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MARION CAMPISI AND MATT RATHBUN

If a graph is in bridge position in a 3-manifold so that the graph complement
is irreducible and boundary-irreducible, we generalize a result of Bachman
and Schleimer to prove that the complexity of a surface properly embedded
in the complement of the graph bounds the graph distance of the bridge sur-
face. We use this result to construct, for any natural number n, a hyperbolic
manifold containing a surface of topological index n.

1. Introduction

It has become increasingly common and useful to measure distances in complexes
associated to surfaces between certain important subcomplexes associated with the
surface embedded in a 3-manifold. These techniques provide a means to indicate the
inherent complexity of links in a manifold, decomposing surfaces, or the manifold
itself. Bachman [2010] defined the topological index of a surface as a topological
analogue of the index of an unstable minimal surface. When the distance is small,
the notion of topological index refines this distance, by looking at the homotopy
type of a certain subcomplex.

In the same way that incompressible surfaces share important properties with
strongly irreducible surfaces (distance > 2) despite being compressible, the topolog-
ical index provides a degree of measurement of how similar irreducible, but weakly
reducible (distance = 1) surfaces are to incompressible surfaces. Bachman [2012a;
2012b; 2012c] has shown that surfaces with a well-defined topological index in a
3-manifold can be put into a sort of normal form with respect to a triangulation of
the manifold, generalizing the ideas of normal form introduced by Kneser [1929]
and almost normal form introduced by Rubinstein [1995], and mirroring results
about geometrically minimal surfaces due to Colding and Minicozzi [2004a; 2004b;
2004c; 2004d; 2015].

Lee [2015] has shown that an irreducible manifold containing an incompressible
surface contains topologically minimal surfaces of arbitrarily high genus, but has
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only shown that the topological index of such surfaces is at least two. Bachman
and Johnson [2010] showed that surfaces of arbitrarily high index exist. These
surfaces are the lifts of Heegaard surfaces in an n-fold cover of a manifold obtained
by gluing together boundary components of the complement of a link in S3. A
byproduct of their construction is that the resulting manifolds are toroidal.

This leaves open the question of whether the much more ubiquitous class of
hyperbolic manifolds can also contain high topological index surfaces. Here we
construct certain hyperbolic manifolds containing such surfaces. We generalize
the construction in [Bachman and Johnson 2010] by gluing along the boundary
components of the complement of a graph in S3 to show:

Theorem 1.1. There is a closed 3-manifold M1, with an index 1 Heegaard surface S,
such that for each n, the lift of S to some n-fold cover Mn of M1 has topological
index n. Moreover, Mn is hyperbolic for all n.

In order to guarantee the hyperbolicity of Mn, we must rule out the existence of
high Euler characteristic surfaces in the graph complement. To that end, we define
the graph distance, dG , of graphs in S3, an analogue of bridge distance of links. In
the spirit of Hartshorn [2002] and Bachman and Schleimer [2005], we show that the
complexity of an essential surface is bounded below by the graph bridge distance:

Theorem 1.2. Let 0 be a graph in a closed, orientable 3-manifold, M, which is in
bridge position with respect to a Heegaard surface, B, so that M r n(0) is irre-
ducible and boundary-irreducible. Let S be a properly embedded, orientable, incom-
pressible, boundary-incompressible, non-boundary-parallel surface in M r n(0).
Then dG(B, 0) is bounded above by 2(2g(S)+ |∂S| − 1).

In Section 2 we lay out the definitions of the various complexes and distances
we will use, and prove Theorem 1.2. In Section 3, we prove Theorem 1.1.

2. Definitions

Given a link L ⊂ S3, a bridge sphere for L is a sphere, B, embedded in S3, inter-
secting the link L transversely, and dividing S3 into two 3-balls, V and W, so that
there exist disks DV and DW properly embedded in V and W, respectively, so that
L∩V ⊂ DV and L∩W ⊂ DW are each a collection of arcs. If there are b arcs, the
link is said to be b-bridge with respect to B.

Goda [1997] introduced the notion of a bridge sphere for a spatial θ -graph, and
this was extended by Ozawa [2012]. A bridge sphere for a (spatial) graph 0 is
a sphere, B, embedded in S3, intersecting 0 transversely in the interior of edges,
and dividing S3 into two 3-balls, V and W, so that there exist disks DV and DW

properly embedded in V and W, respectively, so that 0∩V ⊂ DV and 0∩W ⊂ DW

are each a collection of trees and/or arcs.
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If B is a bridge sphere for a link L, then a bridge disk is a disk properly embedded
in one of the components of (S3 r n(L))r B), whose boundary consists of exactly
two arcs, meeting at their endpoints, with one arc essential in B r n(L), and the
other essential in ∂n(L)r B. We refer to the arc in the boundary of the disk that
is contained in B as a bridge arc. Similarly, if B is a bridge sphere for a graph 0,
then a graph-bridge disk is a disk properly embedded in one of the components
of (S3 r n(0))r B), whose boundary consists of exactly two arcs, meeting at
their endpoints, with one arc essential in B r n(0), and the other essential in
∂n(0)r B. We refer to the arc in the boundary of the disk that is contained in B
as a graph-bridge arc.

Definition 2.1. The curve complex for a surface B with (possibly empty) boundary
is the complex with vertices corresponding to the isotopy classes of essential simple
closed curves in B, so that a collection of vertices defines a simplex if representatives
of the corresponding isotopy classes can be chosen to be pairwise disjoint. We will
denote the curve complex for a surface B by C(B).

Definition 2.2. The arc and curve complex for a surface B ′ with boundary is the
complex with vertices corresponding to the (free) isotopy classes of essential simple
closed curves and properly embedded arcs in B ′. A collection of vertices defines a
simplex if representatives of the corresponding isotopy classes can be chosen to
be pairwise disjoint. We will denote the arc and curve complex for a surface B ′

by AC(B ′).

If B is a surface embedded in a manifold, and a 1-dimensional complex intersects
B transversely, we will refer to the surface obtained by removing a neighborhood
of the 1-complex by B ′. We will often refer to C(B ′) simply by C(B), and AC(B ′)
simply by AC(B).

Definition 2.3. Let B be a surface with at least two distinct, essential curves.
Given two collections X and Y of vertices in the complex C(B) (resp., AC(B)),
the distance between X and Y, denoted dC(B)(X, Y ) (resp., dAC(B)(X, Y )), is the
minimal number of edges in any path in C(B) (resp., AC(B)) from a vertex in X to
a vertex in Y. When the surface is understood, we often just write dC (resp., dAC).

We will be working with four subtly different but closely related subcomplexes,
and some associated notions of distance.

Definition 2.4. Let B be a properly embedded surface separating a manifold M
into two components, V and W. Define the disk set of V (resp., W ), denoted
DV ⊂ C(B), (resp., DW ⊂ C(B)), as the set of all vertices corresponding to essential
simple closed curves in B that bound embedded disks in V (resp., W ). Define the
disk set of B, denoted DB , as the set of all vertices corresponding to essential simple
closed curves in B that bound embedded disks in M.
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Definition 2.5. Let B be a bridge sphere for a link L, bounding 3-balls V and W,
with at least 6 marked points corresponding to the transverse intersections of L
with B. The distance of the bridge surface, denoted dC(B,L), is dC(B ′)(DV ,DW ),
the distance in the curve complex of B ′ between DV and DW .

The fundamental building block in our construction will be the exterior of a graph
that is highly complex as viewed from the arc and curve complex. The existence
of such a block will follow from a result of Blair, Tomova, and Yoshizawa, using
“warped pants decompositions” and Dehn twists to construct gluing maps resulting
in high bridge distance link complements. It is a special case of [Blair et al. 2013,
Corollary 5.3 and the proof of Theorem 4.9].

Theorem 2.6 [Blair et al. 2013]. Given nonnegative integers b1, b2 and d, with
b1 + b2 ≥ 3, there exists a 2-component link L in S3, and a bridge sphere B for
L so that L is (b1+b2)-bridge with respect to B, the components of L are b1- and
b2-bridge with respect to B, and dC(B,L)≥ d.

Definition 2.7. Let B be a bridge sphere for a link L, bounding 3-balls V and W.
Define the bridge disk set of V (resp., W ), denoted BDV ⊂AC(B) (resp., BDW ),
as the set of all vertices either corresponding to essential simple closed curves in
B ′ that bound embedded disks in V rL (resp., W rL), or corresponding to bridge
arcs in B ′ contained in the boundaries of bridge disks in V (resp., W ).

Definition 2.8. Let B be a bridge sphere for a link L, bounding 3-balls V and
W. The bridge distance of the bridge surface B, which we denote by dBD(B,L),
is dAC(B ′)(BDV ,BDW ), the distance in the arc and curve complex of B ′ between
BDV and BDW .

Lemma 2.9 [Blair et al. 2017, Lemma 2]. If B is a bridge surface which is not a
sphere with four or fewer punctures, then dBD(B,L)≤ dC(B,L)≤ 2dBD(B,L).

Definition 2.10. Let B be a bridge sphere for graph 0, bounding 3-balls V and W.
The graph disk set of V (resp., W ) denoted GDV ⊂AC(B) (resp., GDW ⊂AC(B)),
is the set of all vertices either corresponding to essential simple closed curves in
Brn(0) that bound embedded disks in Vrn(0) (resp., Wrn(0)), or corresponding
to graph-bridge arcs in B r n(0) contained in the boundaries of graph-bridge disks
in V (resp., W ).

Definition 2.11. Let B be a bridge sphere for graph 0. The graph distance of the
bridge surface, denoted dG(B, 0) is dAC(B ′)(GDV ,GDW ), the distance in the arc
and curve complex of B ′ = B r n(0) between GDV and GDW .

Lemma 2.12. Let L be a link in bridge position with respect to a bridge sphere B,
bounding 3-balls V and W, and let 0L be a graph in bridge position with respect
to B formed by adding edges to L in V that are simultaneously parallel into B in
the complement of L, and so that 0L ∩ V has at least two components.
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If D ⊂ (V r n(0L)) is a graph-bridge disk for 0L, then there is a bridge disk D′

for L in (V r n(L)) which is disjoint from D.

Proof. Let 01, . . . , 0` be the connected components 0L ∩ V, and let 0i be the
component of 0L ∩ V to which D is incident.

Over all bridge disks E ⊂ V for L disjoint from 0i , choose one which minimizes
|D ∩ E |. Suppose the intersection is nonempty. Any loops of intersection can be
removed because (V rn(0)) is a handlebody and therefore irreducible. Any points
of intersection between ∂D and ∂E are contained in ∂D ∩ B and ∂E ∩ B. Choose
an arc γ of |D ∩ E |. The arc γ cuts D into two disks Dγ1 and Dγ2 . For one of
j = 1 or 2, ∂Dγ j ∩ ∂D is contained in B. Call that disk Dγ . Consider an arc α of
|D ∩ E | outermost in Dγ . If the interior of Dγ is disjoint from E then take α to
be γ . The arc α cuts off a disk Dα from Dγ and cuts E into two disks E1 and E2,
only one of whose (say E2) boundary is incident to L. The disk E2 ∪ Dα = E ′ is a
bridge disk for L and intersects D fewer times than E , contradicting the minimality
of |D ∩ E |. �

The above implies that the distance in the arc and curve complex of B r n(0)
between GDV and BDV is less than or equal to 1.

Corollary 2.13. Let L and 0L be as above. Then dBD(B,L)≤ 1+ dG(B, 0L).

Proof. Since W r n(0) contains no graph-bridge disks, GDW = BDW . Suppose
that the distance in AC(B ′) between GDW = BDW and GDV is realized by a path
between vertices X ∈ GDW and Y ∈ GDV . Then, by Lemma 2.12, there is a
vertex Z of BDV so that the distance between Y and Z is at most 1, and therefore
dAC(B ′)(BDW ,BDV )≤ dAC(B ′)(GDW ,GDV )+ 1. �

Hartshorn [2002] proved that an essential closed surface in a 3-manifold creates
an upper bound on the possible distances of Heegaard splittings of that manifold in
terms of the genus of the essential surface.

Theorem 2.14 [Hartshorn 2002, Theorem 1.2]. Let M be a Haken 3-manifold
containing an incompressible surface of genus g. Then any Heegaard splitting of M
has distance at most 2g.

This idea has been generalized in numerous ways, including in [Bachman and
Schleimer 2005] where it is shown that the distance of a bridge Heegaard surface
in a knot complement is bounded by twice the genus plus the number of boundary
components of an essential properly embedded surface.

Theorem 2.15 [Bachman and Schleimer 2005, Theorem 5.1]. Let K be a knot in
a closed, orientable 3-manifold M which is in bridge position with respect to a
Heegaard surface B. Let S be a properly embedded, orientable, essential surface in
M r n(K ). Then the distance of K with respect to B is bounded above by twice the
genus of S plus |∂S|.
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We will need a yet more general version, since we will be concerned with surfaces
properly embedded in graph complements.

The essence of both results is that the distance of a bridge or Heegaard surface is
bounded above in terms of the complexity of an essential properly embedded surface.
We will generalize this result to link and graph complements, with the additional
benefit of avoiding many of the technical details of [Bachman and Schleimer 2005]
necessary to treat the boundary components. Unfortunately, our bound will be
worse than that obtained by Bachman and Schleimer, though it will be sufficient for
many applications of this type of bound (see, e.g., [Mossessian 2016; Du and Qiu
2016; Ohshika and Sakuma 2016; Bachman 2013; Namazi 2007]). We note also
that our proof requires a minimal starting position similar to that used by Hartshorn,
an assumption Bachman and Schleimer’s method was able to avoid.

We now prove Theorem 1.2.

Theorem 1.2. Let 0 be a graph in a closed, orientable 3-manifold, M, which is in
bridge position with respect to a Heegaard surface, B, so that M r n(0) is irre-
ducible and boundary-irreducible. Let S be a properly embedded, orientable, incom-
pressible, boundary-incompressible, non-boundary-parallel surface in M r n(0).
Then dG(B, 0) is bounded above by 2(2g(S)+ |∂S| − 1).

Proof of Theorem 1.2. In the case that S is closed, we note that the proofs of
Theorems 2.14 and 2.15 both apply to closed surfaces in manifolds with boundary
as long as the manifold is irreducible. In the case that ∂S 6= ∅ we will double
M r n(0) along ∂n(0) to obtain a closed surface and show that the surface can be
made to fulfill all the hypotheses necessary to use the machinery in the proof of
Theorem 2.14 to obtain the bound on distance.

First, isotope S to intersect B minimally, among all isotopy representatives of S.
Let V and W be the handlebodies on either side of B. Double M r n(0) along
∂n(0), and call the resulting manifold M̂ . Let the doubles of S, B, V, and W be Ŝ,
B̂, V̂ , and Ŵ , respectively, and let G be ∂n(0) in M̂ , with respective copies Mi ,
Si , Bi , Vi , and Wi , for i = 1, 2.

Note that B̂ is a Heegaard surface for M̂ . (The proof of this is very similar to
the proof of Proposition 3.2 below.) Also, note that since S is incompressible and
∂-incompressible in M r n(0), Ŝ is an incompressible closed surface in M̂ , for
otherwise an outermost arc of intersection between a compressing disk and G would
show S to have been ∂-compressible in Mrn(0). Since ∂n(0) was incompressible
in M r n(0), G is incompressible in M̂ .

Claim 1. Each of Ŝ ∩ V̂ and Ŝ ∩ Ŵ are incompressible.

Proof. If, say, Ŝ ∩ V̂ had a compressing disk D, then since Ŝ is incompressible
in M̂ , there would have to be a disk D′ in Ŝ with ∂D′ = ∂D, and D′ ∩ B̂ 6=∅. We
may choose D to be a compressing disk which intersects G minimally. Further,
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since G is incompressible, we may choose D to intersect G only in arcs, if at all.
But M̂ is irreducible, so D ∪ D′ bounds a ball and we may isotope Ŝ across this
ball from D′ to D, lowering the number of intersections between Ŝ and B̂.

If D′ ∩G =∅, then this can be viewed as an isotopy of S in M r n(0) which
reduces the number of intersections between S and B, a contradiction.

If D′∩G 6=∅ we still arrive at a contradiction. Consider a loop, `, of intersection
in (D∪D′)∩G, innermost in D∪D′. Since D∩G only contains arcs, ` consists of
two arcs, α and α′ in D and D′ respectively. Thus ` bounds a disk D` in G, α cuts
off a subdisk Dα of D and α′ cuts off a subdisk Dα′ of D′, both of which are in
either M1 or M2, say M1. Now we have an isotopy of S1 from Dα ∪ Dα′ to D`.

Independent of whether Dα′ intersected B, we could have chosen D to have fewer
intersections with G, contradicting our choice of D to minimize intersections. �

Claim 2. Every intersection of Ŝ with B̂ is essential in B̂.

Proof. Curves of intersection in Ŝ ∩ B̂ which are inessential in both surfaces would
either give rise to a reduction in |S ∩ B| or could have come from the doubling of
arcs in S∩ B which would give rise to a reduction in |S∩ B| in a fashion similar to
the previous claim. �

Claim 3. There are no ∂-parallel annular components of Ŝ ∩ Ŵ or Ŝ ∩ V̂ .

Proof. Any such component disjoint from G would have been eliminated when
|S ∩ B| was minimized. The intersection of any such component intersecting G
with M1 would be a ∂-parallel disk which also would have been eliminated when
|S ∩ B| was minimized. �

Now we have satisfied all the hypotheses to obtain the sequence of isotopic
copies of Ŝ described in Lemmas 4.4 and 4.5 of [Hartshorn 2002]. Depending
on whether either of Ŝ ∩ V̂ or Ŝ ∩ Ŵ contains disk components or not, we apply
either Lemma 4.4 or 4.5, respectively, of [Hartshorn 2002] to obtain a sequence
of boundary compressions of Ŝ in V̂ or Ŵ , which gives rise to a path in C(Ŝ).
A priori, this path would not restrict to a path in AC(S), but the following claim
shows that we can choose the compressions to be symmetric across G, and so each
compression will correspond to an edge in AC(S).

Claim 4. If there exists an elementary ∂-compression of Ŝ in V̂ (resp., Ŵ ), then
there exists an elementary compression of Ŝ in V̂ (resp., Ŵ ) which is symmetric
across G in the sense that either

(1) the ∂-compressing disk D1 is disjoint from G in M1, and there is a correspond-
ing ∂-compressing disk D2 in M2, or

(2) the ∂-compression is along a disk that is symmetric across G.
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Proof. Let D be an elementary ∂-compression disk for, say, Ŝ ∩ V̂ chosen to
minimize |D ∩G|. We may restrict attention to such disks with |D ∩G|> 0.

First, we observe that D∩G cannot contain any loops of intersection, for a loop
of D ∩G innermost in D bounds a subdisk of D which would either give rise to a
compression for G or would provide a means of isotoping D so as to lower |D∩G|.
Thus, D ∩G consists only of arcs. These arcs are either

• vertical arcs, with one endpoint on each of Ŝ and B̂,

• Ŝ-arcs, with both endpoints on Ŝ, or

• B̂-arcs, with both endpoints on B̂.

Consider an Ŝ-arc of D ∩G, outermost in D, cutting off subdisk D′ from D,
with boundary consisting of σ in Ŝ and γ in G. Without loss of generality, assume
D′ ⊂ M1. If σ is essential in Ŝ ∩M1, then D′ is a boundary-compression disk for
S in M, which is impossible. If σ is inessential in Ŝ ∩M1, then it must cobound a
disk E in Ŝ ∩M1 together with an arc σ ′ ⊆ ∂(Ŝ ∩M1). The curve γ ∪ σ ′ cannot
be essential in G, else D′ ∪ E would be a compressing disk for G. Thus, γ ∪ σ ′

bounds a disk, F ⊆ G. Now F ∪ D′ ∪ E is a sphere bounding a ball in M1, so
D∪ E is isotopic to F, and replacing D′ with F results in an elementary boundary-
compressing disk for Ŝ ∩ V with fewer intersections with G than D. Thus we may
assume that D ∩G contains no Ŝ-arcs.

Now consider a subdisk D′ of D which is cut off by all the arcs of D ∩ G
and whose boundary consists of no more than one vertical arc. Without loss of
generality, assume D′ ⊆ M1. Suppose ∂D′ has B̂-arcs, β1, β2, . . . , βk . Then all
the βi are disjoint arcs on G. If any of them are inessential in G ∩ V̂ then they
bound disks Bi ⊆ G ∩ V1. If any of the βi are essential in G ∩ V̂ , then they bound
disks Bi ⊆ V1 that are bridge disks for n(0) in V1. In either case, D′ ∪

(⋃k
i=1 Bi

)
results in a boundary-compressing disk for S ∩ V̂ with fewer intersections with G
than D. This boundary-compressing disk is still elementary as the arc in Ŝ remains
unchanged. Thus, we may assume that D ∩G consists solely of vertical arcs.

Let γ be an arc of D ∩ G outermost in D, cutting off a subdisk D1 from D.
Without loss of generality, D1 ⊆ M1. The boundary of D1 consists of three arcs;
γ ⊆ G, σ1 ⊆ S1 and β1 ⊆ B1. By symmetry, there exists disk D2 ⊆ M2 in M2,
so that D1 ∪ D2 is a disk in V̂ with boundary consisting of arcs σ = σ1 ∪ σ2 ⊆ Ŝ
and β = β1 ∪β2 ⊆ B̂, intersecting G in exactly one arc, γ . Finally, we must show
that σ is a “strongly essential” arc in Ŝ ∩ V̂ .

If σ is not strongly essential then it is either the meridian of a boundary-parallel
annulus of Ŝ ∩ V̂ , which is not possible since σ1 was a subarc of the original
elementary compression disk D, or σ is inessential in Ŝ ∩ V̂ . If σ is inessential
then it would cobound a disk E in Ŝ together with an arc σ ′ ⊆ Ŝ ∩ B̂. This disk
provides an isotopy in Ŝ of σ1 to σ2.
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If the disk D′ = D r D1 only intersects D2 in γ then D′ ∪ D2 is a compressing
disk for Ŝ ∩ V̂ with fewer arcs of intersection with G, as the disk can be isotoped
away from γ . This disk is still an elementary compressing disk because σ1 is
isotopic to σ2, and so contradicts our original choice of D.

Thus, σ is strongly essential in Ŝ ∩ V̂ , and D1 ∪ D2 is a new compressing disk
for Ŝ ∩ V̂ that is symmetric across G. �

We may, thus, proceed exactly as in Theorem 2.14. Each elementary boundary
compression of Ŝ towards either of V̂ or Ŵ can be performed in a symmetric way,
demonstrating a path from DV̂ to DŴ in C(Ŝ) of length no greater than twice the
genus of Ŝ, which is 2(g(S)+ |∂S| − 1).

Each time a boundary compression for Ŝ corresponds to a pair of curves ĉi

and ĉi+1 in S1 that contribute an edge in a path in C(Ŝ) from DV̂ to DŴ , there is
immediately a pair of curves ĉi+2 and ĉi+3 in S2 also contributing an edge in a path
from DV to DW , and this pair of paths corresponds to a single pair of curves ci and
ci+1 in S contributing a single edge in AC(S). Each time a boundary compression
for Ŝ corresponds to a pair of curves intersecting G that contributes an edge in a
path in C(Ŝ) from DV̂ to DŴ , the restriction of these curves to S1 is a pair of arcs
contributing an edge in AC(S).

Further, since the boundary compressions (and elimination of boundary-parallel
annuli) are all being performed symmetrically, the resulting disks DV̂ ∈ DV̂ from
Ŝ ∩ V̂ and DŴ ∈ DŴ from Ŝ ∩ Ŵ are symmetric. That is, either DV̂ (resp., DŴ )
is disjoint from G, so that we may assume that it sits in V1 (resp., W1), or it is
symmetric across G so that DV̂ ∩M1 (resp., DŴ ∩M1) is a graph bridge disk for
0 in M. In either case, this demonstrates a path in AC(S) from DGV to DGW of
length no greater than 2(g(S)+ |∂S| − 1). �

3. Theorem 1.1

Bachman [2010] defined the topological index of a surface. In contrast to the
distances between subcomplexes each corresponding to some disks discussed in
Section 2, he exploits the homotopy type of the complex of all disks.

Definition 3.1. The surface B is said to be topologically minimal if either DB is
empty, or if there exists an n ∈N so that πn(DB) 6= 0. If a surface B is topologically
minimal, then the topological index is defined to be the smallest n ∈ N so that
πn−1(DB) 6= 0, or 0 if DB is empty.

Bachman and Johnson [2010] showed that surfaces of arbitrarily high index exist,
but their manifolds all contain essential tori. We prove an analogue of this.

Theorem 1.1. There is a closed 3-manifold M1, with an index 1 Heegaard surface S,
such that for each n, the lift of S to some n-fold cover Mn of M1 has topological
index n. Moreover, Mn is hyperbolic for all n.
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3A. The construction. Let n be a positive integer. We will construct a hyperbolic
manifold containing a Heegaard surface of topological index n.

Using the machinery in Theorem 2.6, let L be a link in S3 with two components,
L and K, that are each 2-bridge with respect to a bridge sphere B of distance at
least 24n+ 7. Let V and W be the two 3-balls bounded by B. Since L is in bridge
position, there exist disks DV and DW properly embedded in V and W, respectively,
with (L∩ V )⊂ DV , and (L∩W )⊂ DW . By modifying DV if necessary, we can
find two arcs τL and τK in the interior of V such that

(1) τL ∪ τK ⊂ DV ,

(2) τL ∩ τK =∅,

(3) τL ∩L= ∂τL ⊂ L and τK ∩L= ∂τK ⊂ K,

(4) the endpoints of τK are on different components of K ∩ V, and the endpoints
of τL are on different components of L ∩ V.

Let L ′= L∪τL , let GL = ∂n(L ′), let K ′= K ∪τK , let G K = ∂n(K ′), and let 0=
L∪τL∪τK = L ′∪K ′. Observe that 0 is a graph in bridge position with respect to B.
Let M ′ = S3 r n(0), let V ′ = V r n(0), and let W ′ =W r n(0)=W r n(L), and
B ′ = B r n(0)= B r n(L).

For each i = 1, 2, . . . , n, let M ′i be homeomorphic to M ′, along with homeomor-
phic copies Li of L, (GL)i of GL , (G K )i of G K , and B ′i of B ′.

Then, for each i = 1, 2, . . . , (n− 1), identify (G K )i with (GL)i+1 and identify
(G K )n with (GL)1, all via the same homeomorphism. Call the resulting closed
3-manifold Mn. Observe that the union of the B ′i is a closed surface that we will
call Bn. We will show that Bn is a Heegaard surface for Mn, that Bn has high
topological index, and that Mn is hyperbolic.

Proposition 3.2. For each n, Bn
⊂ Mn is a genus 3n+ 1 Heegaard surface.

Proof. That the genus of Bn is 3n+ 1 can be verified by an Euler characteristic
count. It suffices, then, to verify that the complement of Bn is two handlebodies,
V n and W n.

Since 0 was in bridge position with respect to B, there are disks DV and DW

properly embedded in V and W, respectively, so that 0∩V ⊂ DV and 0∩W ⊂ DW .
Then DV and DW cut along 0 is a collection of subdisks.

The result of cutting V rn(0) along all these subdisks of DV is a pair of 3-balls,
each with two subdisks, D+1 and D+2 , of n(0) contained in the boundary. Each
identification of (G K )i with (GL)i+1 (indices mod n) glues pairs of these subdisks
along arcs, resulting in disks in V n, and further cutting along (n−1) copies of each
of D+1 and D+2 results in a collection of 3-balls, showing that V n is a handlebody.

Similarly, the result of cutting W rn(0) along all of the subdisks of DW is a pair
of 3-balls, each with four subdisks of n(0) contained in the boundary, D−1 , D−2 , D−3 ,
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and D−4 . Each identification of (G K )i with (GL)i+1 (indices mod n) glues pairs
of these subdisks along arcs, resulting in disks in W n, and further cutting along
(n− 1) copies of each of D−1 , D−2 , D−3 , and D−4 results in a collection of 3-balls,
showing that W n is a handlebody. �

3B. Bounding from above.

Proposition 3.3. The surface Bn has topological index at most n.

Proof. Our proof will follow almost exactly the proof of Proposition 5 from
[Bachman and Johnson 2010]. In each copy M ′i of the manifold M ′, we have the
surface B ′i , a copy of B ′, dividing the manifold into V ′i and W ′i , copies of V ′ and W ′.
Observe that in each V ′i , there is exactly one essential disk, D+i with boundary
contained in B ′i , just as in [Bachman and Johnson 2010]. However, in each W ′i ,
there are several essential disks with boundary contained in B ′i . We will call this
collection of disks D−i . From each D−i , choose a single representative D−i .

Define the subcomplex, P, of DM spanned by the vertices corresponding to⋃
i {D
+

i , D−i }, which is homeomorphic to an (n−1)-sphere. Then, define a map
F :DM → P by the identity on P, and by sending a vertex corresponding to a disk
D 6∈

⋃
i {D
+

i , D−i } to the vertex corresponding to D+j or D−j , where either D ∈D−j ,
or j is the smallest index for which an essential outermost subdisk of D r

(⋃
i Gi

)
is contained in V ′j or W ′j , respectively.

Just as in [Bachman and Johnson 2010], we claim that this map F is a simplicial
map that fixes each vertex of P. To see this, consider any two disks D1 and D2

connected by an edge in DM (so that the disks are realized disjointly in M). Observe
that by our construction of M ′ and Corollary 2.13, any disk contained in V ′j must
intersect any disk contained in W ′j (whether either disk is a bridge disk, a graph-
bridge disk, or the boundary is contained in B ′j ). So, if D±i = F(D1) 6= F(D2)=D±j ,
then i 6= j, and F(D1) is joined to F(D2) in P. Thus, F is a retraction onto the
(n−1)-sphere, P, showing that πn−1(DM) is nontrivial, so the topological index of
Bn is at most n. �

Corollary 3.4. The topological index of Bn is well defined, and Bn is topologically
minimal.

3C. Bounding from below. We make use of an important theorem in the develop-
ment of the topological index by Bachman:

Theorem 3.5 [Bachman 2010, Theorem 3.7]. Let G be a properly embedded, in-
compressible surface in an irreducible 3-manifold M. Let B be a properly embedded
surface in M with topological index n. Then B may be isotoped so that

(1) B meets G in p saddles, for some p ≤ n, and

(2) the sum of the topological indices of the components of B r n(G), plus p, is at
most n.
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Proposition 3.6. The surface Bn has topological index no smaller than n.

Proof. Suppose Bn had topological index ι < n. Let G be the union of all the genus
two surfaces Gn

i := (G K )i = (GL)i+1 (indices mod n) in the manifold Mn. By
Theorem 3.5, Bn can be isotoped to a surface, Bn

+
, so that Bn

+
meets G in σ saddles,

the sum of the topological indices of the components of Bn
+
rn(G) is k, and k+σ ≤ ι.

Observe that χ(Bn
+
r n(G))=−6n+ σ . We may isotope any annular components

of Bn
+
r n(G) that are boundary-parallel into ∂n(G) completely into n(G). Note

that this will have no effect on the Euler characteristic of Bn
+
rn(G), nor any effect

on the topological index, since such a component will have topological index 0.
Any component, Q, of Bn

+
∩n(G) is contained in n(Gn

i ) for some i . Any such Q
is a punctured sphere with, say, d boundary components, has d − 2 saddles, and
we will show that at most d − 2 of its boundary components can bound disks of
Bn
+
r n(G) that are boundary-parallel into ∂n(G) in Mi r n(G) or Mi+1 r n(G).

As Bn
+

is connected and not a sphere, all the boundary curves of Q cannot bound
disks. Suppose, then, that d−1 of the curves bound disks that are boundary-parallel
into ∂n(G) in Mi r n(G) or Mi+1 r n(G), and let c be the remaining boundary
component of Q. As the other curves all bound disks that can be isotoped into
n(Gn

i ), and Gn
i is incompressible in Mn, c must bound a disk in ∂n(Gn

i ). By pushing
this disk slightly into Mi or Mi+1, we have a compressing disk for a component
of Bn

+
r n(G) that is disjoint from all other compressing disks for that component.

Thus, the disk complex for that component is contractible, contrary to the fact that it
is topologically minimal. Thus, at most d−2 of the boundary components of Q can
bound disks that are boundary-parallel into ∂n(G) in Mi r n(G) or Mi+1 r n(G).

Therefore, the total number of disk components of Bn
+
rn(G) that are boundary-

parallel in Mn r n(G) is β ≤ σ . So we may further isotope all β such boundary-
parallel disks into n(G), and call the resulting surface Bn

0 . Still, then, each compo-
nent of Bn

0 rn(G) is topologically minimal, the topological index will be unchanged
as each boundary-parallel disk has topological index 0, Bn

0 rn(G) has no boundary-
parallel disks or annuli, and

χ(Bn
0 r n(G))= χ(Bn

+
r n(G))−β ≥ χ(Bn

+
r n(G))− σ =−6n.

First, suppose that there is some component of Bn
0 r n(G) with Euler character-

istic less than −6n. In this case, because the Euler characteristic of Bn
0 r n(G) is

greater than or equal to−6n, there must be a component of Bn
0 rn(G) with positive

Euler characteristic. But there are no disks, as we have eliminated boundary-parallel
disks and an essential disk would be a compression of G in Mn, and it cannot be a
sphere, so this is impossible.

Thus, we may suppose that the Euler characteristic of each component of
Bn

0 r n(G) is bounded below by −6n. Observe that each component of G is an
incompressible surface, so Bn cannot be made disjoint from any component of G,
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and so (Bn
0 rn(G))∩Mi is nonempty for all i . As the sum of the topological indices

of the components of Bn
0 rn(G) is k < n, there must be at least one index j so that

every component of (Bn
0 rn(G))∩M j has topological index 0. Thus, there is some

component of (Bn
0 r n(G))∩M j , and all such components are incompressible and

have Euler characteristic bounded below by−6n. If necessary, maximally boundary
compress (Bn

0rn(G))∩M j , and isotope any resulting boundary-parallel components
into n(G). As Bn

0 cannot be isotoped away from any copy of Gn
i , there must be some

component remaining that is incompressible, boundary-incompressible, and not
boundary-parallel. Since boundary compressions only increase Euler characteristic,
the resulting component has Euler characteristic bounded below by −6n. Call this
component B ′′.

By Lemma 2.9 and Corollary 2.13, in M j with B j a copy of B ′, we have

dC(B j ,L)≤ 2dBD(B j ,L)≤ 2(1+ dG(B j , 0)).

By Theorem 1.2, dG(B j , 0)≤ 2(2g(B ′′)+ |∂B ′′| − 1). By our choice of L and the
fact that χ(S)= 2− 2g(S)− |∂S|, we have

24n+ 7≤ dC(B j ,L)≤ 2+ 2dG(B j , 0)≤ 8g(B ′′)+ 4|∂B ′′| − 2=−4χ(B ′′)+ 6.

On the other hand we have just shown that −6n ≤ χ(B ′′), a contradiction. Thus,
the topological index of Bn cannot be less than n. �

3D. Hyperbolicity. We have now shown that Mn contains a surface of topological
index n. To prove Theorem 1.1 it remains to show that Mn is hyperbolic.

Proposition 3.7. For all n, Mn is hyperbolic.

Proof. Consider an essential surface S in Mn with Euler characteristic bounded
below by 0, chosen to intersect G minimally. If S ∩ G = ∅, we arrive at a
contradiction to Theorem 1.2 as S would lie in one of the copies of M ′. If S∩G 6=∅,
the incompressibility and boundary-incompressibility of G guarantees that the
curves of S∩G are essential in S. Thus S∩M ′i is a collection of one or more planar
surfaces for some i . This again contradicts Theorem 1.2. Thus, in particular, Mn is
prime and atoroidal for all n. Then, as G is an incompressible surface in Mn, we
conclude that Mn is hyperbolic. �

Now the proof of Theorem 1.1 follows.

Proof of Theorem 1.1. Let Mn and Bn be as in Section 3A. We note that Mn is an
n-fold cover of M1. By Proposition 3.2, Bn is a genus 3n+ 1 Heegaard surface.
By Propositions 3.3 and 3.6, Bn has topological index n, and by Proposition 3.7,
Mn is hyperbolic. �
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