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THE ACTION OF THE HECKE OPERATORS ON THE
COMPONENT GROUPS OF MODULAR JACOBIAN VARIETIES

TAEKYUNG KIM AND HWAJONG YOO

For a prime number q≥ 5 and a positive integer N prime to q, Ribet proved
the action of the Hecke algebra on the component group of the Jacobian
variety of the modular curve of level Nq at q is “Eisenstein”, which means
the Hecke operator T` acts by `+ 1 when ` is a prime number not divid-
ing the level. We completely compute the action of the Hecke algebra on
this component group by a careful study of supersingular points with extra
automorphisms.

1. Introduction

Let q ≥ 5 be a prime number, and let N be a positive integer. Let X0(Nq) denote the
modular curve over Q and J0(Nq) its Jacobian variety. For any integer n, there is the
Hecke operator Tn acting on J0(Nq). Let 8q(Nq) denote the component group of
the special fiber J of the Néron model of J0(Nq) at q . According to the theorems of
Ribet [1988; 1990] (when q does not divide N ) and Edixhoven [1991] (in general),
the action of the Hecke algebra on 8q(Nq) is “Eisenstein.” Here by “Eisenstein”
we mean the Hecke operator T` acts on 8q(Nq) by `+ 1 when a prime number `
does not divide Nq .1 In this article, we compute the action of the Hecke operators
T` on the component group 8q(Nq) when ` divides Nq and q does not divide N.

Here is an exotic example2 which leads us to this study: Let N =
∏ν

i=1 pi be
the product of distinct prime numbers with ν ≥ 1, and let q ≡ 2 or 5 (mod 9) be an
odd prime number. Assume that pi ≡ 4 or 7 (mod 9) for all 1≤ i ≤ ν. Let T(Nq)
and T(N ) denote the Z-subalgebras of End(J0(Nq)) and End(J0(N )), respectively,
generated by all the Hecke operators Tn for n ≥ 1. Let

m :=
(
3, Tpi − 1, Tq + 1, T`− `− 1 : for all 1≤ i ≤ ν,

and for primes ` - Nq
)
⊂ T(Nq)

MSC2010: 11G05, 11G18, 14G35.
Keywords: Hecke operators, Hecke action, component group, modular Jacobian varieties.

1On the other hand, Ribet and Edixhoven did not proceed to compute the action of the Hecke
operator Tp on 8q (Nq) for a prime divisor p of the level Nq because their results were enough for
their applications.

2This phenomenon cannot occur when the residual characteristic is greater than 3.
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and

n :=
(
3, Tpi − 1, T`− `− 1 : for all 1≤ i ≤ ν, and for primes ` - N

)
⊂ T(N )

be Eisenstein ideals. By [Yoo 2016, Theorem 1.4], m is maximal. Furthermore, n
is maximal if and only if ν ≥ 2.

The dimension of J0(N )[n] is equal to ν if n is maximal, i.e., ν ≥ 2. (Here
J0(N )[n] := {x ∈ J0(N )(Q) : T x = 0 for all T ∈ n}.) It is an extension of µ⊕ν−1

3
by Z/3Z, and it does not contain a submodule isomorphic to µ3. On the other
hand, the dimension of J0(Nq)[m] is either 2ν or 2ν+ 1. Furthermore J0(Nq)[m]
contains a submodule N isomorphic to J0(N )[n], and it also contains µ⊕ν3 (which
is contributed from the Shimura subgroup). As N is unramified at q, by [Serre
and Tate 1968], N maps injectively into J [m] and it turns out that its image is
isomorphic to J 0

[m], where J 0 is the identity component of J . (Note that8q(Nq)
is the quotient of J by J 0.) Since µ⊕ν3 is also unramified at q , it maps into J [m]
and therefore its image maps injectively to 8q(Nq)[m]. (This statement is also
true when ν = 1.) The structure of the component group 8q(Nq) is known by the
work of Mazur and Rapoport [1977]:3

8q(Nq)=8⊕ (Z/3Z)2
ν
−1,

where8 is cyclic and generated by the image of the cuspidal divisor (0)−(∞). The
action of the Hecke operators on 8 is well known (e.g., [Yoo 2014, Appendix A1]),
and so 8[m] = 0. Therefore (Z/3Z)2

ν
−1
[m] 6= 0 and its dimension is at least ν.

Indeed it is equal to 2ν−1, which can easily be computed by the theorems below.
Now, we introduce our results.

Theorem 1.1. For a prime divisor p of N, the Hecke operator Tp acts on 8q(Nq)
by p.

The key idea of the proof is that the two degeneracy maps coincide on the
component group (see [Ribet 1988; Edixhoven 1991, §4.2, Lemme 2]).

Now, the missing action is that of the Hecke operator Tq on 8q(Nq). Note
that Tq acts on 8q(Nq) by an involution because the action of the Hecke algebra
on 8q(Nq) is “q-new.” To describe its action more precisely, we define some
notation: for N =

∏
p|N pn p being the prime factorization of N (i.e., n p > 0), let

ν := #{p : p 6= 2, 3} and let

u :=
{

0 if q ≡ 1 (mod 4) or 4 | N or if there exists p ≡−1 (mod 4),
1 otherwise,

v :=

{
0 if q ≡ 1 (mod 3) or 9 | N or if there exists p ≡−1 (mod 3),
1 otherwise.

3There are some minor errors in the paper, which are corrected by Edixhoven [1991, §4.4.1]
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Suppose that (u, v) = (0, 0) or ν = 0. Then 8q(Nq) = 8 and Tq acts on 8
by 1, where 8 is the cyclic subgroup generated by the image of the cuspidal divisor
(0)− (∞) (Proposition 4.1). If ν ≥ 1, 8q(Nq) becomes isomorphic to

8′⊕ A⊕ B,

where A' (Z/2Z)⊕u(2ν−2), B' (Z/3Z)⊕v(2
ν
−1) and8′ is a cyclic group containing

8 and 8′/8' (Z/2uZ).4

Theorem 1.2. Assume that (u, v) 6= (0, 0) and ν ≥ 1.

(1) Suppose that v = 1. Then there are distinct subgroups Bi ' Z/3Z of B so that
B =

⊕
Bi . For any 1≤ i ≤ (2ν − 1), Tq acts on Bi by (−1)i.

(2) Suppose that u = 1. Then there are distinct subgroups Ai ' Z/2Z of A so that
A=⊕Ai . For any 1≤ k ≤ (2ν−1

− 2), Tq acts on A2k−1⊕ A2k by the matrix( 1
1

0
1

)
.5 In other words, if A2k−1 = 〈u2k−1〉 and A2k = 〈u2k〉, then

Tq(u2k−1)= u2k−1+ u2k and Tq(u2k)= u2k .

For a complete description of the action of Tq on each subgroup, see Section 4.

2. Supersingular points of X0(N)

From now on, we always assume that q ≥ 5 is a prime number and N is a positive
integer which is prime to q. Let p denote a prime divisor of N . Let F be an
algebraically closed field of characteristic q .

Let 6(N ) denote the set of supersingular points of X0(N )(F). Since we assume
that q ≥ 5, the group of automorphisms of supersingular points is cyclic of order 2,
4 or 6. Let

6n(N ) := {s ∈6(N ) : #Aut(s)= n} and sn(N ) := #6n(N ).

Note that s4(N )= u ·2ν and s6(N )= v ·2ν (see [Edixhoven 1991, §4.2, Lemme 1]),
where u, v and ν are as in Section 1. Moreover s2(N ) can be computed using
Eichler’s mass formula [Katz and Mazur 1985, Theorem 12.4.5, Corollary 12.4.6]:

(2-1)
s2(N )

2
+

s4(N )
4
+

s6(N )
6
=
(q − 1)Q

24
,

where Q := N
∏

p|N (1+ p−1) is the degree of the degeneracy map X0(N )→ X0(1).

4The structure of8q (Nq) is already known by [Mazur and Rapoport 1977] when N is square-free
and prime to 6, and by [Edixhoven 1991, §4.4.1] in general.

5This reminds us of the result by Mazur [1977]: when N is a prime number, the kernel of the
Eisenstein prime of J0(N ) containing a prime number ` is completely reducible when ` is odd, and is
indecomposable when `= 2.
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In the remainder of this section, we study 64(N ) and 66(N ) in detail. (See
also [Ribet 1988, §2; 1995, §4; Edixhoven 1991, §4.2].) In the section below, we
always assume that ν ≥ 1, i.e., there is a prime divisor p ≥ 5 of N. (If ν = 0 then
s2e(N )≤ 1 for e = 2 or 3, and the description is very simple.)

Let E be a supersingular elliptic curve with Aut(E)= 〈σ 〉, and let C be a cyclic
subgroup of E of order N. Assume that q ≡−1 (mod 4) (resp. q ≡−1 (mod 3)) if
σ = σ4 (resp. σ = σ6), where σk is a primitive k-th root of unity.

Proposition 2.1. Let N = pn for some n ≥ 1 with p≥ 5. Suppose Aut(E,C)= 〈σ 〉.
Then, there exists another cyclic subgroup D of order N such that E[N ] ' C ⊕ D.
Moreover, Aut(E, D)= 〈σ 〉 and (E,C) is not isomorphic to (E, D).

Proof. Here, we closely follow the argument in the proof of Proposition 1 in [Ribet
1988, §2].

Let R be the subring Z[σ ] of End(E,C). Since Aut(E,C)= 〈σ 〉, p≡ 1 (mod 4)
(resp. p ≡ 1 (mod 3)) if σ = σ4 (resp. σ = σ6). Therefore p splits completely in R.
Note that R = Z[σ ] is a principal ideal domain and therefore

R/pR ' R/γ R⊕ R/δR ' δR/pR⊕ γ R/pR

with p = γ δ. Moreover,

R/N R = R/pn R ' R/γ n R⊕ R/δn R ' δn R/N R⊕ γ n R/N R.

Note that E[N ] is a free module of rank 1 over R/N R by the action of R on E .
We may identify C with the quotient I/N R for some ideal I of R containing N
if we fix an R-isomorphism between E[N ] and R/N R. Thus, I = δn R or γ n R.
Suppose that I = δn R. Then, by the fixed isomorphism, C = E[γ n

]. Let D := E[δn
]

so that its corresponding ideal is γ n R. Then, E[N ] ' C ⊕ D. Moreover since
γ n R is also an ideal of R, D is also stable under the action of σ . In other words,
Aut(E, D)= 〈σ 〉. Also, (E,C) cannot be isomorphic to (E, D) since Aut(E)= 〈σ 〉
and σ(C)= C . �

From now on, we use the same notation as in the proof of Proposition 2.1.

Definition 2.2. By the above formulas, for every n ≥ 1 and p ≡ 1 (mod 4) (resp.
p ≡ 1 (mod 3)), there are precisely two cyclic subgroups C , D of E of order pn

such that Aut(E,C) = Aut(E, D) = 〈σ 〉 (and E[pn
] ' C ⊕ D) if σ = σ4 (resp. if

σ = σ6). Thus, for each n ≥ 1 we define Cpn and Dpn by

Cpn := E[γ n
] and Dpn := E[δn

].

Proposition 2.3. For each n ≥ 1, Cpn+1[pn
] = Cpn and Dpn+1[pn

] = Dpn .

Proof. By the fixed R-isomorphism ι between E[pn+1
] and R/pn+1 R, we identify

Cpn+1 with I/pn+1 R, where I = δn+1 R. As I is an ideal of R, γ I = p(δn R)⊂ I
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and I/γ I ' R/γ R ' Z/pZ. Therefore

Cpn+1[pn
]

ι
// (I/pn+1 R)[pn

] = γ I/pn+1 R
×1/p

∼
// (δn R)/pn R,

which corresponds to Cpn . Similarly, we prove that Dpn+1[pn
] = Dpn , and the

proposition follows. �

Let N = Mpn with (6M, p)= 1 and n ≥ 1. Let L be a cyclic subgroup of E of
order M.

Proposition 2.4. Suppose that Aut(E, Cpn+1, L) = 〈σ 〉. Then, there is an isomor-
phism between (E/Cp, Cpn+1/Cp, (L ⊕ Cp)/Cp)) and (E, Cpn , L).

Proof. We mostly follow the idea of the proof of Proposition 2 in [Ribet 1988, §2].
The endomorphism γ sends E[γ n+1

] = Cpn+1 to E[γ n
] = Cpn , and L to itself

(because L ∩ E[p] = 0). Now we denote by γ̄ the map E/Cp→ E induced by γ .
Note that γ̄ is an isomorphism because Cp is E[γ ], the kernel of γ . By the above
consideration, this isomorphism γ̄ sends (Cpn+1/Cp, (L⊕Cp)/Cp) to (Cp, L) because
Cpn+1/Cp and (L ⊕ Cp)/Cp, respectively, are the images of Cpn+1 and L by the
quotient map E → E/C[p]. Therefore γ̄ gives rise to the desired isomorphism
between triples. �

Corollary 2.5. The map (E,C, L)→ (E,C[pn
], L) induces a bijection between

62e(N p) and 62e(N ), where σ = σ2e. Moreover if (E,C, L) ∈62e(N p), we have

(E,C[pn
], L)' (E/C[p],C/C[p], (L ⊕C[p])/C[p]).

The corollary tells us that two degeneracy maps αp and βp in Section 3 coincide
on 62e(N p), which is a generalization of [Edixhoven 1991, §4.2, Lemme 2].

Proposition 2.6. Suppose that Aut(E, Cpn , L) = 〈σ 〉. Then, Frob(E) = E and
Frob(Cpn ) = Dpn , where Frob is the Frobenius morphism in characteristic q.
Furthermore, Frob2(E, Cpn , L)= (E, Cpn , L).

Proof. Since E is isomorphic to the reduction of the elliptic curve with j-invariant
1728 (resp. 0) if σ =σ4 (resp. σ =σ6), the Frobenius morphism is an endomorphism
of E (see [Silverman 2009, Chapter V, Examples 4.4 and 4.5]). Moreover, the
Frobenius morphism and σ generate End(E), which is a quaternion algebra. (Note
that the degree of the Frobenius morphism is q.) Since End(E) is a quaternion
algebra, we have

σ ◦Frob= Frob ◦ σ̄ = Frob ◦ σ−1,

where σ̄ denotes the complex conjugation in R = Z[σ ]. Analogously, we have

γ ◦Frob= Frob ◦ γ̄ = Frob ◦ δ.

Since σ(Frob(Cpn )) = Frob(σ−1(Cpn )) = Frob(Cpn ), Frob(Cpn ) is also stable
under the action of σ . Moreover Cpn does not intersect with the kernel of Frob.
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Thus, Frob(Cpn ) is either Cpn or Dpn . As an endomorphism of E , γ sends Cpn (resp.
Dpn ) to Cpn−1 (resp. Dpn ). Similarly, δ maps Cpn (resp. Dpn ) to Cpn (resp. Dpn−1).
Therefore if Frob(Cpn )= Cpn , then

γ ◦Frob(Cpn )= γ (Cpn )= Cpn−1 and Frob ◦ δ(Cpn )= Frob(Cpn )= Cpn ,

which is a contradiction. Thus, we get Frob(Cpn )= Dpn .
Since every supersingular point can be defined over Fq2 , the quadratic extension

of Fq , Frob2 acts trivially on 6(N ) (see [Ribet 1990, Remark 3.5.b]), which proves
the last claim. �

Remark 2.7. By taking H = (Z/NZ)∗ in Lemma 1 of [Ribet 1995], we can obtain
a similar result if we show that the Atkin–Lehner style involution in [Ribet 1995, §4]
is equal to the Frobenius morphism.

3. The action of Tp on the component group

Before discussing the action of the Hecke operators on the component group, we
study it on the group of divisors supported on supersingular points, which we denote
by Div(6(N )).

Let N = Mpn with (M, p) = 1 and n ≥ 1, and assume that (N , q) = 1. Let
αp, βp : X0(N pq)⇒ X0(Nq) denote two degeneracy maps of degree p, defined by

αp(E,C, L) := (E,C[pn
], L)

and
βp(E,C, L) := (E/C[p],C/C[p], (L +C[p])/C[p]),

where C (resp. L) denotes a cyclic subgroup of order pn+1 (resp. Mq) in an
elliptic curve E (see [Mazur and Ribet 1991, §13]). Let Tp and ξp be two Hecke
correspondences defined by the following diagram:

X0(N pq)
αp

zz

βp

$$

X0(Nq)
ξp

// X0(Nq)
Tp

oo

By pullback, the Hecke correspondence Tp (resp. ξp) induces the Hecke operator
Tp := βp,∗ ◦α

∗
p (resp. ξp := αp,∗ ◦β

∗
p) on J0(Nq).

The same description of the Hecke operator Tp on Div(6(N )) as above works. In
other words, we have two degeneracy maps6 αp, βp :6(N p)⇒6(N ) of degree p,
defined by

αp(E,C, L) := (E,C[pn
], L)

6Every elliptic curve isogenous to a supersingular one is also supersingular
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and
βp(E,C, L) := (E/C[p],C/C[p], (L +C[p])/C[p]),

where C (resp. L) denotes a cyclic subgroup of order pn+1 (resp. M) in a supersin-
gular elliptic curve E over F. These maps induce the maps

Div(6(N ))
α∗p
//

β∗p

// Div(6(N p))
αp,∗
//

βp,∗

// Div(6(N ))

on their divisor groups, and the Hecke operator Tp (resp. ξp) can be defined by
βp,∗ ◦α

∗
p (resp. αp,∗ ◦β

∗
p). (For the details when n = 0, see [Ribet 1990, §3; 1991,

pp. 18–22; Edixhoven 1991, §4.1; Emerton 2002, §7]. By the same method, we get
the above description without further difficulties.)

Now, let 8q(Nq) denote the component group of the special fiber J of the
Néron model of J0(Nq) at q . To compute the action of Tp on it, we closely follow
the method of Ribet (see [Ribet 1988; 1990, §2, §3; Edixhoven 1991, §1]). Since
N is not divisible by q , the identity component J 0 of J is a semiabelian variety by
Deligne and Rapoport [1973] and Raynaud [1970]. Moreover, J 0 is an extension
of J0(N )F × J0(N )F by T , the torus of J 0. Let X be the character group of
the torus T . By Grothendieck, there is a (Hecke-equivariant) monodromy exact
sequence [SGA 7I 1972] (see also [Ribet 1990, §2, §3; Raynaud 1991; Illusie
2015, §4]),

0 // X ι
// Hom(X t ,Z) // 8q(Nq) // 0.

Here X t denotes the character group corresponding to the dual abelian variety of
J0(Nq), which is equal to J0(Nq). Namely, X t

= X as sets, but the action of
the Hecke operator T` on X t is equal to the action of its dual ξ` on X (see [Ribet
1988; 1990, §3; Emerton 2002, §7]). Note that X is the group of degree 0 elements
in Z6(N ). For s, t ∈6(N ), let e(s) := 1

2 #Aut(s) and

φs(t) :=
{

e(s) if s = t,
0 otherwise,

and extends via linearity, i.e., φs
(∑

ai ti
)
=
∑

aiφs(ti ). Then, ι(s − t) = φs − φt .
Note also that Hom(Z6(N ),Z) is generated by ψs := 1/e(s)φs , and Hom(X t ,Z) is
its quotient by the relation∑

s∈6(N )

ψs =
∑

s∈6(N )

1
e(s)

φs = 0.

(This is the minimal relation to make
∑

awψw vanish for all the divisors of the
form s − t , which are the generators of X .) For more details, see [Ribet 1990,
§2, §3, Raynaud 1991].



348 TAEKYUNG KIM AND HWAJONG YOO

In conclusion, the component group 8q(Nq) is isomorphic to

Hom(Z6(N ),Z)/R,

where R is the set of relations

(3-1) R =
{

e(s)ψs = e(t)ψt for any s, t ∈6(N ),
∑

t∈6(N )

ψt = 0
}
.

Let 9s denote the image of ψs by the natural projection Hom(Z6(N ),Z) →

8q(Nq). The Hecke operator Tp acts on Hom(Z6(N ),Z) via the action of ξp

on Div(6(N )), i.e.,

Tp(ψs)(t) := ψs(ξp(t))= ψs(αp,∗ ◦β
∗

p(t)).

For s ∈6(N ), we temporarily denote α∗p(s)=
∑p

i=1 Ai (s) and β∗p(s)=
∑p

i=1 Bi (s)
(allowing repetition). We note that if e(s) = 1 then there is no repetition, i.e.,
Ai (s) 6' A j (s) and Bi (s) 6' B j (s) if i 6= j. If e(s)= e> 1, then after renumbering
the index properly we have

e(Ai (s))= 1 for 1≤ i ≤ p− 1 and e(Ap(s))= e.

Moreover, we have

Ae(k−1)+1(s)' · · · ' Aek(s) for 1≤ k ≤
p− 1

e
,

and
Ai (s) 6' A j (s) if

[ i−1
e

]
6=

[ j−1
e

]
,

where [x] denotes the largest integer less than or equal to x . This can be seen
as follows: Let σ = σ2e, and let s represent a pair (E,C), where C is a cyclic
subgroup of E of order N. Since e(s)= e, σ(C)= C . Suppose that s ′ ∈6(N p)
with αp,∗(s ′)= s. Then s ′ represents a pair (E, D) with D[N ] = C . If σ(D)= D,
then Aut([(E, D)]) = 〈σ 〉 and (E, D) 6' (E, D′) if D 6= D′. (Note that there is a
unique such D.) On the other hand, if σ(D) 6= D then

(E, D)' (E, σ (D))' · · · ' (E, σ e−1(D))' (E, σ e(D))= (E, D)

and Aut([(E, D)])= {±1}. Thus, we can rearrange Ai (s) as above. (Note that this
can only be possible when p ≡ 1 (mod 2e), which is true because e(s)= e.)

Now, we claim that φs(αp,∗(t)) = φt(α
∗
p(s)). Indeed, φs(αp,∗(t)) is nonzero

if and only if t ∈ {A1(s), . . . , Ap(s)}. So, it suffices to show this equality when
t ∈ {A1(s), . . . , Ap(s)}. If e(s)= 1, then there is no repetition and the claim follows
clearly (both are 1). Now, let e(s) = e > 1. If e(t) = 1, then t = Ai (s) for some
1≤ i≤ p−1. Since the number of repetitions of t= Ai (s) in {A1(s), . . . , Ap(s)} is e,
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the above equality holds. If e(t)=e, then t= Ap(s) and φs(αp,∗(t))=e=φt(α
∗
p(s)),

as claimed. Analogously, we have

φt(βp,∗(s))= φs(β
∗

p(t)).

More generally, we get

φs(αp,∗ ◦β
∗

p(t))=
p∑

i=1

φs(αp,∗(Bi (t)))=
p∑

i=1

p∑
j=1

φBi (t)(A
j (s))

=

p∑
j=1

p∑
i=1

φA j (s)(B
i (t))=

p∑
j=1

φA j (s)(β
∗

p(t))

=

p∑
j=1

φt(βp,∗(A j (s)))= φt(βp,∗ ◦α
∗

p(s))= φt(Tp(s)).

If we set Tp(s)=
∑

s j , then φt(Tp(s))=
∑
φsi (t)=

∑
e(si )ψsi (t) and hence for

any t ∈6(N ),

e(s)Tp(ψs)(t)= φs(αp,∗ ◦β
∗

p(t))= φt(Tp(s))= e(si )ψsi (t).

In other words, we get

(3-2) Tp(9s)=
1

e(s)

∑
e(si )9si .

We can also define the action of Tp on the component group via functorialities.
Namely, let

8q(Nq)
α∗p
//

β∗p

// 8q(N pq)
αp,∗
//

βp,∗

// 8q(Nq)

denote the maps functorially induced from the degeneracy maps.7 Then, as before,
Tp :=βp,∗◦α

∗
p. Note that since the degrees of αp and βp are p, we have αp,∗◦α

∗
p =

βp,∗ ◦β
∗
p = p.

Lemma 3.1. The operator αp,∗ is equal to βp,∗ on 8q(N pq).

Proof. For s ∈ 62e(N pq) with e = 2 or 3, αp(s) = βp(s) by Corollary 2.5, and
hence αp,∗(9s)= βp,∗(9s). For s ∈62(N pq), let αp(s)= t and βp(s)=w. Then,
αp,∗(9s) = e(t)9t = e(w)9w = βp,∗(9s). In other words, for any s ∈ 6(N pq),
αp,∗(9s)= βp,∗(9s). Since 9s’s generate 8q(N pq), the result follows. �

In fact, Theorem 1.1 is an easy corollary of the above lemma.

7If α∗p(s) =
∑

t j then α∗p(9s) =
∑
9t j and if αp(t) = s then αp,∗(9t ) = e(s)/e(t)9s ; and

similarly for β∗p and βp,∗.
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Proof of Theorem 1.1. Since αp,∗ = βp,∗ on 8q(N pq), we have

Tp(9s)= βp,∗ ◦α
∗

p(9s)= αp,∗ ◦α
∗

p(9s)= p9s,

which implies the result. �

4. The action of Tq on the component group

In this section, we provide a complete description of the action of Tq on the compo-
nent group 8q(Nq). See Propositions 4.2, 4.3 and 4.4, which imply Theorem 1.2.

Note that the Hecke operator Tq acts on 6(N ) by the Frobenius morphism [Ribet
1990, Proposition 3.8], and the same is true for ξq . Since the Frobenius morphism
is an involution on 6(N ) (see Proposition 2.6), we have

(4-1) Tq(ψs)(t)= ψs(ξq(t))= ψs(Frob(t))= ψFrob(s)(t) for any t ∈6(N ),

which implies that Tq(ψs)= ψFrob(s).
From now on, if there is no confusion we remove (N ) from the notation for

simplicity. Let n := 1
12(q − 1)Q (which is not necessarily an integer), and let 8

denote the cyclic subgroup of 8q(Nq) generated by 9s for a fixed s ∈62. (Note
that this 8 is the same as that of Mazur and Rapoport [1977], namely, 8 is equal
to the cyclic subgroup generated by the image of the cuspidal divisor (0)− (∞).)

Case 1: (u, v) = (0, 0) or ν = 0. Let e = 1 if (u, v) = (0, 0) and e = 2u + 3v if
(u, v) 6= (0, 0) and ν= 0. If (u, v)= (0, 0), s2=n and s4= s6= 0. If (u, v) 6= (0, 0)
and ν = 0, then s2e = 1 and s2 =

1
e (en−1). (Note that s2 is an integer but n is not.)

Proposition 4.1. The component group 8q(Nq) is equal to 8, which is cyclic of
order en. The Hecke operator Tq acts on it by 1.

Proof. First, we assume that (u, v) = (0, 0). Then 9s = 9s for any s ∈ 6 = 62.
Therefore 8q(Nq)=8 and n9s =

∑
s∈6 9s = 0. Moreover, Tq(9s)=9s′ =9s,

where s ′ = Frob(s).
Now, we assume that (u, v) 6= (0, 0) and ν = 0. In this case, either N = 2q (with

(u, v)= (1, 0) and e= 2) or N = 3q (with (u, v)= (0, 1) and e= 3). In each case,
let z ∈62e. Then∑

s∈62

9s +9z = s29s+9z = 0 and 9s = e9z.

Therefore the component group is generated by 9z , and its order is (es2+ 1)= en.
Since en = es2+1 is prime to e, this group is also generated by 9s = e9z . (In fact,
9z =−s29s.) Moreover we have Tq(9s)=9s as above. �
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Case 2: (u, v)= (0, 1) and ν≥1. In this case, s4=0, s6=2ν, and s2 =
1
3(3n− 2ν).

Let66 := {t1, t2, . . . , t2ν }. Here we assume that Frob(t2k−1)= t2k for 1≤ k≤ 2ν−1.8

Let t := t2ν−1 and t ′ := t2ν .

Proposition 4.2. The component group 8q(Nq) decomposes as follows:

8q(Nq)=
2ν−1⊕
i=0

Bi =: B0⊕ B,

where B0 =8 is cyclic of order 3n, and for 1≤ i ≤ 2ν − 1, Bi is cyclic of order 3.
For 1≤ k ≤ 2ν−1, B2k−1 and B2k are generated by

v2k−1 :=9t2k−1 −9t2k

and
v2k :=9t2k−1 +9t2k −9t −9t ′,

respectively. The Hecke operator Tq acts on Bi by (−1)i.

Proof. Note that 9s = 39ti = 39t j for all i, j and
∑2ν

i=19ti + s29s = 0. Therefore
8q(Nq) is generated by 9ti for 1 ≤ i ≤ 2ν − 1. The order of each group 〈9ti 〉

is 9n because

9n9ti = 3s2(39ti )+

2ν∑
i=1

39ti = 3
(∑

s∈62

9s +

2ν∑
i=1

9ti

)
= 0,

and 9n is the smallest positive integer to make this happen. Moreover 〈9ti 〉 ∩ 〈9t j 〉

is of order 3n for any i 6= j. Since 3n = 3s2+ 2ν is prime to 3, we can decompose
the component group into

(4-2) 〈39t 〉⊕ 〈(3s2+ 2ν)9t 〉

2ν−2⊕
i=1

〈9ti −9t 〉.

Since 9s = 39ti = 39t = 39t ′ for any i and
2ν∑

i=1

9ti =−3s29t ,

we have
92k−1−9t = 2v2k−1+ 2v2k + v2ν−1,

92k −9t = v2k−1+ 2v2k + v2ν−1,

(3s2+ 2ν)9t =

2ν∑
i=1

(9t −9ti )=−

2ν−1∑
k=1

v2k − (−1)νv2ν−1.

Therefore the decomposition in the proposition is isomorphic to (4-2). The action
of Tq on each Bi is obvious from its construction. �

8By Proposition 2.6, we know that Frob is an involution of 66 without fixed points.
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Case 3: (u, v) = (1, 0) and ν ≥ 1. Note that s4 = 2ν, s6 = 0, and s2 = n− 2ν−1.
Let 64 = {w1, w2, . . . , w2ν }. As before, we assume that Frob(w2k−1) = w2k for
1≤ k ≤ 2ν−1.9 Let w := w2ν−1 and w′ := w2ν .

Proposition 4.3. The component group 8q(Nq) decomposes as

8q(Nq)=
2ν−2⊕
i=0

Ai = A0⊕ A,

where A0 is cyclic of order 4n generated by 9w, and for 1≤ i ≤ 2ν−2, Ai is cyclic
of order 2. For 1≤ k ≤ 2ν−1

− 2, A2k−1 and A2k are generated by

u2k−1 :=9w2k−1 −9w and u2k :=9w2k−1 +9w2k −9w −9w′, respectively.

And A2ν−3 and A2ν−2 are generated by

u2ν−3 :=9w2ν−3 −9w and u2ν−2 :=9w2ν−3 −9w2ν−2, respectively.

Moreover, the action of the Hecke operator Tq on each group is as follows:

Tq(9w)= (1+ 2n)9w +
2ν−1
−1∑

i=1

u2i ,

Tq(u2k−1)= u2k−1+ u2k and Tq(u2k)= u2k for 1≤ k ≤ 2ν−1
− 2,

Tq(u2ν−3)= 2n9w + u2ν−3+

2ν−1
−2∑

i=1

u2i and Tq(u2ν−2)= u2ν−2.

Proof. The argument in Proposition 4.2 applies mutatis mutandis. For instance,
when ν ≥ 2 an isomorphism between A0

⊕2ν−2
i=1 〈9wi −9w〉 and A0 ⊕ A can be

given as follows: for 1≤ k ≤ 2ν−1
− 2,

9w2k −9w = u2k + u2k−1+ (9w′ −9w),

9w −9w′ = 2n9w +
2ν−1
−1∑

i=1

u2i ,

9w2ν−2 −9w = u2ν−3+ u2ν−2.

The action of the Hecke operator Tq on each Ai is clear except

Tq(9w)=9w′ =9w − (9w −9w′)= (1+ 2n)9w +
2ν−1
−1∑

i=1

u2i ,

Tq(u2ν−3)=9w2ν−2 −9w′ = u2ν−3+ u2ν−2+ (9w −9w′)

= 2n9w + u2ν−3+

2ν−1
−2∑

i=1

u2i . �

9By Proposition 2.6, we know that Frob is an involution of 64 without fixed points.
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Case 4: (u, v)= (1, 1) and ν ≥ 1. Note that s4 = s6 = 2ν and s2 =
1
6(6n−5 · 2ν).

Let 64 = {w1, . . . , w2ν } and 66 := {t1, . . . , t2ν }. As before, we assume that
Frob(w2k−1) = w2k and Frob(t2k−1) = t2k for 1 ≤ k ≤ 2ν−1. Let w := w2ν−1

and w′ := w2ν . Also, let t := t2ν−1 and t ′ := t2ν .

Proposition 4.4. The component group 8q(Nq) decomposes as

8q(Nq)= A0⊕ A⊕ B,

where A0 is cyclic of order 12n generated by 9w. The structures of A and B are
the same as those in Propositions 4.2 and 4.3. The actions of Tq on A and B are
the same as before except on A2ν−3 (when ν ≥ 2), where Tq acts by

Tq(u2ν−3)= 6n9w + u2ν−3+

2ν−1
−2∑

i=1

u2i .

Moreover, the action of Tq on A0 is analogous to the previous case:

Tq(9w)= (1+ 6n)9w +
2ν−1
−1∑

i=1

u2i .

Proof. Note that from (3-1), we have

s29s +9w1 + · · ·+9w′ +9t1 + · · ·+9t ′ = 0.

Multiplying by 3, we have

(4-3) 9w1 + · · ·+9w′ =−(3s2+ 2 · 2ν)9s =−(6s2+ 4 · 2ν)9w.

Also, multiplying by 4, we have

(4-4) 9t1 + · · ·+9t ′ =−(4s2+ 3 · 2ν)9s =−(12s2+ 9 · 2ν)9t .

Therefore 9w1, . . . , 9w, 9t1, . . . , 9t can generate the whole group. By a similar
computation, the order of 〈9wi 〉 is 12n and the order of 〈9ti 〉 is 18n. All of
them contain 8 as a subgroup, which is of order 6n. Here we note that 〈9t 〉 =

〈39t 〉⊕〈6n9t 〉 because 6n= 6s2+5·2ν is prime to 3. Therefore we can decompose
8q(Nq) into

(4-5) 〈9w〉

2ν−2⊕
i=1

〈9wi −9w〉

2ν−2⊕
i=1

〈9ti −9t 〉
⊕
〈6n9t 〉.

As in Propositions 4.2 and 4.3, we can find an isomorphism between (4-5) and
A0⊕ A⊕ B, which proves the first part. From (4-3) (and the previous discussions)
we have

9w −9w′ = (6s2+ 5 · 2ν)9w +
2ν−1
−1∑

i=1

u2i = 6n9w +
2ν−1
−1∑

i=1

u2i .
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The action of Tq on each component is also obvious except

Tq(9w)=9w′ =9w − (9w −9w′)= (1+ 6n)9w +
2ν−1
−1∑

i=1

u2i ,

Tq(u2ν−3)=9w2ν−2 −9w′ = u2ν−3+ u2ν−2+ (9w −9w′)

= 6n9w + u2ν−3+

2ν−1
−2∑

i=1

u2i . �
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