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We investigate the asymptotic growth of the canonical measures on the fibers
of morphisms between vector spaces over local fields of arbitrary character-
istic. For a single polynomial over R, this is due to Igusa and Raghavan. For
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1. Introduction

Let V be a finite dimensional vector space over R and f : V → R a smooth
nonconstant function. In the physics and mathematics literature the measure denoted
by δ( f −c) figures prominently; it is a measure living on the smooth part of the zero
locus Z( f − c) of f − c, c ∈ R [Gel’fand and Shilov 1964]. Given f and choices
of Haar measures on V and R, δ( f − c) is uniquely defined for all c. Similarly if
f = ( f1, f2, . . . , fr ) : V →Rr is a smooth map with d f1∧· · ·∧d fr 6= 0, for given
Haar measures on V and Rr, there is a canonical measure on the smooth part of
the common zero locus Z( f − c)= Z( f1− c1, f2− c2, . . . , fr − cr ) of the fi − ci

for all c= (c1, c2, . . . , cr ). We denote this measure by µ f ,c. In this context, the
finiteness of µ f ,c around the singular points of Z( f1− c1, f2− c2, . . . , fr − cr ), as
well as the behavior at infinity of the extended measure, viewed as a Borel measure
on V, are interesting questions. If the fi are polynomials and Z( f − c) is smooth,
then it is natural to expect that µ f ,c is tempered. That is,

Definition 1.1 (tempered measure). Let V be any finite dimensional k-vector space,
k a local field. A Borel measure µ on V is tempered if∫

V
(1+‖x‖2)−α dµ(x) <∞

for some integer α (in any norm).

This is equivalent to saying that there are constants A > 0, b ≥ 0 such that

(G) µ(BR)≤ ARb

for all R ≥ 1, BR being the closed ball in V of radius R and center 0 (in any norm).
In [Igusa 1978] Igusa and Raghavan proved that if k = R and f is a nonconstant

polynomial on V and c ∈ R is a noncritical value of f , i.e., the locus Z( f − c) is
smooth, thenµ f,c is tempered, and further that the growth estimate G for the measure
is uniform in a neighborhood of c; here we must remember that by the algebraic
Sard’s theorem (Proposition 2.4), f has only finitely many critical values, so that
every noncritical value c has neighborhoods consisting only of noncritical values.

The measures µ f,c, µ f ,c can be defined over any local field. Throughout this
paper by local field we mean a locally compact nondiscrete field of any characteristic,
other than C; measure theoretic questions over C usually reduce to R, and so we
do not treat the case of C separately. In [Igusa 1978] Igusa and Raghavan define
the measures µ f,c for any local field but do not consider their behavior at infinity,
the reason being that over a nonarchimedean field they were concerned only with
integrating Schwartz–Bruhat functions (i.e., compactly supported complex-valued
locally constant functions). However the work of Harish-Chandra [1973] shows the
necessity as well as utility of working with locally constant functions that do not
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vanish outside a compact set. The question of extending the results of [Igusa 1978]
to the nonarchimedean case and for r > 1 is certainly a natural one. In [Virtanen
and Weisbart 2014] the measures µ f,c were shown to be tempered when f is a
nondegenerate quadratic form and c 6= 0; moreover for the case c = 0 the locus
Z( f ) has 0 as its only singularity, and it was shown that the measure µ f,0 is finite
in the neighborhood of 0 if dim V ≥ 3, and the extended measure is tempered in V.
The work of [Virtanen and Weisbart 2014] was motivated by physical questions
arising in the theory of elementary particles over p-adic spacetimes. In this paper
we generalize the results of [Igusa 1978] and [Virtanen and Weisbart 2014] to the
measures µ f ,c where the fi (1≤ i ≤ r ) are polynomials on a vector space V over a
local field k, with dim(V )= m and d f1 ∧ d f2 ∧ · · · ∧ d fr 6≡ 0, so that m ≥ r . Note
that for r > 1 and k = R this question is already more general than the one treated
in [Igusa 1978].

We now describe our main result using the above notation. Let f : V → kr be
the polynomial map whose components are the fi , with d f1 ∧ · · · ∧ d fr 6≡ 0. A
point x ∈ V is called a critical point (CP) of f if the differentials d fi,x are linearly
dependent. We write C( f ) for the set of critical points of f ; the image f (C( f ))
in kr is called the set of critical values of f , and is denoted by CV ( f ). By the
algebraic Sard’s theorem (Proposition 2.4) one knows that in characteristic zero
the Zariski closure in kr of CV ( f ) is a proper algebraic subset of kr. A point
c ∈ kr is called stably noncritical if it has an open neighborhood (in the k-topology)
consisting only of noncritical values. This is the same as saying that the fibers
above points sufficiently close to c are smooth. If k has characteristic zero, stably
noncritical values exist and form a nonempty open set in kr whose complement in
the image of f has measure 0. Then the following is our main result. For r = 1
and k = R it was proved in [Igusa 1978]. Note that in this case the characteristic is
0 and there are only finitely many critical values and so every noncritical value is
stably noncritical.

Theorem 1.2. Fix f and write µc = µ f ,c. Suppose c is stably noncritical. Then
µc is tempered and there are constants A > 0, γ ≥ 0 such that for all d in an open
neighborhood of c

µd(BR)≤ ARm−r+γ (R ≥ 1, d ∈U ).

Suppose k has characteristic 0; then stably noncritical values form a nonempty
dense open set whose complement in the image of f has measure 0; for r = 1, the
critical set is finite and all noncritical values are stably noncritical.

Remark 1.3. In view of the failure of Sard’s theorem over characteristic p > 0
(see page 233), we do not know if stably noncritical values of c always exist when
k is a local field of positive characteristic.
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Remark 1.4. The results and ideas in the paper lie at the interface of analysis
of geometry over local fields and are motivated by the themes from quantum
theory over p-adic spacetimes. We do not know what, if any, are the arithmetic
consequences of our results.

As an application of our theory we prove that if k has characteristic 0, the orbits
of regular semisimple elements of a semisimple Lie algebra over k are closed,
and the invariant measures on them are tempered. For k = R this is a result of
Harish-Chandra [1957].

2. Canonical measures on level sets of polynomial maps

Canonical measures on the fibers of submersive maps. The construction below
is well known and our treatment is a very mild variant of Harish-Chandra’s [1964]
for the case k = R (see also [Varadarajan 1977]). Serre’s book [2006] is a good
reference for the theory of analytic manifolds and maps over a local field of arbitrary
characteristic. (All of our manifolds are second countable.)

Lemma 2.1. Let V,W be vector spaces of finite dimension m, r respectively, and
L : V→W be a surjective linear map. Let U = ker L. Let σ, τ be exterior forms on
V,W of degrees m, r respectively, with τ 6= 0. Then there exists a unique exterior
(m− r)-form ρ on U such that if {u1, u2, . . . , um−r } is a basis for U, then

ρ(u1, u2, . . . , um−r )=
σ(u1, . . . , um−r , v1, . . . , vr )

τ (Lv1, . . . , Lvr )
,

where vi ∈ V are such that {u1, . . . , um−r , v1, . . . , vr } is a basis for V.

Proof. For fixed vi it is obvious that this defines an exterior (m− r)-form on U. Its
independence of the choice of the vi is easy to check. �

We write ρ = σ/τ . Note that this definition is relative to L .

Theorem 2.2. Let k be a local field of arbitrary characteristic and M, N be analytic
manifolds over k of dimensions m, r respectively, and π : M→ N be an analytic
map, surjective, and submersive everywhere. Let σM (resp. τN ) be an analytic
exterior m-form (resp. r-form) on M (resp. N ), with τN 6= 0 everywhere on N. Then
there is a unique analytic exterior form ρ :=ρM/N on M such that for any y ∈ N, the
pull back of ρ to the fiber π−1(y) is the exterior (m− r)-form x 7→ σx/τy relative
to dπx : Tx(M)→ Ty(N ).

Proof. The pointwise definition of ρ is clear after the preceding lemma. For
analyticity we use local coordinates around x and y = π(x), say x1, . . . , xm , such
that π is the projection (x1, . . . , xm) 7→ (x1, . . . , xr ). Then

σM = s(x1, . . . , xm) dx1 · · · dxm, τ = t (x1, . . . , xr ) dx1 · · · dxr ,

and
ρ =

(
s(x1, . . . , xm)/t (x1, . . . , xr )

)
dxn+1 · · · dxm . �
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Remark 2.3. Let sM (resp. tN ) be the measures defined on M (resp. N ) by |σM |

(resp. |τN |). We denote by rM/N ,y the measures defined on π−1(y) by |ρ|. The
smooth functions in the nonarchimedean case are the locally constant functions.
Then we have [Harish-Chandra 1964]∫

M
α dsM =

∫
N

fα dtN , fα(y)=
∫
π−1(y)

α drM/N ,y

for all smooth compactly supported complex-valued functions α on M.

It is easy to show, using partitions of unity that the map α 7→ fα is surjective, and
continuous when k = R. This gives rise to an injection of the space of distributions
on N into the space of distributions on M, say T 7→ T ∗. Then rM/N ,y = δ(y)∗, δ(y)
being the Dirac distribution at y ∈ N. Replacing δ(y) by its derivatives, we get
distributions on M, supported by π−1(y). If F is a locally integrable function on
N, it defines a distribution on N, say TF , and T ∗F is TF◦π where F ◦π is a locally
integrable function on M. Thus the map T 7→ T ∗ is the natural extension of the map
F 7→ F ◦π from the space of locally integrable functions on N to the corresponding
space on M. The map T 7→ T ∗ plays a fundamental role in Harish-Chandra’s theory
[1964] of characters on real semisimple Lie groups. Finally, in algebrogeometric
terminology, ρ above is the top relative exterior form.

We shall now apply this result to polynomial maps f : V → kr where V is a
vector space of finite dimension m over a local field k of arbitrary characteristic
such that d f1 ∧ · · · ∧ d fr 6≡ 0 on V, the fi being the components of f ; let V× be
the set of points where this exterior form is nonzero in V, so that V× is nonempty
Zariski open in V ; let N ( f )= f (V×). Clearly m ≥ r and N ( f ) is nonempty open
(in the k-topology) in kr. Then, by Theorem 2.2 with M = V×, N = N ( f ), we
have a measure µc for c ∈ N on L ′c := L c ∩ V× where L c is the level set

(2-1) L c = Z( f1− c1, . . . , fr − cr )= {x ∈ V | f1(x)= c1, . . . , fr (x)= cr }.

Exactly as before, we may view the µ f ,c as distributions living on L ′c which
is all of L c if c is a noncritical value. The derivatives of µ f ,c with respect to the
differential operators of km (when k = R) then yield distributions supported by L c.
Examples of such distributions have important applications ([Gel’fand and Shilov
1964],[Kolk and Varadarajan 1992]) in analysis and physics.

Fix a noncritical value c of f . Let J = {i1 < i2, . . . , < ir } be an ordered subset
of r elements in {1, 2, . . . ,m}. Let

(2-2) ∂J :=
∂( f1, . . . , fr )

∂(xi1, . . . , xir )
.

Then L c is smooth and L c=
⋃

J L c,J where the sum is over all sets J as above and

(2-3) L c,J := {x ∈ L c | ∂J (x) 6= 0}.
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Locally on L c,J , ( f1, . . . , fr , y1, . . . , ym−r ) is a new coordinate system, the y j being
some enumeration of the xi (i 6= iν). Obviously dy1 · · · dym = ε∂J (x) dx1 · · · dxm ,
where ε is locally constant and equal to ±1. Another way of interpreting this
formula is the following: if πJ is the projection map from L c,J that takes x to
(y1, . . . , ym−r ), then πJ is a local analytic isomorphism and

(2-4) ρc = ε
1

∂J (x)
π∗J (dy1 · · · dym−r ),

where ε is locally constant and ±1-valued. Hence to control the growth of the
measure defined by |ρ| at infinity, we must find lower bounds of the ‖∂J (x)‖ on
L c,J for ‖x‖ ≥ 1. Let

∇r (x)= (∂J (x)).

We call∇r the generalized gradient of ( f1, . . . , fr ). Then we must find lower bounds
for ‖∇r (x)‖ :=maxJ ‖∂J (x)‖ for ‖x‖ ≥ 1 on L c,J . In this quest we follow [Igusa
1978], and our techniques force us to assume c to be stably noncritical. For r = 1,
∇1 is just the gradient ∇, and that work reduces the issue of the lower bounds for the
gradient field by replacing ∇ f (for k =R) by

∑
1≤ j≤m |∂ j f |2, where ∂ j f = ∂ f/∂x j .

For nonarchimedean local fields and for r > 1 we have to replace the sum of squares
by suitable definite forms whose degrees will grow with m. Igusa and Raghavan find
lower bounds for |∇| using Hörmander’s inequalities [1958] over R. We generalize
Hörmander’s inequalities to any local field and use them with the existence of definite
forms of sufficiently high degree to get lower bounds for ‖∇r‖ on the level sets L c,J .

The Hörmander inequalities over R are of two types: H1 and H2. H1 is local
and is essentially the Łojasiewicz inequality [1959]; Hörmander derives H2 from
H1 by inversion. Over nonarchimedean k, H1 turns out to be a consequence of a
Henselization lemma of Greenberg [1966], as observed in [Bollaerts 1990]. The
reduction of H2 to H1 is more subtle in the nonarchimedean case. We prove it by
embedding V in a division algebra D, central over k, prove H2 for D, and then
deduce H2 for V. The descent from D to V is elementary. To prove H2 in D we
use the map x 7→ x−1 on D \ {0} to reduce H2 to H1. The existence of central
division algebras over k of arbitrarily high dimension is nontrivial and follows
from the theory of the Brauer group of k. The lower bounds of ∇r f obtained from
these arguments allow us to prove that when c is a stably noncritical value of f ,
µ f ,c(Br )= O(Rm−r+γ ) for some γ ≥ 0, uniformly near c. We do not know if we
can take γ = 0 always. If ‖∇r f ‖ is bounded away from zero at infinity on L c, then it
is obvious that we may take γ =0; but inf ‖∇r f ‖may be zero on L c. (See page 252).

Algebraic Sard’s theorem in characteristic 0 for polynomial maps. Let V be a
vector space over k of finite dimension m. Recall the definitions of C( f ) and
CV ( f ).
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Proposition 2.4. Let k be of characteristic 0. The Zariski closure, Cl(CV ( f )) is a
proper subset of kr ; in particular, if r = 1, then CV ( f ) is finite.

Proof. Fix a basis of V so that V ' km. The field generated by the coefficients of
the f j , say k1⊃ k, can be embedded in C. It is thus enough to prove Proposition 2.4
over C itself, where it is just the statement that the fibers of f are generically
smooth. Over C this is essentially Sard’s lemma for affine algebraic varieties treated
by Mumford [1995]. �

Analytic Sard’s theorem in characteristic p > 0. In characteristic p > 0, the
algebraic Sard’s lemma fails abysmally [Mumford and Oda 2015, p. 179] over
algebraically closed fields. Indeed, let f be a polynomial in two variables X, Y
giving rise to a map K 2

→ K where K is algebraically closed and of characteristic
p > 0, for example,

f = X p+1
+ X pY + Y p.

Then the gradient of f vanishes precisely on the Y -axis, and f on the Y -axis is the
map y 7→ y p which is surjective. So the image of the singular set is all of K, and
every fiber has a singular point. But if we replace K by a local field, then y 7→ y p

is not surjective, and in fact the image under f of the singular set is k p which is a
closed proper subset of k (in the k-topology), and is of measure zero in k. Thus the
generic fiber (in the k-topology) is smooth in k.

We shall now consider the situation over local fields of characteristic p > 0.
From Sard [1942] we know that when k = R and the map is of class C (a) (a > 0),
f (C) has measure zero when a > m − r . Now, when k has characteristic p > 0,
the derivatives of f are not enough to determine the coefficients of the power series
expansion of f whose order is greater than p− 1. So there is an analogy with the
case of C (p−1) over R, suggesting that over k the condition p > m− r + 1 would
be sufficient to guarantee that f (C) is a null set. This suggestion, which leads to
Theorem 2.5, is due to Professor Pierre Deligne (personal communication, 2016),
which we gratefully acknowledge.

Theorem 2.5. Let X, Y be analytic manifolds over a local field k of characteristic
p > 0, of dimensions m, r respectively. Let f : X→ Y be an analytic. Let C be the
critical set for f . Then f (C) has measure zero in Y if p > m− n+ 1.

Proof. The proof that f (C) has measure zero in Y when p > m− r + 1 is a minor
adaptation of [Guillemin and Pollack 1974], needed because we have an additional
restriction on p.

The result is local and so we may take X to be a compact open set U ∈ km. We
use induction on m. We define the filtration C = C0 ⊃ C1 ⊃ · · · ⊃ C p−1, where Cs

(1≤ s ≤ p−1) is the set where all derivatives of the components of f of order ≤ s
vanish. The sets C,Cs are compact while Cs \Cs+1 is locally compact and second
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countable, hence a countable union of compact sets. So f (C), f (Cs) are compact,
and f (Cs \Cs+1) is a countable union of compact sets.

The inductive proof that f (C \C1) is a null set reduces to the case when (m, r)
becomes (m − 1, r − 1). Since m − r = (m − 1)− (r − 1), the condition on p
remains the same and induction applies.

The inductive proof that f (Cs \ Cs+1) is a null set reduces to the case when
(m, r) becomes (m − 1, r). Since p > m − r + 1 > (m − 1)− r + 1, induction
applies again.

It remains to show that f (C p−1) is a null set when p > m − r + 1. We shall
show actually that f (C p−1) is a null set when p > m/r . This is enough since
m/r ≤m−r+1. This is a local result and so we may work around a point of C p−1

which can be taken to be the origin. We use the max norm on km and kr so that the
norms take values in qZ, where q > 1 is the cardinality of the residue field of k. By
scaling, if necessary, we may assume that all components of f are given by power
series expansions, absolutely convergent on the ball B(q) := {x ∈ km

| ‖x‖ ≤ q}.
Note that B(1)= Rm, where R is the ring of integers of k. In order to estimate the
growth of these series we need a lemma:

Lemma 2.6. Let g be an analytic function on B(q) given by an absolutely con-
vergent power series expansion about 0 on B(q). Let D be the set in B(1) where
∂β f = 0 for all β with |β| ≤ p− 1. Then we have

|g(x + h)− g(x)| ≤ A‖h‖p

uniformly for x ∈ D, ‖h‖ ≤ 1≤ q − 1, the constant A > 0 depending only on g.

Proof. We use [Serre 2006, pp. 67–75]. We have

g(x)=
∑
α

cαXα,
∑
α

|cα| = A <∞.

For x ∈ B(1) we have g(x + h)=
∑

β 1
βg(x)hβ, where

1βg(x)=
∑
α≥β

cα

(
α

β

)
xα−β, β!1βg(x)= ∂βg(x).

Then |1βg(x)| ≤ A on B(1). If x ∈ D, ‖h‖ ≤ 1 ≤ q − 1, then x + h ∈ B(1).
Moreover, for |β| ≤ p− 1, β!1βg(x)= 0 so that 1βg(x)= 0. Hence,

g(x + h)= g(x)+
∑
|β|≥p

(1βg)(x)hβ .

But, for y ∈ B(1),
|1βg(y)| ≤

∑
|cα| = A.

So,
|g(x + h)− g(x)| ≤ A‖h‖p (x ∈ D, ‖h‖ ≤ 1),

proving the lemma. �
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We now divide B(1)m into very small “cells”. Let P be the maximal ideal in R.
Let N be any integer ≥ 1. Then B(1) is the disjoint union of q N cosets of P N each
of which is a compact open set that has diameter ≤ q−N and volume q−N . This
gives a partition of B(1)m into qm N compact open sets (“cells”) of diameter ≤ q−N

and volume q−Nm . By the above lemma, if x, x + h ∈ D and are in one of these
cells, say γ , then

(2-5) ‖ f (x + h)− f (x)‖ ≤ A‖h‖p
≤ Aq−N p,

where A is a constant independent of x . Hence, f (γ ) is contained in a set of
diameter ≤ q−N p and hence volume ≤ q−N pr. Thus f (D ∩C p−1) is enclosed in a
set of volume ≤ qm N−N pr

= q−N (pr−m). If p > m/r this expression goes to 0 as
N →∞, and we are done. �

Remark 2.7. If f = ( f1, . . . , fr ) is a polynomial map of km into kr such that
d f1∧· · ·∧d fr 6= 0, then f (km) is open and Sard’s theorem shows that almost every
fiber of f is smooth in k. So there are always noncritical values. Whether some of
them are stable is not known to us.

Remark 2.8. When r=1, the above condition reduces to p>m. Both this condition
and the fact that when m ≥ p+ 1 it is possible that the image of the critical set can
be all of k were communicated to us by Professor Pierre Deligne (2016). We are
grateful for his generosity and for giving us permission to discuss his example.

Example 2.9 (Deligne). We take m = p+ 1 with coordinates y, x1, . . . , x p. The
field k := F[[t]][1/t], where F is a finite field of characteristic p, is a local field of
characteristic p. Then k is a vector space of dimension p over k(p) := {x p

| x ∈ k}.
Let (ai )1≤i≤p be a basis for k/k(p), for instance ai = t i−1, (1 ≤ i ≤ p). Consider,
for an integer n > 1, prime to p,

f = yn
+ a1x p

1 + · · ·+ apx p
p .

Then the critical locus is given by y = 0. Its image under f is obviously all of k. If
we do not insist that d f 6≡ 0, we can omit y so that f maps the critical set k p onto k.

This example is easily modified for the case r > 1. We consider k p+r with
coordinates y1, . . . , yr−1, y, x1 . . . , x p and take the map f : k p+r

→ kr defined by

f : (y1, . . . , yr−1, y, x1 . . . , x p) 7→

(
y1, . . . , yr−1, yn

+

p∑
i=1

ai x
p
i

)
,

where the notation is as before. The critical set is again given by y = 0, and the
map restricted to this set is

f : (y1, . . . , yr−1, 0, x1 . . . , x p) 7→

(
y1, . . . , yr−1,

p∑
i=1

ai x
p
i

)
,
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whose range is kr. Exactly as before, if we omit y, we get a map where d f1∧· · ·∧d fr

is zero but f maps the critical set k p+r−1 onto kr.

3. Construction of definite forms and their associated norms

As mentioned in Remark 2.3 we begin by discussing the construction of definite
forms in an arbitrary number of variables over k.

Proposition 3.1. Let V be a finite dimensional vector space over a local field. If
k = R, and ν(x) is a positive definite quadratic form on V, then |ν(x)|1/2 is a norm
on V. If k is nonarchimedean, and r is an integer such that r2

≥ m, then there is a
homogeneous polynomial ν : V → k of degree r such that

(a) ν is definite, i.e., for x ∈ V, ν(x)= 0 if and only if x = 0;

(b) |ν(x)|1/r is a nonarchimedean norm on V.

Proof. We deal only with the case of nonarchimedean k. By the theory of the
Brauer group of k [Weil 1967, chapter XII, theorem 1] and its corollary we can
find a division algebra D over k which is central over k and dimk(D)= r2. Since
V ↪→ D, it is enough to prove the proposition for V = D. The advantage is that
we can use the algebraic structure of D.

Let ν be the reduced norm [Weil 1967, chapter IX, proposition 6] of D. Then,
ν : D→ k is a homogeneous polynomial function on D of degree r , and ν(x)r =
det(λ(x)) where λ(x) is the endomorphism y 7→ xy of D. Note that det(λ) is a
polynomial function on D with values in k, homogeneous of degree r2. As λ(x)
is invertible for any x 6= 0 in D, det(λ(x)) and hence ν(x), is nonzero for x 6= 0
in D. Hence, ν is a definite form of degree r on D. It remains to prove that
N (x) := |ν(x)|1/r is a nonarchimedean norm on D. This reduces to showing that
N (1+ u)≤ 1 if u ∈ D and N (u)≤ 1, or equivalently, that |λ(1+ u)| ≤ 1 if u ∈ D
and |λ(u)| ≤ 1, which follows from [Weil 1967, chapter I, section 4]. �

Remark 3.2. Actually, ν(x)r = det λ(x) will serve our purposes as well and is obvi-
ously a homogeneous polynomial of degree r2, Then |ν(x)|1/r

= |det λ(x)|1/r2
. We

introduced ν because it is of smaller degree and this may be of use in other contexts.

4. Hörmander’s inequalities over nonarchimedean local fields

Let V be a finite dimensional vector space over a local, nonarchimedean field k,
with its canonical norm |·|. Let ‖·‖ be a nonarchimedean norm on V. We may
assume that the norms on k and V take values in the set {0, q±1, q±2, . . . }, where q
is the cardinality of the residue field of k. Also, let f : V → k be a polynomial
function, and let Z( f ) denote its zero locus. For x ∈ V and nonempty E ⊂ V let
dist(x, E) := infy∈E ‖x − y‖.
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Theorem 4.1 (H1). Let f : V → k be a polynomial function on V. Suppose that
Z( f ) 6=∅. Then there exist constants C > 0, α ≥ 0 such that

(4-1) | f (x)| ≥ C · dist(x, Z( f ))α

for all x ∈ V with ‖x‖ ≤ 1.

Theorem 4.2 (H2). Let f : V → k be a polynomial function, Z( f ) as above. Then

(a) if Z( f )=∅, then there exist constants C > 0 and β ≥ 0 such that

(4-2) | f (x)| ≥ C · 1
‖x‖β

(x ∈ V, ‖x‖ ≥ 1);

(b) if Z( f ) 6=∅, then there exist constants C > 0 and α, β ≥ 0 such that

(4-3) ‖ f (x)‖ ≥ C ·
dist(x, Z( f ))α

‖x‖β
(x ∈ V, ‖x‖ ≥ 1);

Remark 4.3. Theorem 4.1 and 4.2 were proved by Hörmander [1958] when k =R.
Also, H1 is a special case of the Łojasiewicz inequality for f a real analytic function
[Łojasiewicz 1959].

In proving H1 we may assume that V = km and f ∈ R[x1, . . . , xm], R being the
ring of integers in k. Let P ⊂ R be the maximal ideal of R. Suppose that Z( f ) 6=∅
but Z( f )∩ Rm

=∅. Then there exists a constant b > 0 such that | f (x)| ≥ b > 0
for x ∈ Rm. On the other hand, as Rm is compact, there exists b1 > 0 such that
dist(x, Z( f ))≤ b1 for all x ∈ Rm. Hence | f (x)| ≥ bb−1

1 b1≥ bb−1
1 dist(x, Z( f )) for

all x ∈ Rm. Hence we may assume in addition that Z( f )∩Rm
6=∅ in the proof of H1.

Proof of H1: k nonarchimedean. We follow [Greenberg 1966], specialized to the
case of a single polynomial.

Proof. By theorem 1 there, applied to the single polynomial f , we can find integers,
N , c ≥ 1 and s ≥ 0 such that if ν ≥ N and f (x)≡ 0 (mod Pν), and x ∈ Rm, then
there exists y ∈ Rm such that f (y)= 0 and xi − yi ≡ 0 (mod P [ν/c]−s) for all i .

Assume | f (x)| = q−(N+`), `≥ 0. Then there exists y ∈ Z( f )∩ Rm such that

‖x − y‖ ≤ q−[(N+`)/c]+s
≤ q−[(N+`)/c−1]+s

≤ qs+1
| f (x)|1/c,

which implies that

dist(x, Z( f )∩ Rm)≤ qs+1
| f (x)|1/c,

so that

| f (x)| ≥
dist(x, Z( f )∩ Rm)c

qc(s+1) ≥
dist(x, Z( f ))c

qc(s+1) .
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Thus, H1 is proved for x ∈ Rm with | f (x)| ≤ q−N . For x in Rm with | f (x)|> q−N,
we have q−N < | f (x)| ≤ 1, while dist(x, Z( f )∩ Rm) ≤ 1 since ‖x − y‖ ≤ 1 for
x, y ∈ Rm. Hence

| f (x)|≥q−N dist(x, Z( f )∩Rm)≥q−N dist(x, Z( f )∩Rm)c≥q−N dist(x, Z( f ))c.

If C =min(q−N , q−(s+1)c), then we have H1 with α = c. �

Remark 4.4. That the local version of the Łojasiewicz inequality comes out of
[Greenberg 1966] has been observed in [Bollaerts 1990]; we give this proof since it
includes the case when k has characteristic > 0. Greenberg’s result is applicable
here because R is then complete (k∗ = k in his notation).

Proof of H2.

Lemma 4.5. If H2 is true for a k-vector space V, then it is also true for any
subspace W of V. In particular, for a central division algebra, Dr over k, of
dimension r2

≥ dimk V, it is enough to prove H2 for Dr .

Proof. Let W ⊆ V be a subspace, and U ⊆ V such that V =W ⊕U 'W ×U. Let
f be a polynomial on W. Define the polynomial g on V by g(w+ u) := f (w).
For w ∈ W, u ∈ U, we take ‖w+ u‖ = max(‖u‖, ‖w‖); because U and W are
complementary, this is nonarchimedean. Clearly Z(g)= Z( f )×U.

Suppose Z( f )=∅. Then Z(g)=∅. Since H2 is true for V and W ⊂ V, there
exist constants C > 0, β ≥ 0 such that | f (w)| ≥C‖w‖−β for w ∈W, ‖w‖ ≥ 1. We
may therefore assume that Z( f ) 6=∅, so Z(g) 6=∅.

Then, |g(x)| ≥Cdist(x, Z(g))α‖x‖−β for x ∈ V, ‖x‖≥ 1 where C > 0, α, β ≥ 0
are constants. If x = w ∈W, dist(w, Z(g))= dist(w, Z( f )). �

Now we prove H2 for Dr . Our proof is inspired by Hörmander’s [1958]. It
replaces the inversion in his proof by the involution x 7→ x−1 of D×r := Dr \ {0}.

For a division algebra Dr of dimension r2, central over k, let us recall ν :=
νr : Dr → k of Proposition 3.1, and note that it has the following property: if k ′

is any field containing k such that there exists an isomorphism F : k ′⊗k Dr −→
∼

Mr (k ′)=Mr where Mr is the algebra of r×r matrices over k ′, then ν(a)= det F(a)
for a ∈ Dr [Weil 1967, Proposition 6, p. 168],

Lemma 4.6. For any polynomial function f : D→ k of degree d , f not necessarily
homogeneous, let f ∗(x) := f (x−1)ν(x)d for x 6= 0; then f ∗(x) extends uniquely to
a polynomial function Dr → k. Moreover, for nonzero x , x ∈ Z( f ) if and only if
x−1
∈ Z( f ∗).

Proof. Uniqueness is obvious. To prove that f ∗ has a polynomial extension it
suffices to prove it for k ′⊗k Dr , where k ′ is a separable extension of k such that
k ′⊗k Dr 'Mr (k ′). The required result is compatible with addition and multiplication



TEMPEREDNESS OF MEASURES OVER LOCAL FIELDS 239

of the f so that it is enough to verify it for f = 1 (obvious) and f = ai j , a matrix
entry; then f ∗ = ai j det= Ai j , the corresponding cofactor. The last statement of
the lemma is obvious �

Remark 4.7. From now on we use the norm ‖x‖ = |ν(x)|1/r for Dr , r ≥ 2.

Lemma 4.8. If x, y, x − y are all nonzero, then ‖x − y‖ = ‖x−1
− y−1

‖‖x‖‖y‖

Proof. Use y− x = x(x−1
− y−1)y and the multiplicativity of ‖·‖. �

The next two lemmas are auxiliary before we prove H2 for Dr .

Lemma 4.9. If Z( f ) is nonempty, there exists a constant A ≥ 1 such that

dist(x, Z( f ))≤ A‖x‖ for all x with ‖x‖ ≥ 1.

Proof. Choose z0 ∈ Z( f ). Then dist(x, Z( f )) ≤ ‖x − z0‖ ≤ max(‖x‖, ‖z0‖). If
‖x‖ ≥ ‖z0‖, then dist(x, Z( f ))≤ ‖x‖ and we can take A = 1. If ‖x‖< ‖z0‖ then
‖x − z0‖ = ‖z0‖ ≤ ‖z0‖‖x‖ for ‖x‖ ≥ 1; and as ‖z0‖ ≥ 1, the lemma is proved if
we take A = 1+‖z0‖. �

Lemma 4.10. Suppose Z( f ) contains a nonzero element. Then there exists a
constant C > 0 such that

(4-4) dist(x−1, Z( f ∗))≥ C
dist(x, Z( f ))
‖x‖2

(‖x‖ ≥ 1).

Proof. First assume 0 /∈ Z( f ∗). Then Z( f ∗) = Z( f ∗) \ {0} 6= ∅. Then, with
‖x‖ ≥ 1,

dist(x−1, Z( f ∗)\{0})= inf
06=z∈Z( f ∗)

‖x−1
−z‖= inf

06=y∈Z( f )
‖x−1
− y−1

‖= inf
06=y∈Z( f )

E,

where E := ‖x − y‖‖x‖−1
‖y‖−1.

We consider cases: (a) ‖y‖> ‖x‖ and (b) ‖y‖ ≤ ‖x‖. In case (a) ‖x − y‖ = ‖y‖
so that E = ‖x‖−1

= ‖x‖‖x‖−2
≥ A−1 dist(x, Z( f ))‖x‖−2, where A ≥ 1 is as in

Lemma 4.9. In case (b) E ≥ ‖x − y‖‖x‖−2 so that inf E ≥ dist(x, Z( f ))‖x‖−2.
These give (4-4) with C = 1/A.

If 0∈ Z( f ∗), then dist(x−1, Z( f ∗))=min(dist(x−1, Z( f ∗)\{0}), ‖x−1
‖). Now

‖x‖−1
=‖x‖‖x‖−2

≥C‖x‖−2 dist(x, Z( f )) by Lemma 4.9 where C = 1/A, while
dist(x−1, Z( f ∗) \ {0})≥ C‖x‖−2 dist(x, Z( f )), by above. �

Proof of H2 for Dr . We consider two cases: (a) Z( f )=∅, (b) Z( f ) 6=∅.

Case (a): Then Z( f ∗)=∅ or {0}. If Z( f ∗)=∅, then there exists a constant C > 0
such that | f ∗(x)| ≥ C > 0 with ‖x‖ ≤ 1. So, | f ∗(y)| = | f (y−1)|‖y‖rd

≥ C > 0
for 0< ‖y‖ ≤ 1, which becomes | f (x)| ≥ C‖x‖rd

≥ C > 0 for ‖x‖ ≥ 1.
If Z( f ∗)={0}, then dist(z, Z( f ∗))=‖z‖, and | f ∗(y)|≥C‖y‖β with 0<‖y‖≤1

for constants C > 0, β ≥ 0 by Theorem 4.1. Then | f (y−1)|‖y‖rd
≥ C‖y‖β with

‖y‖ ≤ 1 or | f (x)| ≥ C‖x‖rd
‖x‖−β ≥ C‖x‖−β with ‖x‖ ≥ 1.
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Case (b): Z( f ) is now nonempty, and hence either Z( f )= {0} or Z( f ) contains
a nonzero element. If Z( f )= {0}, then Z( f ∗)=∅ or {0}. This comes under case
(a), above, and we have | f (x)| ≥ C‖x‖−β with ‖x‖ ≥ 1 which gives (a).

Suppose Z( f ) contains a nonzero element. By H1, there exists constants C1 > 0,
α≥0 such that | f ∗(x−1)|≥C1 dist(x−1, Z( f ∗))α with ‖x‖≥1. So by Lemma 4.10,
for C2 = C1Cα, | f (x)| ≥ C2dist(x, Z( f ))α‖x‖−2α for ‖x‖ ≥ 1, proving (b). �

Criterion for a polynomial not to be rapidly decreasing on a set S. In [Igusa 1978]
Igusa and Raghavan develop what is essentially a criterion for a polynomial on
an real vector space not to be rapidly decreasing on a set of vectors of norm ≥ 1.
In this section we generalize that method to all local fields, introducing several
polynomials in the criterion.

Lemma 4.11. Let f : V → kr be a polynomial map and d the maximum of the
degrees of its components. Then there exists a constant C > 0 such that for all
x, y ∈ V with ‖x‖ ≥ 1,

‖ f (x)− f (y)‖ ≤ C‖x‖d−1 max
0≤r≤d

(‖x − y‖r ).

Proof. It is enough to prove this for r = 1, f = f . The estimate is compatible
with addition in f and so we may assume f to be a monomial of degree d in some
coordinate system on V. Assume the result for all monomials of degree d−1. Then
f = xi g, where g is a monomial of degree d − 1. We have

xi g(x)− yi g(y)= xi (g(x)− g(y))+ (xi − yi )(g(y)− g(x))+ (xi − yi )g(x),

and the estimate is obvious for each of the three terms. �

Proposition 4.12. Let S⊆V be a set with ‖x‖≥1 for all x ∈ S. Let g be polynomial
on V. If Z(g)=∅, we have

|g(x)| ≥ C
‖x‖γ

(‖x‖ ≥ 1)

for some C > 0, γ ≥ 0. Suppose Z(g) 6=∅ and suppose that there exist polynomials
fi : V→ k, i = 1, . . . r , and a constant b> 0 such that max | fi (x)− fi (y)| ≥ b> 0
for all x ∈ S, y ∈ Z(g). Then there exist constants C > 0 and γ ≥ 0 such that

(4-5) |g(x)| ≥ C
‖x‖γ

(x ∈ S).

Proof. The first statement is (a) of H2. We now assume Z(g) 6= ∅. We identify
V ' km and work in coordinates. Set d := maxi (deg( fi )). In what follows,
C1,C2, . . . , are constants > 0.

For all x ∈ S and y ∈ Z(g), by Lemma 4.11 for some constant C > 0, we
have 0< b≤max1≤i≤r | fi (x)− fi (y)| ≤C‖x‖d−1 max1≤r≤r ‖x − y‖r for all x ∈ S,
y ∈ Z(g).
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Choose y ∈ Z(g) such that ‖x− y‖ = dist(x, Z(g)). Then for all x ∈ S, we have

0< b ≤ C1‖x‖d−1 max
1≤r≤d

(dist(x, Z(g))r ).

We consider the two cases (a) dist(x, Z(g)) ≤ 1, so the maximum above is
dist(x, Z(g)), and (b) dist(x, Z(g)) > 1, so the maximum is dist(x, Z(g))d.

By H2, there exist constants C2 > 0, α, β ≥ 0 such that

|g(x)| ≥ C2dist(x, Z(g))α‖x‖−β,

so dist(x, Z(g))≤C3|g(x)|1/α‖x‖β/α. In case (a), 0<b≤C3|g(x)|1/α‖x‖β/α+(d−1),
and in case (b), 0 < b ≤ C4|g(x)|d/α‖x‖dβ/α+(d−1). So in both cases, with δ =
dβ/α+ (d − 1), one has

0< b ≤ C5‖x‖δ max(|g(x)|1/α, |g(x)|d/α).

Hence, max(|g(x)|, |g(x)|d) ≥ C6‖x‖−δα, giving in all cases |g(x)| ≥ C7‖x‖−δα

with x ∈ S. �

Lower bounds of ‖∇r f ‖ on stably noncritical level sets. Let V and f =: V → kr

( f = ( f1, . . . fr ), r ≤ m = dimk V ) be as usual. Let C( f ) be the critical set of f ,
and CV ( f )= f (C( f )) have their usual meanings. Write W =CV ( f ). We assume
that the closure W , in the k-topology of kr, of W is a proper subset of kr. Our
assumption is equivalent to assuming that stably noncritical values of f exist, which
is true in characteristic zero (see page 232). Let L c, ∇r f , and ∂J f be defined as in
Section 2.

If ω⊂ kr
\W is a compact set, then there exists b> 0 such that ‖u− v‖ ≥ b> 0

for u ∈ω, v ∈W . This means maxi | fi (x)− fi (y)| ≥ b> 0, with c∈ω, x ∈ L c, y ∈
C( f ).

Proposition 4.13. Let ω ⊂ kr be an open set whose closure consists entirely of
noncritical values of f = ( f1, . . . , fr ). For c ∈ ω, let L c be defined as above. Then
there exist constants, C, γ > 0 such that

(4-6) ‖∇r f (x)‖ ≥ C
‖x‖γ

(x ∈ L c, c ∈ ω, ‖x‖ ≥ 1)

Proof. We write (yJ ) for the coordinates on k(
m
r ) and select a definite homogeneous

form ν, which is positive definite of degree 2 if k archimedean, and of degree R
on k(

m
r ), where R is any integer ≥ 2 such that R2

≥
(m

r

)
, with the property that

|ν(y)|1/R is a norm on k(
m
r ), if k is nonarchimedean. Then ν(∇r f (x))=0 if and only

if ∇r f (x)= 0, i.e., if and only if x is a critical point of f . Let g(x)= ν(∇r f (x)).
Then Z(g) is the set of critical points of f . Suppose first that Z(g) 6= ∅. Now
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there exists b > 0 such that

‖u− v‖ = max
1≤i≤r
|ui − vi | ≥ b > 0 (u ∈ ω, v ∈W )

Hence, as f (x)∈ω for x ∈ L c (c∈ω) and f (y)∈W for y∈ Z(g), ‖ f (x)− f (y)‖≥
b > 0. So by Proposition 4.12 there exist constants C > 0, δ ≥ 0 such that

|ν(∇r f (x))| = |g(x)| ≥ C
‖x‖δ

(x ∈ L c, c ∈ ω, ‖x‖ ≥ 1).

But ν is homogeneous of degree d (d = 2 for archimedean and R for nonar-
chimedean k) and definite. So there exist constants C1,C2 > 0 such that

C1‖∇r f (x)‖d ≤ |ν(∇r f (x))| = |g(x)| ≤ C2‖∇r f (x)‖d.

So for suitable C > 0, γ ≥ 0, we have ‖∇r f (x)‖ ≥ C‖x‖−γ. The case Z(g)=∅
is taken care of by the first statement of Proposition 4.12. �

Remark 4.14. We cannot make γ = 0 in all cases. For instance, let char k = 0
and r = 1, f (x, y, z) = x2z2

+ y3z and c = −1. Consider xn = n, zn = 1/n,
yn =−(2n)1/3. Then F(xn, yn, zn)= 1−2=−1, ∂F/∂X(xn, yn, zn)= 2xnz2

n→ 0,
and ∂F/∂Y (xn, yn, zn)=3y2

n zn→0, ∂F/∂Z(xn, yn, zn)=2x2
n zn+y3

n=2n−2n=0.
But ‖(xn, yn, zn)‖ = n, ‖∇ f (xn, yn, zm)‖ ∼Const ·1/n1/3. So γ ≥ 1/3. We do not
know the minimal value of γ .

5. Proof of temperedness of canonical measures on stably noncritical level
sets

Consequences of Krasner’s lemma. The well-known lemma of Krasner [Artin
1967] has an important consequence (Corollary 5.3). Let k be a local field of
arbitrary characteristic and K its algebraic closure. The following lemma must be
well known, but we prove it in this form.

Lemma 5.1. We can find a countable family {kn} of finite extensions of k with the
property that any finite extension of k is contained in one of the kn . In particular
K =

⋃
n kn .

Proof. We first work with separable extensions of fixed degree n over k. Let Sn be
the set of monic, irreducible and separable elements of k[X ] of degree n. Then it
follows from Krasner’s lemma that if f ∈ Sn , there is an ε = ε( f ) > 0 with the
following property: if g is monic and ‖ f − g‖< ε, then g ∈ Sn and K ( f )= K (g)
in K, where K (h) denotes the splitting field of h. Since Sn is a separable metric
space, it follows that there are at most a countable number of these splitting fields,
and any separable extension of degree n over k is contained in one of these. Let
us enumerate these splitting fields as {knj } ( j = 1, 2, . . . ). If k has characteristic 0
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we are already finished. Suppose k has characteristic p > 0. Let F(x 7→ x p)

be the Frobenius automorphism of K. Define the extension knjr = F−r (knj ) for
r = 1, 2, . . . , which are clearly finite over k. Clearly, any finite extension of k of
finite degree is contained in one of the knjr . �

Remark 5.2. If k has characteristic 0, then there are only a finite number of
extensions of fixed degree n. But in prime characteristic this is not true: the field
k = F2[[X ]][X−1

] of Laurent series in X with F2 a finite field of characteristic 2
has a countably infinite number of separable quadratic extensions. Indeed, the
extensions defined by T 2

− T − c = 0 are distinct for infinitely many values of c.

Corollary 5.3. If M is an affine subvariety of some An
K and M(k ′) is countable for

all finite extensions k ′ of k, then M is finite.

Proof. By Lemma 5.1, M(K )=
⋃

k′ M(k ′) is countable, hence finite. �

A consequence of the refined Bézout’s theorem. The refinement of Bézout’s theo-
rem due to Fulton [1998, Example 8.4.7, p. 148, and Section 12.3] (see also [Vogel
1984, Corollary 2.26, p. 85]), is the statement that if Zi (1 ≤ i ≤ r) are r (r ≥ 2)
pure dimensional varieties in Pm

K, then the number of irreducible components of⋂
i Zi is bounded by the Bézout number

∏
i deg(Zi ). It has the following simple

consequence.

Lemma 5.4. Let U be a nonempty Zariski open subset of Ar
K so that U ⊂Ar

K ⊂Pr
K .

Let hi (i = 1, 2, . . . , r) be polynomials on Ar
K with deg hi =: di , and let Zi be the

zero locus of hi . Let Z×i = Zi ∩U and Z i the closure of Zi in Pr
K . If

⋂
i Z×i = F

is nonempty and finite, then F has at most D :=
∏

i di elements.

Proof. Since Ar
K is Zariski dense in PK we have Z i ∩ Ar

K = Zi ; moreover, Z i is of
pure degree di . Let W0 be an irreducible component of W :=

⋂
Z i that meets U.

Since W0 is irreducible and W0∩U is nonempty open in W0, it is dense in W0. Let
w ∈W0∩U. Then w is in each of the Z i ∩U and so w ∈ F. So W0∩U is finite and
contained in F. Since W0 ∩U is dense in W0, it follows that W0 ∩U must consist
of a single element of F and W0 itself consists of that point. Moreover all points of
F are accounted for in this manner as F is contained in the union of irreducible
components of W which meet U. Hence the cardinality of F is at most the number
of irreducible components of W, which is at most D. �

The maps πJ and a universal bound for the cardinality of their fibers. Let V 'km

so that f = ( f1,..., fr ) with f j ∈ k[x1,...,xm]. Assume that c is a noncritical value
of f so that L c has no singularities. Fix J ⊂m := {1,...,m}, and let πJ : km

→ km−r

map (x1,...,xm) to (y1,...,ym−r ), where {y j }
m−r
j=1 = {xi | i ∈ m \ J }. We wish to

prove that the map πJ restricted to L c has fibers of cardinality ≤ D := d1 ···dr ,
where di := deg( fi ). Without loss of generality assume J = {1,...,r}, so that
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πJ : (x1,...,xm) 7→ (xr+1,...,xm). Write x = (x1,...,xm) and y = (xr+1,...,xm).
Define z so that x = (z, y).

We regard L c as an affine variety and L c,J as an affine open subvariety. For any
k ′ with k ⊂ k ′ ⊂ K we have the respective sets of k ′-points, L c(k ′) and L c,J (k ′).
Denote the restriction of πJ to L c,J by πJ .

Proposition 5.5. Let D =
∏

1≤i≤r
di . Then the fibers of πJ are all of cardinality ≤ D.

Proof. Note that dπJ is an isomorphism on L c,J (k). Hence UJ (k) := πJ (L c,J (k))
is open in km−r and πJ is a local analytic isomorphism of L c,J (k) onto UJ (k). For
any field k ′ between k and K, we write again πJ for the map L c,J (k ′)→ k ′m−r,
and UJ (k ′) for its image. If k ′ is a finite extension of k, then k ′ is again a local field;
exactly as for k, we have dπ J : L c,J (k ′)→UJ (k ′) is an analytic isomorphism. For
any k ′, k ⊂ k ′ ⊂ K with k ′/k finite, UJ (k ′) is open in k ′m−r and the fibers of πJ

on L c, j (k ′) are discrete and at most countable. If we then fix y ∈UJ (k), and write
Wy for the affine variety π−1

J (y), then Wy(k ′) is at most countable for all finite
extensions k ′/k. Hence, by Corollary 5.3, Wy(K ) is finite. Let F :=Wy(K ).

On the other hand, π−1
J (y)(K ) = K r

× {y} ' K r. Let hi (z) := fi (z, y)− ci .
Then hi is a polynomial on K r of degree ≤ di . Moreover, since π−1

J (y)(k)
is nonempty, ∂(h1, . . . , hr )/∂(x1, . . . , xr ) = ∂J (z, y) is not identically zero on
K r. Thus, {z|∂J (z, y) 6= 0} is a nonempty affine open U1 in K r. Moreover,
F =

⋂
1≤i≤r Z(hi )

× where Z(hi )
×
:= Z(hi ) ∩U1. So Lemma 5.4 applies and

proves that #F ≤ D. �

Lemma 5.6. Let ∂J be as on page 232. Then if ωm−r is the exterior form corre-
sponding to the Haar measure on km−r, the exterior form

ρc :=
1

∂J (x)
π∗J (ωm−r )

on L c,J has the property that |ρc| generates the measure µc := µ f ,c. In particular,
if λ is the Haar measure on km−r and ν is the measure generated by |π∗J (ωm−r )|,
then πJ takes ν to λ in small open neighborhoods of each point of L c,J (k), and
dµc = |∂J (x)|−1 dν.

Proof. This is clear from (2-4). �

Proof of Theorem 1.2. This follows from three things: the lower bounds on ‖∇r‖

when c is a stably noncritical value of f, the relationship between λ, ν, µ f ,c, and the
temperedness of λ. The simple measure-theoretic lemma below explains this. Let
R, S be locally compact metric spaces which are second countable, with Borel mea-
sures r, s respectively on them, and π : R→ S a continuous surjective map which is
a local homeomorphism, and takes r to s in a small neighborhood of each point of R:
this means that for each x ∈ R there are open sets Mx , Nπ(x) containing x and π(x)
respectively, such that π is a homeomorphism of Mx with Nπ(x) and takes r to s.
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Lemma 5.7. If there is a natural number d such that all fibers of π have cardinality
at most d , then for each Borel set E ⊂ R, π(E) is a Borel set in S, and we have

r(E)≤ d·s(π(E)).

Moreover if f ≥ 0 is a continuous function on R and t is the Borel measure on R
defined by dt = f dr , then for any Borel set E ⊂ R we have

t (E)≤ sup
E
| f |·d·s(π(E)).

Proof. The second inequality follows trivially from the first, so that we need only
prove the first. We use induction on d. For d = 1, π is a continuous bijection of
R with S; being a local homeomorphism, it is then a global homeomorphism. It
is easy to see that it takes r to s globally, and so the results are trivial. Let d > 1,
assume the results for d − 1, and suppose that there are points of S the fibers over
which have cardinality exactly d . Let Sd be the set of such points in S. Now, if the
fiber above a point has e elements, the fibers of neighboring points have cardinality
≥ e, and so Sd is open in S. Let Rd = π

−1(Sd). Then π : Rd → Sd is a d-sheeted
covering map. If x ∈ Rd , we can find an open set M containing π(x) such that
N := π−1(M)=

⊔
1≤ j≤d Nj where π : Nj → M is a homeomorphism taking r to

s. If E ⊂ N is a Borel set, then E =
⊔

j E ∩ Nj , so that π(E)=
⋃

j π(E ∩ Nj ) is
Borel as π is a homeomorphism on each Nj . Moreover,

r(E)=
∑

j

r(E ∩ Nj )=
∑

j

s(π(E ∩ Nj )≤ d·s(π(E)).

These two properties are true with any Borel M ′ ⊂ M and N ′ = π ′(M ′) replacing
M, N respectively. Write now Sd =

⋃
n Mn where the Mn are open and have

the properties described above for M. Then Sd =
⊔

n M ′n where M ′n ⊂ Mn , so
that Rd =

⊔
n π
−1(M ′n). The two properties above are valid for any Borel set

contained in any π−1(M ′n), hence they follow for any Borel set E ⊂ Rd . Write
S′ = S \ Sd , R′ = π−1(S′) = R \ Rd . Then (R′, S′, π) inherit the properties of
(R, S, π) with d − 1 instead of d . The result is valid for (R′, S′, π) and hence for
(R, S, π), as is easily seen.

We are now ready to prove Theorem 1.2. Assume that c is a stably noncritical
value of f . For simplicity of notation we will suppress mentioning c, because all
of our estimates are locally uniform in c. On L c = L we have the estimate

‖∇r (x)‖ =max
J
|∂J (x)|>

C
‖x‖γ

(‖x‖ ≥ 1),

where C > 0, γ ≥ 0 are constants that remain the same when c is varied in a small
neighborhood of c. Let us write L+ for the subset of L where ‖x‖ > 1. Now, at
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each point x ∈ L+ some |∂J (x)| equals ‖∇r (x)‖. Hence if we write

MJ = {x ∈ L+ | |∂J (x)|> C‖x‖−γ },
then

L+ =
⋃

J

MJ .

The map πJ is open on MJ onto its image WJ and is a local analytic isomorphism.
Moreover, if λ, ν, µ= µc have the same meaning as before, we have, on MJ ,

dµ= |∂J (x)|−1 dν

and hence, for any Borel set E ⊂ MJ , with D as in Lemma 5.4,

µ(E)≤ D· sup
E
|∂J (x)−1

|·λ(πJ (E)).

Remembering that |∂J (x)|−1 < C−1
‖x‖γ, we get from this that

µ(E)≤ DC−1
· sup

E
‖x‖γ ·λ(πJ (E)).

If we take E = BR ∩MJ where BR = {x ∈ km
| ‖x‖< R}, we see that πJ (E) is a

subset of the open ball of km−r of radius R, and hence λ(πJ (E))≤ ARm−r where
A is a universal constant. Hence

µ(BR ∩MJ )≤ ADC−1
·Rm−r+γ .

Since this is true for all J, the temperedness of µ together with the growth estimate
is proved, as well as the assertion that the last estimate remains unchanged if c
varies in a small neighborhood of its original value. This finishes the proof of
Theorem 1.2. �

6. Invariant measures on regular adjoint orbits of a semisimple Lie algebra

As an application of our Theorem 1.2 we shall prove that the invariant measures on
regular semisimple orbits of a semisimple Lie algebra g := gK over a local field k
of characteristic 0 are tempered.

The restriction to regular orbits is a consequence of the methods we use; the
result is expected to be true without any condition on the orbit of the adjoint action.

For the moment let k be any field of characteristic 0 and K the algebraic closure
of k. We write gK = K ⊗k gk . Let P(K ) be the K -algebra of polynomial functions
on gK with values in K. Since such a polynomial is determined by its restriction to
gk , the restriction to k defines an isomorphism of P(K ) with the K -algebra Pk(K )
of K -valued polynomial functions on gk .

Let G be the connected adjoint group of gk . It is a linear algebraic group defined
over k and we write G(k ′) for the group of its points over k ′, k ⊂ k ′ ⊂ K. We
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regard G(k ′) as a subset of G = G(K ). From [Borel 1991] we know that G(k)
is Zariski-dense in G(K ). Now G(K ) acts on P(K ) and we denote by J (K ) the
K -algebra of invariants of this action, which is a graded algebra in the obvious way.
By a theorem of Chevalley, J (K ) is freely generated by homogeneous elements
p1, . . . , pr of degrees d1, . . . , dr respectively, where r is the rank of gk . In view of
our remarks above, J (K ) is isomorphic to the graded K -algebra of invariants of
G(k) in Pk(K ). The action by G(k) leaves Pk(k) invariant, and we write J (k) for
the graded k-subalgebra of G(k)- invariants in Pk(k). It is clear that

J (k)' J (K )Gal(K/k)

as graded k-algebras.
The following lemma is surely known but we include it for the sake of complete-

ness.

Lemma 6.1. The graded k-algebra J (k) is freely generated by homogeneous ele-
ments q1, . . . , qr of degrees d1, . . . , dr respectively.

Proof. There is a finite extension k ′ of k with k ⊂ k ′ ⊂ K such that the free
homogeneous generators pi of J (K ) have their coefficients in k ′. Hence we may
come down from K to k ′. Let (eα) be a k-basis for k ′. Then we can write each pi as

pi =
∑
α

pi,αeα (pi,α ∈ Pk(k)).

Since the pi,α are k-valued, the G(k)-invariance of the pi implies that the pi,α are
in J (k). Now the pi are algebraically independent, and so, ω := dp1∧· · ·∧dpr 6≡ 0.
Let

ωα1,...,αr = dp1,α1 ∧ · · · ∧ dpr,αr .

Then

ω =
∑

α1,...,αr

ωα1,...,αr eα1 ∧ eα2 · · · ∧ eαr 6≡ 0.

Hence we can choose α1, . . . , αr such that ωα1,...,αr 6≡ 0. With this choice, let

qi = pi,αi (1≤ i ≤ r).

Then the qi are homogeneous elements of J (k) and deg(qi ) = di , and they are
algebraically independent.

Now J (k ′) is freely generated by the pi of degree di . Hence, its Poincaré series
is
∏

i (1− T di )−1. For any integer m ≥ 1 let Dm be the dimension of J (k ′)m , the
subspace of degree m in J (k ′). So dim(J (k)m)≤ Dm . On the other hand, let J1(k)
be the subalgebra of J (k) generated by the qi . Since the qi are homogeneous, this
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is a graded subalgebra of J (k), and it has the same Poincaré series as J (k ′). Now
J1(k)m ⊂ J (k)m for all m, and so

Dm = dim J1(k)m ≤ dim J (k)m ≤ dim J (k ′)m = Dm .

This proves that J1(k)m = J (k)m for all m, so that J1(k)= J (k). This finishes the
proof of the lemma. �

Let r = rank(g). Then by assumption we can choose g1, . . . , gr ∈ J (k) freely
generating J (k), hence also J (K ) (over K ). An element H ∈ gK is semisimple
(resp. nilpotent) if ad X is semisimple (resp. nilpotent). A semisimple element H
is called regular if its centralizer is a Cartan subalgebra (CSA) of gK . There is an
invariant polynomial D ∈ J (k), called the discriminant of g, such that if X ∈ gk , X
is semisimple and regular if and only if D(X) 6= 0. If Y ∈ g is any element, we can
write Y = H+ X where H is semisimple and X is a nilpotent in the derived algebra
of the centralizer of H in gK (which is semisimple). It is known [Kostant 1963]
that the orbit of H + X has H in its closure, and so, for any g ∈ J (K ), we have
g(H)= g(H+X). If hK is a CSA of gK , it is further known that the restriction map
from gK to hK is an isomorphism of J (K ) with the algebra J (hK ) of polynomials
on hK invariant under the Weyl group WK of hK . It is known that the differentials
dg1, . . . , dgr are linearly independent at an element Y of gK if and only if Y lies in
an adjoint orbit of maximal dimension, which is dim(gK )−rank(gK )= n−r , where
n = dim(gK ) [Kostant 1963]. If Y is semisimple, this happens if and only if Y is
regular. Let g′K be the invariant open set of regular semisimple elements. We write

F = (g1, . . . , gr ) : gK 7→ K r

and view it as a polynomial map of gK into K r commuting with the action of the
adjoint group. Before we apply Theorem 1.2 to this set up, we need some preliminary
discussion. Let R= F(g′K ). The next lemma deals with the situation over K.

Lemma 6.2. We have g′K = F−1(R). Moreover R is Zariski open in K r, and is
precisely the set of noncritical values of F, so that all the noncritical values are
also stably noncritical. Moreover, for any c ∈R, the preimage F−1(c) is an orbit
under the adjoint group, consisting entirely of regular semisimple elements, hence
smooth.

Proof. Since dg1 ∧ · · · ∧ dgr 6= 0 everywhere on g′K , the map F is smooth on g′K .
Hence it is an open map [Görtz and Wedhorn 2010, Corollary 14.34], showing that
F(g′K )=R is open in K r.

We shall prove that if Y ∈ gK and X ∈ g′K are such that F(Y )= F(X), then Y
is regular semisimple, and is conjugate to X under the adjoint group. Suppose Y
is not regular semisimple. Write Y = Z + N , where Z is semisimple and N is a
nilpotent in the derived algebra of the centralizer of Z . The F(Y )= F(Z)= F(X).



TEMPEREDNESS OF MEASURES OVER LOCAL FIELDS 249

Using the action of the adjoint group separately on X and Z we may assume that
X, Z ∈ hK where hK is a CSA, and F(X)= F(Z). Then all Weyl group invariant
polynomials take the same value at Z and X and so Z and X are conjugate under
the Weyl group. But as X is regular, so is Z , hence N = 0 or Y itself is regular
semisimple. So, g′K = F−1(R). But then the above argument already shows that Y
and X are conjugate under the adjoint group. Since the fibers of F above points
of R are smooth, all points of R are stably noncritical. It remains to show that
there are no other noncritical values. Suppose Y ∈ gK is such that d = F(Y ) is a
noncritical value where d /∈R. Then Y /∈ g′K . Now Y = Z + N as before, where Z
is no longer regular (it is semisimple still). Then F(Z)= F(Y ) and so Z ∈ F−1(d).
But as Z is semisimple but not regular, dg1∧ · · · ∧ dgr is zero at Z [Kostant 1963].
Thus Z is a singular point of F−1(d), contradicting the fact that d is noncritical.
The lemma is thus completely proved. �

We now come to the case where the ground field is k, a local field of charac-
teristic 0. We assume that the gi have coefficients in k. Fix a regular semisimple
element H0 in gk . Let

W (k) :=WH0(k)= {X ∈ g(k) | gi (X)= gi (H0)(1≤ i ≤ r)}.

Theorem 6.3. Then the canonical measure on W (k) is tempered, and the growth
estimate G (see Section 1) is uniform when H varies in a neighborhood of H0.

Proof. For the map F on gk we know that (g1(H0), . . . , gr (H0)) is a stably non-
critical value and so the theorem follows at once from Theorem 1.2. �

Although W (K ) is a single orbit under G(K ), this may no longer true over k.
W (k) is a k-analytic manifold of dimension n− r . On the other hand, the stabilizer
in G(k) of any point of W (k) has dimension r and so its orbit under G(k) is
an open submanifold of W (k). If we do this at every point of W (k) we obtain
a decomposition of W (k) into a disjoint union of G(k)-orbits which are open
submanifolds of dimension n − r and so all these submanifolds are closed also.
Thus the orbit G(k).H0 is an open and closed submanifold of W (k) of dimension
n− r . Now the canonical measure on W (k) is invariant under G(k) and so on the
orbit G(k).H0 it is a multiple of the invariant measure on the orbit. Note that the
orbit being closed, the invariant measure on it is a Borel measure on gk . Since the
canonical measure is tempered on W (k) by Theorem 6.3, it is immediate that the
invariant measure on the orbit G(k).H0 is also tempered. Hence we have proved
the following theorem:

Theorem 6.4. The orbits of regular semisimple elements of gk are closed, and the
invariant measures on them are tempered.

For temperedness of invariant measures on semisimple symmetric spaces at the
Lie algebra level over R; see [Heckman 1982].
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Remark 6.5. Ranga Rao [1972] and Deligne have independently shown that for
any X ∈ gk , there is an invariant measure on the adjoint orbit of X, and this measure
extends to a Borel measure on the k-closure of the adjoint orbit of X. It is natural to
ask if these are tempered in our sense when k is nonarchimedean. We shall consider
this question in another paper since it does not follow from the results proved here.

7. Examples

In this section we give some examples. We consider only single polynomials
(r = 1) of degree d ≥ 3, defined over a local field k of characteristic 0. Let
f ∈ k[x1, . . . , xm].

Elementary methods when r = 1 and f is homogeneous. For f homogeneous we
have Euler’s theorem on homogeneous functions, which asserts that

∑
i xi∂ f/∂xi =

d · f . Let Lc = {x ∈ km
| f (x) = c} for c ∈ k. Then, for any critical point x of f ,

we have f (x)= 0, i.e., L0 contains all the critical points. So every c ∈ k \ {0} is a
noncritical value and so is also stably noncritical. Moreover, Euler’s identity for
x ∈ Lc, c 6= 0, gives

∑
i xi∂ f/∂xi = dc, so that we have

|d||c| =
∣∣∣∣∑

i

xi
∂ f
∂xi

∣∣∣∣≤ C‖x‖‖∇ f (x)‖ (C > 0),

giving the estimate, with A a constant > 0,

‖∇ f (x)‖ ≥ A‖x‖−1, ‖x‖ ≥ 1, x ∈ Lc.

Moreover the projection (x1, . . . , xm) 7→ (x1, . . . , x̂i , . . . xm) has the property that
all fibers have cardinality ≤ d. We thus have Theorem 1.2 with

µ f,c = O(Rm) (R→∞),

where O is uniform locally around c. We can actually say more.

Proposition 7.1. Suppose 0 is the only singularity in L0, i.e., the projective locus
of L0 is smooth. Then for any compact set W ⊂ k \ {0}, we have

(7-1) inf
c∈W,x∈Lc,‖x‖≥1

‖∇ f (x)‖> 0.

Moreover, the measure µ f,0 defined on L0 \ {0} is finite in open neighborhoods of 0
if m > d , so that it extends to a Borel measure on L0. Finally, for all c ∈ k,

µ f,c(Br )= O(Rm−1).

If m ≤ d , there are examples where µ f,0 is not finite in neighborhoods of 0.
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Proof. To prove (7-1) assume (7-1) is not true. Then we can find sequences cn ∈W,
xn ∈ Lcn such that cn→ c∈W, ∇ f (xn)→0 as n→∞. By passing to a subsequence
and permuting the coordinates we may assume that xn = (xn1, . . . , xnm) where
|xn1| ≥ |xnj | ( j ≥ 2) and |xn1| →∞. Now,

f (xn1, . . . , xnm)= xd
n1 f (1, x−1

n1 xn2, . . . , x−1
n1 xnm)= cn→ c

and
(∇ f )(xn1, . . . , xnm)= xd−1

n1 (∇ f )(1, x−1
n1 xn2, . . . , x−1

n1 xnm)→ 0.

Now |x−1
n1 xnj | ≤ 1 for 2≤ j ≤m and so, passing to a subsequence, we may assume

that x−1
n1 xnj → v j for j ≥ 2. Hence,

f (1, v2, . . . , vm)= 0 and (∇ f )(1, v2, . . . , vm)= 0,

showing that (1, v2, . . . , vm) 6= (0, . . . , 0) is a singularity of L0. Then (7-1) leads
to the conclusion

µ f,c(BR)= O(Rm−1) (R→∞)

locally uniformly at each c 6= 0.
For µ f,0 defined on L0 \ {0}, one must first show that it is finite on small

neighborhoods of 0, i.e., it extends to a Borel measure on L0, if m > d. Let
S={u∈ L0 | ‖u‖=1}. Then there exist constants a, b>0 such that a≤‖∇ f (x)‖≤b
for all x ∈ S. Hence, by homogeneity,

a‖x‖d−1
≤ ‖∇ f (x)‖ ≤ b‖x‖d−1 (x ∈ L0 \ {0}).

Hence
‖∇ f (x)‖ ≥ a > 0 (x ∈ L0, ‖x‖ ≥ 1).

As before, this leads to µ f,0(BR \ B1)= O(Rm−1) as R→∞. Around 0 we obtain
the finiteness ofµ f,0 from the estimate b−1

‖x‖−(d−1)
≤‖∇ f (x)‖−1

≤a−1
‖x‖−(d−1)

and the fact that ∫
x∈km−1,0<‖x‖<1

‖x‖−(d−1) dm−1x <∞

if m > d for both k = R and k nonarchimedean. We shall now suppose that
f = X4

+ Y 4
− Z4. Then 0 is the only critical point. The map (x, y, z) 7→ (x, y)

on L0 ∩ {(x, y, z) | x > 0} is a diffeomorphism and the measure µ f,0 is

1
|∂ f/∂z|

dx dy =
1
4

dx dy
(x4+ y4)3/4

and it is easy to verify that ∫∫
N

dx dy
(x4+ y4)3/4

=∞

for any neighborhood N of (0, 0). �
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Remark 7.2. It follows from Proposition 7.1 that to have

(7-2) inf
x∈Lc,‖x‖≥1

‖∇ f (x)‖ = 0 (c 6= 0)

we must look for f such that L0 has singular points 6= 0. In the next section we
describe some of these examples.

Some hypersurfaces in Pm−1
k with [1 : 0 : · · · : 0] as an isolated singularity. We

do not try to give a “normal form” for such hypersurfaces; nevertheless large families
of these can be described. We work in km, k a local field of characteristic 0. Since
the first coordinate axis in km is chosen to be an isolated critical line (ICL), the first
variable will be distinguished in what follows. Let us write X, Y1, . . . , Ym−1 as the
variables. Write Y = (Y1, . . . , Ym−1). Let C(ε)= {(X,Y) | ‖Y‖ ≤ ε|X |}

Lemma 7.3. Suppose (Xn,Yn) is a sequence of points in Lc (c 6= 0) such that they
are in C(ε) for some ε < 1. Let F(Xn,Yn)= c 6= 0 and ∇F(Xn,Yn)→ 0. Then if
the X-axis is an (ICL) for F, we must have Xn→∞, 1/XnYn→ 0 as n→∞.

Proof. By Euler’s theorem, there is no singularity on Lc (c 6= 0). Hence ‖∇F‖ is
bounded away from 0 on each compact subset of Lc. Hence, item 2 above implies
‖(Xn,Yn)‖= |Xn|→∞. Then ‖Xn

−1Yn‖ ≤ 1 and has a limit point η. Passing to a
subsequence, if necessary, we have Xn

−1Yn→ η as n→∞. If d = deg(F) we have
Xd

n F(1, Xn
−1Yn)=c, Xd−1

n ∂X F(1, Xn
−1Yn)→0, and Xd−1

n ∂Yi F(1, Xn
−1Yn)→0.

So F(1, η) = 0 and ∇F(1, η) = 0, while η ∈ C(ε). Hence η = 0 since ε can be
arbitrarily small. �

Lemma 7.4. If (1, 0) is a critical point of F, then F has the form

F = Xd−2 p2+ Xd−3 p3+ · · ·+ pd

where pr is a homogeneous polynomial in Y of degree r .

Proof. Write F = Xd−2 p2 + Xd−3 p3 + · · · + pd . Then p0 is a constant, and
F(1, 0)= 0 gives p0 = 0. Then, ∂F/∂Yi (1, 0)= 0 gives p1 = 0. �

From now on we let d ≥ 3 and write

F = Xd−2 p2+ · · ·+ pd , G = p2+ · · ·+ pd .

Note that G is a polynomial in Y , but not necessarily homogeneous.

Lemma 7.5. If 0 is an isolated critical point (ICP) of G, then the X-axis is an ICL
of F. In particular, this is so if the quadratic form p2 is nondegenerate.

Proof. We must prove that if (1,Yn) is a CP for F with Yn→ 0, then Yn = 0 for
n ≥ 1. The conditions for (1,Yn) to be a CP of F are

F(1,Yn)= 0, ∂

∂X
F(1,Yn)= 0, ∂

∂Yi
F(1,Yn)= 0 for all i.
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Consequently G(Yn)= 0 and ∂G/∂Yi (Yn)= 0 for all i . Since Yn→ 0 and 0 is an
ICP for G, Yn = 0 for all n� 1.

For the second statement, suppose p2 is nondegenerate. By Morse’s lemma [Duis-
termaat 1973] for local fields k, ch.= 0, there is a local diffeomorphism of km−1 fix-
ing 0 taking G to p2. But 0 is an isolated CP for p2, which makes it isolated for G. �

We remark that Duistermaat’s proof [1973] of Morse’s lemma is over R, but its
proof applies to the nonarchimedean case without any change, so we omit it.

Lemma 7.6. The converse to the first statement of Lemma 7.5 is true if

F = Xd−r pr + pd (r ≥ 2).

Proof. We must show that G= pr+ pd has 0 as an ICP if (1, 0) is an ICP for F. Sup-
pose wn are CPs for G = pr+ pd with wn→ 0. Then G(wn)= F(1,wn)= 0 for all
n, and Gi (wn)=∂F/∂Yi (1,wn)=0 for all n. Hence, pr,i (wn)+pd,i (wn)=0 for all
n. By Euler’s theorem, r pr (wn)+dpd(wn)= 0 for all n. But, pr (wn)+ pd(wn)= 0
for all n as well. So, pr (wn) = pd(wn) = 0 for all n. Hence, ∂F/∂X(1,wn) =

(d−r)pr (wn)= 0 for all n. So (1,wn) is a CP of F for all n. As (1, 0) is assumed
to be an ICP for F, wn = 0 for n� 1. So 0 is an ICP for F. �

Study of condition (7-2) for F = X d−2 p2 + pd where G = p2 + pd has 0 as
an ICP. Let us consider F = X2

+ P4(Y ) where P4 is a homogeneous quartic
polynomial in Y, Z . For this to have (t, 0, 0) as and ICL we must have (0, 0) as an
ICP for G = Z2

+ P4(Y, Z).

Lemma 7.7. G = Z2
+ P4(Y, Z) has 0 as an ICP if and only if Z2 - P4(Y, Z), i.e.,

P4(Y, Z)= a0Y 4
+ a1Y 3 Z + a2Y 2 Z2

+ a3Y Z3
+ a4 Z4

where at least one of a0, a1 is nonzero. In this case 0 is its only CP.

Proof. The equations which determine whether (y, z) is a CP of G are

z2
+ P4(y, z)= 0,

∂P4

∂Y
(y, z)= 0 and 2Z +

∂P4

∂Z
(y, z)= 0.

From the second and third equations just defined, using Euler’s theorem, we
have 2z2

+ 4P4(y, z)= 0, which implies z2
= 0 and P4(yz)= 0.

So the only critical points are of the form (y, 0). Then (0, 0) is certainly a CP. If
(y, 0) is a critical point for some y 6= 0, then 4a0 y3

= 0, a1 y3
= 0 which implies

a0, a1 both vanish. The entire Y -axis consists of critical points, and so for (0, 0) to
be an ICP, at least one of a0, a1 6= 0. in which case (0, 0) is the only CP.

We consider the cases (I) a0 6= 0 and (II) a0 = 0, a1 6= 0. We consider case (I).
We shall now verify that inf‖u‖>1 ‖∇F(u)‖ > 0 if u ∈ Lc, ‖u‖ ≥ 1. Assume
F = X2 Z2

+ P4(Y, Z), and in view of Lemma 7.3, choose a sequence (xn, yn, zn)

such that xn→∞, yn/xn→ 0, zn/xn→ 0 and:
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(i) x2
n y2

n + P4(yn, zn)= c,

(ii) ∂F/∂X = 2xnz2
n→ 0,

(iii) ∂P4/∂Y (yn, zn)→ 0,

(iv) 2x2
n zn + ∂P4/∂Z(yn, zn)→ 0.

From (ii) we get zn→ 0. Assuming we are in case (I), yn is bounded. Otherwise,
by passing to a subsequence we may assume yn →∞ giving ∂P4/∂Y (yn, zn) =

4a0 y3
n+3a1 y2

n zn+· · ·→0. If a0 6=0, then ∂P4/∂Y (yn, zn)=4a0 y3
n(1+o(zn/yn))→

∞, which is a contradiction. But if η 6= 0 is a limit point of yn , then

∂P4

∂Y
(zn, yn)→ 4a0η

3
6= 0

which is a contradiction. So, yn → 0 necessarily. Then, P4(yn, zn) → 0 and
∂P4/∂Z(yn, zn)→ 0. Hence by (iv), x2

n zn→ 0, by (i) x2
n z2

n→ c 6= 0, a contradiction.
This finishes case (I).

Assuming we are in case (II), a0 = 0, a1 6= 0, we claim yn→∞. Otherwise, by
passing to a subsequence, we may assume yn→ η. Then P4(yn, zn)= a1 y3

n zn+· · ·

so that P4(yn, zn)→ 0. Hence, x2
n z2

n→ c. But ∂P4/∂Z(yn, zn)=a1 y3
n+· · ·→a1η

3.
Hence, by (iv), x2

n zn = o(1). So, as zn→ 0, we have x2
n y2

n → 0. Hence, c = 0 is a
contradiction.

We are left with the case xn→∞, yn→∞, zn→ 0, (yn/xn)(zn/xn)→ 0, and
P4(Y,Z)=a1Y 3 Z+···, for a1 6=0. But ∂P4/∂Y (yn,zn)=3a1 y2

n zn(1+o(zn/yn))→

0 if and only if y2
n zn→ 0. In this case may we have a counterexample to statement

(7-2). Remark 4.14 gives an example of this kind. Note that case (I) is generic
among the families we consider. �
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