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MINIMAL REGULARITY SOLUTIONS OF
SEMILINEAR GENERALIZED TRICOMI EQUATIONS

ZHUOPING RUAN, INGO WITT AND HUICHENG YIN

We prove the local existence and uniqueness of minimal regularity solu-
tions u of the semilinear generalized Tricomi equation @2t u� t

m�uD F.u/

with initial data .u.0; � /; @tu.0; � // 2 PH .Rn/ � PH �2=.mC2/.Rn/ under
the assumptions that jF.u/j . juj� and jF 0.u/j . juj��1 for some � > 1.
Our results improve previous results of M. Beals and ourselves. We estab-
lish Strichartz-type estimates for the linear generalized Tricomi operator
@2t � t

m� from which the semilinear results are derived.

1. Introduction

In this paper, we are concerned with the local well-posedness problem for minimal
regularity solutions u of the semilinear generalized Tricomi equation

(1-1)
@2t u� t

m�uD F.u/ in Œ0; T ��Rn;

u.0; � /D ' 2 PH  .Rn/; @tu.0; � /D  2 PH
�2=.mC2/.Rn/;

where n� 2, m2N,  2R, �D
Pn
iD1 @

2
i , and T >0. The nonlinearity F 2C 1.R/

obeys the estimates

(1-2) jF.u/j. juj� ; jF 0.u/j. juj��1

for some � > 1. For n � 3 and � > �3 (see below) we further assume that � 2 N

and F.u/D˙u� .
The main objective of this paper is to find the minimal number  for which (1-1)

under assumption (1-2) possesses a unique local solution

u 2 C.Œ0; T �; PH  .Rn//\Ls..0; T /ILq.Rn//

for certain s; q with minfs; qg � �. Then F.u/ 2 Ls=�..0; T /ILq=�.Rn// �
L1loc..0; T /�Rn/ holds, and (1-1) is understood in distributions.
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We first introduce notation used throughout this paper. Set

�� D
.mC2/nC2

2
; �� D

��C2

���2
D
.mC2/nC6

.mC2/n�2
;

�0 D 1C
6��Cm

��.mC 2/n
if n� 3 or nD 2, m� 3;

�1 D

8<:2 if nD 2, mD 1I
.��C 2/.mC 2/.n� 1/C 8

.��� 2/.mC 2/.n� 1/C 8
if n� 3 or nD 2, m� 2I

�2 D
��.��C 2/.n� 1/� 2.nC 1/

��.��� 2/.n� 1/� 2.nC 1/
;

�3 D
���m

���m� 4
if n� 3:

Note that �� is the homogeneous dimension of the degenerate differential operator
@2t � t

m� and �� is the power � for which the equation @2t u� t
m�uD˙juj��1u

is conformally invariant.
Note further that 1 < �0 < �1 < �� < �2 < �3 whenever it applies.
Next we state the main results of this paper.

Theorem 1.1. Let n� 2 and F be as above. Suppose further � > �1 and .';  / 2
PH  .Rn/� PH �2=.mC2/.Rn/, where

(1-3)  D .�;m; n/D

8̂̂<̂
:̂
1
4
.nC 1/�

nC1

��.��1/
�

m

2��.mC2/
if �1 < � � ��;

1
2
n�

4

.mC2/.��1/
if � � ��:

Then problem (1-1) possesses a unique solution

u 2 C.Œ0; T �I PH  .Rn//\Ls..0; T /ILq.Rn//

for some T > 0, where

(1-4) kuk
C.Œ0;T �I PH .Rn//

CkukLs..0;T /ILq.Rn//

. k'k PH .Rn/
Ck k PH�2=.mC2/.Rn/

and q D ��.� � 1/=2,

1

s
D

8<:
1
4
.mC 2/.n� 1/

�
1
2
�
1
q

�
C

m

4��
if �1 < � � ��;

1
q

if � � ��:

Remark 1.2. As a byproduct of the proof of Theorem 1.1, we see that problem (1-1)
admits a unique global solution u2C.Œ0;1/I PH  .Rn//\L1..0;1/I PH  .Rn//\

L��.��1/=2.RC � Rn/ in case n � 2, � � �� if .';  / D ".u0; u1/, .u0; u1/ 2
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PH  .Rn/� PH �2=.mC2/.Rn/, and ">0 is small (see Section 5.1.2 and Section 5.1.3
in the proof of Theorem 1.1 below). With a different argument, the global result
u 2 L��.��1/=2.RC �Rn/ for problem (1-1) was obtained in [He et al. 2017].

Remark 1.3. For  < n=2 � 4=..mC 2/.� � 1//, one obtains ill-posedness for
problem (1-1) by scaling. More specifically, if u D u.t; x/ solves the Cauchy
problem (1-1), where F.u/D˙juj��1u, then

u".t; x/D "
�2=.��1/u."�1t; "�.mC2/=2x/; " > 0;

also solves (1-1), with u".0; x/ D '".x/, @tu".0; x/ D  ".x/ for some resulting
'",  ". Observe that

k'"k PH .Rn/

k'k PH .Rn/

D
k "k PH .Rn/

k k PH .Rn/

D "
1
2
.mC2/

�
1
2
n�

�
� 2
��1 ;

and 1
2
.mC 2/.n

2
� /� 2=.� � 1/ > 0 for  < n=2� 4=..mC 2/.� � 1//. Hence,

 < n=2� 4=..mC 2/.� � 1// implies that both the norm of the data .'";  "/ and
the lifespan T"D "T of the solution u" go to zero as "! 0, where T is the lifespan
of the solution u.

In case �� � � < �2, as a supplement to Theorem 1.1, we consider the local
existence and uniqueness of solutions u of problem (1-1) in the space C.Œ0; T �I
PH  .Rn//\Ls..0; T /ILq.Rn// for certain s ¤ q.

Theorem 1.4. Let n� 2, F be as above,  D .�;m; n/ be as in Theorem 1.1, and
suppose that �� � � < �2. Then the unique solution u of problem (1-1) also belongs
to the space Ls..0; T /ILq.Rn//, where

1

q
D

1

.mC2/.n�1/

�
8

��1
�
m

��

�
�

n�1

2.nC1/

and
1

s
D
.mC2/.n�1/

4

�
1

2
�
1

q

�
C

m

4��
:

Moreover, estimate (1-4) is satisfied.

If n� 3 or nD 2, m� 3, then we find a number .�;m; n/ also for certain � in
the range �0 � � < �1.

Theorem 1.5. Let n� 3 or nD 2 with m� 3. Let F be as above and �0 � � < �1.
In addition, let the exponent  D .�;m; n/ in (1-1) be given by

(1-5) .�;m; n/

D
nC1

4
�

nC1

4��.mC2/
�
��.mC2/.n�1/C12��C2m

2n��.nC1/
�

m

2��.mC2/
:
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Then problem (1-1) possesses a unique solution u2C.Œ0; T �I PH  .Rn//\Ls..0; T /I

Lq.Rn// for some T > 0, where

1

q
D

1

2n��.nC1/

�
1
2
.n� 1/C

6

mC2
C

m

��.mC2/

�
and

1

s
D

1
4
.mC 2/.n� 1/

�
1

2
�
1

q

�
C

m

4��
:

Moreover, estimate (1-4) is satisfied.

Remark 1.6. Other than for the wave equation when mD 0 (see also Remark 1.8
below), here  can be negative in certain situations. In fact, .�;m; n/ < 0 holds in
the following cases:

(i) �1 < � < 35
17

(< ��) if nD 2, mD 1 and �1 < � < 13
7

(< ��) if nD 2, mD 2
(see Theorem 1.1);

(ii) �0 < � <
��.��C 2/.nC 1/

��.��� 1/.nC 1/�mn
.� �1/

if n� 3 or nD 2, m� 3 (see Theorem 1.5).

Remark 1.7. For initial data .';  / belonging to H  .Rn/ �H �2=.mC2/.Rn/,
where  � .�;m; n/, Theorems 1.1, 1.4, and 1.5 remain valid.

Remark 1.8. For mD 0, (1-1) becomes

@2t u��uD F.u/ in .0; T /�Rn;

u.0; � /D ' 2 PH  .Rn/; @tu.0; � /D  2 PH
�1.Rn/;

while the exponents ��; �0; �1; �2, and �3 are

�� D
nC 3

n� 1
; �2 D

.nC 1/2� 6

.n� 1/2� 2
; �1 D

.nC 1/2

.n� 1/2C 4
if n� 3;

�0 D
nC3

n
; �3 D

nC1

n�3
if n� 4:

For n� 3,  defined in (1-3) equals

(1-6) .�; 0; n/D

(
1
4
.nC 1/� 1=.� � 1/ if �1 < � � ��;
1
2
n� 2=.� � 1/ if � � ��;

whereas, for n� 4,  defined in (1-5) equals

(1-7) .�; 0; n/D 1
4
.nC 1/� 1

4
.nC 1/.nC 5/

1

2n��.nC1/
:

Note that the numbers in (1-6) and (1-7) are exactly those in [Lindblad and Sogge
1995, (2.1) and (2.5)]. In that paper, the local existence problem for minimal
regularity solutions of the semilinear wave equation was systematically studied.
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The results were achieved by establishing Strichartz-type estimates for the linear
wave operator @2t ��. Under certain restrictions on the nonlinearity F.u;ru/, for
the more general semilinear wave equation

@2t u��uD F.u;ru/; u.0; x/D '.x/; @tu.0; x/D  .x/;

many remarkable results on the ill-posedness or well-posedness problem on the
local existence of low regularity solutions have been obtained; see [Kapitanski
1994; Lindblad 1998; Lindblad and Sogge 1995; Ponce and Sideris 1993; Smith
and Tataru 2005; Struwe 1992].

Remark 1.9. There are some essential differences between degenerate hyperbolic
equations and strictly hyperbolic equations. Amongst others, the symmetry group
is smaller (see [Lupo and Payne 2005]) and there is a loss of regularity for the
linear Cauchy problem (see, e.g., [Dreher and Witt 2005; Taniguchi and Tozaki
1980]). Therefore, when compared to the semilinear wave equation, a more delicate
analysis is required when one studies minimal regularity results for the semilinear
generalized Tricomi equation in the degenerate hyperbolic region.

The Tricomi equation (i.e., (1-1) for nD 1, mD 1) was first studied by Tricomi
[1923], who initiated work on boundary value problems for linear partial differ-
ential operators of mixed elliptic-hyperbolic type. So far, these equations have
been extensively studied in bounded domains under suitable boundary conditions
and several applications to transonic flow problems were given (see [Bers 1958;
Germain 1954; Tricomi 1923; Morawetz 2004]). Conservation laws for equations
of mixed type were derived by Lupo and Payne [2003; 2005]. In [Ruan et al.
2015b], we established the local solvability for low regularity solutions of the
semilinear equation @2t u � t

m�u D F.u/, where n � 2, m 2 N is odd, in the
domain .�T; T /�Rn for some T > 0. In [Barros-Neto and Gelfand 1999; 2002;
Yagdjian 2004; 2015], fundamental solutions for the linear Tricomi operator and
the linear generalized Tricomi operator have been explicitly computed. In the case
nD 2 and mD 1, Beals [1992] obtained the local existence of the solution u of the
equation @2t u� t�uD F.u/ with initial data of H s-regularity, where s > 1

2
n. For

the equation @2t u� t
m�uD a.t/F.u/, where n� 2, m 2N is even, and both a and

F are of power type, Yadgjian [2006] obtained global existence and uniqueness for
small data solutions provided the solution v of the linear problem @2t v� t

m�v D 0

fulfills tˇv2C.Œ0;1/ILq.Rn// for certain ˇ, q depending on n,m, and the powers
occurring in a and F .

In [Ruan et al. 2014; 2015a], for the semilinear generalized Tricomi equation
@2t u � t

m�u D F.u/ with initial data of a special structure, i.e., homogeneous
of degree 0 or piecewise smooth along a hyperplane, we obtained local existence
and uniqueness via establishing L1 estimates on the solutions v of the linear
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equation @2t v � t
m�v D g. Note that when the nonlinear term F.u/ is of power

type, for higher and higher powers of �, theseL1 estimates are basically required to
guarantee existence. In this paper, where the initial data in PH  .Rn/ is of no special
structure and  is minimal to guarantee local well-posedness of problem (1-1), the
arguments of [Ruan et al. 2014; 2015a] fail. Inspired by the methods in [Lindblad
and Sogge 1995], however, we are able to overcome the technical difficulties related
to degeneracy and low regularity and eventually obtain the local well-posedness of
problem (1-1).

We first study the linear problem

(1-8)
@2t u� t

m�uD f .t; x/ in .0; T /�Rn,

u.0; � /D '.x/; @tu.0; � /D  .x/;

and establish Strichartz-type estimates of the form

(1-9) kuk
C0t
PH

x .ST /

CkukLstL
q
x.ST /

� C
�
k'k PH .Rn/

Ck k PH�2=.mC2/.Rn/
Ckf kLrtL

p
x .ST /

�
for certain s, q, r , p (see below) and some constant C D C.T; ; s; q; r; p/ > 0,
where ST D .0; T / � Rn. Note that, by scaling, a necessary condition for this
estimate in case T D1 to hold is

(1-10) 1
2
.mC 2/n

�
1

p
�
1

q

�
C
1

r
�
1

s
D 2:

In doing so, in Section 2, we introduce certain Fourier integral operators W
(DW 0) andW ˛ for ˛2C. These operators depend on a parameter��2, introduced
in (2-15), which plays an auxiliary role for the linear problems and agrees with
the homogeneous dimension �� when applied to the semilinear problems. Along
with the operators W and W ˛ we also consider their dyadic parts Wj and W ˛

j ,
respectively, resulting from a dyadic decomposition of frequency space. Continuity
of the operators Wj and W ˛

j between function spaces which holds uniformly in j
ultimately provides linear estimates on the solutions u of (1-8).

In Section 3, we prove boundedness of the operators W ˛
j from LrtL

p
x .R

1Cn
C

/ to
Lr
0

t L
p0

x .R
1Cn
C

/ (see Theorem 3.1) and from LrtL
p
x .R

1Cn
C

/ to L1t L
2
x.R

1Cn
C

/ (see
Theorem 3.4), where� has to satisfy the lower bound��maxf2;m=2g. Combining
Theorem 3.1 and Stein’s analytic interpolation theorem, we show boundedness
of the operators W ˛

j from Lq.R1Cn
C

/ to Lp0.R1Cn
C

/, where q0 � q � 1 (see
Theorem 3.6). Through an additional dyadic decomposition now with respect to the
time variable t , using Theorems 3.1 and 3.6 together with interpolation, we prove
boundedness of the operators Wj from LrtL

p
x ..0; T /�Rn/ to LstL

q
x..0; T /�Rn/

for any T > 0 (see Theorems 3.7 and 3.8), where � has to satisfy the new lower
bounds ���� (Theorem 3.7) and ��maxf2;mn=2g (Theorem 3.8), respectively.
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In the sequel, we shall use the following notation:

1

p0
D
1

2
C

2��m

�.2���m/
;

1

p1
D
1

2
C

2��m

�.mC2/.n�1/
;

1

p2
D

2

p0
�
1

p1
:

Note that
1 < p1 � p0 � p2 � 2 if n� 3 or nD 2, m� 2;

while 1�p1 in case of nD 2 and mD 1 requires �D 2 (and then p1D 1). For 1�
p�2, p0 denotes the conjugate exponent ofp defined by 1=pC1=p0D1. Further, q`
denotes p0

`
for `D0; 1; 2, while q�0 equals q0 when�D�� (see Remark 4.2). We of-

ten abbreviate function spaces C 0t PH

x .ST /DC.Œ0; T �I PH

 .Rn// andLrtL
p
x .ST /D

Lr..0; T /ILp.Rn//, andA.B means thatA�CB holds for some generic constant
C > 0.

The paper is organized as follows: In Section 2, we define a class of Fourier
integral operators associated with the linear generalized Tricomi operator @2t � t

m�

in RC � Rn. Then, in Section 3, we establish a series of mixed-norm space-
time estimates for those Fourier integral operators. These estimates are applied,
in Section 4, to obtain Strichartz-type estimates for the solutions of the linear
generalized Tricomi equation which in turn, in Section 5, allow us to prove the
local existence and uniqueness results for problem (1-1).

2. Some preliminaries

In this section, we first recall an explicit formula for the solution of the linear
generalized Tricomi equation obtained in [Taniguchi and Tozaki 1980] and then
apply it to define a class of Fourier integral operators which will play a key role in
proving our main results.

Consider the Cauchy problem of the linear generalized Tricomi equation

(2-1) @2t u� t
m�uD f .t; x/ in RC �Rn; u.0; � /D '; @tu.0; � /D  :

Its solution u can be written as uD vCw, where v solves the Cauchy problem of
the homogeneous equation

(2-2) @2t v� t
m�v D 0 in RC �Rn; v.0; � /D '; @tv.0; � /D  ;

and w solves the inhomogeneous equation with zero initial data:

(2-3) @2tw� t
m�w D f .t; x/ in RC �Rn; w.0; � /D @tw.0; � /D 0:

Recall that (see [Taniguchi and Tozaki 1980] or [Yagdjian 2006]) the solutions v
and w of problems (2-2) and (2-3) can be expressed as

v.t; x/D V0.t;Dx/'.x/CV1.t;Dx/ .x/
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and

(2-4) w.t; x/D

Z t

0

�
V1.t;Dx/V0.�;Dx/�V0.t;Dx/V1.�;Dx/

�
f .�; x/ d�;

where the symbols Vj .t; �/ (j D 0; 1) of the Fourier integral operators Vj .t;Dx/ are

(2-5)
V0.t; �/D e

�z=2ˆ
�

m

2.mC2/
;
m

mC2
I z
�
;

V1.t; �/D te
�z=2ˆ

�
mC4

2.mC2/
;
mC4

mC2
I z
�
;

with z D 2i�.t/j�j and �.t/ D .2=.m C 2//t .mC2/=2. Here, ˆ.a; cI z/ is the
confluent hypergeometric function which is an analytic function of z. Recall (see
[Erdélyi et al. 1953, p. 254]) that

(2-6)
dn

dzn
ˆ.a; cI z/D

.a/n

.c/n
ˆ.aCn; cCnI z/;

where .a/0 D 1, .a/n D a.aC 1/ : : : .aC n� 1/. In addition, for 0 < arg.z/ < � ,
one has that (see [Yagdjian 2006, (3.5)–(3.7)])

(2-7) e�z=2ˆ.a; cI z/D
�.c/

�.a/
ez=2HC.a; cI z/C

�.c/

�.c � a/
e�z=2H�.a; cI z/;

where

HC.a; cI z/

D
e�i�.c�a/

ei�.c�a/� e�i�.c�a/

1

�.c � a/
za�c

Z .0C/

1

e���c�a�1
�
1�

�

z

�a�1
d�;

H�.a; cI z/D
1

ei�a � e�i�a
1

�.a/
z�a

Z .0C/

1

e���a�1
�
1C

�

z

�c�a�1
d�:

Moreover, it holds that

(2-8)

ˇ̌
@
ˇ

�

�
HC.a; cI 2i�.t/j�j/

�ˇ̌
..�.t/j�j/a�c.1Cj�j/�jˇ j if �.t/j�j � 1;ˇ̌

@
ˇ

�

�
H�.a; cI 2i�.t/j�j/

�ˇ̌
..�.t/j�j/�a.1Cj�j/�jˇ j if �.t/j�j � 1:

Choose � 2 C1c .RC/ such that 0� �� 1 with �.r/D 1 if r � 1 and �.r/D 0
if r � 2. Then from (2-5) and (2-7), we can write

(2-9) V0.t;Dx/'.x/

D

Z
Rn
ei.x����.t/j�j/b1.t; �/ O'.�/ µ �C

Z
Rn
ei.x��C�.t/j�j/b2.t; �/ O'.�/ µ �
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and

(2-10) V1.t;Dx/ .x/

D

Z
Rn
ei.x����.t/j�j/b3.t; �/ O .�/ µ �C

Z
Rn
ei.x��C�.t/j�j/b4.t; �/ O .�/ µ �;

where

b1.t; �/D �.�.t/j�j/ˆ
�

m

2.mC2/
;
m

mC2
I z
�

C
�
1� �.�.t/j�j/

�
H�

�
m

2.mC2/
;
m

mC2
I z
�
;

b2.t; �/D
�
1� �.�.t/j�j/

�
HC

�
m

2.mC2/
;
m

mC2
I z
�
;

b3.t; �/D t�.�.t/j�j/ˆ
�
mC4

2.mC2/
;
mC4

mC2
I z
�

C t
�
1� �.�.t/j�j/

�
H�

�
mC4

2.mC2/
;
mC4

mC2
I z
�
;

b4.t; �/D t
�
1� �.�.t/j�j/

�
HC

�
mC4

2.mC2/
;
mC4

mC2
I z
�
;

and µ � D .2�/�n d� . We can also write

(2-11)
Z t

0

V0.t;Dx/V1.�;Dx/f .�; x/ d�

D

Z t

0

Z
Rn
ei.x��C.�.t/C�.�//j�j/b2.t; �/b4.�; �/ Of .�; �/ µ � d�

C

Z t

0

Z
Rn
ei.x��C.�.t/��.�//j�j/b2.t; �/b3.�; �/ Of .�; �/ µ � d�

C

Z t

0

Z
Rn
ei.x���.�.t/C�.�//j�j/b1.t; �/b3.�; �/ Of .�; �/ µ � d�

C

Z t

0

Z
Rn
ei.x���.�.t/��.�//j�j/b1.t; �/b4.�; �/ Of .�; �/ µ � d�

and Z t

0

V1.t;Dx/V0.�;Dx/f .�; x/ d�(2-12)

D

Z t

0

Z
Rn
ei.x��C.�.t/C�.�//j�j/b4.t; �/b2.�; �/ Of .�; �/ µ � d�

C

Z t

0

Z
Rn
ei.x���.�.t/��.�//j�j/b3.t; �/b2.�; �/ Of .�; �/ µ � d�

C

Z t

0

Z
Rn
ei.x���.�.t/C�.�//j�j/b3.t; �/b1.�; �/ Of .�; �/ µ � d�
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C

Z t

0

Z
Rn
ei.x��C.�.t/��.�//j�j/b4.t; �/b1.�; �/ Of .�; �/ µ � d�;

where Of .�; �/ is the Fourier transform of f .�; x/ with respect to the variable x.
In view of the analyticity of ˆ.a; cI z/ with respect to the variable z, identity

(2-6), and estimates (2-8), we have that, for .t; �/ 2 R1Cn
C

,

(2-13) j@
ˇ

�
b`.t; �/j. .1C�.t/j�j/�

m
2.mC2/ j�j�jˇ j; `D 1; 2;

and

(2-14) j@
ˇ

�
b`.t; �/j. t .1C�.t/j�j/�

mC4
2.mC2/ j�j�jˇ j; `D 3; 4:

Thus, for `D 1; 2, k D 3; 4, �� 2, t; � > 0, and � 2 Rn, one has from (2-13) and
(2-14) that

(2-15)
ˇ̌
@
ˇ

�

�
bk.t; �/b`.�; �/

�ˇ̌
. t .1C�.t/j�j/�

mC4
2.mC2/ .1C�.�/j�j/�

m
2.mC2/ j�j�jˇ j

. .1C�.t/j�j/�
m

2.mC2/ .1C�.�/j�j/�
m

2.mC2/ j�j�
2

mC2
�jˇ j

. .1Cj�.t/��.�/jj�j/�
m

�.mC2/ j�j�
2

mC2
�jˇ j:

Furthermore, estimates (2-13)–(2-15) yield that, for `D 1; 2, k D 3; 4, or `D 3; 4,
k D 1; 2 and for �� 2, t; s > 0, and � 2 Rn, one has

(2-16)
ˇ̌̌̌
@
ˇ

�

�Z 1
t

b`.�; �/bk.t; �/ @� .b`.�; �/bk.s; �// d�
�ˇ̌̌̌

. .1Cj�.t/��.s/jj�j/�
m

�.mC2/ j�j�
4

mC2
�jˇ j

and

(2-17)
ˇ̌̌̌
@
ˇ

�

�Z 1
s

b`.�; �/bk.t; �/ @� .b`.�; �/bk.s; �// d�

�ˇ̌̌̌
. .1Cj�.t/��.s/jj�j/�

m
�.mC2/ j�j�

4
mC2
�jˇ j:

In order to study the function w in (2-4), in view of (2-11), (2-12), and (2-15)–
(2-17), it suffices to consider, for a given �� 2, the Fourier integral operator W :

(2-18) Wf .t; x/D

Z t

0

Z
Rn
ei.x��C.�.t/��.s//j�j/b.t; s; �/ Of .s; �/ µ � ds;

where b 2 C1.RC �RC �Rn/ satisfies the following:

(i) for t; s > 0 and � 2 Rn,

(2-19) j@
ˇ

�
b.t; s; �/j. .1Cj�.t/��.s/jj�j/�

m
�.mC2/ j�j�

2
mC2
�jˇ j
I
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(ii) for t; s > 0 and � 2 Rn,

(2-20)
ˇ̌̌̌
@
ˇ

�

�Z 1
t

b.�; t; �/ @�b.�; s; �/ d�

�ˇ̌̌̌
. .1Cj�.t/��.s/jj�j/�

m
�.mC2/ j�j�

4
mC2
�jˇ j

and

(2-21)
ˇ̌̌̌
@
ˇ

�

�Z 1
s

b.�; t; �/ @�b.�; s; �/ d�

�ˇ̌̌̌
. .1Cj�.t/��.s/jj�j/�

m
�.mC2/ j�j�

4
mC2
�jˇ j:

Let ‚ 2 C1c .RC/ satisfy supp‚�
�
1
2
; 2
�

and

1X
jD�1

‚.t=2j /D 1 for t > 0:

Then, as in [Lindblad and Sogge 1995], for j 2 Z and ˛ 2 C, we define dyadic
operators Wj and W ˛

j as

Wjf .t; x/D

Z t

0

Z
Rn
ei.x��C.�.t/��.s//j�j/bj .t; s; �/ Of .s; �/ µ � ds

and

(2-22) W ˛
j f .t; x/D

Z t

0

Z
Rn
ei.x��C.�.t/��.s//j�j/bj .t; s; �/ Of .s; �/

µ �

j�j˛
ds;

where bj .t; s; �/ D ‚.j�j=2j /b.t; s; �/. Here, b 2 C1.RC �RC �Rn/ satisfies
estimates (2-19)–(2-21).

Littlewood–Paley theory gives us a relationship betweenWf andWjf (DW 0
j f ),

which will play an important role in our arguments in Section 4.

Proposition 2.1. Let n� 2. For 1 < p � 2, 1� r � 2, 2� q <1, and 2� s �1,
let

(2-23) kWjf kLstL
q
x
. kf kLrtLpx

hold uniformly in j . Then

kWf kLstL
q
x
. kf kLrtLpx :

Proof. This is actually an application of [Lindblad and Sogge 1995, Lemma 3.8].
For the sake of completeness, we give the proof here. By Littlewood–Paley theory
(see, e.g., [Stein 1970]), for any 1 < � <1,

kWf .t; � /kL�.Rn/ .
� 1X

jD�1

jWjf .t; � /j
2

�1=2
L�.Rn/

. kWf .t; � /kL�.Rn/:
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Together with the Minkowski inequality, this yields

(2-24) kWf kLstL
q
x
.
� 1X
jD�1

kWjf k
2
LstL

q
x

�1=2
and

(2-25)
� 1X
jD�1

kWjf k
2
LrtL

p
x

�1=2
. kWf kLrtLpx :

Notice that

f D

1X
kD�1

fk;

where fk.�; x/D‚.�=2k/f .�; x/. Therefore, for some M0 2 N,

kWf k2
LstL

q
x

.
1X

jD�1

kWjf k
2
LstL

q
x

(by (2-24))

D

1X
jD�1

Wj� X
jj�kj�M0

fk

�2
LstL

q
x

(due to the compact support of ‚/

.
1X

jD�1

� X
jj�kj�M0

kWjfkkLstL
q
x

�2
(by Minkowski inequality)

.
1X

jD�1

X
jj�kj�M0

kfkk
2
LrtL

p
x

(by (2-23))

.
1X

jD�1

kfj k
2
LrtL

p
x
. kf k2

LrtL
p
x

(by (2-25));

which completes the proof of Proposition 2.1. �

3. Mixed-norm estimates for a class of Fourier integral operators

In this section, for j 2 Z, ˛ 2 C, and �� 2, we shall study mixed norm estimates
for the class of Fourier integral operators W ˛

j defined in (2-22).
We start by considering the boundedness of the operator W ˛

j from LrtL
p
x to

Lr
0

t L
p0

x , where 1 < r; p � 2. We denote �j D 2j . All the following estimates hold
uniformly in j .

Theorem 3.1. Let n� 2 and ��maxf2;m=2g. Then:
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(i) For maxfp1; 1g< p � 2 and

(3-1) 1

r
D 1�

m

4�
�
1
4
.mC 2/.n� 1/

�
1

p
�
1

2

�
;

we have that

(3-2) kW ˛
j f kLr0t L

p0

x .R
1Cn
C

/
. �

�
1
p
� 1
2

�
.nC1/� m

�.mC2/
� 2
mC2
�Re˛

j kf k
LrtL

p
x .R

1Cn
C

/
:

Consequently,

(3-3) kW ˛
j f kLr0t L

p0

x .R
1Cn
C

/
. kf k

LrtL
p
x .R

1Cn
C

/

if Re˛ D
�
1

p
�
1

2

�
.nC 1/�

m

�.mC2/
�

2

mC2
:

(ii) For p1 > 1 and 1 < p < p1, we have that

(3-4) kW ˛
j f kL2tL

p0

x .R
1Cn
C

/
. �

n
�
2
p
�1
�
� 4
mC2
�Re˛

j kf k
L2tL

p
x .R

1Cn
C

/
:

In particular,

(3-5) kW ˛
j f kL2tL

p0

x .R
1Cn
C

/
. kf k

L2tL
p
x .R

1Cn
C

/
if Re˛ D n

�
2

p
� 1

�
�

4

mC2
:

To prove Theorem 3.1, for fixed t; � > 0, we first consider the operator B˛j :

B˛j f .t; �; x/D

Z
Rn
ei.x��C.�.t/��.�//j�j/ bj .t; �; �/ Of .�; �/

µ �

j�j˛
:

Lemma 3.2. Let n� 2 and 1� p � 2. Then, for t; � > 0,

(3-6) kB˛j f .t; �; � /kLp0 .Rn/

. �
�
1
p
� 1
2

�
.nC1/� m

�.mC2/
� 2
mC2
�Re˛

j

�.�
� 2
mC2

j Cjt � � j/�.mC2/
�
1
p
� 1
2

�
n�1
2
� m
2� kf .�; � /kLp.Rn/:

Proof. Denote

(3-7) K˛j .t; �; x; y/D

Z
Rn
ei..x�y/��C.�.t/��.�//j�j/ bj .t; �; �/

µ �

j�j˛
:

Then B˛j f can be written as

B˛j f .t; �; x/D

Z
Rn
K˛j .t; �; x; y/f .�; y/ dy:
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Since supp� bj � f� 2 Rn j �j =2� j�j � 2�j g, we have from (2-19) that

(3-8) j@
ˇ

�
bj .t; �; �/j. �

� m
�.mC2/

� 2
mC2
�jˇ j

j .�
� 2
mC2

j Cjt � � j/�
m
2� :

We now apply (3-8) to derive estimate (3-6) by Plancherel’s theorem when p D 2
and by the stationary phase method when p D 1. By interpolation, we then obtain
(3-6) for 1 < p < 2.

Indeed, it follows from Plancherel’s theorem that

(3-9) kB˛j f .t; �; � /kL2x.Rn/

D kei.�.t/��.�//j�jbj .t; �; �/ Of .�; �/j�j
�˛
kL2

�
.Rn/

. �
� m
�.mC2/

� 2
mC2
�Re˛

j .�
� 2
mC2

j Cjt � � j/�
m
2� kf .�; � /kL2.Rn/:

On the other hand, by the stationary phase method (see, e.g., [Sogge 1993, Lemma
7.2.4]), we have that, for any N � 0,

(3-10) jK˛j .t; �; x; y/j

. �nj .1Cj�.t/��.�/j�j /
�n�1

2 .�
� 2
mC2

j Cjt � � j/�
m
2�

��
� m
�.mC2/

� 2
mC2
�Re˛

j

�
1C�j

ˇ̌
jx�yj � j�.t/��.�/j

ˇ̌��N
. �

nC1
2
� m
�.mC2/

� 2
mC2
�Re˛

j .�
� 2
mC2

j Cjt � � j/�
.mC2/.n�1/

4
� m
2�

�
�
1C�j

ˇ̌
jx�yj � j�.t/��.�/j

ˇ̌��N
:

Choosing N D 0 in (3-10) gives

k.B˛j f /.t; �; � /kL1.Rn/

� kK˛j .t; �; � ; � /kL1x;ykf .�; � /kL1.Rn/

. �
nC1
2
� m
�.mC2/

� 2
mC2
�Re˛

j .�
� 2
mC2

j Cjt � � j/�
1
4
.mC2/.n�1/� m

2� kf .�; � /kL1.Rn/:

Interpolation between (3-9) and this last estimate yields (3-6) in case 1 � p � 2,
which completes the proof of estimate (3-6). �

Proof of Theorem 3.1. Now we return to the proof of Theorem 3.1. From (3-7),
we have

(3-11) W ˛
j f .t; x/D

Z t

0

.B˛j f /.t; �; x/ d�:
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Using Minkowski’s inequality and estimate (3-6), we thus have that

(3-12) kW ˛
j f .t; � /kLp0 .Rn/

. �
�
1
p
� 1
2

�
.nC1/� m

�.mC2/
� 2
mC2
�Re˛

j

�

Z 1
0

.�
� 2
mC2

j Cjt � � j/�.mC2/
�
1
p
� 1
2

�
n�1
2
� m
2� kf .�; � /kLp.Rn/ d�:

Case 1: maxfp1; 1g< p � 2. In this case, we have 1 < r < 2. Note that

1

r
�
1

r 0
D�.mC 2/

�
1

p
�
1

2

�
n�1

2
�
m

2�
C 1:

Then it follows from the Hardy–Littlewood–Sobolev theorem and (3-12) that esti-
mate (3-2) holds.

Case 2: p1 > 1 and 1 < p < p1. In this case,

.mC 2/
�
1

p
�
1

2

�
n�1

2
C
m

2�
> 1:

Thus,

sup
t>0

Z 1
0

.�
� 2
mC2

j Cjt � � j/�.mC2/
�
1
p
� 1
2

�
n�1
2
� m
2� d� <1;

which together with Schur’s lemma and (3-12) yields (3-4). �
We would like to stress that in the proof of Theorem 3.1 only condition (2-19)

on the function b 2 C1.RC �RC �Rn/ was used, whereas the conditions (2-20)
and (2-21) were not required,

Remark 3.3. Note that the adjoint operator .W ˛
j /
� of W ˛

j is of the form

(3-13) .W ˛
j /
�f .t; x/D

Z 1
t

Z
Rn
ei.x��C.�.t/��.�//j�j/ bj .�; t; �/ Of .�; �/

µ �

j�j˛
d�:

By duality, we infer from Theorem 3.1 that

(3-14) k.W ˛
j /
�f k

Lr
0

t L
p0

x .R
1Cn
C

/

. �
�
1
p
� 1
2

�
.nC1/� m

�.mC2/
� 2
mC2
�Re˛

j kf k
LrtL

p
x .R

1Cn
C

/

if maxfp1; 1g< p � 2 and

(3-15) k.W ˛
j f /

�
k
L2tL

p0

x .R
1Cn
C

/
. �

n
�
2
p
�1
�
� 4
mC2
�Re˛

j kf k
L2tL

p
x .R

1Cn
C

/

if p1 > 1 and 1 < p < p1. Here, r is given in (3-1).

As an application of Theorem 3.1, we obtain the boundedness of the operator
W ˛
j from LrtL

p
x to L1t L

2
x , where 1 < r; p � 2.
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Theorem 3.4. Let n� 2 and ��maxf2;m=2g. Then:

(i) For maxfp1; 1g< p � 2 and r as in (3-1), we have that

(3-16) kW ˛
j f kL1t L

2
x.R

1Cn
C

/
. �

. 1
p
� 1
2
/nC1
2
� m
2�.mC2/

� 2
mC2
�Re˛

j kf k
LrtL

p
x .R

1Cn
C

/
:

Consequently,

(3-17) kW ˛
j f kL1t L

2
x.R

1Cn
C

/
. kf k

LrtL
p
x .R

1Cn
C

/

if Re˛ D
�
1

p
�
1

2

�
nC1

2
�

m

2�.mC2/
�

2

mC2
:

(ii) For p1 > 1 and 1 < p < p1, we have that

(3-18) kW ˛
j f kL1t L

2
x.R

1Cn
C

/
. �

n
�
1
p
� 1
2

�
� 3
mC2
�Re˛

j kf k
L2tL

p
x .R

1Cn
C

/
:

In particular,

(3-19) kW ˛
j f kL1t L

2
x.R

1Cn
C

/
. kf k

L2tL
p
x .R

1Cn
C

/
if Re˛ D n

�
1

p
�
1

2

�
�

3

mC2
:

Proof. For given j 2 Z and ˛ 2 C, denote U DW ˛
j f . Then from (2-22) we have

U.t/D

Z t

0

ei.�.t/��.�//
p
��bj .t; �;Dx/.��/

�˛=2f .�/ d�;

where bj .t; �;Dx/ is the pseudodifferential operator with full symbol bj .t; �; �/.
Then U.t/ solves the Cauchy problem

i@tU.t/D�t
m=2
p
��U.t/C ibj .t; t;Dx/.��/

�˛=2f .t/

C i

Z t

0

ei.�.t/��.�//
p
��@tbj .t; �;Dx/.��/

�˛=2f .�/ d�;

U.0/D 0:

Multiplying by U.t/ and then integrating over Rn yields

ih@tU.t/; U.t/i

D �tm=2h
p
��U.t/; U.t/iC ihbj .t; t;Dx/.��/

�˛=2f .t/; U.t/i

C i

� Z t

0

ei.�.t/��.�//
p
��@tbj .t; �;Dx/.��/

�˛=2f .�/ d�; U.t/

�
;
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and, therefore,

1

2

d

dt
kU.t/k2

D Re
� Z t

0

ei.�.t/��.�//
p
��@tbj .t; �;Dx/.��/

�˛=2f .�/ d�; U.t/

�
CRehb�j .t; t;Dx/.��/

�˛=2U.t/; f .t/i:

Consequently,

kU.s/k2

D 2Re
Z s

0

�Z t

0

ei.�.t/��.�//
p
��@tbj .t; �;Dx/.��/

�˛=2f .�/ d�; U.t/

�
dt

C 2Re
Z s

0

hb�j .t; t;Dx/.��/
�˛=2U.t/; f .t/i dt

.
ˇ̌̌̌Z s

0

Z
Rn
L˛j f .t; x/W

˛
j f .t; x/ dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z s

0

Z
Rn
b�j .t; t;Dx/W

2˛
j f .t; x/f .t; x/ dx dt

ˇ̌̌̌
D IC II;

where

ID
ˇ̌̌̌Z s

0

Z
Rn
L˛j f .t; x/W

˛
j f .t; x/ dx dt

ˇ̌̌̌
;

IID
ˇ̌̌̌Z s

0

Z
Rn
b�j .t; t;Dx/W

2˛
j f .t; x/f .t; x/ dx dt

ˇ̌̌̌
;

and

L˛j f .t; x/D

Z t

0

Z
Rn
ei.x��C.�.t/��.�//j�j/@tbj .t; �; �/ Of .�; �/

µ �

j�j˛
d�:

From (2-19), one has that, for any fixed t > 0, bj .t; t;Dx/ 2‰�2=.mC2/.Rn/, and
then b�j .t; t;Dx/ 2‰

�2=.mC2/.Rn/, which yields that the term II is essentiallyˇ̌̌̌Z s

0

Z
Rn
.W

2˛C2=.mC2/
j f /.t; x/f .t; x/ dx dt

ˇ̌̌̌
;

and thus by application of Theorem 3.1 it follows that

(3-20) II.

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
.nC1/

�
1
p
� 1
2

�
� m
�.mC2/

� 4
mC2
�2Re˛

j kf k2
LrtL

p
x .R

1Cn
C

/

if maxfp1; 1g< p � 2;

�
n
�
2
p
�1
�
� 6
mC2
�2Re˛

j kf k2
L2tL

p
x .R

1Cn
C

/
if 1 < p < p1:
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As for the term I, note that

ID
ˇ̌̌̌Z s

0

Z
Rn
.W ˛
j /
�L˛j f .t; x/f .t; x/ dx dt

ˇ̌̌̌
� k.W ˛

j /
�L˛j f kL�

0

t L
p0

x .R
1Cn
C

/
kf k

L
�
t L
p
x .R

1Cn
C

/
:

For any t > 0, we have from (3-13) that

(3-21) .W ˛
j /
�L˛j f .t; x/

D

Z 1
t

Z �

0

Z
Rn
ei.x��C.�.t/��.s//j�j/

� bj .�; t; �/@�bj .�; s; �/ Of .s; �/
µ �

j�j2˛
ds d�

D

Z t

0

Z
Rn
ei.x��C.�.t/��.s//j�j/

�

�Z 1
t

bj .�; t; �/@�bj .�; s; �/ d�

�
Of .s; �/

µ �

j�j2˛
ds

C

Z 1
t

Z
Rn
ei.x��C.�.t/��.s//j�j/

�

�Z 1
s

bj .�; t; �/@�bj .�; s; �/ d�

�
Of .s; �/

µ �

j�j2˛
ds:

Due to conditions (2-19)–(2-21), one has that the first and second term in (3-21)
are essentially W 2˛C2=.mC2/

j f and .W 2˛C2=.mC2/
j /�f , respectively, where b 2

C1.RC �RC �Rn/ satisfies condition (2-19). Then, by applying Theorem 3.1
and estimates (3-14) and (3-15), we have that

I.

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
.nC1/

�
1
p
� 1
2

�
� m
�.mC2/

� 4
mC2
�2Re˛

j kf k2
LrtL

p
x .R

1Cn
C

/

if maxfp1; 1g< p � 2;

�
n
�
2
p
�1
�
� 6
mC2
�2Re˛

j kf k2
L2tL

p
x .R

1Cn
C

/
if p1 > 1 and 1 < p < p1;

which together with (3-20) yields that

kU.t/k2 .

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
.nC1/

�
1
p
� 1
2

�
� m
�.mC2/

� 4
mC2
�2Re˛

j kf k2
LrtL

p
x .R

1Cn
C

/

if maxfp1; 1g< p � 2;

�
n
�
2
p
�1
�
� 6
mC2
�2Re˛

j kf k2
L2tL

p
x .R

1Cn
C

/
if p1 > 1 and 1 < p < p1:
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Note that kW ˛
j f .t; � /kL2.Rn/ D kU.t/k. Therefore, we have obtained estimates

(3-16)–(3-19), which completes the proof of Theorem 3.4. �

Remark 3.5. With similar arguments as in the proof of Theorem 3.4, we have from
Theorem 3.1 and estimates (3-14) and (3-15) that the operator .W ˛

j /
� also satisfies

the estimates (3-16)–(3-19).

Note that if rDp for r defined in (3-1), then rDpDp0. Combining Theorem 3.1
and the kernel estimate (3-10), we obtain boundedness of the operator W ˛

j from
Lp0.R1Cn

C
/ to Lq.R1Cn

C
/ for certain ˛ 2 C when q0 � q �1.

Theorem 3.6. Let ��maxf2;m=2g and q0 � q �1. Then

(3-22) kW ˛
j f kLq.R1Cn

C
/
. kf k

Lp0 .R
1Cn
C

/
;

where
Re˛ D n� 2

mC2
�

�
nC

2

mC2

��
1

q
C
1

q0

�
:

Proof. Case .i/: q D q0. Note that

n�
2

q0

�
nC

2

mC2

�
D

�
1

p0
�
1

2

�
.nC 1/�

m

�.mC2/
:

An application of (3-3) with r D p yields that

(3-23) kW ˛
j f kLq0 .R1Cn

C
/
.kf k

Lp0 .R
1Cn
C

/
; Re˛Dn� 2

mC2
�
2

q0

�
nC

2

mC2

�
:

Case .ii/: q D1. In order to derive (3-22), it suffices to show that the integral
kernel K˛j defined in (3-7) satisfies

(3-24)

sup
.t;x/2R

1Cn
C

Z
R
1Cn
C

jK˛j .t; �; x; y/j
q0 d� dy <1;

Re˛ D n� 2

mC2
�
1

q0

�
nC

2

mC2

�
:

In fact, from (3-7) we have

W ˛
j f .t; x/D

Z t

0

Z
Rn
K˛j .t; �; x; y/f .�; y/ dy d�:

By Hölder’s inequality, then

(3-25) kW ˛
j f kL1.R1Cn

C
/
.kf k

Lp0 .R
1Cn
C

/
; Re˛Dn� 2

mC2
�
1

q0

�
nC

2

mC2

�
:

Now it remains to derive estimate (3-24). In fact, due to the kernel estimate (3-10),
for any N > n and ˛ 2 C with Re˛ D n� 2=.mC 2/� 1=q0.nC 2=.mC 2//, we
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have by (3-10)Z
R
1Cn
C

jK˛j .t; �; x; y/j
q0 d� dy

. �
�
nC1
2
�Re˛� m

�.mC2/
� 2
mC2

�
q0

j

�

Z 1
0

.�
� 2
mC2

j Cjt � � j/�
�
.mC2/.n�1/

4
C m
2�

�
q0 d�

�

Z
Rn
.1C�j

ˇ̌
jx�yj � j�.t/��.�/j

ˇ̌
/�N dy

. �
�
nC1
2
�Re˛� m

�.mC2/
� 2
mC2

�
q0

j

�

Z 1
0

.�
� 2
mC2

j Cjt � � j/�
�
.mC2/.n�1/

4
C m
2�

�
q0 d�

���1j

Z 1
0

.1C r/�N .��1j r Cj�.t/��.�/j/n�1 dr

D �

�
nC1
2
�Re˛� m

�.mC2/
� 2
mC2

�
q0�1

j

�

Z 1
0

.�
� 2
mC2

j Cjt � � j/�
�
.mC2/.n�1/

4
C m
2�

�
q0

.��1j Cj�.t/��.�/j/
n�1 d�

�

Z 1
0

.1C r/�N
�r C�j j�.t/��.�/j
1C�j j�.t/��.�/j

�n�1
dr

. �
�
nC1
2
�Re˛� m

�.mC2/
� 2
mC2

�
q0�1

j

�

Z 1
0

.�
� 2
mC2

j Cjt � � j/�
�
.mC2/.n�1/

4
C m
2�

�
q0C

.mC2/.n�1/
2 d�

. �
�
n�Re˛� 2

mC2

�
q0�n�

2
mC2

j D 1;

and hence (3-24) holds.

Case .iii/: q0 < q <1. Applying Stein’s interpolation theorem, one obtains that
estimate (3-22) holds by interpolating between estimates (3-23) and (3-25). �

Now we consider boundedness of the operatorWj fromLrtL
p
x .ST / toLstL

q
x.ST /,

where 1=p is symmetric around 1=p0.

Theorem 3.7. Let n � 2. Further let p1 < p < p2 if n D 2, m � 2, or if n � 3,
and 1 < p < 7�=.4�� 2/ if nD 2, mD 1. Then, for any �� �� and T > 0,

(3-26) kWjf kLstL
q
x.ST /

. kf kLrtLpx .ST /;
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where r is defined as in (3-1) and

(3-27)

1

q
D
1

p
�

4

.mC2/.nC1/

�
1C

m

2�

�
;

1

s
D
.mC2/.n�1/

4

�
1

2
�
1

q

�
C
m

4�
:

Proof. Since 1=p is symmetric around 1=p0, by duality it suffices to consider the
case maxfp1; 1g< p � p0.

In order to derive (3-26), we now need a further dyadic decomposition with
respect to the time variable t . Choose a function � 2 C1c .RC/ such that 0� �� 1,
supp ��

�
1
2
; 2
�
, and

1X
`D�1

�.2�`t /D 1:

Let us fix �D 2j and set

�0.t/D
X
k�0

�.�2�kt /; �`.t/D �.�2
�`t / for ` 2 N:

Then,

Wjf .t; x/D

1X
kD0

Gkf .t; x/;

where

(3-28) Gkf .t; x/

D

Z t

0

Z
Rn
ei.x��C.�.t/��.�//j�j/�k.t � �/ bj .t; �; �/ Of .�; �/ µ � d�:

Hence, to derive (3-26), it suffices to show that, for any k 2 N0,

(3-29) kGkf kLstL
q
x.ST /

. 2�"pkkf kLrtLpx .ST /

for some "p > 0. From (3-1) and (3-27), we know that

.mC2/n

2

�
1

p
�
1

q

�
C
1

r
�
1

s
D 2:

Due to scaling invariance, we need to consider only the case �D 1 (by a change of
variable if �¤ 1). Repeating the arguments which are used to prove (3-2), we get
that, for any k 2 N0,

(3-30) kGkf kLr0t Lp
0

x .ST /
. 2�k..mC2/.1=p�1=2/.n�1/=2Cm=.2�//kf kLrtLpx .ST /:

Note that .mC 2/
�
1=p� 1

2

�
1
2
.n� 1/Cm=.2�/ > 1

3
, since p � p0.
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Furthermore, an immediate consequence of (3-16) for ˛ D 0 is

kGkf kL1t L
2
x.ST /

. kf kLrtLpx .ST /;

and thus, for any 1 < � <1,

(3-31) kGkf kL�t L
2
x.ST /

. kf kLrtLpx .ST /:

Choose

(3-32) � D
4p.2�Cm/

�.mC2/.nC1/.2�p/
� 1:

Then 0� � � 1 and, for the number q from (3-27),

1

q
D
�

p0
C
1��

2
:

For s from (3-27) and � from (3-32), we define s0 by

2
�
1

s
�
1

s0

�
D �

�
.mC 2/

�
1

p
�
1

2

�
n�1

2
C
m

2�

�
and then set �D �� such that

1

s0
D
�

r 0
C
1��

��
:

Since 2 < s < s0, by interpolating between (3-30) and (3-31) when � D ��, we
obtain that

(3-33) kGkf kLs0t L
q
x.ST /

. 2�2k.1=s�1=s0/kf kLrtLpx .ST /:

Let fI`g be nonoverlapping intervals of side length 2k and
S
` I` D RC, and

denote by �I the characteristic function of I . In view of (3-28) and the compact
support of �k , we have that if f .t; x/D 0 for t … I`, then Gkf .t; x/D 0 for t … I�

`
,

where I�
`

is the interval with the same center as I` but of side length C02k with
some constant C0 D C0.�/ > 0. Thus, from Minkowski’s inequality,

(3-34) kGkf .t; � /k
s
Lq.Rn/ �

�X
`

kGk.�I`f /.t; � /kLq.Rn/

�s
.
X
`

kGk.�I`f /.t; � /k
s
Lq.Rn/:
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Denote I�
`
D I�

`
\ .0; T /. Estimate (3-34) together with Hölder’s inequality and

(3-33) yields that, for any k 2 N0,

kGkf k
s
LstL

q
x.ST /

.
X
`

kGk.�I`f /k
s

LstL
q
x.I
�
`
�Rn/

.
X
`

jI�
`
j
1�s=s0kGk.�I`f /k

s

L
s0
t L

q
x.I
�
`
�Rn/

. 2k.1�s=s0/2�2ks.1=s�1=s0/
X
`

k�I`f k
s
LrtL

p
x .ST /

. 2�k.1�s=s0/kf kLrtLpx .ST /:

Therefore, we get estimate (3-29) with "p D 1� s=s0 and, hence, (3-26) holds. �

By a similar argument as in the proof of Theorem 3.7, we obtain the boundedness
of operator Wj from L2tL

p
x .ST / to LstL

q
x.ST / when p1 > 1 and 1 < p < p1.

Theorem 3.8. Let n � 3 or n D 2, m � 2. Suppose 1 < p < p1. Then, for
��maxf2;mn=2g and T > 0, we have that

(3-35) kWjf kLstL
q
x.ST /

. kf kL2tLpx .ST /;

where

(3-36)

1

q
D

2n

p.nC1/
�

n�1

2.nC1/
�

mC6�

�.mC2/.nC1/
;

1

s
D .mC 2/

�
1

2
�
1

q

��
n�1

4

�
C
m

4�
:

Proof. Note that when 1 < p < p1, we have

.mC 2/
�
1

p
�
1

2

��
n�1

2

�
C
m

2�
> 1:

Then we can apply similar arguments as in the proof of Theorem 3.7 to obtain
(3-35). We omit the details. �

Remark 3.9. By similar arguments as above one can show that under assumptions
(3-27) and (3-36), adjoints .Wj /� of Wj also satisfy estimates (3-26) and (3-35),
respectively.

4. Mixed-norm estimates for the linear generalized Tricomi equation

In this section, based on the mixed-norm space-time estimates of the Fourier integral
operators W ˛

j obtained in Section 3, we shall establish Strichartz-type estimates
for the linear generalized Tricomi equation.

First we consider the inhomogeneous equation with zero initial data, i.e., problem
(2-3).
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Theorem 4.1. Let n � 2. Suppose w is a solution of (2-3) in ST for some T > 0.
Then:

(i) For �� ��,

(4-1) kwkLstL
q
x.ST /

. kf kLrtLpx .ST /;

provided that p1 <p <p2 if n� 3 or nD 2, m� 2; and 1 < p < 7�=.4��2/
if nD 2 andmD 1. Here r D r.p; �/ is as in (3-1) and q and s are taken from
(3-27).

(ii) For ��maxf2;m=2g,

(4-2) kwkLq.ST / . kjDxj
�0f kLp0 .ST /; q0 � q <1;

where

(4-3)
 D .m; n; q/D

n

2
�
1

q

�
nC

2

mC2

�
;

0 D 0.m; n; �/D
1

q0

�
nC

2

mC2

�
C

2

mC2
�
n

2
:

(iii) For ��maxf2;m=2g, maxfp1; 1g< p � 2, and 0 < t � T ,

(4-4) kw.t; � /k PH .Rn/
. kf kLrtLpx .ST /;

where r D r.m; n; p; �/ is defined in (3-1) and

 D .m; n; �; p/D
2

mC2
C

m

2�.mC2/
�

�
1

p
�
1

2

�
nC1

2
:

(iv) For ��maxf2;m=2g,  2 R, and 0� t � T ,

(4-5) kw.t; � /k PH .Rn/
.
jDxj�0f Lp0 .ST /;

where 0 is from (4-3).

Remark 4.2. If we choose �D ��, then

p0 D p
�
0 D

2��

��C 2
; q0 D q

�
0 D

2��

��� 2
;

and for  and 0 defined in (4-3),

.m; n; q�0 /D 0.m; n; ��/D
1

mC2
:

Thus, we have from (4-2) that

kwk
L
q�
0 .ST /

. kf k
L
p�
0 .ST /

;
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which, for any � 2 R, together with ŒjDxj�; @2t � t
m��D 0 implies thatjDxj�w

L
q�
0 .ST /

.
jDxj�f 

L
p�
0 .ST /

:

Proof of Theorem 4.1. (i): One obtains (4-1) by applying Proposition 2.1 and
Theorem 3.7 directly.

(ii): For ˛ 2 C, the Fourier transform of jDxj˛f .t; x/ with respect to the variable
x is j�j˛ Of .t; �/. Thus, we can write Wjf as

Wjf .t; x/

D

Z t

0

Z
Rn
ei.x��C.�.t/��.�//j�j/‚.j�j=2j / b.t; �; �/.2jDxj˛f /.�; �/j�j�˛ µ � d�

and Wj .f /DW ˛
j .jDxj

˛f /.
Therefore, applying Theorem 3.6, we get that

kWjf kLq.ST / D
W �0

j .jDxj
�0f /


Lq.ST /

.
jDxj�0f Lp0 .ST /;

which together with Proposition 2.1 yields (4-2).

(iii): Note that ŒjDxj ; @2t � t
m��D 0 and then

(4-6) .@2t � t
m�/.jDxj

w/D jDxj
f:

From .ii/ we know that Wj .jDxjf / D W
�
j .f /. Thus, for  D 2=.mC 2/C

m=.2�.mC 2//� .1=p� 1=2/.nC 1/=2, we have from estimate (3-17) thatWj .jDxjf /.t; � /L2.Rn/ D kW �j f .t; � /kL2.Rn/ . kf kLrtLpx :

Thus, by (4-6) and Proposition 2.1 it follows that.jDxjw/.t; � /L2.Rn/ . kf kLrtLpx ;
which together with Plancherel’s theorem implies that

kw.t; � /k PH .Rn/
D
j�j Ow.t; �/

L2
�
.Rn/
D
.jDxjw/.t; � /L2x.Rn/ . kf kLrtLpx ;

and estimate (4-4) holds.

(iv): From .ii/ we also know that

Wj .g/DW
�0
j .jDxj

�0g/:

In (3-1), we have r D p D p0 when r D p. The estimate (3-17) for

˛ D�0 D
�
1

p0
�
1

2

�
nC1

2
�

m

2�.mC2/
�

2

mC2
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with p D p0 yields that

kWj .g/.t; � /kL2.Rn/ D
W �0j .jDxj

�0g/.t; � /

L2.Rn/

.
jDxj�0g

Lp0 .ST /
;

and then, for g D jDxjf , where  2 R,

(4-7)
Wj .jDxjf /.t; � /L2.Rn/ . jDxj�0f Lp0 .ST /:

Therefore, one has from Plancherel’s theorem, Proposition 2.1, (4-6), and (4-7) that

kw.t; � /k PH .Rn/
D
.jDxjw/.t; � /L2.Rn/ . jDxj�0f Lp0 .ST /

Hence, estimate (4-5) holds. �

In case n� 2 and m� 2 if nD 2, we have a more complete set of inequalities
for the solution of the linear generalized Tricomi equation.

Theorem 4.3. Let n� 3 or nD 2 with m� 2. Suppose w solves (2-3) in ST . Then:

(i) For ��maxf2;mn=2g and 1=p1 < 1=p � 1
2
C .mC 6�/=.2�n.mC 2//,

(4-8) kwkLstL
q
x.ST /

. kf kL2tLpx .ST /;

where q and s are defined in (3-36).

(ii) For��maxf2;mn=2g and 1
2
�1=p< 1

2
C.2�.n�3/Cm.3n�1//=.�.mC2/

.n2� 1//,

(4-9) kwkL2tL
q
x.ST /

. kf kLrtLpx .ST /;

where r is defined in (3-1) and

(4-10) 1

q
D
nC1

2np
C
n�1

4n
�

mC6�

2�.mC2/n
:

(iii) For ��maxf2;m=2g and 1 < p < p1 and  D 3=.mC 2/�n
�
1=p� 1

2

�
,

(4-11) kw.t; � /k PH .Rn/
. kf kL2tLpx .ST /:

Proof. .i/ Note that, under these assumptions,

1 <
2�n.mC2/

�n.mC2/C6�Cm
� p < p1; 2� q <1; 2� s <1:

Thus, we get estimate (4-8) by applying Proposition 2.1 and Theorem 3.8.

(ii): This will follow from the dual version of Theorem 3.8. Indeed, when

1

2
�
1

p
<
1

2
C
2�.n�3/Cm.3n�1/

�.mC2/.n2�1/
;



MINIMAL REGULARITY SOLUTIONS OF GENERALIZED TRICOMI EQUATIONS 207

then, for q defined in (4-10),

1 <
2�.mC2/n

�.mC2/nC6�Cm
� q0 < p1

and
1

p0
D

2n

q0.nC1/
�

n�1

2.nC1/
�

mC6�

�.mC2/.nC1/
:

For r defined by (3-1), the conjugate exponent r 0 can be expressed by

r 0 D
8�p0

�.mC2/.n�1/.p0�2/C2mp0
:

Thus, from Remark 3.9, we have that

kW �j f kLr0t L
p0

x .ST /
. kf k

L2tL
q0

x .ST /
;

and then, by duality,

kWjf kL2tL
q
x.ST /

. kf kLrtLpx .ST /:

Therefore, from Proposition 2.1 we have that estimate (4-9) holds.

(iii): Note again thatWj .jDxjf /DW
�
j .f /. Then, in view of (4-6) and estimate

(3-19) for ˛D� Dn
�
1=p� 1

2

�
�3=.mC2/, one has that estimate (4-11) holds. �

Now we consider the Cauchy problem (2-2).

Theorem 4.4. Let n � 2 and � � maxf2;m=2g. Suppose v solves the Cauchy
problem (2-2). Then:

(i) For q0 � q <1,

(4-12) kvk
Lq.R

1Cn
C

/
. k'k PH .Rn/

Ck k PH�2=.mC2/.Rn/
;

where  D n=2� ..mC 2/nC 2/=.q.mC 2//.

(ii) For 2� q <1 when nD 2 andmD 1, and 2� q < q1 when n� 2 andm� 2
if nD 2,

(4-13) kvk
LstL

q
x.R

1Cn
C

/
. k'k PH .Rn/

Ck k PH�2=.mC2/.Rn/
;

where

1

s
D
.mC2/.n�1/

4

�
1

2
�
1

q

�
C
m

4�
;  D

nC1

2

�
1

2
�
1

q

�
�

m

2�.mC2/
:

(iii) For q1 < q <1 as well as n� 2 and m� 2 if nD 2,

(4-14) kvk
L2tL

q
x.R

1Cn
C

/
. k'k PH .Rn/

Ck k PH�2=.mC2/.Rn/
;

where  D n
�
1
2
� 1=q

�
� 1=.mC 2/.
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Proof. The goal is to prove that

(4-15) kvk
L�t L

�
x.R

1Cn
C

/
. k'k PH .Rn/

Ck k PH�2=.mC2/.Rn/

for certain 2� � �1 and 2� � <1.
Note that

t .1C�.t/j�j/�
mC4
2.mC2/ � .1C�.t/j�j/�

m
2.mC2/ j�j�

2
mC2

� .1C�.t/j�j/�
m

�.mC2/ j�j�
2

mC2 :

In order to establish (4-15), from the expression of the function v in (4-22) together
with (2-9) and (2-10) and the estimates of b`.t; �/.1� `� 4/ in (2-13) and (2-14),
it suffices to show that

(4-16) kP'k
L�t L

�
x.R

1Cn
C

/
. k'k PH .Rn/

;

where the operator P is of the form

.P'/.t; x/D

Z
Rn
ei.x��C�.t/j�j/a.t; �/ O'.�/ µ �

with a 2 C1.RC �Rn/ and, for any .t; �/ 2 R1Cn
C

,

(4-17) j@
ˇ

�
a.t; �/j. .1C�.t/j�j/�m=.�.mC2//j�j�jˇ j:

Note that P' can be written as

.P'/.t; x/D

Z
Rn
ei.x��C�.t/j�j/a.t; �/2jDxj'.�/ µ �

j�j
;

and, for hD jDxj', by Plancherel’s theorem,

khkL2.Rn/ D kj�j

O'kL2.Rn/ D k'k PH .Rn/

:

Therefore, in order to prove (4-16), it suffices to show that the operator Q, where

(4-18) .Qh/.t; x/D

Z
Rn
ei.x��C�.t/j�j/a.t; �/ Oh.�/

µ �

j�j
;

is bounded from L2.Rn/ to L�t L
�
x.R

1Cn
C

/. By duality, it suffices to show that the
adjoint Q� of Q,

(4-19) .Q�f /.x/D

Z 1
0

Z
Rn
ei.x����.�/j�j/a.�; �/j�j� Of .�; �/ µ � d�;

satisfies

(4-20) kQ�f kL2.Rn/ . kf kL�0t L�
0

x .R
1Cn
C

/
:
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Note that

kQ�f k2
L2.Rn/

D

Z
Rn
.Q�f /.x/.Q�f /.x/ dx

D

Z
R
1Cn
C

QQ�f .t; x/f .t; x/ dt dx � kQQ�f kL�t L
�
x
kf k

L�
0

t L
�0

x
:

Thus, in order to get (4-20), we only need to show that

(4-21) kQQ�f kL�t L
�
x
. kf k

L�
0

t L
�0

x
:

From (4-18) and (4-19), we have that

QQ�f .t; x/D

Z 1
0

Z
Rn
ei.x��C.�.t/��.�//j�j/a.t; �/a.�; �/ Of .�; �/

µ �

j�j2
d�:

By (4-17), we further have thatˇ̌
@
ˇ

�
.a.t; �/a.�; �//

ˇ̌
. .1Cj�.t/��.�/jj�j/�

m
�.mC2/ j�j�jˇ j:

Thus, by Proposition 2.1, in order to get (4-21), it suffices to show that

kGjf kL�t L
�
x
. kf k

L�
0

t L
�0

x
;

where the operator Gj is defined as

Gjf .t; x/D

Z 1
0

Z
Rn
ei.x��C.�.t/��.�//j�j/‚.j�j=2j /a.t; �/a.�; �/ Of .�; �/

µ �

j�j2
d�:

Note that Gjf is essentially W 2�2=.mC2/
j f . Therefore, in order to get (4-14), it

suffices to show that

(4-22) kW
2�2=.mC2/
j f kL�t L

�
x
. kf k

L�
0

t L
�0

x
:

We first show (4-12): For  D n=2� .n.mC 2/C 2/=.q.mC 2// and q D q0,
we have that�

2 �
2

mC2

�
D

�
1

p0
�
1

2

�
.nC 1/�

m

�.mC2/
�

2

mC2
:

Thus, we have from estimate (3-3) when r D p D p0 that

(4-23)
W 2�2=.mC2/

j


Lq0 .R

1Cn
C

/
. kf k

Lp0 .R
1Cn
C

/
:

On the other hand, from (2-22) and the compact support of ‚,

(4-24) kW
2�2=.mC2/
j f k

L1.R
1Cn
C

/
. kf k

L1.R
1Cn
C

/
:
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By interpolation between (4-23) and (4-24), we obtain that

kW
2�2=.mC2/
j f k

Lq.R
1Cn
C

/
. kf k

Lq
0
.R
1Cn
C

/
; q0 � q �1;

where q0 is the conjugate exponent q. Therefore, we get estimate (4-12).
Next we derive (4-13). Since

1

s
D
.mC2/.n�1/

4

�
1

2
�
1

q

�
C
m

4�
;

we can write
1

s0
D 1�

.mC2/.n�1/

4

�
1

q0
�
1

2

�
�
m

4�
:

Thus, when  D .nC 1/=2
�
1
2
� 1=q

�
�m=.2�.mC 2//, applying estimate (3-3)

for maxfp1; 1g< q0 � 2, we have

kW
2�2=.mC2/
j f k

LstL
q
x.R

1Cn
C

/
. kf k

Ls
0

t L
q0

x .R
1Cn
C

/
;

and, therefore, estimate (4-13) holds.
Finally we prove (4-14). When  D n

�
1
2
�1=q

�
�1=.mC2/, we have from (3-5)

that, for p1 > 1 and 1 < q0 < p1,

kW
2�2=.mC2/
j f k

L2tL
q
x.R

1Cn
C

/
. kf k

L2tL
q0

x .R
1Cn
C

/
:

Thus, estimate (4-14) holds. �

Combining Theorems 4.1, 4.3, and 4.4, we obtain the following results:

Theorem 4.5. Let u solve the Cauchy problem (2-1) in the strip ST . Then

(4-25) kuk
C0t
PH

x .ST /

CkukLstL
q
x.ST /

. k'k PH .Rn/
Ck k PH�2=.mC2/.Rn/

Ckf kLrtL
p
x .ST /

;

provided that the exponents p, q, r , and s satisfy scaling invariance condition (1-10)
and one of the following sets of conditions:

(i) 1

p
�
1

q
D

4

.mC2/.nC1/

�
1C

m

2�

�
;

1

s
D
.mC2/.n�1/

4

�
1

2
�
1

q

�
C
m

4�
;

 D
nC1

2

�
1

2
�
1

q

�
�

m

2�.mC2/
;

where �� ��,

�
1

6�
<  <

47

84
C

25

42�
if nD 2;mD 1;

j � �j< d D
2.2��m/.nC1/

�.mC2/.n�1/.2���m/
if n� 3 or nD 2;m� 2;
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and
� D

2

mC2
C

m

2�.mC2/
�
.2��m/.nC1/

2�.2���m/
:

(ii) n� 3 or nD 2, m� 2 and r D 2,

1

s
D
.mC2/.n�1/

4

�
1

2
�
1

q

�
C
m

4�
;  D

nC1

2

�
1

2
�
1

q

�
�

m

2�.mC2/
;

where ��maxf2;mn=2g and

�
m

2�.mC2/
�  <

3

mC2
�

n.2��m/

�.mC2/.n�1/
:

(iii) n� 3 or nD 2, m� 2 and s D 2,

1

r
D 1�

m

4�
�
.mC2/.n�1/

4

�
1

p
�
1

2

�
;  D n

�
1

2
�
1

q

�
�

1

mC2
;

where ��maxf2;mn=2g and

�.nC1/�mn

�.mC2/.n�1/
<  <

2

mC2
C

m

2�.mC2/
:

Remark 4.6. We can rewrite the conditions of (4-5) in terms of q.

(i) For �� ��,

(4-26)

8

63

�
1�

4

�

�
<
1

q
�
1

2
if nD 2;mD 1,

1

p2
<
1

q
C

4

.mC2/.nC1/

�
1C

m

2�

�
<
1

p1
if n� 3 or nD 2, m� 2.

(ii) For ��maxf2;mn=2g,

(4-27) 2n

.nC1/p1
�

n�1

2.nC1/
�

1

.mC2/.nC1/

�
6C

m

�

�
<
1

q
�
1

2
:

(iii) For ��maxf2;mn=2g,

(4-28) 1

2
�

1

2.mC2/n

�
6C

m

�

�
<
1

q
<
1

q1
:

Theorem 4.7. Let u solve the Cauchy problem (2-1) in the strip ST . Then

(4-29) kuk
C0t
PH

x .ST /

CkukLq.ST /

. k'k PH .Rn/
Ck k PH�2=.mC2/.Rn/

CkjDxj
�0f kLp0 .ST /

provided that the exponents p, q, r , and s satisfy (1-10) and � � maxf2;m=2g,
q0 � q <1, where

 D 1
2
n�

n.mC2/C2

q.mC2/
; 0 D

2

mC2
C

m

2�.mC2/
�
nC1

2

�
1

p0
�
1

2

�
:
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Corollary 4.8. Under the conditions of Theorem 4.7, one has

(4-30) kuk
C0t
PH

x .ST /

CkukLq.ST /CkjDxj
�1=.mC2/uk

L
q�
0 .ST /

. k'k PH .Rn/
Ck k PH�2=.mC2/.Rn/

CkjDxj
�1=.mC2/f k

L
p�
0 .ST /

;

where  D n=2� ..mC 2/nC 2/=.q.mC 2// and q�0 � q <1.

Proof. This follows by combining estimate (4-29) and Remark 4.2 when �D��. �

An application of Theorem 4.5 yields the following:

Corollary 4.9. Let u solve the Cauchy problem

@2t u� t
m�uD f .t; x/g.t; x/ in ST ,

u.0; � /D @tu.0; � /D 0:

Then, for any �� �� and 0 < R �1,

(4-31) kuk
C0t
PH

x .ST\ƒR/

CkukLstL
q
x.ST\ƒR/

CkukL1t L
ı
x.ST\ƒR/

. kf kL�t L�x.ST\ƒR/kgkLstLqx.ST\ƒR/;

where q is as in (4-26),

�D
�.mC 2/.nC 1/

2.2�Cm/
; � D

�.nC 1/

2��mn
;(4-32)

1

s
D
.mC 2/.n� 1/

4

�1
2
�
1

q

�
C
m

4�
;

n

ı
D
n

q
C

2

mC 2

�1
s
�
m

4�

�
;(4-33)

and
ƒR D

˚
.t; x/ 2 RC �Rn j jxjC�.t/ < R

	
:

Proof. First we study the case RD1. Note that (4-33) gives that

n
�
1

2
�
1

ı

�
D
nC1

2

�
1

2
�
1

q

�
�

m

2�.mC2/
:

Applying estimate (4-25) in case (i) together with the Sobolev embedding

PHn.1=2�1=ı/.Rn/ ,! Lı.Rn/;

we have

kuk
C0t
PH

x .ST /

CkukLstL
q
x.ST /

CkukL1t L
ı
x.ST /

. kfgkLrtLpx .ST /;

where 1=pD1=qC1=� and 1=rD1=sC1=� . In addition, from Hölder’s inequality,

(4-34) kfgkLrtL
p
x .ST /

� kf kL�t L
�
x.ST /

kgkLstL
q
x.ST /

:

Thus, estimate (4-31) holds for RD1.
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Now let R<1. Let � denote the characteristic function of ST \ƒR. If u solves
@2t u� t

m�uD fg with vanishing initial data and u� solves @2t u�� t
m�u�D �fg

with vanishing initial data, then uD u� in ST \ƒR due to finite propagation speed
(see [Taniguchi and Tozaki 1980]). Therefore,

kuk
C0t
PH

x .ST\ƒR/

CkukLstL
q
x.ST\ƒR/

CkukL1t L
ı
x.ST\ƒR/

D ku�kC0t PH

x .ST /

Cku�kLstL
q
x.ST /

Cku�kL1t L
ı
x.ST /

� k�f kL�t L
�
x.ST /

k�gkLstL
q
x.ST /

:

Consequently, estimate (4-31) holds. �

As another application of Theorem 4.5 we have the following:

Corollary 4.10. Let u be a solution of

@2t u� t
m�uD F.v/ in ST ;

u.0; � /D @tu.0; � /D 0:

If q <1 and 1=.mC2/�  Dn=2�.n.mC2/C2/=.q.mC2//� .mC3/=.mC2/,
then

(4-35) kuk
C0t
PH

x .ST /

CkukLq.ST /CkjDxj
�1=.mC2/uk

L
q�
0 .ST /

. kF 0.v/kL��=2.ST /kjDxj
�1=.mC2/vk

L
q�
0 .ST /

:

Proof. This follows from estimate (4-30) by taking fractional derivatives. Indeed,
for 0�  � 1=.mC 2/� 1, one has

kuk
C0t
PH

x .ST /

CkukLq.ST /CkjDxj
�1=.mC2/uk

L
q�
0 .ST /

.
jDxj�1=.mC2/.F.v//

L
p�
0 .ST /

. kF 0.v/kL��=2.ST /
jDxj�1=.mC2/v

L
q�
0 .ST /

: �

5. Solvability of the semilinear generalized Tricomi equation

In this section, we will apply Theorems 4.5 and 4.7 and Corollaries 4.8–4.10 with
� D �� to establish the existence and uniqueness of the solution u of problem
(1-1). Thereby, we will use the following iteration scheme: For j 2 N0, let uj be
the solution of

(5-1)
@2t uj � t

m�uj D F.uj�1/ in RC �Rn;

uj .0; � /D '; @tuj .0; � /D  ;

where u�1 D 0.
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Notice that, for �D ��, the exponents from (4-25) in case (i) are

� D
1

mC2
; d D

2.nC1/

��.mC2/.n�1/
:

In order to get the existence of solutions of the Cauchy problem (1-1) as stated in
Theorems 1.1, 1.4, and 1.5, we need to show that, for the sequences fuj g1jD0 and
fF.uj /g

1
jD0 defined by (5-1), there exist a T > 0 and a function u such that

uj ! u in L1loc.ST / as j !1;(5-2)

F.uj /! F.u/ in L1loc.ST / as j !1:(5-3)

From (5-2) and (5-3), one obviously has that the limit function u solves problem
(1-1) in ST .

Furthermore, let u; Qu both solve the Cauchy problem (1-1) in ST . Then vDu� Qu
satisfies

(5-4)
@2t v� t

m�v DG.u; Qu/v in ST ;

v.0; � /D @tv.0; � /D 0;

where G.u; Qu/D .F.u/�F. Qu//=.u� Qu/ if u¤ Qu and G.u; u/DF 0.u/. For certain
s, q � 2, we will show that v 2 LstL

q
x.ST / and

(5-5) kvkLstL
q
x.ST /

�
1
2
kvkLstL

q
x.ST /

:

Uniqueness of the solution of the Cauchy problem (1-1) in ST follows.

5.1. Proof of Theorem 1.1.

5.1.1. Case �1 < � < ��. From the assumptions of Theorem 1.1, we have

 D
nC1

4
�

nC1

��.��1/
�

m

2��.mC2/

and

(5-6) q D
��.��1/

2
;

1

s
D
.mC2/.n�1/

4

�
1

2
�
1

q

�
C

m

4��
:

Thus,

 D
nC1

2

�
1

2
�
1

q

�
�

m

2��.mC2/
;

1

mC2
�

2.nC1/

��.mC2/.n�1/
<  <

1

mC2
:

Existence. In order to show (5-2), set

(5-7)
Hj .T /D kuj kC0t PH


x .ST /

Ckuj kLstL
q
x.ST /

;

Nj .T /D kuj �uj�1kLstL
q
x.ST /

:
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We claim that there exists a constant "0 > 0 small such that

(5-8) 2T 1=q�1=sH0.T /� "0

and

(5-9) Hj .T /� 2H0.T /; Nj .T /�
1
2
Nj�1.T /:

Indeed, from the iteration scheme (5-1), we have

(5-10) .@2t � t
m�/.ujC1�ukC1/DG.uj ; uk/.uj �uk/:

Note that in (4-32),
�D � D 1

2
��

when �D ��. Thus, from (4-31) and condition (1-2),

(5-11) kujC1�ukC1kC0t PH
x .ST /

CkujC1�ukC1kLstL
q
x.ST /

. kG.uj ; uk/kL��=2.ST /kuj �ukkLstLqx.ST /

.
�
kuj k

��1
Lq.ST /

Ckukk
��1
Lq.ST /

�
kuj �ukkLstL

q
x.ST /

:

Note that s > q for � < ��. By Hölder’s inequality, we arrive at

(5-12) kuj kLq.ST / � T
1=q�1=s

kuj kLstL
q
x.ST /

:

Since u�1 D 0, (5-11) together with (5-12) implies that

kujC1�u0kLstL
q
x.ST /

CkujC1�u0kC0t PH

x .ST /

. T .��1/.1=q�1=s/kuj k�LstLqx.ST /:

From the Minkowski inequality, we have that there exists an "0 with 0 < "0 �
2�2=.��1/ such that

HjC1.T /�H0.T /C
1
2
Hj .T / if T 1=q�1=sHj .T /� "0:

Therefore, by induction on j ,

(5-13) Hj .T /� 2H0.T / if 2T 1=q�1=sH0.T /� "0:

Taking k D j � 1 in (5-10), estimates (5-11)–(5-13) yield that

NjC1.T /�
1
2
Nj .T / if 2H0.T /T 1=q�1=s � "0;

which together with (5-13) implies that (5-9) holds as long as (5-8) holds.
Since u�1 � 0 and u0 is a solution of problem (2-2), we have from (4-13) that,

for ' 2 PH  .Rn/ and  2 PH �2=.mC2/.Rn/,

N0.T /�H0.T /. k'k PH .Rn/
Ck k PH�2=.mC2/.Rn/

:
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Thus, by choosing T > 0 small, (5-8) holds. Consequently, there is a function
u 2 C 0t

PH

x .ST /\ L

s
tL
q
x.ST / such that

(5-14) uj ! u in LstL
q
x.ST / as j !1;

and, therefore, (5-2) holds. It also follows that uj converges to u almost everywhere.
By Fatou’s lemma, it follows that

(5-15) kuk
C0t
PH

x .ST /

CkukLstL
q
x.ST /

� lim inf
j!1

�
kuj kC0t PH


x .ST /

Ckuj kLstL
q
x.ST /

�
� 2H0.T /;

which shows that estimate (1-4) holds.
Now we prove (5-3). It suffices to show that F.u/ is bounded in LrtL

p
x .ST /

and F.uj / converges to F.u/ in LrtL
p
x .ST / as j ! 1, where p D q=� and

1=r D 1�m=.4��/� .mC 2/.n� 1/=4
�
1=p� 1

2

�
. In fact, r� < s if � < ��, thus,

for q D p�, by condition (1-2) and Hölder’s inequality, we have

kF.u/kLrtL
p
x .ST /

. kuk�
Lr�t L

p�
x .ST /

. T 1=r��=skuk�
LstL

q
x.ST /

:

Moreover, in view of 1=p� 1=q D 1=r � 1=s D 2=��, by Hölder’s inequality and
estimates (5-11)–(5-13) and (5-15), we have

kF.uj /�F.u/kLrtL
p
x .ST /

� kG.uj ; u/kL��=2.ST /kuj �ukLstL
q
x.ST /

. T .��1/.1=q�1=s/H0.T /��1kuj �ukLstLqx.ST /

. kuj �ukLstLqx.ST /:

Applying (5-14), we have that F.uj / converges to F.u/ in LrtL
p
x .ST / and, there-

fore, (5-3) holds.
From (5-2) and (5-3), we have that the limit function u 2 C 0t PH


x .ST // \

LstL
q
x.ST / solves the Cauchy problem (1-1) in ST .

Uniqueness. Suppose u, Qu 2 C.Œ0; T �; PH  .Rn//\LstL
q
x.ST / solve the Cauchy

problem (1-1) in ST . Then v D u � Qu 2 C.Œ0; T �; PH  .Rn// \ LstL
q
x.ST / is a

solution of problem (5-4). From Corollary 4.9, we have that

kvkLstL
q
x.ST /

� C.kuk��1Lq.ST /
Ck Quk��1Lq.ST /

/kvkLstL
q
x.ST /

(by (4-31) and (1-2))

� CT .��1/.1=q�1=s/

� .kuk��1
LstL

q
x.ST /

Ck Quk��1
LstL

q
x.ST /

/kvkLstL
q
x.ST /

(by Hölder’s inequality)

� C2�.T 1=q�1=sH0.T //
��1
kvkLstL

q
x.ST /

(by (5-15))

�
1
2
kvkLstL

q
x.ST /

(by (5-8)).
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Thus (5-5) holds and uD Qu in ST .

5.1.2. Case �� � � if nD 2 or �� � � � �3 if n� 3.

Existence. From the assumptions of Theorem 1.1, we have

 D 1
2
n�

4

.mC 2/.� � 1/
; s D q D

��.��1/

2
:

Thus,
1

mC2
�  D 1

2
n�

.mC2/nC2

q.mC2/
�
mC3

mC2
:

To show (5-2), we set

Hj .T /D kuj kC0t PH

x .ST /

Ckuj kLq.ST /CkjDxj
�1=.mC2/uj k

L
q�
0 .ST /

;

and

(5-16) Nj .T /D kuj �uj�1k
L
q�
0 .ST\ƒR/

:

We claim that there exists a constant "0 > 0 such that

(5-17) H0.T /� "0;

and

(5-18) Hj .T /� 2H0.T /; Nj .T /�
1
2
Nj�1.T /:

Indeed, since u�1 D 0, from the iteration scheme (5-1), we have

(5-19) .@2t � t
m�/.ujC1�u0/D F.uj /:

Thus, estimate (4-35) together with condition (1-2) yields, for 0��1=.mC2/� 1,

HjC1.T /�H0.T /CCkF
0.uj /kL��=2.ST /kjDxj

�1=.mC2/uj k
L
q�
0 .ST /

�H0.T /CCkuj k
��1
Lq.ST /

kjDxj
�1=.mC2/uj k

L
q�
0 .ST /

�H0.T /CCHj .T /
� :

Therefore, by induction, we have that

Hj .T /� 2H0.T / if C2�H0.T /��1 < 1:
Consequently,

(5-20) Hj .T /� 2H0.T / if H0.T /� "0

for some "0>0 small. Notice that, for q and s from (5-6), when qD s, so qD sDq�0 .
Hence, by using estimates (5-11)–(5-13) together with (5-20), we get that for Nj
defined in (5-16),

(5-21) Nj .T /�
1
2
Nj�1.T / if H0.T /� "0:
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Estimates (5-20) and (5-21) tell us that (5-18) holds as long as (5-17) holds. To
get (5-17), from estimate (4-30) (with f D 0) we have that, for ' 2 PH  .Rn/ and
 2 PH �2=.mC2/.Rn/,

(5-22) H0.T /. k'k PH .Rn/
Ck k PH�2=.mC2/.Rn/

:

Due to the continuity of the norm in Lq.ST /, (5-17) holds for some T > 0 small.
(If k'k PH .Rn/

C k k PH�2=.mC2/.Rn/
is small, then (5-17) holds for any T > 0,

consequently, we get global existence.)
Note that q D ��.� � 1/=2� q�0 when � � ��. Thus, from Hölder’s inequality

and (5-22),

(5-23) N0.T /D ku0k
L
q�
0 .ST\ƒR/

. ku0kLq.ST / .H0.T /:

From estimates (5-17), (5-18), and (5-23), we get that there exists a function
u 2 C 0t

PH

x .ST /\ L

q.ST / with jDxj�1=.mC2/u 2 Lq
�
0 .ST / such that

(5-24) uj ! u in Lq
�
0 .ST \ƒR/ as j !1;

and (5-2) holds. Thus, from Fatou’s lemma and (5-18), it follows that

(5-25) kuk
C0t
PH

x .ST /

CkukLq.ST /CkjDxj
�1=.mC2/uk

L
q�
0 .ST /

� 2H0.T /

and u satisfies estimate (1-4).
Since q D ��.� � 1/=2 � � when � � ��, we have from condition (1-2) that

F.u/ is locally integrable for u 2 Lq.ST /. By Hölder’s inequality,Z
ST\ƒR

jF.uj /�F.u/j dt dx D

Z
ST\ƒR

jG.uj ; u/jjuj �uj dt dx

� kG.uj ; u/k
L
p�
0 .ST\ƒR/

kuj �uk
L
q�
0 .ST\ƒR/

:

Note that p�0 < ��=2. Thus, from condition (1-2) we have that

kG.uj ; u/k
L
p�
0 .ST\ƒR/

. kuj k��1
L
p�
0
.��1/

.ST\ƒR/
Ckuk��1

L
p�
0
.��1/

.ST\ƒR/

. kuj k��1Lq.ST\ƒR/
Ckuk��1Lq.ST\ƒR/

.H0.T /��1;

which together with (5-24) implies that F.uj /! F.u/ in L1loc.ST /. Hence, (5-3)
holds.

From (5-2) and (5-3), we have that the limit function u 2 C 0t PH

x .ST /\L

q.ST /

with jDxj�1=.mC2/u 2 Lq
�
0 .ST / is a weak solution of the Cauchy problem (1-1)

in ST .
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Uniqueness. Suppose u; Qu 2 C 0t PH

x .ST / \ L

q.ST / with jDxj�1=.mC2/u and
jDxj

�1=.mC2/ Qu 2 Lq
�
0 .ST / solving the Cauchy problem (1-1) in ST . Then v D

u� Qu2C 0t
PH

x .ST /\L

q.ST / is a weak solution of problem (5-4). Thus, it follows
from Corollary 4.9 that

kvkLq.ST / � C
�
kuk��1Lq.ST /

Ck Quk��1Lq.ST /

�
kvkLq.ST / (by (4-31) and (1-2))

� C2�H0.T /
��1
kvkLq.ST / (by (5-25))

�
1
2
kvkLstL

q
x.ST /

(by (5-17)).

Thus (5-5) holds and uD Qu in ST .

5.1.3. Case n� 3 and � > �3, � 2 N.

Existence. From the assumptions of Theorem 1.1, we have

 D 1
2
n�

4

.mC2/.��1/
; s D q D

��.��1/

2
; F.u/D˙u� ;

and

 D 1
2
n�

.mC2/nC2

q.mC2/
> 1C

1

mC2
:

To verify (5-2), we set

Hj .T /D kuj kC0t PH

x .ST /

C sup
q�0���

1
2
��.��1/

jDxj .mC2/nC2�.mC2/
� 4
.mC2/.��1/uj


L� .ST /

and

Nj .T /D kuj �uj�1k
L
q�
0 .ST\ƒR/

:

We claim that there exists a constant "0 > 0 such that

(5-26) H0.T /� "0

and

(5-27) Hj .T /� 2H0.T /; Nj .T /�
1
2
Nj�1.T /:

In fact, applying Minkowski’s inequality and estimate (4-30) (with ' D D 0),

(5-28) HjC1.T /�H0.T /

CC sup
q�0�����.��1/=2

kjDxj
1
2
n� 1

mC2
� 4
.mC2/.��1/ .u�j /kLp

�
0 .ST /

:

Note that ˛ D n=2� 1=.mC 2/� 4=..mC 2/.� � 1// > 1 when � > �3. Thus,
jDxj

˛.u�j / can be expressed as a finite linear combination of
Q�
`D1 jDxj

˛`uj ,
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where 0 � ˛` � ˛ (1 � ` � �) and
P�
`D1 ˛` D ˛. By Hölder’s inequality,

kjDxj
˛.u�j /kLp

�
0 .ST /

is dominated by a finite sum of terms of the form

�Y
`D1

kjDxj
˛`uj kL�` .ST /;

where
P�
`D1 1=�` D 1=p

�
0 . We choose �` so that

˛` D
n.mC2/C2

�`.mC2/
�

4

.mC2/.��1/
:

Then

q�0 � �` �
��.��1/

2
;

�X
`D1

1

�`
D

1

p�0
;

and, therefore,
kjDxj

˛`uj kL�` .ST / �Hj .T /;

which together with (5-28) yields that

HjC1.T /�H0.T /CC�Hj .T /
� :

By induction, we have that

(5-29) Hj .T /� 2H0.T / if H0.T /� "0:

For q and s from (5-6), when q D s, then q D s D q�0 . Hence, by estimates
(5-11)–(5-13) and together with (5-29), we get that

(5-30) Nj .T /�
1
2
Nj�1.T / if H0.T /� "0:

From (5-29) and (5-30), we get that (5-27) holds as long as (5-26) holds.
Note that

(5-31) n.mC2/C2

�.mC2/
�

4

.mC2/.��1/
D 0;

for � D ��.� � 1/=2 and

(5-32) n.mC2/C2

�.mC2/
�

4

.mC2/.��1/
D  �

1

mC2
:

for � D q�0 . On the other hand, we have from (4-30) (with f D 0) that, for
' 2 PH  .Rn/ and  2 PH �2=.mC2/.Rn/,

(5-33) ku0kC0t PH
x .ST /

Cku0kL��.��1/=2.ST /CkjDxj
�1=.mC2/u0k

L
p�
0 .ST /

. k'k PH .Rn/
Ck k PH�2=.mC2/.Rn/

:

By interpolation together with (5-31)–(5-33), we conclude that

H0.T /. k'k PH .Rn/
Ck k PH�2=.mC2/.Rn/

:
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It follows that (5-26) holds by choosing T > 0 small. (We can take T D 1 if
k'k PH .Rn/

Ck k PH�2=.mC2/.Rn/
is small which then yields global existence.)

From Hölder’s inequality and (5-31),

(5-34) N0.T /D ku0k
L
q�
0 .ST\ƒR/

� CRku0kL��.��1/=2.ST / � CRH0.T / <1:

Therefore, we have from (5-27), (5-26), and (5-34) that there exists a function
u 2 C 0t

PH

x .ST /\L

q.ST / with jDxj�1=.mC2/u 2 Lq
�
0 .ST / such that

uj ! u in Lq
�
0 .ST \ƒR/ as j !1;

and, therefore, (5-2) holds. Thus, from Fatou’s lemma and (5-27),

(5-35) kuk
C0t
PH

x .ST /

CkukLq.ST /C
jDxj�1=.mC2/u

L
q�
0 .ST /

� 2H0.T /

and u satisfies estimate (1-4).
Note that qD��.��1/=2� � when � > �3. Thus, for u2Lq.ST /, by Hölder’s

inequality and condition (1-2), we get that F.u/ is locally integrable and F.uj /
converges to F.u/ in L1loc.ST /, and hence (5-3) holds.

Applying (5-2) and (5-3), it follows that the limit function u 2 C 0t PH

x .ST /\

Lq.ST /with jDxj�1=.mC2/u2Lq
�
0 .ST / is a weak solution of the Cauchy problem

(1-1) in ST .

Uniqueness. This follows from the same arguments as in 5.1.2. �

5.2. Proof of Theorem 1.4. From the assumption of Theorem 1.4, we have

 D
n

2
�

4

.mC2/.��1/
;

1

q
D

1

.mC2/.nC1/

�
8

��1
�
m

��

�
�

n�1

2.nC1/
;

and
1

s
D
.mC2/.n�1/

4

�
1

2
�
1

q

�
C

m

4��
:

Thus,

 D
�
nC1

2

��
1

2
�
1

q

�
�

m

2��.mC2/

and
1

mC2
�  <

1

mC2
C

2.nC1/

��.mC2/.n�1/
;

where �� � � < �2.
To show (5-2), we set

Hj .T /D kuj kC0t PH

x .ST /

Ckuj kLstL
q
x.ST /

Ckuj �u0kL1t L
ı
x.ST /
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and
Nj .T /D kuj �uj�1kLstL

q
x.ST /

;

where

(5-36) 1

s
C
.mC2/n

2q
D
.mC2/n

2ı
D
mC2

2

�
n

2
� 

�
:

We claim that there exist a constant "0 > 0 and a � 2 Œ0; 1� such that

(5-37) 2H0.T /
� .2H0.T /Cku0kL1t L

ı
x.ST /

/1�� � "0

and

(5-38) Hj .T /� 2H0.T /; Nj .T /�
1
2
Nj�1.T /:

Indeed, due to (5-36), from Sobolev’s embedding theorem we have that

ku.t; � /kLı.Rn/ . ku.t; � /k PH .Rn/
:

Applying Hölder’s inequality, we get that

kuj kL��.��1/=2.ST / � kuj k
�
LstL

q
x.ST /

kuj k
1��

L1t L
ı
x.ST /

;

where � D 2=.n.mC2/C2/C4n.mC2/=.��.mC2/.n�1/.q�2/C2mq/. Note
that 0� � � 1 for  � 1=.mC 2/.

By the same arguments as in the proof of Theorem 1.1, we get that (5-37)
and (5-38) hold. Consequently, (5-2) and (5-3) also hold. Hence, the limit u 2
C 0t
PH

x .ST /\L

s
tL
q
x.ST / of the sequence fuj g is a solution of the Cauchy problem

(1-1) in ST . Moreover, by Fatou’s lemma and (5-38), we have that

kuk
C0t
PH

x .ST /

CkukLstL
q
x.ST /

� 2H0.T /;

which together with (5-37) yields that u satisfies estimate (1-4).
Further, by the same arguments as in the proof of Theorem 1.1, it follows that if

both u; Qu solve the Cauchy problem (1-1) in ST , then uD Qu in ST . �

5.3. Proof of Theorem 1.5. From the assumptions of Theorem 1.5, we have

 D
nC1

2

�
1

2
�
1

q

�
�

m

2��.mC2/

and

�
m

2��.mC2/
�  <

1

mC2
�

2.nC1/

��.mC2/.n�1/
D

3

mC2
�

n.2���m/

��.mC2/.n�1/
:

To verify (5-2), we set

Hj .T /D kuj kC0t PH

x .ST /

Ckuj kLstL
q
x.ST /

; Nj .T /D kuj �uj�1kLstL
q
x.ST /

:
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Let p D q=�. Then

2n

.nC1/p
D
1

q
C

6�Cm

�.mC2/.nC1/
�

n�1

2.nC1/
:

Thus we can apply Theorem 4.5 in case (ii) together with Hölder’s inequality to
find that

kujC1�ukC1kC0t PH

x .ST /

CkujC1�ukC1kLstL
q
x.ST /

. kF.uj /�F.uk/kL2tLpx .ST /

. kG.uj ; uk/kL�t L�x .ST /kuj �ukkLstLqx.ST /;

where 1=�D 1
2
� 1=s, and 1=� D 1=p� 1=q D .� � 1/=q.

Note that s > .� � 1/� when  < 1=.mC 2/� 2.nC 1/=.��.mC 2/.n� 1//.
Due to condition (1-2) and Hölder’s inequality,

kG.uj ; uk/kL�t L
�
x .ST /

. kuj k��1
L
�.��1/
t L

q
x.ST /

Ckukk
��1

L
�.��1/
t L

q
x.ST /

. T 1=2�1=s.kuj k��1LstL
q
x.ST /

Ckukk
��1
LstL

q
x.ST /

/:

As in the proof of Theorem 1.1, we get that

(5-39) Hj .T /� 2H0.T /; Nj .T /�
1
2
Nj�1.T /;

and

(5-40) N0.T /�H0.T /T
1=2��=s

� "0;

for "0 > 0 small by choosing T > 0 small. Therefore, there is a function u 2
C 0t
PH

x .ST / \L

s
tL
q
x.ST / such that

uj ! u in LstL
q
x.ST / as j !1

and (5-2) holds. Combining Fatou’s lemma and (5-39), we see that

kuk
C0t
PH

x .ST /

CkukLstL
q
x.ST /

� 2H0.T /:

Together with (5-40) we get that u satisfies estimate (1-4).
Moreover, since 2� > s, by condition (1-2) and Hölder’s inequality, we have that,

for p D q=�,

kF.u/kL2tL
p
x .ST /

. kuk�
L2�t L

q
x.ST /

. T 1=2��=skuk�
LstL

q
x.ST /
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and

kF.uj /�F.u/kL2tL
p
x .ST /

. T 1=2�1=s.kuj k��1LstL
q
x.ST /

Ckuk��1
LstL

q
x.ST /

/kuj �ukLstL
q
x.ST /

. T 1=2�1=sH0.T /��1kuj �ukLstLqx.ST /:

Therefore, F.u/ 2 L2tL
q=�
x .ST / and F.uj /! F.u/ in L2tL

q=�
x .ST / as j !1,

hence (5-3) holds. Consequently, the limit function u 2 C 0t PH

x .ST /\L

s
tL
q
x.ST /

solves the Cauchy problem (1-1) in ST .
Now suppose u; Qu 2 C 0t PH


x .ST /\L

s
tL
q
x.ST / both solve the Cauchy problem

(1-1) in ST . Then v D u� Qu 2 C 0t PH

x .ST /\L

s
tL
q
x.ST / is a solution of (5-4).

Applying Theorem 4.5 in case (ii) and Hölder’s inequality, it follows that

kvkLstL
q
x.ST /

� CkG.u; Qu/vkL2tL
p
x .ST /

� CT 1=2�1=s.kuk��1
LstL

q
x.ST /

Ck Quk��1
LstL

q
x.ST /

/kvkLstL
q
x.ST /

� CT 1=2�1=sH0.T /
��1
kvkLstL

q
x.ST /

�
1
2
kvkLstL

q
x.ST /

:

Thus (5-5) holds and uD Qu in ST . �

References

[Barros-Neto and Gelfand 1999] J. Barros-Neto and I. M. Gelfand, “Fundamental solutions for the
Tricomi operator”, Duke Math. J. 98:3 (1999), 465–483. MR

[Barros-Neto and Gelfand 2002] J. Barros-Neto and I. M. Gelfand, “Fundamental solutions for the
Tricomi operator, II”, Duke Math. J. 111:3 (2002), 561–584. MR

[Beals 1992] M. Beals, “Singularities due to cusp interactions in nonlinear waves”, pp. 36–51 in
Nonlinear hyperbolic equations and field theory (Lake Como, 1990), edited by M. K. V. Murthy and
S. Spagnolo, Pitman Res. Notes Math. Ser. 253, Longman Sci. Tech., Harlow, England, 1992. MR
Zbl

[Bers 1958] L. Bers, Mathematical aspects of subsonic and transonic gas dynamics, Surveys in
Applied Mathematics 3, Wiley, New York, 1958. MR Zbl

[Dreher and Witt 2005] M. Dreher and I. Witt, “Sharp energy estimates for a class of weakly
hyperbolic operators”, pp. 449–511 in New trends in the theory of hyperbolic equations, edited by
M. Reissig and B.-W. Schulze, Oper. Theory Adv. Appl. 159, Birkhäuser, Basel, Switzerland, 2005.
MR Zbl

[Erdélyi et al. 1953] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcen-
dental functions, vol. 1, McGraw-Hill, New York, 1953. Zbl

[Germain 1954] P. Germain, “Remarks on the theory of partial differential equations of mixed type
and applications to the study of transonic flow”, Comm. Pure Appl. Math. 7 (1954), 117–143. MR
Zbl

[He et al. 2017] D. He, I. Witt, and H. Yin, “On the global solution problem for semilinear generalized
Tricomi equations, I”, Calc. Var. Partial Differential Equations 56:2 (2017), art. 21, 24pp. MR Zbl

http://dx.doi.org/10.1215/S0012-7094-99-09814-9
http://dx.doi.org/10.1215/S0012-7094-99-09814-9
http://msp.org/idx/mr/1695798
http://dx.doi.org/10.1215/S0012-7094-02-11137-5
http://dx.doi.org/10.1215/S0012-7094-02-11137-5
http://msp.org/idx/mr/1885832
http://msp.org/idx/mr/1175200
http://msp.org/idx/zbl/0832.35095
http://msp.org/idx/mr/0096477
http://msp.org/idx/zbl/0083.20501
https://doi.org/10.1007/3-7643-7386-5_6
https://doi.org/10.1007/3-7643-7386-5_6
http://msp.org/idx/mr/2175921
http://msp.org/idx/zbl/1109.35078
http://msp.org/idx/zbl/0052.29502
http://dx.doi.org/10.1002/cpa.3160070109
http://dx.doi.org/10.1002/cpa.3160070109
http://msp.org/idx/mr/0065792
http://msp.org/idx/zbl/0055.08503
https://doi.org/10.1007/s00526-017-1125-9
https://doi.org/10.1007/s00526-017-1125-9
http://msp.org/idx/mr/3606779
http://msp.org/idx/zbl/1368.35192


MINIMAL REGULARITY SOLUTIONS OF GENERALIZED TRICOMI EQUATIONS 225

[Kapitanski 1994] L. Kapitanski, “Weak and yet weaker solutions of semilinear wave equations”,
Comm. Partial Differential Equations 19:9-10 (1994), 1629–1676. MR Zbl

[Lindblad 1998] H. Lindblad, “Counterexamples to local existence for quasilinear wave equations”,
Math. Res. Lett. 5:5 (1998), 605–622. MR Zbl

[Lindblad and Sogge 1995] H. Lindblad and C. D. Sogge, “On existence and scattering with minimal
regularity for semilinear wave equations”, J. Funct. Anal. 130:2 (1995), 357–426. MR Zbl

[Lupo and Payne 2003] D. Lupo and K. R. Payne, “Critical exponents for semilinear equations of
mixed elliptic-hyperbolic and degenerate types”, Comm. Pure Appl. Math. 56:3 (2003), 403–424.
MR Zbl

[Lupo and Payne 2005] D. Lupo and K. R. Payne, “Conservation laws for equations of mixed
elliptic-hyperbolic and degenerate types”, Duke Math. J. 127:2 (2005), 251–290. MR Zbl

[Morawetz 2004] C. S. Morawetz, “Mixed equations and transonic flow”, J. Hyperbolic Differ. Equ.
1:1 (2004), 1–26. MR Zbl

[Ponce and Sideris 1993] G. Ponce and T. C. Sideris, “Local regularity of nonlinear wave equations
in three space dimensions”, Comm. Partial Differential Equations 18:1-2 (1993), 169–177. MR Zbl

[Ruan et al. 2014] Z. Ruan, I. Witt, and H. Yin, “The existence and singularity structures of low
regularity solutions to higher order degenerate hyperbolic equations”, J. Differential Equations 256:2
(2014), 407–460. MR Zbl

[Ruan et al. 2015a] Z. Ruan, I. Witt, and H. Yin, “On the existence and cusp singularity of solutions
to semilinear generalized Tricomi equations with discontinuous initial data”, Commun. Contemp.
Math. 17:3 (2015), 1450028, 49. MR Zbl

[Ruan et al. 2015b] Z. Ruan, I. Witt, and H. Yin, “On the existence of low regularity solutions to
semilinear generalized Tricomi equations in mixed type domains”, J. Differential Equations 259:12
(2015), 7406–7462. MR Zbl

[Smith and Tataru 2005] H. F. Smith and D. Tataru, “Sharp local well-posedness results for the
nonlinear wave equation”, Ann. of Math. .2/ 162:1 (2005), 291–366. MR Zbl

[Sogge 1993] C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics
105, Cambridge University Press, 1993. MR Zbl

[Stein 1970] E. M. Stein, Topics in harmonic analysis related to the Littlewood–Paley theory, Annals
of Mathematics Studies 63, Princeton University Press, 1970. MR Zbl

[Struwe 1992] M. Struwe, “Semi-linear wave equations”, Bull. Amer. Math. Soc. .N.S./ 26:1 (1992),
53–85. MR Zbl

[Taniguchi and Tozaki 1980] K. Taniguchi and Y. Tozaki, “A hyperbolic equation with double
characteristics which has a solution with branching singularities”, Math. Japon. 25:3 (1980), 279–
300. MR Zbl

[Tricomi 1923] F. Tricomi, “Sulle equazioni lineari alle derivate parziali di 20 ordine di tipo misto”,
Acc. Linc. Rend. 5:14 (1923), 133–247. Zbl

[Yagdjian 2004] K. Yagdjian, “A note on the fundamental solution for the Tricomi-type equation in
the hyperbolic domain”, J. Differential Equations 206:1 (2004), 227–252. MR Zbl

[Yagdjian 2006] K. Yagdjian, “Global existence for the n-dimensional semilinear Tricomi-type
equations”, Comm. Partial Differential Equations 31:4-6 (2006), 907–944. MR Zbl

[Yagdjian 2015] K. Yagdjian, “Integral transform approach to generalized Tricomi equations”, J.
Differential Equations 259:11 (2015), 5927–5981. MR Zbl

Received March 23, 2017. Revised November 5, 2017.

http://dx.doi.org/10.1080/03605309408821067
http://msp.org/idx/mr/1294474
http://msp.org/idx/zbl/0831.35109
http://dx.doi.org/10.4310/MRL.1998.v5.n5.a5
http://msp.org/idx/mr/1666844
http://msp.org/idx/zbl/0932.35149
http://dx.doi.org/10.1006/jfan.1995.1075
http://dx.doi.org/10.1006/jfan.1995.1075
http://msp.org/idx/mr/1335386
http://msp.org/idx/zbl/0846.35085
http://dx.doi.org/10.1002/cpa.3031
http://dx.doi.org/10.1002/cpa.3031
http://msp.org/idx/mr/1941814
http://msp.org/idx/zbl/1236.35011
http://dx.doi.org/10.1215/S0012-7094-04-12722-8
http://dx.doi.org/10.1215/S0012-7094-04-12722-8
http://msp.org/idx/mr/2130413
http://msp.org/idx/zbl/1078.35078
http://dx.doi.org/10.1142/S0219891604000081
http://msp.org/idx/mr/2052469
http://msp.org/idx/zbl/1055.35093
http://dx.doi.org/10.1080/03605309308820925
http://dx.doi.org/10.1080/03605309308820925
http://msp.org/idx/mr/1211729
http://msp.org/idx/zbl/0803.35096
http://dx.doi.org/10.1016/j.jde.2013.09.007
http://dx.doi.org/10.1016/j.jde.2013.09.007
http://msp.org/idx/mr/3121701
http://msp.org/idx/zbl/1320.35235
http://dx.doi.org/10.1142/S021919971450028X
http://dx.doi.org/10.1142/S021919971450028X
http://msp.org/idx/mr/3325043
http://msp.org/idx/zbl/1329.35215
http://dx.doi.org/10.1016/j.jde.2015.08.025
http://dx.doi.org/10.1016/j.jde.2015.08.025
http://msp.org/idx/mr/3401601
http://msp.org/idx/zbl/1329.35218
http://dx.doi.org/10.4007/annals.2005.162.291
http://dx.doi.org/10.4007/annals.2005.162.291
http://msp.org/idx/mr/2178963
http://msp.org/idx/zbl/1098.35113
https://doi.org/10.1017/CBO9780511530029
http://msp.org/idx/mr/1205579
http://msp.org/idx/zbl/0783.35001
http://msp.org/idx/mr/0252961
http://msp.org/idx/zbl/0193.10502
http://dx.doi.org/10.1090/S0273-0979-1992-00225-2
http://msp.org/idx/mr/1093058
http://msp.org/idx/zbl/0767.35045
http://msp.org/idx/mr/586523
http://msp.org/idx/zbl/0441.35040
http://msp.org/idx/zbl/49.0346.01
http://dx.doi.org/10.1016/j.jde.2004.07.028
http://dx.doi.org/10.1016/j.jde.2004.07.028
http://msp.org/idx/mr/2093924
http://msp.org/idx/zbl/1065.35006
http://dx.doi.org/10.1080/03605300500361511
http://dx.doi.org/10.1080/03605300500361511
http://msp.org/idx/mr/2233046
http://msp.org/idx/zbl/1097.35106
http://dx.doi.org/10.1016/j.jde.2015.07.014
http://msp.org/idx/mr/3397314
http://msp.org/idx/zbl/1329.35016


226 ZHUOPING RUAN, INGO WITT AND HUICHENG YIN

ZHUOPING RUAN

DEPARTMENT OF MATHEMATICS

NANJING UNIVERSITY

NANJING

CHINA

zhuopingruan@nju.edu.cn

INGO WITT

MATHEMATICAL INSTITUTE

UNIVERSITY OF GÖTTINGEN

GÖTTINGEN

GERMANY

iwitt@mathematik.uni-goettingen.de

HUICHENG YIN

SCHOOL OF MATHEMATICAL SCIENCES AND MATHEMATICAL INSTITUTE

NANJING NORMAL UNIVERSITY

NANJING

CHINA

huicheng@nju.edu.cn

mailto:zhuopingruan@nju.edu.cn
mailto:iwitt@mathematik.uni-goettingen.de
mailto:huicheng@nju.edu.cn


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2018 is US $475/year for the electronic version, and $640/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 296 No. 1 September 2018

1Monotonicity of eigenvalues of geometric operators along the
Ricci–Bourguignon flow

BIN CHEN, QUN HE and FANQI ZENG

21Composition series of a class of induced representations, a case of one half
cuspidal reducibility

IGOR CIGANOVIĆ
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