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ON THE STRUCTURE OF
CYCLOTOMIC NILHECKE ALGEBRAS

JUN HU AND XINFENG LIANG

In this paper we study the structure of the cyclotomic nilHecke algebras
%E‘:’) , where £, n € N. We construct a monomial basis for %ZE?,) which ver-
ifies a conjecture of Mathas. We show that the graded basic algebra of
%(0) is commutative and hence isomorphic to the center Z of %(0) . We
further prove that 7, O s isomorphic to the full matrix algebra over Z and
construct an explicit ba51s for the center Z. We also construct a complete set
of pairwise orthogonal primitive idempotents of Jf(o) Finally, we present
a new homogeneous symmetrizing form Tr on %(0) by explicitly specifying
its values on a given homogeneous basis of Hn © and show that it coincides
with Shan—Varagnolo—Vasserot’s symmetrlzmg form TrSVY on %(0)

1. Introduction

Quiver Hecke algebras %, and their finite dimensional quotients %2 (i.e., cyclo-
tomic quiver Hecke algebras) have been hot topics in recent years. These algebras
are remarkable because they can be used to categorify quantum groups and their
integrable highest weight modules; see [Kang and Kashiwara 2012; Khovanov and
Lauda 2009; Rouquier 2008; 2012; Varagnolo and Vasserot 2011]. These algebras
can be regarded as some Z-graded analogues of the affine Hecke algebras and their
finite dimensional quotients. Many results concerning the representation theory
of the affine Hecke algebras and the cyclotomic Hecke algebras of type A have
their Z-graded analogues for the quiver Hecke algebras %, and the cyclotomic
quotients %‘;\; see [Brundan and Kleshchev 2009b; Brundan et al. 2011; Lauda and
Vazirani 2011]. It is natural to expect that the structure of the affine Hecke algebras
and the cyclotomic Hecke algebras of type A also have their Z-graded analogues
for the algebras %, and Z2. In fact, this is indeed the case for the quiver Hecke
algebras %, . For example, we have faithful polynomial representations, standard
basis and a nice description of the center for the algebra %, in a similar way as in
the case of the affine Hecke algebras of type A. However, the situation turns out to
be much more tricky for the cyclotomic quiver Hecke algebras %2 . Only partial
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progress has been made for the structure of the cyclotomic quiver Hecke algebras
#% 50 far. For example:

(1) The cyclotomic quiver Hecke algebra of type A has a Z-graded cellular basis
by [Hu and Mathas 2010].

(2) The cyclotomic quiver Hecke algebra is a Z-graded symmetric algebra by
[Shan et al. 2017].

(3) The center of the cyclotomic quiver Hecke algebra Z2 is the image of the
center of the quiver Hecke algebra %, whenever the associated Cartan matrix
is symmetric of finite type by [Webster 2015].

Apart from the type A case, one does not even know any explicit bases for
arbitrary cyclotomic quiver Hecke algebras. On the other hand, for the classical
cyclotomic Hecke algebra of type A, we have not only a Dipper—James—Mathas’s
cellular basis [Dipper et al. 1998] but also a monomial basis (or Ariki—Koike basis
[Ariki and Koike 1994]). But even for the cyclotomic quiver Hecke algebra of
type A we do not know any explicit monomial basis. This motivates our first
question:

Question 1.1. Can we construct an explicit monomial basis for any cyclotomic
quiver Hecke algebra?

Shan, Varagnolo and Vasserot [Shan et al. 2017] have shown that each cyclotomic
quiver Hecke algebra can be endowed with a homogeneous symmetrizing form
TrSVV which makes it into a graded symmetric algebra (see Remark 4.7 and [Hu
and Mathas 2010, §6.3] for the type A case). However, the SVV symmetrizing
form TrSVV is defined in an inductive manner. It is difficult to compute the explicit
value of the form Tr>YY on any specified homogeneous element. On the other hand,
it is well-known that the classical cyclotomic Hecke algebra of type A is symmetric
[Malle and Mathas 1998; Brundan and Kleshchev 2008] and the definition of its
symmetrizing form is explicit in that it specifies its value on each monomial basis
element. This motivates our second question:

Question 1.2. Can we determine the explicit values of the Shan—Varagnolo—Vasserot
symmetrizing form TrSYV on some monomial bases (or at least a set of K -linear
generators) of the cyclotomic quiver Hecke algebra’

An explicit basis for the center of %2 is unknown. Even for the classical
cyclotomic Hecke algebra of type A, except in the level one case [Geck and Pfeiffer
2000] or in the degenerate case [Brundan 2008], one does not know any explicit
basis for the center.

Question 1.3. Can we give an explicit basis for the center of the cyclotomic quiver
Hecke algebra?
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The starting point of this paper is to try to answer the above three questions. As
a first step toward this goal, we need to consider the case of the cyclotomic quiver
Hecke algebra which corresponds to a quiver with a single vertex and no edges.
That is, the cyclotomic nilHecke algebra of type A. Let us recall its definition.

Definition 1.4. Let ¢, n € N. The nilHecke algebra A0 of type A is the unital
associative K-algebra generated by ¥y, ..., ¥,—1, y1, ..., y» Which satisfy the
following relations:

Wr2=0, V1<r<n,
Ve = Yy, Vi<k<r—1l<n-—1,
Vel 1¥r = Yr1 Ve Y1, Vi<r<n-—1,
YrYk = YkYr VIi<rk<n,
Vet =¥+ 1L ye¥r =¥y +1, VI<r<n,
Vr Yk = YiYrs Vk#£rr+1.

The cyclotomic nilHecke algebra ,%’jffg) of type A is the quotient of j‘/;,(o) by the
two-sided ideal generated by yf .

The nilHecke algebras %,(O) was introduced by Kostant and Kumar [1986]. It
plays an important role in the theory of Schubert calculus; see [Hiller 1982]. Mathas
[2015, §2.5] has observed that the Specht module over %,(,?1) can be realized as
the coinvariant algebra with standard bases of Specht modules being identified
with the Schubert polynomials of the coinvariant algebras. It is clear that both
%1(0) and %@(2) are Z-graded K -algebras such that each i, is homogeneous with
deg ¥, = —2 and each y, is homogeneous withdeg y, =2 forall 1 <r <n, 1 <s <n.
Mathas [2015, §2.5] has conjectured a monomial basis of the cyclotomic nilHecke
algebra t%”,,(,(,),). In this paper, we shall construct a monomial basis of the cyclotomic
nilHecke algebra e%’jf?l) for arbitrary ¢ (Theorem 2.34) that, in particular, verifies
Mathas’s conjecture. As an application, we shall construct a basis for the center
Z of %fg) (Theorem 3.7). Thus we shall answer Question 1.1 and Question 1.3
for the cyclotomic nilHecke algebra ji’jzfg). Furthermore, we shall construct a new
homogeneous symmetrizing form Tr (Proposition 4.13) by specifying its values on
a homogeneous basis element of jﬁfg). We prove that this new form Tr actually
coincides with Shan—Varagnolo—Vasserot’s symmetrizing form Tr3VY [Shan et al.
2017] on %fg). Thus we also answer Question 1.2 for the cyclotomic nilHecke
algebra jﬁf?.

The content of the paper is organized as follows. In Section 2, we shall first
review some basic knowledge about the structure and representation of %@(O)

RO
Lemma 2.12 provides a useful commutator relation which will be used frequently in
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later discussion. In Corollary 2.18 and 2.19 we determine the graded dimensions of
the graded simple modules and their graded projective covers as well as the graded
decomposition numbers and the graded Cartan numbers. We construct a monomial
basis of the cyclotomic nilHecke algebra %@fg) for arbitrary £ in Theorem 2.34.
We also construct a complete set of pairwise orthogonal primitive idempotents in
Corollary 2.25 and Theorem 2.31. In Section 3, we shall first present a basis for
the graded basic algebra of 77 © and show that it is isomorphic to the center Z
of j‘f( ) in Lemma 3.2. Then we shall give a basis for the center in Theorem 3.7
Wthh consists of certain symmetric polynomials in yj, ..., y,. We also show
in Proposition 3.8 that %@f? is isomorphic to the full matrix algebra over Z. In
Section 4, we shall first show in Lemma 4.4 that the center Z is a graded symmetric
algebra by specifying an explicit homogeneous symmetrizing form on Z. Then we
shall introduce two homogeneous symmetrizing forms: one is defined by using its
isomorphism with the full matrix algebra over the center Z (Lemma 4.6); another is
defined by specifying its values on a homogeneous basis element (Definition 4.11
and Proposition 4.13). We show in Proposition 4.14 that these two symmetrizing
forms are the same. In Section 5 we show that the form Tr also coincides with
Shan—Varagnolo—Vasserot’s symmetrizing form Tr3VY (which was introduced in
[Shan et al. 2017] for general cyclotomic quiver Hecke algebras).

After the submission of this paper, Professor Lauda emailed us that he won-
ders if our results have some connections with his papers [Khovanov et al. 2012;
Lauda 2012]. In the latter paper he proved that the cyclotomic nilHecke algebra is
isomorphic to the matrix ring of size n! over the cohomology of a Grassmannian.
Combining it with Proposition 3.8 in this paper this implies that the center of the
cyclotomic nilHecke algebra is isomorphic to that cohomology of a Grassmannian.
He also proposed an interesting question of comparing the trace form Tr in this paper
with the natural form on the matrix ring over the cohomology of the Grassmannian
which can be defined using integration over the volume form.

2. The structure and representation of éfe(?,)

Let &, be the symmetric group on {1,2,...,n}and lets; ;== (i,i +1) € G,, for
1 <i <n. Then {sy, ..., s,—1} is the standard set of Coxeter generators for G,,. If
w € G, then the length of w is

L(w) :=min{k eN|w =s;, ...s;, forsome 1 <ij, ..., iy <n}.
Ifw=s; ...s;, withk=£¢(w) then s;, ...s;, is a reduced expression for w. In this
case, we define ¥, 1= v;, ... v¥;,. The braid relation in Definition 1.4 ensures that

Yy, does not depend on the choice of the reduced expression of w. Let wy , be the
unique longest element in &,. When 7 is clear from the context we shall write wy
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instead of wy_, for simplicity. Then wo = w, and L(wg) =n(n—1)/2. Let x be
the unique K -algebra antiautomorphism of %” ) which fixes each of its Y and y
generators.

Lemma 2.1 [Manivel 2001]. The elements in the set
{Ywyl' .y lweS,,c1,...,¢c €N}

form a K-basis of the nilHecke algebra %(0) and the center of %(O) is the set of
symmetric polynomials in yy, . .., yy.

Letm: %?1(0) —» %(2) be the canonical surjective homomorphism.

Definition 2.2. An element z in %‘Q(g) is said to be symmetricif z=m(f (y1, ..., Yn))
for some symmetric polynomial f(ty,...,1,) € K[t,...,t,], where t1, ..., 1, are
n indeterminates over K.

Corollary 2.3. Any symmetric element in 7, O Jies in the center of A, O

Proof. This follows from Lemma 2.1 and the surjective homomorphism 7. (]

Let I be a quiver without loops and [/ its vertex set. For any i, j € I let d;; be
the number of arrows i — j and set m;; := d;; +d;;. This defines a symmetric
generalized Cartan matrix (a;;); je; by putting a;; :== —m;; fori # j and a;; := 2 for
any i € I. Let u, v be two indeterminates over Z. We define Q;; :=(— 1) (4 —v)™ii
forany i # j € I and Q;;(u, v) :=0 forany i € I. Let (b, IT, IT) be a realization
of the generalized Cartan matrix (a;;); je;. Let P be the associated weight lattice
which is a finite rank free abelian group and contains IT = {«; | i € I}, let P¥ be
the associated coweight lattice which is a finite rank free abelian group too and
contains ITY = {e;” | i € I}. Let Q% := NIT C P be the semigroup generated by IT
and Pt C P be the set of integral dominant weights. Let A € P and 8 € Q;F. One
can associate it with a quiver Hecke algebra #g as well as its cyclotomic quotient
%}f} We refer the readers to [Khovanov and Lauda 2009; Rouquier 2012; Shan
et al. 2017] for precise definitions.

Let {A; | i € I} be the set of fundamental weights. The nilHecke algebra and
its cyclotomic quotient can be regarded as a special quiver Hecke algebra and
cyclotomic quiver Hecke algebra. That is, the quiver with single one vertex {0} and
no edges. More precisely, we have

(2.4) A = Ry S = B

nog

Throughout this paper, unless otherwise stated, we shall work in the category
of Z-graded jﬁf?l)—modules. Note that jﬁfg) is a special type A cyclotomic quiver
Hecke algebra so that we can apply the theory of graded cellular algebras developed
in [Hu and Mathas 2010]. We now recall the definition of graded cellular basis in
this special situation (i.e., for %(0))
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We use & to denote the empty partition and (1) to denote the unique partition
of 1. Set |@]| :=0, |(1)] := 1. We define

l . .
i=1

Definition 2.5. If A = (\(V, ..., 1(Y) € 2, then we define #()) to be the unique
n-tuple (ky, ..., k,) suchthat 1 <k <ky <--- <k, <{ and

Py = {x =D, a0

L0 _ [ if j =k forsome I <i <n,
| otherwise.

Given any two n-tuples (ki, ..., k,), (k, ..., k}) of increasing positive integers,
we define
ki, oo k) = (ks oo k) & ki >k, V1<i<n,

and(kl,...,kn)>(k/,...,k;l)if(kl,... D>k, Lk )and(kl,...,k);é
(ki, ..., k). Forany A, p € &, we define

A>p o) <o)

Then “>" is a partial order on .
The following is a special case of [Hu and Mathas 2010, Definition 4.15].

Definition 2.6. Let A € &2y with 6(A) = (ky, ..., k,). We define
% _yf ki ...yﬁ*k”, deg y\ :=2¢n —22/@.
i=1

By the main results in [Hu and Mathas 2010], the elements in the set
(2.7) Wk =vindu L e Po,w,ue6,}

form a graded cellular K -basis of 7, ©Each basis element Yk
with degree equal to

w. 18 homogeneous

degyr) , = deg yy — 20(w) — 20(u) =200 —2 ) ki — 20(w) — 2£(u).
i=1

In particular, dimg %(O) ={({—1)...({—n+1)n!. Note that & # @ if and
only if £ > n. Therefore, %( ) = 0 whenever £ < n. Henceforth, we always assume
that £ > n.

By the general theory of (graded) cellular algebras [Graham and Lehrer 1996; Hu
and Mathas 2010], for each A € 2, we have a graded Specht module S*, which is
equipped with an associative homogeneous bilinear form (—,—),. Let rad(—,—)x
be the radical of that bilinear form. We define D* := §*/rad(—,—);. By [Hu and
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Mathas 2010, Corollary 5.11], we know that D* = 0 if and only if A is a Kleshchev
multipartition with respect to (p; 0,0, ..., 0), where p = char K.

LetA € Py with6O(X) = (ky, ..., k,). A A-tableau is a bijection t: {ky, ..., k,} =
{1,2,...,n}. We use Tab(A) to denote the set of A-tableaux. For any t € Tab(}),
we define

n

degt:= #ik; < j<{t| either j &{ky,...,k,} or j =k, with t(j) > t(k;)
g
i=1 —#{k,' <j<£|je{kl,...,kn}andt(j)<t(k,~)}).

It is clear that in our special case (i.e., for &) the above definition of deg t coincides
with that in [Brundan et al. 2011; Hu and Mathas 2010].

Definition 2.8. We define

Amax = (D), ..., (D, D, ....9), Amin:=(2,....9,(1),...., D).
N — i —  ——" e |
n copies {—n copies £ — n copies n copies

It is clear that for any p € % \ {Amax, Amin}, We have that

(29) A-min <pm< )\-max» deg Phmin < deg Yu < deg Yhmax -

Using [Brundan and Kleshchev 2009a] and the definition of the Kleshchev multi-
partition in [Ariki and Mathas 2000], it is clear that A, is the unique Kleshchev
multipartition in &?,. Therefore, for any A € £, D* # 0 if and only if A = Apin.
Furthermore, D*mi» is the unique (self-dual) graded simple module for jﬁfg). Let
Pmin be its graded projective cover.

Definition 2.10. We define
Dy := D*in, Py = phoin,

For each p € &, we use (7, (O))>" to denote the K -subspace of jf( ) spanned
by all the elements of the form K/f* W, where A > u, w, u € S,. Then (%(0))>"
is a two-sided ideal of jf( ) By [Hu and Mathas 2012, Corollary 3.11], for any
1<r<n,ifé(pn) = (k1,.. k) then

—k - 0
(2.11) Yuyr =y, "”yrE(%fn))”‘-

Lemma 2.12. Forany 1 <i <n, 1 < j < n, there exists elements h; ;, h;j € %’1,(2)
such that

(2.13) Yy} 8 = (DT N iy

1<i<n
1<j<n
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Similarly, we have

(2.14) YT ety = (=DM Y gk

1<i<n
1<j<n

Proof. We only prove the first equality as the second one follows from the first one
by applying the anti-involution *. We use induction on n. If n = 1, it is clear that

(2.13) holds. Suppose that the lemma holds for the nilHecke algebra 77 | (O) . We

are going to prove (2.13) for %(0)

Recall that the unique longest element wo :=wp,, of &, has a reduced expression
wo = s1(5251) ... (Sp—25p-3 - . 51) (Sn—18n—2 . . . 51).
Recall that wg ,—1 denotes the unique longest element in &,,_; and
Wo = W n—1(Sp—181-2 - - . 1)

and s1(s251) . .. (Sp—28y—3 . . . s1) is a reduced expression for wp ,—1.
We define
n
. (0)
Joi=Y vt
i=1

Then we have, with all congruences modulo J,,

1ﬁwoyn 1)"21 2---)’n—l
= Yy (V12 -+ Vae )Y 2V Y
= Vwgp s Un1Vn—2.. . V1Y1Y2 ... Yu—1)V] zyé’ S Yn2
= Vg s (Va1 V12 - Va1 Wnea o Y)Y 295 yaea  (by Corollary 2.3)
=Ywy 1 V1Y2 .o - Yn2Vn—-1Yn—-1¥Yn-2 - DS o Yn-2
Vg1 ( W Ynz .. Y)Y 2yE 3
= Yuo s V12 Y2 nWnt — D2 . 1//1)y" > VI e
—VYwo 1 Yiy2...Yn-2¥n— 1)y e Yn=2 y .
N ( Ynoa Y)Y 2YE 3 (by (2.11))
= " VYwo 2\ VUn2Vn-3...V1Y1Y2---Yn-2 n—2 - 1)y Yo e ¥n-2
Vg s (Wn—2¥r w YWz - Y)Y
= —Yug > (Wn2V1¥2 - Y2 ¥n—3 - - VD) Wz - YDV 2V a2
= VYwo,oW1Y2. - - Yn-3Wn-2Yn-2)¥Yn-3...V1 n—2---Yi
N ( W W Y1) (Y 1)

n—2_.n-3
XY Yo - Yn-2

_wwo,n,g (}’1)’2 cee yn—3(yn—1wn—2 - 1)%—3 cee 1ﬂl)(lﬁn—Z . lpl)
S R A

= (=D*Wug, s 5132+« Yn3Vn—3 - YD) W Y)Y} 2057 v
= (=D *Yug, 20132 Y)Wz oo D Wz YD) Y2057 e Yna
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= (=D *Vug, s Wn—3Vn—a ... VIV1Y2 - . Yn—3)
X (Vs VD) W D OT 2 yns2)

= (D" (Y1 Way) o s D) Wz DO Yas)

= (=" w72V yu2)
= (—1)"" 1(_1)(n D(n— 2)/25(_1)n(n71)/2’

as required, where we have used induction in the second-to-last congruence.
Therefore, we have proved that

wwoyn : ’21 2'--yn—1=(_1)n(n71)/2+ Z yihi,

1<i<n
1<j<n

where h; € %@f?. Comparing the degree on both sides, we can assume that each 4;
is homogeneous with /; # 0 only if deg(h;) = —2 < 0. On the other hand, we can
express each nonzero /; as a K-linear combination of some monomials of the form
yf‘ o Y, Where c1, ..., ¢, € N, w € &,. Since each y; has degree 2, we can
thus deduce that each nonzero s; must be equal to a K -linear combination of some
monomials of the form y{" ... y,"v¥, with¢1,...,c, € Nand 1 # w € &,. This
completes the proof of the lemma. U

Lemma 2.15. (1) Forany u, w € G, if £(u) 4+ £(w) > £(uw), then ¥, yr,, = 0.

(2) Forany 1 <r <n, ¥, Yy, =0 =Yy,

Proof. (1) follows from the defining relations for %(0) while (2) follows from
the defining relations for 77, © and the fact that wo has both a reduced expression
which starts with s, as well as a reduced expression which ends with s, for any

1<r<n. |

Let s € Z. For any Z-graded %”( )-module M, we define M (s) to be a new
Z-graded %( )—module as follows:

e M(s) = M as an ungraded %fn)—module.

e As a Z-graded module, M (s) is obtained by shifting the grading on M up by s.
That is, M(s)y = M, _, ford € Z.

Lemma 2.16. Let u € &y with0(n) = (kyi, ..., k,). Then

n
dim Dy =n!, dimPy= (ﬁ)n!, St = Do<n€ — @ —Zki>-
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Proof. By the definitions of %y and Specht modules over %”2?3, it is clear that
SP = Shnin(n¢ —n(n—1)/2—Y"_, k;). Thus it suffices to show that Stmin = phmin,
To this end, we need to compute the bilinear form between standard bases of the
Specht module §*min,

By definition, S*m has a standard basis

. o
D e+ (D) | € 8,,).

For any w, u € G,,, by Lemma 2.15, we see that

Y Y WY TR

=y e ()Y Y T e =0
unless £(wu~!) = C(w) + L@w™).
Now we assume that £(wu~') = ¢(w) +£(u~"). By the commutator relations

between y and i generators, (2.11) and the fact that £(wg) = n(n — 1)2, we can
deduce that

—1.n=2 —1_.n-2
DT - SN Y €T/ 1/ VA A S

n—1,n-2

_ _ 0 .
=y Yy e Y1V Yy lyg 2...yn_16(%§fn))>)""‘"

unless wu ! = wo. In that case, by Lemma 2.12, we have that
A AP ML v e SO

—1n=2 —1 . n-2
:y? 1)’; ---)’n—ll//woylf y; RN |

- 1 0 _
= (—l)n(n 1)/2y111 1y;21 2 Yn_1 (mod <‘}f€fn))>xmm)'

Thus we have proved that if L(wu") = (w)+€u) and wu~! = wo, then

_ _ 0 . — — 0 .
T Y € 70 B VI U PR MR RN 7 )
— (_1)11(11—1)/2;

A min

otherwise it is equal to 0. This means the Gram matrix of S*» is invertible
and hence the bilinear form (—,—);_. on S*min is nondegenerate. It follows that
Shmin — Dknliﬁ = Dy as required. Therefore, dim Dy = dim S*min = n!. Finally, since
fﬁ)f? = %™ we can deduce that dim Py =dim 7)) / dim Do = (}) (n!)?/n! =

n!. U

n

Let g be an indeterminate. The graded dimension of M is the Laurent polynomial

(2.17) dimy M = (dimg Mq) q* €N[g.q7'],
deZ

where M, is the homogeneous component of M which has degree d. In particular,
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dimg M = (dimy; M)|,=1. As a consequence, we can determine the graded dimen-
sion of the unique self-dual graded simple module Dy and its projective cover Py,
and compute the graded decomposition number dj, 3 ;. () = [S* : D}‘mi"]q and
graded Cartan number ¢y, 1, (q) ;= [P*min : DAmin] .

Corollary 2.18. We have

dimq Do = Z qdeg {,
t € Tab(Apin)
dimq Py = Z Z qdeg t2nl—n(n—1)—Y ", 2k; )
ki,..., k,eN teTab(Amin)

1<k <ky<---<k,<t

Corollary 2.19. Let p € Py with 0 (u) = (ky, ..., k,). We have

Ay (@) = g" "D Rim ki e 5, 0 4 gNg],

§ : 2nl—n(n—1)=>""_ 2I;
Clmina}wmin (q) = q " n(n ) Zl:l € 1+qN[Q]
ll,...,lneN
1<l <h<--<l,<t

Lemma 2.20 [Hoffnung and Lauda 2010, Proposition 7]. For any 1 <s <n, we

have
Lol
Z WYy yg =0
I,....IseN
I+t ly=t—s+1
Remark 2.21. Note that one should identify our generator y, with the generator
—x,; in [Hoffnung and Lauda 2010] so that the relation ¥, y,4+1 = y,¥» + 1 in
Definition 1.4 matches up with the relation x, ;8,; — 8, ;x,4+1,; =e(i) wheni, =i, 4.

Lemma 2.22 [Hoffnung and Lauda 2010, Proposition 8]. Let 1 <m <n and b € N.
Ify,l;f1 =0 then y,}; =0.

Lemma 2.23. Forany 2 <m < n and w,, > £ —m, we have

(2.24) yitys TRy tyen — g,

m

Proof. We use induction on m. If m = 1, then (2.24) reduces to y;"" = 0 for
w1 > £ — 1, which certainly holds by the fact that yf =0.

If m = 2, then we need to show that yfflyg’z = 0 whenever w, > £ — 2. By
Lemma 2.22, we can deduce that yf = 0 from the equality yf = 0. Therefore, it

remains to show that yf_l yg_l =0. In this case, applying Lemma 2.20, we get that

-1 Lol
Y, = Z s

I1,1eN, 11 #0
Li+h=t—1
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It follows that

—1_¢0—1 __ L=1+0 I
Y1 Y =— E N1 b3 =0,
Zl,lzeN,ll;&O
Li+lh=0—1

as required.
Now assume that (2.24) holds for 2 < k <m. Hence yf_lyg_z .. y,f:ll‘Jrly,‘:k =0
whenever wp > £ — k.
Applying Lemma 2.20 for s =m + 1, we get that

l—m __ I D Im+1
Vit = > WY,
ll ----- lm+I€N
lm+|#é_myll‘i"“"rlmﬁ—]:e_m

It follows that for any w;,+1 > £ — (m + 1),

=1 -2 L—m~+1_ Om+1
Y Yoo Yot Y
N2 B 2 L—m+1_ Omp1—C—m) —m
=V Y2 Y1 Y Ym+1
_ L—1_£=241 wm+1_(z_m)+lm+]
== E, i N o Ym
12 ----- lm+1€N
lm+l#e_m’12+"'+lm+1:(_m
_ —1_¢-2 l—m~+1_ L—m—+l, wm+]_(2_m)+lm+l
== E : Yo Y2 T Vet Ym " Ymt
lmql)il+1€N
lm+l7££_m’lm+lm+1:€_m
=0,

where we have used the induction hypothesis in the third and fourth equalities. This
completes the proof of the lemma. U

Corollary 2.25. Forany z1, 22 € G, we define F, ., := (—1)”(”_1)/2%}}31;;&2. Then

F;, 2, # 0 is a homogeneous element of degree 2£(z1) — 2£(22). Suppose that £ = n.
Then ZweGn Fyw=1and

Fo oo Fuyuy, = 8u Fopuny VUi, uz €6,

In particular, %l(,(,)l) is isomorphic to the full matrix algebra My «,,1(K) over K with

{Fywluwees, being a complete set of matrix units.

Proof. As a cellular basis element, we know that wlﬁg‘iz"l’ 2, 7 0 and hence F;, ;, #0.

By definition, F7, ;, is a homogeneous element of degree 2¢(z1) — 2¢(z2).
Suppose that £ = n. By Lemma 2.23, for any 1 <r < n, we have

(2.26)  YITUWWETE L sty

n—1_n-2 r—

_ n— n—r+1\ n—r+1_n—r+2
=07 Y Ve )y

1
yr r—1 yr_2 ---)’n—IZO-
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For any u;,u; € G,
F F Lk n—1_n-2 * n—1_n-2 w
228wy un = wwozl)ﬁ Y - -yrz—Iszwwoulyl Yo e Yn—1Vu,-

By Lemma 2.15, this quantity is zero unless £(z2(wou1) ™) = £(z2) + £((wou;) ™).
So we can assume that £(z2(wou1)~") = £(z2) + £((wou;)~'). Then we get

* n—1_n-2 n—1_n-2
le,zzFul,m:wwomyl b5 '-~)7n71w22,4]—1w51)’1 Y2 e Yn—1Yu,.

Note that wy is the unique longest element in &, with length (n — 1)n/2. If
zzuflwa ! # wo then we must have

—1,n=-2 0
l'bzzlflwo’ly? y; "'y"—lezyj%(,n)'

1

In that case, F, ;, Fy,.u, = 0 by (2.26). Therefore, we can further assume that
Zzul_lwo_1 = wop and hence z; = u. In the latter case, Fy, ;, Fy, u, = F7.u, bY
Lemma 2.12 and (2.26). This proves the first part of the corollary.

The second part of the corollary follows from Corollary 2.25 and the fact that
dim %) = ()2 and {F;, ., | 21, 22 € ©,} is a basis of 7). O

Recall that the weak Bruhat order “>” on &, is defined as follows (see [Dipper
and James 1986]): For u, w € G, let u > w if there is a reduced expression
w=sj...5; forwand u=sj ...s; for some ! < k. We write u > w if u > w
and u # w.

Corollary 2.27. Let £,n € N. For any 71, 2o € &, we define

n—1_n-2 n—1_n-2

F£1,12:=w:}011y1 Vs ---}’n—lwwoyl Y ---)’n—llpm-

Then F, ., # 0 is a homogeneous element of degree 2£(z1) — 2£(z2), and

21,2
1 2 _ / _ l _ o/ 1
(Fm,m) - quzw Fm,zz - FZthFZl,Zz - Fm,zzez,zz’
1 / _ / ’ _ . -1 —1
quzzez,uz_Fm,uz’ Fm,zzFul,uz_O’ Vul’MZGGH wzthz2 %ul .

Proof. By Lemma 2.12 and (2.11), we have

(2.28) Fl . = (=D Dn2ydnin - (mod () i),

21,22 woZ1,22

In particular, this implies that F] . # O by the cellular structure of %”é?. By
definition, it is clear that FZ/ .z, 18 @ homogeneous element of degree 2¢(z1) —2€(z2).
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Again by Lemma 2.12 and Lemma 2.15, we have

/ 2 —1,.n-2 —1.n-2
(Fz1,21) :w;omy’ll y; ---)’n—ll,[’woy? yg "'y”—l(wZIw:JoZl)
n—1,n-2 n—1_n-2

XYYy e n—1Vuweyy Yy e Yn—1Yz
= T e WY T YT Va1 V)
S A O TS W S /8
= (DO T (W Va1V
X VT TR v,
=F ..
A similar argument shows that ), . =F]  F/ =F! F/ andF] F/ =
Fl .-

Finally, let u, uy € &, such that 12_1 % ul_l. We have

l / ok n—1_n-2 n—1_n-2 *
FZ],ZzFul,uz_wWOZIyl y2 ~--yn—11/fwoy1 y2 “‘yl’l—l(wzzwwoul)

n—1_n-2 n—1_n-2

Xy Y ---Ynflwwo)ﬁ b2 o Yn1Vu,.

Note that the assumption z2_1 i ul_l implies that E(@ul_l wo_l) #£10(22) +£(u1_1 wa])
because otherwise we would have some x € G,, such that xz, = u; and

0(x) = €(wo) — L(zauy ' wy ) = L(wo) — (£(z2) + (uy ' wy ™))
= £(wo) — £(z2) — (E(wo) — £(uy ")) = E(uy) — £(22).

By Lemma 2.15, £(zou7 ' wy ') # €(22) + £(u™"wy ') implies that v, , = 0.

wou |
We thus proved that F, . F; , =0 as required. O
Definition 2.29. We fix a total order on &,, and list the elements in G,, as 1 =

wi, Wa, ..., Wy such that

-1 —1 . .
W, rw; = 1<].

We define a set of elements { Fw,-,wj |1<i,j<n!}in ,%ﬁff?l) inductively as follows:
Fupw; =Fiu, :=F,, YI<j<nl.

Suppose that fwk’wj was already defined for any 1 <k <i and 1 < j <n!. Then
we define

E R Y - / .
Fuw; = Fy 0, — E FyewiFyp,, Y1 =j=nl
1<k<i

By construction and Corollary 2.27, we see that

(2.30) Fu,w,F)y . =Fujw, Y1=<a=<nl.

Wj,Wq
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Theorem 2.31. Forany 1 <i, j <n!, we have that I:"wi,wj # 0 is a homogeneous
element of degree 2¢(w;) — 2¢(w ;) and

(2.32) Fupw, Fugow, =8k Fuwyw, Y1 <k, I<nl.

Moreover, for each 1 <i<n!, Fyu %;(2) = Py is an ungraded right %(0)_
module, 1 = Zl 1 Fu;w;» and {Fw w; | 1 <1 < nl}is acomplete set Ofpamwse
orthogonal primitive idempotents of 7, ,

Proof. By (2.28), for any u € &, with u~! > wfl, we have the following relations
modulo ,%”Zf?l))”‘mi“:
F F/ mm mm

wutwiwr = Ywou,u Vwow,ws

Y LA VAU MDY (VO (/P b § A VA W L

n—1 n 2 n 1. n— 2
wwou)ﬁ 35 - Yn— 11ﬁuw| wed1 Y2 o Yn—1Vw,
— 1 2
= 'Zl rjwwouy? ; 'yn—lyjhjl/fwz
j:

0,

where r; € K, h; € L%’zf(r)l) for any z, j. Combining this with Corollary 2.27 and
(2.28) we can deduce that
(2.33) oy = (=170 2y - (mod ()74

Wow; , W;

In particu~lar, Fwi,wj # 0. By definition, Corollary 2.27, and an easy induction, we
see that Fuy; w; is a homogeneous element of degree 2¢(w;) — 2¢(w;).

We are going to prove (2.32). We use induction on k. Suppose that k = 1. If
j # 1, then j > 1. By construction,

O F - _r
wzwjezjf ww’ Fl,wl_Fl,w/'

wes,

By Corollary 2.27, we have F&h = 0. It follows that Fw wj le w = 0. If
j = 1, then by (2.30) we have

Fwiawlﬁwlawl = Fwi,lF{,wl = thwl
as required.
In general, suppose that (2.32) holds for any k < m. Let us consider the case
when k = m. By construction, we have

0 ~ 0
Fuyw; € Z %() Fy, w;o Fu,up € Z F'i’u’”jﬁf”)'

wed, ued,
1<a<m
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Therefore, if j > m then ﬁw,-,wj I:”wm,wl = 0 by Corollary 2.27.
Suppose that j < m. Then

I I / I /
Fw,-,w;me,wz - Fw;,w_,'(me,w, - Z ka,kaw,,,,wl)

1<k<m

r /
F ( W, Wy Z 81‘ J L we, wi Fw w,)
1<k<m

= Fu,w, Fly ) — Fuiw, F,

W, W] W, WY

as required, where we have used induction hypothesis in the second and the third
equalities.
Suppose that j = m. Then

I l I 1
Fwi,wm me,wl F wi, m(Fw,,,,uu - Z kaswk Fw,,,,w,)
1<

I /
F Wi, Wy me w; Z Fwi ;W ka,wk me , Wy

= Fyow, Fl 0 —0=Fy

Wm = Wy, , Wy

as required, where we used (2.30) in the last equality, and used the induction
hypothesis in the second last equality.
Since

pEUmD _ pon! = ) (1 S ﬁw’w)%w) ( @ Fo w%@«»)
’ wed, " wes,

and Fw wj‘f( ) # 0 for each w € &,,. By the Krull-Schmidt theorem we can deduce
that for each we G, Fy. w%@(g) = Pp is an ungraded right %( )—module and
1= Zwe@ Fw w- In other words, {Fw w | l1<i<nl!}isa complete set of pairwise
orthogonal primitive idempotents of j’fg i (]

The following result was first conjectured by A. Mathas [2015, §2.5, before
Corollary 2.5.2] in the special case when £ = n.

Theorem 2.34. The elements in the set

(2.35) {wwyfl...yfj"lOfaisE—i, Vi<i<n, weG,}
. )

form a K-basis of 7, .

Proof. We first claim that for any by, ..., b1, w, e NWith0<bh; <I—j, V1<
J=<m,
b b bm m — m— m
236) W= Y Fee )Y Yy
Cly..,cp €N

0<¢;i<l—iV1<i<m
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where 7, ., € K for each m-tuple (cy, ..., cn).
We use induction on m. If m = 1, there is nothing to prove as y;"' = 0 whenever
w1 > £ — 1. Suppose that (2.36) holds for any 1 <k <m.
We now consider the case where k =m + 1. Applying Lemma 2.20 for s =m 41,
we get that
Vi == > WA
Iyelmy1€EN

In1#EL—m i+ +lp 1 =L—m

It follows that

by by bin—1_ by . Omt1
Y1) "'ymflymmym+1
_ by hz b,n,l b L!)erl—(g—m) L—m
=N “‘ym—lymm m+1 ym+1
_ b1+l b+l bm—1+lm—1_ b, +1 b/_H
=- E D P A R
[1,‘..,lm+1€N

Lnp1Zl—m, |+ +lp1=C—m

where b, .| 1= wp1 — (L —m) + L.
Our purpose is to show that

by _ b m
2.37) W'yt yhmy

€ K-Span{y;'y5* ... ygry, " e €N, 0<¢ <€—i,V1<i<m+1]}.

We use induction on w,1. Suppose that for any by, ..., b, € N and any
0<b < wp+1, we have

by by bm b
Vi Y2 oo Y Y1

€ K-Span{y;'y5* ... ygry, " e €N, 0<¢ <€—i,V1<i<m+1}.

/

We are now going to prove (2.37). If b <[ —m, then by our induction hypothesis

m+1
we have
b1+l by+ly b—1+lm—1_ b+l
YooYy Ve Y

Cm—1_.Cp

€ K-Span{y{'yy* ...y, " {ysr ety ...,em €N,0O<¢; <€ —i,V1<i<m},

hence

b1+l by+1 bt =1 byl - Pt
Vi e Y YTy
Cm+1

eK—Span{yf‘y;z...y,f;"ym+1 ety emi1 ENLO<c¢; <€—i,V1<i<m+1]}.

Therefore, it remains to consider those terms which satisfy b;, | > £ —m. Since
h4+- -+l =€—mandl,+| #¢—m,wehave 0 <[, <{£—m—1; furthermore,
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we have b,’n 41 S Omt1 — 1. By our induction hypothesis on w1, we have

b1+l b2+lz bn—1+ln—-1_ b+l +1
Yoy B S S e ’"ym”jr

€ K-Span{y}'y5* ...ygryii i €N, 0<¢; <€—i,V1<i<m+1}.
Therefore, we can conclude that (2.37) always holds. This completes the proof of
(2.36).
Now we have proved that the elements in (2.35) form a K-linear generator of
. @ Since the set (2.35) has cardinality equal to ( )(n')2 which is equal to the
dlmensmn of Ky © , the elements in (2.35) must form a K -basis of Ky O O

Remark 2.38. We shall call the basis (2.35) a monomial basis of 7, . It bears
much resemblance to the Ariki—Koike basis of the cyclotomic Hecke algebra of type
G (¢, 1, n). For arbitrary cyclotomic quiver Hecke algebras, Question 1.1 (on how
to construct a monomial basis) remains open. Anyhow, we regard Theorem 2.34 as
a first step in our effort of answering that open question.

3. A basis of the center
The purpose of this section is to give an explicit basis of the center of J7; O Let
Z(jf(o)) be the center of jf(o)
Definition 3.1. For each u € 22, we define

lL —‘/fwo)’ﬂl//woyn ly; 2---yn—1-

By Definition 2.29, Corollary 2.27, Lemma 2.12, and Lemma 2.15, we have

I -1 2 1.n-2
Fii=F =V ¥ o Ya1Vuwd] Yy v Ynoi

—(Wwoyn lyg 2 - Yn— 1)1ﬁwoy" lyg 2---ynfl
_( l)n(n 1)/21//11)0)’" lyg 2 -yn—lel,l'

Note that each y, has a left factor y|'~ ! V5 2 .. yn_1. It follows that

by € F1,1jﬁy,, Fi gEnd%Z(?(Fl,l%’ng)) = End 0 (Po).

Suppose further that 8 (p) = (ky, ..., k,), where 1 <k <k, <--- <k, <. Then
by (2.11),

t—ky  L—k
bu=Yue¥y V2 eV T Y T
l—ky  L—k - 0
= (-1)""" “”w o) ‘yz Syt (mod ()7
- 0
= (—D"* D2k (mod ().

It follows that {b, | u € Py} are K -linearly independent elements in F 1,1%’}?2) F 1.1



ON THE STRUCTURE OF CYCLOTOMIC NILHECKE ALGEBRAS 123

Lemma 3.2. The elements in {b, | B € ,@0} form a K-basis of F1 1%”( F 1
Moreover, the basic algebra End , #O (Poy) of %”Z ) is commutative and is lsomorphlc
to the center Z of%(o) In partlcular dimg Z = ( )

Proof. Since #2) = (n) and Fl,lf%’i(n) Fi.r =End 0 (o), it suffices to show that
s tn
dimg End%zf?(PO) = (ﬁ)

By Lemma 2.16 and Corollary 2.18, we know that [Py : Do] = (fl) and hence
dimg End f<o>(P0) = ( ) as required. Thus, the first part of the lemma follows
from this together with the discussion in the paragraph above this lemma.

It remains to show that the endomorphism algebra End 20 (Poy) is commutative.
Once this is proved, and since ji”( ) is Morita equivalent to End O (Py), it will
follow from [Curtis and Reiner 1981 (3.54)(@iv)] that

Z=27()= Z(End 0 (Po)) =End 0 (Po),

as required.

To show that End %«n(Po) of %( ) is commutative, it suffices to show that
F 1. 1%” O F 1.118 commutatlve Furthermore it is enough to show that b, b, = b, b,
for any u, v € &.

By definition,

b by —#’wo)’u‘//wo)’" 1)’; 2 - Yn— lwwoyvv/woyn ly; 2~--yn—l

= (—1)""" ”/wao<y,,,wwoyv>wwoy" YT Y
We set
n—1 n—1
0 0
Ji1:= Ztﬁ]%(n) +Z%€n)lﬁj.
j=1 j=1

Using the graded cellular basis {y} , | & € P} of jﬁfg), we can write

YuWweyv = Z cpyp (mod Jy 1),
PES

“ ’

where ¢, € K for each « € &%). Applying the anti-involution on both sides of

the above equality, we get that
VoW weYu = Z cpyp (mod Jy 1).
PEFP
Now using Lemma 2.15 we can deduce that
b _( l)n(n 1)/2 Z Cpllfwoypwwoyn lyg 2 -yn—] =bvbll,,
PEP)

as required. (]
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Definition 3.3. Let u € &y with 0 () = (ky, ..., k), where 1 <k; <ky <--- <
k, < £. Inside the quiver Hecke algebra %‘;,(0), we define z(n) € K[y1, ..., ¥n]
such that

n—1

W, =2+ ) Wy,

r=1
where &, € %1(0) for each 1 <r < n. We define
Zpi=m(z(p)) € jﬂfg).

It is clear that z, is a homogeneous element with degree 2¢n —n(n — 1) —
230 ki
Lemma 34. Let p € %y. Then z(n) is a symmetric polynomial in yy, ..., yu.

In particular, z() lives inside the center of %’;,(0) and hence z, lives inside the

center of %(2). Moreover, Z(Amax) = (—1)”(”_1)/2(y1 oy and z(pin) =
(_l)n(n—l)/Z"

Proof. 1t suffices to show that z(p) is symmetric in y,, y,+1 foreach 1 <r <n —1.
In fact, forany 1 <r <n—1anda, b €N, if a > b then

Yyl e = ey )P = P e ye)”
a—b—1

n—1
= _( Z yfyf:flk)(yr))r-i-l)b(modzwr%@));
k=0 r=1

if a < b, then

b— b—
yfny% = yr+1a(yr)7r+l)awr = yr+1“1ﬁr (err+1)a
b—a—1

n—1
= ( > yfyﬁ’;l“‘l‘k)(yrym)“ (mod > wr%;f@);
k=0 r=1

. _ 0 )
if a = b, then yy?, ¥y = 0y ) Ve = ¥, (3 yre))® € S0y Y62 This
implies that for any monomial y{' ... y," € A,

n—1
yfl < -y;”l//r = fr(yla s yn) (mOdZwr%«)))’
r=1

where f,(y1, ..., ) € K[y1, ..., yu] is symmetric in y,, y,41.

Since for each 1 <r < n, wy has a reduced expression which ends with s, and
the element z(u) is uniquely determined by p by Lemma 2.1, it follows that z(u) is
symmetric in y,, y,+1 forany 1 <r <n—1. Hence z(u) is symmetric in yy, ..., y.
This completes the proof of the first part of the lemma. The second part of the
lemma follows from Lemma 2.12 and direct calculation. ([l
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Lemma 3.5. (1) For each u € &y, we have that

1 1
Wwoquwoy’f - Yn—1 =1ﬂwOY'f - Yn—12p-

In particular,
0
Vuoyu = (D" 2y, i 2y 1z, (mod ()M,

(2) As a left Z-module, Py = Z®". In particular, Py is a free Z-module of rank
n!.

Proof. First, since 7, = P&, it follows that the center Z must act faithfully
on Py. In other words, the left multiplication defines an injective homomorphism

: Z — End %j«»(PO) Comparing the dimensions of both sides, we can deduce
that tis an 1som0rphlsm On the other hand, by Lemma 3.2,

0% by € Fi14,, Fii ZEnd 0 (Po).

It follows that there exists a unique nonzero homogeneous element z;L with degree
20 —ki+---+4€—k,) — (n— 1)n such that

—1 1
wwoy[ﬂ//woy? v Yn— Z,waoyn e Yn—1

(3.6) .

= Wwozﬂy" o Yn—1= ljlwoy'ffl . yn—lz;;,-

By Lemma 3.4 and Lemma 2.15, we can see that z;L = 2z In particular, z, # 0.
Since

VuoYuVuodi ™ o et = (D" 2y,
= (=)' DAyl | (mod (57,

we see that Y,y = (= 1" D2, vty Ly, iz, (mod (£,9))7#). This
proves (1).

Recall that Fy = F{ | = (=1)""=D/ 2y, v~ y372 y, 1. Tt follows from (1)
that for any p € &y and weeg,,

Fiazpyo =y, (mod (0)7H).

In particular, the elements in the set {F 11ZpVw | 0 € Pp, w € G,} must be K-
linearly independent. Since it has the cardlnahty (“)n!, we can deduce that it is a
K -basis of the right %( )—module Py = F1 1% . Since Py is a faithful Z-module,
it follows that for any z € Z, F1 1z =01f and only if z=0. For each w € G,,, the
subspace spanned by the basis elements in {F 1L1ZpVw | € Pp}is a Z-submodule of
Py which is isomorphic to Z. This proves that P is a free Z-module with rank n!. [J
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Theorem 3.7. The elements in the set {z, | p € Qo}form a K-basis of the center
Z:=7 (%‘2(0)) of O particular, the center of %ﬂ ) is the set of symmetric
polynomials in yy, ..., y,.

Proof. Since the elements in {b, | p € Zy} are K -linearly independent, it follows
that the elements in {z, | p € &} are K-linearly independent and hence form a
K -basis of the center Z := Z (7, © ) by dimension consideration. By Lemma 3.4,
each z, is a symmetric polyn0m1a1 in yi, ..., Yu, hence the center of ,%” O is the
set of symmetric polynomials in yi, ..., y,. (]

The following proposition gives a generalization of Corollary 2.25. It can be
regarded as a cyclotomic analogue of the results in [Lauda 2010, Proposition 3.5]
and [Kleshchev et al. 2013, Theorem 4.5].

Proposition 3.8. Let {E; ; | 1 <1, j < n!} be the matrix units of the full matrix
algebra M, x 1 (K). Then the map

Eij®zt> Fy,w;z, V1=<i,j<nl,z€Z,

extends linearly to a well-defined K -algebra isomorphism n from Mpy.,1(K) Qg Z
onto %”(O) In particular, %”(O) M, 11 (2).

Proof. In view of Theorem 2.31, it is clear that 5 is a well-defined K -algebra
homomorphism. By Lemma 3.2, it suffices to show that 7 is an injective map.
Suppose that n(x) =0, where x =3, _; ;_, Ei jzi,j, where z; ; € Z for each

pair (i, j). Then
> Fuwzij=nx)=0
1<i j<n'

For any pair (i, ]) with 1 < i, j < n!, left multiplying with F w, and right
multiplying with Fw_ .w; we get (by Theorem 2.31) that

Fw_,',w_/Zi,j = E (ij,wi ka,wl ij,wj)zk,l

1<k,l<n!

( Z kawlzkl> w,wj—o

1<k,l<n!

Since Fw] w; %’Z(n) Py is ungraded right 77 © )—module and Z acts faithfully on

Py, it follows that z; ; = 0. This proves that x = 0 and hence 7 is injective. Finally,

comparing the dimensions of both sides, we see that 1 is an isomorphism. U
4. A homogeneous symmetrizing form on jf ©

By the work of Shan, Varagnolo and Vasserot [Shan et al. 2017], each cyclotomic

quiver Hecke algebra can be endowed with a homogeneous symmetrizing form

which makes it into a graded symmetric algebra (see Remark 4.7 and [Hu and
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Mathas 2010, §6.3] for the type A case). In particular, the nilHecke algebra erf?z)
is a graded symmetric algebra. However, the SVV symmetrizing form Tr>"" is
defined in an inductive manner which relies on some deep results about certain
decompositions of the cyclotomic quiver Hecke algebras which come from the
biadjointness of the i-induction functors and i-restriction functors in the work
of Kang and Kashiwara [2012] and of Kashiwara [2012]. It is rather difficult to
compute the explicit value of the form Tr>VY on any specified homogeneous element
in the cyclotomic quiver Hecke algebra because its inductive definition involves
some mysterious correspondence (i.e., 7 — Z, £ > 7y in [Shan et al. 2017, Theorem
3.8]) whose explicit descriptions are not available. In this section, we shall introduce
a new homogeneous symmetrizing form Tr such that the value of the form Tr on
each graded cellular basis element of %@f? is explicitly given. We will prove in the
next section that this form Tr actually coincides with Shan—Varagnolo—Vasserot’s
symmetrizing form Tr>VY on ,%’zf?l).

The following result seems to be well-known. We add a proof as we can not find
a suitable reference.

Lemma 4.1. Let A, B be two finite dimensional (ungraded) K -algebras. Suppose
that B is Morita equivalent to A. Then there exists a K -linear map p : A* — B*
such that for any symmetrizing form Tt € A* on A, p(t) € B* is a symmetrizing
form on B. In particular, if A is a symmetric algebra over K, then B is a symmetric
algebra over K too.

Proof. By assumption, B°? =End 4 (P) for a finite dimensional (ungraded) projective
left A-module P. Moreover, there exists a natural number k such that A®* = p@ P’
as left A-modules. Let e be the idempotent of M (A) which corresponds to the
map A% % P <'s A% Then B 2 End,(P) = eMji(A)e.

We define pg : A* — (M (A))* as follows: for any f € A* and (a;,j)kxk €

M« (A),
k

po(f)(ai, j)ixk) == f(Zaii).

i=1

We define res : (Myxi(A))* — (eMyxi(A)e)* as follows: for any f € (Myxx(A))*
and (a; j)kxk € Mixk(A),

res(f)(e(ai j)ixke) .= f(e(ai j)ixke).

It is easy to check that p :=reso py has the property that for any symmetrizing form
T € A*on A, p(tr) € B* is a symmetrizing form on End4 (P) = eMjxx (A)e = B°P.
It is clear that p(7) is a symmetrizing form on B too. ([

The following lemma is clear.
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Lemma 4.2. Let A = @|'_,Ax be a finite dimensional positively 7-graded K -
algebra. Let T be a (not necessarily homogeneous) symmetrizing form on A. We
define T : A* — K as follows: for any homogeneous element y € A,

. T(x) if degx =m,
T(y) = :
0 otherwise.
Then T can be linearly extended to a well-defined homogeneous symmetrizing form
on A.

The following definition comes from [Shan et al. 2017, 3.1.5].

Definition 4.3. We define
dp = 20n —2n°.

Recall that by Theorem 3.7, the center Z is a positively Z-graded K -algebra with
each homogeneous component being one dimensional. In particular, deg z < d for
allze Z,and degzy,  =dj.

Lemma 4.4. The center Z can be endowed with a homogeneous symmetrizing form
of degree —d as follows: for any homogeneous element z € Z,

1 l-fZ = kaax >

0 ifdegz <dp.

In particular, Z is a graded symmetric algebra over K.

tr(z) := {

Proof. By Lemma 3.2, we know that Z is Morita equivalent to %gg). Since jﬁfg)
is a symmetric algebra by [Shan et al. 2017], we can deduce from Lemma 4.1 and
Lemma 4.2 that Z is a graded symmetric algebra too.

On the other hand, by Lemma 3.2 and Corollary 2.19, we know that the center
Z is a positively graded K-algebra with each homogeneous component being
one dimensional. Therefore, we are in a position to apply [Hu and Lam 2017,
Proposition 3.9] or Lemma 4.1 and Lemma 4.2 to show that tr is a well-defined

homogeneous symmetrizing form on Z. O

Since tr is a homogeneous symmetrizing form on Z, for each nonzero homoge-
neous element 0 # z € Z, there exists a homogeneous element z € Z with degree
dp —deg z such that tr(zZ) # 0. This motivates the following definition.

Definition 4.5. For each A € &, we fix a nonzero homogeneous element z) € Z
with degree d, — deg z) such that tr(zyzy) # 0.

Now we are using Proposition 3.8 and Lemma 4.4 to define a homogeneous sym-
metrizing form Tr on %(2) as follows: for any 1 <i, j <n! and any homogeneous
element z € Z,

fr(ﬁ ) ¢ ifi=jandz=cz,, forsomecek,
Cw.Z) =
Wit 0 ifi# jordegz <d,.
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Lemma 4.6. The map Tr extends linearly to a well-defined homogeneous symmetriz-
0)

nt

ing form of degree —d, on J,
Proof. This follows directly from Lemma 4.4 and Proposition 3.8. U

Remark 4.7. Shan, Varagnolo, and Vasserot [Shan et al. 2017] show that each
cyclotomic quiver Hecke algebra ﬁ’é‘ can be endowed with a homogeneous sym-
metrizing form Tr3YV of degree dj. g which makes it into a graded symmetric
algebra, where

BeQy, AePT, dag:=2(A,B)— (BB

In the type A case we consider the cyclic quiver or linear quiver with vertices labeled
by Z/eZ, where e # 1 is a nonnegative integer. In this case, %g can be identified
with the block of the cyclotomic Hecke algebra of type A which corresponds to
B by Brundan—Kleshchev’s isomorphism [Brundan and Kleshchev 2009a] when
the ground field K contains a primitive e-th root of unity or e is equal to the
characteristic of the ground field K. There is another homogeneous symmetrizing
form Tr™ which can be defined (see [Hu and Mathas 2010, §6.3]) as follows:
let T be the ungraded symmetrizing form on %’é‘ defined in [Malle and Mathas
1998] (nondegenerate case) and [Brundan and Kleshchev 2008] (degenerate case).
Following [Hu and Mathas 2010, Definition 6.15], for any homogeneous element
X € %‘é‘, we define

T ) {r<x> if deg(x) = da p.

0 otherwise.
By the proof of [Hu and Mathas 2010, Theorem 6.17], Tr'™ is a homogenous
symmetrizing form on %é‘ of degree —dx g. The associated homogenous bilinear
form (—,—) on %’g of degree —d g can be defined as follows: (x, y) := TrHM(xy).
We take this chance to remark that the bilinear form (—,—) 4 in the paragraph above
[Hu and Mathas 2010, Theorem 6.17] should be replaced with the bilinear form
(—,—) we defined here.

Conjecture 4.8. The two symmetrizing forms TrSVY and Tr'™ on %’é\ differ by a
nonzero scalar in K.

Definition 4.9. For each u € % and z1, zp € G,,, we define

—1.n=-2 —1_n-2
Lo /0 G S N 100 P8 /170 & SR VAP R 1/
Lemma 4.10. (1) Foreach p € Pyand z1,z20 € S, we have

n _ ok n—1_n-2 n—1_n-2
wornzr = Fop e =V Y1 Y2 oo In—1WweYy Yy o Yn—12uVz
and
_ )
¢£L1,Zz =y (mod (A, )7,

21,22
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(2) The elements in the set {¢£L1,Z2 | € Py, 21,20 € G,} form a homogeneous
K -basis of %’jzf(r)l).

Proof. The first part of (1) follows from Lemma 3.5, while the second part of (1)
follows from Lemma 2.12. Finally, (2) follows from (1) and (2.7). O

We are going to define another homogeneous symmetrizing form “Tr” on %@(2).
Let A € &y and w, u € G,,. By the same argument used in the proof of Lemma 3.4,
there is an element z,, , in the center Z(%ﬁf?) of jﬁ(g) such that

1 2 1 2
1»011)0)’n ; < Yn— lwu‘/fw woy" y; -Yn71¢w0:ww0Zw,u-

If degzy + degzy, ., = da, then we denote ¢, , € K the unique scalar which
satisfies that z,, ,2x = Cy,u2x,,,- Note that deg z) + degz,, , = d if and only if
deg ¢z)1h)0w,u =dj.

Definition 4.11. For any p € & and w, u € G,,, we define

Cwu ifdegF, ,zu=dx,
T F _T _ , w,u
(Fy 0 2u) = Tr( bl ) ¢ {() otherwise.

In particular, if w = u and g = Amax then Tr(qbﬁ, «) = 1. Note that

1 =Tr(¢, “‘a*) = Tr(Fl 1Z0ma)
=Tr(Yy, ¥\~ lyS 2 Yne 1wyt l)’; 2 Vi 1Zhm)
= (1" 1>/2Tr<wwoy? S i 12a)
= Tr(Y 10 YAmar)»

which implies that

(4.12) Te(Y, Yame) = L.

Proposition 4.13. The map Tr can be linearly extended to a well-defined homoge-
_ 0
neous symmetrizing form of degree —dx on 7, .

Proof. By construction, it is clear that the map Tr can be linearly extended to a
well-defined homogeneous linear map of degree —d, on %(0)

We want to show that Tr = Tr. Once this is proved, it is automatlcally proved
that Tr is symmetrlc and nondegenerate. To this end, by Lemma 4.10, it suffices to
show that Tr(FZ/1 Hin) = Tr(F. . zu) forany p € &y and z1, 220 € S,.

21,22
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Without loss of generality we can assume that deg(F,, _ z,) = da. Since Trisa
trace form and z, is central, we have

Tr(le 4 )
—TI‘( 21,21 Z1 Zz )
1n=2 1. .n-2
=Tr(Yy. Yy Yy s

1 2 1 2
X Yn— 1wzlww0my:’ Yy T a1V Y Yy e Va1V 2p)

~ 1 2 1 2
T (wszlyil y; y}’l llllwoyn y; ..
1 2 1 2
X Y ﬂﬁwoy” Yy etV Y, T Y T Y1)
= 1 2 1 -2
Tr(y! = Y% 1Yy Y

X Yn— 1‘//woyn ! ; 2 - Yn— ld’zz‘// woy;l ly; 2 -yn—ld’wozu)

_Tr(yn 1)’121 2. - Yn— l‘/fwoyn 1)’; 2. -yn—lwwozm,zzzu)

= (=" 1>/2Tr<y" S Y1 VugCar 22 T
= (=)D, ZZTrwwoy" T Yne 1)
=cy, ZzTr(F1 1Zma) = Cz1,22

_Tr(

21, Zz )

This completes the proof of Tr=Tr. In particular, this implies that Tr is sym-
metric and nondegenerate. That says, Tr can be linearly extended to a well-defined

homogeneous symmetrizing form of degree —d, on %(0) ([
Proposition 4.14. Tr=Tr.
Proof. This follows from the proof of Proposition 4.13. ]

5. Comparing Tr with the Shan—Varagnolo—Vasserot
symmetrizing form TrSVY

In this section, we compare the symmetrizing form Tr with the Shan—Varagnolo—
Vasserot symmetrizing form Tr5VV introduced in [Shan et al. 2017] and show that
they are actually the same.
Let A, B be two K-algebras and i : B — A is a K-algebra homomorphism. Let
= {x € A | xb =bx,V b € B} be the centralizer of B in A. For any f € A5,
we set
pr:AQpA— A, a®ad v afd.

Recall that %@f? = %ﬁé\o". In the notations of [Shan et al. 2017, §3.1.4], we set

(5.1) Ao = (LAg— (n — Dag, af) =€ —2(n — 1).
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We first recall the definition of Tr3VV in the case of nilHecke algebra %ﬁgoo.

Definition 5.2 [Kang and Kashiwara 2012; Shan et al. 2017, Theorem 3.6, (6), (8)].

If A¢p > O then for any z € .%’5300 there are unique elements pi(z) € %frf\fl) " and

{ Ao LA
T(2) € By 1y, @ Rfffz)ao A1) SUCh that

ro—1
7=y, (7 (z)) + Z Pk(Z)y,lf,
k=0

where the above summation is understood as O when Ay = 0.

If A9 <0 then for any z € %ﬁé\oo, there is a unique element 7 € #

%&A_Ol) « Such that

YN

_ ® tng
(n—Dag ‘%(n%)ao

My, (Z) =z and “y,’,‘,l(z) =0,YVke{0,1,...,—Ao—1},
where the range of k is understood as @ when Ag = 0.
Definition 5.3 [Shan et al. 2017, Theorem 3.8]. For each n € N, we define &, :

%ﬁé\o" — %f’j\_ol)ao as follows: for any z € %ﬁé\o‘), if Ag:=€—2(n —1) > 0 then

€n(2) := pr—om—1—-1(2); if Ao ;=€ —2(n — 1) <0 then &,(z) := //Ly—f-ll—Z(n—l)(Z).
Definition 5.4 [Shan et al. 2017, A.3.]. For any z € Z.5°,

SVV/ N._a & A . lho Ao __
Tr (z).—eloezo-noen.ﬁnao—>920a0—K.

Definition 5.5. For each n € N, we define
10— _ 0
Zow:=Vu, vy ¥y e ).

We want to compute the value TrSVV (Z,). According to Definition 5.2, we
need to understand the value py_2(,—1)—1(Zo,,) when £ > 2(n — 1) and the value
/Ly—m—z(n—l) (ZO,n) when £ <2(n —1).

n—1

Lemma 5.6. Suppose that Ao :=£€ —2(n—1) > 0. Then
7(Zow) = (W1 - Yu_2)y' "
QW1 - Vn—3W¥n_2) ... () yi Iy 2yt

Lo LAo
€ Zin-1yap Bzt Z(u"1yay’
(n—2)aq

and forany k € {0, 1, ..., A0 — 1},
Pk(Zo.n)
= (W1 VD) W1 Un3) o (Yraa) gy T 2yl

In particular, py,—1(Zo,n) = Zon—1.
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Proof. By definition, we have

—n

Zow=Vue, ¥y ' ¥ SV
= W1 U2V )Wt Y3 Wn2) . (W) Py T iRy
= W1 U)W 1Y T g,y sy

=W... wn_z)(y,’;’:';wn_l + > yZLly,‘f)

aj+ar=0—n—1

ar,az>0 £—1,£0-2 £—n+1

X ‘/’wo,n,l)’] Yo e Vu
e TR/ 1 VD O A Gt e B

—1_0-2 £—n+1
+ Z (wl cee wn—ZyZLlwwo,n—lyl Yo s ynfrlH_ )’,72

ay+ay=0—n—1
ap,az>0

= (W1 V) O T Y )Y,y IRyt

+ Z (V1 Yn2yy (W1 Y3 ) (W1 Yn—a¥n3) . ..

ay+ary=£—n—1 _ _ _
ar.a=0 x (Y)Y vy Ry )
= (W1 V) O e D W, v a2y
+ Y (W A D@ Yns)
+ay=t—n—1
M ra=0 X (W1 Wna) oo Y (Y2 Wn3 .. Y2 ¥)
X T )

= sy (W1 V29 T @ W,y 972yl

+ Z Vg Vg Wnz - )y ys oy e

aj+ay=0—n—1
ay,a;>0

Using the uniqueness in Definition 5.2, we see that to prove the lemma, it suffices
to show that

Z 1//wo.n—l (YSL1Wn—2 e lﬁzz/fl)yfflygfz o yﬁ:rllJrlyZZ

ay+ay=€—n—1 _
ar,az>0 Ao~

_ £—1,6-2 L—n+2_ L—n+ro—k_k
= Z (D G S I S Yn-
k=0
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In fact,

Z Wwﬂ,n—l (YZL1Wn—2 . W21ﬁ1)yf71y§72 o yﬁ:rlﬂrlygz

ay+ay=€—n—1
ay,ay>0
a —1_ -2 {—n+1
= Y Y O YY)y e e
ay+ay=€—n—1
ar,az=0
. a —1_ -2 {—n+1
= D Ve O W Y)Y sy e
ay+ay=€—n—1

a1>n—2,a,>0

_ —1_£-2 l—n+2 €—n+1_€0—2n+1
=Vwo, Yn—2---V201¥] Y2 " Vua Va1 Y

—1,4-2 L—n+2 L—n+2_ 0—2n
FYwo V1 Y2 o Vua Yuo1 n

0—1_¢-2 L—n+2_f—n+3_ (—2n—1
FVuwo, Y1 Y2 Va2 Yuo1 Y

—1_£-2 L—n+2_20—-3n+1
+Vwo, Y1 Vo Va1 Yn

—1_4¢-2 l—n+2_2¢0—-3n+2
+ww0.n—1yl Y2 Yo Yo

ro—1
_ -1 ¢-2 l—n+2 L—n+io—k k
- wao,n—lyl y2 "'yn—2 yn—l Yno
k=0

where we have used the commutator relations for the y» and y generators of %(2)
and the fact that

Ywe,¥r =0 forany I <r <n-—1
in the second and the last equalities. This completes the proof of the lemma. [
Lemma 5.7. Suppose that Ao := € —2(n—1) <0. Then

2O,n -
(1Y V)Y T @ (Y1 Y3 Wn2) - .- (W) Yyt T ys 2oyt

CAg CAg
€ Zu-1yao B0 1)y
(n—2)a)

and
Mo (Zo.n) = Zon1
=1 V) (W1 Yn3) o ()Y y iyt
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Proof. By definition, we have

Zon=Vue, ¥y ¥y .y "
= (1 Y2V D W1 Y32 - (WY ys s "
= @1 Y)Wy W1 Vn—3Pn2) ..
X (Y1¥2)¥n )’f_lyg_z e y,f:'f“

=1...¥n2) (yﬁ_'f n—1+ Z y,i“ly,?z)

ay+ay=0—n—1
ay,az>0 —1_¢-2 —n+1
X Ywgui Y1 Yo oe - Ypoi

— —1_4¢-2 L—n+1
=W1... Y2y, %-1)%0,”,&1 Yo e -yn_’11+
—1_¢-2 L—n—+1
+ ) V1o U2V W Vi Yy ey Ty,

ay+ay=0—n—1

ay,a>0

We now claim that

—1_4£-2 £—n+1
(5.8) Ve V2O W,y e =0,
aj+ay=L—n—1
ap,a;>0

In fact, we have

> U YO Wyt sy e

a1+ay=C—n—1
ay,az>0

= Z Vi W2 W Y3 ¥ 2) (Y o Yp—a¥n—3) - ...
atesy ! X () (Y)y! s TRyl e

—1_¢-2 —n+1
= Z 1pwo,nfl (yZl_lwn—Z . .- WZwl)yl Yy .. yn_le- Yffz

aj+ay=f—n—1
ay,a;>0

= D Yu O YY)y e,
ay+ar=0—n—1
a1>0,a>>0
where the last equality follows from the fact that v, , ,¥,—> = 0. Now by as-
sumption, a; < £ —n—1<2mn—-1)—n—1=n-3 <n—2. It follows that
yZl_lll/n_z ... Y is a sum of some elements which have a left factor of the form
Y, for some 1 <r < n — 1. Therefore, using the fact that v, ,,_, ¥, = 0 for any
1 <r <n —1 again, we can deduce that the above sum is 0. This completes the
proof of the claim (5.8).
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By Definition 5.2, to complete the proof of the lemma, it remains to show that
forany 0 <k <—Ao—1,

5.9 nyp (@2 V29T ® W,y Y5 T =0

In fact, we have

e (W Y2y, ™D © W, vt s ey h)
=y (A2, )
® (W1 ... Ynos¥n—) ... W1 yny) 52yl
= W1 YD) OO W V3V W1 YneaPa3) -
x (W) vy s y,‘;’ i
=W Yn2DW1... Y3 ..
X (Y1) Y (0L "*kwn a3 YD)y sy
= Yug O Wn2¥uss Yy Ty Ty =0,

where the last equality follows from the fact that v, ,,_, ¥, =0forany I <r <n—1
and the assumption that

—n+k<l—-n—-X2g—1=L—n—-—Ul-2n—-1)—1=n—-3<n-2

so that ye ntk Yn_2¥,_3 ... is a sum of some elements which have a left factor
of the form Y, for some 1 <r < n— 1. This completes the proof of (5.9) and hence
the proof of the lemma. ([

Corollary 5.10. TrSVV(Zo,) = 1.

Proof. This follows from Definition 5.3, Definition 5.4, Lemma 5.6, Lemma 5.7,
and an induction on n. ([

Theorem 5.11. The two symmetrizing forms TrSVY and Tr on the cyclotomic nil-
Hecke algebra %’é?} coincide with each other.

Proof. Let 1 <i, j <n!,and z € Z. Suppose that i # j. Then as TrSVV is a
symmetrizing form and z is central, we have

Trsvv(ﬁ'wi,wj'z) = TrSVV(Fwi,w,' le‘,wj'z) = Trsvv(ﬁ'wi,wj'zﬁ'wi,wi)
=TSV (Fuy o, Fupwi2) = TV (02) = 0
It remains to consider the case when i = j.
If deg z < d,, then as Tr>Y" is homogeneous of degree —d and deg Fy, ., =0,

we have TrSVV(F,, ,,z) = 0. Therefore, without loss of generality, we can assume
that z = z3,,.. Our purpose is to compare Tr>VY (Fy, 1, 21,,.) and Tr(Fy, w, Zx,..)-
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Note that for any pu € &y with & > A, we have that
deg(Ypuan,) >nn—1)+2n(l—n)=2n—-nn+1) = deg(yle_lyg_2 ... yﬁ_"),

which implies that y, zy,.. = 0 by Theorem 2.34. By (2.33) and Lemma 3.5, we
have

TSV (Fuy o, 2ama) = (= D" V2TV b zaman) = TV (grhmex )

=TV W Wiyt s 2™

_ Trsvv(wwoyle—lyg—z o yﬁ—n)

=Tr’YV(Zp,) =1, (by Corollary 5.10)
Tr(Fuy o, 2amax) = (= D" 2 Tr(yhmn | z3max) = Tr(Ypme® )

= Tr(Yu, Yoy Y1 Vs e Ve ")

=Tr(Yuwyyi 'ys 2... 75 =1. (by (4.12))

This shows that TrSVV(I:”wi,w,. Zamax) = Tr(ﬁwi,w,. Zamax)-
As a result, we have shown that TrSVV(Fwi,wjz) = Tr(Fy,; w,;z) forany 1 <1,
j <n!, and z € Z. It follows that TeSVY = Tr, as required. O
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