Pacific Journal of Mathematics

ON THE STRUCTURE OF CYCLOTOMIC NILHECKE ALGEBRAS

Jun Hu and Xinfeng Liang

ON THE STRUCTURE OF CYCLOTOMIC NILHECKE ALGEBRAS

Jun Hu and Xinfeng Liang

Abstract

In this paper we study the structure of the cyclotomic nilHecke algebras $\mathscr{H}_{\ell, n}^{(0)}$, where $\ell, n \in \mathbb{N}$. We construct a monomial basis for $\mathscr{H}_{\ell, n}^{(0)}$ which verifies a conjecture of Mathas. We show that the graded basic algebra of $\mathscr{H}_{\ell, n}^{(0)}$ is commutative and hence isomorphic to the center Z of $\mathscr{H}_{\ell, n}^{(0)}$. We further prove that $\mathscr{H}_{\ell, n}^{(0)}$ is isomorphic to the full matrix algebra over Z and construct an explicit basis for the center Z. We also construct a complete set of pairwise orthogonal primitive idempotents of $\mathscr{H}_{\ell, n}^{(0)}$. Finally, we present a new homogeneous symmetrizing form Tr on $\mathscr{H}_{\ell, n}^{(0)}$ by explicitly specifying its values on a given homogeneous basis of $\mathscr{H}_{\ell, n}^{(0)}$ and show that it coincides with Shan-Varagnolo-Vasserot's symmetrizing form $\mathrm{Tr}^{\mathrm{SVV}}$ on $\mathscr{H}_{\ell, n}^{(0)}$.

1. Introduction

Quiver Hecke algebras \mathscr{R}_{α} and their finite dimensional quotients $\mathscr{R}_{\alpha}^{\Lambda}$ (i.e., cyclotomic quiver Hecke algebras) have been hot topics in recent years. These algebras are remarkable because they can be used to categorify quantum groups and their integrable highest weight modules; see [Kang and Kashiwara 2012; Khovanov and Lauda 2009; Rouquier 2008; 2012; Varagnolo and Vasserot 2011]. These algebras can be regarded as some \mathbb{Z}-graded analogues of the affine Hecke algebras and their finite dimensional quotients. Many results concerning the representation theory of the affine Hecke algebras and the cyclotomic Hecke algebras of type A have their \mathbb{Z}-graded analogues for the quiver Hecke algebras \mathscr{R}_{α} and the cyclotomic quotients $\mathscr{R}_{\alpha}^{\Lambda}$; see [Brundan and Kleshchev 2009b; Brundan et al. 2011; Lauda and Vazirani 2011]. It is natural to expect that the structure of the affine Hecke algebras and the cyclotomic Hecke algebras of type A also have their \mathbb{Z}-graded analogues for the algebras \mathscr{R}_{α} and $\mathscr{R}_{\alpha}^{\Lambda}$. In fact, this is indeed the case for the quiver Hecke algebras \mathscr{R}_{α}. For example, we have faithful polynomial representations, standard basis and a nice description of the center for the algebra \mathscr{R}_{α} in a similar way as in the case of the affine Hecke algebras of type A. However, the situation turns out to be much more tricky for the cyclotomic quiver Hecke algebras $\mathscr{R}_{\alpha}^{\Lambda}$. Only partial

[^0]progress has been made for the structure of the cyclotomic quiver Hecke algebras $\mathscr{R}_{\alpha}^{\Lambda}$ so far. For example:
(1) The cyclotomic quiver Hecke algebra of type A has a \mathbb{Z}-graded cellular basis by [Hu and Mathas 2010].
(2) The cyclotomic quiver Hecke algebra is a \mathbb{Z}-graded symmetric algebra by [Shan et al. 2017].
(3) The center of the cyclotomic quiver Hecke algebra $\mathscr{R}_{\alpha}^{\Lambda}$ is the image of the center of the quiver Hecke algebra \mathscr{R}_{α} whenever the associated Cartan matrix is symmetric of finite type by [Webster 2015].

Apart from the type A case, one does not even know any explicit bases for arbitrary cyclotomic quiver Hecke algebras. On the other hand, for the classical cyclotomic Hecke algebra of type A, we have not only a Dipper-James-Mathas's cellular basis [Dipper et al. 1998] but also a monomial basis (or Ariki-Koike basis [Ariki and Koike 1994]). But even for the cyclotomic quiver Hecke algebra of type A we do not know any explicit monomial basis. This motivates our first question:

Question 1.1. Can we construct an explicit monomial basis for any cyclotomic quiver Hecke algebra?

Shan, Varagnolo and Vasserot [Shan et al. 2017] have shown that each cyclotomic quiver Hecke algebra can be endowed with a homogeneous symmetrizing form $\mathrm{Tr}^{\mathrm{SVV}}$ which makes it into a graded symmetric algebra (see Remark 4.7 and [Hu and Mathas 2010, §6.3] for the type A case). However, the SVV symmetrizing form $\mathrm{Tr}^{\mathrm{SVV}}$ is defined in an inductive manner. It is difficult to compute the explicit value of the form $\mathrm{Tr}^{\mathrm{SVV}}$ on any specified homogeneous element. On the other hand, it is well-known that the classical cyclotomic Hecke algebra of type A is symmetric [Malle and Mathas 1998; Brundan and Kleshchev 2008] and the definition of its symmetrizing form is explicit in that it specifies its value on each monomial basis element. This motivates our second question:

Question 1.2. Can we determine the explicit values of the Shan-Varagnolo-Vasserot symmetrizing form $\operatorname{Tr}^{S V V}$ on some monomial bases (or at least a set of K-linear generators) of the cyclotomic quiver Hecke algebra?

An explicit basis for the center of $\mathscr{R}_{\alpha}^{\Lambda}$ is unknown. Even for the classical cyclotomic Hecke algebra of type A, except in the level one case [Geck and Pfeiffer 2000] or in the degenerate case [Brundan 2008], one does not know any explicit basis for the center.

Question 1.3. Can we give an explicit basis for the center of the cyclotomic quiver Hecke algebra?

The starting point of this paper is to try to answer the above three questions. As a first step toward this goal, we need to consider the case of the cyclotomic quiver Hecke algebra which corresponds to a quiver with a single vertex and no edges. That is, the cyclotomic nilHecke algebra of type A. Let us recall its definition.
Definition 1.4. Let $\ell, n \in \mathbb{N}$. The nilHecke algebra $\mathscr{H}_{n}^{(0)}$ of type A is the unital associative K-algebra generated by $\psi_{1}, \ldots, \psi_{n-1}, y_{1}, \ldots, y_{n}$ which satisfy the following relations:

$$
\begin{array}{rlrl}
\psi_{r}^{2} & =0, & & \forall 1 \leq r<n, \\
\psi_{r} \psi_{k} & =\psi_{k} \psi_{r}, & & \forall 1 \leq k<r-1<n-1, \\
\psi_{r} \psi_{r+1} \psi_{r} & =\psi_{r+1} \psi_{r} \psi_{r+1}, & & \forall 1 \leq r<n-1, \\
y_{r} y_{k} & =y_{k} y_{r}, & & \forall 1 \leq r, k \leq n, \\
\psi_{r} y_{r+1} & =y_{r} \psi_{r}+1, \quad y_{r+1} \psi_{r}=\psi_{r} y_{r}+1, & \forall 1 \leq r<n, \\
\psi_{r} y_{k} & =y_{k} \psi_{r}, & & \forall k \neq r, r+1 .
\end{array}
$$

The cyclotomic nilHecke algebra $\mathscr{H}_{\ell, n}^{(0)}$ of type A is the quotient of $\mathscr{H}_{n}^{(0)}$ by the two-sided ideal generated by y_{1}^{ℓ}.

The nilHecke algebras $\mathscr{H}_{n}^{(0)}$ was introduced by Kostant and Kumar [1986]. It plays an important role in the theory of Schubert calculus; see [Hiller 1982]. Mathas [2015, §2.5] has observed that the Specht module over $\mathscr{H}_{n, n}^{(0)}$ can be realized as the coinvariant algebra with standard bases of Specht modules being identified with the Schubert polynomials of the coinvariant algebras. It is clear that both $\mathscr{H}_{n}^{(0)}$ and $\mathscr{H}_{\ell, n}^{(0)}$ are \mathbb{Z}-graded K-algebras such that each ψ_{r} is homogeneous with $\operatorname{deg} \psi_{r}=-2$ and each y_{s} is homogeneous with deg $y_{s}=2$ for all $1 \leq r<n, 1 \leq s \leq n$. Mathas [2015, §2.5] has conjectured a monomial basis of the cyclotomic nilHecke algebra $\mathscr{H}_{n, n}^{(0)}$. In this paper, we shall construct a monomial basis of the cyclotomic nilHecke algebra $\mathscr{H}_{\ell, n}^{(0)}$ for arbitrary ℓ (Theorem 2.34) that, in particular, verifies Mathas's conjecture. As an application, we shall construct a basis for the center Z of $\mathscr{H}_{\ell, n}^{(0)}$ (Theorem 3.7). Thus we shall answer Question 1.1 and Question 1.3 for the cyclotomic nilHecke algebra $\mathscr{H}_{\ell, n}^{(0)}$. Furthermore, we shall construct a new homogeneous symmetrizing form Tr (Proposition 4.13) by specifying its values on a homogeneous basis element of $\mathscr{H}_{\ell, n}^{(0)}$. We prove that this new form Tr actually coincides with Shan-Varagnolo-Vasserot's symmetrizing form $\mathrm{Tr}^{\mathrm{SVV}}$ [Shan et al. 2017] on $\mathscr{H}_{\ell, n}^{(0)}$. Thus we also answer Question 1.2 for the cyclotomic nilHecke algebra $\mathscr{H}_{\ell, n}^{(0)}$.

The content of the paper is organized as follows. In Section 2, we shall first review some basic knowledge about the structure and representation of $\mathscr{H}_{\ell, n}^{(0)}$. Lemma 2.12 provides a useful commutator relation which will be used frequently in
later discussion. In Corollary 2.18 and 2.19 we determine the graded dimensions of the graded simple modules and their graded projective covers as well as the graded decomposition numbers and the graded Cartan numbers. We construct a monomial basis of the cyclotomic nilHecke algebra $\mathscr{H}_{\ell, n}^{(0)}$ for arbitrary ℓ in Theorem 2.34. We also construct a complete set of pairwise orthogonal primitive idempotents in Corollary 2.25 and Theorem 2.31. In Section 3, we shall first present a basis for the graded basic algebra of $\mathscr{H}_{\ell, n}^{(0)}$ and show that it is isomorphic to the center Z of $\mathscr{H}_{\ell, n}^{(0)}$ in Lemma 3.2. Then we shall give a basis for the center in Theorem 3.7 which consists of certain symmetric polynomials in y_{1}, \ldots, y_{n}. We also show in Proposition 3.8 that $\mathscr{H}_{\ell, n}^{(0)}$ is isomorphic to the full matrix algebra over Z. In Section 4, we shall first show in Lemma 4.4 that the center Z is a graded symmetric algebra by specifying an explicit homogeneous symmetrizing form on Z. Then we shall introduce two homogeneous symmetrizing forms: one is defined by using its isomorphism with the full matrix algebra over the center Z (Lemma 4.6); another is defined by specifying its values on a homogeneous basis element (Definition 4.11 and Proposition 4.13). We show in Proposition 4.14 that these two symmetrizing forms are the same. In Section 5 we show that the form Tr also coincides with Shan-Varagnolo-Vasserot's symmetrizing form $\mathrm{Tr}^{\mathrm{SVV}}$ (which was introduced in [Shan et al. 2017] for general cyclotomic quiver Hecke algebras).

After the submission of this paper, Professor Lauda emailed us that he wonders if our results have some connections with his papers [Khovanov et al. 2012; Lauda 2012]. In the latter paper he proved that the cyclotomic nilHecke algebra is isomorphic to the matrix ring of size n ! over the cohomology of a Grassmannian. Combining it with Proposition 3.8 in this paper this implies that the center of the cyclotomic nilHecke algebra is isomorphic to that cohomology of a Grassmannian. He also proposed an interesting question of comparing the trace form Tr in this paper with the natural form on the matrix ring over the cohomology of the Grassmannian which can be defined using integration over the volume form.

2. The structure and representation of $\mathscr{H}_{\ell, \boldsymbol{n}}^{(\mathbf{0})}$

Let \mathfrak{S}_{n} be the symmetric group on $\{1,2, \ldots, n\}$ and let $s_{i}:=(i, i+1) \in \mathfrak{S}_{n}$, for $1 \leq i<n$. Then $\left\{s_{1}, \ldots, s_{n-1}\right\}$ is the standard set of Coxeter generators for \mathfrak{S}_{n}. If $w \in \mathfrak{S}_{n}$ then the length of w is

$$
\ell(w):=\min \left\{k \in \mathbb{N} \mid w=s_{i_{1}} \ldots s_{i_{k}} \text { for some } 1 \leq i_{1}, \ldots, i_{k}<n\right\}
$$

If $w=s_{i_{1}} \ldots s_{i_{k}}$ with $k=\ell(w)$ then $s_{i_{1}} \ldots s_{i_{k}}$ is a reduced expression for w. In this case, we define $\psi_{w}:=\psi_{i_{1}} \ldots \psi_{i_{k}}$. The braid relation in Definition 1.4 ensures that ψ_{w} does not depend on the choice of the reduced expression of w. Let $w_{0, n}$ be the unique longest element in \mathfrak{S}_{n}. When n is clear from the context we shall write w_{0}
instead of $w_{0, n}$ for simplicity. Then $w_{0}=w_{0}^{-1}$ and $\ell\left(w_{0}\right)=n(n-1) / 2$. Let $*$ be the unique K-algebra antiautomorphism of $\mathscr{H}_{\ell, n}^{(0)}$ which fixes each of its ψ and y generators.

Lemma 2.1 [Manivel 2001]. The elements in the set

$$
\left\{\psi_{w} y_{1}^{c_{1}} \ldots y_{n}^{c_{n}} \mid w \in \mathfrak{S}_{n}, c_{1}, \ldots, c_{n} \in \mathbb{N}\right\}
$$

form a K-basis of the nilHecke algebra $\mathscr{H}_{n}^{(0)}$ and the center of $\mathscr{H}_{n}^{(0)}$ is the set of symmetric polynomials in y_{1}, \ldots, y_{n}.

Let $\pi: \mathscr{H}_{n}^{(0)} \rightarrow \mathscr{H}_{\ell, n}^{(0)}$ be the canonical surjective homomorphism.
Definition 2.2. An element z in $\mathscr{H}_{\ell, n}^{(0)}$ is said to be symmetric if $z=\pi\left(f\left(y_{1}, \ldots, y_{n}\right)\right)$ for some symmetric polynomial $f\left(t_{1}, \ldots, t_{n}\right) \in K\left[t_{1}, \ldots, t_{n}\right]$, where t_{1}, \ldots, t_{n} are n indeterminates over K.
Corollary 2.3. Any symmetric element in $\mathscr{H}_{\ell, n}^{(0)}$ lies in the center of $\mathscr{H}_{\ell, n}^{(0)}$.
Proof. This follows from Lemma 2.1 and the surjective homomorphism π.
Let Γ be a quiver without loops and I its vertex set. For any $i, j \in I$ let $d_{i j}$ be the number of arrows $i \rightarrow j$ and set $m_{i j}:=d_{i j}+d_{j i}$. This defines a symmetric generalized Cartan matrix $\left(a_{i j}\right)_{i, j \in I}$ by putting $a_{i j}:=-m_{i j}$ for $i \neq j$ and $a_{i i}:=2$ for any $i \in I$. Let u, v be two indeterminates over \mathbb{Z}. We define $Q_{i j}:=(-1)^{d_{i j}}(u-v)^{m_{i j}}$ for any $i \neq j \in I$ and $Q_{i i}(u, v):=0$ for any $i \in I$. Let $\left(\mathfrak{h}, \Pi, \Pi^{\vee}\right)$ be a realization of the generalized Cartan matrix $\left(a_{i j}\right)_{i, j \in I}$. Let P be the associated weight lattice which is a finite rank free abelian group and contains $\Pi=\left\{\alpha_{i} \mid i \in I\right\}$, let P^{\vee} be the associated coweight lattice which is a finite rank free abelian group too and contains $\Pi^{\vee}=\left\{\alpha_{i}^{\vee} \mid i \in I\right\}$. Let $Q^{+}:=\mathbb{N} \Pi \subset P$ be the semigroup generated by Π and $P^{+} \subset P$ be the set of integral dominant weights. Let $\Lambda \in P^{+}$and $\beta \in Q_{n}^{+}$. One can associate it with a quiver Hecke algebra \mathscr{R}_{β} as well as its cyclotomic quotient $\mathscr{R}_{\beta}^{\Lambda}$. We refer the readers to [Khovanov and Lauda 2009; Rouquier 2012; Shan et al. 2017] for precise definitions.

Let $\left\{\Lambda_{i} \mid i \in I\right\}$ be the set of fundamental weights. The nilHecke algebra and its cyclotomic quotient can be regarded as a special quiver Hecke algebra and cyclotomic quiver Hecke algebra. That is, the quiver with single one vertex $\{0\}$ and no edges. More precisely, we have

$$
\begin{equation*}
\mathscr{H}_{n}^{(0)}=\mathscr{R}_{n \alpha_{0}}, \quad \mathscr{H}_{\ell, n}^{(0)}=\mathscr{R}_{n \alpha_{0}}^{\ell \Lambda_{0}} \tag{2.4}
\end{equation*}
$$

Throughout this paper, unless otherwise stated, we shall work in the category of \mathbb{Z}-graded $\mathscr{H}_{\ell, n}^{(0)}$-modules. Note that $\mathscr{H}_{\ell, n}^{(0)}$ is a special type A cyclotomic quiver Hecke algebra so that we can apply the theory of graded cellular algebras developed in [Hu and Mathas 2010]. We now recall the definition of graded cellular basis in this special situation (i.e., for $\mathscr{H}_{\ell, n}^{(0)}$).

We use \varnothing to denote the empty partition and (1) to denote the unique partition of 1 . Set $|\varnothing|:=0,|(1)|:=1$. We define

$$
\mathscr{P}_{0}:=\left\{\lambda:=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)\left|\sum_{i=1}^{\ell}\right| \lambda^{(i)} \mid=n, \lambda^{(i)} \in\{\varnothing,(1)\}, \forall 1 \leq i \leq \ell\right\}
$$

Definition 2.5. If $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right) \in \mathscr{P}_{0}$, then we define $\theta(\lambda)$ to be the unique n-tuple $\left(k_{1}, \ldots, k_{n}\right)$ such that $1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq \ell$ and

$$
\lambda^{(j)}= \begin{cases}(1) & \text { if } j=k_{i} \text { for some } 1 \leq i \leq n \\ \varnothing & \text { otherwise }\end{cases}
$$

Given any two n-tuples $\left(k_{1}, \ldots, k_{n}\right),\left(k_{1}^{\prime}, \ldots, k_{n}^{\prime}\right)$ of increasing positive integers, we define

$$
\left(k_{1}, \ldots, k_{n}\right) \geq\left(k_{1}^{\prime}, \ldots, k_{n}^{\prime}\right) \Leftrightarrow k_{i} \geq k_{i}^{\prime}, \forall 1 \leq i \leq n
$$

and $\left(k_{1}, \ldots, k_{n}\right)>\left(k_{1}^{\prime}, \ldots, k_{n}^{\prime}\right)$ if $\left(k_{1}, \ldots, k_{n}\right) \geq\left(k_{1}^{\prime}, \ldots, k_{n}^{\prime}\right)$ and $\left(k_{1}, \ldots, k_{n}\right) \neq$ $\left(k_{1}^{\prime}, \ldots, k_{n}^{\prime}\right)$. For any $\boldsymbol{\lambda}, \boldsymbol{\mu} \in \mathscr{P}_{0}$, we define

$$
\lambda>\boldsymbol{\mu} \Leftrightarrow \theta(\boldsymbol{\lambda})<\theta(\boldsymbol{\mu}) .
$$

Then " $>$ " is a partial order on \mathscr{P}_{0}.
The following is a special case of [Hu and Mathas 2010, Definition 4.15].
Definition 2.6. Let $\lambda \in \mathscr{P}_{0}$ with $\theta(\lambda)=\left(k_{1}, \ldots, k_{n}\right)$. We define

$$
y_{\lambda}:=y_{1}^{\ell-k_{1}} \ldots y_{n}^{\ell-k_{n}}, \quad \operatorname{deg} y_{\lambda}:=2 \ell n-2 \sum_{i=1}^{n} k_{i} .
$$

By the main results in [Hu and Mathas 2010], the elements in the set

$$
\begin{equation*}
\left\{\psi_{w, u}^{\lambda}:=\psi_{w}^{*} y_{\lambda} \psi_{u} \mid \lambda \in \mathscr{P}_{0}, w, u \in \mathfrak{S}_{n}\right\} \tag{2.7}
\end{equation*}
$$

form a graded cellular K-basis of $\mathscr{H}_{\ell, n}^{(0)}$. Each basis element $\psi_{w, u}^{\lambda}$ is homogeneous with degree equal to

$$
\operatorname{deg} \psi_{w, u}^{\lambda}:=\operatorname{deg} y_{\lambda}-2 \ell(w)-2 \ell(u)=2 \ell n-2 \sum_{i=1}^{n} k_{i}-2 \ell(w)-2 \ell(u)
$$

In particular, $\operatorname{dim}_{K} \mathscr{H}_{\ell, n}^{(0)}=\ell(\ell-1) \ldots(\ell-n+1) n!$. Note that $\mathscr{P}_{0} \neq \varnothing$ if and only if $\ell \geq n$. Therefore, $\mathscr{H}_{\ell, n}^{(0)}=0$ whenever $\ell<n$. Henceforth, we always assume that $\ell \geq n$.

By the general theory of (graded) cellular algebras [Graham and Lehrer 1996; Hu and Mathas 2010], for each $\lambda \in \mathscr{P}_{0}$, we have a graded Specht module S^{λ}, which is equipped with an associative homogeneous bilinear form $\langle-,-\rangle_{\lambda}$. Let $\operatorname{rad}\langle-,-\rangle_{\lambda}$ be the radical of that bilinear form. We define $D^{\lambda}:=S^{\lambda} / \operatorname{rad}\langle-,-\rangle_{\lambda}$. By [Hu and

Mathas 2010, Corollary 5.11], we know that $D^{\lambda} \neq 0$ if and only if λ is a Kleshchev multipartition with respect to $(p ; 0,0, \ldots, 0)$, where $p=$ char K.

Let $\lambda \in \mathscr{P}_{0}$ with $\theta(\lambda)=\left(k_{1}, \ldots, k_{n}\right)$. A λ-tableau is a bijection $\mathfrak{t}:\left\{k_{1}, \ldots, k_{n}\right\} \rightarrow$ $\{1,2, \ldots, n\}$. We use $\operatorname{Tab}(\boldsymbol{\lambda})$ to denote the set of $\boldsymbol{\lambda}$-tableaux. For any $\mathfrak{t} \in \operatorname{Tab}(\boldsymbol{\lambda})$, we define
$\operatorname{deg} \mathfrak{t}:=\sum_{i=1}^{n}\left(\#\left\{k_{i}<j \leq \ell \mid\right.\right.$ either $j \notin\left\{k_{1}, \ldots, k_{n}\right\}$ or $j=k_{b}$ with $\left.\mathfrak{t}(j)>\mathfrak{t}\left(k_{i}\right)\right\}$
$-\#\left\{k_{i}<j \leq \ell \mid j \in\left\{k_{1}, \ldots, k_{n}\right\}\right.$ and $\left.\left.\mathfrak{t}(j)<\mathfrak{t}\left(k_{i}\right)\right\}\right)$.
It is clear that in our special case (i.e., for \mathscr{P}_{0}) the above definition of deg t coincides with that in [Brundan et al. 2011; Hu and Mathas 2010].

Definition 2.8. We define

$$
\lambda_{\max }:=(\underbrace{(1), \ldots,(1)}_{n \text { copies }}, \underbrace{\varnothing, \ldots, \varnothing}_{\ell-n \text { copies }}), \quad \lambda_{\min }:=(\underbrace{\varnothing, \ldots, \varnothing}_{\ell-n \text { copies }}, \underbrace{(1), \ldots,(1)}_{n \text { copies }}) .
$$

It is clear that for any $\boldsymbol{\mu} \in \mathscr{P}_{0} \backslash\left\{\lambda_{\text {max }}, \lambda_{\text {min }}\right\}$, we have that

$$
\begin{equation*}
\lambda_{\min }<\boldsymbol{\mu}<\lambda_{\max }, \quad \operatorname{deg} y_{\lambda_{\min }}<\operatorname{deg} y_{\boldsymbol{\mu}}<\operatorname{deg} y_{\lambda_{\max }} . \tag{2.9}
\end{equation*}
$$

Using [Brundan and Kleshchev 2009a] and the definition of the Kleshchev multipartition in [Ariki and Mathas 2000], it is clear that $\lambda_{\min }$ is the unique Kleshchev multipartition in \mathscr{P}_{0}. Therefore, for any $\lambda \in \mathscr{P}_{0}, D^{\lambda} \neq 0$ if and only if $\lambda=\lambda_{\text {min }}$. Furthermore, $D^{\lambda_{\text {min }}}$ is the unique (self-dual) graded simple module for $\mathscr{H}_{\ell, n}^{(0)}$. Let $P^{\lambda_{\text {min }}}$ be its graded projective cover.

Definition 2.10. We define

$$
D_{0}:=D^{\lambda_{\min }}, \quad P_{0}:=P^{\lambda_{\min }}
$$

For each $\boldsymbol{\mu} \in \mathscr{P}_{0}$, we use $\left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu}$ to denote the K-subspace of $\mathscr{H}_{\ell, n}^{(0)}$ spanned by all the elements of the form $\psi_{w}^{*} y_{\lambda} \psi_{u}$, where $\lambda>\boldsymbol{\mu}, w, u \in \mathfrak{S}_{n}$. Then $\left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu}$ is a two-sided ideal of $\mathscr{H}_{\ell, n}^{(0)}$. By [Hu and Mathas 2012, Corollary 3.11], for any $1 \leq r \leq n$, if $\theta(\boldsymbol{\mu})=\left(k_{1}, \ldots, k_{n}\right)$ then

$$
\begin{equation*}
y_{\mu} y_{r}=y_{1}^{\ell-k_{1}} \ldots y_{n}^{\ell-k_{n}} y_{r} \in\left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu} \tag{2.11}
\end{equation*}
$$

Lemma 2.12. For any $1 \leq i \leq n, 1 \leq j<n$, there exists elements $h_{i, j}, h_{i, j}^{\prime} \in \mathscr{H}_{\ell, n}^{(0)}$ such that

$$
\begin{equation*}
\psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}=(-1)^{n(n-1) / 2}+\sum_{\substack{1 \leq i \leq n \\ 1 \leq j<n}} y_{i} h_{i, j} \psi_{j} \tag{2.13}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}}=(-1)^{n(n-1) / 2}+\sum_{\substack{1 \leq i \leq n \\ 1 \leq j<n}} \psi_{j} h_{i, j}^{*} y_{i} \tag{2.14}
\end{equation*}
$$

Proof. We only prove the first equality as the second one follows from the first one by applying the anti-involution $*$. We use induction on n. If $n=1$, it is clear that (2.13) holds. Suppose that the lemma holds for the nilHecke algebra $\mathscr{H}_{\ell, n-1}^{(0)}$. We are going to prove (2.13) for $\mathscr{H}_{\ell, n}^{(0)}$.

Recall that the unique longest element $w_{0}:=w_{0, n}$ of \mathfrak{S}_{n} has a reduced expression

$$
w_{0}=s_{1}\left(s_{2} s_{1}\right) \ldots\left(s_{n-2} s_{n-3} \ldots s_{1}\right)\left(s_{n-1} s_{n-2} \ldots s_{1}\right)
$$

Recall that $w_{0, n-1}$ denotes the unique longest element in \mathfrak{S}_{n-1} and

$$
w_{0}=w_{0, n-1}\left(s_{n-1} s_{n-2} \ldots s_{1}\right)
$$

and $s_{1}\left(s_{2} s_{1}\right) \ldots\left(s_{n-2} s_{n-3} \ldots s_{1}\right)$ is a reduced expression for $w_{0, n-1}$.
We define

$$
J_{n}:=\sum_{i=1}^{n} y_{i} \mathscr{H}_{\ell, n}^{(0)}
$$

Then we have, with all congruences modulo J_{n},

$$
\begin{aligned}
& \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \\
& \quad=\psi_{w_{0}}\left(y_{1} y_{2} \ldots y_{n-1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \\
& =\psi_{w_{0, n-1}}\left(\psi_{n-1} \psi_{n-2} \ldots \psi_{1} y_{1} y_{2} \ldots y_{n-1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \\
& =\psi_{w_{0, n-1}}\left(\psi_{n-1} y_{1} y_{2} \ldots y_{n-1} \psi_{n-2} \ldots \psi_{1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \quad(\text { by Corollary 2.3) } \\
& =\psi_{w_{0, n-1}}\left(y_{1} y_{2} \ldots y_{n-2} \psi_{n-1} y_{n-1} \psi_{n-2} \ldots \psi_{1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \\
& =\psi_{w_{0, n-1}}\left(y_{1} y_{2} \ldots y_{n-2}\left(y_{n} \psi_{n-1}-1\right) \psi_{n-2} \ldots \psi_{1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \\
& \equiv-\psi_{w_{0, n-1}}\left(y_{1} y_{2} \ldots y_{n-2} \psi_{n-2} \ldots \psi_{1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \quad \text { (by (2.11)) } \\
& \equiv-\psi_{w_{0, n-2}}\left(\psi_{n-2} \psi_{n-3} \ldots \psi_{1} y_{1} y_{2} \ldots y_{n-2}\right)\left(\psi_{n-2} \ldots \psi_{1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \\
& \equiv-\psi_{w_{0, n-2}}\left(\psi_{n-2} y_{1} y_{2} \ldots y_{n-2} \psi_{n-3} \ldots \psi_{1}\right)\left(\psi_{n-2} \ldots \psi_{1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \\
& \equiv-\psi_{w_{0, n-2}}\left(y_{1} y_{2} \ldots y_{n-3}\left(\psi_{n-2} y_{n-2}\right) \psi_{n-3} \ldots \psi_{1}\right)\left(\psi_{n-2} \ldots \psi_{1}\right) \\
& \\
& \equiv-\psi_{w_{0, n-2}}\left(y_{1} y_{2} \ldots y_{n-3}\left(y_{n-1} \psi_{n-2}-1\right) \psi_{n-3} \ldots \psi_{1}\right)\left(\psi_{n-2} \ldots \psi_{1}\right) \\
& \quad \times y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2} \\
& \equiv(-1)^{2} \psi_{w_{0, n-2}}\left(y_{1} y_{2} \ldots y_{n-3} \psi_{n-3} \ldots \psi_{1}\right)\left(\psi_{n-2} \ldots \psi_{1}\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{2} \ldots y_{n-2} \\
& \equiv(-1)^{2} \psi_{w_{0, n-2}}\left(y_{1} y_{2} \ldots y_{n-3}\right)\left(\left(\psi_{n-3} \ldots \psi_{1}\right)\left(\psi_{n-2} \ldots \psi_{1}\right)\right) y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv(-1)^{2} \psi_{w_{0, n-3}}\left(\psi_{n-3} \psi_{n-4}\right.\left.\ldots \psi_{1} y_{1} y_{2} \ldots y_{n-3}\right) \\
& \times\left(\left(\psi_{n-3} \ldots \psi_{1}\right)\left(\psi_{n-2} \ldots \psi_{1}\right)\left(y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2}\right)\right) \\
& \vdots \\
& \equiv(-1)^{n-1}\left(\psi_{1}\left(\psi_{2} \psi_{1}\right) \ldots\left(\psi_{n-3} \ldots \psi_{1}\right)\left(\psi_{n-2} \ldots \psi_{1}\right)\left(y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2}\right)\right) \\
& \equiv(-1)^{n-1} \psi_{w_{0, n-1}}\left(y_{1}^{n-2} y_{2}^{n-3} \ldots y_{n-2}\right) \\
& \equiv(-1)^{n-1}(-1)^{(n-1)(n-2) / 2} \equiv(-1)^{n(n-1) / 2}
\end{aligned}
$$

as required, where we have used induction in the second-to-last congruence.
Therefore, we have proved that

$$
\psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}=(-1)^{n(n-1) / 2}+\sum_{\substack{1 \leq i \leq n \\ 1 \leq j<n}} y_{i} h_{i}
$$

where $h_{i} \in \mathscr{H}_{\ell, n}^{(0)}$. Comparing the degree on both sides, we can assume that each h_{i} is homogeneous with $h_{i} \neq 0$ only if $\operatorname{deg}\left(h_{i}\right)=-2<0$. On the other hand, we can express each nonzero h_{i} as a K-linear combination of some monomials of the form $y_{1}^{c_{1}} \ldots y_{n}^{c_{n}} \psi_{w}$, where $c_{1}, \ldots, c_{n} \in \mathbb{N}, w \in \mathfrak{S}_{n}$. Since each y_{j} has degree 2 , we can thus deduce that each nonzero h_{i} must be equal to a K-linear combination of some monomials of the form $y_{1}^{c_{1}} \ldots y_{n}^{c_{n}} \psi_{w}$ with $c_{1}, \ldots, c_{n} \in \mathbb{N}$ and $1 \neq w \in \mathfrak{S}_{n}$. This completes the proof of the lemma.

Lemma 2.15. (1) For any $u, w \in \mathfrak{S}_{n}$, if $\ell(u)+\ell(w)>\ell(u w)$, then $\psi_{u} \psi_{w}=0$.
(2) For any $1 \leq r<n, \psi_{r} \psi_{w_{0}}=0=\psi_{w_{0}} \psi_{r}$.

Proof. (1) follows from the defining relations for $\mathscr{H}_{\ell, n}^{(0)}$, while (2) follows from the defining relations for $\mathscr{H}_{\ell, n}^{(0)}$ and the fact that w_{0} has both a reduced expression which starts with s_{r} as well as a reduced expression which ends with s_{r} for any $1 \leq r<n$.

Let $s \in \mathbb{Z}$. For any \mathbb{Z}-graded $\mathscr{H}_{\ell, n}^{(0)}$-module M, we define $M\langle s\rangle$ to be a new \mathbb{Z}-graded $\mathscr{H}_{\ell, n}^{(0)}$-module as follows:

- $M\langle s\rangle=M$ as an ungraded $\mathscr{H}_{\ell, n}^{(0)}$-module.
- As a \mathbb{Z}-graded module, $M\langle s\rangle$ is obtained by shifting the grading on M up by s. That is, $M\langle s\rangle_{d}=M_{d-s}$, for $d \in \mathbb{Z}$.

Lemma 2.16. Let $\boldsymbol{\mu} \in \mathscr{P}_{0}$ with $\theta(\boldsymbol{\mu})=\left(k_{1}, \ldots, k_{n}\right)$. Then

$$
\operatorname{dim} D_{0}=n!, \quad \operatorname{dim} P_{0}=\binom{\ell}{n} n!, \quad S^{\mu} \cong D_{0}\left\langle n \ell-\frac{n(n-1)}{2}-\sum_{i=1}^{n} k_{i}\right\rangle .
$$

Proof. By the definitions of \mathscr{P}_{0} and Specht modules over $\mathscr{H}_{\ell, n}^{(0)}$, it is clear that $S^{\mu} \cong S^{\lambda_{\text {min }}}\left\langle n \ell-n(n-1) / 2-\sum_{i=1}^{n} k_{i}\right\rangle$. Thus it suffices to show that $S^{\lambda_{\text {min }}}=D^{\lambda_{\text {min }}}$. To this end, we need to compute the bilinear form between standard bases of the Specht module $S^{\lambda_{\text {min }}}$.

By definition, $S^{\lambda_{\text {min }}}$ has a standard basis

$$
\left\{y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w}+\left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\lambda_{\min }} \mid w \in \mathfrak{S}_{n}\right\}
$$

For any $w, u \in \mathfrak{S}_{n}$, by Lemma 2.15, we see that

$$
\begin{aligned}
y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w} \psi_{u}^{*} y_{1}^{n-1} & y_{2}^{n-2} \ldots y_{n-1} \\
& =y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\left(\psi_{w} \psi_{u^{-1}}\right) y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}=0
\end{aligned}
$$

unless $\ell\left(w u^{-1}\right)=\ell(w)+\ell\left(u^{-1}\right)$.
Now we assume that $\ell\left(w u^{-1}\right)=\ell(w)+\ell\left(u^{-1}\right)$. By the commutator relations between y and ψ generators, (2.11) and the fact that $\ell\left(w_{0}\right)=n(n-1) 2$, we can deduce that

$$
\begin{aligned}
& y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\left(\psi_{w} \psi_{u^{-1}}\right) y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \\
& \quad=y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w u^{-1}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \in\left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\lambda_{\min }}
\end{aligned}
$$

unless $w u^{-1}=w_{0}$. In that case, by Lemma 2.12, we have that

$$
\begin{aligned}
y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w} \psi_{u}^{*} y_{1}^{n-1} & y_{2}^{n-2} \ldots y_{n-1} \\
& =y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \\
& =(-1)^{n(n-1) / 2} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\lambda_{\min }}\right)
\end{aligned}
$$

Thus we have proved that if $\ell\left(w u^{-1}\right)=\ell(w)+\ell\left(u^{-1}\right)$ and $w u^{-1}=w_{0}$, then

$$
\begin{aligned}
&\left\langle y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w}+\left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\lambda_{\min }}, y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{u}+\left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\lambda_{\min }}\right\rangle_{\lambda_{\min }} \\
&=(-1)^{n(n-1) / 2}
\end{aligned}
$$

otherwise it is equal to 0 . This means the Gram matrix of $S^{\lambda_{\text {min }}}$ is invertible and hence the bilinear form $\langle-,-\rangle_{\lambda_{\text {min }}}$ on $S^{\lambda_{\text {min }}}$ is nondegenerate. It follows that $S^{\lambda_{\text {min }}}=D^{\lambda_{\text {min }}}=D_{0}$ as required. Therefore, $\operatorname{dim} D_{0}=\operatorname{dim} S^{\lambda_{\text {min }}}=n!$. Finally, since $\mathscr{H}_{\ell, n}^{(0)} \cong P_{0}^{\oplus \operatorname{dim} D_{0}}$, we can deduce that $\operatorname{dim} P_{0}=\operatorname{dim} \mathscr{H}_{\ell, n}^{(0)} / \operatorname{dim} D_{0}=\binom{\ell}{n}(n!)^{2} / n!=$ $\binom{\ell}{n} n!$.

Let q be an indeterminate. The graded dimension of M is the Laurent polynomial

$$
\begin{equation*}
\operatorname{dim}_{q} M=\sum_{d \in \mathbb{Z}}\left(\operatorname{dim}_{K} M_{d}\right) q^{d} \in \mathbb{N}\left[q, q^{-1}\right] \tag{2.17}
\end{equation*}
$$

where M_{d} is the homogeneous component of M which has degree d. In particular,
$\operatorname{dim}_{K} M=\left.\left(\operatorname{dim}_{q} M\right)\right|_{q=1}$. As a consequence, we can determine the graded dimension of the unique self-dual graded simple module D_{0} and its projective cover P_{0}, and compute the graded decomposition number $d_{\mu, \lambda_{\text {min }}}(q):=\left[S^{\mu}: D^{\lambda_{\text {min }}}\right]_{q}$ and graded Cartan number $c_{\lambda_{\text {min }}, \lambda_{\text {min }}}(q):=\left[P^{\lambda_{\text {min }}}: D^{\lambda_{\text {min }}}\right]_{q}$.

Corollary 2.18. We have

$$
\begin{aligned}
\operatorname{dim}_{q} D_{0} & =\sum_{\mathfrak{t} \in \operatorname{Tab}\left(\lambda_{\min }\right)} q^{\operatorname{deg} \mathfrak{t}}, \\
\operatorname{dim}_{q} P_{0} & =\sum_{\substack{k_{1}, \ldots, k_{n} \in \mathbb{N} \\
1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq \ell}} \sum_{\mathrm{t} \in \operatorname{Tab}\left(\lambda_{\min }\right)} q^{\operatorname{deg} \mathfrak{t}+2 n \ell-n(n-1)-\sum_{i=1}^{n} 2 k_{i}} .
\end{aligned}
$$

Corollary 2.19. Let $\boldsymbol{\mu} \in \mathscr{P}_{0}$ with $\theta(\boldsymbol{\mu})=\left(k_{1}, \ldots, k_{n}\right)$. We have

$$
\begin{aligned}
d_{\mu, \lambda_{\min }}(q) & =q^{n \ell-n(n-1) / 2-\sum_{i=1}^{n} k_{i}} \in \delta_{\mu, \lambda_{\min }}+q \mathbb{N}[q], \\
c_{\lambda_{\min }, \lambda_{\min }}(q) & =\sum_{\substack{l_{1}, \ldots, l_{n} \in \mathbb{N} \\
1 \leq l_{1}<l_{2}<\cdots<l_{n} \leq \ell}} q^{2 n \ell-n(n-1)-\sum_{i=1}^{n} 2 l_{i}} \in 1+q \mathbb{N}[q] .
\end{aligned}
$$

Lemma 2.20 [Hoffnung and Lauda 2010, Proposition 7]. For any $1 \leq s \leq n$, we have

$$
\sum_{\substack{l_{1}, \ldots, l_{s} \in \mathbb{N} \\ l_{1}+\cdots+l_{s}=\ell-s+1}} y_{1}^{l_{1}} y_{2}^{l_{2}} \ldots y_{s}^{l_{s}}=0
$$

Remark 2.21. Note that one should identify our generator y_{r} with the generator $-x_{r, i}$ in [Hoffnung and Lauda 2010] so that the relation $\psi_{r} y_{r+1}=y_{r} \psi_{r}+1$ in Definition 1.4 matches up with the relation $x_{r, i} \delta_{r, i}-\delta_{r, i} x_{r+1, i}=e(i)$ when $i_{r}=i_{r+1}$.

Lemma 2.22 [Hoffnung and Lauda 2010, Proposition 8]. Let $1 \leq m<n$ and $b \in \mathbb{N}$. If $y_{m-1}^{b}=0$ then $y_{m}^{b}=0$.

Lemma 2.23. For any $2 \leq m \leq n$ and $\omega_{m}>\ell-m$, we have

$$
\begin{equation*}
y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{m-1}^{\ell-m+1} y_{m}^{\omega_{m}}=0 \tag{2.24}
\end{equation*}
$$

Proof. We use induction on m. If $m=1$, then (2.24) reduces to $y_{1}^{\omega_{1}}=0$ for $\omega_{1}>\ell-1$, which certainly holds by the fact that $y_{1}^{\ell}=0$.

If $m=2$, then we need to show that $y_{1}^{\ell-1} y_{2}^{\omega_{2}}=0$ whenever $\omega_{2}>\ell-2$. By Lemma 2.22, we can deduce that $y_{2}^{\ell}=0$ from the equality $y_{1}^{\ell}=0$. Therefore, it remains to show that $y_{1}^{\ell-1} y_{2}^{\ell-1}=0$. In this case, applying Lemma 2.20, we get that

$$
y_{2}^{\ell-1}=\sum_{\substack{l_{1}, l_{2} \in \mathbb{N}, l_{1} \neq 0 \\ l_{1}+l_{2}=\ell-1}} y_{1}^{l_{1}} y_{2}^{l_{2}}
$$

It follows that

$$
y_{1}^{\ell-1} y_{2}^{\ell-1}=-\sum_{\substack{l_{1}, l_{2} \in \mathbb{N}, l_{1} \neq 0 \\ l_{1}+l_{2}=\ell-1}} y_{1}^{\ell-1+l_{1}} y_{2}^{l_{2}}=0
$$

as required.
Now assume that (2.24) holds for $2 \leq k \leq m$. Hence $y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{k-1}^{\ell-k+1} y_{k}^{\omega_{k}}=0$ whenever $\omega_{k}>\ell-k$.

Applying Lemma 2.20 for $s=m+1$, we get that

$$
y_{m+1}^{\ell-m}=\sum_{\substack{l_{1}, \ldots, l_{m+1} \in \mathbb{N} \\ l_{m+1} \neq \ell-m, l_{1}+\cdots+l_{m+1}=\ell-m}} y_{1}^{l_{1}} y_{2}^{l_{2}} \ldots y_{m+1}^{l_{m+1}}
$$

It follows that for any $\omega_{m+1}>\ell-(m+1)$,

$$
\begin{aligned}
y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots & y_{m-1}^{\ell-m+1} y_{m+1}^{\omega_{m+1}} \\
& =y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{m-1}^{\ell-m+1} y_{m+1}^{\omega_{m+1}-(\ell-m)} y_{m+1}^{\ell-m} \\
& =-\sum_{\substack{l_{2}, \ldots, l_{m+1} \in \mathbb{N} \\
l_{m+1} \neq \ell-m, l_{2}+\cdots+l_{m+1}=\ell-m}} y_{1}^{\ell-1} y_{2}^{\ell-2+l_{2}} \ldots y_{m+1}^{\omega_{m+1}-(\ell-m)+l_{m+1}} \\
& =-\sum_{\substack{l_{m}, l_{m+1} \in \mathbb{N} \\
l_{m+1} \neq \ell-m, l_{m}+l_{m+1}=\ell-m}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{m-1}^{\ell-m+1} y_{m}^{\ell-m+l_{m}} y_{m+1}^{\omega_{m+1}-(\ell-m)+l_{m+1}} \\
& =0
\end{aligned}
$$

where we have used the induction hypothesis in the third and fourth equalities. This completes the proof of the lemma.
Corollary 2.25. For any $z_{1}, z_{2} \in \mathfrak{S}_{n}$, we define $F_{z_{1}, z_{2}}:=(-1)^{n(n-1) / 2} \psi_{w_{0} z_{1}, z_{2}}^{\lambda_{\min }}$. Then $F_{z_{1}, z_{2}} \neq 0$ is a homogeneous element of degree $2 \ell\left(z_{1}\right)-2 \ell\left(z_{2}\right)$. Suppose that $\ell=n$. Then $\sum_{w \in \mathfrak{S}_{n}} F_{w, w}=1$ and

$$
F_{z_{1}, z_{2}} F_{u_{1}, u_{2}}=\delta_{z_{2}, u_{1}} F_{z_{1}, u_{2}}, \quad \forall u_{1}, u_{2} \in \mathfrak{S}_{n}
$$

In particular, $\mathscr{H}_{n, n}^{(0)}$ is isomorphic to the full matrix algebra $M_{n!\times n!}(K)$ over K with $\left\{F_{u, w}\right\}_{u, w \in \mathfrak{S}_{n}}$ being a complete set of matrix units.

Proof. As a cellular basis element, we know that $\psi_{w_{0} z_{1}, z_{2}}^{\lambda_{\min }} \neq 0$ and hence $F_{z_{1}, z_{2}} \neq 0$. By definition, $F_{z_{1}, z_{2}}$ is a homogeneous element of degree $2 \ell\left(z_{1}\right)-2 \ell\left(z_{2}\right)$.

Suppose that $\ell=n$. By Lemma 2.23, for any $1 \leq r \leq n$, we have

$$
\begin{align*}
& y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} y_{r} \tag{2.26}\\
&=\left(y_{1}^{n-1} y_{2}^{n-2} \ldots y_{r+1}^{n-r-1} y_{r}^{n-r+1}\right) y_{r-1}^{n-r+1} y_{r-2}^{n-r+2} \ldots y_{n-1}=0 .
\end{align*}
$$

For any $u_{1}, u_{2} \in \mathfrak{S}_{n}$,

$$
F_{z_{1}, z_{2}} F_{u_{1}, u_{2}}=\psi_{w_{0} z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{z_{2}} \psi_{w_{0} u_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{u_{2}}
$$

By Lemma 2.15, this quantity is zero unless $\ell\left(z_{2}\left(w_{0} u_{1}\right)^{-1}\right)=\ell\left(z_{2}\right)+\ell\left(\left(w_{0} u_{1}\right)^{-1}\right)$. So we can assume that $\ell\left(z_{2}\left(w_{0} u_{1}\right)^{-1}\right)=\ell\left(z_{2}\right)+\ell\left(\left(w_{0} u_{1}\right)^{-1}\right)$. Then we get

$$
F_{z_{1}, z_{2}} F_{u_{1}, u_{2}}=\psi_{w_{0} z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{z_{2} u_{1}^{-1} w_{0}^{-1}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{u_{2}}
$$

Note that w_{0} is the unique longest element in \mathfrak{S}_{n} with length $(n-1) n / 2$. If $z_{2} u_{1}^{-1} w_{0}^{-1} \neq w_{0}$ then we must have

$$
\psi_{z_{2} u_{1}^{-1} w_{0}^{-1}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \in \sum_{j=1}^{n} y_{j} \mathscr{H}_{n, n}^{(0)}
$$

In that case, $F_{z_{1}, z_{2}} F_{u_{1}, u_{2}}=0$ by (2.26). Therefore, we can further assume that $z_{2} u_{1}^{-1} w_{0}^{-1}=w_{0}$ and hence $z_{2}=u_{1}$. In the latter case, $F_{z_{1}, z_{2}} F_{u_{1}, u_{2}}=F_{z_{1}, u_{2}}$ by Lemma 2.12 and (2.26). This proves the first part of the corollary.

The second part of the corollary follows from Corollary 2.25 and the fact that $\operatorname{dim} \mathscr{H}_{n, n}^{(0)}=(n!)^{2}$ and $\left\{F_{z_{1}, z_{2}} \mid z_{1}, z_{2} \in \mathfrak{S}_{n}\right\}$ is a basis of $\mathscr{H}_{n, n}^{(0)}$.

Recall that the weak Bruhat order " \succeq " on \mathfrak{S}_{n} is defined as follows (see [Dipper and James 1986]): For $u, w \in \mathfrak{S}_{n}$, let $u \succeq w$ if there is a reduced expression $w=s_{j_{1}} \ldots s_{j_{k}}$ for w and $u=s_{j_{1}} \ldots s_{j_{l}}$ for some $l \leq k$. We write $u \succ w$ if $u \succeq w$ and $u \neq w$.

Corollary 2.27. Let $\ell, n \in \mathbb{N}$. For any $z_{1}, z_{2} \in \mathfrak{S}_{n}$, we define

$$
F_{z_{1}, z_{2}}^{\prime}:=\psi_{w_{0} z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{z_{2}} .
$$

Then $F_{z_{1}, z_{2}}^{\prime} \neq 0$ is a homogeneous element of degree $2 \ell\left(z_{1}\right)-2 \ell\left(z_{2}\right)$, and

$$
\begin{gathered}
\left(F_{z_{1}, z_{1}}^{\prime}\right)^{2}=F_{z_{1}, z_{1}}^{\prime}, \quad F_{z_{1}, z_{2}}^{\prime}=F_{z_{1}, z_{1}}^{\prime} F_{z_{1}, z_{2}}^{\prime}=F_{z_{1}, z_{2}}^{\prime} F_{z_{2}, z_{2}}^{\prime} \\
F_{z_{1}, z_{2}}^{\prime} F_{z_{2}, u_{2}}^{\prime}=F_{z_{1}, u_{2}}^{\prime}, \quad F_{z_{1}, z_{2}}^{\prime} F_{u_{1}, u_{2}}^{\prime}=0, \quad \forall u_{1}, u_{2} \in \mathfrak{S}_{n} \text { with } z_{2}^{-1} \nsucceq u_{1}^{-1}
\end{gathered}
$$

Proof. By Lemma 2.12 and (2.11), we have

$$
\begin{equation*}
F_{z_{1}, z_{2}}^{\prime} \equiv(-1)^{(n-1) n / 2} \psi_{w_{0} z_{1}, z_{2}}^{\lambda_{\min }}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\lambda_{\min }}\right) \tag{2.28}
\end{equation*}
$$

In particular, this implies that $F_{z_{1}, z_{2}}^{\prime} \neq 0$ by the cellular structure of $\mathscr{H}_{\ell, n}^{(0)}$. By definition, it is clear that $F_{z_{1}, z_{2}}^{\prime}$ is a homogeneous element of degree $2 \ell\left(z_{1}\right)-2 \ell\left(z_{2}\right)$.

Again by Lemma 2.12 and Lemma 2.15, we have

$$
\begin{aligned}
&\left(F_{z_{1}, z_{1}}^{\prime}\right)^{2}= \psi_{w_{0} z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\left(\psi_{z_{1}} \psi_{w_{0} z_{1}}^{*}\right) \\
& \quad \times y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{z_{1}} \\
&= \psi_{w_{0} z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\left(\psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}}\right) \\
& \quad \times y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}}^{n-1} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{z_{1}} \\
&=(-1)^{(n-1) n / 2} \psi_{w_{0} z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\left(\psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}}\right) \\
& \times y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{z_{1}} \\
&=
\end{aligned}
$$

A similar argument shows that $F_{z_{1}, z_{2}}^{\prime}=F_{z_{1}, z_{1}}^{\prime} F_{z_{1}, z_{2}}^{\prime}=F_{z_{1}, z_{2}}^{\prime} F_{z_{2}, z_{2}}^{\prime}$ and $F_{z_{1}, z_{2}}^{\prime} F_{z_{2}, u_{2}}^{\prime}=$ $F_{z_{1}, u_{2}}^{\prime}$.

Finally, let $u_{1}, u_{2} \in \mathfrak{S}_{n}$ such that $z_{2}^{-1} \nsucceq u_{1}^{-1}$. We have

$$
\begin{aligned}
& F_{z_{1}, z_{2}}^{\prime} F_{u_{1}, u_{2}}^{\prime}=\psi_{w_{0} z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\left(\psi_{z_{2}} \psi_{w_{0} u_{1}}^{*}\right) \\
& \times y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{u_{2}}
\end{aligned}
$$

Note that the assumption $z_{2}^{-1} \nsucceq u_{1}^{-1}$ implies that $\ell\left(z_{2} u_{1}^{-1} w_{0}^{-1}\right) \neq \ell\left(z_{2}\right)+\ell\left(u_{1}^{-1} w_{0}^{-1}\right)$ because otherwise we would have some $x \in \mathfrak{S}_{n}$ such that $x z_{2}=u_{1}$ and

$$
\begin{aligned}
\ell(x) & =\ell\left(w_{0}\right)-\ell\left(z_{2} u_{1}^{-1} w_{0}^{-1}\right)=\ell\left(w_{0}\right)-\left(\ell\left(z_{2}\right)+\ell\left(u_{1}^{-1} w_{0}^{-1}\right)\right) \\
& =\ell\left(w_{0}\right)-\ell\left(z_{2}\right)-\left(\ell\left(w_{0}\right)-\ell\left(u_{1}^{-1}\right)\right)=\ell\left(u_{1}\right)-\ell\left(z_{2}\right) .
\end{aligned}
$$

By Lemma 2.15, $\ell\left(z_{2} u_{1}^{-1} w_{0}^{-1}\right) \neq \ell\left(z_{2}\right)+\ell\left(u^{-1} w_{0}^{-1}\right)$ implies that $\psi_{z_{2}} \psi_{w_{0} u_{1}}^{*}=0$. We thus proved that $F_{z_{1}, z_{2}}^{\prime} F_{u_{1}, u_{2}}^{\prime}=0$ as required.
Definition 2.29. We fix a total order on \mathfrak{S}_{n} and list the elements in \mathfrak{S}_{n} as $1=$ $w_{1}, w_{2}, \ldots, w_{n!}$ such that

$$
w_{i}^{-1} \succ w_{j}^{-1} \Longrightarrow i<j
$$

We define a set of elements $\left\{\tilde{F}_{w_{i}, w_{j}} \mid 1 \leq i, j \leq n!\right\}$ in $\mathscr{H}_{\ell, n}^{(0)}$ inductively as follows:

$$
\tilde{F}_{w_{1}, w_{j}}=\tilde{F}_{1, w_{j}}:=F_{1, w_{j}}^{\prime}, \quad \forall 1 \leq j \leq n!
$$

Suppose that $\tilde{F}_{w_{k}, w_{j}}$ was already defined for any $1 \leq k<i$ and $1 \leq j \leq n!$. Then we define

$$
\tilde{F}_{w_{i}, w_{j}}:=F_{w_{i}, w_{j}}^{\prime}-\sum_{1 \leq k<i} \tilde{F}_{w_{k}, w_{k}} F_{w_{i}, w_{j}}^{\prime}, \quad \forall 1 \leq j \leq n!
$$

By construction and Corollary 2.27, we see that

$$
\begin{equation*}
\tilde{F}_{w_{i}, w_{j}} F_{w_{j}, w_{a}}^{\prime}=\tilde{F}_{w_{i}, w_{a}}, \quad \forall 1 \leq a \leq n! \tag{2.30}
\end{equation*}
$$

Theorem 2.31. For any $1 \leq i, j \leq n!$, we have that $\tilde{F}_{w_{i}, w_{j}} \neq 0$ is a homogeneous element of degree $2 \ell\left(w_{i}\right)-2 \ell\left(w_{j}\right)$ and

$$
\begin{equation*}
\tilde{F}_{w_{i}, w_{j}} \tilde{F}_{w_{k}, w_{l}}=\delta_{j, k} \tilde{F}_{w_{i}, w_{l}}, \quad \forall 1 \leq k, l \leq n!. \tag{2.32}
\end{equation*}
$$

Moreover, for each $1 \leq i \leq n!, \tilde{F}_{w_{i}, w_{i}} \mathscr{H}_{\ell, n}^{(0)} \cong P_{0}$ is an ungraded right $\mathscr{H}_{\ell, n}^{(0)}$ module, $1=\sum_{i=1}^{n!} \tilde{F}_{w_{i}, w_{i}}$, and $\left\{\tilde{F}_{w_{i}, w_{i}} \mid 1 \leq i \leq n!\right\}$ is a complete set of pairwise orthogonal primitive idempotents of $\mathscr{H}_{\ell, n}^{(0)}$.
Proof. By (2.28), for any $u \in \mathfrak{S}_{n}$ with $u^{-1} \succ w_{1}^{-1}$, we have the following relations modulo $\left.\mathscr{H}_{\ell, n}^{(0)}\right)^{>\lambda_{\text {min }}}$:

$$
\begin{aligned}
F_{u, u}^{\prime} F_{w_{1}, w_{2}}^{\prime} & \equiv \psi_{w_{0} u, u}^{\lambda_{\min }} \psi_{w_{0} w_{1}, w_{2}}^{\lambda_{\min }} \\
& \equiv \psi_{w_{0} u}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\left(\psi_{u}\left(\psi_{w_{0} w_{1}}\right)^{*}\right) y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{2}} \\
& \equiv \psi_{w_{0} u}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{u w_{1}^{-1} w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{2}} \\
& \equiv \sum_{j=1}^{n} r_{j} \psi_{w_{0} u}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} y_{j} h_{j} \psi_{w_{2}} \\
& \equiv 0
\end{aligned}
$$

where $r_{j} \in K, h_{j} \in \mathscr{H}_{\ell, n}^{(0)}$ for any z, j. Combining this with Corollary 2.27 and (2.28) we can deduce that

$$
\begin{equation*}
\tilde{F}_{w_{i}, w_{j}} \equiv(-1)^{(n-1) n / 2} \psi_{w_{0} w_{i}, w_{j}}^{\lambda_{\min }}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\lambda_{\min }}\right) \tag{2.33}
\end{equation*}
$$

In particular, $\tilde{F}_{w_{i}, w_{j}} \neq 0$. By definition, Corollary 2.27, and an easy induction, we see that $\tilde{F}_{w_{i}, w_{j}}$ is a homogeneous element of degree $2 \ell\left(w_{i}\right)-2 \ell\left(w_{j}\right)$.

We are going to prove (2.32). We use induction on k. Suppose that $k=1$. If $j \neq 1$, then $j>1$. By construction,

$$
\tilde{F}_{w_{i}, w_{j}} \in \sum_{w \in \mathfrak{S}_{n}} \mathscr{H}_{\ell, n}^{(0)} F_{w, w_{j}}^{\prime}, \quad \tilde{F}_{1, w_{l}}=F_{1, w_{l}}^{\prime}
$$

By Corollary 2.27, we have $F_{w, w_{j}}^{\prime} F_{1, u}^{\prime}=0$. It follows that $\tilde{F}_{w_{i}, w_{j}} \tilde{F}_{w_{1}, w_{l}}=0$. If $j=1$, then by (2.30) we have

$$
\tilde{F}_{w_{i}, w_{1}} \tilde{F}_{w_{1}, w_{l}}=\tilde{F}_{w_{i}, 1} F_{1, w_{l}}^{\prime}=\tilde{F}_{w_{i}, w_{l}}
$$

as required.
In general, suppose that (2.32) holds for any $k<m$. Let us consider the case when $k=m$. By construction, we have

$$
\tilde{F}_{w_{i}, w_{j}} \in \sum_{w \in \mathfrak{S}_{n}} \mathscr{H}_{\ell, n}^{(0)} F_{w, w_{j}}^{\prime}, \quad \tilde{F}_{w_{m}, w_{l}} \in \sum_{\substack{u \in \mathfrak{S}_{n} \\ 1 \leq a \leq m}} F_{w_{a}, u}^{\prime} \mathscr{H}_{\ell, n}^{(0)}
$$

Therefore, if $j>m$ then $\tilde{F}_{w_{i}, w_{j}} \tilde{F}_{w_{m}, w_{l}}=0$ by Corollary 2.27.
Suppose that $j<m$. Then

$$
\begin{aligned}
\tilde{F}_{w_{i}, w_{j}} \tilde{F}_{w_{m}, w_{l}} & =\tilde{F}_{w_{i}, w_{j}}\left(F_{w_{m}, w_{l}}^{\prime}-\sum_{1 \leq k<m} \tilde{F}_{w_{k}, w_{k}} F_{w_{m}, w_{l}}^{\prime}\right) \\
& =\tilde{F}_{w_{i}, w_{j}}\left(F_{w_{m}, w_{l}}^{\prime}-\sum_{1 \leq k<m} \delta_{k, j} \tilde{F}_{w_{k}, w_{k}} F_{w_{m}, w_{l}}^{\prime}\right) \\
& =\tilde{F}_{w_{i}, w_{j}} F_{w_{m}, w_{l}}^{\prime}-\tilde{F}_{w_{i}, w_{j}} F_{w_{m}, w_{l}}^{\prime} \\
& =0,
\end{aligned}
$$

as required, where we have used induction hypothesis in the second and the third equalities.

Suppose that $j=m$. Then

$$
\begin{aligned}
\tilde{F}_{w_{i}, w_{m}} \tilde{F}_{w_{m}, w_{l}} & =\tilde{F}_{w_{i}, w_{m}}\left(F_{w_{m}, w_{l}}^{\prime}-\sum_{1 \leq k<m} \tilde{F}_{w_{k}, w_{k}} F_{w_{m}, w_{l}}^{\prime}\right) \\
& =\tilde{F}_{w_{i}, w_{m}} F_{w_{m}, w_{l}}^{\prime}-\sum_{1 \leq k<m} \tilde{F}_{w_{i}, w_{m}} \tilde{F}_{w_{k}, w_{k}} F_{w_{m}, w_{l}}^{\prime} \\
& =\tilde{F}_{w_{i}, w_{m}} F_{w_{m}, w_{l}}^{\prime}-0=\tilde{F}_{w_{i}, w_{l}},
\end{aligned}
$$

as required, where we used (2.30) in the last equality, and used the induction hypothesis in the second last equality.

Since

$$
P_{0}^{\oplus \operatorname{dim} D_{0}}=P_{0}^{\oplus n!} \cong \mathscr{H}_{\ell, n}^{(0)} \cong\left(1-\sum_{w \in \mathfrak{S}_{n}} \tilde{F}_{w, w}\right) \mathscr{H}_{\ell, n}^{(0)} \oplus\left(\bigoplus_{w \in \mathfrak{S}_{n}} \tilde{F}_{w, w} \mathscr{H}_{\ell, n}^{(0)}\right)
$$

and $\tilde{F}_{w, w} \mathscr{H}_{\ell, n}^{(0)} \neq 0$ for each $w \in \mathfrak{S}_{n}$. By the Krull-Schmidt theorem we can deduce that for each $w \in \mathfrak{S}_{n}, F_{w, w} \mathscr{H}_{\ell, n}^{(0)} \cong P_{0}$ is an ungraded right $\mathscr{H}_{\ell, n}^{(0)}$-module and $1=\sum_{w \in \mathfrak{S}_{n}} \tilde{F}_{w, w}$. In other words, $\left\{\tilde{F}_{w_{i}, w_{i}} \mid 1 \leq i \leq n!\right\}$ is a complete set of pairwise orthogonal primitive idempotents of $\mathscr{H}_{\ell, n}^{(0)}$.

The following result was first conjectured by A. Mathas [2015, §2.5, before Corollary 2.5.2] in the special case when $\ell=n$.

Theorem 2.34. The elements in the set

$$
\begin{equation*}
\left\{\psi_{w} y_{1}^{a_{1}} \ldots y_{n}^{a_{n}} \mid 0 \leq a_{i} \leq \ell-i, \quad \forall 1 \leq i \leq n, w \in \mathfrak{S}_{n}\right\} \tag{2.35}
\end{equation*}
$$

form a K-basis of $\mathscr{H}_{\ell, n}^{(0)}$.
Proof. We first claim that for any $b_{1}, \ldots, b_{m-1}, \omega_{m} \in \mathbb{N}$ with $0 \leq b_{j} \leq l-j, \forall 1 \leq$ $j \leq m$,

$$
\begin{equation*}
y_{1}^{b_{1}} y_{2}^{b_{2}} \ldots y_{m-1}^{b_{m-1}} y_{m}^{\omega_{m}}=\sum_{\substack{c_{1}, \ldots, c_{m} \in \mathbb{N} \\ 0 \leq c_{i} \leq \ell-i, \forall 1 \leq i \leq m}} r_{c_{1}, \ldots, c_{m}} y_{1}^{c_{1}} y_{2}^{c_{2}} \ldots y_{m-1}^{c_{m-1}} y_{m}^{c_{m}} \tag{2.36}
\end{equation*}
$$

where $r_{c_{1}, \ldots ., c_{m}} \in K$ for each m-tuple $\left(c_{1}, \ldots, c_{m}\right)$.
We use induction on m. If $m=1$, there is nothing to prove as $y_{1}^{\omega_{1}}=0$ whenever $\omega_{1}>\ell-1$. Suppose that (2.36) holds for any $1 \leq k \leq m$.

We now consider the case where $k=m+1$. Applying Lemma 2.20 for $s=m+1$, we get that

$$
y_{m+1}^{\ell-m}=-\sum_{\substack{l_{1}, \ldots, l_{m+1} \in \mathbb{N} \\ l_{m+1} \neq \ell-m, l_{1}+\cdots+l_{m+1}=\ell-m}} y_{1}^{l_{1}} y_{2}^{l_{2}} \ldots y_{m+1}^{l_{m+1}}
$$

It follows that

$$
\begin{aligned}
& y_{1}^{b_{1}} y_{2}^{b_{2}} \ldots y_{m-1}^{b_{m-1}} y_{m}^{b_{m}} y_{m+1}^{\omega_{m+1}} \\
& \quad=y_{1}^{b_{1}} y_{2}^{b_{2}} \ldots y_{m-1}^{b_{m-1}} y_{m}^{b_{m}} y_{m+1}^{\omega_{m+1}-(\ell-m)} y_{m+1}^{\ell-m} \\
& =-\sum_{\substack{l_{1}, \ldots, l_{m+1} \in \mathbb{N} \\
l_{m+1} \neq \ell-m, l_{1}+\cdots+l_{m+1}=\ell-m}} y_{1}^{b_{1}+l_{1}} y_{2}^{b_{2}+l_{2}} \ldots y_{m-1}^{b_{m-1}+l_{m-1}} y_{m}^{b_{m}+l_{m}} y_{m+1}^{b_{m+1}^{\prime}}
\end{aligned}
$$

where $b_{m+1}^{\prime}:=\omega_{m+1}-(l-m)+l_{m+1}$.
Our purpose is to show that

$$
\begin{align*}
& y_{1}^{b_{1}} y_{2}^{b_{2}} \ldots y_{m}^{b_{m}} y_{m+1}^{\omega_{m+1}} \tag{2.37}\\
& \quad \in K-\operatorname{Span}\left\{y_{1}^{c_{1}} y_{2}^{c_{2}} \ldots y_{m}^{c_{m}} y_{m+1}^{c_{m+1}} \mid c_{i} \in \mathbb{N}, 0 \leq c_{i} \leq \ell-i, \forall 1 \leq i \leq m+1\right\}
\end{align*}
$$

We use induction on ω_{m+1}. Suppose that for any $b_{1}, \ldots, b_{m} \in \mathbb{N}$ and any $0 \leq b<\omega_{m+1}$, we have

$$
\begin{aligned}
& y_{1}^{b_{1}} y_{2}^{b_{2}} \ldots y_{m}^{b_{m}} y_{m+1}^{b} \\
& \quad \in K-\operatorname{Span}\left\{y_{1}^{c_{1}} y_{2}^{c_{2}} \ldots y_{m}^{c_{m}} y_{m+1}^{c_{m+1}} \mid c_{i} \in \mathbb{N}, 0 \leq c_{i} \leq \ell-i, \forall 1 \leq i \leq m+1\right\} .
\end{aligned}
$$

We are now going to prove (2.37). If $b_{m+1}^{\prime} \leq l-m$, then by our induction hypothesis we have

$$
\begin{aligned}
& y_{1}^{b_{1}+l_{1}} y_{2}^{b_{2}+l_{2}} \ldots y_{m-1}^{b_{m-1}+l_{m-1}} y_{m}^{b_{m}+l_{m}} \\
& \quad \in K-\operatorname{Span}\left\{y_{1}^{c_{1}} y_{2}^{c_{2}} \ldots y_{m-1}^{c_{m-1}} y_{m}^{c_{m}} \mid c_{1}, \ldots, c_{m} \in \mathbb{N}, 0 \leq c_{i} \leq \ell-i, \forall 1 \leq i \leq m\right\}
\end{aligned}
$$

hence
$y_{1}^{b_{1}+l_{1}} y_{2}^{b_{2}+l_{2}} \ldots y_{m-1}^{b_{m-1}+l_{m-1}} y^{b_{m}+l_{m}} y_{m+1}^{b_{m+1}^{\prime}}$
$\in K-\operatorname{Span}\left\{y_{1}^{c_{1}} y_{2}^{c_{2}} \ldots y_{m}^{c_{m}} y_{m+1}^{c_{m+1}} \mid c_{1}, \ldots, c_{m+1} \in \mathbb{N}, 0 \leq c_{i} \leq \ell-i, \forall 1 \leq i \leq m+1\right\}$.
Therefore, it remains to consider those terms which satisfy $b_{m+1}^{\prime}>\ell-m$. Since $l_{1}+\cdots+l_{m+1}=\ell-m$ and $l_{m+1} \neq \ell-m$, we have $0 \leq l_{m+1} \leq \ell-m-1$; furthermore,
we have $b_{m+1}^{\prime} \leq \omega_{m+1}-1$. By our induction hypothesis on ω_{m+1}, we have

$$
\begin{aligned}
& y_{1}^{b_{1}+l_{1}} y_{2}^{b_{2}+l_{2}} \ldots y_{m-1}^{b_{m-1}+l_{m-1}} y_{m}^{b_{m}+l_{m}} y_{m+1}^{b_{m+1}^{\prime}} \\
& \in K-\operatorname{Span}\left\{y_{1}^{c_{1}} y_{2}^{c_{2}} \ldots y_{m}^{c_{m}} y_{m+1}^{c_{m+1}} \mid c_{i} \in \mathbb{N}, 0 \leq c_{i} \leq \ell-i, \forall 1 \leq i \leq m+1\right\}
\end{aligned}
$$

Therefore, we can conclude that (2.37) always holds. This completes the proof of (2.36).

Now we have proved that the elements in (2.35) form a K-linear generator of $\mathscr{H}_{\ell, n}^{(0)}$. Since the set (2.35) has cardinality equal to $\binom{\ell}{n}(n!)^{2}$, which is equal to the dimension of $\mathscr{H}_{\ell, n}^{(0)}$, the elements in (2.35) must form a K-basis of $\mathscr{H}_{\ell, n}^{(0)}$.
Remark 2.38. We shall call the basis (2.35) a monomial basis of $\mathscr{H}_{\ell, n}^{(0)}$. It bears much resemblance to the Ariki-Koike basis of the cyclotomic Hecke algebra of type $G(\ell, 1, n)$. For arbitrary cyclotomic quiver Hecke algebras, Question 1.1 (on how to construct a monomial basis) remains open. Anyhow, we regard Theorem 2.34 as a first step in our effort of answering that open question.

3. A basis of the center

The purpose of this section is to give an explicit basis of the center of $\mathscr{H}_{\ell, n}^{(0)}$. Let $Z:=Z\left(\mathscr{H}_{\ell, n}^{(0)}\right)$ be the center of $\mathscr{H}_{\ell, n}^{(0)}$.
Definition 3.1. For each $\boldsymbol{\mu} \in \mathscr{P}_{0}$, we define

$$
b_{\mu}:=\psi_{w_{0}} y_{\mu} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}
$$

By Definition 2.29, Corollary 2.27, Lemma 2.12, and Lemma 2.15, we have

$$
\begin{aligned}
\tilde{F}_{1,1}=F_{1,1}^{\prime} & =\psi_{w_{0}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \\
& =\left(\psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}\right) \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \\
& =(-1)^{n(n-1) / 2} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}=F_{1,1} .
\end{aligned}
$$

Note that each $y_{\boldsymbol{\mu}}$ has a left factor $y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}$. It follows that

$$
b_{\mu} \in \tilde{F}_{1,1} \mathscr{H}_{\ell, n}^{(0)} \tilde{F}_{1,1} \cong \operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(\tilde{F}_{1,1} \mathscr{H}_{\ell, n}^{(0)}\right) \cong \operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)
$$

Suppose further that $\theta(\boldsymbol{\mu})=\left(k_{1}, \ldots, k_{n}\right)$, where $1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq \ell$. Then by (2.11),

$$
\begin{aligned}
b_{\mu} & =\psi_{w_{0}} y_{1}^{\ell-k_{1}} y_{2}^{\ell-k_{2}} \ldots y_{n}^{\ell-k_{n}} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \\
& \equiv(-1)^{n(n-1) / 2} \psi_{w_{0}} y_{1}^{\ell-k_{1}} y_{2}^{\ell-k_{2}} \ldots y_{n}^{\ell-k_{n}}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu}\right) \\
& \equiv(-1)^{n(n-1) / 2} \psi_{w_{0}, 1}^{\mu}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu}\right)
\end{aligned}
$$

It follows that $\left\{b_{\boldsymbol{\mu}} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}\right\}$ are K-linearly independent elements in $\tilde{F}_{1,1} \mathscr{H}_{\ell, n}^{(0)} \tilde{F}_{1,1}$.

Lemma 3.2. The elements in $\left\{b_{\boldsymbol{\mu}} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}\right\}$ form a K-basis of $\tilde{F}_{1,1} \mathscr{H}_{\ell, n}^{(0)} \tilde{F}_{1,1}$. Moreover, the basic algebra $\operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)$ of $\mathscr{H}_{\ell, n}^{(0)}$ is commutative and is isomorphic to the center Z of $\mathscr{H}_{\ell, n}^{(0)}$. In particular, $\operatorname{dim}_{K} Z=\binom{\ell}{n}$.
Proof. Since $\# \mathscr{P}_{0}=\binom{\ell}{n}$ and $\tilde{F}_{1,1} \mathscr{H}_{\ell, n}^{(0)} \tilde{F}_{1,1} \cong \operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)$, it suffices to show that

$$
\operatorname{dim}_{K} \operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)=\binom{\ell}{n}
$$

By Lemma 2.16 and Corollary 2.18, we know that $\left[P_{0}: D_{0}\right]=\binom{\ell}{n}$ and hence $\operatorname{dim}_{K} \operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)=\binom{\ell}{n}$, as required. Thus, the first part of the lemma follows from this together with the discussion in the paragraph above this lemma.

It remains to show that the endomorphism algebra $\operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)$ is commutative. Once this is proved, and since $\mathscr{H}_{\ell, n}^{(0)}$ is Morita equivalent to $\operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)$, it will follow from [Curtis and Reiner 1981, (3.54)(iv)] that

$$
Z=Z\left(\mathscr{H}_{\ell, n}^{(0)}\right) \cong Z\left(\operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)\right)=\operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)
$$

as required.
To show that $\operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)$ of $\mathscr{H}_{\ell, n}^{(0)}$ is commutative, it suffices to show that $\tilde{F}_{1,1} \mathscr{H}_{\ell, n}^{(0)} \tilde{F}_{1,1}$ is commutative. Furthermore, it is enough to show that $b_{\mu} b_{\boldsymbol{v}}=b_{\boldsymbol{v}} b_{\mu}$ for any $\boldsymbol{\mu}, \boldsymbol{v} \in \mathscr{P}_{0}$.

By definition,

$$
\begin{aligned}
b_{\mu} b_{\boldsymbol{v}} & =\psi_{w_{0}} y_{\mu} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{v} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \\
& =(-1)^{n(n-1) / 2} \psi_{w_{0}}\left(y_{\mu} \psi_{w_{0}} y_{v}\right) \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}
\end{aligned}
$$

We set

$$
J_{1,1}:=\sum_{j=1}^{n-1} \psi_{j} \mathscr{H}_{\ell, n}^{(0)}+\sum_{j=1}^{n-1} \mathscr{H}_{\ell, n}^{(0)} \psi_{j}
$$

Using the graded cellular basis $\left\{\psi_{w, u}^{\mu} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}\right\}$ of $\mathscr{H}_{\ell, n}^{(0)}$, we can write

$$
y_{\mu} \psi_{w_{0}} y_{v} \equiv \sum_{\rho \in \mathscr{P}_{0}} c_{\rho} y_{\rho}\left(\bmod J_{1,1}\right)
$$

where $c_{\alpha} \in K$ for each $\alpha \in \mathscr{P}_{0}$. Applying the anti-involution " $*$ " on both sides of the above equality, we get that

$$
y_{\boldsymbol{v}} \psi_{w_{0}} y_{\mu} \equiv \sum_{\rho \in \mathscr{P}_{0}} c_{\rho} y_{\rho}\left(\bmod J_{1,1}\right)
$$

Now using Lemma 2.15 we can deduce that

$$
b_{\mu} b_{\boldsymbol{v}}=(-1)^{n(n-1) / 2} \sum_{\rho \in \mathscr{P}_{0}} c_{\rho} \psi_{w_{0}} y_{\rho} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}=b_{\boldsymbol{v}} b_{\boldsymbol{\mu}}
$$

as required.

Definition 3.3. Let $\boldsymbol{\mu} \in \mathscr{P}_{0}$ with $\theta(\boldsymbol{\mu})=\left(k_{1}, \ldots, k_{n}\right)$, where $1 \leq k_{1}<k_{2}<\cdots<$ $k_{n} \leq \ell$. Inside the quiver Hecke algebra $\mathscr{H}_{n}^{(0)}$, we define $z(\boldsymbol{\mu}) \in K\left[y_{1}, \ldots, y_{n}\right]$ such that

$$
y_{1}^{\ell-k_{1}} \ldots y_{n}^{\ell-k_{n}} \psi_{w_{0}}=z(\boldsymbol{\mu})+\sum_{r=1}^{n-1} \psi_{r} h_{r}
$$

where $h_{r} \in \mathscr{H}_{n}^{(0)}$ for each $1 \leq r<n$. We define

$$
z_{\boldsymbol{\mu}}:=\pi(z(\boldsymbol{\mu})) \in \mathscr{H}_{\ell, n}^{(0)}
$$

It is clear that z_{μ} is a homogeneous element with degree $2 \ell n-n(n-1)-$ $2 \sum_{i=1}^{n} k_{i}$.
Lemma 3.4. Let $\boldsymbol{\mu} \in \mathscr{P}_{0}$. Then $z(\boldsymbol{\mu})$ is a symmetric polynomial in y_{1}, \ldots, y_{n}. In particular, $z(\boldsymbol{\mu})$ lives inside the center of $\mathscr{H}_{n}^{(0)}$ and hence z_{μ} lives inside the center of $\mathscr{H}_{\ell, n}^{(0)}$. Moreover, $z\left(\lambda_{\max }\right)=(-1)^{n(n-1) / 2}\left(y_{1} \ldots y_{n}\right)^{\ell-n}$ and $z\left(\lambda_{\min }\right)=$ $(-1)^{n(n-1) / 2}$.

Proof. It suffices to show that $z(\boldsymbol{\mu})$ is symmetric in y_{r}, y_{r+1} for each $1 \leq r<n-1$. In fact, for any $1 \leq r<n-1$ and $a, b \in \mathbb{N}$, if $a>b$ then

$$
\begin{aligned}
y_{r}^{a} y_{r+1}^{b} \psi_{r} & =y_{r}^{a-b}\left(y_{r} y_{r+1}\right)^{b} \psi_{r}=y_{r}^{a-b} \psi_{r}\left(y_{r} y_{r+1}\right)^{b} \\
& \equiv-\left(\sum_{k=0}^{a-b-1} y_{r}^{k} y_{r+1}^{a+b-1-k}\right)\left(y_{r} y_{r+1}\right)^{b}\left(\bmod \sum_{r=1}^{n-1} \psi_{r} \mathscr{H}_{n}^{(0)}\right)
\end{aligned}
$$

if $a<b$, then

$$
\begin{aligned}
y_{r}^{a} y_{r+1}^{b} \psi_{r} & =y_{r+1}^{b-a}\left(y_{r} y_{r+1}\right)^{a} \psi_{r}=y_{r+1}^{b-a} \psi_{r}\left(y_{r} y_{r+1}\right)^{a} \\
& \equiv\left(\sum_{k=0}^{b-a-1} y_{r}^{k} y_{r+1}^{b-a-1-k}\right)\left(y_{r} y_{r+1}\right)^{a}\left(\bmod \sum_{r=1}^{n-1} \psi_{r} \mathscr{H}_{n}^{(0)}\right)
\end{aligned}
$$

if $a=b$, then $y_{r}^{a} y_{r+1}^{b} \psi_{r}=\left(y_{r} y_{r+1}\right)^{a} \psi_{r}=\psi_{r}\left(y_{r} y_{r+1}\right)^{a} \in \sum_{r=1}^{n-1} \psi_{r} \mathscr{H}_{n}^{(0)}$. This implies that for any monomial $y_{1}^{c_{1}} \ldots y_{n}^{c_{n}} \in \mathscr{H}_{n}^{(0)}$,

$$
y_{1}^{c_{1}} \ldots y_{n}^{c_{n}} \psi_{r} \equiv f_{r}\left(y_{1}, \ldots, y_{n}\right)\left(\bmod \sum_{r=1}^{n-1} \psi_{r} \mathscr{H}_{n}^{(0)}\right)
$$

where $f_{r}\left(y_{1}, \ldots, y_{n}\right) \in K\left[y_{1}, \ldots, y_{n}\right]$ is symmetric in y_{r}, y_{r+1}.
Since for each $1 \leq r<n, w_{0}$ has a reduced expression which ends with s_{r} and the element $z(\boldsymbol{\mu})$ is uniquely determined by $\boldsymbol{\mu}$ by Lemma 2.1 , it follows that $z(\boldsymbol{\mu})$ is symmetric in y_{r}, y_{r+1} for any $1 \leq r<n-1$. Hence $z(\boldsymbol{\mu})$ is symmetric in y_{1}, \ldots, y_{n}. This completes the proof of the first part of the lemma. The second part of the lemma follows from Lemma 2.12 and direct calculation.

Lemma 3.5. (1) For each $\boldsymbol{\mu} \in \mathscr{P}_{0}$, we have that

$$
\psi_{w_{0}} y_{\mu} \psi_{w_{0}} y_{1}^{n-1} \ldots y_{n-1}=\psi_{w_{0}} y_{1}^{n-1} \ldots y_{n-1} z_{\mu}
$$

In particular,

$$
\psi_{w_{0}} y_{\mu} \equiv(-1)^{n(n-1) / 2} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} z_{\mu}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu}\right)
$$

(2) As a left Z-module, $P_{0} \cong Z^{\oplus n!}$. In particular, P_{0} is a free Z-module of rank $n!$.

Proof. First, since $\mathscr{H}_{\ell, n}^{(0)} \cong P_{0}^{\oplus n!}$, it follows that the center Z must act faithfully on P_{0}. In other words, the left multiplication defines an injective homomorphism $\iota: Z \hookrightarrow \operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)$. Comparing the dimensions of both sides, we can deduce that ι is an isomorphism. On the other hand, by Lemma 3.2,

$$
0 \neq b_{\mu} \in \tilde{F}_{1,1} \mathscr{H}_{\ell, n}^{(0)} \tilde{F}_{1,1} \cong \operatorname{End}_{\mathscr{H}_{\ell, n}^{(0)}}\left(P_{0}\right)
$$

It follows that there exists a unique nonzero homogeneous element z_{μ}^{\prime} with degree $2\left(\ell-k_{1}+\cdots+\ell-k_{n}\right)-(n-1) n$ such that

$$
\begin{align*}
\psi_{w_{0}} y_{\mu} \psi_{w_{0}} y_{1}^{n-1} \ldots y_{n-1} & =z_{\mu}^{\prime} \psi_{w_{0}} y_{1}^{n-1} \ldots y_{n-1} \tag{3.6}\\
& =\psi_{w_{0}} z_{\mu}^{\prime} y_{1}^{n-1} \ldots y_{n-1}=\psi_{w_{0}} y_{1}^{n-1} \ldots y_{n-1} z_{\mu}^{\prime}
\end{align*}
$$

By Lemma 3.4 and Lemma 2.15, we can see that $z_{\mu}^{\prime}=z_{\mu}$. In particular, $z_{\mu} \neq 0$.
Since

$$
\begin{aligned}
\psi_{w_{0}} y_{\mu} \psi_{w_{0}} y_{1}^{n-1} \ldots y_{n-1} & \equiv(-1)^{n(n-1) / 2} \psi_{w_{0}} y_{\mu} \\
& \equiv(-1)^{n(n-1) / 2} \psi_{w_{0}, 1}^{\mu}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu}\right)
\end{aligned}
$$

we see that $\psi_{w_{0}} y_{\mu} \equiv(-1)^{n(n-1) / 2} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} z_{\mu}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu}\right)$. This proves (1).

Recall that $\tilde{F}_{1,1}=F_{1,1}^{\prime}=(-1)^{n(n-1) / 2} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1}$. It follows from (1) that for any $\boldsymbol{\mu} \in \mathscr{P}_{0}$ and $w \in \mathfrak{S}_{n}$,

$$
\tilde{F}_{1,1} z_{\mu} \psi_{w} \equiv \psi_{w_{0}, w}^{\mu}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\mu}\right)
$$

In particular, the elements in the set $\left\{\tilde{F}_{1,1} z_{\mu} \psi_{w} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}, w \in \mathfrak{S}_{n}\right\}$ must be K linearly independent. Since it has the cardinality $\binom{\ell}{n} n!$, we can deduce that it is a K-basis of the right $\mathscr{H}_{\ell, n}^{(0)}$-module $P_{0} \cong \tilde{F}_{1,1} \mathscr{H}_{\ell, n}^{(0)}$. Since P_{0} is a faithful Z-module, it follows that for any $z \in Z, \tilde{F}_{1,1} z=0$ if and only if $z=0$. For each $w \in \mathfrak{S}_{n}$, the subspace spanned by the basis elements in $\left\{\tilde{F}_{1,1} z_{\mu} \psi_{w} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}\right\}$ is a Z-submodule of P_{0} which is isomorphic to Z. This proves that P is a free Z-module with rank $n!$.

Theorem 3.7. The elements in the set $\left\{z_{\mu} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}\right\}$ form a K-basis of the center $Z:=Z\left(\mathscr{H}_{\ell, n}^{(0)}\right)$ of $\mathscr{H}_{\ell, n}^{(0)}$. In particular, the center of $\mathscr{H}_{\ell, n}^{(0)}$ is the set of symmetric polynomials in y_{1}, \ldots, y_{n}.
Proof. Since the elements in $\left\{b_{\boldsymbol{\mu}} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}\right\}$ are K-linearly independent, it follows that the elements in $\left\{z_{\mu} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}\right\}$ are K-linearly independent and hence form a K-basis of the center $Z:=Z\left(\mathscr{H}_{\ell, n}^{(0)}\right)$ by dimension consideration. By Lemma 3.4, each z_{μ} is a symmetric polynomial in y_{1}, \ldots, y_{n}, hence the center of $\mathscr{H}_{\ell, n}^{(0)}$ is the set of symmetric polynomials in y_{1}, \ldots, y_{n}.

The following proposition gives a generalization of Corollary 2.25. It can be regarded as a cyclotomic analogue of the results in [Lauda 2010, Proposition 3.5] and [Kleshchev et al. 2013, Theorem 4.5].

Proposition 3.8. Let $\left\{E_{i, j} \mid 1 \leq i, j \leq n\right.$!\} be the matrix units of the full matrix algebra $M_{n!\times n!}(K)$. Then the map

$$
E_{i, j} \otimes z \mapsto \tilde{F}_{w_{i}, w_{j}} z, \quad \forall 1 \leq i, j \leq n!, z \in Z
$$

extends linearly to a well-defined K-algebra isomorphism η from $M_{n!\times n!}(K) \otimes_{K} Z$ onto $\mathscr{H}_{\ell, n}^{(0)}$. In particular, $\mathscr{H}_{\ell, n}^{(0)} \cong M_{n!\times n!}(Z)$.
Proof. In view of Theorem 2.31, it is clear that η is a well-defined K-algebra homomorphism. By Lemma 3.2, it suffices to show that η is an injective map.

Suppose that $\eta(x)=0$, where $x=\sum_{1 \leq i, j \leq n!} E_{i, j} z_{i, j}$, where $z_{i, j} \in Z$ for each pair (i, j). Then

$$
\sum_{1 \leq i, j \leq n!} \tilde{F}_{w_{i}, w_{j}} z_{i, j}=\eta(x)=0
$$

For any pair (i, j) with $\stackrel{1 \leq i, j \leq n!}{1} \leq i, j \leq n!$, left multiplying with $\tilde{F}_{w_{j}, w_{i}}$ and right multiplying with $\tilde{F}_{w_{j}, w_{j}}$ we get (by Theorem 2.31) that

$$
\begin{aligned}
\tilde{F}_{w_{j}, w_{j}} z_{i, j} & =\sum_{1 \leq k, l \leq n!}\left(\tilde{F}_{w_{j}, w_{i}} \tilde{F}_{w_{k}, w_{l}} \tilde{F}_{w_{j}, w_{j}}\right) z_{k, l} \\
& =\tilde{F}_{w_{j}, w_{i}}\left(\sum_{1 \leq k, l \leq n!} \tilde{F}_{w_{k}, w_{l}} z_{k, l}\right) \tilde{F}_{w_{i}, w_{j}}=0 .
\end{aligned}
$$

Since $\tilde{F}_{w_{j}, w_{j}} \mathscr{H}_{\ell, n}^{(0)} \cong P_{0}$ is ungraded right $\mathscr{H}_{\ell, n}^{(0)}$-module and Z acts faithfully on P_{0}, it follows that $z_{i, j}=0$. This proves that $x=0$ and hence η is injective. Finally, comparing the dimensions of both sides, we see that η is an isomorphism.

4. A homogeneous symmetrizing form on $\mathscr{H}_{\ell, \boldsymbol{n}}^{(\mathbf{0})}$

By the work of Shan, Varagnolo and Vasserot [Shan et al. 2017], each cyclotomic quiver Hecke algebra can be endowed with a homogeneous symmetrizing form which makes it into a graded symmetric algebra (see Remark 4.7 and [Hu and

Mathas 2010, §6.3] for the type A case). In particular, the nilHecke algebra $\mathscr{H}_{\ell, n}^{(0)}$ is a graded symmetric algebra. However, the SVV symmetrizing form $\mathrm{Tr}^{\mathrm{SVV}}$ is defined in an inductive manner which relies on some deep results about certain decompositions of the cyclotomic quiver Hecke algebras which come from the biadjointness of the i-induction functors and i-restriction functors in the work of Kang and Kashiwara [2012] and of Kashiwara [2012]. It is rather difficult to compute the explicit value of the form $\mathrm{Tr}^{\mathrm{SVV}}$ on any specified homogeneous element in the cyclotomic quiver Hecke algebra because its inductive definition involves some mysterious correspondence (i.e., $z \mapsto \tilde{z}, \ell \mapsto \tilde{\pi}_{\ell}$ in [Shan et al. 2017, Theorem 3.8]) whose explicit descriptions are not available. In this section, we shall introduce a new homogeneous symmetrizing form Tr such that the value of the form Tr on each graded cellular basis element of $\mathscr{H}_{\ell, n}^{(0)}$ is explicitly given. We will prove in the next section that this form Tr actually coincides with Shan-Varagnolo-Vasserot's symmetrizing form $\mathrm{Tr}^{\mathrm{SVV}}$ on $\mathscr{H}_{\ell, n}^{(0)}$.

The following result seems to be well-known. We add a proof as we can not find a suitable reference.

Lemma 4.1. Let A, B be two finite dimensional (ungraded) K-algebras. Suppose that B is Morita equivalent to A. Then there exists a K-linear map $\rho: A^{*} \rightarrow B^{*}$ such that for any symmetrizing form $\tau \in A^{*}$ on $A, \rho(\tau) \in B^{*}$ is a symmetrizing form on B. In particular, if A is a symmetric algebra over K, then B is a symmetric algebra over K too.

Proof. By assumption, $B^{\mathrm{op}} \cong \operatorname{End}_{A}(P)$ for a finite dimensional (ungraded) projective left A-module P. Moreover, there exists a natural number k such that $A^{\oplus k} \cong P \oplus P^{\prime}$ as left A-modules. Let e be the idempotent of $M_{k \times k}(A)$ which corresponds to the $\operatorname{map} A^{\oplus k} \xrightarrow{\mathrm{pr}} P \stackrel{\iota}{\hookrightarrow} A^{\oplus k}$. Then $B^{\mathrm{op}} \cong \operatorname{End}_{A}(P) \cong e M_{k \times k}(A) e$.

We define $\rho_{0}: A^{*} \rightarrow\left(M_{k \times k}(A)\right)^{*}$ as follows: for any $f \in A^{*}$ and $\left(a_{i, j}\right)_{k \times k} \in$ $M_{k \times k}(A)$,

$$
\rho_{0}(f)\left(\left(a_{i, j}\right)_{k \times k}\right):=f\left(\sum_{i=1}^{k} a_{i i}\right) .
$$

We define res: $\left(M_{k \times k}(A)\right)^{*} \rightarrow\left(e M_{k \times k}(A) e\right)^{*}$ as follows: for any $f \in\left(M_{k \times k}(A)\right)^{*}$ and $\left(a_{i, j}\right)_{k \times k} \in M_{k \times k}(A)$,

$$
\operatorname{res}(f)\left(e\left(a_{i, j}\right)_{k \times k} e\right):=f\left(e\left(a_{i, j}\right)_{k \times k} e\right)
$$

It is easy to check that $\rho:=$ res $\circ \rho_{0}$ has the property that for any symmetrizing form $\tau \in A^{*}$ on $A, \rho(\tau) \in B^{*}$ is a symmetrizing form on $\operatorname{End}_{A}(P) \cong e M_{k \times k}(A) e \cong B^{\mathrm{op}}$. It is clear that $\rho(\tau)$ is a symmetrizing form on B too.

The following lemma is clear.

Lemma 4.2. Let $A=\oplus_{k=0}^{m} A_{k}$ be a finite dimensional positively \mathbb{Z}-graded K algebra. Let τ be a (not necessarily homogeneous) symmetrizing form on A. We define $\tilde{\tau}: A^{*} \rightarrow K$ as follows: for any homogeneous element $y \in A$,

$$
\tilde{\tau}(y):= \begin{cases}\tau(x) & \text { if } \operatorname{deg} x=m \\ 0 & \text { otherwise }\end{cases}
$$

Then $\tilde{\tau}$ can be linearly extended to a well-defined homogeneous symmetrizing form on A.

The following definition comes from [Shan et al. 2017, 3.1.5].
Definition 4.3. We define

$$
d_{\Lambda}:=2 \ell n-2 n^{2}
$$

Recall that by Theorem 3.7, the center Z is a positively \mathbb{Z}-graded K-algebra with each homogeneous component being one dimensional. In particular, $\operatorname{deg} z \leq d_{\Lambda}$ for all $z \in Z$, and $\operatorname{deg} z_{\lambda_{\text {max }}}=d_{\Lambda}$.
Lemma 4.4. The center Z can be endowed with a homogeneous symmetrizing form of degree $-d_{\Lambda}$ as follows: for any homogeneous element $z \in Z$,

$$
\operatorname{tr}(z):= \begin{cases}1 & \text { if } z=z_{\lambda_{\max }} \\ 0 & \text { if } \operatorname{deg} z<d_{\Lambda}\end{cases}
$$

In particular, Z is a graded symmetric algebra over K.
Proof. By Lemma 3.2, we know that Z is Morita equivalent to $\mathscr{H}_{\ell, n}^{(0)}$. Since $\mathscr{H}_{\ell, n}^{(0)}$ is a symmetric algebra by [Shan et al. 2017], we can deduce from Lemma 4.1 and Lemma 4.2 that Z is a graded symmetric algebra too.

On the other hand, by Lemma 3.2 and Corollary 2.19, we know that the center Z is a positively graded K-algebra with each homogeneous component being one dimensional. Therefore, we are in a position to apply [Hu and Lam 2017, Proposition 3.9] or Lemma 4.1 and Lemma 4.2 to show that $t r$ is a well-defined homogeneous symmetrizing form on Z.

Since tr is a homogeneous symmetrizing form on Z, for each nonzero homogeneous element $0 \neq z \in Z$, there exists a homogeneous element $\hat{z} \in Z$ with degree $d_{\Lambda}-\operatorname{deg} z$ such that $\operatorname{tr}(z \hat{z}) \neq 0$. This motivates the following definition.
Definition 4.5. For each $\lambda \in \mathscr{P}_{0}$, we fix a nonzero homogeneous element $\hat{z}_{\lambda} \in Z$ with degree $d_{\Lambda}-\operatorname{deg} z_{\lambda}$ such that $\operatorname{tr}\left(z_{\lambda} \hat{z}_{\lambda}\right) \neq 0$.

Now we are using Proposition 3.8 and Lemma 4.4 to define a homogeneous symmetrizing form $\widehat{\operatorname{Tr}}$ on $\mathscr{H}_{\ell, n}^{(0)}$ as follows: for any $1 \leq i, j \leq n!$ and any homogeneous element $z \in Z$,

$$
\widehat{\operatorname{Tr}}\left(\tilde{F}_{w_{i}, w_{j}} z\right):= \begin{cases}c & \text { if } i=j \text { and } z=c z_{\lambda_{\max }} \\ 0 & \text { if } i \neq j \text { or } \operatorname{deg} z<d_{\Lambda} .\end{cases}
$$

Lemma 4.6. The map $\widehat{\operatorname{Tr}}$ extends linearly to a well-defined homogeneous symmetrizing form of degree $-d_{\Lambda}$ on $\mathscr{H}_{\ell, n}^{(0)}$.
Proof. This follows directly from Lemma 4.4 and Proposition 3.8.
Remark 4.7. Shan, Varagnolo, and Vasserot [Shan et al. 2017] show that each cyclotomic quiver Hecke algebra $\mathscr{R}_{\beta}^{\Lambda}$ can be endowed with a homogeneous symmetrizing form $\mathrm{Tr}^{\mathrm{SVV}}$ of degree $d_{\Lambda, \beta}$ which makes it into a graded symmetric algebra, where

$$
\beta \in Q_{n}^{+}, \quad \Lambda \in P^{+}, \quad d_{\Lambda, \beta}:=2(\Lambda, \beta)-(\beta, \beta)
$$

In the type A case we consider the cyclic quiver or linear quiver with vertices labeled by $\mathbb{Z} / e \mathbb{Z}$, where $e \neq 1$ is a nonnegative integer. In this case, $\mathscr{R}_{\beta}^{\Lambda}$ can be identified with the block of the cyclotomic Hecke algebra of type A which corresponds to β by Brundan-Kleshchev's isomorphism [Brundan and Kleshchev 2009a] when the ground field K contains a primitive e-th root of unity or e is equal to the characteristic of the ground field K. There is another homogeneous symmetrizing form $\mathrm{Tr}^{\mathrm{HM}}$ which can be defined (see [Hu and Mathas 2010, §6.3]) as follows: let τ be the ungraded symmetrizing form on $\mathscr{R}_{\beta}^{\Lambda}$ defined in [Malle and Mathas 1998] (nondegenerate case) and [Brundan and Kleshchev 2008] (degenerate case). Following [Hu and Mathas 2010, Definition 6.15], for any homogeneous element $x \in \mathscr{R}_{\beta}^{\Lambda}$, we define

$$
\operatorname{Tr}^{\mathrm{HM}}(x):= \begin{cases}\tau(x) & \text { if } \operatorname{deg}(x)=d_{\Lambda, \beta} \\ 0 & \text { otherwise }\end{cases}
$$

By the proof of [Hu and Mathas 2010, Theorem 6.17], $\mathrm{Tr}^{\mathrm{HM}}$ is a homogenous symmetrizing form on $\mathscr{R}_{\beta}^{\Lambda}$ of degree $-d_{\Lambda, \beta}$. The associated homogenous bilinear form $\langle-,-\rangle$ on $\mathscr{R}_{\beta}^{\Lambda}$ of degree $-d_{\Lambda, \beta}$ can be defined as follows: $\langle x, y\rangle:=\operatorname{Tr}^{\mathrm{HM}}(x y)$. We take this chance to remark that the bilinear form $\langle-,-\rangle_{\beta}$ in the paragraph above [Hu and Mathas 2010, Theorem 6.17] should be replaced with the bilinear form $\langle-,-\rangle$ we defined here.
Conjecture 4.8. The two symmetrizing forms $\mathrm{Tr}^{\mathrm{SVV}}$ and $\operatorname{Tr}^{\mathrm{HM}}$ on $\mathscr{R}_{\beta}^{\Lambda}$ differ by a nonzero scalar in K.

Definition 4.9. For each $\boldsymbol{\mu} \in \mathscr{P}_{0}$ and $z_{1}, z_{2} \in \mathfrak{S}_{n}$, we define

$$
\phi_{z_{1}, z_{2}}^{\mu}:=\psi_{z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{\mu} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{z_{2}} .
$$

Lemma 4.10. (1) For each $\boldsymbol{\mu} \in \mathscr{P}_{0}$ and $z_{1}, z_{2} \in \mathfrak{S}_{n}$, we have

$$
\phi_{w_{0} z_{1}, z_{2}}^{\mu}=F_{z_{1}, z_{2}}^{\prime} z_{\mu}=\psi_{w_{0} z_{1}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} z_{\mu} \psi_{z_{2}}
$$

and

$$
\phi_{z_{1}, z_{2}}^{\mu} \equiv \psi_{z_{1}, z_{2}}^{\mu}\left(\bmod \left(\mathscr{H}_{\ell, n}^{(0)}\right)^{>\boldsymbol{\mu}}\right)
$$

(2) The elements in the set $\left\{\phi_{z_{1}, z_{2}}^{\mu} \mid \boldsymbol{\mu} \in \mathscr{P}_{0}, z_{1}, z_{2} \in \mathfrak{S}_{n}\right\}$ form a homogeneous K-basis of $\mathscr{H}_{\ell, n}^{(0)}$.

Proof. The first part of (1) follows from Lemma 3.5, while the second part of (1) follows from Lemma 2.12. Finally, (2) follows from (1) and (2.7).

We are going to define another homogeneous symmetrizing form " Tr " on $\mathscr{H}_{\ell, n}^{(0)}$. Let $\lambda \in \mathscr{P}_{0}$ and $w, u \in \mathfrak{S}_{n}$. By the same argument used in the proof of Lemma 3.4, there is an element $z_{w, u}$ in the center $Z\left(\mathscr{H}_{\ell, n}^{(0)}\right)$ of $\mathscr{H}_{\ell, n}^{(0)}$ such that

$$
\psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{u} \psi_{w^{-1} w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}}=\psi_{w_{0}} z_{w, u}
$$

If $\operatorname{deg} z_{\lambda}+\operatorname{deg} z_{w, u}=d_{\Lambda}$, then we denote $c_{w, u} \in K$ the unique scalar which satisfies that $z_{w, u} z_{\lambda}=c_{w, u} z_{\lambda_{\max }}$. Note that $\operatorname{deg} z_{\lambda}+\operatorname{deg} z_{w, u}=d_{\Lambda}$ if and only if $\operatorname{deg} \phi_{w_{0} w, u}^{\lambda}=d_{\Lambda}$.

Definition 4.11. For any $\boldsymbol{\mu} \in \mathscr{P}_{0}$ and $w, u \in \mathfrak{S}_{n}$, we define

$$
\operatorname{Tr}\left(F_{w, u}^{\prime} z_{\mu}\right)=\operatorname{Tr}\left(\phi_{w_{0} w, u}^{\mu}\right):= \begin{cases}c_{w, u} & \text { if } \operatorname{deg} F_{w, u}^{\prime} z_{\mu}=d_{\Lambda} \\ 0 & \text { otherwise }\end{cases}
$$

In particular, if $w=u$ and $\boldsymbol{\mu}=\lambda_{\text {max }}$ then $\operatorname{Tr}\left(\phi_{w, u}^{\mu}\right)=1$. Note that

$$
\begin{aligned}
1 & =\operatorname{Tr}\left(\phi_{w_{0}, 1}^{\lambda_{\max }}\right)=\operatorname{Tr}\left(F_{1,1}^{\prime} z_{\lambda_{\max }}\right) \\
& =\operatorname{Tr}\left(\psi_{w_{0}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} \psi_{w_{0}} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} z \lambda_{\max }\right) \\
& =(-1)^{n(n-1) / 2} \operatorname{Tr}\left(\psi_{w_{0}}^{*} y_{1}^{n-1} y_{2}^{n-2} \ldots y_{n-1} z_{\lambda_{\max }}\right) \\
& =\operatorname{Tr}\left(\psi_{w_{0}}^{*} y_{\lambda_{\max }}\right),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\operatorname{Tr}\left(\psi_{w_{0}}^{*} y_{\lambda_{\max }}\right)=1 \tag{4.12}
\end{equation*}
$$

Proposition 4.13. The map Tr can be linearly extended to a well-defined homogeneous symmetrizing form of degree $-d_{\Lambda}$ on $\mathscr{H}_{\ell, n}^{(0)}$.

Proof. By construction, it is clear that the map Tr can be linearly extended to a well-defined homogeneous linear map of degree $-d_{\Lambda}$ on $\mathscr{H}_{\ell, n}^{(0)}$.

We want to show that $\widehat{\mathrm{Tr}}=\mathrm{Tr}$. Once this is proved, it is automatically proved that Tr is symmetric and nondegenerate. To this end, by Lemma 4.10, it suffices to show that $\widehat{\operatorname{Tr}}\left(F_{z_{1}, z_{2}}^{\prime} z_{\mu}\right)=\operatorname{Tr}\left(F_{z_{1}, z_{2}}^{\prime} z_{\mu}\right)$ for any $\boldsymbol{\mu} \in \mathscr{P}_{0}$ and $z_{1}, z_{2} \in \mathfrak{S}_{n}$.

Without loss of generality we can assume that $\operatorname{deg}\left(F_{z_{1}, z_{2}}^{\prime} z_{\mu}\right)=d_{\Lambda}$. Since $\widehat{\mathrm{Tr}}$ is a trace form and z_{μ} is central, we have

$$
\left.\begin{array}{rl}
\widehat{\operatorname{Tr}}(& \left.F_{z_{1}, z_{2}}^{\prime} z_{\mu}\right) \\
= & \widehat{\operatorname{Tr}}(
\end{array} F_{z_{1}, z_{1}}^{\prime} F_{z_{1}, z_{2}}^{\prime} z_{\mu}\right) .
$$

This completes the proof of $\widehat{\mathrm{Tr}}=\mathrm{Tr}$. In particular, this implies that Tr is symmetric and nondegenerate. That says, Tr can be linearly extended to a well-defined homogeneous symmetrizing form of degree $-d_{\Lambda}$ on $\mathscr{H}_{\ell, n}^{(0)}$.

Proposition 4.14.

$$
\widehat{\mathrm{Tr}}=\mathrm{Tr}
$$

Proof. This follows from the proof of Proposition 4.13.

5. Comparing Tr with the Shan-Varagnolo-Vasserot symmetrizing form $\mathbf{T r}^{\mathrm{SVV}}$

In this section, we compare the symmetrizing form Tr with the Shan-VaragnoloVasserot symmetrizing form $\mathrm{Tr}^{\text {SVV }}$ introduced in [Shan et al. 2017] and show that they are actually the same.

Let A, B be two K-algebras and $i: B \rightarrow A$ is a K-algebra homomorphism. Let $A^{B}:=\{x \in A \mid x b=b x, \forall b \in B\}$ be the centralizer of B in A. For any $f \in A^{B}$, we set

$$
\mu_{f}: A \otimes_{B} A \rightarrow A, \quad a \otimes a^{\prime} \mapsto a f a^{\prime}
$$

Recall that $\mathscr{H}_{\ell, n}^{(0)}=\mathscr{R}_{n \alpha_{0}}^{\ell \Lambda_{0}}$. In the notations of [Shan et al. 2017, §3.1.4], we set

$$
\begin{equation*}
\lambda_{0}:=\left\langle\ell \Lambda_{0}-(n-1) \alpha_{0}, \alpha_{0}^{\vee}\right\rangle=\ell-2(n-1) \tag{5.1}
\end{equation*}
$$

We first recall the definition of $\mathrm{Tr}^{\mathrm{SVV}}$ in the case of nilHecke algebra $\mathscr{R}_{n \alpha_{0}}^{\ell \Lambda_{0}}$.
Definition 5.2 [Kang and Kashiwara 2012; Shan et al. 2017, Theorem 3.6, (6), (8)]. If $\lambda_{0} \geq 0$ then for any $z \in \mathscr{R}_{n \alpha_{0}}^{\ell \Lambda_{0}}$ there are unique elements $p_{k}(z) \in \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}}$ and $\pi(z) \in \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}} \otimes_{R_{(n-2) \alpha_{0}}^{\ell \Lambda_{0}}} \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}}$ such that

$$
z=\mu_{\psi_{n-1}}(\pi(z))+\sum_{k=0}^{\lambda_{0}-1} p_{k}(z) y_{n}^{k}
$$

where the above summation is understood as 0 when $\lambda_{0}=0$.
If $\lambda_{0} \leq 0$ then for any $z \in \mathscr{R}_{n \alpha_{0}}^{\ell \Lambda_{0}}$, there is a unique element $\tilde{z} \in \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}} \otimes_{\mathscr{R}_{(n-2) \alpha_{0}}^{\ell\left(\Lambda_{0}\right.}}$ $\mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}}$ such that

$$
\mu_{\psi_{n-1}}(\tilde{z})=z \quad \text { and } \quad \mu_{y_{n-1}^{k}}(\tilde{z})=0, \forall k \in\left\{0,1, \ldots,-\lambda_{0}-1\right\}
$$

where the range of k is understood as \varnothing when $\lambda_{0}=0$.
Definition 5.3 [Shan et al. 2017, Theorem 3.8]. For each $n \in \mathbb{N}$, we define $\hat{\varepsilon}_{n}$: $\mathscr{R}_{n \alpha_{0}}^{\ell \Lambda_{0}} \rightarrow \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}}$ as follows: for any $z \in \mathscr{R}_{n \alpha_{0}}^{\ell \Lambda_{0}}$, if $\lambda_{0}:=\ell-2(n-1)>0$ then $\hat{\varepsilon}_{n}(z):=p_{\ell-2(n-1)-1}(z)$; if $\lambda_{0}:=\ell-2(n-1) \leq 0$ then $\hat{\varepsilon}_{n}(z):=\mu_{y_{n-1}^{-\ell+2(n-1)}}(\tilde{z})$.
Definition 5.4 [Shan et al. 2017, A.3.]. For any $z \in \mathscr{R}_{n \alpha_{0}}^{\ell}$,

$$
\operatorname{Tr}^{\mathrm{SVV}}(z):=\hat{\varepsilon}_{1} \circ \hat{\varepsilon}_{2} \circ \cdots \circ \hat{\varepsilon}_{n}: \mathscr{R}_{n \alpha_{0}}^{\ell \Lambda_{0}} \rightarrow \mathscr{R}_{0 \alpha_{0}}^{\ell \Lambda_{0}}=K
$$

Definition 5.5. For each $n \in \mathbb{N}$, we define

$$
Z_{0, n}:=\psi_{w_{0, n}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n} \in \mathscr{H}_{\ell, n}^{(0)}
$$

We want to compute the value $\operatorname{Tr}^{\mathrm{SVV}}\left(Z_{0, n}\right)$. According to Definition 5.2, we need to understand the value $p_{\ell-2(n-1)-1}\left(Z_{0, n}\right)$ when $\ell>2(n-1)$ and the value $\mu_{y_{n-1}^{-\ell+2(n-1)}}\left(\widetilde{Z}_{0, n}\right)$ when $\ell \leq 2(n-1)$.
Lemma 5.6. Suppose that $\lambda_{0}:=\ell-2(n-1) \geq 0$. Then

$$
\begin{aligned}
& \pi\left(Z_{0, n}\right)=\left(\left(\psi_{1} \ldots \psi_{n-2}\right) y_{n-1}^{\ell-n}\right) \\
& \quad \otimes\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right) \ldots\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
& \\
&
\end{aligned} \quad \in \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}} \otimes_{\mathscr{R}_{(n-2) \alpha_{0}}^{\ell \Lambda_{0}}} \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}}, ~ l
$$

and for any $k \in\left\{0,1, \ldots, \lambda_{0}-1\right\}$,

$$
\begin{aligned}
& p_{k}\left(Z_{0, n}\right) \\
& \quad=\left(\psi_{1} \ldots \psi_{n-2}\right)\left(\psi_{1} \ldots \psi_{n-3}\right) \ldots\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-2}^{\ell-n+2} y_{n-1}^{\ell-n+\lambda_{0}-k}
\end{aligned}
$$

In particular, $p_{\lambda_{0}-1}\left(Z_{0, n}\right)=Z_{0, n-1}$.

Proof. By definition, we have

$$
\begin{aligned}
& Z_{0, n}=\psi_{w_{0, n}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n} \\
& =\left(\psi_{1} \ldots \psi_{n-2} \psi_{n-1}\right)\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right) \ldots\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n} \\
& =\left(\psi_{1} \ldots \psi_{n-2}\right)\left(\psi_{n-1} y_{n}^{\ell-n}\right) \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
& \begin{array}{l}
=\left(\psi_{1} \ldots \psi_{n-2}\right)\left(y_{n-1}^{\ell-n} \psi_{n-1}+\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} y_{n-1}^{a_{1}} y_{n}^{a_{2}}\right) \\
\times \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1}
\end{array} \\
& =\left(\psi_{1} \ldots \psi_{n-2}\right)\left(y_{n-1}^{\ell-n} \psi_{n-1}\right) \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
& +\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}}\left(\psi_{1} \ldots \psi_{n-2} y_{n-1}^{a_{1}} \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}}\right) \\
& =\left(\psi_{1} \ldots \psi_{n-2}\right)\left(y_{n-1}^{\ell-n} \psi_{n-1}\right) \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
& \begin{array}{r}
\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}}\left(\psi_{1} \ldots \psi_{n-2} y_{n-1}^{a_{1}}\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right)\left(\psi_{1} \ldots \psi_{n-4} \psi_{n-3}\right) \ldots\right. \\
\\
\left.\times\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}}\right)
\end{array} \\
& =\left(\psi_{1} \ldots \psi_{n-2}\right)\left(y_{n-1}^{\ell-n} \psi_{n-1}\right) \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
& +\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2}>0}}\left(\left(\psi_{1} \ldots \psi_{n-2}\right)\left(\psi_{1} \ldots \psi_{n-3}\right)\right. \\
& \underset{a_{1}, a_{2} \geq 0}{+a_{2}=\ell-n-1} \times\left(\psi_{1} \ldots \psi_{n-4}\right) \ldots \psi_{1} y_{n-1}^{a_{1}}\left(\psi_{n-2} \psi_{n-3} \ldots \psi_{2} \psi_{1}\right) \\
& \left.\times y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}}\right) \\
& =\mu_{\psi_{n-1}}\left(\left(\psi_{1} \ldots \psi_{n-2} y_{n-1}^{\ell-n}\right) \otimes\left(\psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1}\right)\right) \\
& +\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \psi_{w_{0, n-1}}\left(y_{n-1}^{a_{1}} \psi_{n-2} \ldots \psi_{2} \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} .
\end{aligned}
$$

Using the uniqueness in Definition 5.2, we see that to prove the lemma, it suffices to show that

$$
\begin{aligned}
& \sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \psi_{w_{0, n-1}}\left(y_{n-1}^{a_{1}} \psi_{n-2} \ldots \psi_{2} \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} \\
&=\sum_{k=0}^{\lambda_{0}-1} \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-2}^{\ell-n+2} y_{n-1}^{\ell-n+\lambda_{0}-k} y_{n}^{k}
\end{aligned}
$$

In fact,

$$
\begin{aligned}
& \sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \psi_{w_{0, n-1}}\left(y_{n-1}^{a_{1}} \psi_{n-2} \ldots \psi_{2} \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} \\
& =\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \psi_{w_{0, n-1}}\left(y_{n-1}^{a_{1}} \psi_{n-2} \ldots \psi_{2} \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} \\
& =\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1} \geq n-2, a_{2} \geq 0}} \psi_{w_{0, n-1}}\left(y_{n-1}^{a_{1}} \psi_{n-2} \ldots \psi_{2} \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} \\
& =\psi_{w_{0, n-1}} \psi_{n-2} \ldots \psi_{2} \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-2}^{\ell-n+2} y_{n-1}^{\ell-n+1} y_{n}^{\ell-2 n+1} \\
& \\
& \quad+\psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-2}^{\ell-n+2} y_{n-1}^{\ell-n+2} y_{n}^{\ell-2 n}
\end{aligned} \quad \begin{aligned}
& \quad+\psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-2}^{\ell-n+2} y_{n-1}^{\ell-n+3} y_{n}^{\ell-2 n-1} \\
& \quad \begin{array}{l}
\quad+\psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-2}^{\ell-n+2} y_{n-1}^{2 \ell-3 n+1} y_{n} \\
\\
\quad+\psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-2}^{\ell-n+2} y_{n-1}^{\ell \ell-3 n+2}
\end{array} \\
& =
\end{aligned}
$$

where we have used the commutator relations for the ψ and y generators of $\mathscr{H}_{\ell, n}^{(0)}$ and the fact that

$$
\psi_{w_{0, n-1}} \psi_{r}=0 \quad \text { for any } 1 \leq r<n-1
$$

in the second and the last equalities. This completes the proof of the lemma.
Lemma 5.7. Suppose that $\lambda_{0}:=\ell-2(n-1) \leq 0$. Then
$\widetilde{Z}_{0, n}=$

$$
\begin{array}{r}
\left(\left(\psi_{1} \psi_{2} \ldots \psi_{n-2}\right) y_{n-1}^{\ell-n}\right) \otimes\left(\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right) \ldots\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1}\right) \\
\in \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}} \otimes_{R_{(n-2) \alpha_{0}}^{\ell \Lambda \Lambda_{0}}} \mathscr{R}_{(n-1) \alpha_{0}}^{\ell \Lambda_{0}}
\end{array}
$$

and

$$
\begin{aligned}
\mu_{y_{n-1}^{-\lambda_{0}}}\left(\widetilde{Z}_{0, n}\right) & =Z_{0, n-1} \\
& =\left(\psi_{1} \ldots \psi_{n-2}\right)\left(\psi_{1} \ldots \psi_{n-3}\right) \ldots\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1}
\end{aligned}
$$

Proof. By definition, we have

$$
\begin{aligned}
Z_{0, n}= & \psi_{w_{0, n}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n} \\
= & \left(\psi_{1} \ldots \psi_{n-2} \psi_{n-1}\right)\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right) \ldots\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n} \\
= & \left(\psi_{1} \ldots \psi_{n-2}\right)\left(\psi_{n-1} y_{n}^{\ell-n}\right)\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right) \ldots \\
& \quad \times\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
= & \left(\psi_{1} \ldots \psi_{n-2}\right)\left(y_{n-1}^{\ell-n} \psi_{n-1}+\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \quad y_{n-1}^{a_{1}} y_{n}^{a_{2}}\right) \\
& \times \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
= & \left(\psi_{1} \ldots \psi_{n-2}\right)\left(y_{n-1}^{\ell-n} \psi_{n-1}\right) \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
& \quad+\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \psi_{1} \ldots \psi_{n-2}\left(y_{n-1}^{a_{1}}\right) \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} .
\end{aligned}
$$

We now claim that

$$
\begin{equation*}
\sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\ a_{1}, a_{2} \geq 0}} \psi_{1} \ldots \psi_{n-2}\left(y_{n-1}^{a_{1}}\right) \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}}=0 \tag{5.8}
\end{equation*}
$$

In fact, we have

$$
\begin{aligned}
& \sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \psi_{1} \ldots \psi_{n-2}\left(y_{n-1}^{a_{1}}\right) \psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} \\
= & \sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \psi_{1} \ldots \psi_{n-2}\left(y_{n-1}^{a_{1}}\right)\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right)\left(\psi_{1} \ldots \psi_{n-4} \psi_{n-3}\right) \ldots \\
& \quad \times\left(\psi_{1} \psi_{2}\right)\left(\psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} \\
= & \sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}, a_{2} \geq 0}} \psi_{w_{0, n-1}}\left(y_{n-1}^{a_{1}} \psi_{n-2} \ldots \psi_{2} \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}} \\
= & \sum_{\substack{a_{1}+a_{2}=\ell-n-1 \\
a_{1}>0, a_{2} \geq 0}} \psi_{w_{0, n-1}}\left(y_{n-1}^{a_{1}} \psi_{n-2} \ldots \psi_{2} \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} y_{n}^{a_{2}},
\end{aligned}
$$

where the last equality follows from the fact that $\psi_{w_{0, n-1}} \psi_{n-2}=0$. Now by assumption, $a_{1} \leq \ell-n-1 \leq 2(n-1)-n-1=n-3<n-2$. It follows that $y_{n-1}^{a_{1}} \psi_{n-2} \ldots \psi_{2} \psi_{1}$ is a sum of some elements which have a left factor of the form ψ_{r} for some $1 \leq r<n-1$. Therefore, using the fact that $\psi_{w_{0, n-1}} \psi_{r}=0$ for any $1 \leq r<n-1$ again, we can deduce that the above sum is 0 . This completes the proof of the claim (5.8).

By Definition 5.2, to complete the proof of the lemma, it remains to show that for any $0 \leq k \leq-\lambda_{0}-1$,

$$
\begin{equation*}
\mu_{y_{n-1}^{k}}\left(\left(\psi_{1} \psi_{2} \ldots \psi_{n-2} y_{n-1}^{\ell-n}\right) \otimes\left(\psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1}\right)\right)=0 \tag{5.9}
\end{equation*}
$$

In fact, we have

$$
\begin{aligned}
& \mu_{y_{n-1}^{k}}\left(\left(\psi_{1} \psi_{2} \ldots \psi_{n-2} y_{n-1}^{\ell-n}\right) \otimes\left(\psi_{w_{0, n-1}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1}\right)\right) \\
& =\mu_{y_{n-1}^{k}}\left(\left(\psi_{1} \ldots \psi_{n-2} y_{n-1}^{\ell-n}\right)\right. \\
& \left.\otimes\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right) \ldots\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1}\right) \\
& =\left(\psi_{1} \ldots \psi_{n-2}\right)\left(y_{n-1}^{\ell-n+k}\right)\left(\psi_{1} \ldots \psi_{n-3} \psi_{n-2}\right)\left(\psi_{1} \ldots \psi_{n-4} \psi_{n-3}\right) \ldots \\
& =\left(\psi_{1} \ldots \psi_{n-2}\right)\left(\psi_{1} \ldots \psi_{n-3}\right) \ldots \quad \times\left(\psi_{1} \psi_{2}\right) \psi_{1} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
& \quad \times\left(\psi_{1} \psi_{2}\right) \psi_{1}\left(y_{n-1}^{\ell-n+k} \psi_{n-2} \psi_{n-3} \ldots \psi_{2} \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1} \\
& = \\
& \psi_{w_{0, n-1}}\left(y_{n-1}^{\ell-n+k} \psi_{n-2} \psi_{n-3} \ldots \psi_{1}\right) y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n-1}^{\ell-n+1}=0
\end{aligned}
$$

where the last equality follows from the fact that $\psi_{w_{0, n-1}} \psi_{r}=0$ for any $1 \leq r<n-1$ and the assumption that

$$
\ell-n+k \leq \ell-n-\lambda_{0}-1=\ell-n-(\ell-2(n-1))-1=n-3<n-2
$$

so that $y_{n-1}^{\ell-n+k} \psi_{n-2} \psi_{n-3} \ldots \psi_{1}$ is a sum of some elements which have a left factor of the form ψ_{r} for some $1 \leq r<n-1$. This completes the proof of (5.9) and hence the proof of the lemma.

Corollary 5.10. $\quad \operatorname{Tr}^{S V V}\left(Z_{0, n}\right)=1$.
Proof. This follows from Definition 5.3, Definition 5.4, Lemma 5.6, Lemma 5.7, and an induction on n.
Theorem 5.11. The two symmetrizing forms $\mathrm{Tr}^{\mathrm{SVV}}$ and Tr on the cyclotomic nilHecke algebra $\mathscr{H}_{\ell, n}^{(0)}$ coincide with each other.
Proof. Let $1 \leq i, j \leq n!$, and $z \in Z$. Suppose that $i \neq j$. Then as $\operatorname{Tr}^{\mathrm{SVV}}$ is a symmetrizing form and z is central, we have

$$
\begin{aligned}
\operatorname{Tr}^{\mathrm{SVV}}\left(\tilde{F}_{w_{i}, w_{j}} z\right) & =\operatorname{Tr}^{\mathrm{SVV}}\left(\tilde{F}_{w_{i}, w_{i}} \tilde{F}_{w_{i}, w_{j}} z\right)=\operatorname{Tr}^{\mathrm{SVV}}\left(\tilde{F}_{w_{i}, w_{j}} z \tilde{F}_{w_{i}, w_{i}}\right) \\
& =\operatorname{Tr}^{\mathrm{SVV}}\left(\tilde{F}_{w_{i}, w_{j}} \tilde{F}_{w_{i}, w_{i}} z\right)=\operatorname{Tr}^{\mathrm{SVV}}(0 z)=0 .
\end{aligned}
$$

It remains to consider the case when $i=j$.
If $\operatorname{deg} z<d_{\Lambda}$, then as $\mathrm{Tr}^{\mathrm{SVV}}$ is homogeneous of degree $-d_{\Lambda}$ and $\operatorname{deg} \tilde{F}_{w_{i}, w_{i}}=0$, we have $\operatorname{Tr}^{\mathrm{SVV}}\left(\tilde{F}_{w_{i}, w_{i}} z\right)=0$. Therefore, without loss of generality, we can assume that $z=z_{\lambda_{\max }}$. Our purpose is to compare $\operatorname{Tr}^{\mathrm{SVV}}\left(\tilde{F}_{w_{i}, w_{i}} z_{\lambda_{\max }}\right)$ and $\operatorname{Tr}\left(\tilde{F}_{w_{i}, w_{i}} z_{\lambda_{\max }}\right)$.

Note that for any $\boldsymbol{\mu} \in \mathscr{P}_{0}$ with $\boldsymbol{\mu}>\lambda_{\text {min }}$, we have that $\operatorname{deg}\left(y_{\mu} z_{\lambda_{\text {max }}}\right)>n(n-1)+2 n(\ell-n)=2 \ell n-n(n+1)=\operatorname{deg}\left(y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n}\right)$, which implies that $y_{\mu} z_{\lambda_{\max }}=0$ by Theorem 2.34. By (2.33) and Lemma 3.5, we have

$$
\begin{aligned}
\operatorname{Tr}^{\mathrm{SVV}}\left(\tilde{F}_{w_{i}, w_{i}} z_{\max }\right) & =(-1)^{n(n-1) / 2} \operatorname{Tr}^{\mathrm{SVV}}\left(\psi_{w_{0} w_{i}, w_{i}}^{\lambda_{\min }} z_{\lambda \max }\right)=\operatorname{Tr}^{\mathrm{SVV}}\left(\psi_{w_{0} w_{i}, w_{i}}^{\lambda_{\max }}\right) \\
& =\operatorname{Tr}^{\mathrm{SVV}}\left(\psi_{w_{i}} \psi_{w_{0} w_{i}}^{*} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n}\right) \\
& =\operatorname{Tr}^{\operatorname{SVV}}\left(\psi_{w_{0}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n}\right) \\
& =\operatorname{Tr}^{\mathrm{SVV}}\left(Z_{0, n}\right)=1, \quad(\text { by Corollary 5.10)} \\
\operatorname{Tr}\left(\tilde{F}_{w_{i}, w_{i}} z_{\lambda \max }\right) & =(-1)^{n(n-1) / 2} \operatorname{Tr}\left(\psi_{w_{0} w_{i}, w_{i}}^{\lambda_{\min }} z_{\max }\right)=\operatorname{Tr}\left(\psi_{w_{0} w_{i}, w_{i}}^{\lambda_{\max }}\right) \\
& =\operatorname{Tr}\left(\psi_{w_{i}} \psi_{w_{0} w_{i}}^{*} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n}\right) \\
& =\operatorname{Tr}\left(\psi_{w_{0}} y_{1}^{\ell-1} y_{2}^{\ell-2} \ldots y_{n}^{\ell-n}\right)=1 . \quad(\text { by }(4.12))
\end{aligned}
$$

This shows that $\operatorname{Tr}^{\operatorname{SVV}}\left(\tilde{F}_{w_{i}, w_{i}} z_{\lambda \max }\right)=\operatorname{Tr}\left(\tilde{F}_{w_{i}, w_{i}} z_{\lambda \max }\right)$.
As a result, we have shown that $\operatorname{Tr}^{\mathrm{SVV}}\left(\tilde{F}_{w_{i}, w_{j}} z\right)=\operatorname{Tr}\left(\tilde{F}_{w_{i}, w_{j}} z\right)$ for any $1 \leq i$, $j \leq n!$, and $z \in Z$. It follows that $\mathrm{Tr}^{\mathrm{SVV}}=\mathrm{Tr}$, as required.

Acknowledgements

Both authors were supported by the National Natural Science Foundation of China (No. 11525102, 11471315). They thank Prof. Lauda and Dr. Kai Zhou for some helpful discussions and comments.

References

[Ariki and Koike 1994] S. Ariki and K. Koike, "A Hecke algebra of $(\mathbb{Z} / r \mathbb{Z}) 乙 \mathfrak{S}_{n}$ and construction of its irreducible representations", Adv. Math. 106:2 (1994), 216-243. MR Zbl
[Ariki and Mathas 2000] S. Ariki and A. Mathas, "The number of simple modules of the Hecke algebras of type $G(r, 1, n)$ ", Math. Z. 233:3 (2000), 601-623. MR Zbl
[Brundan 2008] J. Brundan, "Centers of degenerate cyclotomic Hecke algebras and parabolic category O", Represent. Theory 12 (2008), 236-259. MR Zbl
[Brundan and Kleshchev 2008] J. Brundan and A. Kleshchev, "Schur-Weyl duality for higher levels", Selecta Math. (N.S.) 14:1 (2008), 1-57. MR Zbl
[Brundan and Kleshchev 2009a] J. Brundan and A. Kleshchev, "Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras", Invent. Math. 178:3 (2009), 451-484. MR Zbl
[Brundan and Kleshchev 2009b] J. Brundan and A. Kleshchev, "Graded decomposition numbers for cyclotomic Hecke algebras", Adv. Math. 222:6 (2009), 1883-1942. MR Zbl
[Brundan et al. 2011] J. Brundan, A. Kleshchev, and W. Wang, "Graded Specht modules", J. Reine Angew. Math. 655 (2011), 61-87. MR Zbl
[Curtis and Reiner 1981] C. W. Curtis and I. Reiner, Methods of representation theory, I, Wiley, New York, 1981. MR Zbl
[Dipper and James 1986] R. Dipper and G. James, "Representations of Hecke algebras of general linear groups", Proc. Lond. Math. Soc. (3) 52:1 (1986), 20-52. MR Zbl
[Dipper et al. 1998] R. Dipper, G. James, and A. Mathas, "Cyclotomic q-Schur algebras", Math. Z. 229:3 (1998), 385-416. MR Zbl
[Geck and Pfeiffer 2000] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and IwahoriHecke algebras, Lond. Math. Soc. Monographs. New Series 21, Oxford Univ. Press, 2000. MR Zbl
[Graham and Lehrer 1996] J. J. Graham and G. I. Lehrer, "Cellular algebras", Invent. Math. 123:1 (1996), 1-34. MR Zbl
[Hiller 1982] H. Hiller, Geometry of Coxeter groups, Research Notes in Math. 54, Pitman, Boston, 1982. MR Zbl
[Hoffnung and Lauda 2010] A. E. Hoffnung and A. D. Lauda, "Nilpotency in type A cyclotomic quotients", J. Algebraic Combin. 32:4 (2010), 533-555. MR Zbl
[Hu and Lam 2017] J. Hu and N. Lam, "Symmetric structure for the endomorphism algebra of projective-injective module in parabolic category", preprint, 2017. arXiv
[Hu and Mathas 2010] J. Hu and A. Mathas, "Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type $A ", A d v$. Math. 225:2 (2010), 598-642. MR Zbl
[Hu and Mathas 2012] J. Hu and A. Mathas, "Graded induction for Specht modules", Int. Math. Res. Not. 2012:6 (2012), 1230-1263. MR Zbl
[Kang and Kashiwara 2012] S.-J. Kang and M. Kashiwara, "Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras", Invent. Math. 190:3 (2012), 699-742. MR Zbl
[Kashiwara 2012] M. Kashiwara, "Biadjointness in cyclotomic Khovanov-Lauda-Rouquier algebras", Publ. Res. Inst. Math. Sci. 48:3 (2012), 501-524. MR Zbl
[Khovanov and Lauda 2009] M. Khovanov and A. D. Lauda, "A diagrammatic approach to categorification of quantum groups, I", Represent. Theory 13 (2009), 309-347. MR Zbl
[Khovanov et al. 2012] M. Khovanov, A. D. Lauda, M. Mackaay, and M. Stošić, Extended graphical calculus for categorified quantum $\mathfrak{s l}(2)$, Mem. Amer. Math. Soc. 1029, 2012. MR Zbl
[Kleshchev et al. 2013] A. S. Kleshchev, J. W. Loubert, and V. Miemietz, "Affine cellularity of Khovanov-Lauda-Rouquier algebras in type A", J. Lond. Math. Soc. (2) 88:2 (2013), 338-358. MR Zbl
[Kostant and Kumar 1986] B. Kostant and S. Kumar, "The nil Hecke ring and cohomology of G / P for a Kac-Moody group $G^{\prime \prime}$, Adv. Math. 62:3 (1986), 187-237. MR Zbl
[Lauda 2010] A. D. Lauda, "A categorification of quantum $\mathfrak{s l}(2)$ ", Adv. Math. 225:6 (2010), 33273424. MR Zbl
[Lauda 2012] A. D. Lauda, "An introduction to diagrammatic algebra and categorified quantum $\mathfrak{s l}_{2}$ ", Bull. Inst. Math. Acad. Sin. (N.S.) 7:2 (2012), 165-270. MR Zbl
[Lauda and Vazirani 2011] A. D. Lauda and M. Vazirani, "Crystals from categorified quantum groups", Adv. Math. 228:2 (2011), 803-861. MR Zbl
[Malle and Mathas 1998] G. Malle and A. Mathas, "Symmetric cyclotomic Hecke algebras", J. Algebra 205:1 (1998), 275-293. MR Zbl
[Manivel 2001] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/ AMS Texts and Monographs 6, American Mathematical Society, Providence, RI, 2001. MR Zbl
[Mathas 2015] A. Mathas, "Cyclotomic quiver Hecke algebras of type A", pp. 165-266 in Modular representation theory of finite and p-adic groups, edited by W. T. Gan and K. M. Tan, Lect. Notes Inst. Math. Sci. Natl. Univ. Singap. 30, World Sci., Hackensack, NJ, 2015. MR Zbl
[Rouquier 2008] R. Rouquier, "2-Kac-Moody algebras", preprint, 2008. arXiv
[Rouquier 2012] R. Rouquier, "Quiver Hecke algebras and 2-Lie algebras", Algebra Colloq. 19:2 (2012), 359-410. MR Zbl
[Shan et al. 2017] P. Shan, M. Varagnolo, and E. Vasserot, "On the center of quiver Hecke algebras", Duke Math. J. 166:6 (2017), 1005-1101. MR Zbl
[Varagnolo and Vasserot 2011] M. Varagnolo and E. Vasserot, "Canonical bases and KLR-algebras", J. Reine Angew. Math. 659 (2011), 67-100. MR Zbl
[Webster 2015] B. Webster, "Centers of KLR algebras and cohomology rings of quiver varieties", preprint, 2015. arXiv

Received September 8, 2017. Revised December 12, 2017.

Jun Hu
School of Mathematics and Statistics
Beijing Institute of Technology
Beijing
China
junhu404@bit.edu.cn

Xinfeng Liang
School of Mathematics and Statistics
Beijing Institute of Technology
Beijing
China
lxfrd@163.com

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Wee Teck Gan
Mathematics Department
National University of Singapore Singapore 119076 matgwt@nus.edu.sg

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 liu@math.ucla.edu

Jie Qing

Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper

Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk

Paul Yang

Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
E. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 296 No. 1 September 2018
Monotonicity of eigenvalues of geometric operators along the 1 Ricci-Bourguignon flow
Bin Chen, Qun He and FanQi Zeng
Composition series of a class of induced representations, a case of one half 21cuspidal reducibility
Igor Ciganović
Higgs bundles over cell complexes and representations of finitely presented 31 groups groups
Georgios Daskalopoulos, Chikako Mese and Graeme WILKIN
Besov-weak-Herz spaces and global solutions for Navier-Stokes equations 57
Lucas C. F. Ferreira and Jhean E. Pérez-López
Four-manifolds with positive Yamabe constant 79
Hai-Ping Fu
On the structure of cyclotomic nilHecke algebras 105
Jun Hu and Xinfeng Liang
Two applications of the Schwarz lemma 141
Bingyuan Liu
Monads on projective varieties 155
Simone Marchesi, Pedro Macias Marques and Helena SoARES
Minimal regularity solutions of semilinear generalized Tricomi equations 181
Zhuoping Ruan, Ingo Witt and Huicheng Yin
Temperedness of measures defined by polynomial equations over local 227fields
David Taylor, V. S. Varadarajan, Jukka Virtanen and David Weisbart

[^0]: MSC2010: 16G99, 20 C 08.
 Keywords: cyclotomic nilHecke algebras, graded cellular bases, trace forms.

