Pacific

Journal of Mathematics

CONVEXITY OF LEVEL SETS AND A TWO-POINT FUNCTION Ben Weinkove

CONVEXITY OF LEVEL SETS AND A TWO-POINT FUNCTION

Ben Weinkove

Abstract

We establish a maximum principle for a two-point function in order to analyze the convexity of level sets of harmonic functions. We show that this can be used to prove a strict convexity result involving the smallest principal curvature of the level sets.

1. Introduction

The study of the convexity of level sets of solutions to elliptic PDEs has a long history, starting with the well-known result that the level curves of the Green's function of a convex domain Ω in \mathbb{R}^{2} are convex [Ahlfors 1973]. Gabriel [1957] proved the analogous result in three dimensions and this was extended by Lewis [1977] and later Caffarelli and Spruck [1982] to higher dimensions and more general elliptic PDEs. These results show that for a large class of PDEs, there is a principle that convexity properties of the boundary of the domain Ω imply convexity of the level sets of the solution u.

There are several approaches to these kinds of convexity results; see for example [Kawohl 1985, Section III.11]. One is the "macroscopic" approach, which uses a globally defined function of two points x, y (which could be far apart) such as $u\left(\frac{1}{2}(x+y)\right)-\min (u(x), u(y))$. Another is the "microscopic" approach, which computes with functions of the principal curvatures of the level sets at a single point. This is often used together with a constant rank theorem. There is now a vast literature on these and closely related results, see for example [Alvarez et al. 1997; Bian and Guan 2009; Bianchini et al. 2009; Borell 1982; Brascamp and Lieb 1976; Caffarelli and Friedman 1985; Caffarelli et al. 2007; Diaz and Kawohl 1993; Hamel et al. 2016; Korevaar 1983; 1990; Korevaar and Lewis 1987; Rosay and Rudin 1989; Shiffman 1956; Singer et al. 1985; Székelyhidi and Weinkove 2016; Wang 2014].

It is natural to ask whether these ideas can be extended to cases where the boundary of the domain is not convex. Are the level sets of the solution at least as

[^0]convex as the boundary in some appropriate sense? In this short note we introduce a global "macroscopic" function of two points which gives a kind of measure of convexity and makes sense for nonconvex domains. Our function
\[

$$
\begin{equation*}
(D u(y)-D u(x)) \cdot(y-x) \tag{1-1}
\end{equation*}
$$

\]

is evaluated at two points x, y, which are constrained to lie on the same level set of u. Under suitable conditions, a level set of u is convex if and only if this quantity has the correct sign on that level set. We prove a maximum principle for this function using the method of Rosay and Rudin [1989], who considered a different two-point function

$$
\begin{equation*}
\frac{1}{2}(u(x)+u(y))-u\left(\frac{x+y}{2}\right) . \tag{1-2}
\end{equation*}
$$

In addition, we show that our "macroscopic" approach can be used to prove a "microscopic" result. Namely, we localize our function and show that it gives another proof of a result of Chang, Ma, and Yang [Chang et al. 2010] on the principal curvatures of the level sets of a harmonic function u. In this paper, we consider only the case of harmonic functions. However, we expect that our techniques extend to some more general types of PDEs.

We now describe our results more precisely. Let Ω_{0} and Ω_{1} be bounded domains in \mathbb{R}^{n} with $\bar{\Omega}_{1} \subset \Omega_{0}$. Define $\Omega=\Omega_{0} \backslash \Omega_{1}$. Assume that $u \in C^{1}(\bar{\Omega})$ satisfies

$$
\begin{equation*}
\Delta u=0 \text { in } \Omega=\Omega_{0} \backslash \bar{\Omega}_{1}, \quad u=0 \text { on } \partial \Omega_{0}, \quad u=1 \text { on } \partial \Omega_{1}, \tag{1-3}
\end{equation*}
$$

and
$D u$ is nowhere vanishing in Ω.
It is well known that (1-4) is satisfied if Ω_{0} and Ω_{1} are both starshaped with respect to some point $p \in \Omega_{1}$. A special case of interest is when both Ω_{0} and Ω_{1} are convex, but this is not required for our main result.

To introduce our two-point function, first fix a smooth function $\psi:[0, \infty) \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\psi^{\prime}(t)-2\left|\psi^{\prime \prime}(t)\right| t \geq 0 . \tag{1-5}
\end{equation*}
$$

For example, we could take $\psi(t)=a t$ for $a \geq 0$. Then define

$$
\begin{equation*}
Q(x, y)=(D u(y)-D u(x)) \cdot(y-x)+\psi\left(|y-x|^{2}\right) \tag{1-6}
\end{equation*}
$$

restricted to (x, y) in

$$
\Sigma=\{(x, y) \in \bar{\Omega} \times \bar{\Omega} \mid u(x)=u(y)\} .
$$

Comparing with the Rosay-Rudin function (1-2), note that the function $Q(x, y)$ does not require $\frac{1}{2}(x+y) \in \bar{\Omega}$ and makes sense whether or not $\partial \Omega_{0}$ or $\partial \Omega_{1}$ are
convex. Taking $\psi=0$, the level set $\{u=c\}$ is convex if and only if the quantity Q is nonpositive on $\{u=c\}$. If $\psi(t)=a t$ for $a>0$ then $Q \leq 0$ implies strict convexity of the level set. More generally Q gives quantitative information about the convexity of the level sets $\{u=c\}$, relative to the gradient $D u$.

We also remark that the function (1-6) looks formally similar to the two-point function of Andrews and Clutterbuck [2011], a crucial tool in their proof of the fundamental gap conjecture. However, here x and y are constrained to lie on the same level set of u and so the methods of this paper are quite different.

Our main result is the following:
Theorem 1.1. Q does not attain a strict maximum at a point in the interior of Σ.
Roughly speaking, this result says that the level sets $\{u=c\}$ for $0 \leq c \leq 1$ are "the least convex" when $c=0$ or $c=1$. As mentioned above, the result holds even in the case that $\partial \Omega_{0}$ and $\partial \Omega_{1}$ are nonconvex.

The proof of Theorem 1.1 follows quite closely the paper of Rosay and Rudin [1989]. Indeed a key tool of [Rosay and Rudin 1989] is Lemma 2.1 below, which gives a map from points x to points y with the property that x, y lie on the same level set.

Next we localize our function (1-6) to prove a strict convexity result on the level sets of u. If we assume now that $\partial \Omega_{0}$ and $\partial \Omega_{1}$ are strictly convex, we can apply the technique of Theorem 1.1 to obtain an alternative proof of the following result of Chang, Ma, and Yang [Chang et al. 2010].

Theorem 1.2. Assume in addition that $\partial \Omega_{0}$ and $\partial \Omega_{1}$ are strictly convex and C^{2}. Then the quantity $|D u| \kappa_{1}$ attains its minimum on the boundary of Ω, where κ_{1} is the smallest principal curvature of the level sets of u.

Note that many other strict convexity results of this kind are proved in [Chang et al. 2010; Jost et al. 2012; Longinetti 1983; Ma et al. 2010; 2011; Ortel and Schneider 1983; Zhang and Zhang 2013].

2. Proof of Theorem 1.1

First we assume that n is even. We suppose for a contradiction that Q attains a maximum at an interior point, and assume that $\sup _{\Sigma} Q>\sup _{\partial \Sigma} Q$. Then we may choose $\delta>0$ sufficiently small so that

$$
Q_{\delta}(x, y)=Q(x, y)+\delta|x|^{2}
$$

still attains a maximum at an interior point.
We use a lemma from [Rosay and Rudin 1989]. Suppose (x_{0}, y_{0}) is an interior point with $u\left(x_{0}\right)=u\left(y_{0}\right)$. We may assume that $D u\left(x_{0}\right)$ and $D u\left(y_{0}\right)$ are nonzero
vectors. Let L be an element of $\mathrm{O}(n)$ with the property that

$$
\begin{equation*}
L\left(D u\left(x_{0}\right)\right)=c D u\left(y_{0}\right) \quad \text { for } c=\left|D u\left(x_{0}\right)\right| /\left|D u\left(y_{0}\right)\right| \tag{2-1}
\end{equation*}
$$

Note that there is some freedom in the definition of L. We will make a specific choice later. Rosay and Rudin [1989, Lemma 1.3] show the following - it is a special case of the lemma:

Lemma 2.1. There exists a real analytic function $\alpha(w)=O\left(|w|^{3}\right)$ such that for all $w \in \mathbb{R}^{n}$ sufficiently close to the origin,

$$
\begin{equation*}
u\left(x_{0}+w\right)=u\left(y_{0}+c L w+f(w) \xi+\alpha(w) \xi\right), \quad \text { where } \xi=\frac{D u\left(y_{0}\right)}{\left|D u\left(y_{0}\right)\right|} \tag{2-2}
\end{equation*}
$$

where f is a harmonic function defined in a neighborhood of the origin in \mathbb{R}^{n}, given by

$$
\begin{equation*}
f(w)=\frac{1}{\left|D u\left(y_{0}\right)\right|}\left(u\left(x_{0}+w\right)-u\left(y_{0}+c L w\right)\right) \tag{2-3}
\end{equation*}
$$

Proof of Lemma 2.1. We include the brief argument here for the sake of completeness. Define a real analytic map G which takes $(w, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}$ sufficiently close to the origin to

$$
G(w, \alpha)=u\left(y_{0}+c L w+f(w) \xi+\alpha \xi\right)-u\left(x_{0}+w\right)
$$

for c, L, ξ, and f defined by (2-1), (2-2), and (2-3). Note that $G(0,0)=0$ and, by the definition of ξ,

$$
\frac{\partial G}{\partial \alpha}(0,0)=D_{i} u\left(y_{0}\right) \xi_{i}=\left|D u\left(y_{0}\right)\right|>0
$$

where here and henceforth we are using the convention of summing repeated indices.
Hence by the implicit function theorem there exists a real analytic map $\alpha=\alpha(w)$ defined in a neighborhood U of the origin in \mathbb{R}^{n} to \mathbb{R} with $\alpha(0)=0$ such that $G(w, \alpha(w))=0$ for all $w \in U$. It only remains to show that $\alpha(w)=O\left(|w|^{3}\right)$.

Write $y=y_{0}+c L w+f(w) \xi+\alpha(w) \xi, x=x_{0}+w$, and $L=\left(L_{i j}\right)$ so that $L_{i j} D_{j} u\left(x_{0}\right)=c D_{i} u\left(y_{0}\right)$ and $c L_{i j} D_{i} u\left(y_{0}\right)=D_{j} u\left(x_{0}\right)$. Then at $w \in U$,

$$
\begin{align*}
0 & =\frac{\partial G}{\partial w_{j}} \\
& =D_{i} u(y)\left(c L_{i j}+\frac{\left(D_{j} u(x)-c D_{k} u\left(y_{0}+c L w\right) L_{k j}\right)}{\left|D u\left(y_{0}\right)\right|} \xi_{i}+\frac{\partial \alpha}{\partial w_{j}} \xi_{i}\right)-D_{j} u(x) \tag{2-4}
\end{align*}
$$

and evaluating at $w=0$ gives $0=\left|D u\left(y_{0}\right)\right| \partial \alpha / \partial w_{j}(0)$ and hence $\partial \alpha / \partial w_{j}(0)=0$ for all j.

Differentiating (2-4) and evaluating at $w=0$, we obtain for all j, ℓ,

$$
\begin{aligned}
0= & \frac{\partial^{2} G}{\partial w_{\ell} \partial w_{j}} \\
= & D_{k} D_{i} u\left(y_{0}\right) c^{2} L_{i j} L_{k \ell}-D_{\ell} D_{j} u\left(x_{0}\right) \\
& \quad+D_{i} u\left(y_{0}\right)\left(\frac{\left(D_{\ell} D_{j} u\left(x_{0}\right)-c^{2} D_{m} D_{k} u\left(y_{0}\right) L_{k j} L_{m \ell}\right)}{\left|D u\left(y_{0}\right)\right|} \xi_{i}+\frac{\partial^{2} \alpha}{\partial w_{\ell} \partial w_{j}}(0) \xi_{i}\right) \\
= & \left|D u\left(y_{0}\right)\right| \frac{\partial^{2} \alpha}{\partial w_{\ell} \partial w_{j}}(0) .
\end{aligned}
$$

Hence $\alpha(w)=O\left(|w|^{3}\right)$, as required.
Now assume that Q_{δ} achieves a maximum at the interior point $\left(x_{0}, y_{0}\right)$. Write $x=x_{0}+w=\left(x_{1}, \ldots, x_{n}\right)$ and $y=y_{0}+c L w+f(w) \xi+\alpha(w) \xi=\left(y_{1}, \ldots, y_{n}\right)$ and

$$
F(w)=Q_{\delta}(x, y)=Q\left(x_{0}+w, y_{0}+c L w+f(w) \xi+\alpha(w) \xi\right)+\delta\left|x_{0}+w\right|^{2} .
$$

To prove the lemma it suffices to show that $\Delta_{w} F(0)>0$, where we write $\Delta_{w}=$ $\sum_{j} \partial^{2} / \partial w_{j}^{2}$. Observe that

$$
\Delta_{w} x(0)=0=\Delta_{w} y(0) .
$$

Hence, evaluating at 0 , we get

$$
\begin{aligned}
\Delta_{w} F= & \sum_{j}\left(\frac{\partial^{2}}{\partial w_{j}^{2}}\left(D_{i} u(y)-D_{i} u(x)\right)\right)\left(y_{i}-x_{i}\right) \\
& +2 \frac{\partial}{\partial w_{j}}\left(D_{i} u(y)-D_{i} u(x)\right) \frac{\partial}{\partial w_{j}}\left(y_{i}-x_{i}\right)+\sum_{j} \frac{\partial^{2}}{\partial w_{j}^{2}} \psi\left(|y-x|^{2}\right)+2 n \delta .
\end{aligned}
$$

First we compute

$$
\begin{aligned}
\sum_{j} \frac{\partial^{2}}{\partial w_{j}^{2}} \psi\left(|y-x|^{2}\right) & =2 \psi^{\prime} \sum_{i, j}\left(c L_{i j}-\delta_{i j}\right)^{2}+4 \psi^{\prime \prime} \sum_{j}\left(\sum_{i}\left(y_{i}-x_{i}\right)\left(c L_{i j}-\delta_{i j}\right)\right)^{2} \\
& \geq 2 \psi^{\prime} \sum_{i, j}\left(c L_{i j}-\delta_{i j}\right)^{2}-4\left|\psi^{\prime \prime}\right||y-x|^{2} \sum_{i, j}\left(c L_{i j}-\delta_{i j}\right)^{2} \geq 0
\end{aligned}
$$

using the Cauchy-Schwarz inequality and the condition (1-5).

Next, at $w=0$,

$$
\begin{gathered}
\frac{\partial}{\partial w_{j}} D_{i} u(y)=D_{k} D_{i} u(y) \frac{\partial y_{k}}{\partial w_{j}}=c D_{k} D_{i} u(y) L_{k j} \\
\sum_{j} \frac{\partial^{2}}{\partial w_{j}^{2}} D_{i} u(y)=D_{\ell} D_{k} D_{i} u(y) \frac{\partial y_{k}}{\partial w_{j}} \frac{\partial y_{\ell}}{\partial w_{j}}=c^{2} D_{\ell} D_{k} D_{i} u(y) L_{k j} L_{\ell j}=0 \\
\frac{\partial}{\partial w_{j}} D_{i} u(x)=D_{j} D_{i} u(x), \quad \sum_{j} \frac{\partial^{2}}{\partial w_{j}^{2}} D_{i} u(x)=D_{j} D_{j} D_{i} u(x)=0
\end{gathered}
$$

where for the second line we used the fact that $\Delta_{w} y(0)=0$ and $L_{k j} L_{\ell j} D_{\ell} D_{k} u=$ $\Delta u=0$. Hence, combining the above,

$$
\begin{aligned}
\Delta_{w} F & >2\left(c D_{k} D_{i} u(y) L_{k j}-D_{j} D_{i} u(x)\right)\left(c L_{i j}-\delta_{i j}\right) \\
& =2 c^{2} \Delta u(y)-2 c L_{k i} D_{k} D_{i} u(y)-2 c L_{i j} D_{j} D_{i} u(x)+2 \Delta u(x) \\
& =-2 c L_{k i} D_{k} D_{i} u(y)-2 c L_{i j} D_{j} D_{i} u(x) .
\end{aligned}
$$

Now we use the fact that n is even, and we make an appropriate choice of L following [Rosay and Rudin 1989, Lemma 4.1(a)]. Namely, after making an orthonormal change of coordinates, we may assume, without loss of generality that $D u\left(x_{0}\right) /\left|D u\left(x_{0}\right)\right|$ is e_{1}, and

$$
D u\left(y_{0}\right) /\left|D u\left(y_{0}\right)\right|=\cos \theta e_{1}+\sin \theta e_{2},
$$

for some $\theta \in[0,2 \pi)$. Here we are writing $e_{1}=(1,0, \ldots 0)$ and $e_{2}=(0,1,0, \ldots)$, etc., for the standard unit basis vectors in \mathbb{R}^{n}. Then define the isometry L by

$$
L\left(e_{i}\right)=\left\{\begin{aligned}
\cos \theta e_{i}+\sin \theta e_{i+1} & \text { for } i=1,3, \ldots, n-1, \\
-\sin \theta e_{i-1}+\cos \theta e_{i} & \text { for } i=2,4, \ldots, n .
\end{aligned}\right.
$$

In terms of entries of the matrix $\left(L_{i j}\right)$, this means that $L_{k k}=\cos \theta$ for $k=1, \ldots, n$ and for $\alpha=1,2, \ldots, \frac{1}{2} n$, we have

$$
L_{2 \alpha-1,2 \alpha}=-\sin \theta, \quad L_{2 \alpha, 2 \alpha-1}=\sin \theta,
$$

with all other entries zero. Then

$$
\begin{align*}
\sum_{i, k} L_{k i} D_{k} & D_{i} u(y) \tag{2-5}\\
= & \sum_{k=1}^{n} L_{k k} D_{k} D_{k} u(y)+\sum_{\alpha=1}^{n / 2}\left(L_{2 \alpha-1,2 \alpha}+L_{2 \alpha, 2 \alpha-1}\right) D_{2 \alpha-1} D_{2 \alpha} u(y) \\
& =(\cos \theta) \Delta u(y)=0
\end{align*}
$$

Similarly $\sum_{i, k} L_{k i} D_{k} D_{i} u(x)=0$. This completes the proof of Theorem 1.1 in the case of n even.

For n odd, we argue in the same way as in [Rosay and Rudin 1989]. Let L be an isometry of the even-dimensional \mathbb{R}^{n+1}, defined in the same way as above, but now

$$
L\left(D u\left(x_{0}\right), 0\right)=\left(c(D u)\left(y_{0}\right), 0\right)
$$

In Lemma 2.1, replace $w \in \mathbb{R}^{n}$ by $w \in \mathbb{R}^{n+1}$. Define $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ to be the projection $\left(w_{1}, \ldots, w_{n+1}\right) \mapsto\left(w_{1}, \ldots, w_{n}\right)$ and replace (2-2) and (2-3) by

$$
\begin{equation*}
u\left(x_{0}+\pi(w)\right)=u\left(y_{0}+c \pi(L w)+f(w) \xi+\alpha(w) \xi\right) \tag{2-6}
\end{equation*}
$$

where $\xi=D u\left(y_{0}\right) /\left|D u\left(y_{0}\right)\right|$ and f is given by

$$
\begin{equation*}
f(w)=\frac{1}{\left|D u\left(y_{0}\right)\right|}\left(u\left(x_{0}+\pi(w)\right)-u\left(y_{0}+c \pi(L w)\right)\right) \tag{2-7}
\end{equation*}
$$

As in [Rosay and Rudin 1989], note that if $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is harmonic in \mathbb{R}^{n} then $w \mapsto g(\pi(L w))$ is harmonic in \mathbb{R}^{n+1}. In particular, f is harmonic in a neighborhood of the origin in \mathbb{R}^{n+1}. The function G above becomes $G(w, \alpha)=u\left(y_{0}+c \pi(L w)+\right.$ $f(w) \xi+\alpha \xi)-u\left(x_{0}+\pi(w)\right)$ with $w \in \mathbb{R}^{n+1}$, and we make similar changes to F. It is straightforward to check that the rest of the proof goes through.

Remark 2.2. The proof of Theorem 1.1 also shows that when $\psi=0$ the quantity $Q(x, y)$ does not attain a strict interior minimum.

3. Global to infinitesimal

Here we give a proof of Theorem 1.2 using the quantity Q. We first claim that, for $x \in \Omega$ and $a>0$,

$$
(D u(y)-D u(x)) \cdot(y-x)+a|y-x|^{2} \leq O\left(|y-x|^{3}\right) \quad \text { for } y \sim x, u(x)=u(y)
$$

if and only if

$$
\left(\kappa_{1}|D u|\right)(x) \geq a .
$$

Indeed, to see this, first choose coordinates such that at x we have $D u=(0, \ldots, 0$, $\left.D_{n} u\right)$ and $\left(D_{i} D_{j} u\right)_{1 \leq i, j \leq n-1}$ is diagonal with

$$
D_{1} D_{1} u \geq \cdots \geq D_{n-1} D_{n-1} u
$$

For the "if" direction of the claim, choose $y(t)=x+t e_{1}+O\left(t^{2}\right)$ such that $u(x)=$ $u(y(t))$, for t small. By Taylor's theorem,

$$
(D u(y(t))-D u(x)) \cdot(y(t)-x)+a|y(t)-x|^{2}=t^{2} D_{1} D_{1} u(x)+a t^{2}+O\left(t^{3}\right)
$$

giving $D_{1} D_{1} u(x) \leq-a$, which is the same as $|D u| \kappa_{1} \geq a$. Indeed, from a wellknown and elementary calculation (see for example [Chang et al. 2010, § 2]),

$$
\kappa_{1}=\frac{-D_{1} D_{1} u}{|D u|}
$$

at x. Hence $|D u| \kappa_{1} \geq a$. The "only if" direction of the claim follows similarly.
We will make use of this correspondence in what follows.
Proof of Theorem 1.2. By assumption, $\kappa_{1}|D u| \geq a>0$ on $\partial \Omega$. It follows from Theorem 1.1 and the discussion above that the level sets of u are all strictly convex. Assume for a contradiction that $\kappa_{1}|D u|$ achieves a strict (positive) minimum at a point x_{0} in the interior of Ω, say

$$
\begin{equation*}
\left(\kappa_{1}|D u|\right)\left(x_{0}\right)=a-\eta>0 \text { for some } \eta>0 . \tag{3-1}
\end{equation*}
$$

We may assume without loss of generality that $\eta<\frac{1}{6} a$. Indeed, if not then if x_{0} lies on the level set $\{u=c\}$ for some $c \in(0,1)$ we can replace Ω by a convex ring $\left\{c_{0}<u<c_{1}\right\}$ for c_{0}, c_{1} with $0 \leq c_{0}<c<c_{1} \leq 1$. We still denote by a the minimum value of $\kappa_{1}|D u|$ on the boundary of this new Ω. For appropriately chosen c_{0}, c_{1} we have (3-1) and $\eta<\frac{1}{6} a$. This changes the boundary conditions on $\partial \Omega_{0}$ and $\partial \Omega_{1}$ to $u=c_{0}$ and $u=c_{1}$, but this will not affect any of the arguments.

Pick $\varepsilon>0$ sufficiently small, so that the distance from x_{0} to the boundary of Ω is much larger than ε, and in addition, so that $\varepsilon^{1 / 3} \ll \eta$.

Consider the quantity

$$
Q(x, y)=(D u(y)-D u(x)) \cdot(y-x)+a|y-x|^{2}-\frac{a}{6 \varepsilon^{2}}|y-x|^{4},
$$

and restrict to the set

$$
\Sigma^{\varepsilon}=\{(x, y) \in \bar{\Omega} \times \bar{\Omega}|u(x)=u(y),|y-x| \leq \varepsilon\} .
$$

Suppose that Q attains a maximum on Σ^{ε} at a point (x, y). First assume that (x, y) lies in the boundary of Σ^{ε}. There are two possible cases:
(1) If $x, y \in \Sigma^{\varepsilon}$ with x and y in $\partial \Omega$ (note that since $u(x)=u(y)$, if one of x, y is a boundary point then so is the other), then since $\kappa_{1}|D u| \geq a$ on $\partial \Omega$ we have

$$
(D u(y)-D u(x)) \cdot(y-x)+a|y-x|^{2} \leq O\left(\varepsilon^{3}\right) .
$$

Hence in this case $Q(x, y) \leq O\left(\varepsilon^{3}\right)$.
(2) If $|y-x|=\varepsilon$ then since $\kappa_{1}|D u| \geq a-\eta$ everywhere,

$$
Q(x, y) \leq-(a-\eta) \varepsilon^{2}+O\left(\varepsilon^{3}\right)+a \varepsilon^{2}-\frac{1}{6} a \varepsilon^{2}=\left(\eta-\frac{1}{6} a\right) \varepsilon^{2}+O\left(\varepsilon^{3}\right)<0
$$

by the assumption $\eta<\frac{1}{6} a$.
We claim that neither case can occur. Indeed, consider $y=x_{0}+t v+O\left(t^{2}\right)$ for t small, where v is vector in the direction of the smallest curvature of the level set of
u and x_{0} satisfies (3-1). Then since $\left(|D u| \kappa_{1}\right)\left(x_{0}\right)=a-\eta$,

$$
\begin{aligned}
Q(x, y) & =-(a-\eta)\left|y-x_{0}\right|^{2}+O\left(\left|y-x_{0}\right|^{3}\right)+a\left|y-x_{0}\right|^{2}-\frac{a}{6 \varepsilon^{2}}\left|y-x_{0}\right|^{4} \\
& =\eta\left|y-x_{0}\right|^{2}-\frac{a}{6 \varepsilon^{2}}\left|y-x_{0}\right|^{4}+O\left(\left|y-x_{0}\right|^{3}\right)
\end{aligned}
$$

If $\left|y-x_{0}\right| \sim \varepsilon^{4 / 3}$ say then $Q\left(x_{0}, y\right) \sim \eta \varepsilon^{8 / 3}+O\left(\varepsilon^{3}\right) \gg \varepsilon^{3}$ since we assume $\eta \gg \varepsilon^{1 / 3}$. Since Q here is larger than in (1) or (2), this rules out (1) or (2) as being possible cases for the maximum of Q.

This implies that Q must attain an interior maximum, contradicting the argument of Theorem 1.1. Here we use the fact that if $\psi(t)=a t-a /\left(6 \varepsilon^{2}\right) t^{2}$ then for t with $0 \leq t \leq \varepsilon^{2}$,

$$
\psi^{\prime}(t)-2\left|\psi^{\prime \prime}(t)\right| t=a\left(1-t / \varepsilon^{2}\right) \geq 0
$$

Remark 3.1. In [Chang et al. 2010] and also [Ma et al. 2011] it was shown that when $n=3$ the smallest principal curvature κ_{1} also satisfies a minimum principle. It would be interesting to know whether a modification of the quantity (1-6) can give another proof of this.

References

[Ahlfors 1973] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGrawHill, New York, 1973. MR Zbl
[Alvarez et al. 1997] O. Alvarez, J.-M. Lasry, and P.-L. Lions, "Convex viscosity solutions and state constraints", J. Math. Pures Appl. (9) 76:3 (1997), 265-288. MR Zbl
[Andrews and Clutterbuck 2011] B. Andrews and J. Clutterbuck, "Proof of the fundamental gap conjecture", J. Amer. Math. Soc. 24:3 (2011), 899-916. MR Zbl
[Bian and Guan 2009] B. Bian and P. Guan, "A microscopic convexity principle for nonlinear partial differential equations", Invent. Math. 177:2 (2009), 307-335. MR Zbl
[Bianchini et al. 2009] C. Bianchini, M. Longinetti, and P. Salani, "Quasiconcave solutions to elliptic problems in convex rings", Indiana Univ. Math. J. 58:4 (2009), 1565-1589. MR Zbl
[Borell 1982] C. Borell, "Brownian motion in a convex ring and quasiconcavity", Comm. Math. Phys. 86:1 (1982), 143-147. MR Zbl
[Brascamp and Lieb 1976] H. J. Brascamp and E. H. Lieb, "On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation", J. Functional Analysis 22:4 (1976), 366-389. MR Zbl
[Caffarelli and Friedman 1985] L. A. Caffarelli and A. Friedman, "Convexity of solutions of semilinear elliptic equations", Duke Math. J. 52:2 (1985), 431-456. MR Zbl
[Caffarelli and Spruck 1982] L. A. Caffarelli and J. Spruck, "Convexity properties of solutions to some classical variational problems", Comm. Partial Differential Equations 7:11 (1982), 1337-1379. MR Zbl
[Caffarelli et al. 2007] L. Caffarelli, P. Guan, and X.-N. Ma, "A constant rank theorem for solutions of fully nonlinear elliptic equations", Comm. Pure Appl. Math. 60:12 (2007), 1769-1791. MR Zbl
[Chang et al. 2010] S.-Y. A. Chang, X.-N. Ma, and P. Yang, "Principal curvature estimates for the convex level sets of semilinear elliptic equations", Discrete Contin. Dyn. Syst. 28:3 (2010), 1151-1164. MR Zbl
[Diaz and Kawohl 1993] J. I. Diaz and B. Kawohl, "On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings", J. Math. Anal. Appl. 177:1 (1993), 263-286. MR Zbl
[Gabriel 1957] R. M. Gabriel, "A result concerning convex level surfaces of 3-dimensional harmonic functions", J. London Math. Soc. 32 (1957), 286-294. MR Zbl
[Hamel et al. 2016] F. Hamel, N. Nadirashvili, and Y. Sire, "Convexity of level sets for elliptic problems in convex domains or convex rings: two counterexamples", Amer. J. Math. 138:2 (2016), 499-527. MR Zbl
[Jost et al. 2012] J. Jost, X.-N. Ma, and Q. Ou, "Curvature estimates in dimensions 2 and 3 for the level sets of p-harmonic functions in convex rings", Trans. Amer. Math. Soc. 364:9 (2012), 4605-4627. MR Zbl
[Kawohl 1985] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics 1150, Springer, 1985. MR Zbl
[Korevaar 1983] N. Korevaar, "Capillary surface convexity above convex domains", Indiana Univ. Math. J. 32:1 (1983), 73-81. MR Zbl
[Korevaar 1990] N. J. Korevaar, "Convexity of level sets for solutions to elliptic ring problems", Comm. Partial Differential Equations 15:4 (1990), 541-556. MR Zbl
[Korevaar and Lewis 1987] N. J. Korevaar and J. L. Lewis, "Convex solutions of certain elliptic equations have constant rank Hessians", Arch. Rational Mech. Anal. 97:1 (1987), 19-32. MR Zbl
[Lewis 1977] J. L. Lewis, "Capacitary functions in convex rings", Arch. Rational Mech. Anal. 66:3 (1977), 201-224. MR Zbl
[Longinetti 1983] M. Longinetti, "Convexity of the level lines of harmonic functions", Boll. Un. Mat. Ital. A (6) 2:1 (1983), 71-75. MR Zbl
[Ma et al. 2010] X.-N. Ma, Q. Ou, and W. Zhang, "Gaussian curvature estimates for the convex level sets of p-harmonic functions", Comm. Pure Appl. Math. 63:7 (2010), 935-971. MR Zbl
[Ma et al. 2011] X.-N. Ma, J. Ye, and Y.-H. Ye, "Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $\mathbb{R}^{3 ",}$ Commun. Pure Appl. Anal. 10:1 (2011), 225-243. MR Zbl
[Ortel and Schneider 1983] M. Ortel and W. Schneider, "Curvature of level curves of harmonic functions", Canad. Math. Bull. 26:4 (1983), 399-405. MR Zbl
[Rosay and Rudin 1989] J.-P. Rosay and W. Rudin, "A maximum principle for sums of subharmonic functions, and the convexity of level sets", Michigan Math. J. 36:1 (1989), 95-111. MR Zbl
[Shiffman 1956] M. Shiffman, "On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes", Ann. of Math. (2) 63 (1956), 77-90. MR Zbl
[Singer et al. 1985] I. M. Singer, B. Wong, S.-T. Yau, and S. S.-T. Yau, "An estimate of the gap of the first two eigenvalues in the Schrödinger operator", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12:2 (1985), 319-333. MR Zbl
[Székelyhidi and Weinkove 2016] G. Székelyhidi and B. Weinkove, "On a constant rank theorem for nonlinear elliptic PDEs", Discrete Contin. Dyn. Syst. 36:11 (2016), 6523-6532. MR Zbl
[Wang 2014] X.-J. Wang, "Counterexample to the convexity of level sets of solutions to the mean curvature equation", J. Eur. Math. Soc. 16:6 (2014), 1173-1182. MR Zbl
[Zhang and Zhang 2013] T. Zhang and W. Zhang, "On convexity of level sets of p-harmonic functions", J. Differential Equations 255:7 (2013), 2065-2081. MR Zbl

Received February 21, 2017. Revised September 11, 2017.

Ben Weinkove
Department of Mathematics
Northwestern University
Evanston, IL
United States
weinkove@math.northwestern.edu

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@ math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

aCADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
oregon state univ.

STANFORD UNIVERSITY
univ. of british columbia
UNIV. OF CALIFORNIA, BERKELEY
univ. of California, davis
UNIV. OF CALIFORNIA, LOS ANGELES
univ. of CALIFORNIA, RIVERSIDE
univ. of CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 295 No. 2 August 2018
Nonsmooth convex caustics for Birkhoff billiards 257
Maxim Arnold and Misha Bialy
Certain character sums and hypergeometric series 271
Rupam Barman and Neelam Saikia
On the structure of holomorphic isometric embeddings of complex unit balls into 291 bounded symmetric domains
Shan Tai Chan
Hamiltonian stationary cones with isotropic links 317
Jingyi Chen and Yu Yuan
Quandle theory and the optimistic limits of the representations of link groups 329
Jinseok Сно
Classification of positive smooth solutions to third-order PDEs involving fractional 367
Laplacians
Wei Dai and Guolin Qin
The projective linear supergroup and the SUSY-preserving automorphisms of $\mathbb{P}^{1 / 1}$ 385
Rita Fioresi and Stephen D. Kwok
The Gromov width of coadjoint orbits of the symplectic group 403
Iva Halacheva and Milena Pabiniak
Minimal braid representatives of quasipositive links 421
Kyle Hayden
Four-dimensional static and related critical spaces with harmonic curvature 429
Jongsu Kim and Jinwoo Shin
Boundary Schwarz lemma for nonequidimensional holomorphic mappings and its 463
application
Yang Liu, Zhinua Chen and Yifei Pan
Theta correspondence and the Prasad conjecture for SL(2) 477
Hengfei Lu
Convexity of level sets and a two-point function 499
Ben Weinkove

[^0]: The author thanks G. Székelyhidi for some helpful discussions and the referee for useful comments. Supported in part by National Science Foundation grant DMS-1406164.
 MSC2010: 31B05, 35J05.
 Keywords: convexity, two point function, level sets, principal curvature, maximum principle, harmonic functions.

