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MINIMAL REGULARITY SOLUTIONS OF
SEMILINEAR GENERALIZED TRICOMI EQUATIONS

ZHUOPING RUAN, INGO WITT AND HUICHENG YIN

We prove the local existence and uniqueness of minimal regularity solu-
tions u of the semilinear generalized Tricomi equation (‘)tzu —t"Au = F(u)
with initial data (x(0,-),d,u(0,-)) € H? (R") x H?~2/m+2)Rrn) ynder
the assumptions that |F(u)| S |«|* and |F’(u)| S |u]|*~! for some k > 1.
Our results improve previous results of M. Beals and ourselves. We estab-
lish Strichartz-type estimates for the linear generalized Tricomi operator
3f —t™ A from which the semilinear results are derived.

1. Introduction

In this paper, we are concerned with the local well-posedness problem for minimal
regularity solutions u of the semilinear generalized Tricomi equation

FPu—1t"Au= F(u) in[0,T]xR",

1-1 . .
(- u(0,-) =g e H'(R"), d,u(0,-) =y € HY /"D (Rm),

wheren>2,meN,yeR, A=>"7_, 81.2, and T > 0. The nonlinearity F € C 1(R)
obeys the estimates

(1-2) |FQ)| < [ul®, [F'u)| < Jul<!

for some ¥ > 1. For n > 3 and x > k3 (see below) we further assume that x € N
and F(u) = xu*.

The main objective of this paper is to find the minimal number y for which (1-1)
under assumption (1-2) possesses a unique local solution

ueC(0,T], HY (R™)) N L5((0, T); LY(R™))

for certain s, ¢ with min{s,q} > «. Then F(u) € LS/¥((0,T); L4/%(R")) C
Llloc((O, T) x R™) holds, and (1-1) is understood in distributions.
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We first introduce notation used throughout this paper. Set

_ (m+2)n+2 o — Ux+2 _ (m+2)n+6

Hox 2 *T =2 (mt2m—2
6
K0=1+u*—+m ifn>3o0rn=2m>3,
P (m + 2)n
2 ifn=2m=1;

K1 =14 (uxs+2)(m+2)(n—1)+38
(e —2) (M +2)(n—1) +8
. (s +2)(n—1)=2(n+1)
27 (=)= D=2 + 1)
K3 = _Hwmm if n > 3.
Hsx —m—4

ifn>3o0rn=2m>2;

Note that 4 is the homogeneous dimension of the degenerate differential operator
92 — ™ A and k. is the power « for which the equation 3%y — t™ Au = = |u|*"lu
is conformally invariant.

Note further that 1 < kg < k1 < ks < k2 < k3 Whenever it applies.

Next we state the main results of this paper.

Theorem 1.1. Let n > 2 and F be as above. Suppose further k > k1 and (¢, V) €
HY (R") x HY~2/m+2)(RM) \where

1 _ n+1 _ m .
(1-3) y = ylc,m,n) = o R T ) A
ForemeT ln—; ifk >«
27 (m+2)(k—1) -

Then problem (1-1) possesses a unique solution
u e C([0,T]; H" (R") N L*((0, T); LY(R™))
for some T > 0, where
(-4) Ml co v @nyy T 14llLs (0,119 @)
S el gy gy + IV I gry—2/an42 )

andq = ,bL*(K— 1)/2,
1 1 1 m

§ % ifk > Ky.

if k1 <k < Kx,

Remark 1.2. As a byproduct of the proof of Theorem 1.1, we see that problem (1-1)
admits a unique global solution u € C([0, c0); HY (R")) N L°((0,00); HY(R™"))N
Li=®k=D/2(R, x R") in case n > 2, k > ky if (¢, V) = e(ug, u1), (Uo.u1) €
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HY (R")x HY~2/(m+2)(R") ‘and & > 0 is small (see Section 5.1.2 and Section 5.1.3
in the proof of Theorem 1.1 below). With a different argument, the global result
u € LH+®&=1/2(R, x R") for problem (1-1) was obtained in [He et al. 2017].

Remark 1.3. For y <n/2—4/((m + 2)(k — 1)), one obtains ill-posedness for
problem (1-1) by scaling. More specifically, if u = u(¢, x) solves the Cauchy
problem (1-1), where F(u) = = |u|*"'u, then

ug(t, x) = e 26Dy (el e=m+2/25) >0,

also solves (1-1), with u¢(0, x) = @.(x), d:us(0, x) = ¥(x) for some resulting
@e, We. Observe that

”(p&‘”Hy(Rn) _ ”w&‘”}'[y([@n) _ Eé(m_i_z)(%n_y)_i

Il 1V |
and L (m +2)(% —y)=2/(c—1) > 0 for y <n/2—4/((m + 2)(k — 1)). Hence,
y<n/2—4/((m+ 2)(x — 1)) implies that both the norm of the data (¢, ¥,) and
the lifespan Tz = eT of the solution u, go to zero as € — 0, where T is the lifespan
of the solution u.

In case kx < k < K2, as a supplement to Theorem 1.1, we consider the local
existence and uniqueness of solutions u of problem (1-1) in the space C([0, T'];
HY(R"))N LS50, T); LZ(R™)) for certain s # .

Theorem 1.4. Let n > 2, F be as above, y = y(k, m, n) be as in Theorem 1.1, and

suppose that kK« < k < k3. Then the unique solution u of problem (1-1) also belongs
to the space L5((0,T); L1(R")), where

1_ ! ( 8 _ﬂ)_&
g (m+2)(n-)\k—1 ps/ 2(n+1)
and

1 (m+2)n—1) /1 1 m
ST 4 (z—a)ﬂu*'

Moreover, estimate (1-4) is satisfied.

Ifn >3 orn=2,m> 3, then we find a number y(x, m, n) also for certain « in
the range ko <k < k1.

Theorem 1.5. Letn >3 orn =2 withm > 3. Let F be as above and ko < k < k1.
In addition, let the exponent y = y(k,m,n) in (1-1) be given by

(1-5) y(k,m,n)
_n+l  n+l .M*(m+2)(n—1)+12,u*+2m_ m
4 dusx(m+2) 2nk—(n+1) 2ux(m+2)°
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Then problem (1-1) possesses a unique solution u € C([0, T]; HY (R"))NLS((0, T);
L2(R"™)) for some T > 0, where

1 1 1. 6 m
q_ZnK—(n+1)(2(n 1)+m+2+,u*(m+2))

and

1_1 _ (l_l m
;= am+2)(n-D(5 q)+4ﬂ*'

Moreover, estimate (1-4) is satisfied.
Remark 1.6. Other than for the wave equation when m = 0 (see also Remark 1.8
below), here y can be negative in certain situations. In fact, y(k,m,n) < 0 holds in
the following cases:
() k1 <k <3 (<ky)ifn=2,m=1landk <k <2 (<ky)ifn=2,m=2
(see Theorem 1.1);

(ii) Ko <k < s +2)(n + 1) (Zk1)

i (s — )(n + 1) —mn
if n >3 orn =2, m >3 (see Theorem 1.5).

Remark 1.7. For initial data (¢, ) belonging to HY (R") x HY~2/(m+2)(gn),
where y > y(k,m,n), Theorems 1.1, 1.4, and 1.5 remain valid.

Remark 1.8. For m =0, (1-1) becomes
du—Au=F(u) in(0,T)xR",
u(0.-) =9 e H'®"), 9u(0,-) =y € H' "' (R"),

while the exponents k«, kg, k1, k2, and k3 are

n+3 n+1%2-6 n+1)% .
Ky = , Kn=——"F5——, kI=—"7— ifn>3,
n—1 (n—1)2-2 (n—1)2+4
K0=n+3, K3=n+1 ifn>4.
n n—3

For n > 3, y defined in (1-3) equals

%(n+1)—1/(1<—1) if K1 <k < kKx,

1-6 k,0,n) =
(1-0) s ) %n—2/(K—1) if K > K,

whereas, for n > 4, y defined in (1-5) equals
_1 _1 -
(1-7) y(,0,n)=z(n+1)—z(n+1)[n+5) =D
Note that the numbers in (1-6) and (1-7) are exactly those in [Lindblad and Sogge

1995, (2.1) and (2.5)]. In that paper, the local existence problem for minimal
regularity solutions of the semilinear wave equation was systematically studied.
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The results were achieved by establishing Strichartz-type estimates for the linear
wave operator 92 — A. Under certain restrictions on the nonlinearity F(u, Vu), for
the more general semilinear wave equation

%u—Au = Fu,Vu), u(0,x)=¢(x), 0,u0,x)=1(x),

many remarkable results on the ill-posedness or well-posedness problem on the
local existence of low regularity solutions have been obtained; see [Kapitanski
1994; Lindblad 1998; Lindblad and Sogge 1995; Ponce and Sideris 1993; Smith
and Tataru 2005; Struwe 1992].

Remark 1.9. There are some essential differences between degenerate hyperbolic
equations and strictly hyperbolic equations. Amongst others, the symmetry group
is smaller (see [Lupo and Payne 2005]) and there is a loss of regularity for the
linear Cauchy problem (see, e.g., [Dreher and Witt 2005; Taniguchi and Tozaki
1980]). Therefore, when compared to the semilinear wave equation, a more delicate
analysis is required when one studies minimal regularity results for the semilinear
generalized Tricomi equation in the degenerate hyperbolic region.

The Tricomi equation (i.e., (1-1) for n = 1, m = 1) was first studied by Tricomi
[1923], who initiated work on boundary value problems for linear partial differ-
ential operators of mixed elliptic-hyperbolic type. So far, these equations have
been extensively studied in bounded domains under suitable boundary conditions
and several applications to transonic flow problems were given (see [Bers 1958;
Germain 1954; Tricomi 1923; Morawetz 2004]). Conservation laws for equations
of mixed type were derived by Lupo and Payne [2003; 2005]. In [Ruan et al.
2015b], we established the local solvability for low regularity solutions of the
semilinear equation 0?u — t™Au = F(u), where n > 2, m € N is odd, in the
domain (—7, T') x R” for some T > 0. In [Barros-Neto and Gelfand 1999; 2002;
Yagdjian 2004; 2015], fundamental solutions for the linear Tricomi operator and
the linear generalized Tricomi operator have been explicitly computed. In the case
n =2 and m = 1, Beals [1992] obtained the local existence of the solution u of the
equation 0?u — ¢t Au = F(u) with initial data of H*-regularity, where s > %n. For
the equation 0?u — ™ Au = a(t) F (u), where n > 2, m € N is even, and both a and
F are of power type, Yadgjian [2006] obtained global existence and uniqueness for
small data solutions provided the solution v of the linear problem 9%v —t™ Av = 0
fulfills 18 v € C([0, o0); L7 (R™)) for certain B, ¢ depending on 1, m, and the powers
occurring in a and F.

In [Ruan et al. 2014; 2015a], for the semilinear generalized Tricomi equation
92u — ™ Au = F(u) with initial data of a special structure, i.e., homogeneous
of degree 0 or piecewise smooth along a hyperplane, we obtained local existence
and uniqueness via establishing L°° estimates on the solutions v of the linear



186 ZHUOPING RUAN, INGO WITT AND HUICHENG YIN

equation 92v — ™ Av = g. Note that when the nonlinear term F () is of power
type, for higher and higher powers of «, these L.°° estimates are basically required to
guarantee existence. In this paper, where the initial data in HY (R") is of no special
structure and y is minimal to guarantee local well-posedness of problem (1-1), the
arguments of [Ruan et al. 2014; 2015a] fail. Inspired by the methods in [Lindblad
and Sogge 1995], however, we are able to overcome the technical difficulties related
to degeneracy and low regularity and eventually obtain the local well-posedness of
problem (1-1).
We first study the linear problem

u—1t"Au= f(t,x) in(0,T)xR",
u©,-) =(x), u0,-)=y(x),

and establish Strichartz-type estimates of the form

(1-8)

(1-9) Ml oy sy + lls e s
< C(||¢||HV(R") + ||W||HV_2/(’"+2)(R") + ”f”L;LfC)(ST))

for certain s, g, r, p (see below) and some constant C = C(7,y,s,q,r, p) > 0,
where ST = (0, T) x R". Note that, by scaling, a necessary condition for this
estimate in case 7 = oo to hold is

1 1 1 1
(1-10) 5(m—|—2)n(;—5)+;——=2.

In doing so, in Section 2, we introduce certain Fourier integral operators W
(= W?9) and W* for a € C. These operators depend on a parameter j > 2, introduced
in (2-15), which plays an auxiliary role for the linear problems and agrees with
the homogeneous dimension p, when applied to the semilinear problems. Along
with the operators W and W% we also consider their dyadic parts W; and W ,
respectively, resulting from a dyadic decomposition of frequency space. Contmulty
of the operators W; and Wj“ between function spaces which holds uniformly in j
ultimately provides linear estimates on the solutions u of (1-8).

In Section 3, we prove boundedness of the operators W"‘ from L7 LY (IRH”) to
LY Lp ([R{H”) (see Theorem 3.1) and from Ler([RH”) to L®L2 (R1+") (see
Theorem 3.4), where u has to satisfy the lower bound & > max{2, m/2}. Combining
Theorem 3.1 and Stein’s analytic interpolation theorem, we show boundedness
of the operators W from L1 (Rf”) to LPO(IR{}:“”), where go < g < oo (see
Theorem 3.6). Through an additional dyadic decomposition now with respect to the
time variable ¢, using Theorems 3.1 and 3.6 together with interpolation, we prove
boundedness of the operators W; from LTL2((0,T) xR™) to LSLL((0, T) x R?)
for any 7' > 0 (see Theorems 3.7 and 3.8), where pu has to satisfy the new lower
bounds @ > p« (Theorem 3.7) and p > max{2, mn/2} (Theorem 3.8), respectively.
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In the sequel, we shall use the following notation:

1t 2pem 1 _ 1, 2Z2p-m 1 _ 2 1
po 2 puQus—m)" pr 2 um+2)(n—1)" pr  po pr’
Note that

l<pi1<po<p2=<2 ifn>=3orn=2,m=>2,

while 1 < pp in case of n =2 and m = 1 requires ;. = 2 (and then p; =1). For 1 <
p <2, p’ denotes the conjugate exponent of p definedby 1/p+1/p’ = 1. Further, g,
denotes pé for £ =0, 1,2, while g equals go when pt = 14 (see Remark 4.2). We of-
ten abbreviate function spaces C;)H}/ (St)=C([0,T]; HY (R")) and LTLE(ST)=
L7((0,T); LP(R")), and A < B means that A < CB holds for some generic constant
C>0.

The paper is organized as follows: In Section 2, we define a class of Fourier
integral operators associated with the linear generalized Tricomi operator 87 —¢™ A
in Ry x R". Then, in Section 3, we establish a series of mixed-norm space-
time estimates for those Fourier integral operators. These estimates are applied,
in Section 4, to obtain Strichartz-type estimates for the solutions of the linear
generalized Tricomi equation which in turn, in Section 5, allow us to prove the
local existence and uniqueness results for problem (1-1).

2. Some preliminaries

In this section, we first recall an explicit formula for the solution of the linear
generalized Tricomi equation obtained in [Taniguchi and Tozaki 1980] and then
apply it to define a class of Fourier integral operators which will play a key role in
proving our main results.

Consider the Cauchy problem of the linear generalized Tricomi equation

(2-1) Pu—1t"Au= f(t,x) inRyxR", u(,")=¢, 3u0,)="1.

Its solution u can be written as ¥ = v + w, where v solves the Cauchy problem of
the homogeneous equation

(2-2) Pv—t"Av=0 inRyxR", v(0,-)=¢, v, )="1,
and w solves the inhomogeneous equation with zero initial data:
(2-3) Pw—t"Aw=f(t,x) inRyxR", w(0,-)=0,w(,-)=0.

Recall that (see [Taniguchi and Tozaki 1980] or [ Yagdjian 2006]) the solutions v
and w of problems (2-2) and (2-3) can be expressed as

v(t,x) = Vo(t. Dx)e(x) + Vi(t, Dx) ¥ (x)
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and
t
(2'4) U)(t,X) :L (Vl(t’Dx)VO(T’ Dx)_VO([»Dx)Vl(T» Dx))f(fvx)df,

where the symbols V; (¢, &) (j =0, 1) of the Fourier integral operators V; (¢, D) are

Vo0 = e 0l )

— —Z/2®( m+4 m+4 )
Vi(t.§) =te 2m+2) mt2 ")

(2-5)

with z = 2i¢(1)|&] and ¢(r) = (2/(m + 2))t™ /2 Here, ®(a,c;z) is the
confluent hypergeometric function which is an analytic function of z. Recall (see
[Erdélyi et al. 1953, p. 254]) that

d Dd(a,c;z) = (@)n

@0 dz" (©)n

®(a+n,c+n;z),

where (a)o =1, (a)p =a(a+1)...(a +n—1). In addition, for 0 < arg(z) < «,
one has that (see [Yagdjian 2006, (3.5)—(3.7)])

meZ/ZHJ’_(a’C;Z)_'_ F(C)

—z/2 .
T'(a) Fe—a ¢ H-@c2),

2-7) e 2 ®(a,c;z) =
where

Hy(a,c;z)

I T L
ein(c—a) _ p—in(c=a) T'(¢c —a) 00 z ’

1 1 (0+) c—a—1
H (a,c;z) = — . z ¢ e fga1 (l + Q) deo.
eina _ ¢=ina ['(q) o z

Moreover, it holds that

o) |9 (Ho(a.c:2igOIED) | S@OIED* (1 + 16N if p(0)le] = 1.
|35 (H-(a.c:2ig 0)IED)| S@OIEN* A +1EDTP it p(1)]g] = 1.
3

Choose n € C°(R4) suchthat 0 <n <1 withn(r)=1ifr <landn(r)=0
if r > 2. Then from (2-5) and (2-7), we can write

(2-9) Vo(r, Dx)e(x)

:/ ei(x-$—¢(t)|€|)b1(t,E)@(g)dg—}—[ e/ ETOON D, (1, £)¢ () d&
Rﬂ Rn
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and
(2-10)  Va(t, D)y (x)
_ /nei(x.$—¢(t)lél)b3([’5)@(5) ds—i_/ﬂqz" €i(x'5+¢(t)|5|)b4(t,E)Iﬁ(é) as,

where
(1. 6) = n@OIENS (5 51 2)
m m .
(1= @O H- (52 ).
ba(1.8) = (1= n@OIED) s (5 s 7).
ba(r. ) = G OIED S (57 )

m+4 m+4, )

(1= n@OIED) H- (55 5 2

ba(t,§) = (1= n@(O)IED) Ho (5t E52).

and d§ = (27n)™" d&. We can also write

(2'11) /(;t V()(t, Dx)Vl(f’ DX)f(T’x)dT
-/, t/ I CEFGOLIDIED b, (1 )by (x,6) f (1. §) d d
0 JR?

+/t/ ACEFGO-SDED ) (¢ )b (2. 6) (2. £) dE dt
0 n
t

*/ / I FEGOTODED (1 £)bs (. £) (1. £) € d
0 JR?

n ! el X E=@D=NIED Y (1 £)b, (1, Ar, dédr
// 1(t.6)ba(T.6) f (v.6) d&
0 Rl‘l

and

(2'12) /Ot Vl([? Dx)VO(T’ DX)f(T’x)dt
- t[ ol CEHGOTSNED (1, )by, §) f (1. ) d d e
0 JRr t | )
b [ [ OOy 1 e, f (.6 e d
0 n

+[’/ e E=BO+ONEN (1 )by (. €) f (1. ) dEd T
0 JR"
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N [ ! / I EHGO—DNEN L, (1 )by (. €) f (¢, ) dE d .,
0 JR?

where f (7, &) is the Fourier transform of f(t, x) with respect to the variable x.
In view of the analyticity of ®(a, c; z) with respect to the variable z, identity
(2-6), and estimates (2-8), we have that, for (¢,§) € [R{},_Jr",

(2-13) |a§bg(t,§')| < +¢(¢)|g|)—z<m”’+2) |z§|—|ﬁ|’ (=12,
and
@14) (885 < 1(1+ P20 gL ¢ =34,

Thus, for{ =1,2, k =3,4, u>2,¢t,7 >0, and £ € R", one has from (2-13) and
(2-14) that

2-15) [0 (be(t. )b (2. £)) |
m—+4 m

S t(1+g(0)[E]) 72075 (1 + () [£]) 2o g~ 1P]

S (L4 $()|E) 775 (1 + §(x) gy 200 [~ 1F]

< (1+1¢(1) — p ()| |§]) mom s g |~z IAl,
Furthermore, estimates (2-13)—(2-15) yield that, for £ = 1,2, k =3,4,0r £ = 3,4,
k=1,2and for u>2,t,5 >0, and £ € R”, one has

@16 o ([ 5w B oebute. 0.6 )

< (141 (t) — §(s)||E])mona | ~me2 1Al

and

) ([ B Ehe B0 bute a9

m

< (14 g () — ()| |E]) 7o || “mr2 Al

In order to study the function w in (2-4), in view of (2-11), (2-12), and (2-15)—
(2-17), it suffices to consider, for a given p > 2, the Fourier integral operator W':

t
(2-18) Wf(t,x)z[/ e CEF@O=SENEDp (¢ 5, 8) f(s5,8) d ds,
O n

where b € C*°(R+ x R4+ x R") satisfies the following:

(i) fort,s >0 and & € R",

m

(2-19) 02,5, 6)| 5 (1+ ¢ (1) — p(s) ) 7w || ~me2 1A,
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(ii) for¢,s > 0 and £ € R",

([ e Bt a)
S (1 + Ip () — p(s) ) "m0 ||~ 1A

(2-20)

and

2-21) 'a? (/oo b(t,1,8) 0:b(z, s, §) d‘l?)‘

- __4 _
< (14 1p@t) — p(s)||E]) " momTD |£|~mrz 1B
Let © € C(R4) satisfy supp ® C [%, 2] and

oo

> e@/2/)y=1 fort>0.

j==o0

Then, as in [Lindblad and Sogge 1995], for j € Z and o € C, we define dyadic
operators W; and Wj“ as

t . n
ij([,x)=// (I CEHGO-BOIED (¢ s £) (5, ) dE ds
0 JR”
and

t
(222)  WPf(.x)= / / ACERGOSEED (1 s ) f (5. £) % ds.
0 JR"

where b;(t,s,£) = O(€]/27)b(t,s,&). Here, b € C®(R4 x R4 x R") satisfies
estimates (2-19)—(2-21).

Littlewood—Paley theory gives us a relationship between W f and W; f (= Wj0 ),
which will play an important role in our arguments in Section 4.

Proposition 2.1. Letn >2. For 1l < p <2, 1<r <2,2<g <o00,and2 <s <00,
let

(2-23) Wi fllLsee < WFllpree
hold uniformly in j. Then
IWfliLsee S WA zppe-

Proof. This is actually an application of [Lindblad and Sogge 1995, Lemma 3.8].
For the sake of completeness, we give the proof here. By Littlewood—Paley theory
(see, e.g., [Stein 1970]), for any 1 < p < oo,

oo 1/2
( > weP)

J=—00

SIWAE ) lLewny-
Lo@®?)

WS )llLe@n <
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Together with the Minkowski inequality, this yields

o) 1/2
2
(2-24) IWflpszg < ( Z ”Wff”L;'Lz)
Jj=—00
and
0 1/2
(2-25) ( > IIWJ-fIIZ;L_g) SIWS e
Jj=—00

Notice that

> fe

k=—o00

where fi (7, x) = ©(z/2%) f(z, x). Therefore, for some My € N,

IWSIEs Lo

W) 13 0 (by (2-24))

(due to the compact support of ®)

)

|lj—k|<Mo

LSLY

>
£

2
< Z ( Z W, feell LSLY ) (by Minkowski inequality)

J=—00 "|j—k|<Mo

> > AL (by (2-23))

J=—00|j—k|<My
o0

S D WA e SN (by 2225)),

j=—o0

which completes the proof of Proposition 2.1. ([l

3. Mixed-norm estimates for a class of Fourier integral operators

In this section, for j € Z, € C, and p > 2, we shall study mixed norm estimates
for the class of Fourier integral operators W“ defined in (2-22).
We start by considering the boundedness of the operator W"‘ from L7 L% to

L} Lfc’ ,where 1 <r, p <2. We denote A; = =2/ All the followmg estimates hold
uniformly in j.

Theorem 3.1. Letn > 2 and p > max{2,m/2}. Then:
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(1) Formax{py,1} < p <2and
i _1_m _ 1 _ l_l)
(3-1) =1 g~ +2)( 1)(p 5):

we have that

G2 W fll 1y gt LA Ny Lty

Consequently,

(3-3) ”VI/jaf”L;‘/L)I?/(R}i:‘rn) 5 ||f||L;L)IC7(Rl+n)

; 2
szea—(; )( +- (m—|—2) Cm42

(i) For p1 > land 1 < p < p1, we have that

o n(z—l)—mi_i_z—Rea
(3-4) |W; f“L%LfC’/(Rf”) <A ”f”L%Lfc’(Rf")'
In particular,
. 2 4
- a , < 0 —n(5-1)-—"2_.
(3-5) [[W; f||L%L§ @) S ”f”L%L.’x’(RLf y if Rea n(p 1) o~

To prove Theorem 3.1, for fixed ¢, t > 0, we first consider the operator B]‘.":

" _ [ iGErGO—-p@)IED a5
BY f(1.7.x) fR bj(t.7.§) f(x.§) Tk

Lemma 3.2. Letn >2and 1 < p <2. Then, fort,7 >0,
(3-6) 1BF f(t, 7. ) Lo @y
< kj(%—%)(n-}—l)—m—m—Rea
e e (O e T T e
Proof. Denote
(3-7) K}‘(z,r,x,y):/n (G- E+@O-0IED ) (¢ 7. E)ﬁ

Then B]‘?‘ f can be written as

BY f(t,7,x) = /R" Ki(t,t,x,y)f(zr,y)dy.
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Since suppg bj € {§ € R" | 4;/2 < |§] < 2A;}, we have from (2-19) that

——m 2 _
(3’8) |8§bj (t, T, E)| < Aj wm+2) " m+2 |81

2 m
(A "2 |t =) 2.
We now apply (3-8) to derive estimate (3-6) by Plancherel’s theorem when p = 2
and by the stationary phase method when p = 1. By interpolation, we then obtain
(3-6)for 1 < p <2.

Indeed, it follows from Plancherel’s theorem that

(3-9) B} ft, 7. )2 @n
— el GO-SEEL. ¢ <. £) f(x, ONE N L2@m

m 2

Reor . ——2~ —m
< Aj wm+2) " m+2 ()“j m+2 + |t —T|) m ||f(f, ')”LZ(R")-

On the other hand, by the stationary phase method (see, e.g., [Sogge 1993, Lemma
7.2.4]), we have that, for any N > 0,

(3-10) |Kj(t,7,x,y)]

SA (1) —¢(r)|)g,-)—%(kj—m ) E

2
~wnT2 " mi2 Rea —-N
X )Lj ( )

L+ 4 [lx =yl =l¢@) = $()|

m+2)(n—=1) _ m_
4 m

nkl__m_ 2 __pay 2 -
a7 EE R )

-N
x (142 |lx =yl =6 —o@I|)
Choosing N = 0 in (3-10) gives

I(BF ). T.) I Loo ey

< K7 (7 )llege, 1/ (@ ) L@
ntl___m_____2 __p __2 1 y_m
<A TR TR QIR gy 3D ETDTE ()| .

Interpolation between (3-9) and this last estimate yields (3-6) in case 1 < p <2,
which completes the proof of estimate (3-6). O

Proof of Theorem 3.1. Now we return to the proof of Theorem 3.1. From (3-7),
we have

(3-11) WE f(t,x) =/0 (B f)(t. 7. x)d.
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Using Minkowski’s inequality and estimate (3-6), we thus have that

(3-12) ” I/ijf(t’ : ) ”Lp’(Rn)

® —wis —m+2)(L—1) 5l g
[0 ey G L

Case 1: max{pi, 1} < p <2. In this case, we have 1 < r < 2. Note that

l—l——(m—l-2)<

ror

1 1\n—-1 m

' )5 - o Tl

Then it follows from the Hardy—Littlewood—Sobolev theorem and (3-12) that esti-
mate (3-2) holds.

Case 2: p1 > 1land 1 < p < pyp. In this case,

(m+2)(%—%)”;1 + % > 1.
Thus,
sup/oo()&j_’”%r2 + |t — II)_('”JFZ)(%_%)%I_% dt < oo,
t>0J0
which together with Schur’s lemma and (3-12) yields (3-4). O

We would like to stress that in the proof of Theorem 3.1 only condition (2-19)
on the function b € C*°(R4+ xR x R") was used, whereas the conditions (2-20)
and (2-21) were not required,

Remark 3.3. Note that the adjoint operator (Wj"‘)* of Wj"‘ is of the form

(3-13) (Wj“)*f(t,x):/loo/n ei(x'§+(¢(t)_¢(’))'g')mf(r,5)$dr.

By duality, we infer from Theorem 3.1 that

(3'14) ”(I/Vja)*f”L;"L)lc’/(R}i:&-n)

I/ ||L;L§(R}i-+n)

if max{py,1} < p <2 and
n(;—l)—%ﬁ—Rea
G15) IOV g iny S5 £ 22 @i

if py >1and 1 < p < p1. Here, r is given in (3-1).

As an application of Theorem 3.1, we obtain the boundedness of the operator
W from L7LY to L®L2, where 1 <r, p <2.
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Theorem 3.4. Letn > 2 and pu > max{2,m/2}. Then:

(1) Formax{py,1} < p <2andr asin (3-1), we have that

« (5=3)" 3~ zaomg — s —Rea
p mim m
G-16) W} [l o 2 gitmy 4 1Ay o ity

Consequently,
o
(3-17) ”VVJ f”L}X’L%(R}J") < ”f”L;L;C’(RLf”)

. 1 1\n+1 m 2
oo~ (- -2
if Rea p 2/ 2 2u(m+2) m+42

(i) For p1 > 1and 1 < p < py1, we have that

n(h=3) =itz re

(3-18) ||Wj°’f||L?oL§(R1++n) <A IIfIILng;(an)-
In particular,
(3-19) [We ] <11 fRea =n(L-1)- 3
- s i@ty S Wllgzpp@itny Y Ree =m0 =5 )=

Proof. For given j € Z and « € C, denote U = Wj"‘ f. Then from (2-22) we have

t .
V) = [ OOV 1, D) -8) 2 f () d,

where b; (¢, T, Dy) is the pseudodifferential operator with full symbol b; (¢, 7, §).
Then U(t) solves the Cauchy problem

i0;U(t) = —t™2/=AU®t) +ibj (1.1, Dx)(—=A) "2 f(1)
+i /0 t (GO SOI=R7 bt 7. D) (—A) Y2 (1) dr,
U(0) = 0.
Multiplying by U(z) and then integrating over R” yields

i3, U(), U())
= —1™2(V=AU). U(t)) +i{bj(t,t, Dx)(—A) "2 (1), U(1))

t
+ l</0 el(¢(l)_¢(f))ﬂatb/ (t, T, Dx)(_A)_a/zf(T) d'[, U(l)>,
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and, therefore,

1d 2
il
t
:Re< [ e @O=6OIV=y b (1 . D) (~A)"Y2 f(7) dr, U(z)>
0
+Re(b} (1,1, D) (=AU ), £(1)).
Consequently,
1U)|?
s t
:2Re/ </ e @O—NV=Ry b (1 7 D) (—A)" 2 f(7) d, U(t)>dt
0 0
S
—|—2Re/ (bj’f(t,z,Dx)(—A)_“/ZU(t),f(t))dt
0
< / / LY f@,x)W f(t.x)dx dt
0 JR"?
s ——
+ /0 y by (t. 1. D)WP® f(t.x) f(t. x) dx dt
where s
= /0/ L% £t )W F5. ) dx di |,
S
| [ [ b7t DOW T dx i
0 JR?
and
t . R d'é
LY f(t,x) = / / el(x'§+(¢(t)—¢(t))|5|)3tbj (t.7.6) f(1,6) — dx.
/ o Jrn €]

From (2-19), one has that, for any fixed # >0, b;(¢,t, Dx) € W—2/(m+2)(Rm) and
then b;.‘ (1,1, Dy) € W=2/m+2)(R™) which yields that the term II is essentially

S ——
[ e s dx )

and thus by application of Theorem 3.1 it follows that

2
J ”f”LﬁLQ’(RrF”)

(3200 II'< if max{py,1} < p <2,

n(2-1)-m%a—2Rea ,
lj ”fHL?Lf([R:r”) if 1 < p<p1.
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As for the term I, note that
S —
- '/ f (W)LY £(t, )Tt x) dox dt
0 JR"
A% 4
<N LES Ny g o F Lo iony
For any ¢ > 0, we have from (3-13) that

(3-21) (W#)*LEf(t.x)

o0 T
_ [ / / ol CEFBO—$()IED
t 0 JR”

xb (t,1,8)0:bj (1, s, S)f(s §)—— a5 dsdrt

&[>
t
_ / / oI EEFBO—$()IED
0 JR"

(/ b;(t,1,€)d:b;(z,s, s)dr)f(s E)ISIE“
C[ i GO—d6)ED
) )
(/ b ('L' t, §)8 b (T S, é)d‘[)f(s E)|$|2ga

Due to conditions (2-19)—(2-21), one has that the first and second term in (3-21)
are essentially I/I/jza+2/ (m+2) f and (Wj2a+2/ (m+2))* f, respectively, where b €
C>®(R4+ x Ry x R™) satisfies condition (2-19). Then, by applying Theorem 3.1
and estimates (3-14) and (3-15), we have that

A(."“)(%—%)—m—m_”w||f||2
j TLERLTT
< if max{p;,1} < p <2,
n(2-1)—-%5—2Rea .
Aj(p ) 2 ||f||L2Lp(Rl+n) 1fp1>1andl<p<pl’

which together with (3-20) yields that

IlU@)|? < if max{p;,1}<p <2,

nl=—1 —ML—ZRC(X .
)\j(p ) +2 ”f”L2L”(R1+”) if py>land 1< p < p;.
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Note that [|W* f(z.-)|| L2y = |U()||. Therefore, we have obtained estimates
(3-16)—(3-19), which completes the proof of Theorem 3.4. O

Remark 3.5. With similar arguments as in the proof of Theorem 3.4, we have from
Theorem 3.1 and estimates (3-14) and (3-15) that the operator (Wj"‘)* also satisfies
the estimates (3-16)—(3-19).

Note that if r = p for r defined in (3-1), then r = p = pg. Combining Theorem 3.1
and the kernel estimate (3-10), we obtain boundedness of the operator Wj"‘ from

LPO([R{},_JF") to Lq([R{r“") for certain o € C when g¢ < ¢ < co.

Theorem 3.6. Let 1 > max{2,m/2} and go < g < oo. Then
(3-22) ”I/Vjaf”Lq(Rr'”) < ”f”LPO(Rr””)’
where . .
2 2
o=y (523 )
ea=n i) + m+2)\q + 20
Proof. Case (1): ¢ = qo. Note that

ne (4 i) = (o = 5) e Dt

An application of (3-3) with r = p yields that

2 2 2
G23) IV f ot SIS Ipmogatiny:  Rea=n— 2t (nt 25).

Case (ii): ¢ = oo. In order to derive (3-22), it suffices to show that the integral
kernel K]‘?‘ defined in (3-7) satisfies

(3_24) (t,x)E[Rr'_n

In fact, from (3-7) we have

t
wesen= [ [ Kanensendyd

By Holder’s inequality, then

2 1 2
(3-25) ||Wjaf||Loo(R3r+n)§||f||Lp0(R3r+n), Rea:n—m+2—q—0(n+m—+2).

Now it remains to derive estimate (3-24). In fact, due to the kernel estimate (3-10),
forany N >nand o e CwithRea =n—-2/(m+2)—1/qo(n +2/(m +2)), we
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have by (3-10)

o q
/RHM |Kj (t, t,x,y)drdy
+

n+1 m 2
—Rea— mm+2)_m+2)‘10

N

(m+2)(n Dy m
s )qo d
T

X/o ()&J._m+|t—r|) (
x/ (425 lx =y~ 16 () — @ I)~N dy
Rn

ntl ——m____ 2
<)L( F—Rea— it — %3 ) a0

~ 7

nt2n=1) | m
+ao4 )tIO d
T

© __2
x/ (4, 1) (
0

x A7 fo 1+nNOFT 4+ le@ =g @) dr

n+l m 2
( 2 —Ree—ymry _m+2)‘10_1

J
[0
0
A7 +lp() — (@) de

N A0 =@l
></o 0 T e0—s@) ¢
n+1

2
7 —Rea—mity _m+2)‘10_1

=A

<al

J
(m+2)(n—1) (m+2)(n—1)
/ (A m+2_|_|t |) (m n= +”’)qo+’" 2" dt

(n Rea— m+2)q0 —h— m+2 _
Aj =1,

A

and hence (3-24) holds.

Case (iii): qo < g < co. Applying Stein’s interpolation theorem, one obtains that
estimate (3-22) holds by interpolating between estimates (3-23) and (3-25). O

Now we consider boundedness of the operator W; from L} L 2(St) to LS LL(ST),
where 1/ p is symmetric around 1/ py.

Theorem 3.7. Let n > 2. Furtherlet py < p < prifn=2,m=>2,orif n >3,
and 1 < p<Tu/(Qu—2)if n =2, m = 1. Then, forany £ > jusx and T > 0,

(3-26) Wi fllestacsyy S WS lrpe sy
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where 1 is defined as in (3-1) and

q p mM+2)(n+1) 2u)’
1_(m+2)(n=1) (l _ 1) Lm
s 4 2 q/) " Ap
Proof. Since 1/ p is symmetric around 1/ pg, by duality it suffices to consider the
case max{pi, 1} < p < po.

In order to derive (3-26), we now need a further dyadic decomposition with
respect to the time variable 7. Choose a function n € C>°(R4) such that 0 <n <1,
suppn € [4.2], and

(3-27)

o0

Yooty =1

{=—00

Let us fix A = 2/ and set

no(t) =Y n(A27%1).  ne(t) =n(A27) for LeN.
k<0
Then,

W ft.x) =Y Gef(t.x),
k=0
where

(3-28) Gp f(t,x)
t

= [ [ s e0s Oy )by, (.6 d d
Hence, to derive (3-26), it suffices to show that, for any k € N,
(3-29) 1Gk fllzsLacsry S 275N f s Locsy)
for some &, > 0. From (3-1) and (3-27), we know that

(et 1y, 1 1_,
2 P q ros

Due to scaling invariance, we need to consider only the case A = 1 (by a change of

variable if A # 1). Repeating the arguments which are used to prove (3-2), we get
that, for any k € N,

(3_30) ”ka”L;:/L;)/(ST) s 2—k((m+2)(1/P—1/2)(n—1)/2+m/(2,u)) ”f”L;L)‘IC)(ST)

Note that (m +2)(1/p — %)%(n -1 +m/Q2u) > %, since p < po.
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Furthermore, an immediate consequence of (3-16) for « = 0 is

IGk fllLoor2(s7y SN Lrroesyy

and thus, for any 1 < p < o0,

(3-31) 1Gk S Nerzsyy SN LrLecsry-
Choose
(3-32) 0= 4p(2p+m)

= umr )t De—p) -

Then 0 < 6 < 1 and, for the number ¢ from (3-27),

0 1-0
s 7t 2
For s from (3-27) and 6 from (3-32), we define so by

db-d)=ofm 2t 2)

and then set p = p such that

so ' pe
Since 2 < s < §¢, by interpolating between (3-30) and (3-31) when p = px, we
obtain that

(3-33) ”ka”LioL)qc(ST) < 2_2k(1/s_1/30)||f||L;L§(ST)-

Let {I;} be nonoverlapping intervals of side length 2% and U¢ Ie = Ry, and
denote by xj the characteristic function of /. In view of (3-28) and the compact
support of 1y, we have that if f(¢,x) =0 for¢ ¢ I, then Gy f(t,x) =0fort ¢ I/,
where 1 is the interval with the same center as /; but of side length Co2F with
some constant Co = Co(7n) > 0. Thus, from Minkowski’s inequality,

33 1660 g = (L 16600 ->||Lq(w))
{

S D MGk Gz N ny-
L
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Denote ]7 = 1;N(0,T). Estimate (3-34) together with Holder’s inequality and
(3-33) yields that, for any k£ € N,

S s
16k S g5 S ; 1Gk e P g 77 e

S DI UG e D0 g 7y
L

S2k(1—S/So)2—2]‘5(1/5_1/50) E ||Xlzf||2r
t
L

< 7—k(1=s/50) I¥a ||L§L§(ST)-

Therefore, we get estimate (3-29) with ¢, = 1 — /50 and, hence, (3-26) holds. O

LI (ST)

By a similar argument as in the proof of Theorem 3.7, we obtain the boundedness
of operator W; from L?L%(St) to LSLL(ST) when p; > land 1 < p < p;.

Theorem 3.8. Letn > 3 orn =2, m > 2. Suppose 1 < p < p1. Then, for
w>max{2,mn/2} and T > 0, we have that

(3-35) W, £ lsocsry < 17202009,

where

1__2n  n—-1 _ m+6u

g pmnr+l) 2n+1) pum+2)(n+1)’
1

_ 1 _Iym=1\ m
s_(m+2)(2 q)( 4 )+4M‘
Proof. Note that when 1 < p < p;, we have

1 1\/n-1 m
n+2)(,=3)("5) + 37 1

Then we can apply similar arguments as in the proof of Theorem 3.7 to obtain
(3-35). We omit the details. O

(3-36)

Remark 3.9. By similar arguments as above one can show that under assumptions
(3-27) and (3-36), adjoints (W;)* of W; also satisfy estimates (3-26) and (3-35),
respectively.

4. Mixed-norm estimates for the linear generalized Tricomi equation

In this section, based on the mixed-norm space-time estimates of the Fourier integral
operators Wj"‘ obtained in Section 3, we shall establish Strichartz-type estimates
for the linear generalized Tricomi equation.

First we consider the inhomogeneous equation with zero initial data, i.e., problem
(2-3).
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Theorem 4.1. Let n > 2. Suppose w is a solution of (2-3) in St for some T > 0.
Then:

(i) For pu > px,
(4-1) lwllzszesry < WS lLrLeisyy:

provided that py < p < paifn>3orn=2,m>2;and 1 < p <Tu/(4u—2)
ifn=2andm = 1. Herer =r(p, ) is as in (3-1) and q and s are taken from
(3-27).

(ii) For u > max{2,m/2},

(4-2) lwllLacsyy S MDxP 7Y fllLrocsyy. go <g < oo,

where

_ _n_1 2
=y =3+ ;25)

_ _1 2 n
)/o—)/o(m,n,,u)—q (n+m+2)+m+2 2’

(4-3)

(iii) For u > max{2,m/2}, max{p1, 1} < p<2,and0 <t <T,
(4-4) lwt. ) gy S 1z L2657

where r = r(m,n, p, ) is defined in (3-1) and

2 n m _(l_l)n-l—l
m+2  2u(m+2) p 2/ 2

y=vy(m,n,pu, p)=
(iv) For p > max{2,m/2},y e R,and0 <t <T,

(4-5) 1w gy @y < NP7 f | Loo sy
where yy is from (4-3).
Remark 4.2. If we choose it = 4, then

po=pi =2 go=qp =2
0 M*‘f‘z’ 0 M*_2’
and for y and yg defined in (4-3),
1
V(m,n,qf)k) =yo(m,n, jix) = me2

Thus, we have from (4-2) that

<
10l a3 5,y S 1705 5
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which, for any p € R, together with [| Dy |?, 8% —t™ A] = 0 implies that

D20 ] g 5y S NPT g s

Proof of Theorem 4.1. (i): One obtains (4-1) by applying Proposition 2.1 and
Theorem 3.7 directly.

(ii): For « € C, the Fourier transform of | D |*
x is |§|% f(¢,£). Thus, we can write W; f as

W; f(z.x)

= [ [ s @ sDe )21y bt )DL D
O n

f(t, x) with respect to the variable

and W; (f) = W(Dx|* f).
Therefore, applying Theorem 3.6, we get that

1) Fllzacsey = W7D ) agsyy < NP7 [ oo sy
which together with Proposition 2.1 yields (4-2).
(iii): Note that [|Dx|”, 9% —t™ A] = 0 and then

(4-6) (@7 — 1" A)(| Dx|"w) = [ Dx|” f.

From (ii) we know that W;(|Dx|” f) = Wj_y(f). Thus, for y =2/(m +2) +
m/QRum+2))—(1/p—1/2)(n+ 1)/2, we have from estimate (3-17) that

W ADL” 1)) | 2y = 1977 £ 2y S 1S e
Thus, by (4-6) and Proposition 2.1 it follows that

|UDx " wy(t, )| Loy < 1 s e

which together with Plancherel’s theorem implies that

lw(@ N gy @ny = HIEIW)(LS)HL@W) = [ (D« w) (. -)|

L%(Rn) 5 ||f||L;L§a

and estimate (4-4) holds.

(iv): From (ii) we also know that
Wi(g) = W, (| Dx| 70g).

In (3-1), we have r = p = pg when r = p. The estimate (3-17) for

o= _(i_l)n%—l_ m 2
=Th= 2) 2 T 2pum+2)  m+2
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with p = po yields that

IW @€z = [W, 71D 708)0) | gy < 10570

LP0(ST)’
and then, for g = |Dx|” f, where y € R,
(4-7) Wi (DY 1)) | L2 ny S NP7 | Lrosyy-

Therefore, one has from Plancherel’s theorem, Proposition 2.1, (4-6), and (4-7) that

1 gy = [ D7) | oy < NP7 | Loocsyy
Hence, estimate (4-5) holds. O

Incase n > 2 and m > 2 if n = 2, we have a more complete set of inequalities
for the solution of the linear generalized Tricomi equation.

Theorem 4.3. Letn > 3 or n =2 withm > 2. Suppose w solves (2-3) in St. Then:

(1) For p > max{2,mn/2}and 1/p1 <1/p < % + (m4+6un)/Qun(m+2)),

(4-8) ||w||L§LZ(ST) < ”f”L%L,‘?(ST)’
where q and s are defined in (3-36).

(i) For u>max{2,mn/2} and % <l/p< %+(2;L(n—3)+m(3n—l))/(u(m +2)
(n*—1)),

(4-9) ”w”L?LSIC(ST) < ”f”L?L)’Z(ST)’
where r is defined in (3-1) and

) 1 _n+l n-1  m+6u
“-10) g 2np dn  2u(m+2)n’

(iii) For u > max{2,m/2}and 1 < p < py andy =3/(m + 2) —n(l/p— %),
(4'11) ||U)(t, )”HV(RH) S ||f||L%L§(ST)
Proof. (i) Note that, under these assumptions,

- 2un(m+2)
un(m+2)+6u+m

<p<p, 25g<o0, 2<s<o0.

Thus, we get estimate (4-8) by applying Proposition 2.1 and Theorem 3.8.

(i1): This will follow from the dual version of Theorem 3.8. Indeed, when

1 1, 2um—-3)+m@Bn-1)
p 2T T umryme-1)
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then, for ¢ defined in (4-10),

2u(m+2)n -
<
um+2)yn+6u+m =4 =n
and
1 2n n—I1 m+6u

P+ 20+ pm+2)n+1)
For r defined by (3-1), the conjugate exponent ' can be expressed by

o 8uup’ ,
u(m+2)(n—1)(p'=2)+2mp’

Thus, from Remark 3.9, we have that

%
and then, by duality,

”Vij”L%L%(ST) < ”f”L;'L)f(ST)'

Therefore, from Proposition 2.1 we have that estimate (4-9) holds.
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(iii): Note again that W;(|Dx|” f) = Wj_y (f). Then, in view of (4-6) and estimate
(3-19) fora = —y =n(1/p—1)—3/(m+2), one has that estimate (4-11) holds. O

Now we consider the Cauchy problem (2-2).

Theorem 4.4. Let n > 2 and > max{2,m/2}. Suppose v solves the Cauchy

problem (2-2). Then:

(1) Forgo =g < 0,
(4-12) IIUIILq(an) S el g @ny + 1 gry—2/0m42 @ny-

wherey =n/2—((m+2)n +2)/(q(m + 2)).

(i) For2<g<oowhenn=2andm =1,and2 <q <qy whenn >2andm >?2

ifn=2,
(4-13) ”v”L‘fL?C(Rr_”) < ||¢||HV(R”) + ”W”]—'[yfz/(erZ)(Rn)’
where
1_w<1_1)+m _”+1(l_l)_L
s 4 27 T VT2 0T T 2umr2y

(i) Forqy <g<ooaswellasn>2andm > 2 ifn =2,
(4-14) ”v”L%L%(Rr—n) < ||§0||[-'11/(Rn) + ”W”Hy—z/(m-i-%([@n),

where y =n(%— l/q)— 1/(m+2).
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Proof. The goal is to prove that
(4-15) ”v”LULp(R”r") ~ ”(p”HV(R") + ||w||HV —2/(m+2) (jn)

for certain 2 <o <ooand 2 < p < o0.
Note that

t(l + ¢(t)|5|)_281n142) < (1 + ¢(t)|s|)_2(mm+2) |%—|—ﬁ
= (1 + ¢(t)|§|)_14(l1’1n+2) |$|_%ﬂ

In order to establish (4-15), from the expression of the function v in (4-22) together
with (2-9) and (2-10) and the estimates of by (¢, £)(1 < £ < 4) in (2-13) and (2-14),
it suffices to show that

(4-16) 1POlLe Lo @itny S 101 gy nys

where the operator P is of the form

(Poex) = [ SO0, 096 de

with a € C*®(R4+ x R™) and, for any (¢, £) € [R?f'”,

(4-17) 92a(t. ) S (1 + ¢ (1)) ™™/ T2 g 11,
Note that P can be written as
(Potx) = [ OO oD To(e)
R" s

and, for i = | D | ¢, by Plancherel’s theorem,

121 2@y = NEV @llL2ny = N1l gy (gony-

Therefore, in order to prove (4-16), it suffices to show that the operator 0, where

as
17

is bounded from L?(R") to L?Lﬁ([R{:f"). By duality, it suffices to show that the
adjoint Q* of Q,

(@-18) (@13 = [ EIORDa i)

@19 (0*f)(x)= /OOO/R oI CEPOIEDG (T E) g7 f(v.£) dE d.,

satisfies

(4-20) 197 Fllz@ny SIS NLgr Ly iy
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Note that

19" f ageny = [ (" NI

L QO f 0T dt dx <100 fllpg el fll g o
L

Thus, in order to get (4-20), we only need to show that
k

(4_21) ”QQ f”L?L)‘z 5 ”f”LttT’L)e/'

From (4-18) and (4-19), we have that

a5

00* f(t,x) = / /n i(x-§+(p(t)— ¢(t))|$|)a(t £)a(r, S)f(f £) —— |§|27

By (4-17), we further have that

|04 (a(t. £)a(x. £)] < (1+ |p(1) — p(x)|[£]) " 7owe2 || A,

Thus, by Proposition 2.1, in order to get (4-21), it suffices to show that
16 f g 1g <11 g

where the operator G, is defined as

a&
IEIZV

Note that G; f is essentially szy—z/ (m+2) f. Therefore, in order to get (4-14), it
suffices to show that

Gy fx)= [ [ SCEHCODDD6 el 2100, 0B /.6

2y—2 +2
(4-22) W2 =212 £l 1o S0 N e

We first show (4-12): For y =n/2— (n(m +2) +2)/(¢(m + 2)) and g = qo,
we have that

(2 _mi—i—Z)=<po )( +h- (m+2) m3—2'

Thus, we have from estimate (3-3) when r = p = pg that

2y—2/(m+2)
(4-23) |w; | Lao@irmy = 1S o tiny:
On the other hand, from (2-22) and the compact support of ®,

2y—2 +2
(4-24) IW2 72D ] gty S 1S ey
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By interpolation between (4-23) and (4-24), we obtain that
2y—2/(m+2) <
1w, Flgagyny SIS lwgin. g0 <q <o
where ¢’ is the conjugate exponent g. Therefore, we get estimate (4-12).

Next we derive (4-13). Since

1 (m+2)n—-1)(1 1 m
5 f(z—z,) L

’

we can write

1_1_M(L_l)_ﬂ
s’ 4 qg 2/ 4w

Thus, when y = (n + 1)/2 (3 — 1/g) —m/(2j1(m + 2)), applying estimate (3-3)

for max{p1, 1} < ¢’ <2, we have

2y—2/(m+2) <

and, therefore, estimate (4-13) holds.
Finally we prove (4-14). When y = n(% - l/q) —1/(m +2), we have from (3-5)
that, for p; >l and 1 < ¢’ < py,
2y—2/(m+2)
Thus, estimate (4-14) holds. O
Combining Theorems 4.1, 4.3, and 4.4, we obtain the following results:

Theorem 4.5. Let u solve the Cauchy problem (2-1) in the strip St. Then

4-25) Nullcogrysyy + ullLs (s
S el gy @y + 1V gry—2soms2 @y + 1 lLr L2 (s

provided that the exponents p, q, r, and s satisfy scaling invariance condition (1-10)
and one of the following sets of conditions:

. 11 4 m

® PGS (1+ zu)’
1_m+2)(m=Dl 1y, m
s 4 (2 q)+4u’
_ntll 1N m
¥=7 (2 q) 2u(m+2)’

where L > Ly,
N S J
op ~V T84T a2
_ 2Qu—m)(n+1)
p(m+2)(n—1)(2pux—m)

ifn=2m=1,

ly — vl <va ifn>30rn=2,m=>?2,
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and
__2 " m _ @Cu=-m)(n+1)
m+2  2u(m+2) 2uus—m) -

) n=3orn=2,m>2andr =2,

V*

1 _ (m+2)(n—1)(l_l)+ﬁ _n+1<l_l)_ m
s 4 27 ¢) T VT 2 2T g) T 2umr2y
where i > max{2,mn/2} and

m <y< 3 n(2u—m)

2u(m+2) m+2  pm+2)(n—1)

(i) n>3o0orn=2,m>2ands = 2,

L_yom o=l 1y Ly 1

where > max{2,mn/2} and

un+1)—mn 2 m
oL <y < .
u(m+2)(n—1) 4 m+2+2,u(m+2)

Remark 4.6. We can rewrite the conditions of (4-5) in terms of g.

(i) For it > pus,

8 4 1 1 .
- - o< = — —
63(1 )<q 7 ifn=2m=1,

(4-26)

1 1 4 m 1 )
—<——|——(1 —)<— ifn>3o0orn=2m>2.
P2 q (m+2)(n+1) 2u D1

(i1) For u > max{2,mn/2},

2n n—1 1 m
(4-27) (m+Dp1 2+1) (m+2)(n+1) (6+ﬁ) =

+

=

N —

1
q
(iii) For y > max{2,mn/2},

1 1 my 1 _1
4-28 ———(6 —)<—<—.
( ) 2 2(m42)n + 2 9 491

Theorem 4.7. Let u solve the Cauchy problem (2-1) in the strip St. Then

@4-29)  Nullcogy sy + lullLacsr)

S 10l gy + 1 gy—2sms2rgmy + 11D f lLrogsry
provided that the exponents p, q, r, and s satisfy (1-10) and pu > max{2,m/2},
qgo < q < 0o, where

1, nm+2)+2 2 m n—H( 1 1)

VAT ) O T w2 T umy2) 2 \pe 2)
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Corollary 4.8. Under the conditions of Theorem 4.7, one has

|y—1/(m+2)

(430) lullcopry sy + lullzacsy) + 11D Ul s

S 10l gy oy + 19 L gry—2somer gy + 11DV OFD LY e o
where y =n/2—((m+2)n+2)/(q(m+2)) and q5 < q < oo.
Proof. This follows by combining estimate (4-29) and Remark 4.2 when pt = py. O
An application of Theorem 4.5 yields the following:
Corollary 4.9. Let u solve the Cauchy problem
Fu—t"Au= f(t,x)g(t,x) inSr,
u(0,-) =0d;u(0,-) =0.

Then, for any 1 > s and 0 < R < 00,
@30 Nullcogysrnag T 1Hlsresrang T 1ullLeors (srna)
Sl Losrnamglins e nag):

where q is as in (4-26),

um+2)y(n+1) u(n+1)
(4-32) p= , o=_——,
2Q2u +m) 2u—mn
1 m+2)n—-1),1 1 m n o n 2 1 m
aay Lo DoAY w2 ) my
K 4 2 ¢ 4 8§ q m+2\s 4u
and

Ar={(t.x) e Ry xR" | |x|+ (1) < R}.

Proof. First we study the case R = oco. Note that (4-33) gives that

(3-5)="3"G2) s

Applying estimate (4-25) in case (i) together with the Sobolev embedding

Hn(l/Z—l/S)(Rn) s LS(Rn),
we have
Il co sz sry + el ceesy + 1l oo s sy S 178 s Logsr).
where 1/p=1/g+1/pand 1/r =1/s+1/0. In addition, from Holder’s inequality,
(4-34) ||fg||L§L§(ST) = ||f||L‘,’L§(ST)”g”L;'LZ(ST)-
Thus, estimate (4-31) holds for R = oo.
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Now let R < co. Let y denote the characteristic function of ST N A g. If u solves
92u—1™ Au = fg with vanishing initial data and u, solves 0?u, —t™Auy = y fg
with vanishing initial data, then u = u, in S7 N A g due to finite propagation speed
(see [Taniguchi and Tozaki 1980]). Therefore,

lullco gy srnag ¥ 1MILsLesrang) T 1llLeoLs (570 )
= lluxlicogyspy + 1xllLsrecsry + uxlipeors s,
<lxflzeresmllxgliesLecsy)-
Consequently, estimate (4-31) holds. O
As another application of Theorem 4.5 we have the following:

Corollary 4.10. Let u be a solution of

?u—t"Au=F(v) inSr,
u(0,-) =0;u(0,-)=0.

Ifg<ooand1/(im+2)<y=n/2—n(m+2)+2)/(g(m+2)) <(m+3)/(m+2),
then
(4-35) Nl oy sy + Mellzacsyy + NP~ Dull e o

SIF @ usr2isp 1D OFD0) e

Proof. This follows from estimate (4-30) by taking fractional derivatives. Indeed,
for0<y—1/(m+2) < 1, one has

lullco sz sy + oy + 1D~V D g o

< ”|Dx|y—1/(m+2)(F(v))HL,,;;(S )

SIF )l pusr2espy | 1P~ 1/(m+2)vHLq0(ST)

S. Solvability of the semilinear generalized Tricomi equation

In this section, we will apply Theorems 4.5 and 4.7 and Corollaries 4.8-4.10 with
L = W« to establish the existence and uniqueness of the solution u of problem
(1-1). Thereby, we will use the following iteration scheme: For j € N, let u; be

the solution of
(5-1) Fuj —t"™Au; = F(uj—1) in Ry xR",

where u_; = 0.
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Notice that, for & = «, the exponents from (4-25) in case (i) are
2(n+1)
px(m+2)(n—1)°
In order to get the existence of solutions of the Cauchy problem (1-1) as stated in

Theorems 1.1, 1.4, and 1.5, we need to show that, for the sequences {u; };";0 and
{F(u j)};";o defined by (5-1), there exist a T > 0 and a function u such that

Vx Yd =

1
T om+2’

(5-2) uj —>u in L}.(S7) as j — oo,

(5-3) F(u;)— F(u) inL}.(S7) asj — oo.

From (5-2) and (5-3), one obviously has that the limit function u solves problem
(1-1) in ST.

Furthermore, let u, #% both solve the Cauchy problem (1-1) in S7. Then v =u—u

satisfies
v —t"Av=G(u,i)v inSr,
(5-4) : (u, 1) T
v(0,-) = d;v(0,-) =0,

where G(u, 1) = (F(u)— F(1))/(u—1) if u # % and G(u, u) = F’(u). For certain
s, q > 2, we will show that v € L3 LZ(S7) and

(5-5) Iollzszesry = 3 Iollzs 2257
Uniqueness of the solution of the Cauchy problem (1-1) in S7 follows.

5.1. Proof of Theorem 1.1.

5.1.1. Case k1 < k < kx. From the assumptions of Theorem 1.1, we have

_n+l __n+l1 m
4 Psx(c=1)  2ps(m+2)

and
_ _paleml) 1 _ D=1 Ly, m
(5-6) 1= 75 57 4 2 q)+4u*'
Thus,
p=tfl(l 1y _m I/ UES | N U

2 \2 ¢ 2ux(m+2)" m+2  us(m+2)(n—1) m+2°

Existence. In order to show (5-2), set

5 Hi(T) = lujllcomy sy +uilsLeso:
Ni(T) = lluj —uj-1llps .9(sp)-
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We claim that there exists a constant &g > 0 small such that

(5-8) 21 Y47V Ho(T) < o
and
(5-9) H;(T) <2Ho(T), N;(T) <1 N;_(T).

Indeed, from the iteration scheme (5-1), we have
(5-10) (07 = 1" A)(uj1 —ugg1) = Guj, ug) (uj —ug).
Note that in (4-32),
p=0=73x
when ( = . Thus, from (4-31) and condition (1-2),
G-1D) Nujr —ursilicogr sy + 1uj+1 —vkr1llyLecss
SNG @y wi)ll pusrz(spylluy —vellps L2 s,
< (”“J ||1’i;(15T) + ||”k||Z;(IST))||”j - ”k”L;LgIC(ST)-
Note that s > ¢g for k < k«. By Holder’s inequality, we arrive at
(5-12) lujllacsry < TV 5 ujllps g sp)-
Since u_; = 0, (5-11) together with (5-12) implies that

T(K—l)(l/q—l/s)”uj

. —_ . —_— . K
luj+1—uollLs L (s7y + uj+1 =10l cor s,y = IZs 2457y

From the Minkowski inequality, we have that there exists an g9 with 0 < g¢ <
272/(=1) guch that

Hj41(T) < Ho(T) + 1 H;(T) if TV VS H(T) < &o.
Therefore, by induction on J,
(5-13) H;(T) <2Ho(T) if 2797V Ho(T) < &.
Taking k = j — 1 in (5-10), estimates (5-11)—(5-13) yield that
Njs1((T) < gNi(T) it 2Ho(T)T 97V < g,

which together with (5-13) implies that (5-9) holds as long as (5-8) holds.
Since u_; = 0 and ug is a solution of problem (2-2), we have from (4-13) that,
for ¢ € HY (R") and ¢ € HY~2/(m+2)(Rgr),

No(T) < Ho(T) 191l 5 gumy + 1| sy—2s042) gy
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Thus, by choosing T > 0 small, (5-8) holds. Consequently, there is a function
ue COHY(ST)N LSLL(ST) such that

(5-14) uj > u in LYLL(ST) as j — oo,

and, therefore, (5-2) holds. It also follows that u; converges to u almost everywhere.
By Fatou’s lemma, it follows that

G-15) Mullco gz sy + llizsracsr)

= 1}“_1)£f(||uj ”C,OH}’(ST) + [Juy ”LﬁL,%(ST)) <2Ho(T),

which shows that estimate (1-4) holds.

Now we prove (5-3). It suffices to show that F(u) is bounded in L} L2(ST)
and F(u;) converges to F(u) in LYLY(S7) as j — oo, where p = ¢/k and
1/r=1-m/(4ps) —(m+2)(n—1)/4(1/p—3). In fact, rk <5 if k < kx, thus,
for ¢ = pk, by condition (1-2) and Holder’s inequality, we have

K 1/r—«/s K
1F@lLs s S Wl peppe sy S TV Il 0,

Moreover, in view of 1/p—1/q =1/r —1/s = 2/ ju«, by Holder’s inequality and
estimates (5-11)—(5-13) and (5-15), we have

1Fuj) = F)lprpe sy < NG )l pusrzsplluj —ullpspa sy

S TV Ho(TY uy —ull s 9 sy
S lluj —ullpspacsy)-

Applying (5-14), we have that F(u;) converges to F(u) in L LY (S7) and, there-
fore, (5-3) holds.

From (5-2) and (5-3), we have that the limit function u € CtOI-'I;/(ST)) N
LiL?C(ST) solves the Cauchy problem (1-1) in St.

Uniqueness. Suppose u, ii € C([0, T], HY (R")) N LSLL(ST) solve the Cauchy

problem (1-1) in S7. Then v = u — i € C([0, T], HY (R")) N LSLL(ST) is a
solution of problem (5-4). From Corollary 4.9, we have that

||U||L;‘L§(ST)
< C(lulfa(syy + IE1Ta (s )0 zs (s (by (4-31) and (1-2))
< cTW=D0/g=1/s)
B (by Holder’s inequality)

-1 ~k—1
< Uelizs e cspy + 182;Le s I s

C2(TV47S Ho(T) vl 1y (s (by (5-15))

A

= %”v”LfLZ(ST) (by (5-8)).
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Thus (5-5) holds and u = 1 in ST.
5.1.2. Case ks« <kifn=2o0rk« <k <k3ifn>3.
Existence. From the assumptions of Theorem 1.1, we have

4 _
YEA T i ye—1y 01 2
Thus,
1 (m+2)n+2 _m+3

1
- <y =41
mt2 =7V~ 2" qgm+2) —m+2’

To show (5-2), we set

Hj(T) = lujllco gy sy + Iusllzecsyy + 11D Dy

and

L0 (S7)’

(5-16) Ni(T) = lluj —uj=1ll g 5.0 0

We claim that there exists a constant ¢ > 0 such that

(5-17) Hy(T) < g,
and
(5-18) Hj(T) <2Ho(T), N;(T)<3N;—1(T).

Indeed, since u—_; = 0, from the iteration scheme (5-1), we have
(5-19) (07 — 1" D) (uj+1 — o) = F(u;).
Thus, estimate (4-35) together with condition (1-2) yields, for 0 <y —1/(m+2) <1,

Hy1(T) < Ho(T) + C I F' ()| er2(spy 1 D5 4P| s o
< Ho(T) + Clus | a5 11"~ " 2us s o

< Ho(T)+ CH;(T)*.
Therefore, by induction, we have that
H;(T) <2Ho(T) if C2¥Ho(T)* ' < 1.

Consequently,

(5-20) Hj(T) <2Ho(T) if Ho(T) < &0

for some gg > 0 small. Notice that, for ¢ and s from (5-6), wheng =s5,s09 =5 =¢.
Hence, by using estimates (5-11)—(5-13) together with (5-20), we get that for N;
defined in (5-16),

(5-21) N;(T) < 5N;—1(T) if Ho(T) < &o.
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Estimates (5-20) and (5-21) tell us that (5-18) holds as long as (5-17) holds. To
get (5-17), from estimate (4-30) (with f = 0) we have that, for ¢ € HY (R") and
v € I_'Iy—z/(m+2)(Rn)’

(5-22) HO(T) < ||(p||HV(Rn) + ”W”]—‘]y—2/(m+2)([@n)-

Due to the continuity of the norm in L4(S7), (5-17) holds for some T > 0 small.
Af Nl gy gny + 1V 1| gry—2/0n+2) gny 18 small, then (5-17) holds for any T' > 0,
consequently, we get global existence.)

Note that ¢ = p«(k —1)/2 > g when k > k4. Thus, from Holder’s inequality
and (5-22),

(5-23) No(T) = lluoll a5 (. ~a ) < IH0llLacsr) < Ho(T).

From estimates (5-17), (5-18), and (5-23), we get that there exists a function
ue COHY(ST)N LI(ST) with | D, |7~/ m+2y ¢ .96 (ST) such that

(5-24) u; >u in L% (St N AR) as j — 0o,

and (5-2) holds. Thus, from Fatou’s lemma and (5-18), it follows that

y—1/(m+2) < 2H()(T)

Ul 5y =

(525 ulleogresyy + lullacsr + 11 Dxl
and u satisfies estimate (1-4).

Since ¢ = p«(k —1)/2 > k when k > k4, we have from condition (1-2) that
F(u) is locally integrable for u € L4(S7). By Holder’s inequality,

/ |F(uj)—F(u)|dtdx=/ |G(uj,u)|luj —u|dtdx
STNAR STNAR

< ; =

Note that pg < j1«/2. Thus, from condition (1-2) we have that

1G (uj, )l N + [l

LP0(STNAR) ” ]|L”5k("_l)(STnAR) LPO“=D(SrNAR)

-1 -1 -1
< Huj”ECI(STnAR) + ”u”Eq(STﬂAR) < Ho(T)™,

which together with (5-24) implies that F(u;) — F(u) in L}
holds.

From (5-2) and (5-3), we have that the limit function u € Ct0 HY (ST)NLY(ST)
with | D, [Y~1/m+2)y, ¢ L% (ST) is a weak solution of the Cauchy problem (1-1)
in St.

(ST). Hence, (5-3)
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Uniqueness. Suppose u, i € CtOI-'I}’ (S7) N L4(ST) with | D, |~/ m+2)y and
| Dy |V 1/ M+ € 196 (St) solving the Cauchy problem (1-1) in S7. Then v =
u—iieC? HY(ST)NL9(ST) is a weak solution of problem (5-4). Thus, it follows
from Corollary 4.9 that

lvllzacsry < C(1ullfa(s,y + Nl Eaisp)IvliLacsyy  (by (4-31) and (1-2))
< C2“Ho(T)* vl Lacsy) (by (5-25))
< slvllzszacs (by (5-17)).
Thus (5-5) holds and u = u in ST.
5.1.3. Casen >3 and k > k3, k € N.

Existence. From the assumptions of Theorem 1.1, we have

S Ay 1 Ul VI (7 iy
V=T =y T4 g F==
and
1 (mE2n+2 1
e Ny T

To verify (5-2), we set

(m+2)n+2 4
Hi(T) = |luj ”C,OH}{(ST) + sup H|Dx| T2 T FDE=D y { LTS
a5 <T<% M (k1)
and
Nj(T) = ”u] _uj_IHLqE;(STﬂAR)'

We claim that there exists a constant g9 > 0 such that

(5-26) Ho(T) <&
and
(5-27) H;j(T) <2Ho(T). Nj(T) < AN;_1(T).

In fact, applying Minkowski’s inequality and estimate (4-30) (with ¢ = ¢ = 0),

(5-28) Hj+1(T) < Ho(T)

1, 1 _ 4 c
+C _sup [| Dy 2"~ 2" e F26=D (uf)|
dp<t=<px(k—1)/2

Note that o = n/2—1/(m +2) —4/((m + 2)(k — 1)) > 1 when k > k3. Thus,
|Dx|“(u§) can be expressed as a finite linear combination of [[j_; |Dx|%u;,

LP0(S7)’
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where 0 < oy <o (1 < £ < k) and ZZ=1 oy = «. By Holder’s inequality,

I D |°‘(uf )| L7 (57) is dominated by a finite sum of terms of the form

K
[T D1l Lee (57

(=1
where Y j_, 1/, = 1/ pg. We choose 74 so that
o) = nm—+2)+2 4

(m+2)  (m+2)(k—1)°
Then

K
*<'L' <—M*(K_l)’ i:L
o =T¢ = B ;fe P

and, therefore,
I Dx|*ujllLre sy < Hj(T),

which together with (5-28) yields that

Hj+1(T) < Ho(T) + Ce Hj (T)".
By induction, we have that
(5-29) H;(T)<2Hy(T) if Ho(T) < eo.

For ¢ and s from (5-6), when g = s, then ¢ = s = ¢;. Hence, by estimates
(5-11)—(5-13) and together with (5-29), we get that

(5-30) Nj(T) < IN;—((T) if Ho(T) < &o.

From (5-29) and (5-30), we get that (5-27) holds as long as (5-26) holds.
Note that

nm+2)+2 4 —0
t(m+2) (m+2)(k—1) ’

(5-31)

for T = p«(k —1)/2 and
nm+2)+2 4 _ 1
T(m+2) (m+2)(k—1) Y 2
for t = q(’)" . On the other hand, we have from (4-30) (with f = 0) that, for
¢ € HY(R") and € HY~2/(m+2)(gn),

(5-32)

(5-33) luollcofry sy + ol Lusenr2syy + 11D~V g e o
5 ||(p||HV(RH) + ”w”HVfZ/(erZ)(Rn)-

By interpolation together with (5-31)—(5-33), we conclude that

HO(T) < ||‘P||Hy(Rn) + ||‘ﬂ||;’1y—2/(m+2)(Rn)-
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It follows that (5-26) holds by choosing 7" > 0 small. (We can take T = oo if
lell vyt 1Vl gry—2/m+2) (& 18 small which then yields global existence.)
From Holder’s inequality and (5-31),

(5-34) No(T) = [|luoll Crlluollpuxte—nr2(s7y < CRHo(T) < 0.

* <
L9 (STNAR) —

Therefore, we have from (5-27), (5-26), and (5-34) that there exists a function
ue COHY(ST) N L4(ST) with | D, |Y~1/m+2)y € 196 (ST) such that

uj —>u in L9 (Sp N AR) as j — oo,

and, therefore, (5-2) holds. Thus, from Fatou’s lemma and (5-27),

y—1/(m+2) <2Ho(T)

uHng S7) —

(5-35) ”u”CtOH}/(ST) + llullLasy) + ” | Dx|

and u satisfies estimate (1-4).

Note that ¢ = «(k —1)/2 > k when k > k3. Thus, for u € L4(ST), by Holder’s
inequality and condition (1-2), we get that F(u) is locally integrable and F (u;)
converges to F(u) in LlloC (ST), and hence (5-3) holds.

Applying (5-2) and (5-3), it follows that the limit function u € Ct0 HY(ST)N
L(S7) with | D |y~ 1/ (m+2)y ¢ L% (S7) is a weak solution of the Cauchy problem

(1-1) in ST.
Uniqueness. This follows from the same arguments as in 5.1.2. O

5.2. Proof of Theorem 1.4. From the assumption of Theorem 1.4, we have

_n__ 4
V=2 T ) -1y

1_ 1 ( 8 _ﬂ)_ n—1
g  (m+2)(m+)\k—=1  ps/ 2n+1)

and
1_M(1_1>+ m
s 4 2 g 4oy
Thus,
=(”+1)(l_l)_L
4 2 )27 4) " 2im+2)
and
1 1 2(n+1)

—= <7< )
m+2 m+2  px(m+2)(n—1)

where kx < Kk < K>.
To show (5-2), we set

Hj(T) = llujllcogy s,y + 1uillsrecsry + 1uj —uollpeops (s,
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and
Nj(T) = luj —uj— “L;‘L?C(Sr)a

where

) 1, m+2n _ (m+2)n _m+2/n )
(5-36) st g T 23 _2(2V'

We claim that there exist a constant &g > 0 and a 8 € [0, 1] such that
(5-37) 2Ho(T)° @Ho(T) + |uoll oo 13 (s,))" ™7 < 0
and
(5-38) Hj(T) <2Ho(T),  N;(T) < iN;,_\(T).

Indeed, due to (5-36), from Sobolev’s embedding theorem we have that

el s my < 10 g oy

Applying Holder’s inequality, we get that
ot zsee 725y < N0 00 g sy N0 150 s

where 6 =2/(n(m+2)+2)+4n(m+2)/(ux(m+2)(n—1)(g—2)+2mgq). Note
that 0 <6 <1 fory > 1/(m+2).

By the same arguments as in the proof of Theorem 1.1, we get that (5-37)
and (5-38) hold. Consequently, (5-2) and (5-3) also hold. Hence, the limit u €
cp HY(ST)N LSLL(ST) of the sequence {u;} is a solution of the Cauchy problem
(1-1) in S7. Moreover, by Fatou’s lemma and (5-38), we have that

”u”CtOH;’(ST) + ”u”LiLZ(ST) <2Ho(T),

which together with (5-37) yields that u satisfies estimate (1-4).
Further, by the same arguments as in the proof of Theorem 1.1, it follows that if
both u, i solve the Cauchy problem (1-1) in ST, then u = # in S7. O

5.3. Proof of Theorem 1.5. From the assumptions of Theorem 1.5, we have

n+1(1 1) m
2 \2 g/ 2u«(m+2)
and
m 1 2(n+1) 3 nQ2«—m)

—_—— <y < - = — :
2em+2) ~ VS w2 T emi2)(n—1)  m+2  pem+2)(n—1)
To verify (5-2), we set

Hj(T) = llujllcogy sy T 1uillsrecsry:  Ni(T) = lluj —uj—1lls 9(s)-
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Let p = ¢q/x. Then

2n =l+ 6 +m _n—1
m+p g pm+2)n+1) 2(n+1)°

Thus we can apply Theorem 4.5 in case (ii) together with Holder’s inequality to
find that

w41 —ursillco gy sy + 1u+1 —urrillLsLecsy

< ||F(“j)_F(“k)||L§L§(ST)

SNGQj willperg(spylluy —ukllps 14 (syy-
where 1/p = %— I/s,and 1/o=1/p—1/g=(k—-1)/q.

Note that s > (k — 1)p when y < 1/(m +2) —2(n + 1)/ (s« (m 4+ 2)(n — 1)).
Due to condition (1-2) and Holder’s inequality,

. C1k—1 k—1

||G(u],uk)||L;>L<;(ST) < llujl LP%D L9 (87 + ||”k||L;>(K—1)L51C(ST)
< 71/2—1/s nk—1 k—1

T (”uj ”LfL,qC(ST)—i_”uk”LfL)qc(ST))'

As in the proof of Theorem 1.1, we get that

(5-39) Hj(T) <2Ho(T), N;(T) < 5N;—1(T),
and
(5-40) No(T) < Ho(T)T27+/5 < g,

for g9 > 0 small by choosing T > 0 small. Therefore, there is a function u €
CYHY(St) N LSLL(ST) such that

u; >u in LyLL(St) as j — o0
and (5-2) holds. Combining Fatou’s lemma and (5-39), we see that

”u”C?H}/(ST) + ”u”LiL?C(ST) <2Ho(T).

Together with (5-40) we get that u satisfies estimate (1-4).
Moreover, since 2k > s, by condition (1-2) and Holder’s inequality, we have that,

for p =q/x,
K

1/2—
5 T / K/s||M||]’i§L§1C(ST)
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and

|F i)~ Fll 21065,

1/2—1 -1 -1
S TV g sy 10155 L ) 105 =g LG5y

< TY2 Vs Ho (T |ju, — ullpsra(sp)-

Therefore, F(u) € L%L?C/K(ST) and F(u;) — F(u) in L%LZ/K(ST) as j — oo,
hence (5-3) holds. Consequently, the limit function u € C? HY(ST)N LSLL(ST)
solves the Cauchy problem (1-1) in St.

Now suppose u, i € C? HY(S7)N L5 LL(St) both solve the Cauchy problem
(1-1)in S7. Then v = u — i € COHY (S7) N LSLL(ST) is a solution of (5-4).
Applying Theorem 4.5 in case (ii) and Holder’s inequality, it follows that

Iolziegesr = NG DYlzLpsy)
< T2 s (| L Ly T IlEY Lq(ST))||U||L§L§’C(ST)
< T2 Ho (T vl s sy < 51025 L9(57)-

Thus (5-5) holds and ¥ = % in S7. O
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