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BESOV-WEAK-HERZ SPACES AND
GLOBAL SOLUTIONS FOR NAVIER–STOKES EQUATIONS

LUCAS C. F. FERREIRA AND JHEAN E. PÉREZ-LÓPEZ

We consider the incompressible Navier-Stokes equations (NS) in Rn for
n ≥ 2. Global well-posedness is proved in critical Besov-weak-Herz spaces
(BWH-spaces) that consist in Besov spaces based on weak-Herz spaces.
These spaces are larger than some critical spaces considered in previous
works for NS. For our purposes, we need to develop a basic theory for
BWH-spaces containing properties and estimates such as heat semigroup
estimates, embedding theorems, interpolation properties, among others. In
particular, we prove a characterization of Besov-weak-Herz spaces as inter-
polation of Sobolev-weak-Herz ones, which is key in our arguments. Self-
similarity and asymptotic behavior of solutions are also discussed. Our
class of spaces and its properties developed here could also be employed to
study other PDEs of elliptic, parabolic and conservation-law type.

1. Introduction

This paper is concerned with the incompressible Navier–Stokes equations

(1-1)


∂u
∂t −1u+ u · ∇u+∇ρ = 0 in Rn

× (0,∞),

∇ · u = 0 in Rn
× (0,∞),

u(0)= u0 in Rn,

where n ≥ 2, ρ is the pressure, u = (u j )
n
j=1 is the velocity field and u0 is a given

initial velocity satisfying ∇ · u0 = 0.
After applying the Leray–Hopf projector P and using Duhamel’s principle, the

Cauchy problem (1-1) can be reduced to the integral formulation

(1-2) u(t)= G(t)u0−

∫ t

0
G(t − τ)P div(u⊗ u)(τ )dτ := G(t)u0+ B(u, u)(t),
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where u ⊗ v := (uiv j )1≤i, j≤n is a matrix-valued function and G(t) = et1 is the
heat semigroup. The operator P can be expressed as P= (Pi, j )n×n where Pi, j :=

δi, j +RiR j , δi, j is the Kronecker delta and Ri = (−1)
−1/2∂i is the i-th Riesz

transform. Divergence-free solutions for (1-2) are called mild solutions for (1-1).
Note that if u is a smooth solution for (1-1) (or (1-2)), then

(1-3) uλ(x, t) := λu(λx, λ2t)

is also a solution with initial data

(1-4) (u0)λ(x)= λu0(λx).

Recall that given a Banach space Y we say that it has scaling degree equal to
k ∈ R if ‖ f (λx)‖Y ≈ λk

‖ f ‖Y for all λ > 0 and f ∈ Y. Motivated by (1-4), a
Banach space Y is called critical for (1-1) if it has scaling degree equal to −1,
that is, if ‖ f ‖Y ≈ ‖λ f (λx)‖Y for all λ > 0 and f ∈ Y. In turn, a solution of (1-1)
which is invariant by the scaling (1-3), i.e., u = uλ, is called a self-similar solution
of (1-1). Note that in order to obtain self-similar solutions, the initial data should
be homogeneous of degree −1.

Over the years, global-in-time well-posedness of small solutions for (1-1) in
critical spaces has attracted the interest of a number of authors. Without making a
complete list, we mention works in the following spaces: homogeneous Sobolev
Ḣ 1/2(R3) [Fujita and Kato 1964], Lebesgue Ln(Rn) [Kato 1984], Marcinkiewicz
Ln,∞(Rn) [Barraza 1996; Yamazaki 2000], Morrey Mn

q(R
n) [Giga and Miyakawa

1989; Kato 1992; Taylor 1992], weak-Morrey Mn
q,∞(R

n) [Miao and Yuan 2007;
Lemarié-Rieusset 2015; Ferreira 2016], P Mn−1-spaces [Cannone and Karch 2004],
Besov Ḃn/p−1

p,∞ (Rn) for p>n [Cannone 1997], Fourier–Besov FḂn−1−n/p
p,∞ [Iwabuchi

and Takada 2014; Konieczny and Yoneda 2011], homogeneous weak-Herz spaces
WK̇ 0

n,∞(R
n) [Tsutsui 2011], Fourier–Herz B−1

r = FḂ−1
1,r with r ∈ [1, 2] [Cannone

and Wu 2012; Iwabuchi and Takada 2014; Lei and Lin 2011], homogeneous Besov–
Morrey N n/r−1

r,q,∞ with r > n [Kozono and Yamazaki 1994; Mazzucato 2003], and
BMO−1 [Koch and Tataru 2001]. The reader can find other examples in the nice
review [Lemarié-Rieusset 2002]. Up until now, to the best of our knowledge,
BMO−1 and N n/r−1

r,1,∞ are maximal critical spaces for (1-1) in the sense that a larger
critical space in which small solutions of (1-1) are globally well-posed is not known.

The purpose of this paper is to provide a new critical Besov type class for global
well-posedness of solutions for (1-1) by assuming a smallness condition on initial
data norms. Here we consider homogeneous Besov-weak-Herz spaces ḂWK̇ α,s

p,q,r ,
which are a type of Besov space based on homogeneous weak-Herz spaces WK̇ α

p,q .
They are a natural extension of the spaces BK α,s

p,q,r introduced in [Xu 2005] (see
Definition 2.5 in Section 2B). The Herz space K α

p,q was introduced by Herz [1968]
but his definition is not appropriate for our purposes. Later, Johnson [1974] obtained
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a characterization of the K α
p,q-norm in terms of L p-norms over annuli which is

the base for the definition of the spaces WK̇ α
p,q in [Tsutsui 2011] and is the same

one that we use. In order to achieve our aims, we need to develop properties
for WK̇ α

p,q,r - and ḂWK̇ α,s
p,q,r -spaces such as the Hölder inequality, estimates for

convolution operators, embedding theorems, interpolation properties, among others
(see Section 2). In particular, a characterization of Besov-weak-Herz spaces in
terms of interpolation of Sobolev-weak-Herz ones is proved, which is key in our
arguments (see Lemma 2.14). Moreover, we prove estimates for the heat semigroup,
as well as for the bilinear term B(u, v) in (1-2), in the context of ḂWK̇ α,s

p,q,r -spaces.
We also point out that these spaces and their basic theory developed here could be
employed to study other PDEs of elliptic, parabolic and conservation-law type. It
is worth observing that some arguments in this paper are inspired by some of those
in [Kozono and Yamazaki 1994] that analyzed (1-1) in Besov–Morrey spaces.

In what follows, we state our global well-posedness result.

Theorem 1.1. Let 1≤q ≤∞, n/2< p<∞ and 0≤α<min{1−n/(2p), n/(2p)}.
There exist ε > 0 and δ > 0 such that if u0 ∈ ḂWK̇ α,α+n/p−1

p,q,∞ with ∇ · u0 = 0 and
‖u0‖ḂWK̇ α,α+n/p−1

p,q,∞
≤ δ, then problem (1-1) has a unique mild solution

u ∈ L∞
(
(0,∞); ḂWK̇ α,α+n/p−1

p,q,∞
)

such that

‖u‖X := ‖u‖L∞((0,∞);ḂWK̇ α,α+n/p−1
p,q,∞ )

+ sup
t>0

t
1
2−(α/2+n/(4p))

‖u‖WK̇ α
2p,2q
≤ 2ε.

Moreover, u(t) ∗⇀ u0 in Ḃ−1
∞,∞, as t→ 0+, and solutions depend continuously on

initial data.

As a matter of fact, one can show that the solution in Theorem 1.1 is time-
continuous for t > 0. We have the continuous inclusions Ln

⊂ Ln,∞
⊂WK̇ 0

n,∞ ⊂

ḂWK̇ 0,0
n,∞,∞ (see Lemmas 2.7 and 2.12) and

Ḣ n/2−1
⊂ Ln

⊂ Ḃn/p−1
p,∞ ⊂ ḂWK̇ 0,n/p−1

p,∞,∞ , for p ≥ n (see Remark 2.6).

So our initial data class extends those of some previous works; for instance, the
ones in [Fujita and Kato 1964; Kato 1984; Barraza 1996; Cannone 1997; Yamazaki
2000; Tsutsui 2011].

Notice that the parameter s corresponds to the regularity index of the Besov type
space ḂWK̇ α,s

p,q,r . Considering the family {ḂWK̇ 0,n/p−1
p,∞,∞ }p>n/2, in the positive

regularity range n/2< p < n we are dealing with spaces smaller than those with
p > n (negative regularity), because of the Sobolev embedding ḂWK̇ 0,n/p2−1

p2,∞,∞ ⊂

ḂWK̇ 0,n/p1−1
p1,∞,∞ when p2 < p1 (see Lemma 2.13). For p > n, it is not clear to us

whether there are inclusion relations between ḂWK̇ 0,n/p−1
p,∞,∞ and BMO−1 or between
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ḂWK̇ 0,n/p−1
p,∞,∞ and N n/r−1

r,1,∞ with r > n. In this sense, our result seems to give a new
critical initial data class for existence of small global mild solutions for (1-1). In
any case, it would be suitable to recall that well-posedness involves more properties
than only existence of solutions, namely existence, uniqueness, persistence, and
continuous dependence on initial data, which together characterize a good behavior
of the Navier–Stokes flow in the considered space.

We finish with some comments about self-similarity and asymptotic behavior
of solutions. It is not difficult to see that for n ≤ p <∞ the function f (x)= |x |−1

belongs to ḂWK̇ 0,n/p−1
p,∞,∞ . So, the homogeneous Besov-weak-Herz spaces (at least

some of them) contain homogeneous functions of degree −1. Thus, if one assumes
further that the initial data u0 is a homogeneous vector field of degree −1, then a
standard procedure involving a Picard type sequence gives that the solution obtained
in Theorem 1.1 is in fact self-similar. Moreover, following some estimates and
arguments in the proof of Theorem 1.1, with some extra effort, it is possible to prove
that if we have u0 and v0 satisfying lim

t→∞
‖G(t)(u0− v0)‖ḂWK̇ α,α+n/p−1

p,q,∞
= 0, then

lim
t→∞
‖u( · , t)− v( · , t)‖ḂWK̇ α,α+n/p−1

p,q,∞
= 0,

where u and v are the solutions obtained in Theorem 1.1 with initial data u0 and v0,
respectively.

The plan of this paper is as follows. Section 2 is devoted to function spaces, with
Herz and Sobolev–Herz spaces considered in Section 2A, while Sobolev-weak-Herz
and Besov-weak-Herz spaces are addressed in Section 2B. The proof of Theorem 1.1
is performed in the final section: In Section 3A we provide linear estimates for
the heat semigroup. Section 3B is devoted to bilinear estimates for B( · , · ) in our
setting. After obtaining the required estimates, the proof is concluded in Section 3C
by means of a contraction argument.

2. Function spaces

In this section we recall some definitions and properties about function spaces that
will be considered throughout this paper.

2A. Weak-Herz and Sobolev-weak-Herz spaces. For an integer k ∈ Z, we define
the set Ak as

(2-1) Ak = {x ∈ Rn
: 2k−1

≤ |x |< 2k
},

and observe that Rn
\ {0} =

⋃
k∈Z Ak . Taking x ∈ Ak we have that

y ∈ Am and m ≤ k ⇒ 2k−1
− 2m

≤ |x − y|< 2k
+ 2m,

y ∈ Am and m ≥ k ⇒ 2m−1
− 2k
≤ |x − y|< 2m

+ 2k .
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Consider also the sets

(2-2)
Cm,k = {ξ : 2k−1

− 2m
≤ |ξ |< 2k

+ 2m
},

C̃m,k = {ξ : 2m−1
− 2k
≤ |ξ |< 2m

+ 2k
}.

We now define the weak-Herz spaces:

Definition 2.1. Let 1< p ≤∞, 1≤ q ≤∞ and α ∈ R. The homogeneous weak-
Herz space WK̇ α

p,q = WK̇ α
p,q(R

n) is defined as the set of all measurable functions
such that the following quantity is finite:

(2-3) ‖ f ‖WK̇ α
p,q
:=


(∑

k∈Z

2kαq
‖ f ‖qL p,∞(Ak)

)1/q

if q <∞,

sup
k∈Z

2kα
‖ f ‖L p,∞(Ak) if q =∞.

For α ∈ R, 1< p ≤∞ and 1≤ q ≤∞, the quantity ‖ · ‖WK̇ α
p,q

defines a norm in
WK̇ α

p,q and the pair (WK̇ α
p,q , ‖ · ‖WK̇ α

p,q
) is a Banach space (see, e.g., [Hernández

and Yang 1999; Tsutsui 2011]).
The Hölder inequality holds in the setting of homogeneous weak-Herz spaces

(see [Tsutsui 2011]). To be more precise, if 1< p, p1, p2 ≤∞, 1≤ q, q1, q2 ≤∞

and α, α1, α2 ∈ R are such that 1
p =

1
p1
+

1
p2

, 1
q =

1
q1
+

1
q2

and α = α1+α2, then

(2-4) ‖ f g‖WK̇ α
p,q
≤ C‖ f ‖WK̇

α1
p1,q1
‖g‖WK̇

α2
p2,q2

,

where C > 0 is a universal constant. In fact, for all k ∈ Z, we have

‖ f g‖L p,∞(Ak) ≤ C‖ f ‖L p1,∞(Ak)‖g‖L p2,∞(Ak),

and therefore

(2-5) ‖ f g‖WK̇ α
p,q
=

(∑
k∈Z

2kαq
‖ f g‖qL p,∞(Ak)

)1/q

≤ C
(∑

k∈Z

2kα1q
‖ f ‖qL p1,∞(Ak)

2kα2q
‖g‖qL p2,∞(Ak)

)1/q

≤ C‖ f ‖WK̇
α1
p1,q1
‖g‖WK̇

α2
p2,q2

.

Taking in particular (α1, p1, q1)= (0,∞,∞) in (2-5), we obtain

(2-6) ‖ f g‖WK̇ α
p,q
≤ C‖ f ‖L∞(Rn)‖g‖W K̇ α

p,q
.

Later, we will need to estimate some convolution operators, particularly the heat
semigroup, in weak-Herz and Besov-weak-Herz spaces. The following lemma will
be useful for that purpose.
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Lemma 2.2 (convolution). Let 1 ≤ p1 < ∞ and 1 < r, p2 < ∞ be such that
1+ 1

r =
1
p1
+

1
p2
. Further, let 1≤ q ≤∞, − n

r < α < n
(
1− 1

p2

)
, and θ ∈ L p1(Rn)

be such that θ | · |n/p1 ∈ L∞(Rn). There exists a positive constant C independent
of θ such that

(2-7) ‖θ ∗ f ‖WK̇ α
r,q
≤ C max

{
‖θ‖L p1 , ‖| · |

n/p1θ‖L∞
}
‖ f ‖WK̇ α

p2,q
,

for all f ∈WK̇ α
p2,q .

Proof. Denote fm = f |Am . Recalling the decomposition (2-1), for k ∈ Z we can
estimate

(2-8) 2kα
‖θ ∗ f ‖Lr,∞(Ak)

≤ 2kα
{∥∥∥∥ ∑

m≤k−2

θ∗ fm

∥∥∥∥
Lr,∞(Ak)

+

∥∥∥∥ k+1∑
m=k−1

θ∗ fm

∥∥∥∥
Lr,∞(Ak)

+

∥∥∥∥ ∑
m≥k+2

θ∗ fm

∥∥∥∥
Lr,∞(Ak)

}
=: I k

1 + I k
2 + I k

3 .

Using the notations in (2-2) and the change of variable z = k−m, we handle the
term I k

3 as follows:

(2-9) I k
3 ≤ 2kα

∥∥∥∥ ∑
m≥k+2

θ∗ fm

∥∥∥∥
Lr,∞(Ak)

≤ 2kα
∥∥∥∥ ∑

m≥k+2

θ∗ fm

∥∥∥∥
Lr (Ak)

≤ 2kα
(∫

Ak

∣∣∣∣ ∑
m≥k+2

∫
Rn
θ(x−y) fm(y)dy

∣∣∣∣r dx
)1/r

= 2kα
(∫

Ak

∣∣∣∣ ∑
m≥k+2

∫
Rn
θ(x−y)χC̃m,k

(x−y) fm(y)dy
∣∣∣∣r dx

)1/r

≤C‖| · |n/p1θ‖L∞2kα

×

(∫
Ak

( ∑
m≥k+2

∫
Rn
|x−y|−n/p1χC̃m,k

(x−y)×| fm(y)|dy
)r

dx
)1/r

≤C‖| · |n/p1θ‖L∞2kα
(∫

Ak

( ∑
m≥k+2

2−mn/p1‖ f ‖L1(Am)

)r

dx
)1/r

.

Recalling the inclusion L p2,∞(Am) ↪→ L1(Am), we can continue to estimate the
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right-hand side of the fifth inequality in (2-9) in order to obtain

(2-10) I k
3 ≤ C‖| · |n/p1θ‖L∞2kα

×

(∫
Ak

( ∑
m≥k+2

2−mn/p12nm(1−1/p2)‖ f ‖L p2,∞(Am)

)r

dx
)1/r

≤ C‖| · |n/p1θ‖L∞2kα2kn/r
∑

m≥k+2

2−mn/r
‖ f ‖L p2,∞(Am)

≤ C‖| · |n/p1θ‖L∞
∑
−2≥z

2k(α+n/r)2(z−k)n/r
‖ f ‖L p2,∞(Ak−z)

≤ C‖| · |n/p1θ‖L∞
∑
−2≥z

2kα2zn/r 2−(k−z)α2(k−z)α
‖ f ‖L p2,∞(Ak−z)

≤ C‖| · |n/p1θ‖L∞
∑
−2≥z

2z(n/r+α)2(k−z)α
‖ f ‖L p2,∞(Ak−z).

This estimate and the Minkowski inequality lead us to (with the usual modification
in the case q =∞) (∑

k∈Z

(I k
3 )

q
)1/q

≤ C Mθ‖ f ‖WK̇ α
p2,q
.

For the summand I k
2 , we estimate

I k
2 ≤ 2kα

k+1∑
m=k−1

‖θ ∗ fm‖Lr,∞(Ak)

≤ 2kα
k+1∑

m=k−1

‖θ ∗ fm‖Lr,∞(Rn)

≤ 2kα
k+1∑

m=k−1

‖θ‖L p1,∞‖ fm‖L p2,∞

≤ C‖θ‖L p1

1∑
l=−1

2(k+l)α
‖ f ‖L p2,∞(Ak+l ),

which implies (∑
k∈Z

(I k
2 )

q
)1/q

≤ C Mθ‖ f ‖WK̇ α
p2,q
.

Proceeding similarly to the estimates (2-9)–(2-10) but considering Cm,k in place
of C̃m,k , the summand I k

1 can be estimated as
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(2-11) I k
1 ≤ C‖| · |n/p1θ‖L∞2kα

(∫
Ak

( ∑
m≤k−2

∫
Rn
|x − y|−n/p1χCm,k (x − y)

×| fm(y)|dy
)r

dx
)1/r

≤ C‖| · |n/p1θ‖L∞2kα
(∫

Ak

( ∑
m≤k−2

2−kn/p1‖ f ‖L1(Am)

)r

dx
)1/r

≤ C‖| · |n/p1θ‖L∞2kα2kn/r
∑

m≤k−2

2−kn/p1‖ f ‖L1(Am)

≤ C‖| · |n/p1θ‖L∞
∑

m≤k−2

2k(α−n+n/p2)‖ f ‖L1(Am)

≤ C‖| · |n/p1θ‖L∞
∑
2≤z

2k(α−n+n/p2)2n(k−z)(1−1/p2)‖ f ‖L p2,∞(Ak−z)

≤ C‖| · |n/p1θ‖L∞
∑
2≤z

2z(α−n+n/p2)2(k−z)α
‖ f ‖L p2,∞(Ak−z).

It follows from (2-11) that(∑
k∈Z

(I k
1 )

q
)1/q

≤ C Mθ‖ f ‖WK̇ α
p2,q
.

Finally, the desired estimate is obtained after recalling the norm (2-3) and using the
above estimates for I k

j in (2-8). �

Let ϕ ∈ C∞c (R
n
\ {0}) be radially symmetric and such that

suppϕ ⊂ {x : 3
4 ≤ |x | ≤

8
3}

and ∑
j∈N

ϕ j (ξ)= 1, for all ξ ∈ Rn
\ {0},

where ϕ j (ξ) := ϕ(ξ2− j ). Now we can define the well-known localization operators
1 j and S j :

1 j f = ϕ j (D) f = (F−1ϕ j ) ∗ f,

Sk f =
∑
j≤k

1 j f.

It is easy to see that we have the identities

1 j1k f = 0 if | j − k| ≥ 2 and 1 j (Sk−2g1k f )= 0 if | j − k| ≥ 5.

Finally, Bony’s decomposition gives (see, e.g., [Bony 1981])

f g = T f g+ Tg f + R( f g),
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where

T f g =
∑
j∈Z

S j−2 f1 j g, R( f g)=
∑
j∈Z

1 j f 1̃ j g and 1̃ j g =
∑
| j− j ′|≤1

1 j ′g.

The next lemma will be useful in order to estimate some multiplier operators in
Besov-weak-Herz spaces.

Lemma 2.3. Let 1 < p < ∞, 1 ≤ q ≤ ∞, − n
p < α < n

(
1 − 1

p

)
, m ∈ R and

D j = {x : 3
4 2 j
≤ |x | ≤ 8

3 2 j
} for j ∈ Z. Let P be a Cn-function on

D̃ j := D j−1 ∪ D j ∪ D j+1

such that |∂βξ P(ξ)| ≤ C2(m−|β|) j for all ξ ∈ D̃ j and multi-index β satisfying |β| ≤
[n/2] + 1. Then, we have that

‖(P f̂ )̌ ‖WK̇ α
p,q
≤ C2 jm

‖ f ‖WK̇ α
p,q
,

for all f ∈WK̇ α
p,q such that supp f̂ ⊂ D j .

Proof. We start by defining ϕ̃ j = ϕ j−1 + ϕ j + ϕ j+1 and K (x) = (Pϕ̃ j )̌ . Since
supp f̂ ⊂ D j we have that P(ξ) f̂ (ξ) = P(ξ)ϕ̃ j (ξ) f̂ (ξ), and therefore (P f̂ )̌ =
(Pϕ̃ j f̂ )̌ = K ∗ f .

Using Lemma 2.2 we get

‖(P f̂ )̌ ‖WK̇ α
p,q
≤ C max{‖K‖L1, ‖| · |n K‖L∞}‖ f ‖WK̇ α

p,q
.

It remains to show that max{‖K‖L1, ‖| · |n K‖L∞} ≤ C2mj . For that, let N ∈ N be
such that n/2< N ≤ n and proceed as follows:

‖K‖L1 =

∫
B(0,2− j )

K (y)+
∫

|y|≥2− j

K (y)

≤

(∫
B(0,2− j )

1
)1/2(∫

B(0,2− j )

|K (y)|2
)1/2

+

(∫
|y|≥2− j

|y|−2N
)1/2(∫

|y|≥2− j
|y|2N
|K (y)|2

)1/2

≤ C2− jn/2
‖Pϕ̃ j‖L2 +C2− j (−N+n/2)

∑
|β|=N

‖(·)βK‖L2

≤ C2− jn/2
‖Pϕ̃ j‖L2 +C2− j (−N+n/2)

∑
|β|=N

‖∂β(Pϕ̃ j )‖L2

≤ C2− jn/2C2mj 2 jn/2
+C2− j (−N+n/2)C2 j (m−N )2 jn/2

≤ C2mj .
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For the norm ‖| · |n K‖L∞ , we have that

‖| · |
n K‖L∞ ≤

∑
|β|=n

‖( · )βK‖L∞ ≤ C
∑
|β|=n

‖∂β(Pϕ̃ j )‖L1

≤ C
∑
|β|=n

2 j (m−n)2 jn
≤ C2mj ,

as required. �

2B. Sobolev-weak-Herz spaces and Besov-weak-Herz spaces. In this section we
introduce the homogeneous Sobolev-weak-Herz spaces and Besov-weak-Herz
spaces. We also shall prove a number of properties about these spaces that will be
useful in our study of the Navier–Stokes equations. These spaces are a generalization
of Sobolev–Herz and Besov–Herz spaces found in [Xu 2005].

Definition 2.4. Let 1< p≤∞, 1≤ q ≤∞ and α, s ∈R. Recall the Riesz operator
Î s f = |ξ |s f̂ . The homogeneous Sobolev-weak-Herz spaces WK̇ α,s

p,q =WK̇ α,s
p,q(R

n)

are defined as

(2-12) WK̇ α,s
p,q = { f ∈ S ′(Rn)/P : ‖I s f ‖WK̇ α

p,q
<∞}.

Definition 2.5. Let 1 < p ≤∞, 1 ≤ q, r ≤∞ and α, s ∈ R. The homogeneous
Besov-weak-Herz spaces ḂWK̇ α,s

p,q,r = ḂWK̇ α,s
p,q,r (R

n) are defined as

ḂWK̇ α,s
p,q,r = { f ∈ S ′(Rn)/P : ‖ f ‖ḂW K̇ α,s

p,q,r
<∞},

where

(2-13) ‖ f ‖ḂWK̇ α,s
p,q,r
:=


(∑

j∈Z

2 jsr
‖1 j f ‖r

WK̇ α
p,q

)1/r

if r <∞

sup j∈Z 2 js
‖1 j f ‖WK̇ α

p,q
if r =∞.

Remark 2.6. (i) The spaces WK̇ α,s
p,q and ḂWK̇ α,s

p,q,r are Banach spaces endowed
with the norms ‖ · ‖WK̇ α

p,q
and ‖ · ‖ḂWK̇ α,s

p,q,r
, respectively.

(ii) The continuous inclusion Ḃs
p,r (R

n) ⊂ ḂWK̇ 0,s
p,∞,r (R

n) holds for all s ∈ R,
1< p≤∞, and 1≤ r ≤∞, where Ḃs

p,r stands for homogeneous Besov spaces.
To show that, it is sufficient to recall the definition of Besov spaces (see [Bergh
and Löfström 1976, p. 146]) and (2-13) and to use the inclusion L p

⊂WK̇ 0
p,∞

that is going to be shown in the lemma below.

The next lemma contains relations between weak-L p, weak-Herz and Morrey
spaces. For the definition and some properties about Morrey spaces we refer the
reader to [Kozono and Yamazaki 1994] (see also [Kato 1992] for an equivalent
definition and further properties).
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Lemma 2.7. For 1< p <∞, we have the continuous inclusion

(2-14) L p  L p,∞  WK̇ 0
p,∞.

Moreover, let Mr
q stand for homogeneous Morrey spaces, 1≤ q ≤ r <∞ and

n/r 6= α+ n/p when q < p. Then

(2-15) WK̇ α
p,∞ 6⊂Mr

q .

Proof. The first inclusion in (2-14) is well known, so we only prove the second one.
For that, it is sufficient to note that ‖ f ‖L p,∞(Ak)≤‖ f ‖L p,∞(Rn) for all k ∈Z and after
to take the supremum over k. In order to see the strictness of the inclusion, take
xk =

3
2 2k−1

Ee1 and h(x) :=
∑
∞

k=1|x − xk |
−n/pχB(0,1/8)(x − xk). It is clear that h is

an element of W K̇ 0
p,∞ but not of L p,∞(Rn).

Now we turn to (2-15). For f (x)= |x |−n/p, we have that f ∈ L p,∞
⊂W K̇ 0

p,∞.
On the other hand, for any q ≥ p note that ‖ f ‖Lq (B(0,R)) =∞, and then f /∈Mr

q
for any r . Finally, if n/r 6= α+ n/p then WK̇ α

p,∞ ⊂Mr
q (and the reverse) never

could hold. This follows from an easy scaling analysis of the space norms; in fact,
the scaling of Mr

q is −n/r and that of WK̇ 0
p,∞ is −α− n/p. �

In the next remark, we recall some inclusion and noninclusion relations involving
Herz, weak-Herz, Besov and bmo−1 spaces that can be found in [Tsutsui 2011].

Remark 2.8. (i) For 1< p < σ <∞ and 0< α < n(1− 1/p), we have

WK̇ α
p,∞ ↪→ Ḃ−(α+n(1/p−1/σ))

σ,∞ , K̇ α
p,∞ ↪→ Ḃ−αp,∞ and W K̇ 0

p,σ ↪→ Ḃ−n(1/p−1/σ)
σ,∞ .

(ii) For 1< p <∞ and 0≤ α < n(1− 1/p), we have WK̇ α
p,∞ ↪→ Ḃ−(α+n/p)

∞,∞ .

(iii) For 0≤ α < n, we have K̇ α
∞,∞ ↪→ Ḃ−α

∞,∞.

(iv) For 1< p ≤∞ and 0≤ α ≤ n(1− 1/p), we have WK̇ α
p,1 ↪→ Ḃ−(α+n/p)

∞,∞ .

(v) We have L1
= K̇ 0

1,1 ↪→ Ḃ−n
∞,∞. For n < p ≤ ∞ and 0 ≤ α < 1− n/p, the

inclusion WK̇ α
p,∞ ↪→ bmo−1 holds.

(vi) For 1< p<σ <∞ and−n(1/p−1/σ)<α≤0, WK̇ α
p,∞ ↪→ Ḃ−(α+n(1/p−1/σ))

σ,∞

does not hold.

(vii) For 1< p <∞ and −n/p < α < 0, WK̇ α
p,∞ ↪→ Ḃ−(α+n/p)

∞,∞ does not hold.

Remark 2.9. Using the interpolation properties of homogeneous Besov spaces and
homogeneous Besov-weak-Herz spaces (see Lemma 2.14 below) and item (ii) of
Remark 2.8, for 1< p <∞ and 0≤ α < n(1− 1/p) we can obtain

(2-16) ḂWK̇ α,s
p,∞,r ↪→ Ḃs−(α+n/p)

∞,r .

In particular, ḂWK̇ α,α+n/p−1
p,∞,∞ ↪→ Ḃ−1

∞,∞ and

(2-17) ḂWK̇ 0,n/p
p,∞,1 ↪→ Ḃ0

∞,1 ↪→ L∞.
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Moreover, from Remark 2.8(vi) and Lemma 2.12 below, it follows that the inclusion

ḂWK̇ 0,s
p,∞,∞ ↪→ Ḃs−n(1/p−1/σ)

σ,∞

does not hold for any s ∈ R, 1< p <∞ and 1≤ σ <∞.

Remark 2.10. Note that for s− (α+n/p) < 0 and r > 1, or s− (α+n/p)≤ 0 and
r = 1, the inclusion (2-16) implies that for f ∈ ḂWK̇ α,s

p,∞,r the series
∑
∞

j=−∞1 j f
converges in S ′ to a representative of f in S ′/P (see, e.g., [Lemarié-Rieusset 2002]).
So, in these cases the space ḂW K̇ α,s

p,∞,r can be regarded as a subspace of S ′.
Hereafter, we say that f ∈ S ′ belongs to ḂWK̇ α,s

p,∞,r with s− (α+ n/p) < 0 and
r > 1, or s− (α+ n/p)≤ 0 and r = 1, if f is the canonical representative of the
class in S ′/P , namely f =

∑
∞

j=−∞1 j f in S ′.

A multiplier theorem of Hörmander–Mihlin type will be needed in our setting.
This is the subject of the next lemma. In fact, the main part of the proof has already
been done in Lemma 2.3.

Lemma 2.11. Let 1 < p < ∞, 1 ≤ q, r ≤ ∞, −n/p < α < n(1 − 1/p) and
m, s ∈ R. Let P ∈ Cn(Rn

\ {0}) be a function such that |∂βξ P(ξ)| ≤ C |ξ |(m−|β|) for
all multi-index β satisfying |β| ≤ n. Then

‖P(D) f ‖ḂWK̇ α,s−m
p,q,r
≤ C‖ f ‖ḂWK̇ α,s

p,q,r
.

Proof. Note that for each j ∈ Z we have that |ξ |m−|β| ≤ C2 j (m−|β|) for all ξ ∈ D̃ j ,
and therefore |∂βξ P(ξ)| ≤ C2 j (m−|β|). On the other hand, since supp 1̂ j f ⊂ D j we
can use Lemma 2.3 in order to get

(2-18) ‖1 j (P(D) f )‖WK̇ α
p,q
= ‖P(D)(1 j f )‖WK̇ α

p,q
≤ C2 jm

‖1 j f ‖WK̇ α
p,q
.

The result follows by multiplying (2-18) by 2 j (s−m) and then taking the lr -norm. �

In what follows we present some inclusions involving Sobolev-weak-Herz and
Besov-weak-Herz spaces.

Lemma 2.12. Let s ∈ R, 1< p <∞, 1 ≤ q ≤∞ and −n/p < α < n(1− 1/p).
We have the following continuous inclusions:

ḂWK̇ α,0
p,q,1 ⊂WK̇ α

p,q ⊂ ḂWK̇ α,0
p,q,∞(2-19)

ḂWK̇ α,s
p,q,1 ⊂WK̇ α,s

p,q ⊂ ḂWK̇ α,s
p,q,∞.(2-20)

Proof. For f ∈ ḂWK̇ α,0
p,q,1, we can employ the decomposition f =

∑
j∈Z1 j f in

order to estimate
‖ f ‖L p,∞(Ak) ≤

∑
j∈Z

‖1 j f ‖L p,∞(Ak).
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Thus, using the Minkowski inequality, we arrive at (with the usual modification in
the case q =∞)

‖ f ‖WK̇ α
p,q
≤

(∑
k∈Z

2kαq
‖ f ‖qL p,∞(Ak)

)1/q

≤

(∑
k∈Z

(∑
j∈Z

2kα
‖1 j f ‖L p,∞(Ak)

)q)1/q

≤

∑
j∈Z

(∑
k∈Z

2kαq
‖1 j f ‖qL p,∞(Ak)

)1/q

=

∑
j∈Z

‖1 j f ‖WK̇ α
p,q

= ‖ f ‖ḂWK̇ α,0
p,q,1
,

which implies the first inclusion in (2-19). Now, let f ∈ WK̇ α
p,q and note that in

fact we have that f ∈ S ′/P. Moreover, using Lemma 2.2 we get

‖ f ‖ḂWK̇ α,0
p,q,∞
= sup

j∈Z

‖1 j f ‖WK̇ α
p,q
≤ C sup

j∈Z

‖ f ‖WK̇ α
p,q
= C‖ f ‖WK̇ α

p,q
,

and then the second inclusion in (2-19) holds.
For (2-20), we can use Lemma 2.3 in order to estimate

‖ f ‖WK̇ α,s
p,q
= ‖I s f ‖WK̇ α

p,q
≤ ‖I s f ‖ḂWK̇ α,0

p,q,1
=

∑
j∈Z

‖1 j I s f ‖WK̇ α
p,q

≤ C
∑
j∈Z

2 js
‖1 j f ‖WK̇ α

p,q
= C‖ f ‖ḂWK̇ α,s

p,q,1
.

Moreover, Lemma 2.3 also can be used to obtain

‖ f ‖ḂWK̇ α,s
p,q,∞
= sup

j∈Z

2 js
‖1 j f ‖WK̇ α

p,q
= sup

j∈Z

2 js
‖I−s1 j I s f ‖WK̇ α

p,q

≤ C sup
j∈Z

‖1 j I s f ‖WK̇ α
p,q
≤ C sup

j∈Z

‖I s f ‖WK̇ α
p,q

= C‖I s f ‖WK̇ α
p,q
= C‖ f ‖WK̇ α,s

p,q
,

for all f ∈WK̇ α,s
p,q , as required. �

Now we present an embedding theorem of Sobolev type.

Lemma 2.13. Let s ∈ R, 1 < p <∞, 1 ≤ q, r ≤∞, p ≤ p1 <∞, 1 < p2 ≤ p1

and − n
p < α < n

(
1+ 1

p1
−

1
p2
−

1
p

)
. Then

(2-21) ‖ f ‖ḂWK̇ α,s
p,q,r
≤ C‖ f ‖

ḂWK̇
α+n(1/p−1/p1),s+n(1/p2−1/p1)
p2,q,r

.

In particular, for n
2 < p <∞ and 0≤ α <min{1− n

2p ,
n

2p }, it follows that

(2-22) ‖ f ‖ḂWK̇ α,s
2p,q,r
≤ C‖ f ‖ḂWK̇ 2α,α+s+n/(2p)

p,q,r
.

Proof. Using the Hölder inequality, it follows that

‖1 j f ‖WK̇ α
p,q,r
≤ C‖1 j f ‖

WK̇
α+n(1/p−1/p1)
p1,q,r

.
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Also, we have that ϕ j f̂ = ϕ̃ jϕ j f̂ , that is, 1 j f = (ϕ̃ j )̌ ∗ 1 j f . So, using
Lemma 2.2 we get

‖1 j f ‖
WK̇

α+n(1/p−1/p1)
p1,q,r

= ‖(ϕ̃ j )̌ ∗1 j f ‖
WK̇

α+n(1/p−1/p1)
p1,q,r

≤ C max
{
‖(ϕ̃ j )̌‖L p∗,‖| · |

n
p∗ (ϕ̃ j )̌‖L∞

}
‖1 j f ‖

WK̇
α+n(1/p−1/p1)
p2,q,r

,

where 1+ 1
p1
=

1
p∗ +

1
p2

. It is easy to check that

max
{
‖(ϕ̃ j )̌ ‖L p∗, ‖| · |n/p∗(ϕ̃ j )̌ ‖L∞

}
≤ C2 jn(1/p2−1/p1),

and then
‖1 j f ‖

WK̇
α+n(1/p−1/p1)
p1,q,r

≤ C2 jn(1/p2−1/p1)‖1 j f ‖
WK̇

α+n(1/p−1/p1)
p2,q,r

,

which gives (2-21). We conclude the proof by noting that for 0≤ α < n/2p there
exists p1 such that p1 ≥ 2p and α = n

( 1
p −

1
p1

)
. Moreover, α < n+ n

p1
−

1
p −

n
2p

because α < 1− n
2p ≤

n
2−

n
2p . So, (2-22) follows from (2-21) by choosing this value

of p1. �

We finish this section with a result that provides a characterization of homo-
geneous Besov-weak-Herz spaces as interpolation of two homogeneous Sobolev-
weak-Herz ones.

Lemma 2.14. Let s0, s1, s ∈R, 1< p<∞, 1≤ q, r ≤∞ and− n
p <α< n

(
1− 1

p

)
.

If s0 6= s1 and s = (1− θ)s0+ θs1 with θ ∈ (0, 1), then

(WK̇ α,s0
p,q ,WK̇ α,s1

p,q )θ,r = ḂWK̇ α,s
p,q,r .

Proof. Let f = f0+ f1 with fi ∈WK̇ α,si
p,q i = 0, 1. By using Lemma 2.3 we get

(2-23) ‖1 j f ‖WK̇ α
p,q
≤ ‖1 j f0‖WK̇ α

p,q
+‖1 j f1‖WK̇ α

p,q

≤ C(2−s0 j
‖I s01 j f0‖WK̇ α

p,q
+ 2−s1 j

‖I s11 j f1‖WK̇ α
p,q
)

≤ C(2−s0 j
‖I s0 f0‖W K̇ α

p,q
+ 2−s1 j

‖I s1 f1‖W K̇ α
p,q
)

≤ C2−s0 j (‖ f0‖WK̇
α,s0
p,q
+ 2(s0−s1) j

‖ f1‖WK̇
α,s1
p,q
).

It follows from (2-23) that

‖1 j f ‖WK̇ α
p,q
≤ C2−s0 j K (2(s0−s1) j , f,WK̇ α,s0

p,q ,WK̇ α,s1
p,q ).

Noting that s − s0 = −θ(s0− s1) and multiplying the previous inequality by 2 js ,
we arrive at

2s j
‖1 j f ‖WK̇ α

p,q
≤ C(2(s0−s1) j )−θK (2(s0−s1) j , f,WK̇ α,s0

p,q ,W K̇ α,s1
p,q ),

and then (see [Bergh and Löfström 1976, Lemma 3.1.3]) we can conclude that

‖ f ‖ḂWK̇ α,s
p,q,r
≤ C‖ f ‖

(WK̇
α,s0
p,q ,WK̇

α,s1
p,q )θ,r

.
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To prove the reverse inequality, note that by using Lemma 2.3 again we have

2(s−s0) j J (2(s0−s1) j ,1 j f,WK̇ α,s0
p,q ,WK̇ α,s1

p,q )

= 2(s−s0) j max{‖1 j f ‖WK̇
α,s0
p,q
, 2(s0−s1) j

‖1 j f ‖WK̇
α,s1
p,q
}

≤ 2(s−s0) j max{2s0 j
‖1 j f ‖WK̇ α

p,q
, 2s0 j
‖1 j f ‖WK̇ α

p,q
}

≤ 2s j max{‖1 j f ‖W K̇ α
p,q
, ‖1 j f ‖WK̇ α

p,q
}

= 2s j
‖1 j f ‖WK̇ α

p,q
.

Now the equivalence theorem (see [Bergh and Löfström 1976, Lemma 3.2.3]) leads
us to

‖ f ‖
(WK̇

α,s0
p,q ,WK̇

α,s1
p,q )θ,r

≤ C‖ f ‖ḂWK̇ α,s
p,q,r
.

The remainder of the proof is to show that in fact f ∈ ḂW K̇ α,s
p,q,r implies that

f ∈WK̇ α,s0
p,q +WK̇ α,s1

p,q . Suppose that s0 > s1 (without loss of generality). Using the
decomposition f =

∑
j<0
1 j f +

∑
j≥0
1 j f = f0+ f1 and Lemma 2.3, we obtain

‖ f0‖WK̇
α,s0
p,q
≤

∑
j<0

‖1 j f ‖WK̇
α,s0
p,q
≤

∑
j<0

2 j (s0−s)2 js
‖1 j f ‖WK̇ α

p,q

≤ C
(∑

j<0

2 j (s0−s)r ′
)1/r ′(∑

j<0

2 jsr
‖1 j f ‖rWK̇ α

p,q

)1/r

≤ C‖ f ‖ḂWK̇ α,s
p,q,r
.

Similarly, one has

‖ f1‖WK̇
α,s1
p,q
≤

∑
j≥0

‖1 j f ‖WK̇
α,s1
p,q
≤

∑
j≥0

2 j (s1−s)2 js
‖1 j f ‖WK̇ α

p,q

≤ C
(∑

j≥0

2 j (s1−s)r ′
)1/r ′(∑

j≥0

2 jsr
‖1 j f ‖rWK̇ α

p,q

)1/r

≤ C‖ f ‖ḂWK̇ α,s
p,q,r

and then we are done. �

3. Proof of Theorem 1.1

In the previous sections, we have derived key properties about homogeneous Besov-
weak-Herz spaces. With these results in hand, we prove Theorem 1.1 in the present
section.
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3A. Heat kernel estimates. We start by providing estimates for the heat semigroup
{G(t)}t≥0 in Besov-weak-Herz spaces. Recall that in the whole space Rn this
semigroup can be defined as G(t) f = (exp(−t |ξ |2) f̂ )̌ for all f ∈ S ′ and t ≥ 0.

Lemma 3.1. Let s, σ ∈R, s≤σ , 1< p<∞, 1≤q, r ≤∞ and− n
p <α<n

(
1− 1

p

)
.

Then, there is C > 0 (independent of f ) such that

(3-1) ‖G(t) f ‖ḂWK̇ α,σ
p,q,r
≤ Ct (s−σ)/2‖ f ‖ḂWK̇ α,s

p,q,r
,

for all t > 0. Moreover, if s < σ , then we have the estimate

(3-2) ‖G(t) f ‖ḂWK̇ α,σ
p,q,1
≤ Ct (s−σ)/2‖ f ‖ḂWK̇ α,s

p,q,∞
,

for all t > 0.

Proof. Firstly, observe that for each multi-index β there is a polynomial pβ( · ) of
degree |β| such that

∂
β
ξ (exp(−t |ξ |2))= t |β|/2 pβ(

√
tξ) exp(−t |ξ |2).

Therefore, for some C > 0 it follows that

|∂
β
ξ (exp(−t |ξ |2))|≤ Ct−m/2

|ξ |−m−|β|.

By employing Lemma 2.11, we obtain

‖G(t) f ‖ḂWK̇ α,s−m
p,q,r
≤ Ct−m/2

‖ f ‖ḂWK̇ α,s
p,q,r
.

Taking now m = s− σ we arrive at the inequality (3-1).
Next we turn to (3-2) and let s < σ . From (3-1) with r =∞ we get

‖G(t) f ‖ḂWK̇ α,2σ−s
p,q,∞
≤ Ct s−σ

‖ f ‖ḂWK̇ α,s
p,q,∞

and

‖G(t) f ‖ḂWK̇ α,s
p,q,∞
≤ C‖ f ‖ḂWK̇ α,s

p,q,∞
.

By using Lemma 2.14 and the reiteration theorem (see [Bergh and Löfström 1976,
Theorem 3.5.3 and its remark]) we conclude that

G(t) : ḂWK̇ α,s
p,q,∞→ (ḂWK̇ α,2σ−s

p,q,∞ , ḂWK̇ α,s
p,q,∞) 1

2 ,1
= ḂWK̇ α,σ

p,q,1,

with ‖G(t)‖ḂWK̇ α,s
p,q,∞→ḂWK̇ α,σ

p,q,1
≤ Ct (s−σ)/2, which gives (3-2). �
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3B. Bilinear estimate. Let us define the space X as

X=
{

u : (0,∞)→ ḂWK̇ α,α+n/p−1
p,q,∞ ∩WK̇ α

2p,2q with ∇·u=0 such that ‖u‖X <∞
}
,

where

(3-3) ‖u‖X := ‖u‖L∞((0,∞);ḂWK̇ α,α+n/p−1
p,q,∞ )

+ sup
t>0

t
1
2−(

α
2+

n
4p )‖u‖WK̇ α

2p,2q
.

We are going to prove the bilinear estimate

(3-4) ‖B(u, v)‖X ≤ K‖u‖X‖v‖X .

We start by estimating the second part of the norm (3-3). For that, we use (2-19),
(2-22), (3-2) and Lemma 2.11 in order to get

‖B(u, v)(t)‖WK̇ α
2p,2q
≤ ‖B(u, v)(t)‖ḂWK̇ α,0

2p,2q,1

≤ ‖B(u, v)(t)‖ḂWK̇ 2α,α+n/(2p)
p,2q,1

≤ C
∫ t

0
‖G(t − τ)P div(u⊗ v)‖ḂW K̇ 2α,α+n/(2p)

p,2q,1
dτ

≤ C
∫ t

0
(t − τ)−

1
2−(

α
2+

n
4p )‖P div(u⊗ v)‖ḂW K̇ 2α,−1

p,2q,∞
dτ

≤ C
∫ t

0
(t − τ)−

1
2−(

α
2+

n
4p )‖u⊗ v‖ḂWK̇ 2α,0

p,2q,∞
dτ

≤ C
∫ t

0
(t − τ)−

1
2−(

α
2+

n
4p )‖u⊗ v‖WK̇ 2α

p,q
dτ

≤ C
∫ t

0
(t − τ)−

1
2−(

α
2+

n
4p )‖u‖W K̇ α

2p,2q
‖v‖WK̇ α

2p,2q
dτ

≤ C
∫ t

0
(t − τ)−

1
2−(

α
2+

n
4p )τ

−2( 1
2−(

α
2+

n
4p )) dτ‖u‖X‖v‖X

≤ Ct
−

1
2+(

α
2 +

n
4p )B

(
α+

n
2p
,

1
2
−

(
α

2
+

n
4p

))
‖u‖X‖v‖X ,

where B( · , · ) denotes the beta function. The previous estimate leads us to

(3-5) sup
t>0

t
1
2−(

α
2+

n
4p )‖B(u, v)(t)‖WK̇ α

2p,2q
≤ C‖u‖X‖v‖X .

Moreover, for the first part of the norm (3-3), we have
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‖B(u, v)(t)‖ḂWK̇ α,α+n/p−1
p,q,∞

≤

∫ t

0
‖G(t − τ)P div[u⊗ v]‖ḂWK̇ α,α+n/p−1

p,q,∞
dτ

≤ C
∫ t

0
‖G(t − τ)P div[u⊗ v]‖ḂW K̇ 2α,2α+n/p−1

p,q,∞
dτ

≤ C
∫ t

0
(t − τ)−(α+

n
2p )‖P div[u⊗ v]‖ḂWK̇ 2α,−1

p,q,∞
dτ

≤ C
∫ t

0
(t − τ)−(α+

n
2p )‖u⊗ v‖ḂWK̇ 2α,0

p,q,∞
dτ

≤ C
∫ t

0
(t − τ)−(α+

n
2p )‖u⊗ v‖WK̇ 2α

p,q
dτ

≤ C‖u‖X‖v‖X

∫ t

0
(t − τ)−(α+

n
2p )τ

−2( 1
2−(

α
2+

n
4p ))dτ

≤ CB
(
α+

n
2p
, 1−

(
α+

n
2p

))
‖u‖X‖v‖X .

In other words, we have obtained the estimate

(3-6) ‖B(u, v)‖L∞((0,∞);ḂWK̇ α,α+n/p−1
p,q,∞ )

≤ C‖u‖X‖v‖X .

Finally, notice that the estimates (3-5) and (3-6) together give (3-4).

3C. Proof of Theorem 1.1. Existence and uniqueness. For ε > 0 (to be chosen
later) let B(0, ε) denote the closed ball in X and define the operator 9 : B(0, 2ε)→
B(0, 2ε) as

9(u)= G(t)u0+ B(u, u).

First, note that by using (2-19), (3-2) , α+ n
2p − 1< 0 and (2-21) it follows that

(3-7) sup
t>0

t
1
2−(

α
2+

n
4p )‖G(t)u0‖WK̇ α

2p,2q
≤C sup

t>0
t

1
2−(

α
2+

n
4p )‖G(t)u0‖ḂW K̇ α,0

2p,2q,1

≤C‖u0‖ḂWK̇ α,α+n/(2p)−1
2p,2q,∞

≤C‖u0‖ḂWK̇ α,α+n/p−1
p,q,∞

.

Moreover, using (3-1) we obtain

‖G(t)u0‖ḂWK̇ α,α+n/p−1
p,q,∞

≤ C‖u0‖ḂW K̇ α,α+n/p−1
p,q,∞

.

From the last two estimates, we get

(3-8) ‖G(t)u0‖X ≤ C‖u0‖ḂWK̇ α,α+n/p−1
p,q,∞

.
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Take 0 < ε < 1/4K and 0 < δ < ε/C where C is as in (3-8). It follows from
(3-8) and (3-4) that

‖9(u)‖X ≤ ‖G(t)u0‖X +‖B(u, u)‖X

≤ C‖u0‖ḂWK̇ α,α+n/p−1
p,q,∞

+ K‖u‖X‖v‖X ≤ 2ε.

So, 9 is well defined; moreover for u, v ∈ B(0, 2ε) we have that

‖9(u)−9(v)‖X = ‖B(u− v, u)+ B(v, u− v)‖X(3-9)

≤ K‖u− v‖X‖u‖X + K‖v‖X‖u− v‖X

≤ 4K ε‖u− v‖X .

Since 4K ε < 1, we get that 9 is a contraction and then this part is concluded by the
Banach fixed-point theorem. Notice that the continuous dependence with respect to
the initial data u0 follows from estimates (3-8) and (3-9).

Time-weak continuity at t = 0. The proof of the weak-∗ convergence follows from
the two following lemmas.

The first one is due to Kozono and Yamazaki [1994, p. 989.].

Lemma 3.2. For every real number s and u0 ∈ Ḃs
∞,∞, we have G(t)u0

∗
⇀ u0 in

Ḃs
∞,∞ as t→ 0+.

The second one is concerned with the weak-convergence of the bilinear term
B(u, u) and it concludes the proof.

Lemma 3.3. Let v ∈ X. We have that B(v, v)(t) converges to 0 in the weak-∗
topology of Ḃ−1

∞,∞ as t→ 0+.

Proof. Let φ ∈ Ḃ1
1,1 and ε > 0 be an arbitrary number. We can choose φ̃ ∈ S such

that ‖φ− φ̃‖Ḃ1
1,1
< ε. Then we have that

(3-10) |〈B(v, v)(t), φ− φ̃〉|

≤ ‖B(v, v)(t)‖Ḃ−1
∞,∞
‖φ− φ̃‖Ḃ1

1,1

≤ C‖B(v, v)(t)‖ḂWK̇ α,α+n/p−1
p,q,r

‖φ− φ̃‖Ḃ1
1,1
≤ K‖v‖2Xε ≤ Cε.

On the other hand,

|〈B(v, v)(t), φ̃〉| ≤
∫ t

0

∣∣〈G(t − τ)P div[v⊗ v](τ ), φ̃〉
∣∣dτ(3-11)

≤

∫ t

0

∣∣〈P div[v⊗ v](τ ),G(t − τ)φ̃〉
∣∣dτ

≤

∫ t

0
‖ div[v⊗ v](τ )‖Ḃ−1−2α−n/p

∞,∞
‖G(t − τ)φ̃‖Ḃ1+2α+n/p

1,1
dτ
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≤ Cφ̃

∫ t

0
‖[v⊗ v](τ )‖Ḃ−2α−n/p

∞,∞
dτ

≤ Cφ̃

∫ t

0
‖[v⊗ v](τ )‖WK̇ 2α

p,q
dτ

≤ Cφ̃

∫ t

0
τ
[−

1
2+(

α
2+

n
4p )]·2τ

[
1
2−(

α
2+

n
4p )]·2‖v(τ)‖2WK̇ α

2p,2q
dτ

≤ Cφ̃‖v‖
2
X

∫ t

0
τ
−1+α+ n

2p dτ ≤ Cφ̃‖v‖
2
X tα+

n
2p .

From (3-10) and (3-11), we obtain

0≤ lim sup
t→0+

|〈B(v, v)(t), φ〉|

≤ lim sup
t→0+

|〈B(v, v)(t), φ− φ̃〉| + lim sup
t→0+

|〈B(v, v)(t), φ̃〉| ≤ Cε+ 0.

Since ε > 0 is arbitrary, we conclude that limt→0+ |〈B(v, v)(t), φ〉| = 0. Now, using
that φ ∈ Ḃ1

1,1 is arbitrary, we get the desired convergence. �

References

[Barraza 1996] O. A. Barraza, “Self-similar solutions in weak L p-spaces of the Navier–Stokes
equations”, Rev. Mat. Iberoamericana 12:2 (1996), 411–439. MR Zbl

[Bergh and Löfström 1976] J. Bergh and J. Löfström, Interpolation spaces: an introduction, Grund-
lehren der Math. Wissenschaften 223, Springer, 1976. MR

[Bony 1981] J.-M. Bony, “Calcul symbolique et propagation des singularités pour les équations aux
dérivées partielles non linéaires”, Ann. Sci. École Norm. Sup. (4) 14:2 (1981), 209–246. MR Zbl

[Cannone 1997] M. Cannone, “A generalization of a theorem by Kato on Navier–Stokes equations”,
Rev. Mat. Iberoamericana 13:3 (1997), 515–541. MR Zbl

[Cannone and Karch 2004] M. Cannone and G. Karch, “Smooth or singular solutions to the Navier–
Stokes system?”, J. Differential Equations 197:2 (2004), 247–274. MR Zbl

[Cannone and Wu 2012] M. Cannone and G. Wu, “Global well-posedness for Navier–Stokes equations
in critical Fourier–Herz spaces”, Nonlinear Anal. 75:9 (2012), 3754–3760. MR Zbl

[Ferreira 2016] L. C. F. Ferreira, “On a bilinear estimate in weak-Morrey spaces and uniqueness for
Navier–Stokes equations”, J. Math. Pures Appl. (9) 105:2 (2016), 228–247. MR Zbl

[Fujita and Kato 1964] H. Fujita and T. Kato, “On the Navier–Stokes initial value problem, I”, Arch.
Rational Mech. Anal. 16 (1964), 269–315. MR Zbl

[Giga and Miyakawa 1989] Y. Giga and T. Miyakawa, “Navier–Stokes flow in R3 with measures as
initial vorticity and Morrey spaces”, Comm. Partial Differential Equations 14:5 (1989), 577–618.
MR Zbl

[Hernández and Yang 1999] E. Hernández and D. Yang, “Interpolation of Herz spaces and applica-
tions”, Math. Nachr. 205 (1999), 69–87. MR Zbl

[Herz 1968] C. S. Herz, “Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier
transforms”, J. Math. Mech. 18:4 (1968), 283–323. MR Zbl

[Iwabuchi and Takada 2014] T. Iwabuchi and R. Takada, “Global well-posedness and ill-posedness
for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type”, J. Funct.
Anal. 267:5 (2014), 1321–1337. MR Zbl

http://dx.doi.org/10.4171/RMI/202
http://dx.doi.org/10.4171/RMI/202
http://msp.org/idx/mr/1402672
http://msp.org/idx/zbl/0860.35092
http://dx.doi.org/10.1007/978-3-642-66451-9
http://msp.org/idx/mr/0482275
http://dx.doi.org/10.24033/asens.1404
http://dx.doi.org/10.24033/asens.1404
http://msp.org/idx/mr/631751
http://msp.org/idx/zbl/0495.35024
http://dx.doi.org/10.4171/RMI/229
http://msp.org/idx/mr/1617394
http://msp.org/idx/zbl/0897.35061
http://dx.doi.org/10.1016/j.jde.2003.10.003
http://dx.doi.org/10.1016/j.jde.2003.10.003
http://msp.org/idx/mr/2034160
http://msp.org/idx/zbl/1042.35043
http://dx.doi.org/10.1016/j.na.2012.01.029
http://dx.doi.org/10.1016/j.na.2012.01.029
http://msp.org/idx/mr/2914568
http://msp.org/idx/zbl/1238.35083
http://dx.doi.org/10.1016/j.matpur.2015.10.004
http://dx.doi.org/10.1016/j.matpur.2015.10.004
http://msp.org/idx/mr/3436827
http://msp.org/idx/zbl/1334.35204
http://dx.doi.org/10.1007/BF00276188
http://msp.org/idx/mr/0166499
http://msp.org/idx/zbl/0126.42301
http://dx.doi.org/10.1080/03605308908820621
http://dx.doi.org/10.1080/03605308908820621
http://msp.org/idx/mr/993821
http://msp.org/idx/zbl/0681.35072
http://dx.doi.org/10.1002/mana.3212050104
http://dx.doi.org/10.1002/mana.3212050104
http://msp.org/idx/mr/1709163
http://msp.org/idx/zbl/0936.41001
http://www.jstor.org/stable/24901694
http://www.jstor.org/stable/24901694
http://msp.org/idx/mr/0438109
http://msp.org/idx/zbl/0177.15701
http://dx.doi.org/10.1016/j.jfa.2014.05.022
http://dx.doi.org/10.1016/j.jfa.2014.05.022
http://msp.org/idx/mr/3229792
http://msp.org/idx/zbl/1296.35119


BESOV-WEAK-HERZ SPACES AND GLOBAL SOLUTIONS FOR NS EQUATIONS 77

[Johnson 1974] R. Johnson, “Lipschitz spaces, Littlewood–Paley spaces, and convoluteurs”, Proc.
London Math. Soc. (3) 29 (1974), 127–141. MR Zbl

[Kato 1984] T. Kato, “Strong L p-solutions of the Navier–Stokes equation in Rm , with applications
to weak solutions”, Math. Z. 187:4 (1984), 471–480. MR Zbl

[Kato 1992] T. Kato, “Strong solutions of the Navier–Stokes equation in Morrey spaces”, Bol. Soc.
Brasil. Mat. (N.S.) 22:2 (1992), 127–155. MR Zbl

[Koch and Tataru 2001] H. Koch and D. Tataru, “Well-posedness for the Navier–Stokes equations”,
Adv. Math. 157:1 (2001), 22–35. MR Zbl

[Konieczny and Yoneda 2011] P. Konieczny and T. Yoneda, “On dispersive effect of the Coriolis force
for the stationary Navier–Stokes equations”, J. Differential Equations 250:10 (2011), 3859–3873.
MR Zbl

[Kozono and Yamazaki 1994] H. Kozono and M. Yamazaki, “Semilinear heat equations and the
Navier–Stokes equation with distributions in new function spaces as initial data”, Comm. Partial
Differential Equations 19:5-6 (1994), 959–1014. MR Zbl

[Lei and Lin 2011] Z. Lei and F. Lin, “Global mild solutions of Navier–Stokes equations”, Comm.
Pure Appl. Math. 64:9 (2011), 1297–1304. MR

[Lemarié-Rieusset 2002] P. G. Lemarié-Rieusset, Recent developments in the Navier–Stokes problem,
Chapman & Hall/CRC Res. Notes in Math. 431, Chapman & Hall, Boca Raton, FL, 2002. MR Zbl

[Lemarié-Rieusset 2015] P. G. Lemarié-Rieusset, “On some classes of time-periodic solutions for the
Navier–Stokes equations in the whole space”, SIAM J. Math. Anal. 47:2 (2015), 1022–1043. MR
Zbl

[Mazzucato 2003] A. L. Mazzucato, “Besov–Morrey spaces: function space theory and applications
to non-linear PDE”, Trans. Amer. Math. Soc. 355:4 (2003), 1297–1364. MR Zbl

[Miao and Yuan 2007] C.-x. Miao and B.-q. Yuan, “Weak Morrey spaces and strong solutions to the
Navier–Stokes equations”, Sci. China Ser. A 50:10 (2007), 1401–1417. MR Zbl

[Taylor 1992] M. E. Taylor, “Analysis on Morrey spaces and applications to Navier–Stokes and other
evolution equations”, Comm. Partial Differential Equations 17:9-10 (1992), 1407–1456. MR Zbl

[Tsutsui 2011] Y. Tsutsui, “The Navier–Stokes equations and weak Herz spaces”, Adv. Differential
Equations 16:11-12 (2011), 1049–1085. MR Zbl

[Xu 2005] J. Xu, “Equivalent norms of Herz-type Besov and Triebel–Lizorkin spaces”, J. Funct.
Spaces Appl. 3:1 (2005), 17–31. MR Zbl

[Yamazaki 2000] M. Yamazaki, “The Navier–Stokes equations in the weak-Ln space with time-
dependent external force”, Math. Ann. 317:4 (2000), 635–675. MR Zbl

Received April 23, 2017.

LUCAS C. F. FERREIRA

DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE ESTADUAL DE CAMPINAS, IMECC
CAMPINAS-SP
BRAZIL

lcff@ime.unicamp.br

JHEAN E. PÉREZ-LÓPEZ

ESCUELA DE MATEMÁTICAS

UNIVERSIDAD INDUSTRIAL DE SANTANDER

BUCARAMANGA

COLOMBIA

jhean.perez@uis.edu.co

http://dx.doi.org/10.1112/plms/s3-29.1.127
http://msp.org/idx/mr/0355578
http://msp.org/idx/zbl/0295.46051
http://dx.doi.org/10.1007/BF01174182
http://dx.doi.org/10.1007/BF01174182
http://msp.org/idx/mr/760047
http://msp.org/idx/zbl/0545.35073
http://dx.doi.org/10.1007/BF01232939
http://msp.org/idx/mr/1179482
http://msp.org/idx/zbl/0781.35052
http://dx.doi.org/10.1006/aima.2000.1937
http://msp.org/idx/mr/1808843
http://msp.org/idx/zbl/0972.35084
http://dx.doi.org/10.1016/j.jde.2011.01.003
http://dx.doi.org/10.1016/j.jde.2011.01.003
http://msp.org/idx/mr/2774071
http://msp.org/idx/zbl/1211.35218
http://dx.doi.org/10.1080/03605309408821042
http://dx.doi.org/10.1080/03605309408821042
http://msp.org/idx/mr/1274547
http://msp.org/idx/zbl/0803.35068
http://dx.doi.org/10.1002/cpa.20361
http://msp.org/idx/mr/2839302
http://dx.doi.org/10.1201/9781420035674
http://msp.org/idx/mr/1938147
http://msp.org/idx/zbl/1034.35093
http://dx.doi.org/10.1137/130947805
http://dx.doi.org/10.1137/130947805
http://msp.org/idx/mr/3319529
http://msp.org/idx/zbl/1323.35131
http://dx.doi.org/10.1090/S0002-9947-02-03214-2
http://dx.doi.org/10.1090/S0002-9947-02-03214-2
http://msp.org/idx/mr/1946395
http://msp.org/idx/zbl/1022.35039
http://dx.doi.org/10.1007/s11425-007-0101-9
http://dx.doi.org/10.1007/s11425-007-0101-9
http://msp.org/idx/mr/2390458
http://msp.org/idx/zbl/1149.35071
http://dx.doi.org/10.1080/03605309208820892
http://dx.doi.org/10.1080/03605309208820892
http://msp.org/idx/mr/1187618
http://msp.org/idx/zbl/0771.35047
https://projecteuclid.org/euclid.ade/1355703112
http://msp.org/idx/mr/2858524
http://msp.org/idx/zbl/1236.35114
http://dx.doi.org/10.1155/2005/149703
http://msp.org/idx/mr/2110046
http://msp.org/idx/zbl/1078.46027
http://dx.doi.org/10.1007/PL00004418
http://dx.doi.org/10.1007/PL00004418
http://msp.org/idx/mr/1777114
http://msp.org/idx/zbl/0965.35118
mailto:lcff@ime.unicamp.br
mailto:jhean.perez@uis.edu.co


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2018 is US $475/year for the electronic version, and $640/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 296 No. 1 September 2018

1Monotonicity of eigenvalues of geometric operators along the
Ricci–Bourguignon flow

BIN CHEN, QUN HE and FANQI ZENG

21Composition series of a class of induced representations, a case of one half
cuspidal reducibility

IGOR CIGANOVIĆ
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