 1 € ddp. Furthermore, for any z € dj,

z=L(E)=1+&1—-b) edy, £ € D1.1-p, 1.€,,

(21,22, .- s 2n). = (A +&E(1 —by), &b, ..., —Eb,)T, &€ D11y,

1—b
11— b2

(3-4) Diyp= {s ec| ‘s +

which gives that for z € dj, U dd), the following inequality holds:
n |2 n 2

(3-5) nl1i sl s

2 2
2P =Sl T &

bj
by

The equality is available only for z € ddj, and z # 1, i.e., zp Z 0 (£ £ 0).
Step 2. Since (1-1) holds as z — 1, it follows that

f@) =@z 0,..., 0T = 0(z—-1)).

Restricting z € dp,, we obtain

(3-62) f(2)—(21s--es 20,05, 0V |1cq,

= (0, D bn@Du =220 Y Guk(D2k — 2,
k=2 k=2
n n T
Y i@z s Y ¢Nk(Z)Zk>
k=2 k=2
B - bi by . by by
= (0, (Z ¢2k(Z)b_2 - b—2)22, e (Z ¢nk(Z)b_2 - b—Q)Zz,
k=2 k=2 .
3" g 3 om0
(n+1)k(Z b2 225 e evs Nk(Z b2 221,
k=2 k=2
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and

2 n

2

=2

1—-b
by

b2 3
b—f ) |Zz|3) = 0(|22%).
2

(3-6b) 0z —1P)|;eq, = 0((‘

Setting

I'(z) = T2(2), ..., @)’

T
(Zm(z)— qunk(z) Z¢><n+1>k<z)— Zm(z)—)

k=2 —
we have from (3-6a) and (3-6b),

by by r s
(3-7) re)—({—,....,—,0...,0) =0(z217), ze€dp.
by by

Letting z — 1 € dd,, gives zp — 0 and hence (3-7) yields the following equalities:

Z«ﬁjk( )————0 2<j<n,
(3-8)
qu,-k(l)—":o, n+1<j<N.
k=2 by

We consider the first order derivative of (3-7) at 1 and obtain
(3-9) Xn:qs/. (1)%—0 2<j<N
P Jjk b2 s =] = V.

We now set

Ao = @i (M) v-1yxa-1)» A1 = (@; (1)) N-1)x(n—1)>
0 (3-8) and (3-9) are equivalent to
(3-10) Aob = (b,0,...,00", Ab=0,

where b = (b, ...,b,)T. Since (3-10) is valid for any b # 0, we have Ag =
(I,—1,0)" and A; = 0, which implies that

(3-1D) ¢ij(D) =8;;, ¢;;(1)=0, 2<i<N, 2<j=n,
Step 3. Restricting f on dj, from (3-3), we have

N n 2
YD i@ =Z Zm(z)—

j=2 k=2 j=2 k=2

|Zz| <1—|Z1| z €dp.
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Then

N n 2

1 —1z1]

Z W, ZEdb.

j=2 k=2
From (3-5),

_l-lal _A[b 2
(3-12) Z Z¢,k(z) = =y | €t z#L
j=2 k=2 j=2

For z =1, i.e., zo = 0, it follows from (3-11) that

(3-13) Z Zcb,k(l)

j=2"k=2
Combining (3-12) and (3-13), we have

"L |b;
Zz

=2

2

n 2
(3-14) Z Zgb]k(z) < Z ? . Z€ddy.
j=2 k=2 =2
Since d, = L(D1.1-p), (3-14) is equivalent to
n 2
(3-15) Z sZ | E€0DLL,
j=2

j=2"k=2
Considering the maximum principle for the subharmonic function

N

> Z¢jk<L<5>
j=2 k=2
on Dj 1-p, we have
2 n g 2
Z Z«zﬁ,k(L@))— <> || E€Duiw
=2 k=2 j=2172
which means that
N n bk 2 n b 2
(3-16) DD e@ | =) zeds
j=2 k=2 2 =272

Step 4. Consider the mapping I'(z) on dp, which is a holomorphic mapping from

d, to the closure of the ball in C"~! with the center 0 and radius (Z;=2 b/ b2|2)7

from (3-16). From the expression of D1 1_5 given by (3-4), let
E+(=b)/I1-b|* — =

= :D11- D,
O = e P
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and

where 51,1—17 and D denote the closures of D1.1-p and D, respectively. Constructing
a mapping

W) = (Z Z—;

2\~
> .For]l_lor]Z_I:D—>BN_1,
j=2

we have from (3-11) that

n

1
bi[\"2 (b b r
U(l) = L A =,...,2,0,...,0) eaBN .
M <Z by ) (bz by >
j=2
Moreover, the mapping f is holomorphic on B” and satisfies (1-1) as z — 1; from the
construction, W is holomorphic on D and C 2 at 1. In addition W (1) = wg € 9BV~ 1.

According to Theorem 1.1, there exists a A > 0 such that

Jo(DHTwo=21-1>0

unless W is a constant mapping. In other words, the above inequality means that

2\ —1 T T

1—by| 1—by — (b b

) ;. 1|2- ! -F’(l)-(—z,...,—") =~ 0.
I1—5bl= [1—b] by by

n

(=

j=2

b;
by

However, from (3-11), it is found that I'"(1) = 0, which is a contradiction and forces
W to be a constant mapping such that I" satisfies (3-11), i.e.,

¢ij(2) = ¢ij (1) =4y, 2<i<N, 2<j=n

Consequently, from the expression for f;(z) in (3-1), one gets fj(z) = z; for
2<j=<nand fj(z) =0forn+1 < j < N. Therefore, we have f(z) = ', 0T
on the unit ball. O
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