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We refine a theorem due to Gursky (2000). As applications, we give some
rigidity theorems on four-manifolds with positive Yamabe constant. We re-
cover some of Gursky’s results (1998, 2000). We prove some classification
theorems of four-manifolds according to some conformal invariants, which
reprove and generalize the conformally invariant sphere theorem of Chang,
Gursky and Yang (2003).

1. Introduction and main results

In [Fu 2017], the author proved that an n-manifold with harmonic curvature is
isometric to a quotient of the standard sphere or Einstein manifold, if the upper
bound of some curvature functional is given by Yamabe constant. By this we mean
that we can precisely characterize the case of equality. The aim of this paper is to
present some rigidity results in the subject of curvature pinching on four-manifolds
with positive Yamabe constant.

Let (Mn, g) be an n-dimensional Riemannian manifold. The decomposition of
the Riemannian curvature tensor Rm into irreducible components yields

Rm =W + 1
n−2

R̊icT g+ R
2n(n−1)

g T g,

where W, Ric, R̊ic= Ric−(R/n)g and R denote the Weyl curvature tensor, Ricci
tensor, trace-free Ricci tensor and scalar curvature, respectively. When the diver-
gence of the Weyl curvature tensor W is vanishing, i.e., δW = 0, (Mn, g) is said to
be a manifold with harmonic Weyl tensor. The norm of a (k, l)- tensor T = T j1··· jl

i1···ik

deduced by the Riemannian metric g is defined as

|T |2 = gi1m1 · · · gikmk g j1n1 · · · g jl nl T
j1··· jl

i1···ik
T n1···nl

m1···mk
.

The sphere theorem for 1
4 -pinched Riemannian manifolds, conjectured by Rauch

in 1951, is a good example of the deep connections between the topology and the
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geometry of Riemannian manifolds. Now we know that the answer is positive, due
to the fundamental work of Klingenberg, Berger and Rauch for the topological
statement and the recent proof of the original conjecture by Brendle and Schoen
[2008], based on the results of Böhm and Wilking [2008].

From the work of Huisken [1985] and Margerin [1998], we know that there
exists a positive-dimensional constant C(n) such that if

|W + 1/(n− 2)R̊icT g|2 < C(n)R2,

then Mn is diffeomorphic to a quotient of the standard unit sphere. In particular,
Margerin improved the constant in dimension four, and obtained the optimal theorem
in [Margerin 1998].

The common feature of all the above results is to give topological information on
a manifold that carries a metric whose curvature satisfies a certain pinching at each
point. The question one raises here is whether one can characterize the topology and
the geometry of Riemannian manifolds by means of integral pinching conditions
instead of pointwise ones. Some results in this direction on four manifolds were
obtained in [Bour and Carron 2015; Chang et al. 2003; Chen and Zhu 2014; Gursky
1998; Gursky 2000; Hebey and Vaugon 1996].

In four-manifolds, the Weyl functional
∫
|Wg|

2 has long been an object of in-
terest to physicists. Suppose M4 is a 4-dimensional manifold. Then the Hodge
∗-operator induces a splitting of the space of two-forms ∧2

= ∧
2
+
+∧

2
−

into the
subspace of self-dual forms ∧2

+
and anti-self-dual forms ∧2

−
. This splitting in turn

induces a decomposition of the Weyl curvature into its self-dual and anti-self-dual
components W±. A four-manifold is said to be self-dual (resp., anti-self-dual) if
W−= 0 (resp., W+= 0). It is said to be a manifold with half harmonic Weyl tensor
if δW± = 0. By the Hirzebruch signature formula (see [Besse 1987]),

(1-1)
∫

M
|W+|2−

∫
M
|W−|2 = 48π2σ(M),

where σ(M) denotes the signature of M. A consequence of (1-1) is that the
study of the Weyl functional is completely equivalent to the study of the self-dual
Weyl functional

∫
M |W

+
|
2. M. J. Gursky [1998; 2000] has obtained some good

and interesting results by studying
∫

M |W
+
|
2 (see Theorems A, B and C). For

background material on this condition we recommend [Besse 1987, Chapter 16]
and [Derdziński 1983].

Our formulation of some results will be given in terms of the Yamabe invari-
ant. Now we introduce the definition of the Yamabe constant. Given a compact
Riemannian n-manifold M, we consider the Yamabe functional

Qg : C∞+ (M)→ R : f 7→ Qg( f )=
4(n−1)

n−2

∫
M |∇ f |2 dvg +

∫
M R f 2 dvg(∫

M f
2n

n−2 dvg
) n−2

n

,
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where R denotes the scalar curvature of M. It follows that Qg is bounded below
by the Hölder inequality. We set

µ([g])= inf{Qg( f ) | f ∈ C∞
+
(M)}.

This constant µ([g]) is an invariant of the conformal class of (M, g), called the
Yamabe constant. The important works of Aubin, Schoen, Trudinger and Yamabe
showed that the infimum in the above is always achieved; see [Aubin 1998; Lee and
Parker 1987]. The Yamabe constant of a given compact manifold is determined by
the sign of scalar curvature [Aubin 1998]. The scalar curvature Rg̃ of a conformal
metric g̃ = f 4/(n−2)g is equal to µ([g])/Vol(g)2/n . We call such a metric g̃ a
Yamabe minimizer.

Gursky [1998; 2000] proved the three striking Theorems A, B and C, and as
byproducts obtained these integral pinching results, which are generalizations of
the Bochner theorem in dimension 4 (see Propositions E, F and G).

Theorem A [Gursky 1998]. Let (M4, g) be a 4-dimensional compact Riemannian
manifold with positive Yamabe constant and the space of self-dual harmonic two-
forms H 2

+
(M4) , 0. Then∫

M
|W+|2 ≥ 16

3 π
2(2χ(M4)+ 3σ(M4)),

where χ(M) is the Euler–Poincaré characteristic of M. Furthermore, equality holds
in the above inequality if and only if g is conformal to a positive Kähler–Einstein
metric.

Theorem B [Gursky 2000]. Let (M4, g) be a 4-dimensional compact Riemannian
manifold with positive Yamabe constant and δW+ = 0. Then either (M4, g) is
anti-self-dual, or ∫

M
|W+|2 ≥ 16

3 π
2(2χ(M4)+ 3σ(M4)).

Furthermore, equality holds in the above inequality if and only if g is a positive
Einstein metric which is either Kähler, or the quotient of a Kähler manifold by a
free, isometric, antiholomorphic involution.

Theorem C [Gursky 1998]. Let (M4, g) be a 4-dimensional compact Riemann-
ian manifold with positive Yamabe constant and the space of harmonic 1-forms
H 1(M4) , 0. Then ∫

M
|W+|2 ≥ 8π2(2χ(M4)+ 3σ(M4)).

Furthermore, equality holds in the above inequality if and only if (M4, g) is confor-
mal to a quotient of R1

×S3 with the product metric.
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Chang, Gursky and Yang [Chang et al. 2003] proved that a four manifold
with positive Yamabe constant which satisfies the strict inequality for the Weyl
functional

∫
|W |2 is actually diffeomorphic to a quotient of the sphere and precisely

characterizes the case of equality. We state this result of Chang, Gursky and Yang
as follows:

Theorem D [Chang et al. 2003]. Let (M4, g) be a 4-dimensional compact Rie-
mannian manifold with positive Yamabe constant. If∫

M
|W |2 ≤ 16π2χ(M),

then one of the following must be true:

(1) M4 is diffeomorphic to the round sphere S4 or the real projective space RP4.

(2) M4 is conformal to a manifold which is isometrically covered by S1
×S3 with

the product metric.

(3) M4 is conformal to the complex projective plane CP2 with the Fubini–Study
metric.

Bour and Carron [2015] reprove and extend to higher degrees and higher dimensions
Propositions F and G obtained by Gursky. Bour [2010] gives a new proof of
Theorem D under a stronger pinching assumption, which is entirely based on
the study of a geometric flow, and doesn’t rely on the pointwise version of the
theorem, due to Margerin. Chen and Zhu [2014] proved a classification theorem
of 4-manifolds according to some conformal invariants, which generalizes the
conformally invariant sphere theorem in [Chang et al. 2003], i.e., Theorem D under
the strict inequality assumption, and relies on Chen, Tang and Zhu’s classification
on four-manifolds with positive isotropic curvature [Chen et al. 2012].

In this note, we refine Theorems B and Proposition E due to Gursky, and obtain
Theorem 1.1 which can not be deduced from the Gursky’s proof [2000] of Theorem B
as follows:

Theorem 1.1. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
δW± = 0 and positive Yamabe constant µ([g]). If

(1-2)
∫

M
|W±|2 = 1

6µ
2([g]),

then ∇W± = 0 and W± has exactly two distinct eigenvalues at each point. Hence
(M4, g) is a Kähler manifold of positive constant scalar curvature.

Theorem 1.2. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
harmonic Weyl tensor and positive Yamabe constant. If∫

M
|W |2 = 1

6µ
2([g]),
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then (M4, g) is CP2 with the Fubini–Study metric.

Combing some results due to Gursky, and Chen, Tang and Zhu’s classification
on four-manifolds with positive isotropic curvature with Theorem 1.1, we give the
following Theorem 1.3 which generalizes the conformally invariant sphere theorem
of [Chang et al. 2003], i.e., Theorem D.

Theorem 1.3. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
positive Yamabe constant. If ∫

M
|W |2 ≤ 1

6µ
2([g]),

then one of the following must be true:

(1) g̃ is a Yamabe minimizer and (M4, g̃) is CP2 with the Fubini–Study metric.

(2) (M4, g) is diffeomorphic to S4, RP4, S3
×R/G or a connected sum of them.

Here G is a cocompact fixed point free discrete subgroup of the isometry group
of the standard metric on S3

×R.

Theorem 1.4. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
harmonic Weyl tensor and positive Yamabe constant. If∫

M
|W |2 < 64

3 π
2χ(M),

then one of the following must be true:

(1) g̃ is a Yamabe minimizer and (M4, g̃) is the round sphere S4 or the real
projective space RP4.

(2) (M4, g) is CP2 with the Fubini–Study metric.

Theorem 1.5. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
harmonic Weyl tensor and positive Yamabe constant. If∫

M
|W |2 = 64

3 π
2χ(M),

then one of the following must be true:

(1) g̃ is a Yamabe minimizer and (M4, g̃) is the manifold which is isometrically
covered by S1

×S3 with the product metric or S1
×S3 with a rotationally

symmetric Derdziński metric (see [Catino 2016b; Derdziński 1982]).

(2) (M4, g) is isometric to a quotient of S2
×S2 with the product metric.

Theorem 1.6. Let (M4, g) be a 4-dimensional compact Riemannian manifold
which is not homeomorphic to S4 or RP4 with positive Yamabe constant. If

16π2χ(M) <
∫

M
|W |2 ≤ 64

3 π
2χ(M),
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then one of the following must be true:

(1) g̃ is a Yamabe minimizer and (M4, g̃) is isometric to a quotient of S2
×S2

with the product metric.

(2) (M, g) has χ(M) = 3, b1 = 0 and b2 = 1, where bi denotes the i-th Betti
number of M, and does not have a harmonic Weyl tensor.

Theorem 1.7. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
harmonic curvature and positive scalar curvature. If∫

M
|W |2 ≤ 1

3µ
2([g]),

then one of the following must be true:

(1) (M4, g) is conformally flat with positive constant scalar curvature.

(2) (M4, g) is CP2 with the Fubini–Study metric.

(3) (M4, g) is isometric to a quotient of S2
×S2 with the product metric.

Corollary 1.8. Let (M4, g) be a 4-dimensional complete Einstein manifold with
positive scalar curvature. If ∫

M
|W |2 ≤ 1

3µ
2([g]),

then one of the following must be true:

(1) (M4, g) is isometric to either S4 or RP4.

(2) (M4, g) is isometric to CP2 with the Fubini–Study metric.

(3) (M4, g) is isometric to a quotient of S2
×S2 with the product metric.

Remark 1.9. For Riemannian manifolds with harmonic curvature and dimensions
n ≥ 4, the author proved some similar results in [Fu 2017].

2. Four manifolds with half harmonic Weyl tensor

In order to prove some results in this article, we need the following Weyl estimate
proved by Gursky [2000].

Proposition E [Gursky 2000]. Let (M4, g) be a 4-dimensional compact Riemann-
ian manifold with δW± = 0 and positive Yamabe constant µ([g]). If∫

M
|W±|2 < 1

6µ
2([g]),

then (M4, g) is anti-self-dual (resp., self-dual).
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Remark 2.1. Gursky [2000] obtained an improved Kato inequality |∇W+|2 ≥
5
3

∣∣∇|W+|∣∣2. Thus using the Bochner technique, Gursky proved Theorem B and
Propositions E, F and G by introducing the corresponding functional and conformal
invariant with the modified scalar curvature R−

√
6|W±| in [Gursky 2000]. Based

on Gursky’s improved Kato inequality, we can reprove Theorem B and Proposi-
tions E, F and G only by using the modified Bochner technique (see [Bour and
Carron 2015; Fu 2017; Fu and Li 2010]). In order to prove Theorem 1.1 which can
not be deduced from Gursky’s proofs of Theorem B and Proposition E, we also
need the following different proof of Proposition E.

Proof. First, we recall the following Weitzenböck formula (see [Besse 1987] and
[Bour 2010])

(2-1) 4|W±|2 = 2|∇W±|2+ R|W±|2− 144 det
∧

2
±

W±.

From (2-1), by the Kato inequality |∇W+|2 ≥ 5
3

∣∣∇|W+|∣∣2 ([Gursky 2000]), we
obtain

(2-2) |W±|4|W±| ≥ 2
3

∣∣∇|W±|∣∣2+ 1
2 R|W±|2− 72 det

∧
2
±

W±.

By a simple Lagrange multiplier argument it is easily verified that

(2-3) −144 det
∧

2
±

W± ≥−
√

6|W±|3

and equality is attained at a point where W± , 0 if and only if W± has precisely
two eigenvalues. By (2-2) and (2-3), we get

(2-4) |W±|4|W±| ≥ 2
3∇|W

±
|
2
+

1
2 R|W±|2−

√
6

2 |W
±
|
3.

Let uε =
√
|W±|2+ ε2 and u = |W±|. Thus we have

|∇uε |2 =
u2
|∇u|2

u2+ ε2 ≤ |∇u|2.

By (2-4), we compute

uαε4uαε = uαε (α(α− 1)uα−2
ε |∇u|2+αuα−1

ε 4uε)(2-5)

=
α−1
α
|∇uαε |

2
+αu2α−2

ε uε4uε

=
α−1
α
|∇uαε |

2
+αu2α−2

ε

( 1
24u2

ε − |∇uε |2
)

=
α−1
α
|∇uαε |

2
+αu2α−2

ε (u4u+ |∇u|2− |∇uε |2)

≥

(
1− 1

3α

)
|∇uαε |

2
−

√
6

2
αu2(α−1)

ε u3
+

Rα
2

u2(α−1)
ε u2,



86 HAI-PING FU

where α is a positive constant. Integrating (2-5) by parts, choosing α = 1
3 , and

letting ε go to zero, we get

(2-6)
(

2− 1
3α

) ∫
M
|∇uα|2−

√
6

2
α

∫
M

u2α+1
+
α

2

∫
M

Ru2α
≤ 0.

By the Hölder inequality and (2-6), we have

(2-7)
(

2− 1
3α

) ∫
M
|∇uα|2−

√
6

2
α

(∫
M

u4α
) 1

2
(∫

M
u2
) 1

2

+
α

2

∫
M

Ru2α
≤ 0.

By the definition of Yamabe constant and (2-7), we get

(2-8) 0≥
(

2− 1
3α

)
1
6
µ([g])

(∫
M

u4α
) 1

2

−

√
6

2
α

(∫
M

u4α
) 1

2
(∫

M
u2
) 1

2

+
9α2
−6α+1
18α

∫
M

Ru2α,

that is,

(2-9) 0≥
[

1
√

6
µ([g])−

(∫
M

u2
) 1

2
](∫

M
u

4
3

) 1
2

.

We choose
(∫

M |W
±
|
2
)
< 1

6µ
2([g]) such that the above inequality imply

∫
M u4/3

=0,
that is, W± = 0, i.e., (M4, g) is anti-self-dual, or self-dual. �

Remark 2.2. For 0 ≤ k ≤ n
2 , by the Kato inequality for harmonic k-form ω (see

[Bourguignon 1990]) (n+ 1− k)/(n− k)
∣∣∇|ω|∣∣2 ≤ |∇ω|2 and the two Weitzen-

böck formulas in [Gursky 1998], one has

1
24|ω|

2
≥ |∇ω|2−

√
6

3 |W
±
||ω|2+ 1

3 R|ω|2 ≥ 3
2

∣∣∇|ω|∣∣2− √6
3 |W

±
||ω|2+ 1

3 R|ω|2,

for all ω ∈ H 2
±
(M4) and

1
24|ω|

2
≥

4
3 |∇|ω||

2
−

√
3

2 |R̊ic||ω|2+ 1
4 R|ω|2, for all ω ∈ H 1(M4).

Based on the above two Weitzenböck formulas, using the same argument as in the
proof of Proposition E, we can obtain two results of Gursky as follows:

Proposition F [Gursky 1998; 2000]. Let (M4, g) be a 4-dimensional compact
Riemannian manifold with positive Yamabe constant µ([g]).

(i) If ∫
M
|W±|2 < 1

6µ
2([g]),

then H 2
±
(M4)= 0 and b±2 (M)= 0.
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(ii) If ∫
M
|R̊ic|2 < 1

12µ
2([g]),

then H 1(M4)= 0 and b1(M)= 0.

Proof of Theorem 1.1. Equation (1-2) implies that the equality holds in (2-9).
When the equality holds in (2-9), all the inequalities leading to (2-7) become
equalities. From (2-8), the function uα attains the infimum in the Yamabe functional.
From (2-7), the equality for the Hölder inequality implies that u is constant, i.e.,
|W±| is constant. Hence at every point, it has an eigenvalue of multiplicity 2
and another of multiplicity 1, i.e., W± has eigenvalues

{
−

R
12 ,−

R
12 ,

R
6

}
, and R is

constant. From (2-1), we get ∇W± = 0. By Proposition 5 in [Derdziński 1983],
(M4, g) is a Kähler manifold of positive constant scalar curvature. �

Remark 2.3. Since
∫

M |W
±
|
2
≥ 16

∫
M σ2(A), we have

(2-10)
∫

M
|W±|2 ≥ 16

3 π
2(2χ(M4)± 3σ(M4)).

In fact, we recall the following lower bound for the Yamabe invariant on compact
four-manifolds which was proved by Gursky [1994]:

(2-11) 96
∫

M
σ2(A)=

∫
M

R2
− 12

∫
M
|R̊ic|2 ≤ µ2([g]),

where σ2(A) denotes the second-elementary function of the eigenvalues of the
Schouten tensor A; the inequality is strict unless (M4, g) is conformally Einstein.
By the Chern–Gauss–Bonnet formula (see Equation 6.31 of [Besse 1987])∫

M
|W |2− 2

∫
M
|R̊ic|2+ 1

6

∫
M

R2
= 32π2χ(M),

we obtain

(2-12)
∫

M
|W±|2 ≥−2

∫
M
|R̊ic|2+ 1

6

∫
M

R2
= 32π2χ(M)−

∫
M
|W |2.

Combining (1-1) with (2-12), we can prove (2-10).
Since

∫
M |W

±
|
2
= 16

∫
M σ2(A), we have

(2-13)
∫

M
|W±|2 = 16

3 π
2(2χ(M4)± 3σ(M4)).

In fact, by Proposition E and (2-11), we have
∫

M |W
±
|
2
=

1
6µ

2([g])= 16
∫

M σ2(A).
Hence from (2-12), (2-13) holds.

For four-manifolds M4 with harmonic Weyl tensor and positive Yamabe constant
µ([g]) which is not locally conformally flat, the lower bound for µ([g]) is given
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by µ2([g])≤ 6
∫

M |W
−
|
2 if M is anti-self-dual; µ2([g])≤ 6

∫
M |W

+
|
2 if M is self-

dual; and µ2([g])≤ 6 min
{∫

M |W
−
|
2,
∫

M |W
+
|
2
}

if M is neither anti-self-dual nor
self-dual. The Yamabe constant µ2([g]) of a compact positive Kähler–Einstein
manifold (M4, g) is equal to 32π2(2χ(M4)+ 3σ(M4)).

By Remark 2.3, we can rewrite Theorem B as follows:

Theorem B*. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
δW+ = 0 and positive Yamabe constant µ([g]). Then either (M4, g) is anti-self-
dual, or

(2-14)
∫

M
|W+|2 ≥ 16

∫
M
σ2(A).

Furthermore, equality holds in (2-14) if and only if (M4, g) is a positive Einstein
manifold which is either Kähler, or the quotient of a Kähler manifold by a free,
isometric, antiholomorphic involution.

Proof. By Proposition E and (2-11), we get∫
M
|W+|2 ≥ 1

6µ
2([g])≥ 16

∫
M
σ2(A).

Since the equality holds in (2-14), we have∫
M
|W+|2 = 1

6µ
2([g])= 16

∫
M
σ2(A).

So g is conformal to an Einstein metric g̃. By Theorem 1.1, we get that (M4, g) is
a Kähler manifold of positive constant scalar curvature.

Assume that g̃ = λ2g. We now claim that λ is constant, i.e., g is an Einstein
metric. To see this, first notice that g̃ being an Einstein metric implies that δW+g̃ = 0.
We recall this transformation law about W+, i.e.,

(2-15) δg̃W+g̃ = δgW+g −W+g
(
∇λ

λ
, . . .

)
.

It is easy to see from (2-15) that

(2-16) W+g
(
∇λ

λ
, . . .

)
= 0.

Now any oriented four-manifold W+ satisfies (see [Derdziński 1983])

(2-17) (W+)ikpq(W+) jkpq = |W+|2δi
j .

Pairing both sides of (2-17) with (dλ⊗dλ) j
i and using (2-16) we get |W+g |

2
|∇λ|2=0.

Since |W+g | is constant, W+ never vanishes, so ∇λ= 0 and λ is constant.
We conclude that (M4, g) is an Einstein manifold which is either Kähler, or the

quotient of a Kähler manifold by a free, isometric, antiholomorphic involution. �
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3. Four manifolds with harmonic Weyl tensor

Proof of Theorem 1.2. By Proposition E, we have that W+ = 0 and
∫

M |W
−
| =

1
6µ

2([g]), or W− = 0 and
∫

M |W
+
| =

1
6µ

2([g]). By Theorem 1.1, (M4, g) is a
Kähler manifold of positive constant scalar curvature.

When W+ = 0, by Corollary 1 in [Derdziński 1983], the scalar curvature of
(M4, g) is 0, and µ([g])= 0. This is a contradiction.

When W− = 0, by Lemma 7 in [Derdziński 1983], (M4, g) is locally symmetric.
By the result of Bourguignon [1981], (M4, g) is Einstein. Then g is both Einstein
and half conformally flat. By the classification theorem of Hitchin (see [Besse
1987]), (M4, g) is isometric to either a quotient of S4 with the round metric or CP2

with the Fubini–Study metric. Since we are assuming that is not locally conformal
flat, (M4, g) is CP2 with the Fubini–Study metric. �

Corollary 3.1. Let (M4, g) be a 4-dimensional complete Einstein manifold with
positive scalar curvature. If

(3-1)
∫

M
|W |2 = 1

6µ
2([g]),

then M4 is CP2 with the Fubini–Study metric.

Remark 3.2. If the equality in (3-1) is replaced by a strict inequality, we have
proved in [Fu and Xiao 2017a; 2017b] that M4 is a quotient of the round S4, which is
proved by Proposition E. For dimensions n > 4, under some L

n
2 pinching condition,

we proved in [Fu and Xiao 2017a; Fu and Xiao 2017b], as did G. Catino in [Catino
2016a], that Mn is a quotient of the round Sn.

Proposition 3.3. Let (M4, g) be a 4-dimensional compact Riemannian manifold
with harmonic Weyl tensor and positive Yamabe constant. If∫

M
|W |2+ 2

∫
M
|R̊ic|2 ≤ 1

6

∫
M

R2, i.e.,
∫

M
|W |2 ≤ 16π2χ(M),

then one of the following must be true:

(1) M4 is a locally conformally flat manifold. In particular, g̃ is a Yamabe mini-
mizer and (M4, g̃) is the round sphere S4, the real projective space RP4, or the
manifold which is isometrically covered by S1

×S3 with the product metric,
or S1

×S3 with a rotationally symmetric Derdziński metric.

(2) (M4, g) is CP2 with the Fubini–Study metric.

Proof. By the Chern–Gauss–Bonnet formula, we get

(3-2)
∫

M
|W |2+ 2

∫
M
|R̊ic|2− 1

6

∫
M

R2
=

2
∫

M
|W |2− 32π2χ(M)≤ 0, i.e.,

∫
M
|W |2 ≤ 16π2χ(M).
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From (2-11), we get

(3-3)
∫

M
|W |2− 1

6
µ2([g])≤

∫
M
|W |2+ 2

∫
M
|R̊ic|2− 1

6

∫
M

R2.

Moreover, the above inequality is strict unless (M4, g) is conformally Einstein.
In the case of strict inequality, we have∫

M
|W |2 < 1

6µ
2([g]), i.e.,

∫
M
|W±|2 < 1

6µ
2([g]).

By Proposition E, we get that M4 is conformally flat. Since
∫

M |W |
2, µ2([g]) and∫

M σ2(A) are conformally invariant, there exists a conformal metric g̃ of g such
that µ2([g])=

∫
M R2

g̃, and

(3-4)
∫

M
|Wg̃|

2
+2

∫
M
|R̊icg̃|

2
−

1
6

∫
M

R2
g̃ =

∫
M
|W |2+2

∫
M
|R̊ic|2− 1

6

∫
M

R2
≤ 0,

i.e.,

2
∫

M
|R̊icg̃|

2
−

1
6µ

2([g])≤ 0.

By Theorems 1.5 and 1.6 in [Fu and Xiao 2018], (M4, g̃) is isometric to the
round S4, the real projective space RP4, or a manifold which is isometrically
covered by S1

×S3 with the product metric, or S1
×S3 with a rotationally symmetric

Derdziński metric.
In the case of equality, we have∫

M
|W |2 = 1

6µ
2([g]).

Here g is conformally Einstein. By Theorem 1.2, (M4, g) is CP2 with the Fubini–
Study metric. �

Remark 3.4. Any compact conformally flat 4-manifold with µ([g]) > 0 and
χ(M) ≥ 0 has been classified [Gursky 1994; 1998]. Gursky proved that M4

is conformal to the round S4, the real projective space RP4, or a quotient of R1
×S3

with the product metric in [Gursky 1994; 1998]. Comparing with Theorem D, it is
easy to see that the condition and conclusion in Proposition 3.3 are both strong.

Proof of Theorem 1.4. By the Chern–Gauss–Bonnet formula, we get

(3-5)
∫

M
|W |2+ 4

∫
M
|R̊ic|2− 1

3

∫
M

R2
=

3
∫

M
|W |2− 64π2χ(M) < 0, i.e.,

∫
M
|W |2 < 64

3 π
2χ(M).
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From (2-11), we get∫
M
|W |2− 1

3
µ2([g])≤

∫
M
|W |2+ 4

∫
M
|R̊ic|2− 1

3

∫
M

R2.

Moreover, the above inequality is strict unless (M4, g) is conformally Einstein.
Then we have ∫

M
|W |2 < 1

3µ
2([g]).

Since
∫

M |W |
2, µ2([g]) and

∫
M σ2(A) are conformally invariant, there exists a

conformally metric g̃ of g such that µ2([g])=
∫

M R2
g̃, and from (3-5) we have

4
∫

M
|R̊icg̃|

2
−

1
3µ

2([g]) < 0.

(a) W = 0. By Theorem 1.5 in [Fu and Xiao 2018], (M4, g̃) is the round S4 or the
real projective space RP4.

(b) W ,0. By Proposition F, b1(M)=0. Hence χ(M)=2+b2. By Proposition 3.3,
we assume 16π2χ(M) <

∫
M |W |

2. Since µ2([g]) ≤ µ2(S4) = 384π2 and the in-
equality is strict unless (M4, g) is conformal to S4,

∫
M |W |

2 < 1
3µ

2([g]) implies
that χ(M)≤7. By Proposition E, we have that W+=0 and

∫
M |W

−
|
2
≥

1
6µ

2([g]), or
W− = 0 and

∫
M |W

+
|
2
≥

1
6µ

2([g]). By Proposition F and the Hirzebruch signature
formula, b2(M)=b−2 (M),0 or b2(M)=b+2 (M),0. Hence 3≤χ(M)=2+b2≤7.

When W− = 0 and
∫

M |W
+
|
2
≥

1
6µ

2([g]), 3≤ χ(M)= 2+ b+2 (M)≤ 7. By the
Hirzebruch signature formula

4χ(M)
9

>
1

48π2

∫
M
|W+g |

2
= b+2 ,

only the case b+2 = 1 occurs. Thus we have χ(M)= 3, σ (M)= 1, and∫
M
|W+g |

2
= 48π2

=
16π2

3
(2χ(M)+ 3σ(M)).

By Remark 2.3, ∫
M
|W |2 =

∫
M
|W+g |

2
=
µ2([g])

6
.

Hence by Theorem 1.2, (M4, g) is CP2 with the Fubini–Study metric.
When W+ = 0 and

∫
M |W

−
|
2
≥

1
6µ

2([g]). Similarly, we obtain∫
M
|W |2 =

∫
M
|W−g |

2
=
µ2([g])

6
.

From the proof of Theorem 1.2, this can’t happen. �
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Proof of Theorem 1.5. (i) When χ(M)= 0. This pinching condition implies W = 0.
From (3-4), there exists a conformally metric g̃ of g such that µ2([g])=

∫
M R2

g̃ and

2
∫

M
|R̊icg̃|

2
−

1
6µ

2([g])= 0.

By Theorem 1.6 in [Fu and Xiao 2018], (M4, g̃) is a manifold which is isometrically
covered by S1

×S3 with the product metric, or a manifold which is isometrically
covered by S1

×S3 with a rotationally symmetric Derdziński metric.

(ii) When χ(M) , 0. Since
∫

M |W |
2
≤

1
3µ

2([g]),
∫

M |W |
2
=

64
3 π

2χ(M) implies
that χ(M)≤ 5. Since

∫
M |W |

2
=

64
3 π

2χ(M), by (3-3) and Proposition F, b1(M)= 0.
Hence χ(M)= 2+ b2.

Case 1: In the case of strict inequality, we have∫
M
|W |2 < 1

3µ
2([g]).

From the proof of Theorem 1.4, we have W∓ = 0 and
∫

M |W
±
|
2
≥

1
6µ

2([g]), and
3≤ χ(M)= 2+ b2(M)= 2+ b+2 (M)≤ 5. By the Hirzebruch signature formula

4χ(M)
9
=

1
48π2

∫
M
|W±g |

2
= b±2 ,

we get that b±2 is not an integer. Hence there exists no such manifold.

Case 2: In the case of strict equality, we have∫
M
|W |2 = 1

3µ
2([g]).

Here g is conformal to an Einstein metric. Since (M4, g) has harmonic Weyl
tensor, from the proof of Theorem B*, we get that (M4, g) is also Einstein. By
Corollary 1.8, (M4, g) is a quotient of S2

×S2 with the product metric. �

Proposition 3.5. Let (M4, g) be a 4-dimensional compact Riemannian manifold
with harmonic Weyl tensor and positive Yamabe constant. If

1
6µ

2([g])≤
∫

M
|W |2 ≤ 1

3µ
2([g]),

then one of the following must be true:

(1) (M4, g) is self-dual, but is not anti-self-dual, which has either even χ(M4)≤ 4
and b+2 = 2 or odd χ(M4)≤ 1 and b+2 = 1.

(2) (M4, g) is anti-self-dual, but is not self-dual, which has either even χ(M4)≤ 4
and b−2 = 2 or odd χ(M4)≤ 1 and b−2 = 1.

(3) (M4, g) is a CP2 with the Fubini–Study metric.
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(4) (M4, g) is a quotient of a quotient of S2
×S2 with the product metric.

Proof. By Proposition E, we get that W− = 0, W+ = 0 or
∫

M |W
±
|
2
=

1
6µ

2([g]).
When W∓ = 0,

∫
M |W

±
|
2
≥

1
6µ

2([g]). By Proposition F, we have b∓2 = 0. By
the Hirzebruch signature formula

(3-6) ± 1
48π2

∫
M
|W±g |

2
=

1
48π2

∫
M
(|W+g |

2
−|W−g |

2)=b+2 −b−2 =±b±2 =σ(M),

we get ±σ(M) = b±2 ≥ 1. Since
∫

M |W |
2
≤

1
3µ

2([g]), by the fact that µ2([g]) ≤
µ2(S4)= 384π2 and the inequality is strict unless (M4, g) is conformal to S4, we
get b±2 ≤ 2. Then we get χ(M)≤ 4.

If χ(M)= 3, then b±2 = 1 and b1 = 0. By Remark 2.3, we have∫
M
|W±|2 ≥ 16

3 π
2(2χ(M4)± 3σ(M4)).

Combining with (3-6), we have

48π2
=±48π2σ(M4)=

∫
M
|W±|2 ≥ 16

3 π
2(2χ(M4)± 3σ(M4)

)
= 48π2.

By Remark 2.3,
∫

M |W |
2
=

1
6µ

2([g]). By Theorem 1.2, (M4, g) is CP2 with the
Fubini–Study metric.

When
∫

M |W
±
|
2
=

1
6µ

2([g]), by Theorem 1.1, (M4, g) is a Kähler manifold of
positive constant scalar curvature, and the Weyl tensor is parallel. Since (M4, g) is a
Kähler manifold with harmonic Weyl tensor, by Proposition 1 in [Derdziński 1983],
the Ricci tensor is parallel. Hence ∇Rm = 0, i.e., M is locally symmetric. From
(2-4), by the maximum principle we get |W±|2 = R2/6, and W± has eigenvalues{
−

R
12 ,−

R
12 ,

R
6

}
. Thus Rm has eigenvalues {0, 0, 1, 0, 0, 1}. By the classification

of 4-dimensional symmetric spaces, it is isometric to a quotient of S2
×S2 with

the product metric. �

4. Four manifolds with harmonic curvature

Proposition 4.1. Let (M4, g) be a 4-dimensional compact Riemannian manifold
with harmonic curvature and positive scalar curvature. If

1
6µ

2([g])≤
∫

M
|W |2 ≤ 1

3µ
2([g]),

then one of the following must be true:

(1) (M4, g) is CP2 with the Fubini–Study metric.

(2) (M4, g) is isometric to a quotient of S2
×S2 with the product metric.
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Proof. By Proposition 3.5, We just need to consider whether (M4, g) is self-dual or
anti-self-dual.

When (M4, g) is self-dual, since it has harmonic curvature, it is analytic [DeTurck
and Goldschmidt 1989]. By Proposition 7 in [Derdziński 1983], we get that (M4, g)
is Einstein. By the classification theorem of Hitchin, (M4, g) is isometric to CP2

with the Fubini–Study metric g.
When (M4, g) is anti-self-dual, R

6 I − W+ = R
6 I > 0. Since (M4, g) is not

self-dual, by Theorem 4.3 of [Micallef and Wang 1993], only (c) and (d) therein
occur, i.e., (M4, g) is a Kähler manifold of positive constant scalar curvature. By
Corollary 1 in [Derdziński 1983], the scalar curvature of (M4, g) is 0. This is a
contradiction. �

By Theorem 1.1 and Propositions 4.1 and E, we have Theorem 1.7.

Proposition 4.2. Let (M4, g) be a 4-dimensional compact Riemannian manifold
with harmonic curvature and positive scalar curvature. If

(4-1)
∫

M
|W |2+ 4

∫
M
|R̊ic|2 = 1

3µ
2([g]),

then one of the following must be true:

(1) M4 is a quotient of S2
×S2 with the product metric.

(2) M4 is covered isometrically by S1
×S3 with the product metric.

(3) M4 is covered isometrically by S1
×S3 with a rotationally symmetric Derdz-

iński metric.

Proof. Case 1: R̊ic = 0, i.e., M is Einstein. By Corollary 1.8, (M4, g) falls
under (1).

Case 2: R̊ic , 0. It is easy to see from (4-1) that
∫

M |W |
2 < 1

3µ
2([g]). By

Theorem 1.7, we have W = 0, i.e., M is locally conformally flat and
∫

M |R̊ic|2 =
1
12µ

2([g]). By Theorem 1.6 in [Fu and Xiao 2018], (M4, g) falls under (2) or (3). �

Proposition 4.3. Let (M4, g) be a 4-dimensional compact Riemannian manifold
with harmonic curvature and positive scalar curvature. If

(4-2)
∫

M
|W |2+ 4

∫
M
|R̊ic|2 < 1

3µ
2([g]),

then one of the following must be true:

(1) M4 is a quotient of the round S4.

(2) M4 is CP2 with the Fubini–Study metric.

Proof. Suppose R̊ic , 0. It is easy to see from (4-2) that
∫

M |W |
2 < 1

3µ
2([g]). By

Theorem 1.7, we have W = 0, i.e., M is locally conformally flat and
∫

M |R̊ic|2 <
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1
12µ

2([g]). By Theorem 1.5 in [Fu and Xiao 2018], that (M4, g) is a quotient of
the round S4. This is a contradiction.

Thus (4-2) implies that R̊ic= 0, i.e., M is Einstein, and
∫

M |W |
2 < 1

3µ
2([g]). By

Theorem 1.7, M is CP2 with the Fubini–Study metric, or locally conformally flat.
Hence M4 is a constant curvature space. Since the Yamabe constant is positive, M4

is a quotient of the round S4. �

Corollary 4.4. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
harmonic curvature and positive scalar curvature. If

(4-3)
∫

M
|W |2+ 8

∫
M
|R̊ic|2 ≤ 1

3

∫
M

R2,

then one of the following must be true:

(1) M4 is isometric to a quotient of the round S4.

(2) M4 is a quotient of S2
×S2 with the product metric.

(3) M4 is CP2 with the Fubini–Study metric.

Remark 4.5. The pinching condition (4-3) in Corollary 4.4 is equivalent to∫
M
|W |2+ 1

15

∫
M

R2
≤

128
5
π2χ(M).

Proofs of Corollary 4.4 and Remark 4.5. From (2-11), we get∫
M
|W |2+ 4

∫
M
|R̊ic|2− 1

3
µ2([g])≤

∫
M
|W |2+ 8

∫
M
|R̊ic|2− 1

3

∫
M

R2.

Moreover, the inequality is strict unless (M4, g) is conformally Einstein.
In the case of strict inequality, Proposition 4.3 immediately implies Corollary 4.4.
In the case of equality, we have that g is conformally Einstein and∫

M
|W |2+ 4

∫
M
|R̊ic|2 = 1

3µ
2([g]).

Since g has constant scalar curvature, g is Einstein from the proof of Obata’s
theorem. By Proposition 4.2, we complete the proof of this corollary.

By the Chern–Gauss–Bonnet formula, the right-hand sides of the above can be
written as∫

M
|W |2+ 8

∫
M
|R̊ic|2− 1

3

∫
M

R2
= 5

∫
M
|W |2+ 1

3

∫
M

R2
− 128π2χ(M).

This proves Remark 4.5. �
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5. Four manifolds with positive Yamabe constant

Chang, Gursky and Yang’s proof of Theorem D is based on establishing the existence
of a solution of a fourth order fully nonlinear equation. Avoiding the requirement for
the existence of a fourth order fully nonlinear equation, we can reprove Theorem D
which is rewritten as follows:

Theorem D*. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
positive Yamabe constant. If ∫

M
|W |2 ≤ 16π2χ(M),

then one of the following must be true:

(1) g̃ is a Yamabe minimizer and (M4, g̃) is the manifold which is isometrically
covered by S1

×S3 with the product metric, or S1
×S3 with a rotationally

symmetric Derdziński metric.

(2) M4 is diffeomorphic to the round sphere S4 or the real projective space RP4.

(3) g̃ is a Yamabe minimizer and (M4, g̃) is CP2 with the Fubini–Study metric.

Proof. (i) When χ(M)= 0. This pinching condition implies W = 0. Since
∫

M |W |
2,

µ2([g]) and
∫

M σ2(A) are conformally invariant, there exists a conformally metric
g̃ of g such that µ2([g])=

∫
M R2

g̃, and from (3-2) we have

2
∫

M
|R̊icg̃|

2
−

1
6µ

2([g])= 0.

By Theorem 1.6 in [Fu and Xiao 2018], (M4, g̃) is a manifold which is isometrically
covered by S1

×S3 with the product metric, or S1
×S3 with a rotationally symmetric

Derdziński metric.

(ii) When χ(M) , 0. Case 1: If
∫

M |W |
2 < 16π2χ(M) or

∫
M |W |

2
= 16π2χ(M)

and −2
∫

M |R̊ic|2+ 1
6

∫
M R2 < 1

6µ
2([g]), then from (3-2) we have∫

M
|W |2 < 1

6µ
2([g]).

By Proposition F, b2(M)= 0.

(a) W = 0. Since
∫

M |W |
2, µ2([g]) and

∫
M σ2(A) are conformally invariant, there

exists a conformally metric g̃ of g such that µ2([g])=
∫

M R2
g̃, and from (3-2)

we have
2
∫

M
|R̊icg̃|

2
−

1
6µ

2([g])≤ 0.

Since χ(M) , 0, by Theorem 1.5 in [Fu and Xiao 2018], (M4, g̃) is the round S4,
the real projective space RP4.



FOUR-MANIFOLDS WITH POSITIVE YAMABE CONSTANT 97

(b) W , 0. Since
∫

M |W |
2, µ2([g]) and

∫
M σ2(A) are conformally invariant, and

W , 0, there exists a conformally metric g̃ of g such that µ2([g])=
∫

M R2
g̃, and

2
∫

M
|R̊icg̃|

2
−

1
6µ

2([g]) < 0.

By Proposition F, b1(M) = 0. By Freedman’s result [1982], M4 is covered by a
homeomorphism sphere. For any metric g′ of unit volume in the conformal class
of g, we have

(5-1)
∫

M
Rg′ −

√
6
∫

M
|Wg′ | ≥ µ([g])−

√
6
(∫

M
|Wg′ |

2
) 1

2

=

µ([g])−
√

6
(∫

M
|W |2

) 1
2

> 0.

Thus by [Chen and Zhu 2014, Section 2] and [Gursky 2000, Section 3], from (5-1)
there is a metric g̃ of unit volume in the conformal class of g such that

√
6|Wg̃|< Rg̃.

Let λ±1 ≥ λ
±

2 ≥ λ
±

3 be the eigenvalues of W±. Since W± is trace free, we have
λ±1 + λ

±

2 + λ
±

3 = 0, and

3
2λ
+

1
2
+

3
2λ
−

1
2
≤ [λ+1

2
+

1
2(λ
+

2 + λ
+

3 )
2
] + [λ−1

2
+

1
2(λ
−

2 + λ
−

3 )
2
]

= (λ+1
2
+ λ+2

2
+ λ+3

2
)+ (λ−1

2
+ λ−2

2
+ λ−3

2
)

=
1
4 |W |

2 < 1
24 R2,

i.e., λ±1 <
1
6 R. Hence λ±2 + λ

±

3 >−
1
6 R, i.e., λ±2 + λ

±

3 +
1
6 R > 0. This implies the

sum of the least two eigenvalues of 1
12 R+W± is positive. So (M4, g̃) has positive

isotropic curvature. Since M4 is covered by a homeomorphism sphere, by the main
theorem of [Chen et al. 2012], M4 is diffeomorphic to the standard sphere S4 or
the real projective space RP4;

Case 2: If
∫

M |W |
2
= 16π2χ(M) and −2

∫
M |R̊ic|2 + 1

6

∫
M R2

=
1
6µ

2([g]), then
from (3-2) and (3-3) we have ∫

M
|W |2 = 1

6µ
2([g])

and g is conformal to a Einstein metric g̃. Thus we have∫
M
|Wg̃|

2
=

1
6µ

2([g]).

By Corollary 3.1, (M4, g̃) is CP2 with the Fubini–Study metric. Hence (M4, g̃) is
conformal to CP2 with the Fubini–Study metric. �
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Remark 5.1. The proof of Chang, Gursky and Yang consists of two steps. First,
they prove the case for strict inequality, and second, based on the first step, they
prove the case for equality. We unify the two cases. Chen and Zhu [2014] prove a
classification theorem of 4-manifolds which generalizes Theorem C under the strict
inequality assumption.

Based on the first Weitzenböck formulas in Remark 2.2, using the same argument
as in the proof of Theorem 1.1, we can obtain the following result of Gursky [2000].

Proposition G [Gursky 2000]. Let (M4, g) be a 4-dimensional compact Riemann-
ian manifold with positive Yamabe constant µ([g]). If b±2 , 0 and

(5-2)
∫

M
|W±|2 = 1

6µ
2([g]),

then (M4, g) is conformal to a Kähler manifold of positive constant scalar curva-
ture.

Proof. Since b±2 , 0, there exists a nonzero ω± ∈ H 2
±
(M). Setting u = |ω±|. Based

on the first Weitzenböck formulas in Remark 2.2, using the same argument as in
the proof of Theorem 1.1, we get

(5-3) 0≥
(

2− 1
2α

)
1
6
µ([g])

(∫
M

u4α
) 1

2

−

√
6

3
α

(∫
M

u4α
) 1

2
(∫

M
|W±|2

) 1
2

+
(2α−1)2

12α

∫
M

Ru2α.

We choose α = 1
2 , from (5-3) we get

(5-4) 0≥
[

1
√

6
µ([g])−

(∫
M
|W±|2

) 1
2
](∫

M
u2
) 1

2

.

Equation (5-2) implies that the equality holds in (5-4). When the equality holds
in (5-4), all inequalities leading to (5-3) become equalities. From (5-3), the function
uα attains the infimum in the Yamabe functional. Hence the metric g̃ = u2αg is
a Yamabe minimizer. Then we get |ω±|g̃ = 1. Since

∫
M |W

±
|
2 is conformally

invariant, the equality for the Hölder inequality implies that |W±|g̃ is constant.
From (5-2), we get |W±|2g̃ =

1
6 R2

g̃. By the first Weitzenböck formula and the
maximum principle, we get that |ω| is constant, thus ∇ω = 0, i.e., (M4, g̃) is a
Kähler manifold of positive constant scalar curvature. Hence (M4, g) is conformal
to a Kähler manifold of positive constant scalar curvature. �

Based on Propositions F and G, using the same arguments as in the proof of
Theorem B*, we can reprove Theorems A and C proved by Gursky by using some
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results on functional determinant and the Bochner technique which are rewritten as
follows:

Theorem A*. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
positive Yamabe constant µ([g]) and H 2

+
(M) , 0. Then∫

M
|W+g |

2
≥ 16

∫
M
σ2(A).

Furthermore, equality holds in the above inequality if and only if g is conformal to
a positive Kähler–Einstein metric.

Theorem C*. Let (M4, g) be a 4-dimensional compact Riemannian manifold with
positive Yamabe constant and the space of harmonic 1-forms H 1(M4) , 0. Then∫

M
|W+|2 = 8π2(2χ(M4)+ 3σ(M4))− 8

∫
M
σ2(A)≥ 8π2(2χ(M4)+ 3σ(M4)).

Furthermore, the equality holds in the above inequalities if and only if (M4, g) is
conformal to a quotient of R1

×S3 with the product metric.

Proof. By Proposition F,
∫

M |R̊ic|2 ≥ 1
12µ

2([g]) for H 1(M4) , 0. Since M4 is
compact, there exists a conformally metric g̃ of g such that µ2([g]) =

∫
M R2

g̃.
Hence we get

−2
∫

M
|R̊icg̃|

2
+

1
6
µ2([g])=−2

∫
M
|R̊icg̃|

2
+

1
6

∫
M

R2
g̃=−2

∫
M
|R̊ic|2+1

6

∫
M

R2
≤0,

i.e.,

16
∫

M
σ2(A)≤ 0.

By the Chern–Gauss–Bonnet formula,∫
M
|W+|2 = 8π2(2χ(M4)+ 3σ(M4))− 8

∫
M
σ2(A).

Hence ∫
M
|W+|2 ≥ 8π2(2χ(M4)+ 3σ(M4)).

From the proof of Proposition F and the above, the equality holding in the above
inequalities implies that |∇|ω||2 = 3

4 |∇ω|
2 and

∫
M |R̊ic|2 = 1

12µ
2([g])= 1

12

∫
M R2.

By [Bour and Carron 2015, Proposition 5.1 and Section 7.2], (M4, g) is conformal
to a quotient of R1

×S3 with the product metric. �

It is easy to see from the proof of Theorem A* that the assumption that H 2
+
(M) , 0

in Theorem 1 of [Gursky 1998] can be dropped for metrics with zero Yamabe
constant.
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Proposition 5.2. Let (M4, g) be a 4-dimensional compact Riemannian manifold
with zero Yamabe constant µ([g]). Then∫

M
|W+|2 ≥ 16

3 π
2(2χ(M4)+ 3σ(M4)).

Furthermore, equality holds in the above inequality if and only if g is conformal
to a Ricci-flat and anti-self-dual metric, if and only if the universal cover of M is
conformal to either R4 or a K 3 surface.

Proof of Theorem 1.3. Case 1:
∫

M |W
±
|
2
≤
∫

M |W |
2 < 1

6µ
2([g]). By Proposition F,

we get b±2 = 0. From the proof of Theorem D*, we get that (M4, g) has positive
isotropic curvature. According to the main theorem in [Chen et al. 2012], it is
diffeomorphic to S4, RP4, S3

×R/G or a connected sum of them. Here G is a
cocompact fixed point free discrete subgroup of the isometry group of the standard
metric on S3

×R.

Case 2: W+ = 0,
∫

M |W
−
|
2
=

1
6µ

2([g]), or W− = 0,
∫

M |W
+
|
2
=

1
6µ

2([g]). By
the Hirzebruch signature formula

1
48π2

∫
M
(|W+g |

2
− |W−g |

2)= b+2 − b−2 = σ(M),

we get b−2 , 0 or b+2 , 0. By Proposition G, (M4, g) is conformal to a Kähler
manifold of positive constant scalar curvature.

When W+ = 0, by Corollary 1 in [Derdziński 1983], the scalar curvature of
(M4, g̃) is 0, and µ([g])= 0. This is a contradiction.

When W− = 0, by Lemma 7 in [Derdziński 1983], (M4, g̃) is locally symmetric.
By the result of Bourguignon, (M4, g̃) is Einstein. Then g̃ is both Einstein and half
conformally flat. By the classification theorem of Hitchin, (M4, g̃) is isometric to
either a quotient of S4 with the round metric or CP2 with the Fubini–Study metric.
Since we are assuming that is not locally conformal flat, (M4, g̃) is CP2 with the
Fubini–Study metric. �

Remark 5.3. We do not know whether Theorem 1.3 can be deduced directly from
[Chen and Zhu 2014, Theorem 1.6], which has weaker conditions. For their proof,
Chen and Zhu used Micallef and Wang’s result [1993], which we do not use in the
proof of Theorem 1.3. Theorem D can be deduced from the proof of Theorem D*
and Theorem 1.3.

Proof of Theorem 1.6. From the proof of Theorem 1.4, we have b1 = 0 and
2≤ χ(M)≤ 7.

Case 1: In the case of strict inequality, we have∫
M
|W |2 < 1

3µ
2([g]).
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When
∫

M |W
±
|
2 < 1

6µ
2([g]), by Proposition F, b+2 (M)= b−2 (M)= 0. Hence M4

is covered by a homeomorphism sphere, i.e., M4 is homeomorphic to the standard
sphere S4 or the real projective space RP4.

When
∫

M |W
+
|
2 < 1

6µ
2([g]) and

∫
M |W

−
|
2
≥

1
6µ

2([g]), or
∫

M |W
−
|
2 < 1

6µ
2([g])

and
∫

M |W
+
|
2
≥

1
6µ

2([g]). By Proposition E and the Hirzebruch signature formula,
b2(M) = b−2 (M) , 0 or b2(M) = b+2 (M) , 0. Hence 3 ≤ χ(M) = 2+ b2 ≤ 7.
From the proof of Theorem 1.4, we have b±2 = 1 and χ(M) = 3. If (M4, g)
has harmonic Weyl tensor, by Theorem 1.4 we have

∫
M |W |

2
=

1
6µ

2([g]), which
contradicts

∫
M |W |

2 > 1
6µ

2([g]).

Case 2: In the case of equality, we have∫
M
|W |2 = 1

3µ
2([g])= 64

3 π
2χ(M).

Hence g is conformal to an Einstein metric g̃. By Corollary 1.8, (M4, g) is confor-
mal to a quotient of S2

×S2 with the product metric. �

Proposition 5.4. Let (M4, g) be a 4-dimensional compact Riemannian manifold
with positive Yamabe constant. If

1
6µ

2([g])≤
∫

M
|W |2 ≤ 1

3µ
2([g]),

and the universal cover of (M4, g) is not homeomorphic to S4, then one of the
following must be true:

(1) (M4, g) has χ(M4)≤ 4 and 1≤ b2 = b+2 ≤ 2.

(2) (M4, g) has χ(M4)≤ 4 and 1≤ b2 = b−2 ≤ 2.

(3) The universal cover of (M4, g) is conformal to a Kähler manifold of positive
constant scalar curvature. In particular, (M4, g) is a quotient of (61, g1)×

(62, g2), where the surface (6i , gi ) has constant Gaussian curvature ki , and
k1+ k2 > 0.

Proof. When
∫

M |W
+
|
2 < 1

6µ
2([g]) and

∫
M |W

−
|
2 < 1

6µ
2([g]). By Proposition F,

we have b2 = 0. Hence the universal cover of (M4, g) is homeomorphic to S4.
When

∫
M |W

∓
|
2 < 1

6µ
2([g]) and

∫
M |W

±
|
2
≥

1
6µ

2([g]). By Proposition E, we
have b∓2 = 0. By the Hirzebruch signature formula

(5-5) 1
48π2

∫
M
(|W+g |

2
− |W−g |

2)= b+2 − b−2 =±b±2 = σ(M),

we get ±σ(M) = b±2 ≥ 1. Since
∫

M |W |
2
≤

1
3µ

2([g]), by the fact that µ2([g]) ≤
µ2(S4)= 384π2 and the inequality is strict unless (M4, g) is conformal to S4, we
get b±2 ≤ 2. Then we get χ(M)≤ 4.
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When
∫

M |W
+
|
2
=
∫

M |W
−
|
2
=

1
6µ

2([g]). We have that σ(M)= 0 and χ(M) is
even. For any metric g′ of unit volume in the conformal class of g, we have∫

M
Rg′ −

√
6
∫

M
|W±g′ | ≥ µ([g])−

√
6
(∫

M
|W±g′ |

2
) 1

2

=

µ([g])−
√

6
(∫

M
|W±|2

) 1
2

= 0.

Case 1:
∫

M Rg′ −
√

6
∫

M |W
±

g′ |> 0. By [Chen and Zhu 2014, Section 2] and
[Gursky 2000, Section 3], there is a metric g̃ of unit volume in the conformal class
of g such that

√
6|W±g̃ |< Rg̃.

From the proof of Proposition G, we have b2= 0 for σ(M)= 0. Hence the universal
cover of (M4, g) is homeomorphic to S4.

Case 2:
∫

M Rg′ −
√

6
∫

M |W
±

g′ | = 0. Thus there are two metrics g̃1 and g̃2 of unit
volume in the conformal class of g such that

√
6|W+g̃1

| = Rg̃1,
√

6|W−g̃2
| = Rg̃2 .

We have ∫
M
|W+g̃1
|
2
=

∫
M
|W−g̃2
|
2
=

1
6

∫
M

R2
g̃1
=

1
6

∫
M

R2
g̃2
=

1
6
µ2([g]).

Hence g̃1 and g̃2 are the Yamabe minimizers of g. So (M4, g̃1) has nonnegative
isotropic curvature. If b2 = 0, by Theorem 4.10 of [Micallef and Wang 1993],
(M4, g̃1) becomes positive isotropic curvature. By the proof of Theorem 1.3(1),
the universal cover of (M4, g) is diffeomorphic to S4. If b2 > 0, from the proof
of Proposition G, the universal cover of (M4, g̃1) is a Kähler manifold of positive
constant scalar curvature. Since the scalar curvature is positive, the universal
cover of (M4, g̃1) is diffeomorphic to (61, g1)× (62, g2), where (6i , gi ) is a 2-
dimensional manifold, and the Gaussian curvature ki of gi must be a constant and
satisfies k1+ k2 > 0. �

By Theorems 1.6 and D* and Corollary 1.8, we obtain the following theorem:

Theorem 5.5. Let (M4, g) be a 4-dimensional compact Riemannian manifold
which is not homeomorphic to S4 or RP4 with positive Yamabe constant. If∫

M
|W |2+ 4

∫
M
|R̊ic|2 ≤ 1

3µ
2([g]),

then one of the following must be true:

(1) (M4, g) is a quotient of S2
×S2 with the product metric.

(2) (M4, g) is CP2 with the Fubini–Study metric.



FOUR-MANIFOLDS WITH POSITIVE YAMABE CONSTANT 103

(3) (M4, g) is conformal to a quotient of R1
×S3 with the product metric.

(4) (M4, g) has χ(M)= 3, b1 = 0 and b2 = 1, and does not have harmonic Weyl
tensor.
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