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MONADS ON PROJECTIVE VARIETIES

SIMONE MARCHESI, PEDRO MACIAS MARQUES AND HELENA SOARES

We generalize Fløystad’s theorem on the existence of monads on projective
space to a larger set of projective varieties. We consider a variety X , a line
bundle L on X , and a basepoint-free linear system of sections of L giving a
morphism to projective space whose image is either arithmetically Cohen–
Macaulay (ACM) or linearly normal and not contained in a quadric. We
give necessary and sufficient conditions on integers a, b and c for a monad
of type

0 → (L∨)a
→ Ob

X → Lc
→ 0

to exist. We show that under certain conditions there exists a monad whose
cohomology sheaf is simple. We furthermore characterize low-rank vector
bundles that are the cohomology sheaf of some monad as above.

Finally, we obtain an irreducible family of monads over projective space
and make a description on how the same method could be used on an ACM
smooth projective variety X . We establish the existence of a coarse moduli
space of low-rank vector bundles over an odd-dimensional X and show that
in one case this moduli space is irreducible.

1. Introduction

A monad over a projective variety X is a complex

M• : 0→ A f
−→ B g

−→C→ 0

of morphisms of coherent sheaves on X , where f is injective and g is surjective. The
coherent sheaf E := ker g/ im f is called the cohomology sheaf of the monad M•.
This is one of the simplest ways of constructing sheaves, after kernels and cokernels.

The first problem we need to tackle when studying monads is their existence.
Fløystad [2000] gave sufficient and necessary conditions for the existence of monads
over projective space whose maps are given by linear forms. Costa and Miró-Roig
[2009] extended this result to smooth quadric hypersurfaces of dimension at least
three, and Jardim [2007] made a further generalization to any hypersurface in
projective space. We can find additional partial results on the existence of monads in
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the literature, by means of construction of examples of monads over other projective
varieties (for instance, blowups of the projective plane [Buchdahl 2004], Abelian
varieties [Gulbrandsen 2013], Fano threefolds [Faenzi 2014] and [Kuznetsov 2012],
complete intersection, Calabi–Yau threefolds [Henni and Jardim 2013], and Segre
varieties [Macias Marques and Soares 2014]). In [Jardim and Miró-Roig 2008], the
authors expressed the wish of having a generalization of the results on existence
by Fløystad and by Costa and Miró-Roig to varieties other than projective space
and quadric hypersurfaces. Here we generalize Fløystad’s theorem to a larger set
of projective varieties. We let X be a variety of dimension n and L be a line bundle
on X . We consider a linear system V ⊆ H 0(L), without base points, defining a
morphism ϕ : X→ P(V ) and suppose that its image X ′ ⊂ P(V ) is arithmetically
Cohen–Macaulay (ACM) (see Definition 2.2 and Theorem 3.3) or linearly normal
and not contained in a quadric hypersurface (Theorem 3.4). Then we give necessary
and sufficient conditions on integers a, b and c for the existence of a monad of type

(M) 0→ (L∨)a→Ob
X → Lc

→ 0.

Once existence of a monad over a variety X is proved, we can study its cohomol-
ogy sheaf. One of the most interesting questions to ask is whether this sheaf is stable
and this has been established in special cases (see [Ancona and Ottaviani 1994]
and [Jardim and Miró-Roig 2008], for instance). Since stable sheaves are simple, a
common approach is to study simplicity (in [Costa and Miró-Roig 2009] the authors
show that any mathematical instanton bundle over an odd-dimensional quadric
hypersurface is simple, and in particular that it is stable over a quadric threefold).
We show that under certain conditions, in the case when X ′ is ACM, there exists a
monad of type (M) whose cohomology sheaf is simple (Proposition 4.1).

As we said, monads are a rather simple way of obtaining new sheaves. When
the sheaf we get is locally free, we may consider its associated vector bundle, and
by abuse of language we will not distinguish between one and the other. There is
a lot of interest in low-rank vector bundles over a projective variety X , i.e., those
bundles whose rank is lower than the dimension of X , mainly because they are
very hard to find. We characterize low-rank vector bundles that are the cohomology
sheaf of a monad of type (M) (Theorem 5.1).

Finally, we would like to be able to describe families of monads, or of sheaves
coming from monads. There has been much work done on this since the nineties.
Among the properties studied on these families is irreducibility (see for instance
[Tikhomirov 2012; 2013] for the case of instanton bundles over projective space).
Here we obtain an irreducible family of monads over projective space (Theorem 6.1),
and make a description on how the same method could be used on another ACM
projective variety. Furthermore, we establish the existence of a coarse moduli
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space of low-rank vector bundles over an odd-dimensional, ACM projective va-
riety (Theorem 6.5), and show that in one case this moduli space is irreducible
(Corollary 6.6).

2. Monads over ACM varieties

Let X be a projective variety of dimension n over an algebraically closed field k,
L be a line bundle on X , and V ⊆ H 0(L) yield a linear system without base points,
defining a morphism ϕ : X→P(V ). Our main goal is to study monads over X of type

0→ (L∨)a→Ob
X → Lc

→ 0.

In this section we recall the concept of monad, as well as the results that were
the starting point for the present paper, i.e., Fløystad’s work [2000] regarding the
existence of monads on projective space.

Let us first fix the notation used throughout the paper.

Notation 2.1. Let Y ⊆ PN be a projective variety of dimension n over an alge-
braically closed field k. Let RY be the homogeneous graded coordinate ring of Y
and IY/PN its ideal sheaf.

If E is a coherent sheaf over Y we will denote its dual by E∨. We also denote the
graded module H i

∗
(Y, E)=⊕m∈Z H i (Y, E(m)) and hi (E)= dim H i (Y, E).

Given any k-vector space V, we will write V ∗ to refer to its dual.

Definition 2.2. Let Y be a projective variety of dimension n over an algebraically
closed field k. We say that Y is arithmetically Cohen–Macaulay (ACM) if its graded
coordinate ring RY is a Cohen–Macaulay ring.

Remark 2.3. If Y ⊆ PN is a projective variety then being ACM is equivalent to
the following vanishing:

H 1
∗
(PN , IY/PN )= 0, H i

∗
(Y,OY )= 0, 0< i < n.

Moreover, we note that the notion of ACM variety depends on the embedding.

The first problem we will address concerns the existence of monads on projective
varieties (see Section 3) and the generalization of the following result.

Theorem 2.4 [Fløystad 2000, Main Theorem and Corollary 1]. Let N ≥ 1. There
exists a monad of type

(1) 0→OPN (−1)a f
−→Ob

PN
g
−→OPN (1)c→ 0

if and only if one of the following conditions holds:

(i) b ≥ a+ c and b ≥ 2c+ N − 1,

(ii) b ≥ a+ c+ N.
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If so, there actually exists a monad with the map f degenerating in expected
codimension b− a− c+ 1.

If the cohomology of the monad (1) is a vector bundle of rank< N then N =2l+1
is odd and the monad has the form

(2) 0→OP2l+1(−1)c→O2l+2c
P2l+1 →OP2l+1(1)c→ 0.

Conversely, for every c, l ≥ 0 there exist monads of type (2) whose cohomology is a
vector bundle.

Observe that the vector bundles which are the cohomology of a monad of the
form (2) are the so-called instanton bundles.

The next construction uses standard techniques of projective geometry and it
explains why we thought Fløystad’s case could be generalized to other projective
varieties.

Let X ′ be the image of X in P(V ). Taking N = dim V − 1, let PN
:= P(V )

and m := codimPN X ′. Consider a monad of type (1) and take a projective linear
subspace 3⊂ PN of dimension m− 1 such that 3∩ X ′ =∅. Fixing coordinates
z0, . . . , zN in PN we may assume that I (3)= (z0, . . . , zN−m).

Let A and B be the matrices associated to the morphisms f and g, respectively,
in (1). Consider the induced morphisms f̃ and g̃ whose matrices are, respectively,
Ã and B̃, obtained from A and B by the vanishing of the linear forms that define a
linear complement of 3, i.e., f̃ = f |{zN−m+1=···=zN=0} and g̃ = g|{{zN−m+1=···=zN=0}.

By construction, B̃ Ã = 0. If x ∈3 then the ranks of Ã and B̃ evaluated at x are
no longer maximal, that is, rk( Ã) < a and rk(B̃) < c. In particular, the complex

OPN (−1)a f̃
−→Ob

PN
g̃
−→OPN (1)c

is not a monad on PN anymore. Nevertheless, for a general x ∈ X ′, the matrices
Ã(x) and B̃(x) have maximal rank and hence the complex

0→ (L∨)a ϕ
∗ f̃
−→Ob

X
ϕ∗ g̃
−→ Lc

→ 0,

where L = ϕ∗(OPN (1)), is a monad on X .

3. Existence of monads over ACM varieties

The aim of this section is to prove two characterizations of the existence of monads
on projective varieties. We start by giving sufficient conditions for a monad to exist.

Lemma 3.1. Let X be a variety of dimension n, let L be a line bundle on X , and let
V ⊆ H 0(L) be a linear system, with no base points, defining a morphism X→P(V ).
Suppose a, b and c are integers such that one of the following conditions holds:

(i) b ≥ a+ c and b ≥ 2c+ n− 1,

(ii) b ≥ a+ c+ n.
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Then there exists a monad of type

(M) 0→ (L∨)a f
−→Ob

X
g
−→ Lc

→ 0.

Moreover, the map f degenerates in expected codimension b− a− c+ 1 and g can
be defined by a matrix whose entries are global sections of L that span a subspace
of V whose dimension is min(b− 2c+ 2, dim V ).

The main ideas of the proof follow Fløystad’s construction, combined with
the projective geometry standard results described at the end of the last section.
Observe that, under the hypotheses of the theorem, the existence of a monad (M) is
equivalent to the existence of a monad

0→OX ′(−1)a f
−→Ob

X ′
g
−→OX ′(1)c→ 0.

Proof. Let N = dim V − 1 and write PN for P(V ). Suppose that one of the
conditions (i) and (ii) holds. If b is high enough with respect to a and c so that
b ≥ 2c+ N − 1 or b ≥ a+ c+ N , then by Theorem 2.4, there is a monad

0→OPN (−1)a f
−→Ob

PN
g
−→OPN (1)c→ 0.

By restricting morphisms f and g to X ′, we get a monad of type (M). So from here
on we may assume that b < a+ c+ N and b < 2c+ N − 1.

Suppose first that condition (i) is satisfied. Then N − 1> b− 2c ≥ n− 1, so

0≤ N − (b− 2c+ 2)≤ N − n− 1.

Therefore we can take a projective linear subspace 3⊂ PN , disjoint from X ′, of di-
mension N−(b−2c+2), and choose linearly independent sections z0,...,zb−2c+1 ∈

H 0(OX ′(1)) such that I (3) = (z0,...,zb−2c+1). Let us divide the coordinate set
{z0,...,zb−2c+1} into two subsets: x0,...,x p and y0,...,yq , with |p − q| ≤ 1 and
such that b− 2c = p+ q . Define the matrices

Xc,c+p=


x0 x1 ··· x p

x0 x1 ··· x p
. . .

. . .

x0 x1 ··· x p

 and Yc,c+q =


y0 y1 ··· yq

y0 y1 ··· yq
. . .

. . .

y0 y1 ··· yq

,
of sizes c× (c+ p) and c× (c+ q), respectively. Therefore, the matrices

B =
[
Xc,c+p Yc,c+q

]
, A =

[
Yc+p,c+p+q

−Xc+q,c+q+p

]
allow us to construct the following complex on X ′:

OX ′(−1)c+p+q f
−→

A
O2c+p+q

X ′
g
−→

B
OX ′(1)c→ 0.
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By construction B A = 0 and rk B(x)= c, for each x ∈ X ′.
Our next goal is to construct an injective morphism on X ′,

(3) OX ′(−1)c+p+q−s φ
−→OX ′(−1)c+p+q

so that we are able to compute the expected codimension of the degeneracy locus
of the composition f ◦φ, i.e., the codimension of

Zs = {x ∈ X ′ | rk( f ◦φ)(x) < c+ p+ q − s}.

Observe that the matrices A and B define two more complexes: one complex on an
n-dimensional projective subspace Pn

⊂ PN,

OPn (−1)c+p+q f̂
−→

A
O2c+p+q

Pn
ĝ
−→

B
OPn (1)c→ 0,

such that Pn
∩3=∅, and another one on PN given by

OPN (−1)c+p+q f
−→

A
O2c+p+q

PN

g
−→

B
OPN (1)c.

Consider a generic injective morphism

OPn (−1)c+p+q−s φ̂
−→OPn (−1)c+p+q ,

s ≥ 0, inducing both a morphism OPN (−1)c+p+q−s φ
−→ OPN (−1)c+p+q and a

morphism φ as in (3). Note that the three morphisms are represented by the same
matrix.

From Lemmas 2 and 3 in [Fløystad 2000] it follows that the expected codimension
of the degeneracy locus Ẑs of f̂ ◦ φ̂ is at least s + 1. Moreover, denoting the
degeneracy locus of f ◦φ by Z s , we have the following relations:

Z s =
⋃

x∈Ẑs

〈x,3〉, Zs = Z s ∩ X ′.

Observe that the fact that φ̂ is injective implies that φ is also injective. Computing
dimensions, we obtain that codimPN Z s ≥ s+ 1 and thus

codimX ′ Zs ≥ s+ 1.

Then, taking s = c+ p+ q − a = b− a− c ≥ 0, the complex

0→OX ′(−1)a→Ob
X ′→OX ′(1)c→ 0

is a monad on X ′ since we have codimX ′ Zs≥ s+1=b−c−a+1 (so, dim Zs≤n−1).
Now, suppose condition (ii) holds, i.e., b ≥ a + c+ n, and suppose that b <

2c + n − 1 (otherwise we would be again in case (i)). Hence, c > a + 1 and
b > 2a+ n+ 1> 2a+ n− 1.
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Applying case (i) to the inequalities b ≥ a+ c+ n > a+ c and b > 2a+ n− 1,
we know there is a monad on X ′ of type

0→OX ′(−1)c→Ob
X ′→OX ′(1)a→ 0,

where the map OX ′(−1)c→Ob
X ′ degenerates in codimension at least b−a−c+1≥

n+ 1. Dualizing this complex, we get

0→OX ′(−1)a→Ob
X ′→OX ′(1)c→ 0,

which is still a monad on X ′, for the codimension of the degeneracy locus of
OX ′(−1)a→Ob

X ′ is at least b− a− c+ 1. �

Remark 3.2. We could have constructed a monad on X just by taking the pullback
of a monad on Pn and applying Fløystad’s result. In fact, we could have defined a
finite morphism X→ Pn by considering precisely dim X + 1 linearly independent
global sections of L (and not vanishing simultaneously at any point x ∈ X ). The
pullback via this morphism of a monad on Pn would give us a monad on X .
Nevertheless, we note that the construction above is far more general. It allows us to
use a bigger number of global sections and it also provides an explicit construction
of the monad on X .

We next prove the two main results of this section, which generalize Fløystad’s
theorem on the existence of monads on projective space. We consider a variety X ,
a line bundle L on X , and a basepoint-free linear system of sections of L giving a
morphism to projective space. Each result asks different properties on the image
X ′ ⊂ P(V ) of the variety X .

Our first result characterizes the existence of monads of type (M) in the case
when X ′ is an ACM projective variety.

Theorem 3.3. Let X be a variety of dimension n and let L be a line bundle on X.
Suppose there is a linear system V ⊆ H 0(L), with no base points, defining a
morphism X→ P(V ) whose image X ′ ⊂ P(V ) is a projective ACM variety. Then
there exists a monad of type

(M) 0→ (L∨)a f
−→Ob

X
g
−→ Lc

→ 0

if and only if one of the following conditions holds:

(i) b ≥ a+ c and b ≥ 2c+ n− 1,

(ii) b ≥ a+ c+ n.

If so, there actually exists a monad with the map f degenerating in expected
codimension b − a − c + 1. Furthermore, g can be defined by a matrix whose
entries are global sections of L that span a subspace of V whose dimension is
min(b− 2c+ 2, dim V ).
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Note that if condition (ii) in the above theorem is satisfied then there exists a
monad whose cohomology is a vector bundle of rank greater than or equal to the
dimension of X .

Proof. The existence of the monad in case conditions (i) or (ii) are satisfied follows
from Lemma 3.1. Let us show that these conditions are necessary. Suppose we
have a monad on X ′

0→OX ′(−1)a f
−→Ob

X ′
g
−→OX ′(1)c→ 0.

This immediately implies that b≥ a+c. The image of the induced map H 0(Ob
X ′)→

H 0(OX ′(1)c) defines a vector subspace U ′⊂ H 0(OX ′(1)c) which globally generates
OX ′(1)c. In particular, there is a diagram

Ob
X ′

��

g
// OX ′(1)c // 0

U ′⊗OX ′

��

g̃

88

0

Since OX ′(1)c is globally generated via g̃, we have dim U ′ ≥ c+ n, otherwise the
degeneracy locus of g̃ would be nonempty.

Let U ⊂ U ′ be a general subspace with dim U = c + n − 1. Hence the map
p̃ : U ⊗OX ′ → OX ′(1)c, induced by g̃, degenerates in dimension zero. Take a
splitting

H 0(Ob
X ′)

// U ′oo

and define W = H 0(Ob
X ′)/U. Denote I = I(X ′) ⊂ k[z0, . . . , zN ]. Let S =

k[z0, . . . , zN ]/I be the coordinate ring of X ′. Since X ′ is projectively normal, S is
integrally closed and therefore S= H 0

∗
(OX ′), so we have the following commutative

diagram of graded S-modules:

U ⊗ S
��

U ⊗ S
p
��

S(−1)a // Sb //

��

S(1)c

S(−1)a q
// W ⊗ S

Sheafifying the above diagram, we get a surjective map

coker q̃→ coker p̃→ 0.

Because p̃ degenerates in the expected codimension we have, by [Buchsbaum and
Eisenbud 1977, Theorem 2.3],

Fitt1(coker p̃)= Ann(coker p̃),
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and so we obtain the following chain of inclusions

Fitt1(coker q̃)⊂ Ann(coker q̃)⊂ Ann(coker p̃)= Fitt1(coker p̃),

where the first inclusion follows from [Eisenbud 1995, Proposition 20.7.a]. Thus,

Fitt1(coker q)⊂ H 0
∗
(Fitt1(coker q̃))⊂ H 0

∗
(Fitt1(coker p̃)).

Since p degenerates in expected codimension n and X ′ is ACM, S/Fitt1(coker p)
is a Cohen–Macaulay ring of dimension 1; see [Eisenbud 1995, Theorem 18.18]. In
particular, Fitt1(coker p) is a saturated ideal because the irrelevant maximal ideal
m⊂ S is not an associated prime of it, and thus

H 0
∗
(Fitt1(coker p̃))= Fitt1(coker p).

By definition, Fitt1(coker p) is generated by polynomials of degree at least c, so all
polynomials in Fitt1(coker q) must also have degree at least c. Note that the map q
may be assumed to have generic maximal rank for f is injective and Sb

→W⊗S is
a general quotient. This leads to two possibilities: either dim W ≥ c or dim W > a.
Recalling that dim W = b− c− n+ 1, we obtain respectively

b ≥ 2c+ n− 1, or b ≥ a+ c+ n. �

We now state the second characterization result, with a similar setting as in
Theorem 3.3, except that we drop the hypothesis that the image X ′ of X in P(V ) is
ACM, and assume instead that it is linearly normal and not contained in a quadric.

Theorem 3.4. Let X be a variety of dimension n and let L be a line bundle on X.
Suppose there is a linear system V ⊆ H 0(L), with no base points, defining a
morphism X→P(V ) whose image X ′⊂P(V ) is linearly normal and not contained
in a quadric hypersurface. Then there exists a monad of type

(M) 0→ (L∨)a f
−→Ob

X
g
−→ Lc

→ 0

if and only if one of the following conditions holds:

(i) b ≥ a+ c and b ≥ 2c+ n− 1,

(ii) b ≥ a+ c+ n.

If so, there actually exists a monad with the map f degenerating in expected
codimension b − a − c + 1. Furthermore, g can be defined by a matrix whose
entries are global sections of L that span a subspace of V whose dimension is
min(b− 2c+ 2, dim V ).

Proof. The proof of the existence of a monad of type (M) follows again from
Lemma 3.1. Let us check that at least one of conditions (i) or (ii) is necessary. Let
N = dim V − 1 and denote PN

= P(V ).
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Suppose that there is a monad

0→ (L∨)a f
−→Ob

X
g
−→ Lc

→ 0.

Let A and B be matrices defining f and g, respectively. Since the entries of both
matrices are elements of H 0(L) and X ′ is linearly normal, we can choose linear
forms on PN to represent them, so the entries in the product B A can be regarded
as elements of H 0(OPN (2)). Since X ′ is not cut out by any quadric, B A is zero on
PN yielding a complex

OPN (−1)a f̃
−→Ob

PN
g̃
−→OPN (1)c.

Furthermore, denoting by Z A and Z B the degeneracy loci in PN of A and B,
respectively, we know that dim(Z A ∩ X ′) ≤ n − 1 and Z B does not intersect X ′.
Therefore their dimensions satisfy dim Z A ≤ N − 1 and dim Z B ≤ N − n − 1.
We can consider a general subspace Pn that does not meet Z B and also satisfies
dim(Z A ∩Pn)≤ n− 1. So if we consider the complex

OPn (−1)a f̂
−→Ob

Pn
ĝ
−→OPn (1)c,

also defined by the matrices A and B, we see that f̂ is injective and ĝ is surjective,
so we have a monad on Pn and by Theorem 2.4 at least one of conditions (i) and
(ii) is satisfied. �

Example 3.5. In [Macias Marques and Soares 2014], two of us presented a collec-
tion of examples of monads on Segre varieties. Using the same approach, we can
think of similar examples of monads of some varieties that are cut out by quadrics,
such as the Grassmannian. The simplest case that is not a hypersurface is G(2, 5),
the Grassmannian that parametrizes planes in the projective space P5, which is
embedded in P19 with Plücker coordinates [X j0 j1 j2]0≤ j0< j1< j2≤5 satisfying

(4)
3∑

s=0

(−1)s X j0 j1ls Xl0···l̂s ···l3
= 0

for 0 ≤ j0 < j1 ≤ 5 and 0 ≤ l0 < l1 < l2 < l3 ≤ 5, where X i0i1i2 = (−1)σ X iσ0 iσ1 iσ2
,

for any permutation σ , and X i0i1i2 = 0 if there are any repeated indices. One of
these quadrics is

X012 X345− X013 X245+ X014 X235− X015 X234

=
1
4

(
(X012+ X345)

2
− (X012− X345)

2
− (X013+ X245)

2
+ (X013− X245)

2

+ (X014+ X235)
2
− (X014− X235)

2
− (X015+ X234)

2
+ (X015− X234)

2),
obtained by using the sextuple ( j0, j1, l0, l1, l2, l3)= (0, 1, 2, 3, 4, 5) in (4). Now,
for any pair (a, b), with 1≤ a < b ≤ 5, consider the linear forms

uab := X0ab+ X i1i2i3 and vab := X0ab− X i1i2i3,
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where i1, i2 and i3 are the unique integers satisfying {a, b, i1, i2, i3} = {1, 2, 3, 4, 5}
and i1 < i2 < i3. Then the twenty forms in {uab, vab}1≤a<b≤5 form a new basis of
the coordinate ring of P19 and the above quadric can be rewritten as

1
4(u

2
12− v

2
12− u2

13+ v
2
13+ u2

14− v
2
14− u2

15+ v
2
15).

So if seven of the eight linear forms occurring in this quadric vanish at a point of
G(2, 5), so does the eighth. Similarly, using (0, 3, 1, 2, 4, 5), (0, 4, 1, 2, 3, 5), and
(0, 5, 1, 2, 3, 4) for ( j0, j1, l0, l1, l2, l3) in (4), we see that G(2, 5) is also cut out by

1
4(−u2

13+ v
2
13+ u2

23− v
2
23+ u2

34− v
2
34− u2

35+ v
2
35),

1
4(−u2

14+ v
2
14+ u2

24− v
2
24− u2

34+ v
2
34− u2

45+ v
2
45),

1
4(−u2

15+ v
2
15+ u2

25− v
2
25− u2

35+ v
2
35+ u2

45− v
2
45).

Therefore, the sixteen linear forms u23, . . . , u45, v12, . . . , v45 cannot simultaneously
vanish at a point of the Grassmannian, otherwise so would the remaining four u12,
u13, u14, and u15. So let us write

w1 = u23, w2 = u24, w3 = u25, w4 = u34,

w5 = u35, w6 = u45, w7 = v12, w8 = v13,

w9 = v14, w10 = v15, w11 = v23, w12 = v24,

w13 = v25, w14 = v34, w15 = v35, w16 = v45.

Let k≥1 and let A1, A2∈M(k+7)×k(S) and B1, B2∈Mk×(k+7)(S) be the matrices
with entries in S := K [X012, . . . , X345], given by

A1 =


w8
...
. . .

w1 w8
. . .

...
w1

 , A2 =


w16
...
. . .

w9 w16
. . .

...
w9

 ,

B1 =

[w1 · · · w8
. . .

. . .
w1 · · · w8

]
and B2 =

[w9 · · · w16
. . .

. . .
w9 · · · w16

]
,

and note that B1 A2 = B2 A1. Let A and B be the matrices

(5) A =
[
−A2

A1

]
and B =

[
B1 B2

]
,

and let
0→OG(2,5)(−1)k α

−→O2k+14
G(2,5)

β
−→OG(2,5)(1)k→ 0

be the sequence with maps α and β defined by matrices A and B, respectively.
Now A and B fail to have maximal rank k if and only if w1, . . . , w16 are all zero,
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which, as we have seen, cannot happen in the Grassmannian variety. In particular,
α is injective and β is surjective, and since B A = 0, this sequence yields a monad.
We can reduce the exponent of the middle term in the monad, by using the method
we described in the proof of Theorem 3.3, combined with this construction. Let
3⊂ P19 be the projective subspace defined by the following ten linear forms:

X012− X345, X013− X245, X014− X235, X015− X234,

X023− X145, X024− X135, X025− X034, X035− X123,

X045+ X134+ X124, X045+ 2X134− 3X124− 5X125+ 7X012+ 11X013.

With the help of a computer algebra system such as Macaulay [Grayson and Stillman
≥ 2018], we can check that 3 is disjoint from G(2, 5), so if w′1, . . . , w

′

10 are linear
forms that complete a basis for the coordinate ring of P19, we can use them to
construct matrices analogous to A and B above and obtain a monad

0→OG(2,5)(−1)k α
−→O2k+8

G(2,5)
β
−→OG(2,5)(1)k→ 0.

4. Simplicity

Recall that a vector bundle E is said to be simple if its only endomorphisms are the
homotheties, i.e., Hom(E, E)= C. The cohomology of a monad on PN of type (1)
is known to be simple when it has rank N − 1 (see [Ancona and Ottaviani 1994]).
Moreover, every instanton bundle on the hyperquadric Q2l+1

⊂ P2l+2 is simple;
see [Costa and Miró-Roig 2009].

We next address the problem of the simplicity of the cohomology of monads on
projective varieties of the form (M).

Proposition 4.1. Let X be a variety of dimension n and let L be a line bundle
on X. Suppose there is a linear system V ⊆ H 0(L), with no base points, dim V ≥ 3,
defining a morphism X→ P(V ) such that the ideal sheaf of its image X ′ satisfies

h1(IX ′(−1))= h2(IX ′(−1))= h2(IX ′(−2))= h3(IX ′(−2))= 0.

Let a and b be integers such that

max{n+ 1, a+ 1} ≤ b ≤ dim V .

Then there exists a monad

(6) 0→ (L∨)a f
−→Ob

X
g
−→ L→ 0.

whose cohomology sheaf is simple.
Moreover, when b is minimal, that is b= n+1, then any monad of type (6) has a

simple cohomology sheaf.
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Proof. Let N = dim V − 1 and write PN for P(V ). Since b ≥ max{n+ 1, a+ 1},
Lemma 3.1 guarantees the existence of a monad of type (6). Moreover, since
b ≤ dim V , we can choose linearly independent linear forms for the matrix that
represents g. Consider the display

0

��

0

��

0 // (L∨)a // K //

��

E //

��

0

0 // (L∨)a
f
// Ob

X
//

g
��

Q //

��

0

L

��

L

��

0 0

Dualizing the first column and tensoring with K we get

(7) 0→ K ⊗ L∨→ K b
→ K ⊗ K∨→ 0.

We claim that K is simple, i.e., h0(K ⊗ K∨)= 1. To see this, we first observe
that, by construction, L ∼= ϕ∗OPN (1), where ϕ : X → PN is the morphism given
by L . So, considering OX ′ as a sheaf over PN, we have ϕ∗L ∼=OX ′(1), and therefore
ϕ∗L∨∼=OX ′(−1) and ϕ∗(L∨⊗L∨)∼=OX ′(−2). Consider the exact sequence on PN

0→ IX ′(−1)→OPN (−1)→ ϕ∗L∨→ 0.

Taking cohomology, we get that h0(L∨)= h1(L∨)= 0 from the vanishing of the
groups H 1(IX ′(−1)), H 2(IX ′(−1)) and H i (OPN (−1)). Now, if we tensor the first
column of the display by L∨ and take cohomology, we get h1(K⊗L∨)=h0(OX )=1.
Note also that H 0(g) : H 0(Ob

X )→ H 0(L) is injective, since the linear forms we
chose to construct the matrix for g are linearly independent, hence h0(K ) = 0.
Therefore we get an injective morphism

0→ H 0(K ⊗ K∨)→ H 1(K ⊗ L∨)

induced by the exact sequence in (7), and we get h0(K ⊗ K∨)= 1, as we wished.
We now consider the exact sequence

0→ IX ′(−2)→OPN (−2)→ ϕ∗(L∨⊗ L∨)→ 0

and take cohomology to get h1(L∨⊗ L∨)= h2(L∨⊗ L∨)= 0, from the vanishing
of the groups H 2(IX ′(−2)), H 3(IX ′(−2)) and H i (OPN (−2)), since N ≥ 2. We
dualize the first row in the display and tensor by E to obtain

(8) 0→ E ⊗ E∨→ E ⊗ K∨→ E ⊗ La
→ 0,
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which induces an injective morphism

0→ H 0(E ⊗ E∨)→ H 0(E ⊗ K∨).

By dualizing the first column and tensoring by L∨, we may take cohomology and
see that h0(K∨⊗ L∨)= h1(K∨⊗ L∨)= 0, for h1(L∨⊗ L∨)= h2(L∨⊗ L∨)= 0
and h0(L∨) = h1(L∨) = 0, as we saw above. Now tensoring the first row of the
display by K∨ and taking cohomology we get h0(K∨⊗ E) = h0(K∨⊗ K ) = 1.
Therefore h0(E∨⊗ E)= 1, i.e., E is a simple sheaf.

Finally, given any monad of type (6) with b = n+ 1 = dim X + 1, the entries
of the matrix defining g must be linearly independent, otherwise it would not
have maximal rank and g would not be a surjective morphism. Since the linear
independence of these linear forms is a key step in the beginning of the proof, we
see that in this case, any monad of type (6) has a simple cohomology sheaf. �

The next example shows that the statement in Proposition 4.1 is accurate, that is,
there are monads of type (6) whose cohomology is not simple.

Example 4.2. Consider the monad over the quadric X ⊂ P3 embedded in P9 by
L =OX (2),

0→OX (−2)
f
−→

A
O5

X
g
−→

B
OX (2)→ 0,

where
B =

[
x2

0 x2
1 x2

2 x2
3 x2

3

]
, A =

[
−x2

3 −x2
2 x2

1 x2
0 0

]T
,

and xi are the coordinates in P3 such that X is defined by the form x2
0+x2

1+x2
2+x2

3 .
Then max{3, 2} ≤ b ≤ h0(OX (2))= 10= N + 1, however E is not simple. In fact,
first note that K = ker g is not simple since it admits the endomorphism

ϕ : ( f1, f2, f3, f4, f5) 7→ ( f1, f2, f3, f5, f4),

clearly not a homothety of K : if f4 6= f5 then ϕ( f1, f2, f3, f4, f5) is not a multiple
of ( f1, f2, f3, f4, f5). Therefore the endomorphism induced on E ∼= K/ im f by ϕ
is not a homothety of E (the class of a 5-uple of the same form is not mapped into
a multiple of itself).

5. Vector bundles of low rank

In this section we characterize monads whose cohomology is a vector bundle of
rank lower than the dimension of X and, in particular, we restrict to the case when X
is nonsingular. Moreover, we will deal with the problem of simplicity and stability
of this particular case.

Generalizing Fløystad’s result, we start by proving the following theorem.
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Theorem 5.1. Let X be a nonsingular, n-dimensional, projective variety, embedded
in PN by a very ample line bundle L. Let M be a monad as in (M) and E its
cohomology. If E is a vector bundle of rank lower than n, then n = 2k + 1,
rk E = 2k and the monad is of type

(9) 0→ (L∨)c f
−→O2k+2c

X
g
−→ Lc

→ 0.

Conversely, for each odd dimensional variety X with an associated ACM embedding
given by a line bundle L and for each c ≥ 1 there exists a vector bundle which is
cohomology of a monad of type (9).

Proof. Suppose we have a vector bundle E of rank lower than dim X = n which is
the cohomology of a monad M of type (M). Then its dual E∨ is the cohomology of
the dual monad M∨. Since both E and E∨ are vector bundles which do not satisfy
condition (ii) of Theorem 3.3, we must have

b ≥ 2c+ n− 1 and b ≥ 2a+ n− 1.

On the other hand, the hypothesis rk E < n implies that

b ≤ a+ c+ n− 1.

Combining the three inequalities we get that

a = c and b = 2c+ n− 1.

Then the monad M is of type

0→ (L∨)c f
−→O2c+n−1

X
g
−→ Lc

→ 0,

therefore rk E = n− 1 which implies that cn(E)= 0.
Hence, since the Chern polynomial of OX is ct(OX )= 1 (for X is nonsingular),

we have

ct(E)=
1

(1− lt)c(1+ lt)c
= (1+ l2t2

+ l4t4
+ · · · )c,

where l denotes c1(L). If n=2k, for some k∈Z, then c2k(E)=α2kl2k , where α2k>0
is the binomial coefficient of the expansion of the series of ct(E). Observe that
l2k
= c2k(L2k) and, by the projection formula, see [Fulton 1998, Theorem 3.2 (c)],

this Chern class cannot be zero, contradicting the assertion above. So we conclude
that n is odd and that the monad is of type (9).

Conversely, for any c ≥ 1 and (2k + 1)-dimensional variety X , there exists a
monad of type (9) whose cohomology is a vector bundle E of rank 2k constructed
using the technique described in the proof of Lemma 3.1. �
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Minimal rank bundles defined using “many” global sections. In Theorem 3.3
we showed that the morphism g in (M) can be defined by a matrix B whose
entries are global sections of L that span a subspace of H 0(L) of dimension
min(b− 2c+ 2, h0(L)). This was done by giving an example of such a matrix, but
surely there are others. Moreover, the dimension of the subspace spanned by the
entries of these matrices can be bigger as we shall see in the following examples.

Take the quadric hypersurface Q3 ⊂ P4, defined by x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0,

and L =OQ3(2). Following the techniques used in Section 3 to construct a monad,
we are able to obtain

(10) OQ3(−2)2 A
−→O6

Q3

B
−→OQ3(2)

2,

where

(11) A =



−x2
2 −x2

3
0 −x2

2

−x2
3 0

x2
0 x2

1

0 x2
0

x2
1 0


and B =

[
x2

0 x2
1 0 x2

2 x2
3 0

0 x2
0 x2

1 0 x2
2 x2

3

]
.

We have B A = 0, and A and B have maximal rank when evaluated at every point
of Q3. Indeed, the rank of both A and B is not maximal only when evaluated at
the point (0 : 0 : 0 : 0 : 1) ∈ P4, that does not belong to the quadric.

In order to use more global sections in the matrices defining the monad, we could
simply “add another diagonal” whose entries involve an additional global section.
Unfortunately, this method will increase the rank of the sheaf. For example, take
the monad

(12) OQ3(−2)2 A′
−→O7

Q3

B ′
−→OQ3(2)

2

given by the matrices

(13) A′ =



−x2
2 − x2

3 −x2
4

−x2
2 −x2

3

0 −x2
2 − x2

4

x2
0 + x2

1 0
x2

0 x2
1

0 x2
0

0 x2
1


and B ′ =

[
x2

0 x2
1 0 x2

2 x2
3 x2

4 0
0 x2

0 x2
1 0 x2

2 x2
3 x2

4

]

with maximal rank evaluated at each point of Q3. The cohomology of this monad
is a rank 3 vector bundle on the quadric.
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Therefore, our goal is to construct examples of minimal rank vector bundles
whose monads are defined by matrices using a number of independent global
sections of L strictly bigger than dim X + 1. Indeed, the monads obtained this way
cannot be the pullback of some monad over a projective space via a finite morphism
(as described in Remark 3.2).

In the following two examples we will achieve such a goal in the particular case
of the quadric considered above. However, the technique is easily reproducible for
other varieties. The key point is to consider two matrices such that the union of
their respective standard determinantal varieties does not intersect the base variety.

We get such examples by slightly modifying the matrices A and B. Consider a
monad of type (10) but defined by the matrices

(14) A1 =



−x2
2 −x2

3

0 −x2
2

−x3x4 0
x2

0 x2
1

0 x2
0

x2
1 0


and B1 =

[
x2

0 x2
1 0 x2

2 x2
3 0

0 x2
0 x2

1 0 x2
2 x3x4

]
.

Then, B1 A1= 0, and both A1 and B1 have maximal rank at every point of P4 except
at points (0 : 0 : 0 : 1 : 0) and (0 : 0 : 0 : 0 : 1), neither belonging to the quadric.

It is possible to insert an additional global section in the previous matrices, by
considering, for example, the monad defined by the matrices

(15) A2 =



−x2
2 −x2

3

0 −x2
2

−x3x4 0
x2

0 x2
1

0 x2
0

x2
1 + x1x4 0


and B2 =

[
x2

0 x2
1 0 x2

2 x2
3 0

0 x2
0 x2

1 + x1x4 0 x2
2 x3x4

]
.

Again, B2 A2 = 0, and A2 and B2 have maximal rank when evaluated at all points
of projective space except at (0 : 0 : 0 : 1 : 0), (0 : 0 : 0 : 0 : 1) and (0 : 1 : 0 : 0 : −1),
that do not belong to the quadric.

As we wanted, in both examples we used a number of global sections strictly
bigger than dim Q3+1; it would be interesting to determine all the possible matrices
obtained with this technique, once one fixes the base variety and the monad.

Simplicity and stability. We note that it is straightforward to construct examples
of vector bundles on X , with Pic X = Z, satisfying properties of simplicity and
stability. In fact, it is enough to consider, as observed in Remark 3.2, dim X + 1
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generic sections of L in order to get a finite morphism ϕ : X→ P2n+1. Using the
flatness miracle and the projection formula, it is possible to prove that ϕ∗OX is
locally free and, moreover, ϕ∗OX =

⊕p
i=0 OP2n+1(−ai ), for some positive p and

nonnegative ai ; see [Barth et al. 1984, Lemma I.17.2]. Finally, using once again
the projection formula (to the cohomology bundle) as well as commutativity of the
tensor product with the pullback, we can conclude that the pullback of a simple
(respectively stable) bundle E on P2n+1 is a simple (respectively stable) bundle on
the projective variety X .

Nevertheless, we always have the following property.

Theorem 5.2. Let X be a variety of dimension n and let L be a line bundle on X.
Suppose there is a linear system V ⊆ H 0(L), with no base points, defining a
morphism X → P(V ) whose image X ′ ⊂ P(V ) satisfies h2(IX ′(−1)) = 0 and at
least one of the following conditions:

(1) X ′ is a projective ACM variety;

(2) X ′ is linearly normal and is not contained in a quadric hypersurface.

Suppose in addition that there is a monad of type (9) over X whose cohomology
sheaf E is locally free. Then H 0(E)= 0.

Proof. From the hypotheses, we see that X satisfies the conditions in Theorem 3.3
or Theorem 3.4. A monad of type (9) over X admits the following display:

0

��

0

��

0 // (L∨)c // K //

��

E //

��

0

0 // (L∨)c
f
// O2k+2c

X
//

g
��

Q //

��

0

Lc

��

Lc

��

0 0

Taking cohomology on the exact sequence

0→ IX ′(−1)→OPN (−1)→ ϕ∗L∨→ 0,

we get that h0(L∨)=h1(L∨)=0, since h1(IX ′(−1))=h2(IX ′(−1))=0. Therefore,
taking cohomology on the first row of this display we have that H 0(E)= H 0(K ).
Let us suppose that H 0(K ) 6= 0, and let δ = h0(K ). Applying Lemma 1.6 in
[Arrondo et al. 2016], we see that K ' K ′⊕Oδ

X , since K∨ is an (L∨,OX )-Steiner
bundle (see Definition 1.3 in [Arrondo et al. 2016]). Therefore, the matrix defining g,
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with a suitable change of variables, may be assumed to have δ zero columns. So,
again by Lemma 1.6, (K ′)∨ is itself an (L∨,OX )-Steiner bundle, sitting on a short
exact sequence

0→ (L∨)c→O2k+2c−δ
X → (K ′)∨→ 0.

Dualizing this, we get

0→ K ′→O2k+2c−δ
X → Lc

→ 0,

with H 0(K ′)= 0. Therefore, we would get a new monad, whose cohomology might
be a sheaf, defined as

0→ (L∨)c→O2k+2c−δ
X → Lc

→ 0.

But this contradicts the conditions of existence of Theorems 3.3 and 3.4, thus
proving the statement. �

Corollary 5.3. Every rank 2 vector bundle E on a three dimensional ACM smooth
projective variety X with Pic(X)= Z, defined by a monad of type (9), is stable.

Proof. The result follows directly from the previous theorem and the Hoppe’s
criterion for stability; see [Hoppe 1984, Theorem 12]. �

6. The set of monads and the moduli problem

The existence part in Theorem 3.3 is proved by explicitly constructing a monad on
a given projective variety X . The construction therein does not, however, give an
answer to the question of “how many” monads of type (M) exist. We would like to
know more about the algebraic structure of the set of pairs of morphisms which
define a monad over a projective variety. In the case of projective space we prove
the following:

Theorem 6.1. Let a, b, c satisfy the conditions of Theorem 2.4, and suppose that
1 ≤ c ≤ 2. Then for any surjective morphism g ∈ Hom(Ob

Pn ,OPn (1)c) there is a
morphism f ∈ Hom(OPn (−1)a,Ob

Pn ) yielding a monad of type (1).
Furthermore, the set of pairs

( f, g) ∈ Hom(OPn (−1)a,Ob
Pn )×Hom(Ob

Pn ,OPn (1)c)

yielding such a monad is an irreducible algebraic variety.

Proof. Let g ∈ Hom(Ob
Pn ,OPn (1)c) be a surjective morphism and let Kg := ker g.

Then for any injective morphism f ∈ H 0(Kg(1))a, the pair ( f, g) yields a monad
of type (1). If we consider the exact sequence

0→ Kg→Ob
Pn

g
−→OPn (1)c→ 0,
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tensor by OPn (1) and take cohomology, we can see that

h0(Kg(1))= b(n+ 1)− c
(n+2

2

)
+ h1(Kg(1)).

Now following the arguments in the proof of Theorem 3.2 in [Costa and Miró-Roig
2007] we see that Kg is m-regular for any m ≥ c. Therefore, since c ≤ 2, Kg is
2-regular, i.e., h1(Kg(1))= 0. Since an injective morphism f ∈ H 0(Kg(1))a comes
from a choice of a independent elements in H 0(Kg(1)), we wish to show that
h0(Kg(1))≥ a, i.e., b(n+ 1)− c

(n+2
2

)
− a ≥ 0. We can check that the conditions

in Theorem 2.4 imply this inequality.
The irreducibility of the set of pairs ( f, g) that yield a monad of type (1) comes

from the fact that the subset of surjective morphisms g ∈ Hom(Ob
Pn ,OPn (1)c) is

irreducible and the fiber of the projection

Hom(OPn (−1)a,Ob
Pn )×Hom(Ob

Pn ,OPn (1)c)→ Hom(Ob
Pn ,OPn (1)c),

at a point corresponding to the surjective morphism g is the irreducible set of injec-
tive morphisms in H 0(Kg(1))a, which has fixed dimension a

(
b(n+1)−c

(n+2
2

))
. �

Before discussing the more general setting of monads on ACM smooth projective
varieties we give an example of reducibility with c = 5 on projective space.

Example 6.2. Consider the set of instanton bundles defined by a monad of the form

0→OP3(−1)5 f
−→O12

P3
g
−→OP3(1)5→ 0.

It was proved in [Jardim et al. 2018] that the moduli space of instanton sheaves of
rank 2 and charge 5 is reducible. Furthermore, the set of pairs

( f, g) ∈ Hom(OP3(−1)5,O12
P3)×Hom(O12

P3,OP3(1)5)

yielding such a monad is a reducible algebraic variety.

Remark 6.3. It was brought to our attention that the Main Theorem in [Jardim
et al. 2017] shows that the moduli space of instanton sheaves of rank 2 and charge
3 is reducible, which means that Theorem 6.1 is sharp.

The general setting. When X is a projective variety the general setting is the
following. Let X be a projective variety embedded on PN by a very ample line
bundle L . Consider the set of all morphisms g : Ob

X → Lc, described by the
vector space B∗⊗C⊗ H 0(L), where B and C are, respectively, k-vector spaces of
dimensions b and c.

Denote P(B∗⊗C ⊗ H 0(L)) by P and consider the map

(16) OP(−1)→ B∗⊗C ⊗ H 0(L)⊗OP
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of sheaves over P, whose fiber at a point in P(B∗⊗C ⊗ H 0(L)) corresponds to
the natural inclusion. So, from (16) we get a map

B⊗ H 0(L)⊗OP(−1)→ C ⊗ H 0(L)⊗ H 0(L)⊗OP,

and hence also a map

B⊗ H 0(L)⊗OP(−1) ϕ
−→C ⊗ H 0(L ⊗ L)⊗OP,

induced by the natural morphism H 0(L)⊗ H 0(L)→ H 0(L ⊗ L).
Now recall that h0(L)= N +1 and suppose that a, b, c are positive integers that

satisfy the conditions of Theorem 3.3. Then the degeneracy locus

Z = {g ∈ P(B∗⊗C ⊗ H 0(L)) | rkg(ϕ)≤ b(N + 1)− a}

describes the set of morphisms g in a short exact sequence

0→ Kg→Ob
X

g
−→ Lc

→ 0

such that h0(Kg⊗ L)≥ a and for which it is thus possible to construct a monad of
type (M). Note furthermore that

codim Z ≤ a
(
c
(N+2

2

)
− b(N + 1)+ a

)
.

Hence, whenever Z is irreducible (for example when codim Z < 0) and h0(Kg)

is constant for every morphism g we see that the set of the pairs ( f, g) yielding a
monad (M) on X is an irreducible algebraic variety. In this case, Theorem 6.1 can
be extended to ACM varieties.

The moduli space of vector bundles of low rank. Let X be an ACM smooth pro-
jective variety of odd dimension 2k+ 1, for some k ∈N, with an embedding in PN

by a very ample line bundle L on X , where h0(L)= N + 1.
Consider the set V2k,c of rank 2k vector bundles which are the cohomology of a

monad of type

(17) 0→ (L∨)c f
−→O2k+2c

X
g
−→ Lc

→ 0,

with 1≤ c ≤ 2.

Remark 6.4. Observe that the hypotheses in Corollary 1, §4 Chapter 2, in [Okonek
et al. 1980], hold for monads defined by (17). Hence the isomorphisms of monads
of this type correspond bijectively to the isomorphisms of the corresponding coho-
mology bundles. In particular, the two categories are equivalent and we will not
distinguish between their corresponding objects.

We want to construct a moduli space M(V2k,c) of vector bundles in V2k,c. In
order to do this we will use King’s framework of moduli spaces of representations
of finite dimensional algebras in [King 1994].
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We first note that according to [Jardim and Prata 2015, Theorem 1.3], the category
Mk,c of monads of type (17) is equivalent to the full subcategory Ggis

k,c of the category
R(Qk,c) of representations R= ({Cc,C2k+2c,Cc

}, {Ai }
N+1
i=1 , {Bj }

N+1
j=1 ) of the quiver

Qk,c of the form

•

//
...

(N+1)
//
•

//
...

(N+1)
//
•

which are (σ, γ )-globally injective and surjective and satisfy

(18)
∑

(Bi Aj + Bj Ai )⊗ (σiγ j )= 0.

Let us briefly recall here the definitions of (σ, γ )-globally injective and surjec-
tive (see [Jardim and Prata 2015] for more details). Given a monad as in (17),
choose bases γ = (γ1, . . . , γN+1) of Hom(L∨,OX ) and σ = (σ1, . . . , σN+1) of
Hom(OX , L). Set

α =

N+1∑
i=1

Ai ⊗ γi and β =

N+1∑
j=1

Bj ⊗ σ j .

The monad conditions of injectivity of f and surjectivity of g are reinterpreted in the
language of the associated representation R=({Cc,C2k+2c,Cc

}, {Ai }
N+1
i=1 , {Bj }

N+1
i=1 )

in Ggis
k,c as α(P)=

∑N+1
i=1 Ai ⊗γi (P) is injective and β(P)=

∑N+1
j=1 Bj ⊗σ j (P) is

surjective, respectively, for all P ∈ X . In this case, we say that R is (σ, γ )-globally
injective and surjective. The monad condition g ◦ f = 0 is rewritten as in (18).

For the sake of simplicity, we will write R = (c, 2k + 2c, c) when we refer to
the representation R = ({Cc,C2k+2c,Cc

}, {Ai }, {Bj }). The notion of semistability
for representations in Ggis

k,c , as defined by King, is the following: a representation
R= (c, 2k+2c, c) is λ-semistable is there is a triple λ= (λ1, λ2, λ3)∈Z3 such that

〈(λ1, λ2, λ3), (c, 2k+ 2c, c)〉 = 0, 〈(λ1, λ2, λ3), (a′, b′, c′)〉 ≥ 0,

for all subrepresentations R′ = (a′, b′, c′) of the representation R (〈 · , · 〉 denotes
the usual dot product). The representation is λ-stable if the only subrepresentations
R′ with 〈(λ1, λ2, λ3), (a′, b′, c′)〉 = 0 are R and 0.

Moreover, by King’s central result [1994, Theorem 4.1], the existence of such a λ
guarantees the existence of a coarse moduli space for families of λ-semistable rep-
resentations up to S-equivalence (two λ-semistable representations are S-equivalent
if they have the same composition factors in the full abelian subcategory of λ-
semistable representations).
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Given the equivalences of the categories Mk,c and Ggis
k,c , and after Remark 6.4,

we see that we can define a moduli space M(V2k,c) whenever we can construct a
moduli space of the abelian category Ggis

k,c .
When c = 1 we prove:

Theorem 6.5. There is a coarse moduli space M(V2k,1) of λ-semistable vector
bundles in V2k,1.

Proof. Let R = (1, 2k+2, 1) be a representation in Ggis
k,1 , let R′ = (a′, b′, c′) be any

subrepresentation of R, and let R′′ = (a′′, b′′, c′′) be the corresponding quotient
representation. Then, we have a diagram

0 // •
a′

//

��

•
b′

//

��

•
c′

��
0 // •

1
//

��

•
2k+2

//

��

•
1

//

��

0

•
a′′

// •
b′′

// •
c′′

// 0

(the fact that R is (σ, γ )-globally injective and surjective implies that R′ is still
injective, though not necessarily surjective, and that the quotient representation R′′

preserves surjectivity).
R is λ-semistable if we can find λ= (λ1, λ2, λ3) ∈ Z3 such that

〈(λ1, λ2, λ3), (1, 2k+ 2, 1)〉 = λ1+ (2k+ 2)λ2+ λ3 = 0

and
〈(λ1, λ2, λ3), (a′, b′, c′)〉 ≥ 0.

It is immediate from the diagram that either a′ = 0 or a′ = 1.
When a′ = 0 and b′ = 2k+ 1, we see that b′′ = 1, c′′ = 0 and hence c′ = 1. So,

R is λ-semistable if

〈(λ1, λ2, λ3), (0, 2k+ 1, 1)〉 = (2k+ 1)λ2+ λ3 > 0.

When a′ = 0 and b′ = 2k+ 2, we see again that b′′ = c′′ = 0 and so c′ = 1. The
λ-semistability of R implies

〈(λ1, λ2, λ3), (0, 2k+ 2, 1)〉 = (2k+ 2)λ2+ λ3 > 0.

Now suppose a′= 1. In this case b′= 2k+2, so that b′′= c′′= 0 and thus c′= 1,
that is, R′ = R and we must have

λ1+ (2k+ 2)λ2+ λ3 = 0.
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Hence, we can choose the triple λ = (−1, 0, 1) satisfying all the required in-
equalities in order for R to be λ-semistable.

The only subrepresentations left to consider are the ones of the form (0, b′, 0), but
also for these ones, the choice of the triple λ= (−1, 0, 1) satisfies the semistability
condition.

The irreducibility statement follows from Theorem 6.1 and the general setting
described above. �

The following is a consequence of Theorems 6.1 and 6.5.

Corollary 6.6. Let V2k,1 be the set of rank 2k vector bundles which are the coho-
mology of a monad of type

0→OPn (−1) f
−→O2k+2

Pn
g
−→OPn (1)→ 0.

Then the coarse moduli space M(V2k,1) of λ-semistable vector bundles in V2k,1 is
irreducible.

Naturally, irreducibility of the moduli space will be guaranteed in each case
where we get an irreducible family, as mentioned in the general setting described
after Theorem 6.1.

Remark 6.7. When c = 2 an analogous study leads us to the conclusion that there
is no λ such that a representation R = (2, 2k+ 2, 2) is λ-semistable. Therefore, in
this case we are not able to construct the moduli space M(V2k,2) with the help of
King’s construction.
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