
Pacific
Journal of
Mathematics

MONOTONICITY OF EIGENVALUES OF GEOMETRIC
OPERATORS ALONG THE RICCI–BOURGUIGNON FLOW

BIN CHEN, QUN HE AND FANQI ZENG

Volume 296 No. 1 September 2018



PACIFIC JOURNAL OF MATHEMATICS
Vol. 296, No. 1, 2018

dx.doi.org/10.2140/pjm.2018.296.1

MONOTONICITY OF EIGENVALUES OF GEOMETRIC
OPERATORS ALONG THE RICCI–BOURGUIGNON FLOW

BIN CHEN, QUN HE AND FANQI ZENG

We study monotonicity of eigenvalues of the Schrödinger-type operator
−1+ cR, where c is a constant, along the Ricci–Bourguignon flow. For
c 6= 0, we derive monotonicity of the lowest eigenvalue of the Schrödinger-
type operator −1+ cR, which generalizes some results of Cao (2008). As
an application, we rule out nontrivial compact steady breathers in the
Ricci–Bourguignon flow. For c = 0, we derive monotonicity of the first
eigenvalue of the Laplacian, which generalizes some results of Ma (2006).

1. Introduction

Let (M, g) be an n-dimensional closed Riemannian manifold and g(t) be a solution
to the following Ricci–Bourguignon flow:

(1-1) ∂

∂t
g =−2 Ric+2ρRg =−2(Ric−ρRg),

where Ric is the Ricci tensor of the manifold, R is scalar curvature and ρ is a
real constant. When ρ = 1

2 , 1
n , 1

2(n−1) or 0, the tensor Ric−ρRg corresponds to
the Einstein tensor, the traceless Ricci tensor, the Schouten tensor or the Ricci
tensor respectively. Apart from these special values of ρ, for which we will call
the associated flows by the same name as the corresponding tensor, in general
we will refer to the evolution equation defined by the PDE system (1-1) as the
Ricci–Bourguignon flow. Moreover, by a suitable rescaling in time, when ρ is
nonpositive, they can be seen as an interpolation between the Ricci flow and the
Yamabe flow, see [Brendle 2005; Ye 1994] for instance, obtained as a limit when
ρ→−∞.

The study of these flows was proposed by Jean-Pierre Bourguignon [1981,
Question 3.24], building on some unpublished work of Lichnerowicz in the sixties
and a paper of Aubin [1970]. Fischer [2004] studied a conformal version of this
problem where the scalar curvature is constrained along the flow. Lu, Qing and
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Zheng [Lu et al. 2014] also proved some results on the conformal Ricci–Bourguignon
flow. Recently, for suitable values of the scalar parameter involved in these flows,
Catino et al. [2017] proved short time existence and provided curvature estimates.
Moreover, Catino and Mazzieri [2016] stated some results on the associated solitons.

At present, the eigenvalues of geometric operators have become a powerful tool
in the study of geometry and topology of manifolds. Recently, there has been
a lot of work on the eigenvalue problems under the Ricci flow. On one hand,
Perelman [2002] introduced the so-called F -entropy functional and proved that it
is nondecreasing along the Ricci flow coupled to a backward heat-type equation.
Since the functional F is nondecreasing, this implies the monotonicity of the lowest
eigenvalue of −41+ R along the Ricci flow.

Cao [2007] extended the operator −41+ R to the new operator −1+ R
2 on

closed Riemannian manifolds, and showed that the eigenvalues of this new operator
are nondecreasing along the Ricci flow with nonnegative curvature operator. Shortly
thereafter Li [2007] dropped the curvature assumption and also obtained the above
result for the operator −1+ R

2 .
At around the same time, Cao [2008] considered the general operator

−1+ cR, where c ≥ 1
4 ,

and derived the following exact monotonicity formula; thus he showed that the
lowest eigenvalue of this operator is nondecreasing along the Ricci flow without
any curvature assumption.

Theorem A [Cao 2008]. Let (M, g(t))t∈[0,T ) be a solution of the unnormalized
Ricci flow on a closed manifold M. Assume that λ0(t) is the lowest eigenvalue of
−1+ cR, c ≥ 1

4 , and f = f (x, t) > 0 satisfies

−1 f (x, t)+ cR f (x, t)= λ0(t) f (x, t)

with
∫

M f 2 dυ = 1. Then, under the unnormalized Ricci flow, we have

(1-2) d
dt
λ0(t)=

1
2

∫
M
|Ric+∇2ϕ|2e−ϕ dυ + 4c−1

2

∫
M
|Ric|2e−ϕ dυ ≥ 0,

where e−ϕ = f 2.

On the other hand, Ma [2006] obtained the monotonicity of the first eigenvalue
of the Laplacian operator on a domain with Dirichlet boundary condition along
the Ricci flow. Using the differentiability of the eigenvalues and the correspond-
ing eigenfunctions of the Laplace operator under the Ricci flow, he obtained the
following result.

Theorem B [Ma 2006]. Let g = g(t) be the evolving metric along the Ricci–
Hamilton flow with g(0) = g0 being the initial metric in M. Let D be a smooth
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bounded domain in (M, g0). Let µ > 0 be the first eigenvalue of the Laplace
operator of the metric g(t). If there is a constant a such that the scalar curvature
satisfies R ≥ 2a in D×{t} and the Einstein tensor satisfies

Ei j ≥−agi j in D×{t},

where Ei j := Ri j −
R
2 gi j , then we have d

dtµ ≥ 0, that is, µ is nondecreasing in t ;
furthermore, d

dtµ(t) > 0 when the scalar curvature R is not the constant 2a. The
same monotonicity result is also true for other eigenvalues.

Motivated by the above work, we also consider the eigenvalue of −1+ cR
with c a constant. For c 6= 0, inspired by [Cao 2007; 2008; Li 2007], we can
derive the following monotonicity of the lowest eigenvalue of −1+ cR under the
Ricci–Bourguignon flow (1-1). That is, we obtain:

Theorem 1.1. Let (M, g(t))t∈[0,T ) be a compact maximal solution of the nontrivial
Ricci–Bourguignon flow (1-1) and λ0(t) be the lowest eigenvalue of the operator
−1+ cR corresponding to the normalized eigenfunction f , that is,

(−1+ cR) f = λ0 f,
∫

M
f 2 dυ = 1.

(1) If ρ ≤ 0,

c ∈
[

1
4
,

n
4(n− 1)

]
∪

[
(1− (n− 1)ρ)2

4(1− 2(n− 1)ρ)
,+∞

)
and the scalar curvature is nonnegative at the initial time, then the lowest eigenvalue
of the operator −1+ cR is nondecreasing in [0, T ) under the Ricci–Bourguignon
flow (1-1). Furthermore, if ρ 6=0 or c 6= 1

4 , then the lowest eigenvalue of the operator
−1+ cR is strictly monotone increasing in [0, T ) under the Ricci–Bourguignon
flow (1-1).

(2) If 0< ρ < 1
2(n−1) ,

c ≥
3(n− 1)2

√
ρ

2(1− 2(n− 1)ρ)
+

1
4

and the curvature operator is nonnegative at the initial time, then the quantity

(1-3) (T ′− t)−αλ0(t)

is strictly monotone increasing under the Ricci–Bourguignon flow (1-1) in [0, T ′),
where

T ′ =
1

2(1− ρ)ε
, ε =max

M
R(0) and α =

ρ

1− ρ
> 0.

Remark 1.1. When ρ=0, where the Ricci–Bourguignon flow is the Ricci–Hamilton
flow, our (1) reduces to the corresponding result of Cao [2008]. When ρ 6= 0, we
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don’t know the differentiability for the lowest eigenvalue, so we show that the lowest
eigenvalue is strictly monotone increasing by using the sign-preserving property.

Remark 1.2. According to the proof, it is obvious that (2) will hold whenever
the Ricci curvature is nonnegative, but in general, the nonnegativity of the Ricci
curvature is not preserved along the Ricci–Bourguignon flow. Nevertheless, the
nonnegativity of the Ricci curvature is preserved in dimension three.

Corollary 1.2. In dimension three, let g(t) and λ0(t) be the same as in Theorem 1.1.
But here we assume the Ricci curvature is nonnegative at the initial time. If 0<ρ< 1

4
and

c ≥
6
√
ρ

1− 4ρ
+

1
4
,

then the quantity

(1-4) (T ′− t)−αλ0(t)

is strictly monotone increasing under the Ricci–Bourguignon flow (1-1) in [0, T ′),
where

T ′ =
1

2(1− ρ)ε
, ε =max

M
R(0) and α =

ρ

1− ρ
> 0.

Next, as an application of our Theorem 1.1, we rule out nontrivial compact steady
breathers. That is, we obtain:

Theorem 1.3. (1) If ρ = 0, c ≥ 1
4 , there is no compact steady breather other than

the one which is Ricci-flat.

(2) If ρ < 0,

c ∈
(

1
4
,

n
4(n− 1)

]
∪

[
(1− (n− 1)ρ)2

4(1− 2(n− 1)ρ)
,+∞

)
,

there is no compact steady breather with nonnegative scalar curvature other than
the one which is Ricci-flat.

For c = 0, we derive the following monotonicity of eigenvalues on Laplacian
under the Ricci–Bourguignon flow (1-1). That is, we obtain:

Theorem 1.4. Let (M, g(t))t∈[0,T ) be a compact maximal solution of the nontrivial
Ricci–Bourguignon flow (1-1) and ρ < 1

2(n−1) . Let λ1(t) be the first eigenvalue of
the Laplace operator of the metric g(t). If there is a nonnegative constant a such
that

Ri j −
1+ (2− n)ρ

2
Rgi j ≥−agi j in M ×[0, T ),(1-5)

R ≥
2a

1− nρ
in M ×{0},(1-6)

then λ1(t) is strictly monotone increasing and differentiable almost everywhere
along the Ricci–Bourguignon flow in [0, T ).
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Remark 1.3. (1) Wu et al. [2010] proved a similar result about the p-Laplace
operator along the Ricci flow, where they assumed R ≥ ap and R 6≡ ap in M×{0},
which are a little stronger than (1-6). The key difference is that we use Lemma 2.3.

(2) It should be pointed out that for ρ = 0, the above theorem is similar to the main
result for the first eigenvalue of the Laplace operator in [Ma 2006]. Moreover, our
assumptions are weaker than Ma’s.

(3) If a < 0, there doesn’t exist any scalar curvature which satisfies (1-5) and (1-6)
at the same time.

(4) The result may be useful in the study of blow-up models of Ricci–Bourguignon
flow on a complete Riemannian manifold (M, g0).

2. Preliminaries

We begin with the definition for the first eigenvalue (the lowest eigenvalue) of
the Laplace operator (the Schrödinger-type operator −1+ cR) under the Ricci–
Bourguignon flow on a closed manifold. Then, we will show that the first eigenvalue
of the Laplace operator is a continuous function along the Ricci–Bourguignon flow.
Finally, under the Ricci–Bourguignon flow, we show that if R(g0) := R(0)≥ β, for
some β ∈ R, then either maxM R(t) > β or the flow is trivial (i.e., g(t)= g(0)) for
every t ∈ (0, T ).

Throughout, M will be taken to be a closed manifold (i.e., compact without
boundary). We use moving frames in all calculations and adopt the index convention

1≤ i, j, k, · · · ≤ n
throughout this paper.

Now we recall the definition of the first eigenvalue of the Laplace operator on a
closed manifold under the Ricci–Bourguignon flow. Let (M, g(t)) be a solution of
the Ricci–Bourguignon flow on the time interval [0, T ). Consider the first nonzero
eigenvalue of the Laplace operator at time t , where 0≤ t < T,

λ1(t)= inf
{∫

M
|∇ f |2 dυ : f ∈W 1,2,

∫
M

f 2 dυ = 1 and
∫

M
f dυ = 0

}
,

where dυ denotes the volume form of the metric g = g(t). Meanwhile the corre-
sponding eigenfunction f satisfies the equation

−1 f (t)= λ1(t) f (t),

where 1 is the Laplace operator with respect to g(t), given by

1g(t) =
1

√
|g(t)|

∂i (
√
|g(t)|g(t)i j∂j ),

and g(t)i j
= g(t)−1

i j is the inverse of the matrix g(t) and |g| = det(gi j ).
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Note that it is not clear whether the first eigenvalue or the corresponding eigen-
function of the Laplace operator is differentiable under the Ricci–Bourguignon
flow. When ρ = 0, where the Ricci–Bourguignon flow is the Ricci–Hamilton flow,
many papers have pointed out that its differentiability under the Ricci–Hamilton
flow follows from eigenvalue perturbation theory; e.g., see [Kato 1984; Kleiner
and Lott 2008; Reed and Simon 1978]. But for ρ 6= 0, as far as we are aware, the
differentiability of the first eigenvalue and eigenfunction of the Laplace operator
under the Ricci–Bourguignon flow has not been known until now. So we cannot use
Ma’s trick to derive the monotonicity of the first eigenvalue of the Laplace operator.
Although, we do not know the differentiability for λ1(t), following the techniques
of [Wu et al. 2010], we will see that λ1(t) in fact is a continuous function along the
Ricci–Bourguignon flow on [0, T ).

Lemma 2.1 [Wu et al. 2010]. If g1 and g2 are two metrics on M which satisfy

(1+ ε)−1g1 ≤ g2 ≤ (1+ ε)g1,

then, we have

(2-1) (1+ ε)−(n+1)
≤
λ1(g1)

λ1(g2)
≤ (1+ ε)(n+1).

In particular, λ1(g(t)) is a continuous function in the t-variable.

Proof. This can be proved using arguments similar to those for Theorem 2.1 in [Wu
et al. 2010]. �

Next we recall the definition of the lowest eigenvalue of −1+ cR. Let λ0(t) be
the lowest eigenvalue of −1+ cR. Given a metric g on a closed manifold M, we
define the functional λ0 by

(2-2) λ0(t)= inf
{

G (g, f ) :
∫

M
f 2 dυ = 1, f > 0 and f ∈W 1,2

}
,

where

G (g, f )=
∫

M
( f (−1 f )+ cR f 2) dυ =

∫
M
(|∇ f |2+ cR f 2) dυ.

We also do not know the differentiability for λ0(t) and the corresponding eigen-
function. But, following the techniques of [Chow et al. 2008], we will see that
λ0(t) in fact is a continuous function along the Ricci–Bourguignon flow on [0, T ).

Lemma 2.2 [Chow et al. 2008]. If g1 and g2 are two metrics on M which satisfy

(1+ ε)−1g1 ≤ g2 ≤ (1+ ε)g1 and R(g1)− ε ≤ R(g2)≤ R(g1)+ ε,

then

(2-3) λ0(g2)−λ0(g1)≤ ((1+ε)
n
2+1
−(1+ε)−

n
2 )(1+ε)

n
2 (λ0(g1)−min

M
|c|R(g1))

+|c|
(
(1+δ)max

M
|R(g2)−R(g1)|+2δmax

M
|R(g1)|

)
(1+ε)

n
2 ,
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where δ→ 0 as ε→ 0. In particular, λ0 is a continuous function with respect to
the C2-topology.

Proof. This can be proved using arguments similar to those for Lemma 5.24 in
[Chow et al. 2008]. �

At last, we present the following lemma.

Lemma 2.3. Let (M, gt)t∈[0,T ) be a compact maximal solution of the Ricci–
Bourguignon flow (1-1). If ρ < 1

2(n−1) and R(0) ≥ β for some β ∈ R, then
either maxM R(t) > β or g(t)= g(0) for every t ∈ (0, T ).

Proof. From Lemma 2.6, we know that R(t) ≥ β for every t ∈ [0, T ). If
maxM R(t0) = β for some t0 ∈ (0, T ), we have R(t0) ≡ β and ∂R

∂t

∣∣
t0
≤ 0. From

(2-7), we have

1
n

R2(t0)≤ |Ric|2(t0)≤ ρR2(t0) <
1

2(n−1)
R2(t0).

Obviously, we have R(t0) = 0 and Ric(t0) = 0. Hence, maxM R(t0) = β = 0.
Therefore, if β 6= 0, we have maxM R(t) > β for every t ∈ [0, T ).

When β = 0, let I = {t > 0 :maxM R(t) > 0}. If I =∅, then we have R(t)≡ 0
and Ric(t)≡ 0. Hence we have g(t)= g(0). When I 6=∅ and t1 ∈ I, for any t0 and
0< t0 < t1, if maxM R(t0)= 0, then R(t0)≡ 0 and Ric(t0)≡ 0. Hence, in [t0, T ),
g(t) = g(t0). So we have Ric(t1) = Ric(t0) = 0, which is in contradiction with
maxM R(t1) > 0. Hence, t0 ∈ I. Since t0 ∈ (0, t1) is arbitrary, we have (0, t1] ⊂ I.
By the strong maximum principle, we have (0, T )⊂ I. �

For the reader’s convenience, we will recall some basic knowledge about the
Ricci–Bourguignon flow.

Lemma 2.4 [Catino et al. 2017]. Under the Ricci–Bourguignon flow (1-1), we have

∂

∂t
gi j
= 2(Ri j

− ρRgi j ),(2-4)

∂

∂t
( dυ)= (nρ− 1)R dυ,(2-5)

∂

∂t
(0k

i j )=−Rik, j − Rk j,i + Ri j,k + ρ(δ
i
k R, j + δ

k
j R,i − gi j R,k),(2-6)

∂

∂t
R = [1− 2(n− 1)ρ]1R+ 2|Ric|2− 2ρR2.(2-7)

Lemma 2.5 (short time existence [Catino et al. 2017]). Let ρ < 1
2(n−1) . Then, the

evolution equation (1-1) has a unique solution for a positive time interval on any
smooth, n-dimensional, compact Riemannian manifold M (without boundary) with
any initial metric g0.
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Lemma 2.6 (preserved curvature conditions [Catino et al. 2017]). Let (M, gt)t∈[0,T )

be a compact maximal solution of the Ricci–Bourguignon flow (1-1). If ρ ≤ 1
2(n−1) ,

the minimum of the scalar curvature is nondecreasing along the flow. In particular,
if R(g0) ≥ α, for some α ∈ R, then R(gt) ≥ α for every t ∈ [0, T ). Moreover, if
α > 0 then T ≤ n/(2(1− nρ)α).

Lemma 2.7 (conditions preserved in three dimensions [Catino et al. 2017]). Let
(M, gt)t∈[0,T ) be a compact, 3-dimensional, solution of the Ricci–Bourguignon flow
(1-1). If ρ < 1

4 , then

(1) nonnegative Ricci curvature is preserved along the flow;

(2) the pinching inequality Ric≥ εRg is preserved along the flow for any ε ≤ 1
3 .

Lemma 2.8 [Catino et al. 2017]. Let (M, gt)t∈[0,T ) be a compact solution of
the Ricci–Bourguignon flow (1-1) with ρ ≤ 1

2(n−1) , and such that the initial data g0

has nonnegative curvature operator. Then R̃g(t) ≥ 0 for every t ∈ [0, T ), where R̃ ∈
End(32 M) is the Riemann curvature operator.

Lemma 2.9 [Catino et al. 2017]. Let ρ < 1
2(n−1) . If g(t) is a compact solution of

the Ricci–Bourguignon flow on a maximal time interval [0, T ), T <+∞, then

lim sup
t→T

max
M
|Riem( · , t)| = +∞,

where Riem( · , t) is Riemann tensor.

3. Proof of Theorem 1.1

We will now prove Theorem 1.1. In order to achieve this, we first prove the following
two lemmas. Our proof uses some tricks from [Cao 2007, 2008].

Let M be an n-dimensional closed Riemannian manifold, and g(t) be a smooth
solution of the Ricci–Bourguignon flow on the time interval [0, T ). Let λ0(t) be
the lowest eigenvalue of the operator −1+ cR corresponding to the normalized
eigenfunction f , that is,

(−1+ cR) f = λ0 f,
∫

M
f 2 dυ = 1.

From Theorem 7.2 in [Guo et al. 2013], we know that, for any t0 ∈ [0, T ), there
exists a smooth function ϕ(t) > 0 satisfying

(3-1)
∫

M
ϕ2(t) dυ = 1

and ϕ(t0)= f (t0). Let

(3-2) µ(t)=
∫

M

(
ϕ(t)(−1ϕ(t))+ cRϕ2(t)

)
dυ,
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then µ(t) is a smooth function by definition. And at time t0, we conclude that

µ(t0)= λ0(t0).

We first give the following lemma.

Lemma 3.1. Let (M, gt)t∈[0,T ) be a solution of the Ricci–Bourguignon flow on
an n-dimensional closed manifold M, and let λ0(t) be the lowest eigenvalue of
−1+cR under the Ricci–Bourguignon flow. Assume that f (t0) is the corresponding
eigenfunction of λ0(t) at time t0 ∈ [0, T ). Let µ(t) be a smooth function defined by
(3-2). Then we have

(3-3) d
dt
µ(t)

∣∣∣
t=t0
= (A− 2ρ)c

∫
M

R2 f 2 dυ + (A− 2ρ)
∫

M
R|∇ f |2 dυ

− Aλ0

∫
M

R f 2 dυ + 2
∫

M
Ric(∇ f,∇ f ) dυ

+ 2c
∫

M
|Ric|2 f 2 dυ,

where
A =−1+ nρ+ 2c[1− 2(n− 1)ρ].

Proof. The proof is by straightforward computation. Notice that

(3-4) ∂

∂t
(1ϕ)= 2Ri jϕi j +1(ϕt)− 2ρR1ϕ− (2− n)ρR,kϕk .

Using Lemma 2.4, we have

(3-5) d
dt
µ(t)

∣∣∣
t=t0
=

∫
M
∂t(−1ϕ+ cRϕ)ϕ dυ +

∫
M
(−1ϕ+ cRϕ)∂t(ϕ dυ)

=

∫
M
[∂t(−1ϕ)+ cϕ∂t R+ cR∂tϕ]ϕ dυ

+

∫
M
(−1ϕ+ cRϕ)∂t(ϕ dυ)

=

∫
M
[−2Ri jϕi j −1(ϕt)+ 2ρR1ϕ+ (2− n)ρR,kϕk]ϕ dυ

+

∫
M
[cϕ∂t R+ cR∂tϕ]ϕ dυ +

∫
M
(−1ϕ+ cRϕ)∂t(ϕ dυ)

=

∫
M
[−2Ri jϕi jϕ+ 2ρRϕ1ϕ+ (2− n)ρR,kϕkϕ] dυ

+ c
∫

M
{[1− 2(n− 1)ρ]1R+ 2|Ric|2− 2ρR2

}ϕ2 dυ

+

∫
M
(−1ϕ+ cRϕ)[∂t(ϕ)dυ + ∂t(ϕ dυ)].
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From R,i = 2Ri j, j and the Stokes formula, we have∫
M
ϕ21R dυ =

∫
M

2R(|∇ϕ|2+ϕ1ϕ) dυ,(3-6) ∫
M

R,kϕkϕ dυ =
∫

M
2R(|∇ϕ|2+ϕ1ϕ) dυ,(3-7)

and

(3-8)
∫

M
−Ri jϕi jϕ dυ =

∫
M
(Ri jϕ)jϕi dυ

=

∫
M

Ri j, jϕϕi dυ+
∫

M
Ri jϕjϕi dυ

=
1
2

∫
M

R,iϕϕi dυ+
∫

M
Ri jϕjϕi dυ

=−
1
2

∫
M

R(ϕϕi )i dυ+
∫

Ri jϕjϕi dυ

=−
1
2

∫
M

R1ϕϕ dυ−1
2

∫
M

R|∇ϕ|2 dυ+
∫

M
Ri jϕjϕi dυ.

On the other hand, at time t0, we know ϕ is the eigenfunction of λ0(t0), i.e.,
(−1+ cR)ϕ = λ0ϕ, and we have

(3-9)
∫

M
(−1ϕ+cRϕ)[∂t(ϕ)dυ+∂t(ϕ dυ)]= λ0

∫
M
ϕ[∂t(ϕ)dυ+∂t(ϕ dυ)]= 0.

The last equality holds because of (3-1). Inserting (3-6)–(3-9) into (3-5), at t = t0,
yields

(3-10) d
dt
µ(t)

∣∣∣
t=t0
= (−1+nρ+2c[1−2(n−1)ρ])

∫
M

Rϕ1ϕ dυ

+(−1+(n−2)ρ+2c[1−2(n−1)ρ])
∫

M
R|∇ϕ|2 dυ

+2
∫

M
Ri jϕiϕj dυ+2c

∫
M
|Ric|2ϕ2 dυ−2cρ

∫
M

Rϕ2 dυ.

Inserting 1ϕ = cRϕ− λ0ϕ into (3-10), at t = t0, gives

(3-11) d
dt
µ(t)

∣∣∣
t=t0
= (A− 2ρ)c

∫
M

R2ϕ2 dυ + (A− 2ρ)
∫

M
R|∇ϕ|2 dυ

− Aµ
∫

M
Rϕ2 dυ + 2

∫
M

Ri jϕiϕj dυ

+ 2c
∫

M
|Ric|2ϕ2 dυ.

Therefore we finish the proof of Lemma 3.1. �
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Now we give the second lemma.

Lemma 3.2. Let (M, gt)t∈[0,T ) be a solution of the Ricci–Bourguignon flow on
an n-dimensional closed manifold M, and let λ0(t) be the lowest eigenvalue of
−1+cR under the Ricci–Bourguignon flow. Assume that f (t0) is the corresponding
eigenfunction of λ0(t) at time t0 ∈ [0, T ). Let µ(t) be a smooth function defined by
(3-2). Then we have

(3-12) d
dt
µ(t)

∣∣∣
t=t0

=
1

2k(2− k)

∫
M
|Ri j − 2k(log f )i j |

2 f 2 dυ

+

(
2c−

1
2k(2− k)

)∫
M
|Ric|2 f 2 dυ

−
(a− bk)4c− (d − ek)

2− k
λ0

∫
M

R f 2 dυ

+

(
(a− bk)4c− (d − ek)

2− k
− 2ρ

)∫
M
(cR2 f 2

+ R|∇ f |2) dυ,

where

a = 1− 2(n− 1)ρ, b = 1− (n− 1)ρ,

d = 1− 2nρ, e = 1− nρ and 0< k < 2.

Proof. The proof is by straightforward computation:

(3-13)
∫

M
|Ri j−2k(log f )i j |

2 f 2 dυ=
∫

M
|Ric|2 f 2 dυ+4k2

∫
M
|∇

2(log f )|2 f 2 dυ

−4k
∫

M
Ri j (log f )i j f 2 dυ.

From [Cao 2008], we can get

(3-14) 4k2
∫

M
|∇

2(log f )|2 f 2 dυ

= 2k2c
∫

M
R1 f 2 dυ − 4k2

∫
M

Ri j fi f j dυ

= 4k2c
∫

M
R( f1 f + |∇ f |2) dυ − 4k2

∫
M

Ri j fi f j dυ

and

(3-15) −4k
∫

M
Ri j (log f )i j f 2 dυ

=−2k
∫

M
R( f1 f + |∇ f |2) dυ + 8k

∫
M

Ri j fi f j dυ.
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Combining (3-14) and (3-15), we arrive at

(3-16)
∫

M
|Ri j − 2k(log f )i j |

2 f 2 dυ

=

∫
M
|Ric|2 f 2 dυ + (8k− 4k2)

∫
M

Ri j fi f j dυ

+ 2k(2kc− 1)
(

c
∫

M
R2 f 2 dυ − λ0

∫
M

R f 2 dυ
)

+ 2k(2kc− 1)
∫

M
R|∇ f |2 dυ.

Multiplying by 1
2k(2−k) on both sides of (3-16), we conclude that

(3-17)
1

2k(2− k)

∫
M
|Ri j − 2k(log f )i j |

2 f 2 dυ

=
1

2k(2− k)

∫
M
|Ric|2 f 2 dυ + 2

∫
M

Ri j fi f j dυ

+
2kc− 1
2− k

(
c
∫

M
R2 f 2 dυ − λ0

∫
M

R f 2 dυ
)

+
2kc− 1
2− k

∫
M

R|∇ f |2 dυ.

Subtracting (3-17) from (3-3), we see that

(3-18) d
dt
µ(t)

∣∣∣
t=t0
=

1
2k(2−k)

∫
M
|Ri j−2k(log f )i j |

2 f 2 dυ

+

(
2c−

1
2k(2−k)

)∫
M
|Ric|2 f 2 dυ

+

(
A−2ρ−

2kc−1
2−k

)∫
M
(cR2 f 2

+R|∇ f |2−λ0 R f 2)dυ

−2ρ
∫

M
λ0 R f 2 dυ,

where A =−1+ nρ+ 2c[1− 2(n− 1)ρ]. Note that

A−
2kc−1
2−k

=
4{[1−2(n−1)ρ]−[1−(n−1)ρ]k}c−[(1−2nρ)−(1−nρ)k]

2−k

:=
(a−bk)c−(d−ek)

2−k
.

Therefore we finish the proof of Lemma 3.2. �

Proof of Theorem 1.1. We first prove (1). If ρ < 0, inserting

k =
a
b
=

1− 2(n− 1)ρ
1− (n− 1)ρ



MONOTONICITY OF EIGENVALUES OF GEOMETRIC OPERATORS 13

into (3-12), we obtain

(3-19) d
dt
µ(t)

∣∣∣
t=t0
=
(1−(n−1)ρ)2

2−4(n−1)ρ

∫
M

∣∣∣∣Ri j−2
1−2(n−1)ρ
1−(n−1)ρ

(log f )i j

∣∣∣∣2 f 2 dυ

+

(
2c−

(1−(n−1)ρ)2

2(1−2(n−1)ρ)

)∫
M
|Ric|2 f 2 dυ−ρλ0

∫
M

R f 2 dυ

−ρ

{
c
∫

M
R2 f 2 dυ+

∫
M

R|∇ f |2 dυ
}
.

If R ≥ 0 in M×{0}, from Lemmas 2.3 and 2.6, we know that either maxM R(t) > 0
or g(t)= g(0) for every t ∈ (0, T ). Assume maxM R(t) > 0 (otherwise the proof
is trivial). By (3-19), when

c ≥
(1− (n− 1)ρ)2

4(1− 2(n− 1)ρ)
>

1
4
,

we obtain

(3-20) d
dt
µ(t)

∣∣∣
t=t0

> 0.

Moreover, setting k = 1 in (3-12), we obtain

(3-21) d
dt
µ(t)

∣∣∣
t=t0
=

1
2

∫
M
|Ri j−2(log f )i j |

2 f 2 dυ+
(

2c−1
2

)∫
M
|Ric|2 f 2 dυ

−ρ[4(n−1)c−n+2]
{

c
∫

M
R2 f 2 dυ+

∫
M

R|∇ f |2 dυ
}

+ρ[4(n−1)c−n]λ0

∫
M

R f 2 dυ.

Then when 1
4 ≤ c ≤ n/(4(n− 1)), we also obtain (3-20).

Since the eigenfunction of the lowest eigenvalue is not equal to 0 along the
Ricci–Bourguignon flow, see Lemma 5.22 in [Chow et al. 2008], and µ(t) is a
smooth function with respect to the t-variable, we have

(3-22) d
dt
µ(t) > 0

in (t0− δ, t0+ δ), where δ > 0 is sufficiently small. So we get

(3-23) µ(t0) > µ(t1)

for any t1 ∈ (t0− δ, t0+ δ) and t1 < t0.
Notice that

µ(t0)= λ0(t0) and µ(t1)≥ λ0(t1).
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This implies λ0(t0)>λ0(t1) for any t0> t1. Since λ0(t) is continuous and t0 ∈ [0, T )
is arbitrary, λ0(t) is strictly monotone increasing in [0, T ). Therefore we finish the
proof of (1).

Next we prove (2). If 0< ρ < 1
2(n−1) , in (3-18), we pick k such that

A− 2ρ−
2kc− 1
2− k

= 0.

Then

k =
(4c− 1)[1− 2(n− 1)ρ] − 2ρ
(4c− 1)[1− (n− 1)ρ] − ρ

.

Taking 4c− 1= B ≥ 0, we have

k =
B[1− 2(n− 1)ρ] − 2ρ
B[1− (n− 1)ρ] − ρ

and 2− k =
B

B[1− (n− 1)ρ] − ρ
.

For 0< k < 2, we need

(3-24) B >
2ρ

1− 2(n− 1)ρ
.

Now, we need 2c− 1
2k(2−k) ≥ 0, which is

(3-25) B(B+ 1)(B[1− 2(n− 1)ρ] − 2ρ)≥ (B[1− (n− 1)ρ] − ρ)2.

It is true when B→+∞. Next, we will prove that given

(3-26) 4c− 1= B ≥
6(n− 1)2

√
ρ

1− 2(n− 1)ρ
,

both (3-24) and (3-25) are true. Firstly, since 0< ρ < 1
2(n−1) < 1, we have

B ≥
6(n− 1)2

√
ρ

1− 2(n− 1)ρ
>

6(n− 1)2ρ
1− 2(n− 1)ρ

>
2ρ

1− 2(n− 1)ρ
.

Thus, (3-24) holds. Secondly, let’s show (3-25):

B(B+1)(B[1−2(n−1)ρ]−2ρ)−(B[1−(n−1)ρ]−ρ)2

= B2(B[1−2(n−1)ρ]−2ρ)+B(B[1−2(n−1)ρ]−2ρ)−(B[1−(n−1)ρ]−ρ)2

= B2(B[1−2(n−1)ρ]−2ρ)−((n−1)Bρ+ρ)2

≥ B2(6(n−1)2
√
ρ−2ρ)−((n−1)Bρ+ρ)2

≥ B2(4(n−1)2
√
ρ)−((n−1)Bρ+ρ)2

= [2B(n−1) 4
√
ρ+(n−1)Bρ+ρ][2B(n−1) 4

√
ρ−(n−1)Bρ−ρ].
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The first factor is clearly positive. For the second factor, note ρ
1
4 > ρ

3
4 > ρ,

2B(n− 1) 4
√
ρ− (n− 1)Bρ− ρ ≥ B(n− 1) 4

√
ρ− ρ

≥
6(n− 1)3

√
ρ

1− 2(n− 1)ρ
4
√
ρ− ρ

≥ 6(n− 1)3ρ
3
4 − ρ ≥ 12(n− 1)3ρ− ρ > 0.

Therefore, given

4c− 1≥
6(n− 1)2

√
ρ

1− 2(n− 1)ρ
,

we have

(3-27) d
dt
µ

∣∣∣
t=t0

>−2ρµ
∫

M
R f 2 dυ.

By Lemma 2.8, we know that the nonnegativity of the curvature operator is preserved
by the Ricci–Bourguignon flow. This implies that the Ricci curvature is also nonneg-
ative, and we have |Ric|2 ≤ R2. The evolution equation of scalar curvature satisfies

(3-28) ∂

∂t
R = [1− 2(n− 1)ρ]1R+ 2|Ric|2− 2ρR2

≤ [1− 2(n− 1)ρ]1R+ 2(1− ρ)R2.

Let σ(t) be the solution of the following ODE with initial value:

(3-29)
{
∂σ(t)/∂t = 2(1− ρ)σ 2,

σ (0)=maxM R(0).

By the maximum principle, letting ε =maxM R(0), we can get

R(t)≤ σ(t)=
(
−2(1− ρ)t + 1

ε

)−1

on [0, T ′′), where T ′′=min{T ′, T } and T ′= 1
2(1−ρ)ε . Arguing now as in [Hamilton

1982, Section 14], it follows that the metrics g(t) converge to some limit metric
g(T ) in the C∞ topology if T < T ′′; hence, we can restart the flow with this initial
metric g(T ), obtaining a smooth flow in some larger time interval [0, T + δ), in
contradiction with the fact that T was the maximal time of smooth existence. So we
have T ′ ≤ T. Hence R(t)≤ σ(t) on [0, T ′). Since the eigenfunction of the lowest
eigenvalue is not equal to 0 along the Ricci–Bourguignon flow, see Lemma 5.22
in [Chow et al. 2008], from Lemma 2.3 and (3-27), we have

(3-30) d
dt
µ

∣∣∣
t=t0

>−2ρµ
∫

M
R f 2 dυ ≥−2ρµσ,

which implies ( d
dt
µ+ 2ρµσ

)∣∣∣
t=t0

> 0.
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By arguments similar to those in the proof of (1), we know that

(T ′− t)−αλ0(t)

is strictly monotone increasing under the Ricci–Bourguignon flow (1-1) on [0,T ′) and

T ′ =
1

2(1− ρ)ε
,

where
ε =max

M
R(0) and α =

ρ

1− ρ
> 0,

which shows (2) holds. Therefore we finish the proof of Theorem 1.1. �

4. Proof of Theorem 1.3

We will now prove Theorem 1.3. First, we recall the definition of breathers.

Definition 4.1. A metric g(t) evolving from the Ricci–Bourguignon flow is called
a breather if for some t1 < t2 and α > 0 the metrics αg(t1) and g(t2) differ only by a
diffeomorphism; the cases α = 1, α < 1 and α > 1 correspond to steady, shrinking
and expanding breathers, respectively.

Proof of Theorem 1.3. For a steady breather, let t1 and t2 be the same as above; we
have

λ0(t1)= λ0(t2).

When ρ = 0 and c ≥ 1
4 , by (1-2) of Theorem A, we have

λ0(t1)≤ λ0(t2)

provided t1 < t2. And the equality holds if and only if for any t1 ≤ t ≤ t2,

d
dt
λ0(t)= 0.

Since the eigenfunction f cannot be identical to zero, from (1-2) of Theorem A we
must have Ric≡ 0.

But when ρ < 0,

c ∈
(

1
4
,

n
4(n− 1)

]
∪

[
(1− (n− 1)ρ)2

4(1− 2(n− 1)ρ)
,+∞

)
and the scalar curvature is nonnegative at the initial time, because of Theorem 1.1(1)
for a nontrivial flow we have

λ0(t1) < λ0(t2)
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provided t1< t2. When (M, g(t))t∈[0,T ) is a compact maximal solution of the trivial
Ricci–Bourguignon flow (1-1), i.e., Ric ≡ 0, we have λ0(t1) = λ0(t2). Hence we
have proved Theorem 1.3. �

5. Proof of Theorem 1.4

We will now prove Theorem 1.4. In order to achieve this, we first prove Lemma 5.1.
Our proof involves choosing a proper smooth function, which seems to be a delicate
trick.

Let M be an n-dimensional closed Riemannian manifold, and g(t) be a smooth
solution of the Ricci–Bourguignon flow on the time interval [0, T ). Let λ1(t) be
the first eigenvalue of the Laplace operator under the Ricci–Bourguignon flow and
f (t0) be the corresponding eigenfunction of λ1(t) at time t0 ∈ [0, T ), i.e.,

(5-1) −1g(t0) f (t0)= λ1(t0) f (t0).

For any t0 ∈ [0, T ), Wu et al. [2010] pointed out that there exists a smooth function

φ(t)=
ψ(t)(∫

M ψ(t)
2 dυ

) 1
2

, where ψ(t)= f (t0)
(
|g(t0)|
|g(t)|

)1
2

satisfying

(5-2)
∫

M
φ(t)2 dυ = 1,

∫
M
φ(t) dυ = 0,

and ϕ(t0)= f (t0). Now we define a general smooth function

(5-3) µ(t)=
∫

M
φ(t)(−1φ(t)) dυ.

In general, µ(t) is not equal to λ1(t). But at time t0, we conclude that

µ(t0)= λ1(t0).

Lemma 5.1. Let (M, gt)t∈[0,T ) be a solution of the Ricci–Bourguignon flow on an
n-dimensional closed manifold M and let λ1(t) be the first eigenvalue of the Laplace
operator under the Ricci–Bourguignon flow. Assume that f (t0) is the corresponding
eigenfunction of λ1(t) at time t0 ∈ [0, T ), i.e.,

−1g(t0) f (t0)= λ1(t0) f (t0).

Let µ(t) be a smooth function defined by (5-3). Then we have

(5-4) d
dt
µ(t)

∣∣∣
t=t0
=

∫
M
{2Ri j fi f j+(1−nρ)λ1 R f 2

−[(2−n)ρ+1]R|∇ f |2} dυ.

Proof. The proof is by direct computation:
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(5-5) d
dt
µ(t)

∣∣∣
t=t0
=

∫
M
∂t(−φ1φ) dυ +

∫
M
(−φ1φ)∂t( dυ)

=

∫
M
[−2Ri jφi j −1(∂tφ)+ 2ρR1φ+ (2− n)ρR,kφk]φ dυ

+

∫
M
(−1φ)∂tφ dυ +

∫
M
(−1φ)φ(nρ− 1)R dυ

=

∫
M
−2Ri jφi jφ dυ +

∫
M
−2(1φ)∂tφ dυ

+ (2− n)ρ
∫

M
R,kφkφ dυ + [1+ (2− n)ρ]

∫
M

R(1φ)φ dυ.

From (3-7) and (3-8), we have

(5-6) d
dt
µ(t)

∣∣∣
t=t0
=−

∫
M

R1φφ dυ −
∫

M
R|∇φ|2 dυ + 2

∫
M

Ri jφjφi dυ

+

∫
M
−2(1φ)∂tφ dυ − (2− n)ρ

∫
M

R1φφ dυ

− (2− n)ρ
∫

M
R|∇φ|2 dυ

+ [1+ (2− n)ρ]
∫

M
R(1φ)φ dυ

= 2
∫

M
Ri jφjφi dυ + 2µ

∫
M
φ∂tφ dυ

− [1+ (2− n)ρ]
∫

M
R|∇φ|2 dυ.

Under the Ricci–Bourguignon flow, from the constraint condition (5-2), we get

(5-7) 2
∫

M
φ∂tφ dυ =−(nρ− 1)

∫
M
φ2 R dυ.

Hence, at time t0, the desired lemma follows from substituting (5-7) into (5-6). �

Proof of Theorem 1.4. We assume that for any time t0 ∈ [0, T ), if f (t0) is the
corresponding eigenfunction of the first eigenvalue λ1(t0), then we have λ1(t0)=
µ(t0). By Lemma 5.1, we have

d
dt
µ(t)

∣∣∣
t=t0
=

∫
M
{(1−nρ)λ1 R f 2

+2Ri j fi f j−[(2−n)ρ+1]R|∇ f |2}dυ(5-8)

=

∫
M
{2Ri j−[(2−n)ρ+1]Rgi j } fi f j dυ+

∫
M
(1−nρ)λ1 R f 2 dυ

≥

∫
M
(1−nρ)λ1 R f 2 dυ−2a

∫
M
|∇ f |2 dυ

=

∫
M
(1−nρ)λ1R f 2 dυ−2aλ1= λ1

∫
M

f 2
{(1−nρ)R−2a}dυ,



MONOTONICITY OF EIGENVALUES OF GEOMETRIC OPERATORS 19

where we used the first assumption of Theorem 1.4.
From Lemma 2.3, we know that either maxM R(t) > 0 or g(t)= g(0) for every

t ∈ (0, T ). Assume maxM R(t) > 0 (otherwise the proof is trivial). Since the
eigenfunction of the first eigenvalue is not equal to 0 along the Ricci–Bourguignon
flow, by (5-8), we obtain

(5-9) d
dt
µ(t)

∣∣∣
t=t0

> 0.

By arguments similar to those in the proof of Theorem 1.1, we have λ1(t) is strictly
monotone increasing in [0, T ).

As for the differentiability for λ1(t), since λ1(t) is increasing on the time interval
[0, T ) under curvature conditions of the theorem, by the classical Lebesgue’s
theorem, see for example Chapter 4 in [Mukherjea and Pothoven 1984], it is easy
to see that λ1(t) is differentiable almost everywhere on [0, T ). �

Remark 5.1. (1) In the course of proving Theorem 1.4, we do not use any differ-
entiability of the first eigenvalue or the corresponding eigenfunction of the Laplace
operator under the Ricci–Bourguignon flow.

(2) Using this method, we cannot get any monotonicity for higher-order eigenvalues
of the Laplace operator under the Ricci–Bourguignon flow.
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