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ON THE STRUCTURE OF
CYCLOTOMIC NILHECKE ALGEBRAS

JUN HU AND XINFENG LIANG

In this paper we study the structure of the cyclotomic nilHecke algebras
H

(0)
`,n , where `, n ∈ N. We construct a monomial basis for H

(0)
`,n which ver-

ifies a conjecture of Mathas. We show that the graded basic algebra of
H

(0)
`,n is commutative and hence isomorphic to the center Z of H

(0)
`,n . We

further prove that H
(0)
`,n is isomorphic to the full matrix algebra over Z and

construct an explicit basis for the center Z. We also construct a complete set
of pairwise orthogonal primitive idempotents of H

(0)
`,n . Finally, we present

a new homogeneous symmetrizing form Tr on H
(0)
`,n by explicitly specifying

its values on a given homogeneous basis of H
(0)
`,n and show that it coincides

with Shan–Varagnolo–Vasserot’s symmetrizing form TrSVV on H
(0)
`,n .

1. Introduction

Quiver Hecke algebras Rα and their finite dimensional quotients R3
α (i.e., cyclo-

tomic quiver Hecke algebras) have been hot topics in recent years. These algebras
are remarkable because they can be used to categorify quantum groups and their
integrable highest weight modules; see [Kang and Kashiwara 2012; Khovanov and
Lauda 2009; Rouquier 2008; 2012; Varagnolo and Vasserot 2011]. These algebras
can be regarded as some Z-graded analogues of the affine Hecke algebras and their
finite dimensional quotients. Many results concerning the representation theory
of the affine Hecke algebras and the cyclotomic Hecke algebras of type A have
their Z-graded analogues for the quiver Hecke algebras Rα and the cyclotomic
quotients R3

α ; see [Brundan and Kleshchev 2009b; Brundan et al. 2011; Lauda and
Vazirani 2011]. It is natural to expect that the structure of the affine Hecke algebras
and the cyclotomic Hecke algebras of type A also have their Z-graded analogues
for the algebras Rα and R3

α . In fact, this is indeed the case for the quiver Hecke
algebras Rα. For example, we have faithful polynomial representations, standard
basis and a nice description of the center for the algebra Rα in a similar way as in
the case of the affine Hecke algebras of type A. However, the situation turns out to
be much more tricky for the cyclotomic quiver Hecke algebras R3

α . Only partial
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progress has been made for the structure of the cyclotomic quiver Hecke algebras
R3
α so far. For example:

(1) The cyclotomic quiver Hecke algebra of type A has a Z-graded cellular basis
by [Hu and Mathas 2010].

(2) The cyclotomic quiver Hecke algebra is a Z-graded symmetric algebra by
[Shan et al. 2017].

(3) The center of the cyclotomic quiver Hecke algebra R3
α is the image of the

center of the quiver Hecke algebra Rα whenever the associated Cartan matrix
is symmetric of finite type by [Webster 2015].

Apart from the type A case, one does not even know any explicit bases for
arbitrary cyclotomic quiver Hecke algebras. On the other hand, for the classical
cyclotomic Hecke algebra of type A, we have not only a Dipper–James–Mathas’s
cellular basis [Dipper et al. 1998] but also a monomial basis (or Ariki–Koike basis
[Ariki and Koike 1994]). But even for the cyclotomic quiver Hecke algebra of
type A we do not know any explicit monomial basis. This motivates our first
question:

Question 1.1. Can we construct an explicit monomial basis for any cyclotomic
quiver Hecke algebra?

Shan, Varagnolo and Vasserot [Shan et al. 2017] have shown that each cyclotomic
quiver Hecke algebra can be endowed with a homogeneous symmetrizing form
TrSVV which makes it into a graded symmetric algebra (see Remark 4.7 and [Hu
and Mathas 2010, §6.3] for the type A case). However, the SVV symmetrizing
form TrSVV is defined in an inductive manner. It is difficult to compute the explicit
value of the form TrSVV on any specified homogeneous element. On the other hand,
it is well-known that the classical cyclotomic Hecke algebra of type A is symmetric
[Malle and Mathas 1998; Brundan and Kleshchev 2008] and the definition of its
symmetrizing form is explicit in that it specifies its value on each monomial basis
element. This motivates our second question:

Question 1.2. Can we determine the explicit values of the Shan–Varagnolo–Vasserot
symmetrizing form TrSVV on some monomial bases (or at least a set of K -linear
generators) of the cyclotomic quiver Hecke algebra?

An explicit basis for the center of R3
α is unknown. Even for the classical

cyclotomic Hecke algebra of type A, except in the level one case [Geck and Pfeiffer
2000] or in the degenerate case [Brundan 2008], one does not know any explicit
basis for the center.

Question 1.3. Can we give an explicit basis for the center of the cyclotomic quiver
Hecke algebra?
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The starting point of this paper is to try to answer the above three questions. As
a first step toward this goal, we need to consider the case of the cyclotomic quiver
Hecke algebra which corresponds to a quiver with a single vertex and no edges.
That is, the cyclotomic nilHecke algebra of type A. Let us recall its definition.

Definition 1.4. Let `, n ∈ N. The nilHecke algebra H
(0)

n of type A is the unital
associative K -algebra generated by ψ1, . . . , ψn−1, y1, . . . , yn which satisfy the
following relations:

ψ2
r = 0, ∀ 1≤ r < n,

ψrψk = ψkψr , ∀ 1≤ k < r − 1< n− 1,

ψrψr+1ψr = ψr+1ψrψr+1, ∀ 1≤ r < n− 1,

yr yk = yk yr , ∀ 1≤ r, k ≤ n,

ψr yr+1 = yrψr + 1, yr+1ψr = ψr yr + 1, ∀ 1≤ r < n,

ψr yk = ykψr , ∀ k 6= r, r + 1.

The cyclotomic nilHecke algebra H
(0)
`,n of type A is the quotient of H

(0)
n by the

two-sided ideal generated by y`1 .

The nilHecke algebras H
(0)

n was introduced by Kostant and Kumar [1986]. It
plays an important role in the theory of Schubert calculus; see [Hiller 1982]. Mathas
[2015, §2.5] has observed that the Specht module over H

(0)
n,n can be realized as

the coinvariant algebra with standard bases of Specht modules being identified
with the Schubert polynomials of the coinvariant algebras. It is clear that both
H

(0)
n and H

(0)
`,n are Z-graded K -algebras such that each ψr is homogeneous with

degψr =−2 and each ys is homogeneous with deg ys=2 for all 1≤ r <n, 1≤ s≤n.
Mathas [2015, §2.5] has conjectured a monomial basis of the cyclotomic nilHecke
algebra H

(0)
n,n . In this paper, we shall construct a monomial basis of the cyclotomic

nilHecke algebra H
(0)
`,n for arbitrary ` (Theorem 2.34) that, in particular, verifies

Mathas’s conjecture. As an application, we shall construct a basis for the center
Z of H

(0)
`,n (Theorem 3.7). Thus we shall answer Question 1.1 and Question 1.3

for the cyclotomic nilHecke algebra H
(0)
`,n . Furthermore, we shall construct a new

homogeneous symmetrizing form Tr (Proposition 4.13) by specifying its values on
a homogeneous basis element of H

(0)
`,n . We prove that this new form Tr actually

coincides with Shan–Varagnolo–Vasserot’s symmetrizing form TrSVV [Shan et al.
2017] on H

(0)
`,n . Thus we also answer Question 1.2 for the cyclotomic nilHecke

algebra H
(0)
`,n .

The content of the paper is organized as follows. In Section 2, we shall first
review some basic knowledge about the structure and representation of H

(0)
`,n .

Lemma 2.12 provides a useful commutator relation which will be used frequently in
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later discussion. In Corollary 2.18 and 2.19 we determine the graded dimensions of
the graded simple modules and their graded projective covers as well as the graded
decomposition numbers and the graded Cartan numbers. We construct a monomial
basis of the cyclotomic nilHecke algebra H

(0)
`,n for arbitrary ` in Theorem 2.34.

We also construct a complete set of pairwise orthogonal primitive idempotents in
Corollary 2.25 and Theorem 2.31. In Section 3, we shall first present a basis for
the graded basic algebra of H

(0)
`,n and show that it is isomorphic to the center Z

of H
(0)
`,n in Lemma 3.2. Then we shall give a basis for the center in Theorem 3.7

which consists of certain symmetric polynomials in y1, . . . , yn . We also show
in Proposition 3.8 that H

(0)
`,n is isomorphic to the full matrix algebra over Z . In

Section 4, we shall first show in Lemma 4.4 that the center Z is a graded symmetric
algebra by specifying an explicit homogeneous symmetrizing form on Z . Then we
shall introduce two homogeneous symmetrizing forms: one is defined by using its
isomorphism with the full matrix algebra over the center Z (Lemma 4.6); another is
defined by specifying its values on a homogeneous basis element (Definition 4.11
and Proposition 4.13). We show in Proposition 4.14 that these two symmetrizing
forms are the same. In Section 5 we show that the form Tr also coincides with
Shan–Varagnolo–Vasserot’s symmetrizing form TrSVV (which was introduced in
[Shan et al. 2017] for general cyclotomic quiver Hecke algebras).

After the submission of this paper, Professor Lauda emailed us that he won-
ders if our results have some connections with his papers [Khovanov et al. 2012;
Lauda 2012]. In the latter paper he proved that the cyclotomic nilHecke algebra is
isomorphic to the matrix ring of size n! over the cohomology of a Grassmannian.
Combining it with Proposition 3.8 in this paper this implies that the center of the
cyclotomic nilHecke algebra is isomorphic to that cohomology of a Grassmannian.
He also proposed an interesting question of comparing the trace form Tr in this paper
with the natural form on the matrix ring over the cohomology of the Grassmannian
which can be defined using integration over the volume form.

2. The structure and representation of H
(0)
`,n

Let Sn be the symmetric group on {1, 2, . . . , n} and let si := (i, i + 1) ∈Sn , for
1≤ i < n. Then {s1, . . . , sn−1} is the standard set of Coxeter generators for Sn . If
w ∈Sn then the length of w is

`(w) :=min{k ∈ N | w = si1 . . . sik for some 1≤ i1, . . . , ik < n}.

If w = si1 . . . sik with k = `(w) then si1 . . . sik is a reduced expression for w. In this
case, we define ψw := ψi1 . . . ψik . The braid relation in Definition 1.4 ensures that
ψw does not depend on the choice of the reduced expression of w. Let w0,n be the
unique longest element in Sn . When n is clear from the context we shall write w0
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instead of w0,n for simplicity. Then w0 = w
−1
0 and `(w0)= n(n− 1)/2. Let ∗ be

the unique K -algebra antiautomorphism of H
(0)
`,n which fixes each of its ψ and y

generators.

Lemma 2.1 [Manivel 2001]. The elements in the set

{ψwyc1
1 . . . ycn

n | w ∈Sn, c1, . . . , cn ∈ N}

form a K -basis of the nilHecke algebra H
(0)

n and the center of H
(0)

n is the set of
symmetric polynomials in y1, . . . , yn .

Let π :H (0)
n � H

(0)
`,n be the canonical surjective homomorphism.

Definition 2.2. An element z in H
(0)
`,n is said to be symmetric if z=π( f (y1, . . . , yn))

for some symmetric polynomial f (t1, . . . , tn) ∈ K [t1, . . . , tn], where t1, . . . , tn are
n indeterminates over K .

Corollary 2.3. Any symmetric element in H
(0)
`,n lies in the center of H

(0)
`,n .

Proof. This follows from Lemma 2.1 and the surjective homomorphism π . �

Let 0 be a quiver without loops and I its vertex set. For any i, j ∈ I let di j be
the number of arrows i → j and set mi j := di j + d j i . This defines a symmetric
generalized Cartan matrix (ai j )i, j∈I by putting ai j :=−mi j for i 6= j and ai i := 2 for
any i ∈ I . Let u, v be two indeterminates over Z. We define Qi j := (−1)di j (u−v)mi j

for any i 6= j ∈ I and Qi i (u, v) := 0 for any i ∈ I . Let (h,5,5∨) be a realization
of the generalized Cartan matrix (ai j )i, j∈I . Let P be the associated weight lattice
which is a finite rank free abelian group and contains 5= {αi | i ∈ I }, let P∨ be
the associated coweight lattice which is a finite rank free abelian group too and
contains 5∨ = {α∨i | i ∈ I }. Let Q+ :=N5⊂ P be the semigroup generated by 5
and P+⊂ P be the set of integral dominant weights. Let 3∈ P+ and β ∈ Q+n . One
can associate it with a quiver Hecke algebra Rβ as well as its cyclotomic quotient
R3
β . We refer the readers to [Khovanov and Lauda 2009; Rouquier 2012; Shan

et al. 2017] for precise definitions.
Let {3i | i ∈ I } be the set of fundamental weights. The nilHecke algebra and

its cyclotomic quotient can be regarded as a special quiver Hecke algebra and
cyclotomic quiver Hecke algebra. That is, the quiver with single one vertex {0} and
no edges. More precisely, we have

(2.4) H (0)
n =Rnα0, H

(0)
`,n =R`30

nα0
.

Throughout this paper, unless otherwise stated, we shall work in the category
of Z-graded H

(0)
`,n -modules. Note that H

(0)
`,n is a special type A cyclotomic quiver

Hecke algebra so that we can apply the theory of graded cellular algebras developed
in [Hu and Mathas 2010]. We now recall the definition of graded cellular basis in
this special situation (i.e., for H

(0)
`,n ).
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We use ∅ to denote the empty partition and (1) to denote the unique partition
of 1. Set |∅| := 0, |(1)| := 1. We define

P0 :=

{
λ := (λ(1), . . . , λ(`))

∣∣∣ ∑̀
i=1
|λ(i)| = n, λ(i) ∈ {∅, (1)}, ∀ 1≤ i ≤ `

}
.

Definition 2.5. If λ= (λ(1), . . . , λ(`)) ∈P0, then we define θ(λ) to be the unique
n-tuple (k1, . . . , kn) such that 1≤ k1 < k2 < · · ·< kn ≤ ` and

λ( j)
=

{
(1) if j = ki for some 1≤ i ≤ n,
∅ otherwise.

Given any two n-tuples (k1, . . . , kn), (k ′1, . . . , k ′n) of increasing positive integers,
we define

(k1, . . . , kn)≥ (k ′1, . . . , k ′n)⇔ ki ≥ k ′i ,∀ 1≤ i ≤ n,

and (k1, . . . , kn) > (k ′1, . . . , k ′n) if (k1, . . . , kn) ≥ (k ′1, . . . , k ′n) and (k1, . . . , kn) 6=

(k ′1, . . . , k ′n). For any λ,µ ∈P0, we define

λ> µ⇔ θ(λ) < θ(µ).

Then “>” is a partial order on P0.
The following is a special case of [Hu and Mathas 2010, Definition 4.15].

Definition 2.6. Let λ ∈P0 with θ(λ)= (k1, . . . , kn). We define

yλ := y`−k1
1 . . . y`−kn

n , deg yλ := 2`n− 2
n∑

i=1

ki .

By the main results in [Hu and Mathas 2010], the elements in the set

(2.7) {ψλw,u := ψ
∗

wyλψu | λ ∈P0, w, u ∈Sn}

form a graded cellular K -basis of H
(0)
`,n . Each basis element ψλw,u is homogeneous

with degree equal to

degψλw,u := deg yλ− 2`(w)− 2`(u)= 2`n− 2
n∑

i=1

ki − 2`(w)− 2`(u).

In particular, dimK H
(0)
`,n = `(`− 1) . . . (`− n+ 1)n! . Note that P0 6=∅ if and

only if `≥ n. Therefore, H
(0)
`,n = 0 whenever ` < n. Henceforth, we always assume

that `≥ n.
By the general theory of (graded) cellular algebras [Graham and Lehrer 1996; Hu

and Mathas 2010], for each λ ∈P0, we have a graded Specht module Sλ, which is
equipped with an associative homogeneous bilinear form 〈−,−〉λ. Let rad〈−,−〉λ
be the radical of that bilinear form. We define Dλ

:= Sλ/ rad〈−,−〉λ. By [Hu and
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Mathas 2010, Corollary 5.11], we know that Dλ
6= 0 if and only if λ is a Kleshchev

multipartition with respect to (p; 0, 0, . . . , 0), where p = char K .
Let λ∈P0 with θ(λ)= (k1, . . . , kn). A λ-tableau is a bijection t : {k1, . . . , kn}→

{1, 2, . . . , n}. We use Tab(λ) to denote the set of λ-tableaux. For any t ∈ Tab(λ),
we define

deg t :=
n∑

i=1

(
#
{
ki < j ≤ ` | either j 6∈ {k1, . . . , kn} or j = kb with t( j) > t(ki )

}
− #

{
ki < j ≤ ` | j ∈ {k1, . . . , kn} and t( j) < t(ki )

})
.

It is clear that in our special case (i.e., for P0) the above definition of deg t coincides
with that in [Brundan et al. 2011; Hu and Mathas 2010].

Definition 2.8. We define

λmax :=
(
(1), . . . , (1)︸ ︷︷ ︸

n copies

,∅, . . . ,∅︸ ︷︷ ︸
`−n copies

)
, λmin :=

(
∅, . . . ,∅︸ ︷︷ ︸
`− n copies

, (1), . . . , (1)︸ ︷︷ ︸
n copies

)
.

It is clear that for any µ ∈P0 \ {λmax,λmin}, we have that

(2.9) λmin < µ< λmax, deg yλmin < deg yµ < deg yλmax .

Using [Brundan and Kleshchev 2009a] and the definition of the Kleshchev multi-
partition in [Ariki and Mathas 2000], it is clear that λmin is the unique Kleshchev
multipartition in P0. Therefore, for any λ ∈P0, Dλ

6= 0 if and only if λ= λmin.
Furthermore, Dλmin is the unique (self-dual) graded simple module for H

(0)
`,n . Let

Pλmin be its graded projective cover.

Definition 2.10. We define

D0 := Dλmin, P0 := Pλmin .

For each µ ∈P0, we use (H (0)
`,n )

>µ to denote the K -subspace of H
(0)
`,n spanned

by all the elements of the form ψ∗wyλψu , where λ>µ, w, u ∈Sn . Then (H (0)
`,n )

>µ

is a two-sided ideal of H
(0)
`,n . By [Hu and Mathas 2012, Corollary 3.11], for any

1≤ r ≤ n, if θ(µ)= (k1, . . . , kn) then

(2.11) yµyr = y`−k1
1 . . . y`−kn

n yr ∈ (H
(0)
`,n )

>µ.

Lemma 2.12. For any 1≤ i ≤ n, 1≤ j < n, there exists elements hi, j , h′i, j ∈H
(0)
`,n

such that

(2.13) ψw0 yn−1
1 yn−2

2 . . . yn−1 = (−1)n(n−1)/2
+

∑
1≤i≤n
1≤ j<n

yi hi, jψ j .
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Similarly, we have

(2.14) yn−1
1 yn−2

2 . . . yn−1ψw0 = (−1)n(n−1)/2
+

∑
1≤i≤n
1≤ j<n

ψ j h∗i, j yi .

Proof. We only prove the first equality as the second one follows from the first one
by applying the anti-involution ∗. We use induction on n. If n = 1, it is clear that
(2.13) holds. Suppose that the lemma holds for the nilHecke algebra H

(0)
`,n−1. We

are going to prove (2.13) for H
(0)
`,n .

Recall that the unique longest elementw0 :=w0,n of Sn has a reduced expression

w0 = s1(s2s1) . . . (sn−2sn−3 . . . s1)(sn−1sn−2 . . . s1).

Recall that w0,n−1 denotes the unique longest element in Sn−1 and

w0 = w0,n−1(sn−1sn−2 . . . s1)

and s1(s2s1) . . . (sn−2sn−3 . . . s1) is a reduced expression for w0,n−1.
We define

Jn :=

n∑
i=1

yiH
(0)
`,n .

Then we have, with all congruences modulo Jn ,

ψw0 yn−1
1 yn−2

2 . . . yn−1

= ψw0(y1 y2 . . . yn−1)yn−2
1 yn−3

2 . . . yn−2

= ψw0,n−1(ψn−1ψn−2 . . . ψ1 y1 y2 . . . yn−1)yn−2
1 yn−3

2 . . . yn−2

= ψw0,n−1(ψn−1 y1 y2 . . . yn−1ψn−2 . . . ψ1)yn−2
1 yn−3

2 . . . yn−2 (by Corollary 2.3)

= ψw0,n−1(y1 y2 . . . yn−2ψn−1 yn−1ψn−2 . . . ψ1)yn−2
1 yn−3

2 . . . yn−2

= ψw0,n−1(y1 y2 . . . yn−2(ynψn−1− 1)ψn−2 . . . ψ1)yn−2
1 yn−3

2 . . . yn−2

≡−ψw0,n−1(y1 y2 . . . yn−2ψn−2 . . . ψ1)yn−2
1 yn−3

2 . . . yn−2 (by (2.11))

≡−ψw0,n−2(ψn−2ψn−3 . . . ψ1 y1 y2 . . . yn−2)(ψn−2 . . . ψ1)yn−2
1 yn−3

2 . . . yn−2

≡−ψw0,n−2(ψn−2 y1 y2 . . . yn−2ψn−3 . . . ψ1)(ψn−2 . . . ψ1)yn−2
1 yn−3

2 . . . yn−2

≡−ψw0,n−2(y1 y2 . . . yn−3(ψn−2 yn−2)ψn−3 . . . ψ1)(ψn−2 . . . ψ1)

× yn−2
1 yn−3

2 . . . yn−2

≡−ψw0,n−2(y1 y2 . . . yn−3(yn−1ψn−2− 1)ψn−3 . . . ψ1)(ψn−2 . . . ψ1)

× yn−2
1 yn−3

2 . . . yn−2

≡ (−1)2ψw0,n−2(y1 y2 . . . yn−3ψn−3 . . . ψ1)(ψn−2 . . . ψ1)yn−2
1 yn−3

2 . . . yn−2

≡ (−1)2ψw0,n−2(y1 y2 . . . yn−3)
(
(ψn−3 . . . ψ1)(ψn−2 . . . ψ1)

)
yn−2

1 yn−3
2 . . . yn−2
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≡ (−1)2ψw0,n−3(ψn−3ψn−4 . . . ψ1 y1 y2 . . . yn−3)

×
(
(ψn−3 . . . ψ1)(ψn−2 . . . ψ1)(yn−2

1 yn−3
2 . . . yn−2)

)
...

≡ (−1)n−1(ψ1(ψ2ψ1) . . . (ψn−3 . . . ψ1)(ψn−2 . . . ψ1)(yn−2
1 yn−3

2 . . . yn−2)
)

≡ (−1)n−1ψw0,n−1(y
n−2
1 yn−3

2 . . . yn−2)

≡ (−1)n−1(−1)(n−1)(n−2)/2
≡ (−1)n(n−1)/2,

as required, where we have used induction in the second-to-last congruence.
Therefore, we have proved that

ψw0 yn−1
1 yn−2

2 . . . yn−1 = (−1)n(n−1)/2
+

∑
1≤i≤n
1≤ j<n

yi hi ,

where hi ∈H
(0)
`,n . Comparing the degree on both sides, we can assume that each hi

is homogeneous with hi 6= 0 only if deg(hi )=−2< 0. On the other hand, we can
express each nonzero hi as a K -linear combination of some monomials of the form
yc1

1 . . . ycn
n ψw, where c1, . . . , cn ∈ N, w ∈Sn . Since each y j has degree 2, we can

thus deduce that each nonzero hi must be equal to a K -linear combination of some
monomials of the form yc1

1 . . . ycn
n ψw with c1, . . . , cn ∈ N and 1 6= w ∈Sn . This

completes the proof of the lemma. �

Lemma 2.15. (1) For any u, w ∈Sn , if `(u)+ `(w) > `(uw), then ψuψw = 0.

(2) For any 1≤ r < n, ψrψw0 = 0= ψw0ψr .

Proof. (1) follows from the defining relations for H
(0)
`,n , while (2) follows from

the defining relations for H
(0)
`,n and the fact that w0 has both a reduced expression

which starts with sr as well as a reduced expression which ends with sr for any
1≤ r < n. �

Let s ∈ Z. For any Z-graded H
(0)
`,n -module M , we define M〈s〉 to be a new

Z-graded H
(0)
`,n -module as follows:

• M〈s〉 = M as an ungraded H
(0)
`,n -module.

• As a Z-graded module, M〈s〉 is obtained by shifting the grading on M up by s.
That is, M〈s〉d = Md−s , for d ∈ Z.

Lemma 2.16. Let µ ∈P0 with θ(µ)= (k1, . . . , kn). Then

dim D0 = n!, dim P0 =
(
`
n

)
n!, Sµ ∼= D0

〈
n`− n(n−1)

2
−

n∑
i=1

ki

〉
.
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Proof. By the definitions of P0 and Specht modules over H
(0)
`,n , it is clear that

Sµ ∼= Sλmin〈n`−n(n−1)/2−
∑n

i=1 ki 〉. Thus it suffices to show that Sλmin = Dλmin .
To this end, we need to compute the bilinear form between standard bases of the
Specht module Sλmin .

By definition, Sλmin has a standard basis

{yn−1
1 yn−2

2 . . . yn−1ψw + (H
(0)
`,n )

>λmin | w ∈Sn}.

For any w, u ∈Sn , by Lemma 2.15, we see that

yn−1
1 yn−2

2 . . . yn−1ψwψ
∗

u yn−1
1 yn−2

2 . . . yn−1

= yn−1
1 yn−2

2 . . . yn−1(ψwψu−1)yn−1
1 yn−2

2 . . . yn−1 = 0

unless `(wu−1)= `(w)+ `(u−1).
Now we assume that `(wu−1) = `(w)+ `(u−1). By the commutator relations

between y and ψ generators, (2.11) and the fact that `(w0) = n(n− 1)2, we can
deduce that

yn−1
1 yn−2

2 . . . yn−1(ψwψu−1)yn−1
1 yn−2

2 . . . yn−1

= yn−1
1 yn−2

2 . . . yn−1ψwu−1 yn−1
1 yn−2

2 . . . yn−1 ∈ (H
(0)
`,n )

>λmin

unless wu−1
= w0. In that case, by Lemma 2.12, we have that

yn−1
1 yn−2

2 . . . yn−1ψwψ
∗

u yn−1
1 yn−2

2 . . . yn−1

= yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1

= (−1)n(n−1)/2 yn−1
1 yn−2

2 . . . yn−1 (mod (H (0)
`,n )

>λmin).

Thus we have proved that if `(wu−1)= `(w)+ `(u−1) and wu−1
= w0, then〈

yn−1
1 yn−2

2 . . . yn−1ψw + (H
(0)
`,n )

>λmin, yn−1
1 yn−2

2 . . . yn−1ψu + (H
(0)
`,n )

>λmin
〉
λmin

= (−1)n(n−1)/2
;

otherwise it is equal to 0. This means the Gram matrix of Sλmin is invertible
and hence the bilinear form 〈−,−〉λmin on Sλmin is nondegenerate. It follows that
Sλmin = Dλmin = D0 as required. Therefore, dim D0 = dim Sλmin = n! . Finally, since
H

(0)
`,n
∼= P⊕ dim D0

0 , we can deduce that dim P0=dim H
(0)
`,n / dim D0=

(
`
n

)
(n!)2/n!=(

`
n

)
n! . �

Let q be an indeterminate. The graded dimension of M is the Laurent polynomial

(2.17) dimq M =
∑
d∈Z

(dimK Md) qd
∈ N[q, q−1

],

where Md is the homogeneous component of M which has degree d . In particular,
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dimK M = (dimq M)|q=1. As a consequence, we can determine the graded dimen-
sion of the unique self-dual graded simple module D0 and its projective cover P0,
and compute the graded decomposition number dµ,λmin(q) := [S

µ
: Dλmin]q and

graded Cartan number cλmin,λmin(q) := [P
λmin : Dλmin]q .

Corollary 2.18. We have

dimq D0 =
∑

t∈Tab(λmin)

qdeg t,

dimq P0 =
∑

k1,...,kn∈N
1≤k1<k2<···<kn≤`

∑
t∈Tab(λmin)

qdeg t+2n`−n(n−1)−
∑n

i=1 2ki .

Corollary 2.19. Let µ ∈P0 with θ(µ)= (k1, . . . , kn). We have

dµ,λmin(q)= qn`−n(n−1)/2−
∑n

i=1 ki ∈ δµ,λmin + qN[q],

cλmin,λmin(q)=
∑

l1,...,ln∈N
1≤l1<l2<···<ln≤`

q2n`−n(n−1)−
∑n

i=1 2li ∈ 1+ qN[q].

Lemma 2.20 [Hoffnung and Lauda 2010, Proposition 7]. For any 1 ≤ s ≤ n, we
have ∑

l1,...,ls∈N
l1+···+ls=`−s+1

yl1
1 yl2

2 . . . yls
s = 0.

Remark 2.21. Note that one should identify our generator yr with the generator
−xr,i in [Hoffnung and Lauda 2010] so that the relation ψr yr+1 = yrψr + 1 in
Definition 1.4 matches up with the relation xr,iδr,i−δr,i xr+1,i = e(i) when ir = ir+1.

Lemma 2.22 [Hoffnung and Lauda 2010, Proposition 8]. Let 1≤m < n and b ∈N.
If yb

m−1 = 0 then yb
m = 0.

Lemma 2.23. For any 2≤ m ≤ n and ωm > `−m, we have

(2.24) y`−1
1 y`−2

2 . . . y`−m+1
m−1 yωm

m = 0.

Proof. We use induction on m. If m = 1, then (2.24) reduces to yω1
1 = 0 for

ω1 > `− 1, which certainly holds by the fact that y`1 = 0.
If m = 2, then we need to show that y`−1

1 yω2
2 = 0 whenever ω2 > `− 2. By

Lemma 2.22, we can deduce that y`2 = 0 from the equality y`1 = 0. Therefore, it
remains to show that y`−1

1 y`−1
2 = 0. In this case, applying Lemma 2.20, we get that

y`−1
2 =

∑
l1,l2∈N,l1 6=0
l1+l2=`−1

yl1
1 yl2

2 .
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It follows that

y`−1
1 y`−1

2 =−

∑
l1,l2∈N,l1 6=0
l1+l2=`−1

y`−1+l1
1 yl2

2 = 0,

as required.
Now assume that (2.24) holds for 2≤ k ≤m. Hence y`−1

1 y`−2
2 . . . y`−k+1

k−1 yωk
k = 0

whenever ωk > `− k.
Applying Lemma 2.20 for s = m+ 1, we get that

y`−m
m+1 =

∑
l1,...,lm+1∈N

lm+1 6=`−m,l1+···+lm+1=`−m

yl1
1 yl2

2 . . . ylm+1
m+1.

It follows that for any ωm+1 > `− (m+ 1),

y`−1
1 y`−2

2 . . . y`−m+1
m−1 yωm+1

m+1

= y`−1
1 y`−2

2 . . . y`−m+1
m−1 yωm+1−(`−m)

m+1 y`−m
m+1

=−

∑
l2,...,lm+1∈N

lm+1 6=`−m,l2+···+lm+1=`−m

y`−1
1 y`−2+l2

2 . . . yωm+1−(`−m)+lm+1
m+1

=−

∑
lm ,lm+1∈N

lm+1 6=`−m,lm+lm+1=`−m

y`−1
1 y`−2

2 . . . y`−m+1
m−1 y`−m+lm

m yωm+1−(`−m)+lm+1
m+1

= 0,

where we have used the induction hypothesis in the third and fourth equalities. This
completes the proof of the lemma. �

Corollary 2.25. For any z1, z2∈Sn , we define Fz1,z2 := (−1)n(n−1)/2ψλmin
w0z1,z2

. Then
Fz1,z2 6= 0 is a homogeneous element of degree 2`(z1)− 2`(z2). Suppose that `= n.
Then

∑
w∈Sn

Fw,w = 1 and

Fz1,z2 Fu1,u2 = δz2,u1 Fz1,u2, ∀ u1, u2 ∈Sn.

In particular, H
(0)

n,n is isomorphic to the full matrix algebra Mn!×n!(K ) over K with
{Fu,w}u,w∈Sn being a complete set of matrix units.

Proof. As a cellular basis element, we know that ψλmin
w0z1,z2

6= 0 and hence Fz1,z2 6= 0.
By definition, Fz1,z2 is a homogeneous element of degree 2`(z1)− 2`(z2).

Suppose that `= n. By Lemma 2.23, for any 1≤ r ≤ n, we have

(2.26) yn−1
1 yn−2

2 . . . yn−1 yr

= (yn−1
1 yn−2

2 . . . yn−r−1
r+1 yn−r+1

r )yn−r+1
r−1 yn−r+2

r−2 . . . yn−1 = 0.
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For any u1, u2 ∈Sn ,

Fz1,z2 Fu1,u2 = ψ
∗

w0z1
yn−1

1 yn−2
2 . . . yn−1ψz2ψ

∗

w0u1
yn−1

1 yn−2
2 . . . yn−1ψu2 .

By Lemma 2.15, this quantity is zero unless `(z2(w0u1)
−1)= `(z2)+`((w0u1)

−1).
So we can assume that `(z2(w0u1)

−1)= `(z2)+ `((w0u1)
−1). Then we get

Fz1,z2 Fu1,u2 = ψ
∗

w0z1
yn−1

1 yn−2
2 . . . yn−1ψz2u−1

1 w−1
0

yn−1
1 yn−2

2 . . . yn−1ψu2 .

Note that w0 is the unique longest element in Sn with length (n − 1)n/2. If
z2u−1

1 w−1
0 6= w0 then we must have

ψz2u−1
1 w−1

0
yn−1

1 yn−2
2 . . . yn−1 ∈

n∑
j=1

y jH
(0)

n,n .

In that case, Fz1,z2 Fu1,u2 = 0 by (2.26). Therefore, we can further assume that
z2u−1

1 w−1
0 = w0 and hence z2 = u1. In the latter case, Fz1,z2 Fu1,u2 = Fz1,u2 by

Lemma 2.12 and (2.26). This proves the first part of the corollary.
The second part of the corollary follows from Corollary 2.25 and the fact that

dim H
(0)

n,n = (n!)2 and {Fz1,z2 | z1, z2 ∈Sn} is a basis of H
(0)

n,n . �

Recall that the weak Bruhat order “�” on Sn is defined as follows (see [Dipper
and James 1986]): For u, w ∈ Sn , let u � w if there is a reduced expression
w = s j1 . . . s jk for w and u = s j1 . . . s jl for some l ≤ k. We write u � w if u � w
and u 6= w.

Corollary 2.27. Let `, n ∈ N. For any z1, z2 ∈Sn , we define

F ′z1,z2
:= ψ∗w0z1

yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1ψz2 .

Then F ′z1,z2
6= 0 is a homogeneous element of degree 2`(z1)− 2`(z2), and

(F ′z1,z1
)2 = F ′z1,z1

, F ′z1,z2
= F ′z1,z1

F ′z1,z2
= F ′z1,z2

F ′z2,z2
,

F ′z1,z2
F ′z2,u2

= F ′z1,u2
, F ′z1,z2

F ′u1,u2
= 0, ∀ u1, u2 ∈Sn with z−1

2 � u−1
1 .

Proof. By Lemma 2.12 and (2.11), we have

(2.28) F ′z1,z2
≡ (−1)(n−1)n/2ψλmin

w0z1,z2
(mod (H (0)

`,n )
>λmin).

In particular, this implies that F ′z1,z2
6= 0 by the cellular structure of H

(0)
`,n . By

definition, it is clear that F ′z1,z2
is a homogeneous element of degree 2`(z1)−2`(z2).
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Again by Lemma 2.12 and Lemma 2.15, we have

(F ′z1,z1
)2 = ψ∗w0z1

yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1(ψz1ψ
∗

w0z1
)

× yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1ψz1

= ψ∗w0z1
yn−1

1 yn−2
2 . . . yn−1(ψw0 yn−1

1 yn−2
2 . . . yn−1ψw0)

× yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1ψz1

= (−1)(n−1)n/2ψ∗w0z1
yn−1

1 yn−2
2 . . . yn−1(ψw0 yn−1

1 yn−2
2 . . . yn−1ψw0)

× yn−1
1 yn−2

2 . . . yn−1ψz1

= F ′z1,z1
.

A similar argument shows that F ′z1,z2
= F ′z1,z1

F ′z1,z2
= F ′z1,z2

F ′z2,z2
and F ′z1,z2

F ′z2,u2
=

F ′z1,u2
.

Finally, let u1, u2 ∈Sn such that z−1
2 � u−1

1 . We have

F ′z1,z2
F ′u1,u2

= ψ∗w0z1
yn−1

1 yn−2
2 . . . yn−1ψw0 yn−1

1 yn−2
2 . . . yn−1(ψz2ψ

∗

w0u1
)

× yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1ψu2 .

Note that the assumption z−1
2 � u−1

1 implies that `(z2u−1
1 w−1

0 ) 6= `(z2)+`(u−1
1 w−1

0 )

because otherwise we would have some x ∈Sn such that xz2 = u1 and

`(x)= `(w0)− `(z2u−1
1 w−1

0 )= `(w0)− (`(z2)+ `(u−1
1 w−1

0 ))

= `(w0)− `(z2)− (`(w0)− `(u−1
1 ))= `(u1)− `(z2).

By Lemma 2.15, `(z2u−1
1 w−1

0 ) 6= `(z2)+ `(u−1w−1
0 ) implies that ψz2ψ

∗
w0u1
= 0.

We thus proved that F ′z1,z2
F ′u1,u2

= 0 as required. �

Definition 2.29. We fix a total order on Sn and list the elements in Sn as 1 =
w1, w2, . . . , wn! such that

w−1
i � w

−1
j =⇒ i < j.

We define a set of elements {F̃wi ,w j | 1≤ i, j ≤ n!} in H
(0)
`,n inductively as follows:

F̃w1,w j = F̃1,w j := F ′1,w j
, ∀ 1≤ j ≤ n! .

Suppose that F̃wk ,w j was already defined for any 1≤ k < i and 1≤ j ≤ n! . Then
we define

F̃wi ,w j := F ′wi ,w j
−

∑
1≤k<i

F̃wk ,wk F ′wi ,w j
, ∀ 1≤ j ≤ n! .

By construction and Corollary 2.27, we see that

(2.30) F̃wi ,w j F ′w j ,wa
= F̃wi ,wa , ∀ 1≤ a ≤ n! .
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Theorem 2.31. For any 1≤ i, j ≤ n! , we have that F̃wi ,w j 6= 0 is a homogeneous
element of degree 2`(wi )− 2`(w j ) and

(2.32) F̃wi ,w j F̃wk ,wl = δ j,k F̃wi ,wl , ∀ 1≤ k, l ≤ n! .

Moreover, for each 1 ≤ i ≤ n! , F̃wi ,wi H
(0)
`,n
∼= P0 is an ungraded right H

(0)
`,n -

module, 1 =
∑n!

i=1 F̃wi ,wi , and {F̃wi ,wi | 1 ≤ i ≤ n!} is a complete set of pairwise
orthogonal primitive idempotents of H

(0)
`,n .

Proof. By (2.28), for any u ∈Sn with u−1
� w−1

1 , we have the following relations
modulo H

(0)
`,n )

>λmin :

F ′u,u F ′w1,w2
≡ ψλmin

w0u,uψ
λmin
w0w1,w2

≡ ψ∗w0u yn−1
1 yn−2

2 . . . yn−1(ψu(ψw0w1)
∗)yn−1

1 yn−2
2 . . . yn−1ψw2

≡ ψ∗w0u yn−1
1 yn−2

2 . . . yn−1ψuw−1
1 w0

yn−1
1 yn−2

2 . . . yn−1ψw2

≡

n∑
j=1

r jψ
∗

w0u yn−1
1 yn−2

2 . . . yn−1 y j h jψw2

≡ 0,

where r j ∈ K , h j ∈ H
(0)
`,n for any z, j . Combining this with Corollary 2.27 and

(2.28) we can deduce that

(2.33) F̃wi ,w j ≡ (−1)(n−1)n/2ψλmin
w0wi ,w j

(mod (H (0)
`,n )

>λmin).

In particular, F̃wi ,w j 6= 0. By definition, Corollary 2.27, and an easy induction, we
see that F̃wi ,w j is a homogeneous element of degree 2`(wi )− 2`(w j ).

We are going to prove (2.32). We use induction on k. Suppose that k = 1. If
j 6= 1, then j > 1. By construction,

F̃wi ,w j ∈

∑
w∈Sn

H
(0)
`,n F ′w,w j

, F̃1,wl = F ′1,wl
.

By Corollary 2.27, we have F ′w,w j
F ′1,u = 0. It follows that F̃wi ,w j F̃w1,wl = 0. If

j = 1, then by (2.30) we have

F̃wi ,w1 F̃w1,wl = F̃wi ,1 F ′1,wl
= F̃wi ,wl ,

as required.
In general, suppose that (2.32) holds for any k < m. Let us consider the case

when k = m. By construction, we have

F̃wi ,w j ∈

∑
w∈Sn

H
(0)
`,n F ′w,w j

, F̃wm ,wl ∈

∑
u∈Sn

1≤a≤m

F ′wa,uH
(0)
`,n .
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Therefore, if j > m then F̃wi ,w j F̃wm ,wl = 0 by Corollary 2.27.
Suppose that j < m. Then

F̃wi ,w j F̃wm ,wl = F̃wi ,w j

(
F ′wm ,wl

−
∑

1≤k<m
F̃wk ,wk F ′wm ,wl

)
= F̃wi ,w j

(
F ′wm ,wl

−
∑

1≤k<m
δk, j F̃wk ,wk F ′wm ,wl

)
= F̃wi ,w j F ′wm ,wl

− F̃wi ,w j F ′wm ,wl

= 0,

as required, where we have used induction hypothesis in the second and the third
equalities.

Suppose that j = m. Then

F̃wi ,wm F̃wm ,wl = F̃wi ,wm

(
F ′wm ,wl

−
∑

1≤k<m
F̃wk ,wk F ′wm ,wl

)
= F̃wi ,wm F ′wm ,wl

−
∑

1≤k<m
F̃wi ,wm F̃wk ,wk F ′wm ,wl

= F̃wi ,wm F ′wm ,wl
− 0= F̃wi ,wl ,

as required, where we used (2.30) in the last equality, and used the induction
hypothesis in the second last equality.

Since

P⊕ dim D0
0 = P⊕n!

0
∼=H

(0)
`,n
∼=

(
1−

∑
w∈Sn

F̃w,w
)
H

(0)
`,n ⊕

( ⊕
w∈Sn

F̃w,wH
(0)
`,n

)
,

and F̃w,wH
(0)
`,n 6= 0 for each w ∈Sn . By the Krull–Schmidt theorem we can deduce

that for each w ∈ Sn , Fw,wH
(0)
`,n
∼= P0 is an ungraded right H

(0)
`,n -module and

1=
∑

w∈Sn
F̃w,w. In other words, {F̃wi ,wi | 1≤ i ≤ n!} is a complete set of pairwise

orthogonal primitive idempotents of H
(0)
`,n . �

The following result was first conjectured by A. Mathas [2015, §2.5, before
Corollary 2.5.2] in the special case when `= n.

Theorem 2.34. The elements in the set

(2.35) {ψwya1
1 . . . yan

n | 0≤ ai ≤ `− i, ∀ 1≤ i ≤ n, w ∈Sn}

form a K -basis of H
(0)
`,n .

Proof. We first claim that for any b1, . . . , bm−1, ωm ∈N with 0≤ b j ≤ l− j,∀ 1≤
j ≤ m,

(2.36) yb1
1 yb2

2 . . . ybm−1
m−1 yωm

m =
∑

c1,...,cm∈N
0≤ci≤`−i,∀ 1≤i≤m

rc1,...,cm yc1
1 yc2

2 . . . ycm−1
m−1 ycm

m ,
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where rc1,...,cm ∈ K for each m-tuple (c1, . . . , cm).
We use induction on m. If m = 1, there is nothing to prove as yω1

1 = 0 whenever
ω1 > `− 1. Suppose that (2.36) holds for any 1≤ k ≤ m.

We now consider the case where k=m+1. Applying Lemma 2.20 for s=m+1,
we get that

y`−m
m+1 =−

∑
l1,...,lm+1∈N

lm+1 6=`−m,l1+···+lm+1=`−m

yl1
1 yl2

2 . . . ylm+1
m+1.

It follows that

yb1
1 yb2

2 . . . ybm−1
m−1 ybm

m yωm+1
m+1

= yb1
1 yb2

2 . . . ybm−1
m−1 ybm

m yωm+1−(`−m)
m+1 y`−m

m+1

=−

∑
l1,...,lm+1∈N

lm+1 6=`−m,l1+···+lm+1=`−m

yb1+l1
1 yb2+l2

2 . . . ybm−1+lm−1
m−1 ybm+lm

m y
b′m+1
m+1 ,

where b′m+1 := ωm+1− (l −m)+ lm+1.
Our purpose is to show that

(2.37) yb1
1 yb2

2 . . . ybm
m yωm+1

m+1

∈ K -Span{yc1
1 yc2

2 . . . ycm
m ycm+1

m+1 | ci ∈ N, 0≤ ci ≤ `− i,∀ 1≤ i ≤ m+ 1}.

We use induction on ωm+1. Suppose that for any b1, . . . , bm ∈ N and any
0≤ b < ωm+1, we have

yb1
1 yb2

2 . . . ybm
m yb

m+1

∈ K -Span{yc1
1 yc2

2 . . . ycm
m ycm+1

m+1 | ci ∈ N, 0≤ ci ≤ `− i,∀ 1≤ i ≤ m+ 1}.

We are now going to prove (2.37). If b′m+1≤ l−m, then by our induction hypothesis
we have

yb1+l1
1 yb2+l2

2 . . . ybm−1+lm−1
m−1 ybm+lm

m

∈ K -Span{yc1
1 yc2

2 . . . ycm−1
m−1 ycm

m | c1, . . . , cm ∈ N, 0≤ ci ≤ `− i,∀ 1≤ i ≤ m},

hence

yb1+l1
1 yb2+l2

2 . . . ybm−1+lm−1
m−1 ybm+lm y

b′m+1
m+1

∈ K -Span{yc1
1 yc2

2 . . . ycm
m ycm+1

m+1 | c1, . . . , cm+1 ∈N, 0≤ ci ≤ `− i,∀ 1≤ i ≤m+1}.

Therefore, it remains to consider those terms which satisfy b′m+1 > `−m. Since
l1+· · ·+lm+1= `−m and lm+1 6= `−m, we have 0≤ lm+1≤ `−m−1; furthermore,
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we have b′m+1 ≤ ωm+1− 1. By our induction hypothesis on ωm+1, we have

yb1+l1
1 yb2+l2

2 . . . ybm−1+lm−1
m−1 ybm+lm

m y
b′m+1
m+1

∈ K -Span{yc1
1 yc2

2 . . . ycm
m ycm+1

m+1 | ci ∈ N, 0≤ ci ≤ `− i,∀ 1≤ i ≤ m+ 1}.

Therefore, we can conclude that (2.37) always holds. This completes the proof of
(2.36).

Now we have proved that the elements in (2.35) form a K -linear generator of
H

(0)
`,n . Since the set (2.35) has cardinality equal to

(
`
n

)
(n!)2, which is equal to the

dimension of H
(0)
`,n , the elements in (2.35) must form a K -basis of H

(0)
`,n . �

Remark 2.38. We shall call the basis (2.35) a monomial basis of H
(0)
`,n . It bears

much resemblance to the Ariki–Koike basis of the cyclotomic Hecke algebra of type
G(`, 1, n). For arbitrary cyclotomic quiver Hecke algebras, Question 1.1 (on how
to construct a monomial basis) remains open. Anyhow, we regard Theorem 2.34 as
a first step in our effort of answering that open question.

3. A basis of the center

The purpose of this section is to give an explicit basis of the center of H
(0)
`,n . Let

Z := Z(H (0)
`,n ) be the center of H

(0)
`,n .

Definition 3.1. For each µ ∈P0, we define

bµ := ψw0 yµψw0 yn−1
1 yn−2

2 . . . yn−1.

By Definition 2.29, Corollary 2.27, Lemma 2.12, and Lemma 2.15, we have

F̃1,1 = F ′1,1 = ψ
∗

w0
yn−1

1 yn−2
2 . . . yn−1ψw0 yn−1

1 yn−2
2 . . . yn−1

= (ψw0 yn−1
1 yn−2

2 . . . yn−1)ψw0 yn−1
1 yn−2

2 . . . yn−1

= (−1)n(n−1)/2ψw0 yn−1
1 yn−2

2 . . . yn−1 = F1,1.

Note that each yµ has a left factor yn−1
1 yn−2

2 . . . yn−1. It follows that

bµ ∈ F̃1,1H
(0)
`,n F̃1,1 ∼= End

H
(0)
`,n
(F̃1,1H

(0)
`,n )
∼= End

H
(0)
`,n
(P0).

Suppose further that θ(µ)= (k1, . . . , kn), where 1≤ k1 < k2 < · · ·< kn ≤ `. Then
by (2.11),

bµ = ψw0 y`−k1
1 y`−k2

2 . . . y`−kn
n ψw0 yn−1

1 yn−2
2 . . . yn−1

≡ (−1)n(n−1)/2ψw0 y`−k1
1 y`−k2

2 . . . y`−kn
n (mod (H (0)

`,n )
>µ)

≡ (−1)n(n−1)/2ψ
µ
w0,1 (mod (H (0)

`,n )
>µ).

It follows that {bµ | µ ∈P0} are K -linearly independent elements in F̃1,1H
(0)
`,n F̃1,1.
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Lemma 3.2. The elements in {bµ | µ ∈ P0} form a K -basis of F̃1,1H
(0)
`,n F̃1,1.

Moreover, the basic algebra End
H

(0)
`,n
(P0) of H

(0)
`,n is commutative and is isomorphic

to the center Z of H
(0)
`,n . In particular, dimK Z =

(
`
n

)
.

Proof. Since #P0 =
(
`
n

)
and F̃1,1H

(0)
`,n F̃1,1 ∼= End

H
(0)
`,n
(P0), it suffices to show that

dimK End
H

(0)
`,n
(P0)=

(
`
n

)
.

By Lemma 2.16 and Corollary 2.18, we know that [P0 : D0] =
(
`
n

)
and hence

dimK End
H

(0)
`,n
(P0) =

(
`
n

)
, as required. Thus, the first part of the lemma follows

from this together with the discussion in the paragraph above this lemma.
It remains to show that the endomorphism algebra End

H
(0)
`,n
(P0) is commutative.

Once this is proved, and since H
(0)
`,n is Morita equivalent to End

H
(0)
`,n
(P0), it will

follow from [Curtis and Reiner 1981, (3.54)(iv)] that

Z = Z(H (0)
`,n )
∼= Z(End

H
(0)
`,n
(P0))= End

H
(0)
`,n
(P0),

as required.
To show that End

H
(0)
`,n
(P0) of H

(0)
`,n is commutative, it suffices to show that

F̃1,1H
(0)
`,n F̃1,1 is commutative. Furthermore, it is enough to show that bµbν = bνbµ

for any µ, ν ∈P0.
By definition,

bµbν = ψw0 yµψw0 yn−1
1 yn−2

2 . . . yn−1ψw0 yνψw0 yn−1
1 yn−2

2 . . . yn−1

= (−1)n(n−1)/2ψw0(yµψw0 yν)ψw0 yn−1
1 yn−2

2 . . . yn−1.

We set

J1,1 :=

n−1∑
j=1

ψ jH
(0)
`,n +

n−1∑
j=1

H
(0)
`,n ψ j .

Using the graded cellular basis {ψµw,u | µ ∈P0} of H
(0)
`,n , we can write

yµψw0 yν ≡
∑
ρ∈P0

cρ yρ (mod J1,1),

where cα ∈ K for each α ∈P0. Applying the anti-involution “∗” on both sides of
the above equality, we get that

yνψw0 yµ ≡
∑
ρ∈P0

cρ yρ (mod J1,1).

Now using Lemma 2.15 we can deduce that

bµbν = (−1)n(n−1)/2
∑
ρ∈P0

cρψw0 yρψw0 yn−1
1 yn−2

2 . . . yn−1 = bνbµ,

as required. �
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Definition 3.3. Let µ ∈P0 with θ(µ)= (k1, . . . , kn), where 1≤ k1 < k2 < · · ·<

kn ≤ `. Inside the quiver Hecke algebra H
(0)

n , we define z(µ) ∈ K [y1, . . . , yn]

such that

y`−k1
1 . . . y`−kn

n ψw0 = z(µ)+
n−1∑
r=1

ψr hr ,

where hr ∈H
(0)

n for each 1≤ r < n. We define

zµ := π(z(µ)) ∈H
(0)
`,n .

It is clear that zµ is a homogeneous element with degree 2`n − n(n − 1) −
2
∑n

i=1 ki .

Lemma 3.4. Let µ ∈ P0. Then z(µ) is a symmetric polynomial in y1, . . . , yn .
In particular, z(µ) lives inside the center of H

(0)
n and hence zµ lives inside the

center of H
(0)
`,n . Moreover, z(λmax) = (−1)n(n−1)/2(y1 . . . yn)

`−n and z(λmin) =

(−1)n(n−1)/2.

Proof. It suffices to show that z(µ) is symmetric in yr , yr+1 for each 1≤ r < n− 1.
In fact, for any 1≤ r < n− 1 and a, b ∈ N, if a > b then

ya
r yb

r+1ψr = ya−b
r (yr yr+1)

bψr = ya−b
r ψr (yr yr+1)

b

≡−

( a−b−1∑
k=0

yk
r ya+b−1−k

r+1

)
(yr yr+1)

b
(

mod
n−1∑
r=1

ψrH
(0)

n

)
;

if a < b, then

ya
r yb

r+1ψr = yb−a
r+1 (yr yr+1)

aψr = yb−a
r+1ψr (yr yr+1)

a

≡

( b−a−1∑
k=0

yk
r yb−a−1−k

r+1

)
(yr yr+1)

a
(

mod
n−1∑
r=1

ψrH
(0)

n

)
;

if a = b, then ya
r yb

r+1ψr = (yr yr+1)
aψr = ψr (yr yr+1)

a
∈
∑n−1

r=1 ψrH
(0)

n . This
implies that for any monomial yc1

1 . . . ycn
n ∈H

(0)
n ,

yc1
1 . . . ycn

n ψr ≡ fr (y1, . . . , yn)

(
mod

n−1∑
r=1

ψrH
(0)

n

)
,

where fr (y1, . . . , yn) ∈ K [y1, . . . , yn] is symmetric in yr , yr+1.
Since for each 1≤ r < n, w0 has a reduced expression which ends with sr and

the element z(µ) is uniquely determined by µ by Lemma 2.1, it follows that z(µ) is
symmetric in yr , yr+1 for any 1≤ r < n−1. Hence z(µ) is symmetric in y1, . . . , yn .
This completes the proof of the first part of the lemma. The second part of the
lemma follows from Lemma 2.12 and direct calculation. �
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Lemma 3.5. (1) For each µ ∈P0, we have that

ψw0 yµψw0 yn−1
1 . . . yn−1 = ψw0 yn−1

1 . . . yn−1zµ.

In particular,

ψw0 yµ ≡ (−1)n(n−1)/2ψw0 yn−1
1 yn−2

2 . . . yn−1zµ (mod (H (0)
`,n )

>µ).

(2) As a left Z-module, P0 ∼= Z⊕n!. In particular, P0 is a free Z-module of rank
n! .

Proof. First, since H
(0)
`,n
∼= P⊕n!

0 , it follows that the center Z must act faithfully
on P0. In other words, the left multiplication defines an injective homomorphism
ι : Z ↪→ End

H
(0)
`,n
(P0). Comparing the dimensions of both sides, we can deduce

that ι is an isomorphism. On the other hand, by Lemma 3.2,

0 6= bµ ∈ F̃1,1H
(0)
`,n F̃1,1 ∼= End

H
(0)
`,n
(P0).

It follows that there exists a unique nonzero homogeneous element z′µ with degree
2(`− k1+ · · ·+ `− kn)− (n− 1)n such that

(3.6)
ψw0 yµψw0 yn−1

1 . . . yn−1 = z′µψw0 yn−1
1 . . . yn−1

= ψw0 z′µyn−1
1 . . . yn−1 = ψw0 yn−1

1 . . . yn−1z′µ.

By Lemma 3.4 and Lemma 2.15, we can see that z′µ = zµ. In particular, zµ 6= 0.
Since

ψw0 yµψw0 yn−1
1 . . . yn−1 ≡ (−1)n(n−1)/2ψw0 yµ

≡ (−1)n(n−1)/2ψ
µ
w0,1 (mod (H (0)

`,n )
>µ),

we see that ψw0 yµ ≡ (−1)n(n−1)/2ψw0 yn−1
1 yn−2

2 . . . yn−1zµ (mod (H (0)
`,n )

>µ). This
proves (1).

Recall that F̃1,1 = F ′1,1 = (−1)n(n−1)/2ψw0 yn−1
1 yn−2

2 . . . yn−1. It follows from (1)
that for any µ ∈P0 and w ∈Sn ,

F̃1,1zµψw ≡ ψµw0,w
(mod (H (0)

`,n )
>µ).

In particular, the elements in the set {F̃1,1zµψw | µ ∈ P0, w ∈ Sn} must be K -
linearly independent. Since it has the cardinality

(
`
n

)
n! , we can deduce that it is a

K -basis of the right H
(0)
`,n -module P0 ∼= F̃1,1H

(0)
`,n . Since P0 is a faithful Z -module,

it follows that for any z ∈ Z , F̃1,1z = 0 if and only if z = 0. For each w ∈Sn , the
subspace spanned by the basis elements in {F̃1,1zµψw |µ∈P0} is a Z -submodule of
P0 which is isomorphic to Z . This proves that P is a free Z -module with rank n! . �
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Theorem 3.7. The elements in the set {zµ | µ ∈P0} form a K -basis of the center
Z := Z(H (0)

`,n ) of H
(0)
`,n . In particular, the center of H

(0)
`,n is the set of symmetric

polynomials in y1, . . . , yn .

Proof. Since the elements in {bµ | µ ∈P0} are K -linearly independent, it follows
that the elements in {zµ | µ ∈P0} are K -linearly independent and hence form a
K -basis of the center Z := Z(H (0)

`,n ) by dimension consideration. By Lemma 3.4,
each zµ is a symmetric polynomial in y1, . . . , yn , hence the center of H

(0)
`,n is the

set of symmetric polynomials in y1, . . . , yn . �

The following proposition gives a generalization of Corollary 2.25. It can be
regarded as a cyclotomic analogue of the results in [Lauda 2010, Proposition 3.5]
and [Kleshchev et al. 2013, Theorem 4.5].

Proposition 3.8. Let {Ei, j | 1 ≤ i, j ≤ n!} be the matrix units of the full matrix
algebra Mn!×n!(K ). Then the map

Ei, j ⊗ z 7→ F̃wi ,w j z, ∀ 1≤ i, j ≤ n!, z ∈ Z ,

extends linearly to a well-defined K -algebra isomorphism η from Mn!×n!(K )⊗K Z
onto H

(0)
`,n . In particular, H

(0)
`,n
∼= Mn!×n!(Z).

Proof. In view of Theorem 2.31, it is clear that η is a well-defined K -algebra
homomorphism. By Lemma 3.2, it suffices to show that η is an injective map.

Suppose that η(x) = 0, where x =
∑

1≤i, j≤n! Ei, j zi, j , where zi, j ∈ Z for each
pair (i, j). Then ∑

1≤i, j≤n!

F̃wi ,w j zi, j = η(x)= 0.

For any pair (i, j) with 1 ≤ i, j ≤ n! , left multiplying with F̃w j ,wi and right
multiplying with F̃w j ,w j we get (by Theorem 2.31) that

F̃w j ,w j zi, j =
∑

1≤k,l≤n!

(F̃w j ,wi F̃wk ,wl F̃w j ,w j )zk,l

= F̃w j ,wi

( ∑
1≤k,l≤n!

F̃wk ,wl zk,l

)
F̃wi ,w j = 0.

Since F̃w j ,w j H
(0)
`,n
∼= P0 is ungraded right H

(0)
`,n -module and Z acts faithfully on

P0, it follows that zi, j = 0. This proves that x = 0 and hence η is injective. Finally,
comparing the dimensions of both sides, we see that η is an isomorphism. �

4. A homogeneous symmetrizing form on H
(0)
`,n

By the work of Shan, Varagnolo and Vasserot [Shan et al. 2017], each cyclotomic
quiver Hecke algebra can be endowed with a homogeneous symmetrizing form
which makes it into a graded symmetric algebra (see Remark 4.7 and [Hu and
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Mathas 2010, §6.3] for the type A case). In particular, the nilHecke algebra H
(0)
`,n

is a graded symmetric algebra. However, the SVV symmetrizing form TrSVV is
defined in an inductive manner which relies on some deep results about certain
decompositions of the cyclotomic quiver Hecke algebras which come from the
biadjointness of the i-induction functors and i-restriction functors in the work
of Kang and Kashiwara [2012] and of Kashiwara [2012]. It is rather difficult to
compute the explicit value of the form TrSVV on any specified homogeneous element
in the cyclotomic quiver Hecke algebra because its inductive definition involves
some mysterious correspondence (i.e., z 7→ z̃, ` 7→ π̃` in [Shan et al. 2017, Theorem
3.8]) whose explicit descriptions are not available. In this section, we shall introduce
a new homogeneous symmetrizing form Tr such that the value of the form Tr on
each graded cellular basis element of H

(0)
`,n is explicitly given. We will prove in the

next section that this form Tr actually coincides with Shan–Varagnolo–Vasserot’s
symmetrizing form TrSVV on H

(0)
`,n .

The following result seems to be well-known. We add a proof as we can not find
a suitable reference.

Lemma 4.1. Let A, B be two finite dimensional (ungraded) K -algebras. Suppose
that B is Morita equivalent to A. Then there exists a K -linear map ρ : A∗→ B∗

such that for any symmetrizing form τ ∈ A∗ on A, ρ(τ) ∈ B∗ is a symmetrizing
form on B. In particular, if A is a symmetric algebra over K , then B is a symmetric
algebra over K too.

Proof. By assumption, Bop∼=EndA(P) for a finite dimensional (ungraded) projective
left A-module P . Moreover, there exists a natural number k such that A⊕k ∼= P⊕P ′

as left A-modules. Let e be the idempotent of Mk×k(A) which corresponds to the
map A⊕k pr

� P
ι
↪→ A⊕k . Then Bop ∼= EndA(P)∼= eMk×k(A)e.

We define ρ0 : A∗→ (Mk×k(A))∗ as follows: for any f ∈ A∗ and (ai, j )k×k ∈

Mk×k(A),

ρ0( f )((ai, j )k×k) := f
( k∑

i=1

ai i

)
.

We define res : (Mk×k(A))∗→ (eMk×k(A)e)∗ as follows: for any f ∈ (Mk×k(A))∗

and (ai, j )k×k ∈ Mk×k(A),

res( f )(e(ai, j )k×ke) := f (e(ai, j )k×ke).

It is easy to check that ρ := res◦ρ0 has the property that for any symmetrizing form
τ ∈ A∗ on A, ρ(τ) ∈ B∗ is a symmetrizing form on EndA(P)∼= eMk×k(A)e∼= Bop.
It is clear that ρ(τ) is a symmetrizing form on B too. �

The following lemma is clear.
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Lemma 4.2. Let A = ⊕m
k=0 Ak be a finite dimensional positively Z-graded K -

algebra. Let τ be a (not necessarily homogeneous) symmetrizing form on A. We
define τ̃ : A∗→ K as follows: for any homogeneous element y ∈ A,

τ̃ (y) :=
{
τ(x) if deg x = m,
0 otherwise.

Then τ̃ can be linearly extended to a well-defined homogeneous symmetrizing form
on A.

The following definition comes from [Shan et al. 2017, 3.1.5].

Definition 4.3. We define
d3 := 2`n− 2n2.

Recall that by Theorem 3.7, the center Z is a positively Z-graded K -algebra with
each homogeneous component being one dimensional. In particular, deg z ≤ d3 for
all z ∈ Z , and deg zλmax = d3.

Lemma 4.4. The center Z can be endowed with a homogeneous symmetrizing form
of degree −d3 as follows: for any homogeneous element z ∈ Z ,

tr(z) :=
{

1 if z = zλmax,

0 if deg z < d3.

In particular, Z is a graded symmetric algebra over K .

Proof. By Lemma 3.2, we know that Z is Morita equivalent to H
(0)
`,n . Since H

(0)
`,n

is a symmetric algebra by [Shan et al. 2017], we can deduce from Lemma 4.1 and
Lemma 4.2 that Z is a graded symmetric algebra too.

On the other hand, by Lemma 3.2 and Corollary 2.19, we know that the center
Z is a positively graded K -algebra with each homogeneous component being
one dimensional. Therefore, we are in a position to apply [Hu and Lam 2017,
Proposition 3.9] or Lemma 4.1 and Lemma 4.2 to show that tr is a well-defined
homogeneous symmetrizing form on Z . �

Since tr is a homogeneous symmetrizing form on Z , for each nonzero homoge-
neous element 0 6= z ∈ Z , there exists a homogeneous element ẑ ∈ Z with degree
d3− deg z such that tr(zẑ) 6= 0. This motivates the following definition.

Definition 4.5. For each λ ∈P0, we fix a nonzero homogeneous element ẑλ ∈ Z
with degree d3− deg zλ such that tr(zλ ẑλ) 6= 0.

Now we are using Proposition 3.8 and Lemma 4.4 to define a homogeneous sym-
metrizing form T̂r on H

(0)
`,n as follows: for any 1≤ i, j ≤ n! and any homogeneous

element z ∈ Z ,

T̂r(F̃wi ,w j z) :=
{

c if i = j and z = czλmax for some c ∈ K ,
0 if i 6= j or deg z < d3.



ON THE STRUCTURE OF CYCLOTOMIC NILHECKE ALGEBRAS 129

Lemma 4.6. The map T̂r extends linearly to a well-defined homogeneous symmetriz-
ing form of degree −d3 on H

(0)
`,n .

Proof. This follows directly from Lemma 4.4 and Proposition 3.8. �

Remark 4.7. Shan, Varagnolo, and Vasserot [Shan et al. 2017] show that each
cyclotomic quiver Hecke algebra R3

β can be endowed with a homogeneous sym-
metrizing form TrSVV of degree d3,β which makes it into a graded symmetric
algebra, where

β ∈ Q+n , 3 ∈ P+, d3,β := 2(3, β)− (β, β).

In the type A case we consider the cyclic quiver or linear quiver with vertices labeled
by Z/eZ, where e 6= 1 is a nonnegative integer. In this case, R3

β can be identified
with the block of the cyclotomic Hecke algebra of type A which corresponds to
β by Brundan–Kleshchev’s isomorphism [Brundan and Kleshchev 2009a] when
the ground field K contains a primitive e-th root of unity or e is equal to the
characteristic of the ground field K . There is another homogeneous symmetrizing
form TrHM which can be defined (see [Hu and Mathas 2010, §6.3]) as follows:
let τ be the ungraded symmetrizing form on R3

β defined in [Malle and Mathas
1998] (nondegenerate case) and [Brundan and Kleshchev 2008] (degenerate case).
Following [Hu and Mathas 2010, Definition 6.15], for any homogeneous element
x ∈R3

β , we define

TrHM(x) :=
{
τ(x) if deg(x)= d3,β ,
0 otherwise.

By the proof of [Hu and Mathas 2010, Theorem 6.17], TrHM is a homogenous
symmetrizing form on R3

β of degree −d3,β . The associated homogenous bilinear
form 〈−,−〉 on R3

β of degree −d3,β can be defined as follows: 〈x, y〉 :=TrHM(xy).
We take this chance to remark that the bilinear form 〈−,−〉β in the paragraph above
[Hu and Mathas 2010, Theorem 6.17] should be replaced with the bilinear form
〈−,−〉 we defined here.

Conjecture 4.8. The two symmetrizing forms TrSVV and TrHM on R3
β differ by a

nonzero scalar in K .

Definition 4.9. For each µ ∈P0 and z1, z2 ∈Sn , we define

φµz1,z2
:= ψ∗z1

yn−1
1 yn−2

2 . . . yn−1ψw0 yµψw0 yn−1
1 yn−2

2 . . . yn−1ψz2 .

Lemma 4.10. (1) For each µ ∈P0 and z1, z2 ∈Sn , we have

φµw0z1,z2
= F ′z1,z2

zµ = ψ∗w0z1
yn−1

1 yn−2
2 . . . yn−1ψw0 yn−1

1 yn−2
2 . . . yn−1zµψz2

and
φµz1,z2

≡ ψµz1,z2
(mod (H (0)

`,n )
>µ).
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(2) The elements in the set {φµz1,z2 | µ ∈ P0, z1, z2 ∈ Sn} form a homogeneous
K -basis of H

(0)
`,n .

Proof. The first part of (1) follows from Lemma 3.5, while the second part of (1)
follows from Lemma 2.12. Finally, (2) follows from (1) and (2.7). �

We are going to define another homogeneous symmetrizing form “Tr” on H
(0)
`,n .

Let λ ∈P0 and w, u ∈Sn . By the same argument used in the proof of Lemma 3.4,
there is an element zw,u in the center Z(H (0)

`,n ) of H
(0)
`,n such that

ψw0 yn−1
1 yn−2

2 . . . yn−1ψuψw−1w0 yn−1
1 yn−2

2 . . . yn−1ψw0 = ψw0 zw,u .

If deg zλ + deg zw,u = d3, then we denote cw,u ∈ K the unique scalar which
satisfies that zw,uzλ = cw,uzλmax . Note that deg zλ + deg zw,u = d3 if and only if
degφλw0w,u = d3.

Definition 4.11. For any µ ∈P0 and w, u ∈Sn , we define

Tr(F ′w,uzµ)= Tr(φµw0w,u) :=

{
cw,u if deg F ′w,uzµ = d3,
0 otherwise.

In particular, if w = u and µ= λmax then Tr(φµw,u)= 1. Note that

1= Tr(φλmax
w0,1)= Tr(F ′1,1zλmax)

= Tr(ψ∗w0
yn−1

1 yn−2
2 . . . yn−1ψw0 yn−1

1 yn−2
2 . . . yn−1zλmax)

= (−1)n(n−1)/2 Tr(ψ∗w0
yn−1

1 yn−2
2 . . . yn−1zλmax)

= Tr(ψ∗w0
yλmax),

which implies that

(4.12) Tr(ψ∗w0
yλmax)= 1.

Proposition 4.13. The map Tr can be linearly extended to a well-defined homoge-
neous symmetrizing form of degree −d3 on H

(0)
`,n .

Proof. By construction, it is clear that the map Tr can be linearly extended to a
well-defined homogeneous linear map of degree −d3 on H

(0)
`,n .

We want to show that T̂r= Tr. Once this is proved, it is automatically proved
that Tr is symmetric and nondegenerate. To this end, by Lemma 4.10, it suffices to
show that T̂r(F ′z1,z2

zµ)= Tr(F ′z1,z2
zµ) for any µ ∈P0 and z1, z2 ∈Sn .
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Without loss of generality we can assume that deg(F ′z1,z2
zµ)= d3. Since T̂r is a

trace form and zµ is central, we have

T̂r(F ′z1,z2
zµ)

= T̂r(F ′z1,z1
F ′z1,z2

zµ)

= T̂r
(
ψ∗w0z1

yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . .

× yn−1ψz1ψ
∗

w0z1
yn−1

1 yn−2
2 . . . yn−1ψw0 yn−1

1 yn−2
2 . . . yn−1ψz2 zµ

)
= T̂r

(
ψ∗w0z1

yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . .

× yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1ψz2 zµ
)

= T̂r
(
yn−1

1 yn−2
2 . . . yn−1ψw0 yn−1

1 yn−2
2 . . .

× yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1ψz2ψz−1
1 w0

yn−1
1 yn−2

2 . . . yn−1ψw0 zµ
)

= T̂r(yn−1
1 yn−2

2 . . . yn−1ψw0 yn−1
1 yn−2

2 . . . yn−1ψw0 zz1,z2 zµ)

= (−1)n(n−1)/2T̂r(yn−1
1 yn−2

2 . . . yn−1ψw0cz1,z2 zλmax)

= (−1)n(n−1)/2cz1,z2T̂r(ψw0 yn−1
1 yn−2

2 . . . yn−1zλmax)

= cz1,z2T̂r(F̃1,1zλmax)= cz1,z2

= Tr(F ′z1,z2
zµ).

This completes the proof of T̂r= Tr. In particular, this implies that Tr is sym-
metric and nondegenerate. That says, Tr can be linearly extended to a well-defined
homogeneous symmetrizing form of degree −d3 on H

(0)
`,n . �

Proposition 4.14. T̂r= Tr .

Proof. This follows from the proof of Proposition 4.13. �

5. Comparing Tr with the Shan–Varagnolo–Vasserot
symmetrizing form TrSVV

In this section, we compare the symmetrizing form Tr with the Shan–Varagnolo–
Vasserot symmetrizing form TrSVV introduced in [Shan et al. 2017] and show that
they are actually the same.

Let A, B be two K -algebras and i : B→ A is a K -algebra homomorphism. Let
AB
:= {x ∈ A | xb = bx,∀ b ∈ B} be the centralizer of B in A. For any f ∈ AB ,

we set
µ f : A⊗B A→ A, a⊗ a′ 7→ a f a′.

Recall that H
(0)
`,n =R

`30
nα0 . In the notations of [Shan et al. 2017, §3.1.4], we set

(5.1) λ0 := 〈`30− (n− 1)α0, α
∨

0 〉 = `− 2(n− 1).
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We first recall the definition of TrSVV in the case of nilHecke algebra R
`30
nα0 .

Definition 5.2 [Kang and Kashiwara 2012; Shan et al. 2017, Theorem 3.6, (6), (8)].
If λ0 ≥ 0 then for any z ∈ R

`30
nα0 there are unique elements pk(z) ∈ R

`30
(n−1)α0

and
π(z) ∈R

`30
(n−1)α0

⊗
R
`30
(n−2)α0

R
`30
(n−1)α0

such that

z = µψn−1(π(z))+
λ0−1∑
k=0

pk(z)yk
n ,

where the above summation is understood as 0 when λ0 = 0.
If λ0 ≤ 0 then for any z ∈R

`30
nα0 , there is a unique element z̃ ∈R

`30
(n−1)α0

⊗
R
`30
(n−2)α0

R
`30
(n−1)α0

such that

µψn−1(z̃)= z and µyk
n−1
(z̃)= 0,∀ k ∈ {0, 1, . . . ,−λ0− 1},

where the range of k is understood as ∅ when λ0 = 0.

Definition 5.3 [Shan et al. 2017, Theorem 3.8]. For each n ∈ N, we define ε̂n :

R
`30
nα0 → R

`30
(n−1)α0

as follows: for any z ∈ R
`30
nα0 , if λ0 := `− 2(n − 1) > 0 then

ε̂n(z) := p`−2(n−1)−1(z); if λ0 := `− 2(n− 1)≤ 0 then ε̂n(z) := µy−`+2(n−1)
n−1

(z̃).

Definition 5.4 [Shan et al. 2017, A.3.]. For any z ∈R
`30
nα0 ,

TrSVV(z) := ε̂1 ◦ ε̂2 ◦ · · · ◦ ε̂n :R
`30
nα0
→R

`30
0α0
= K .

Definition 5.5. For each n ∈ N, we define

Z0,n := ψw0,n y`−1
1 y`−2

2 . . . y`−n
n ∈H

(0)
`,n .

We want to compute the value TrSVV(Z0,n). According to Definition 5.2, we
need to understand the value p`−2(n−1)−1(Z0,n) when ` > 2(n− 1) and the value
µy−`+2(n−1)

n−1
(Z̃0,n) when `≤ 2(n− 1).

Lemma 5.6. Suppose that λ0 := `− 2(n− 1)≥ 0. Then

π(Z0,n)= ((ψ1 . . . ψn−2)y`−n
n−1)

⊗ (ψ1 . . . ψn−3ψn−2) . . . (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n+1
n−1

∈R
`30
(n−1)α0

⊗
R
`30
(n−2)α0

R
`30
(n−1)α0

,

and for any k ∈ {0, 1, . . . , λ0− 1},

pk(Z0,n)

= (ψ1 . . . ψn−2)(ψ1 . . . ψn−3) . . . (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n+2
n−2 y`−n+λ0−k

n−1 .

In particular, pλ0−1(Z0,n)= Z0,n−1.
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Proof. By definition, we have

Z0,n = ψw0,n y`−1
1 y`−2

2 . . . y`−n
n

= (ψ1 . . . ψn−2ψn−1)(ψ1 . . . ψn−3ψn−2) . . . (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n
n

= (ψ1 . . . ψn−2)(ψn−1 y`−n
n )ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1

= (ψ1 . . . ψn−2)

(
y`−n

n−1ψn−1+
∑

a1+a2=`−n−1
a1,a2≥0

ya1
n−1 ya2

n

)
×ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1

= (ψ1 . . . ψn−2)(y`−n
n−1ψn−1)ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1

+

∑
a1+a2=`−n−1

a1,a2≥0

(ψ1 . . . ψn−2 ya1
n−1ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n )

= (ψ1 . . . ψn−2)(y`−n
n−1ψn−1)ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1

+

∑
a1+a2=`−n−1

a1,a2≥0

(
ψ1 . . . ψn−2 ya1

n−1(ψ1 . . . ψn−3ψn−2)(ψ1 . . . ψn−4ψn−3) . . .

× (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n+1
n−1 ya2

n
)

= (ψ1 . . . ψn−2)(y`−n
n−1ψn−1)ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1

+

∑
a1+a2=`−n−1

a1,a2≥0

(
(ψ1 . . . ψn−2)(ψ1 . . . ψn−3)

× (ψ1 . . . ψn−4) . . . ψ1 ya1
n−1(ψn−2ψn−3 . . . ψ2ψ1)

× y`−1
1 y`−2

2 . . . y`−n+1
n−1 ya2

n
)

= µψn−1

(
(ψ1 . . . ψn−2 y`−n

n−1)⊗ (ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+1
n−1 )

)
+

∑
a1+a2=`−n−1

a1,a2≥0

ψw0,n−1(y
a1
n−1ψn−2 . . . ψ2ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n .

Using the uniqueness in Definition 5.2, we see that to prove the lemma, it suffices
to show that

∑
a1+a2=`−n−1

a1,a2≥0

ψw0,n−1(y
a1
n−1ψn−2 . . . ψ2ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n

=

λ0−1∑
k=0

ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+2
n−2 y`−n+λ0−k

n−1 yk
n .
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In fact,∑
a1+a2=`−n−1

a1,a2≥0

ψw0,n−1(y
a1
n−1ψn−2 . . . ψ2ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n

=

∑
a1+a2=`−n−1

a1,a2≥0

ψw0,n−1(y
a1
n−1ψn−2 . . . ψ2ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n

=

∑
a1+a2=`−n−1
a1≥n−2,a2≥0

ψw0,n−1(y
a1
n−1ψn−2 . . . ψ2ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n

= ψw0,n−1ψn−2 . . . ψ2ψ1 y`−1
1 y`−2

2 . . . y`−n+2
n−2 y`−n+1

n−1 y`−2n+1
n

+ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+2
n−2 y`−n+2

n−1 y`−2n
n

+ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+2
n−2 y`−n+3

n−1 y`−2n−1
n

...

+ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+2
n−2 y2`−3n+1

n−1 yn

+ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+2
n−2 y2`−3n+2

n−1

=

λ0−1∑
k=0

ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+2
n−2 y`−n+λ0−k

n−1 yk
n ,

where we have used the commutator relations for the ψ and y generators of H
(0)
`,n

and the fact that

ψw0,n−1ψr = 0 for any 1≤ r < n− 1

in the second and the last equalities. This completes the proof of the lemma. �

Lemma 5.7. Suppose that λ0 := `− 2(n− 1)≤ 0. Then

Z̃0,n =

((ψ1ψ2 . . . ψn−2)y`−n
n−1)⊗ ((ψ1 . . . ψn−3ψn−2) . . . (ψ1ψ2)ψ1 y`−1

1 y`−2
2 . . . y`−n+1

n−1 )

∈R
`30
(n−1)α0

⊗
R
`30
(n−2)α0

R
`30
(n−1)α0

and

µ
y
−λ0
n−1
(Z̃0,n)= Z0,n−1

= (ψ1 . . . ψn−2)(ψ1 . . . ψn−3) . . . (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n+1
n−1 .
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Proof. By definition, we have

Z0,n = ψw0,n y`−1
1 y`−2

2 . . . y`−n
n

= (ψ1 . . . ψn−2ψn−1)(ψ1 . . . ψn−3ψn−2) . . . (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n
n

= (ψ1 . . . ψn−2)(ψn−1 y`−n
n )(ψ1 . . . ψn−3ψn−2) . . .

× (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n+1
n−1

= (ψ1 . . . ψn−2)

(
y`−n

n−1ψn−1+
∑

a1+a2=`−n−1
a1,a2≥0

ya1
n−1 ya2

n

)
×ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1

= (ψ1 . . . ψn−2)(y`−n
n−1ψn−1)ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1

+

∑
a1+a2=`−n−1

a1,a2≥0

ψ1 . . . ψn−2(y
a1
n−1)ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n .

We now claim that

(5.8)
∑

a1+a2=`−n−1
a1,a2≥0

ψ1 . . . ψn−2(y
a1
n−1)ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n = 0.

In fact, we have∑
a1+a2=`−n−1

a1,a2≥0

ψ1 . . . ψn−2(y
a1
n−1)ψw0,n−1 y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n

=

∑
a1+a2=`−n−1

a1,a2≥0

ψ1 . . . ψn−2(y
a1
n−1)(ψ1 . . . ψn−3ψn−2)(ψ1 . . . ψn−4ψn−3) . . .

× (ψ1ψ2)(ψ1)y`−1
1 y`−2

2 . . . y`−n+1
n−1 ya2

n

=

∑
a1+a2=`−n−1

a1,a2≥0

ψw0,n−1(y
a1
n−1ψn−2 . . . ψ2ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n

=

∑
a1+a2=`−n−1

a1>0,a2≥0

ψw0,n−1(y
a1
n−1ψn−2 . . . ψ2ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1 ya2
n ,

where the last equality follows from the fact that ψw0,n−1ψn−2 = 0. Now by as-
sumption, a1 ≤ `− n − 1 ≤ 2(n − 1)− n − 1 = n − 3 < n − 2. It follows that
ya1

n−1ψn−2 . . . ψ2ψ1 is a sum of some elements which have a left factor of the form
ψr for some 1 ≤ r < n− 1. Therefore, using the fact that ψw0,n−1ψr = 0 for any
1 ≤ r < n− 1 again, we can deduce that the above sum is 0. This completes the
proof of the claim (5.8).
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By Definition 5.2, to complete the proof of the lemma, it remains to show that
for any 0≤ k ≤−λ0− 1,

(5.9) µyk
n−1

(
(ψ1ψ2 . . . ψn−2 y`−n

n−1)⊗ (ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+1
n−1 )

)
= 0.

In fact, we have

µyk
n−1

(
(ψ1ψ2 . . . ψn−2 y`−n

n−1)⊗ (ψw0,n−1 y`−1
1 y`−2

2 . . . y`−n+1
n−1 )

)
= µyk

n−1

(
(ψ1 . . . ψn−2 y`−n

n−1)

⊗ (ψ1 . . . ψn−3ψn−2) . . . (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n+1
n−1

)
= (ψ1 . . . ψn−2)(y`−n+k

n−1 )(ψ1 . . . ψn−3ψn−2)(ψ1 . . . ψn−4ψn−3) . . .

× (ψ1ψ2)ψ1 y`−1
1 y`−2

2 . . . y`−n+1
n−1

= (ψ1 . . . ψn−2)(ψ1 . . . ψn−3) . . .

× (ψ1ψ2)ψ1(y`−n+k
n−1 ψn−2ψn−3 . . . ψ2ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1

= ψw0,n−1(y
`−n+k
n−1 ψn−2ψn−3 . . . ψ1)y`−1

1 y`−2
2 . . . y`−n+1

n−1 = 0,

where the last equality follows from the fact that ψw0,n−1ψr = 0 for any 1≤ r < n−1
and the assumption that

`− n+ k ≤ `− n− λ0− 1= `− n− (`− 2(n− 1))− 1= n− 3< n− 2

so that y`−n+k
n−1 ψn−2ψn−3 . . . ψ1 is a sum of some elements which have a left factor

of the form ψr for some 1≤ r < n−1. This completes the proof of (5.9) and hence
the proof of the lemma. �

Corollary 5.10. TrSVV(Z0,n)= 1.

Proof. This follows from Definition 5.3, Definition 5.4, Lemma 5.6, Lemma 5.7,
and an induction on n. �

Theorem 5.11. The two symmetrizing forms TrSVV and Tr on the cyclotomic nil-
Hecke algebra H

(0)
`,n coincide with each other.

Proof. Let 1 ≤ i , j ≤ n! , and z ∈ Z . Suppose that i 6= j . Then as TrSVV is a
symmetrizing form and z is central, we have

TrSVV(F̃wi ,w j z)= TrSVV(F̃wi ,wi F̃wi ,w j z)= TrSVV(F̃wi ,w j z F̃wi ,wi )

= TrSVV(F̃wi ,w j F̃wi ,wi z)= TrSVV(0z)= 0.

It remains to consider the case when i = j .
If deg z < d3, then as TrSVV is homogeneous of degree −d3 and deg F̃wi ,wi = 0,

we have TrSVV(F̃wi ,wi z)= 0. Therefore, without loss of generality, we can assume
that z = zλmax . Our purpose is to compare TrSVV(F̃wi ,wi zλmax) and Tr(F̃wi ,wi zλmax).
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Note that for any µ ∈P0 with µ> λmin, we have that

deg(yµzλmax) > n(n− 1)+ 2n(`− n)= 2`n− n(n+ 1)= deg(y`−1
1 y`−2

2 . . . y`−n
n ),

which implies that yµzλmax = 0 by Theorem 2.34. By (2.33) and Lemma 3.5, we
have

TrSVV(F̃wi ,wi zλmax)= (−1)n(n−1)/2 TrSVV(ψλmin
w0wi ,wi

zλmax)= TrSVV(ψλmax
w0wi ,wi

)

= TrSVV(ψwiψ
∗

w0wi
y`−1

1 y`−2
2 . . . y`−n

n )

= TrSVV(ψw0 y`−1
1 y`−2

2 . . . y`−n
n )

= TrSVV(Z0,n)= 1, (by Corollary 5.10)

Tr(F̃wi ,wi zλmax)= (−1)n(n−1)/2 Tr(ψλmin
w0wi ,wi

zλmax)= Tr(ψλmax
w0wi ,wi

)

= Tr(ψwiψ
∗

w0wi
y`−1

1 y`−2
2 . . . y`−n

n )

= Tr(ψw0 y`−1
1 y`−2

2 . . . y`−n
n )= 1. (by (4.12))

This shows that TrSVV(F̃wi ,wi zλmax)= Tr(F̃wi ,wi zλmax).
As a result, we have shown that TrSVV(F̃wi ,w j z) = Tr(F̃wi ,w j z) for any 1 ≤ i ,

j ≤ n! , and z ∈ Z . It follows that TrSVV
= Tr, as required. �
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