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CONVEXITY OF LEVEL SETS AND A TWO-POINT FUNCTION

BEN WEINKOVE

We establish a maximum principle for a two-point function in order to ana-
lyze the convexity of level sets of harmonic functions. We show that this can
be used to prove a strict convexity result involving the smallest principal
curvature of the level sets.

1. Introduction

The study of the convexity of level sets of solutions to elliptic PDEs has a long history,
starting with the well-known result that the level curves of the Green’s function of
a convex domain €2 in R? are convex [Ahlfors 1973]. Gabriel [1957] proved the
analogous result in three dimensions and this was extended by Lewis [1977] and
later Caffarelli and Spruck [1982] to higher dimensions and more general elliptic
PDEs. These results show that for a large class of PDEs, there is a principle that
convexity properties of the boundary of the domain 2 imply convexity of the level
sets of the solution u.

There are several approaches to these kinds of convexity results; see for example
[Kawohl 1985, Section III.11]. One is the “macroscopic” approach, which uses
a globally defined function of two points x, y (which could be far apart) such as
u(%(x + y)) — min(u(x), u(y)). Another is the “microscopic” approach, which
computes with functions of the principal curvatures of the level sets at a single
point. This is often used together with a constant rank theorem. There is now a vast
literature on these and closely related results, see for example [Alvarez et al. 1997;
Bian and Guan 2009; Bianchini et al. 2009; Borell 1982; Brascamp and Lieb 1976;
Caffarelli and Friedman 1985; Caffarelli et al. 2007; Diaz and Kawohl 1993; Hamel
et al. 2016; Korevaar 1983; 1990; Korevaar and Lewis 1987; Rosay and Rudin 1989;
Shiffman 1956; Singer et al. 1985; Székelyhidi and Weinkove 2016; Wang 2014].

It is natural to ask whether these ideas can be extended to cases where the
boundary of the domain is not convex. Are the level sets of the solution at least as
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convex as the boundary in some appropriate sense? In this short note we introduce
a global “macroscopic” function of two points which gives a kind of measure of
convexity and makes sense for nonconvex domains. Our function

(1-1) (Du(y) — Du(x)) - (y —x)

is evaluated at two points x, y, which are constrained to lie on the same level set of u.
Under suitable conditions, a level set of u is convex if and only if this quantity has
the correct sign on that level set. We prove a maximum principle for this function
using the method of Rosay and Rudin [1989], who considered a different two-point
function

(1-2) S +ut) —u(*32).

In addition, we show that our “macroscopic” approach can be used to prove a
“microscopic” result. Namely, we localize our function and show that it gives
another proof of a result of Chang, Ma, and Yang [Chang et al. 2010] on the
principal curvatures of the level sets of a harmonic function u. In this paper,
we consider only the case of harmonic functions. However, we expect that our
techniques extend to some more general types of PDEs.

We now describe our results more precisely. Let 29 and €2; be bounded domains
in R" with Q; C Qo. Define Q = Q¢ \ ;. Assume that u € C'(Q) satisfies

(1-3) Au:OinQ:Qo\ﬁl, u=00ndy, wu=1o0nd,

and
(1-4) Du is nowhere vanishing in 2.

It is well known that (1-4) is satisfied if 29 and €2; are both starshaped with respect
to some point p € ;. A special case of interest is when both 2y and 2| are convex,
but this is not required for our main result.

To introduce our two-point function, first fix a smooth function i : [0, o0) — R
satisfying

(1-5) Y1) =2[y" )]t > 0.
For example, we could take 1 (#) = at for a > 0. Then define
(1-6) Q(x,y) = (Du(y) = Du(x)) - (y —x) + ¥ (Iy — x|

restricted to (x, y) in
T ={(x,y) € 2x Q| ux)=u(y)}.

Comparing with the Rosay—Rudin function (1-2), note that the function Q(x, y)
does not require %(x + y) € Q and makes sense whether or not 32 or 32, are



CONVEXITY OF LEVEL SETS AND A TWO-POINT FUNCTION 501

convex. Taking ¢ =0, the level set {u# = c} is convex if and only if the quantity Q is
nonpositive on {u = c}. If ¥ (t) = at for a > 0 then Q < 0 implies strict convexity of
the level set. More generally Q gives quantitative information about the convexity
of the level sets {# = c}, relative to the gradient Du.

We also remark that the function (1-6) looks formally similar to the two-point
function of Andrews and Clutterbuck [2011], a crucial tool in their proof of the
fundamental gap conjecture. However, here x and y are constrained to lie on the
same level set of u and so the methods of this paper are quite different.

Our main result is the following:

Theorem 1.1. Q does not attain a strict maximum at a point in the interior of X.

Roughly speaking, this result says that the level sets {u =c} for0 <c <1 are
“the least convex” when ¢ = 0 or ¢ = 1. As mentioned above, the result holds even
in the case that 2p and 9£2; are nonconvex.

The proof of Theorem 1.1 follows quite closely the paper of Rosay and Rudin
[1989]. Indeed a key tool of [Rosay and Rudin 1989] is Lemma 2.1 below, which
gives a map from points x to points y with the property that x, y lie on the same
level set.

Next we localize our function (1-6) to prove a strict convexity result on the level
sets of u. If we assume now that d€2¢ and 9€2; are strictly convex, we can apply
the technique of Theorem 1.1 to obtain an alternative proof of the following result
of Chang, Ma, and Yang [Chang et al. 2010].

Theorem 1.2. Assume in addition that dQ and 32 are strictly convex and C>.
Then the quantity | Du|k attains its minimum on the boundary of 2, where k1 is
the smallest principal curvature of the level sets of u.

Note that many other strict convexity results of this kind are proved in [Chang
et al. 2010; Jost et al. 2012; Longinetti 1983; Ma et al. 2010; 2011; Ortel and
Schneider 1983; Zhang and Zhang 2013].

2. Proof of Theorem 1.1

First we assume that n is even. We suppose for a contradiction that Q attains a
maximum at an interior point, and assume that supy, Q > sup,yx, Q. Then we may
choose § > 0 sufficiently small so that

0s(x,y) = O(x, y) +8|x|?

still attains a maximum at an interior point.
We use a lemma from [Rosay and Rudin 1989]. Suppose (xo, yo) is an interior
point with u(xg) = u(yp). We may assume that Du(xg) and Du(yg) are nonzero
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vectors. Let L be an element of O(n) with the property that
(2-1) L(Du(xp)) = cDu(yo) for c=|Du(xo)|/|Du(yo)l.

Note that there is some freedom in the definition of L. We will make a specific
choice later. Rosay and Rudin [1989, Lemma 1.3] show the following —it is a
special case of the lemma:

Lemma 2.1. There exists a real analytic function a(w) = O (|w|?) such that for all
w € R" sufficiently close to the origin,

Du(yo)
|Du(yo)l’

where f is a harmonic function defined in a neighborhood of the origin in R", given
by

(2-2)  ulxo+w) =ulyo+clw+ f(w)é +a(w)), where§ =

(2-3) flw) = (u(xo +w) —u(yo + cLw)).

1
| Du(yo)l
Proof of Lemma 2.1. We include the brief argument here for the sake of complete-
ness. Define a real analytic map G which takes (w, o) € R" x R sufficiently close
to the origin to

G(w,a) =u(yo+cLw+ f(w)§ +af) —ulxo+w),

forc, L, &, and f defined by (2-1), (2-2), and (2-3). Note that G (0, 0) = 0 and, by
the definition of &,

29 (0,0) = Diu(y0)& = 1Du(x0)| > 0,

where here and henceforth we are using the convention of summing repeated indices.
Hence by the implicit function theorem there exists a real analytic map o = o (w)
defined in a neighborhood U of the origin in R” to R with «(0) = O such that
G(w, a(w)) =0 forall w e U. It only remains to show that o(w) = o(lwp).
Write y = yo + cLw + f(w)é§ +a(w)é, x = xo+ w, and L = (L;;) so that
L;ijDju(xo) = cD;u(yo) and cL;; Dju(yo) = Dju(xp). Then at w € U,

3G
(2 4) O_Bwj
) D; —cD +cLw)Lg; ad

and evaluating at w = 0 gives 0 = [Du(yo)| dar/dw;(0) and hence da /0w ;(0) =0
for all j.
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Differentiating (2-4) and evaluating at w = 0, we obtain for all j, £,

. 9%G
- awgawj
= Dy Diu(yo)c*LijLie — DeDju(xo)
(D¢Dju(x0) — ¢ Dy Diu(y0) Lij Line) 9%a
+Diu(y0)( / - e+ (0)&;
| Du(yo)| dwedw;
Dulyo) —2—(0)
= u .
YO S weow;
Hence a(w) = O(Jw|?), as required. O

Now assume that Qs achieves a maximum at the interior point (xg, yg). Write
x=xo+w=(x1,...,x,) and y = yo +cLw + f(w)§ +a(w)§ = (y1, ..., yn)
and

F(w) = Qs(x, y) = Q(xo+w, yo+ cLw + f(w)€ + a(w)§) + 8|xo + wl*.

To prove the lemma it suffices to show that A, F(0) > 0, where we write A,, =
> 82/8w3. Observe that

Aypx(0) =0=Ayy(0).

Hence, evaluating at 0, we get

82
AyF = Z(wwiu(y) - Diu(X))>(yi —x;)
J

J

O Dy = D) 1 =3+ 3 2 lly — ) + 208
-(LDiuly iux awj Vi — Xi - awjz y—x no.

2
+ dw;

First we compute

92 2
> SV y=x) = 2v/ Z(cLi,—ai,«>2+4w”Z(Z(y,-—xixcuj—ai,- )
J i,j j i

J
> 29"y (cLij—8;)> —41¥"|ly—xI* D (cLij—8;;)* = 0

i,j i,j

using the Cauchy—Schwarz inequality and the condition (1-5).
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Next, at w =0,
0 ayk
——Diu(y) = Dy Diju(y) — = cDy Diju(y)Ly;,
awj awj
92 e 0ye
Y —5Diu(y) = Dy Dy Diu(y)—— —— = ¢* Dy Dy Diu(y) Lij Lej =0,
ow~ dw; dw;

j i
9 9°

a—ijiu(x) = D;Diu(x), XJ: a—w?Diu(x) = D;D;D;u(x) =0,

where for the second line we used the fact that A, y(0) =0 and Ly;L¢j D¢ Dyu =

Au = 0. Hence, combining the above,

AwF > 2(chDl~u(y)ij - Dle-u(x))(cLij - 81’}')
=2¢? Au(y) — 2¢Ly; Dy Dju(y) — 2cL;; D Diu(x) 4+ 2Au(x)
= —ZCLkkaDiu(y) — 2CL,'ijDiM(X).

Now we use the fact that n is even, and we make an appropriate choice of L
following [Rosay and Rudin 1989, Lemma 4.1(a)]. Namely, after making an
orthonormal change of coordinates, we may assume, without loss of generality that
Du(xg)/|Du(xp)| is e, and

Du(yo)/|Du(yo)| = cos6 e; +sinb e,

for some 6 € [0, 2r). Here we are writing e; = (1,0, ...0) and e, = (0, 1,0, .. .),
etc., for the standard unit basis vectors in R"”. Then define the isometry L by

Lie) cosfe; +sinb e; 1 fori=1,3,...,n—1,
€)= . .
' —sinfe;_1 +cosfe; fori =2,4,...,n.
In terms of entries of the matrix (L;;), this means that Ly, =cosf fork=1,...,n
and fore=1,2, ..., ln, we have
L2a—l,2a = —sind, L2a,2a—1 =sind,

with all other entries zero. Then

(2-5) Y LiiDiDiu(y)
i,k

n n/2
=Y LuDiDe(y) + Y (Loa—1.20 + Low2a—1) Daa—1 Dot ()
k=1 a=1

= (cosB)Au(y) =0.

Similarly Zi, « Lki DiDiu(x) = 0. This completes the proof of Theorem 1.1 in the
case of n even.
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For n odd, we argue in the same way as in [Rosay and Rudin 1989]. Let L be an
isometry of the even-dimensional R"*!, defined in the same way as above, but now

L(Du(xo), 0) = (c(Du)(yo), 0).
In Lemma 2.1, replace w € R* by w € R**!. Define 7 : R**! — R" to be the
projection (wy, ..., Wy4+1) — (wy, ..., w,) and replace (2-2) and (2-3) by
(2-6) uxo+7m(w)) = u(yo +cm(Lw) + f(w)€ +a(w)§),

where & = Du(yo)/|Du(yo)| and f is given by

(2-7) f(w) u(xo + 7 (w)) — u(yo + e (Lw))).

— ;(
[ Du(yo)|

As in [Rosay and Rudin 1989], note that if g : R* — R is harmonic in R" then
w > g (7 (Lw)) is harmonic in R"*!. In particular, f is harmonic in a neighborhood
of the origin in R"*!. The function G above becomes G (w, o) = u(yo+cm(Lw)+
fw)E +a&) —u(xg+m(w)) with w € R"*+!, and we make similar changes to F.
It is straightforward to check that the rest of the proof goes through. (]

Remark 2.2. The proof of Theorem 1.1 also shows that when i = 0 the quantity
Q(x, y) does not attain a strict interior minimum.

3. Global to infinitesimal

Here we give a proof of Theorem 1.2 using the quantity Q. We first claim that, for
xeQanda >0,

(Du(y) — Du(x)) - (y —x) +aly — x> < O(ly —x[*) for y ~x, u(x) =u(y)

if and only if
(k1|Dul)(x) = a.
Indeed, to see this, first choose coordinates such that at x we have Du = (0, ..., 0,
Dyu) and (D;Dju)<; j<n—1 1s diagonal with
DiDiu>--->Dy Dy u.

For the “if” direction of the claim, choose y(t) = x +te; + O (t%) such that u(x) =
u(y(t)), for t small. By Taylor’s theorem,

(Du(y(t)) — Du(x)) - (y(t) = x) +aly(t) — x> =Dy Du(x) +ar* + O (1),

giving D1 Diu(x) < —a, which is the same as |Du|x; > a. Indeed, from a well-
known and elementary calculation (see for example [Chang et al. 2010, § 2]),
—DiDu
K| = ——
| Dul
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at x. Hence |Du|k; > a. The “only if” direction of the claim follows similarly.
We will make use of this correspondence in what follows.

Proof of Theorem 1.2. By assumption, «{|Du| > a > 0 on 9<2. It follows from
Theorem 1.1 and the discussion above that the level sets of u are all strictly convex.
Assume for a contradiction that x| Du| achieves a strict (positive) minimum at a
point xo in the interior of €2, say

(3-1) (k1|Dul)(x¢9) = a —n > 0 for some n > 0.

We may assume without loss of generality that n < %a. Indeed, if not then if xg
lies on the level set {u = ¢} for some ¢ € (0, 1) we can replace €2 by a convex ring
{co <u <c}forcg, c; with 0 < ¢y < c <c; <1. We still denote by a the minimum
value of «1|Du| on the boundary of this new €2. For appropriately chosen cg, c; we
have (3-1) and n < éa. This changes the boundary conditions on 9€2p and 9€2; to
u = co and u = ¢y, but this will not affect any of the arguments.

Pick ¢ > O sufficiently small, so that the distance from xg to the boundary of 2
is much larger than &, and in addition, so that '/3 <« 7.

Consider the quantity

a
Q(x, y) = (Du(y) = Du()) - (y =) +aly —x* = — |y —x[*,
and restrict to the set
T ={(x,y) € Qx Q|ux) =u(y), |y —x| <e}.

Suppose that Q attains a maximum on X° at a point (x, y). First assume that (x, y)
lies in the boundary of %¢. There are two possible cases:

(1) If x, y € ¢ with x and y in Q2 (note that since u(x) = u(y), if one of x, y is
a boundary point then so is the other), then since «1|Du| > a on 02 we have

(Du(y) — Du(x)) - (y —x) +aly —x|> < 0(&?).

Hence in this case Q(x, y) < O(&?).

(2) If |y — x| = ¢ then since «1|Du| > a — n everywhere,
Ox,y) < —(a—n)e>+ 0() +as® — éaez =(n— éa)ez +0(}) <0,
by the assumption n < %a.

We claim that neither case can occur. Indeed, consider y = xo + v + O (¢?) for ¢
small, where v is vector in the direction of the smallest curvature of the level set of
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u and xg satisfies (3-1). Then since (|Du|k;)(x9) =a —n,

a

@D’—xd4

O(x,y) =—(@—n)ly— x>+ O0(ly — xo>) +aly —xo|* —
a
=]y —xol* — o3l —xol* + O (ly — x0?).

If |y —xg| ~ &*/3 say then Q(xg, y) ~ ned3+0(e%) > &3 since we assume 5> ¢!/3.
Since Q here is larger than in (1) or (2), this rules out (1) or (2) as being possible
cases for the maximum of Q.

This implies that Q must attain an interior maximum, contradicting the argument
of Theorem 1.1. Here we use the fact that if ¥ (¢) = at — a/(682) #2 then for 7 with
0<t<g¢g?

U@ =21y ()|t =a(l —t/e%) > 0. O

Remark 3.1. In [Chang et al. 2010] and also [Ma et al. 2011] it was shown that
when n = 3 the smallest principal curvature «; also satisfies a minimum principle.
It would be interesting to know whether a modification of the quantity (1-6) can
give another proof of this.
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