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PRESENTATIONS OF GENERALISATIONS OF
THOMPSON’S GROUP V

CONCHITA MARTÍNEZ-PÉREZ, FRANCESCO MATUCCI AND BRITA NUCINKIS

We consider generalisations of Thompson’s group V, denoted by Vr(6),
which also include the groups of Higman, Stein and Brin. We showed earlier
(Forum Math. 28:5 (2016), 909–921) that under some mild conditions these
groups and centralisers of their finite subgroups are of type F∞. Under more
general conditions we show that the groups Vr(6) are finitely generated and,
under the mild conditions mentioned above for which they are of type F∞
and hence finitely presented, we give a recipe to find explicit presentations.
For the centralisers of finite subgroups we find a suitable infinite presenta-
tion and then show how to apply a general procedure to shorten this presen-
tation. In the appendix, we give a proof of this general shortening procedure.

1. Introduction

The original Thompson groups F ≤ T ≤ V are groups of homeomorphisms of the
unit interval, the circle and the Cantor set respectively. In this note we consider
generalisations of these groups, which are described as groups of automorphisms
of certain Cantor algebras. These groups include Higman’s [1974], Stein’s [1992]
and Brin’s [2004] generalisations of V.

The groups F, T and V have attracted the attention of group theorists for several
reasons, one of them being that there are nice presentations and ways to represent
elements available, making it possible to prove interesting results about metrics,
geodesics and decision problems. However, the situation changes when one moves
to some of their generalisations. There are presentations available for Higman’s
groups Vn,r [1974], Stein’s generalisations [Brin and Squier 2001; Stein 1992]
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and Brin’s higher dimensional Thompson groups sV [Hennig and Matucci 2012],
but not for more complicated generalisations such as the groups Vr (6) we are
considering here. These were defined in [Kochloukova et al. 2013; Martínez-Pérez
and Nucinkis 2013] and were denoted Gr (6). It is worth pointing out that elements
in Vr (6) admit a tree-pair representation similar to that of the original groups F, T
and V. The authors show in [Martínez-Pérez et al. 2016] that, under some mild
hypotheses, being valid and bounded, Vr (6) is the full automorphism group of
a Cantor algebra. In the same paper it is shown that under some further minor
restrictions, being complete, these groups are of type F∞ and that this also implies
that centralisers of finite subgroups are of type F∞. We introduce all necessary
background in Section 2. The structure of centralisers in Vr (6) is studied in detail
in [Martínez-Pérez et al. 2016; Martínez-Pérez and Nucinkis 2013].

One of the objectives of the present paper is to introduce a common framework
providing recipes; first to find explicit finite generating sets for the groups Vr (6)

in the case when the underlying Cantor algebra Ur (6) is valid and bounded, and
second, to find explicit presentations under the additional assumption that Ur (6) is
complete. To do that, we construct a model for the classifying space for free actions
EG for G = Vr (6), and use this model to obtain presentations of these groups. As
far as we are aware, this construction is new even for the group V, and hence could
be of independent interest.

In Section 7 we also give an explicit finite presentation for centralisers of finite
subgroups for those Vr (6) that are finitely presented. To do so we use the so-
called Burnside procedure as used by Guralnick, Kantor, Kassabov and Lubotzky
[Guralnick et al. 2011].

In the Appendix we shall give an outline and proof of the Burnside procedure
as used in [Guralnick et al. 2011]. This procedure is well known, but we are not
aware of any proofs elsewhere. The point is to look for a simple presentation for G
that is somehow symmetric and elementary. Initially it may have infinitely many
generators and relations; the Burnside procedure offers a way to cut it down to a
more manageable, and sometimes finite, presentation.

2. Background on generalised Thompson groups

In this section we introduce only those properties of valid bounded Cantor algebras
used to make this paper self-contained. For detailed definitions and notation the
reader is referred to [Martínez-Pérez and Nucinkis 2013, Section 2], and for proofs
of statements cited here, to [Kochloukova et al. 2013; Martínez-Pérez et al. 2016;
Martínez-Pérez and Nucinkis 2013].

Let S = {1, . . . , s} be a finite set of colours and associate to each i ∈ S an integer
ni > 1, called the arity of the colour i . For every i ∈ S consider the following right
operations on a set U :
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(i) One ni -ary operation λi :U ni →U, and

(ii) ni unary operations α1
i , . . . , α

ni
i , where α j

i is a map U →U.

We also consider, for each i ∈ S and v ∈U, the map

αi :U →U ni

given by vαi := (vα
1
i , vα

2
i , . . . , vα

ni
i ). The maps αi are called descending opera-

tions, or expansions, and the maps λi are called ascending operations, or contrac-
tions.

Fix a finite set Xr of cardinality |Xr | = r . One can define the free object on the
set Xr with respect to the previous operations which we denote U. To define our
generalisations of Thompson’s group V, we will be interested in the free object
constructed under the extra requirement that a certain set of laws 6 described below
must be satisfied. We denote this last free object by Ur (6) and call it the (free)
Cantor algebra on Xr satisfying 6.

Definition 2.1 [Martínez-Pérez and Nucinkis 2013, Section 2]. Fix a finite set Xr of
cardinality |Xr | = r and consider the free object U on Xr with respect to operations
(i) and (ii) above. Then 6 =61 ∪62 with 61 and 62 the following set of laws:

(i) 61 is given by

uαiλi = u, (u1, . . . , uni )λiαi = (u1, . . . , uni ),

for every u ∈U, i ∈ S, and ni -tuple, (u1, . . . , uni ) ∈U ni.

(ii) 62 is given by
62 =

⋃
1≤i<i ′≤s

6
i,i ′
2 ,

where each 6i,i ′
2 is either empty or consists of the following laws: consider

first i and fix a map f : {1, . . . , ni }→ {1, . . . , s}. For each 1≤ j ≤ ni , we see
α

j
i α f ( j) as a set of sequences of length 2 of descending operations and let

3i = ∪
ni
j=1α

j
i α f ( j).

Do the same for i ′ (with a corresponding map f ′) to get3i ′ . We need to assume
that f and f ′ are chosen so that |3i | = |3i ′ | and fix a bijection φ :3i →3i ′ .
Then 6i,i ′

2 is
uν = uφ(ν), ν ∈3i , u ∈U.

Let Ur (6) be the algebra obtained from U by quotienting out the relations in 6.
We say that Ur (6) is valid if for any set Y ∈U, we have |Y | = |Y |, where Y is the
image of Y in Ur (6). In particular this implies that Ur (6) is a free object on X in
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the class of those algebras with the descending and ascending operations (i) and (ii)
above which satisfy the identities 6.

From now on we work with the free object Ur (6) only. Let B ⊂Ur (6), b ∈ B,
and let i be a colour of arity ni . The set

(B r {b})∪ {bα1
i , . . . , bαni

i }

is called a simple expansion of B. Analogously, if b1, . . . , bni ⊆ B are pairwise
distinct,

(B r {b1, . . . , bni })∪ {(b1, . . . , bni )λi }

is a simple contraction of B. A finite chain of simple expansions is an expansion
and a finite chain of simple contractions is a contraction. A subset A ⊆Ur (6) is
called admissible if it can be obtained from the set Xr by finitely many expansions
or contractions. If a subset A1 is obtained from a subset A by an expansion (simple
or not), then we write A ≤ A1.

Remark 2.2. Recall that Ur (6) is said to be bounded (see [Martínez-Pérez and
Nucinkis 2013, Definition 2.7]) if for all admissible subsets Y and Z such that there
is some admissible A ≤ Y, Z , there is a unique least upper bound of Y and Z . By a
unique least upper bound we mean an admissible subset T such that Y ≤ T and
Z ≤ T, and whenever there is an admissible set S also satisfying Y ≤ S and Z ≤ S,
then T ≤ S.

By [Kochloukova et al. 2013, Lemma 2.5], any admissible set is a basis of Ur (6).
Conversely, by [Martínez-Pérez et al. 2016, Theorem 2.5], if6 is valid and bounded,
any basis of Ur (6) is also an admissible set. Furthermore, for every admissible
subset of cardinality m, we have that

m ≡ r mod d for d := gcd{ni − 1 | i = 1, . . . , s}.

In particular, any basis with m elements can be transformed into one of r elements.
Hence Ur (6)=Um(6) and we may assume that r ≤ d.

Definition 2.3. [Martínez-Pérez and Nucinkis 2013, Definition 2.12] Let Ur (6) be
a valid Cantor algebra. We denote the group of all Cantor algebra automorphisms of
Ur (6) by Vr (6). In particular, these automorphisms are induced by a map V →W,
where V and W are admissible subsets of Ur (6) of the same cardinality. In our
notation automorphisms act on the left.

For example, when s = 1 we have 62 =∅ and we retrieve the original Higman–
Thompson groups Gr,n (here, n = n1) [Higman 1974]. For

s = 2, r = 1 and n1 = n2 = 2,
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the Brin–Thompson groups are now given by the set 62 that can be visualised as
follows:

x

1 2 3 4

x

1 3 2 4

Here dashed and solid lines represent expansions of different colours. For more
examples the reader is referred to [Martínez-Pérez et al. 2016; Martínez-Pérez and
Nucinkis 2013].

Remark 2.4. If Ur (6) is valid and bounded every element of Vr (6) can be given
by a bijection V →W, where V and W are descendants of the fixed basis Xr .

For r = 1, this means that we can visualise elements of V1(6) by tree-pair
diagrams of rooted trees, where the root represents the basis X1 = {x}. So, for
example, when s = 1 and n1 = 2, V1(6) is equal to V (the original Thompson
group), and the well-known generator x0 ∈ F ⊂ V is visualised as

2 3

1
−→

x0

3

1 2

Definition 2.5 [Martínez-Pérez et al. 2016, Definition 3.2]. Let B≤ A be admissible
subsets of Ur (6). We say that the expansion B ≤ A is elementary if there are no
repeated colours in the paths from elements in B to their descendants in A. We
denote an elementary expansion by B � A. We say that the expansion is very
elementary if all paths have length at most 1.

Denote by Pr the poset of admissible subsets in Ur (6), and by |Pr | its geometric
realisation. (It was shown in [Martínez-Pérez and Nucinkis 2013] that |Pr | is a
model for EG, the classifying space for proper actions). We now describe the Stein
complex Sr (6) [Stein 1992], which is a subcomplex of |Pr |. The vertices in Sr (6)

are given by the admissible subsets of Ur (6). The k-simplices are given by chains
of expansions Y0 ≤ · · · ≤ Yk , where Y0 � Yk is an elementary expansion.

From now on we will denote Vr (6) by G. In the next section we will use Sr (6)

to construct a model for EG. Recall that by [Martínez-Pérez et al. 2016, Lemma 3.6
and Remark 3.7], Sr (6) is contractible and has finite stabilisers.
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3. A model for EG

In this section we construct a model for the space EG when G is the automorphism
group of a valid and bounded Cantor algebra Ur (6) as before. We shall use this
model to get, initially infinite, presentations for our groups, which we will then
reduce to obtain a finite generating set, and later a finite presentation under some
extra hypothesis on Ur (6).

3A. Some technical observations. To begin with, we collect few technical obser-
vations that we will use later on. As seen before, the elements g in our group G can
be expressed via a bijection between a pair of admissible subsets (or bases) (B, B ′)
both of the same cardinality. Observe that the pair above is not enough to determine g
and that we have to specify the explicit bijection. A way to overcome this problem
is to work with ordered bases, in the sense that instead of a basis B viewed as a set,
we will be considering an ordered tuple A with underlying set B. We say u(A)= B
(u for underlying). A pair of ordered tuples (A, A′), with both A and A′ of the same
cardinality, uniquely determines the element of G mapping the elements of A to the
elements of A′ in the prescribed order; conversely, any group element is expressible
in this way. Of course, just as for the representation of the pair of bases, there is
not a unique pair (A, A′) determining a given g ∈ G: we may apply descending or
ascending operations to A and A′ in a consistent way to get a new pair of ordered
tuples representing the same group element. Moreover, we may also permute the
elements of both tuples in a consistent way and still get the same g. This means
that when we represent elements of G as pairs (A, A′) we should be talking about
equivalence classes of pairs under the obvious equivalence relation that identifies
pairs yielding the same element. However, to make the notation lighter we will talk
about pairs and denote them as above. The following definition will be useful later
on: given tuples A1, A2 with bases as underlying sets we put

A1 - A2⇐⇒ u(A1)≤ u(A2) is an elementary expansion.

Equivalently, A1 - A2 if u(A1)≤ u(A2) in the Stein poset. Observe that this is not
a partial order, as it is not antisymmetric: we could have A1 - A2 and A2 - A1 but
A1 6= A2. When A1 - A2, abusing the terminology slightly, we will say that A2

is obtained from A1 by descending operations. Essentially this means that we are
considering the permutation of the elements of a tuple as a new type of descending
operation. Of course this could equally be viewed as an “ascending” operation,
but it turns out to be convenient to view it as descending. If we want to record the
precise operations that yield A2 when applied to A1 we will write

A1
ε
- A2

and will also set A2= A1ε. Observe that ε can be seen as a precise recipe to get A2,
and ε encodes exactly which elements are modified, permuted and so on.
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3B. The model for EG. Let Z be the complex constructed as follows: The points
of Z are the ordered tuples A with underlying set a basis u(A) in the Stein com-
plex Sr (6). For each chain

A0 - · · ·- Ak

we attach an (oriented) k-simplex at the vertices A0, . . . , Ak . Observe that there
might be repeated vertices, so this is not a simplicial complex but rather has the
structure of a 1-complex; see [Hatcher 2002, Section 2.1]. The group G acts on the
set of bases, and using that action one can define a G-action on Z in the obvious
way. Note that this action is free. In particular this implies that two different
1-simplices starting in A0, say A0- A1 and A0- A′1 cannot be in the same G-orbit.
Hence they yield different 1-simplices in the quotient complex Z/G. Conversely, if
A0

ε
→ A1 is an edge in Z/G, then once we have fixed a lift A0 of A0 to Z , ε lifts

to a unique 1-simplex of Z . Therefore there is some well-defined set of descending
operations giving a tuple A′1 which is uniquely determined so that A0

ε
- A′1 is the

lift of ε. Moreover, the tuple A′1 is uniquely determined. Note that we have the extra
restriction coming from the Stein poset: we can only apply descending operations
of the same colour once to any element of A0.

Applying the same argument implies that this also holds for any lift of a path in
Z/G to Z .

We now show that Z is contractible by using the contractibility of Sr (6), [Stein
1992]. There is a G-map

u : Z→ Sr (6)

associating the underlying basis to an ordered tuple.
Fix a basis B ∈ Sr (6) of cardinality k. Then u−1(B) is the full subcomplex of

Z with 0-simplices given by the tuples with underlying set B, i.e., given by all
possible permutations of the elements in B. Let H the stabiliser of B in G. Then H
is isomorphic to the symmetric group of degree k and acts freely on the 0-simplices
of u−1(B). In fact we may choose a bijection between the 0-simplices of u−1(B)
and the elements of H and the definition of the complex structure of Z means that
any (k+1)-element subset of 0-simplices spans a k-simplex.

For example if H = S2 is the symmetric group on two letters with elements 1
and x , then the 1-simplices are {1, 1}, {1, x}, {x, 1} and {x, x}, and the 2-simplices
are {1, 1, 1}, {1, 1, x} etc.

In other words, u−1(B) is easily seen to be the usual complex associated to the
bar resolution of the finite group H; see for example [Hatcher 2002, Example 1B.7].
In particular this shows that u−1(B) is contractible.

Using [Quillen 1973, Theorem A], we can now show that u is a homotopy
equivalence. To see this, let JZ be the category with objects the simplices of Z
and morphisms given by the face relations. Note that since Z is not a simplicial
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complex, this is not a poset. Let JS be the poset of simplices in Sr (6). The map u
induces a functor

Ju : JZ → JS,

and the geometric realisations of nerves of the categories JZ and JS are the
barycentric subdivisions of Z and Sr (6), respectively. Once we show that for
any σ : B0 < B1 < · · ·< Bt in JS ,

Ju/σ := {τ ∈ JZ | Ju(τ ) is a subsimplex of σ }

is a contractible subcategory of JZ , we can use Quillen’s Theorem A to deduce
that Ju is a homotopy equivalence. The category Ju/σ is just the category with
objects the simplices in the join

u−1(B0) ? · · · ? u−1(Bt)

and morphisms given by face relations. As u−1(B0) ? · · · ? u−1(Bt) is contractible,
this category is also contractible. Hence Ju is a homotopy equivalence and thus
u is, too. Since Sr (6) is contractible we deduce that Z is contractible as required.

4. An infinite presentation

In this section we use the model for EG that we have just constructed to obtain a
presentation for our group. As the model is of infinite type, our presentation will
initially be infinite. But in the case when the Cantor algebra is valid and bounded
it is possible to reduce the generating system to a finite one, as we will see in the
next section.

We obtain our presentation using the following well known result that we recall
here for the reader’s convenience.

Theorem 4.1 [Geoghegan 2008, Theorem 3.1.16 and Corollary 3.1.17]. Let G be a
group and Z a simply connected CW-complex with a free G-action such that Z/G
is oriented and path connected. Let T be a maximal tree in Z/G. Let:

• W be the set of (oriented) 1-cells of Z/G.

• R be the set of words in the alphabet W ∪W−1 obtained as follows: for each
(oriented) 2-cell e2

γ in Z/G, let τ(e2
γ ) be a word representing the boundary

δe2
γ and set

R = {τ(e2
γ ) | e

2
γ is an oriented 2-cell of Z/G}.

• S ⊂W be the set of (oriented) 1-cells of T (seen as one letter words in W ).

Then
〈W | R ∪ S〉

is a presentation of the group G ∼= π1(Z/G). If , moreover, Z/G has a finite
2-skeleton, then this is a finite presentation.
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4A. The isomorphism G ∼= π1(Z/G). We now give an explicit isomorphism be-
tween G and the fundamental group of Z/G, where we return to our previous
notation so G = Vr (6) and Z is the same complex as in Section 3B. The standard
way to show this isomorphism is to fix some point x0 ∈ Z and map the element
g ∈ G to the path in Z/G obtained by taking the quotient of a path from x0 to
gx0 in Z . As x0 and gx0 have the same cardinality, what we get is a loop path
in Z/G. We shall take as x0 a tuple with underlying set our preferred basis of r
elements Xr . To ease notation, we denote this tuple by Xr as well. As the G-action
on Z preserves the cardinality of each tuple, the 0-simplices of Z/G correspond to
the possible cardinalities of tuples (or of bases). By Remark 2.2, we recall that the
possible cardinalities of the bases are exactly the integers congruent to r modulo d
where n1, . . . , ns are the arities and

d = gcd(n1−1, . . . , ns−1).

So the 0-simplices of Z/G can be labelled as

{X i | i ≡ r mod d},

where the subscript is the cardinality of the associated bases. Now, choose a
maximal tree T in Z/G. The vertices of T are all the 0-simplices above and there
is a unique path in T from X r to every other X i . This path determines uniquely a
precise tuple X i that is a lift of X i (observe that X i depends on the choice of T ).

Let X i
ε
→ X j be an edge (thus i ≤ j ). By the comments above there is a uniquely

determined lift X i
ε
→ X ′j of ε; here X ′j is a new tuple which is in the same orbit as

X j . Therefore there is a uniquely determined g ∈ G such that X ′j = gX j , and this
is precisely the element in G corresponding to the generator

ε ∈ π1(Z/G).

We have g = (X j , X ′j ) and X ′j = X iε.

Example 4.2. Let G be the original Thompson group V. In particular, r = 1, s = 1,
n1 = 2. We can represent bases of U1(6) by finite rooted binary trees, and hence
can choose X1 to be a single point, and X2 and X3 to be the bases represented thus:

21

X2

1

2 3

X3
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Suppose we take ε to be the expansion of X2 on the left-hand leaf. This gives us
X ′3 as

1 2

3

and the corresponding element of V is x0 as described after Remark 2.4.

4B. The maximal tree T . To be able to write down an explicit presentation, the
choice for T becomes important. This relies heavily on the choice of representative
for X i above. This amounts to choosing a particular set of bases X i in Ur (6),
where i ≡ r mod d .

Example 4.3. For G = sV we have r = 1 and for each k ∈ N there is a basis Xk .
Again, these can be represented by finite rooted binary trees. Now fix a colour
i ∈ S and choose the Xk as follows: we begin with X1 our fixed one-element
basis represented by a single point. Now X2 is the basis obtained by applying the
descending operation of colour i to X1. We successively chose Xk as obtained
from Xk−1 by applying the descending operation of colour i to the last element of
Xk−1 and labelling the elements in successive order. The representation for Xk by
a binary tree then looks as follows:

1

2

3

k− 1 k

Notice that for V1(6) we can always choose the Xk to be represented by a rightmost
tree as above, provided that all colours have the same arity. Now the construction
shows that the maximal tree T in Z/G is a rooted infinite line.

For example, the baker’s map b ∈ 2V can easily be described using the bases
chosen above. Let X1 be a single point and X2 be as in Example 4.2; note that
we expanded with colour 1. Now we consider X ′2 the basis obtained from X1 by
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expanding once with colour 2 (represented by a dashed line). Hence this gives rise
to the element b ∈ 2V.

21

X2

−→

b

1 2

X ′2

For the general case with mixed arities we will not be able to find such a
straightforward set of representatives X i as before. We will show that we can,
however, find a maximal tree T in Z/G, whose vertices are all but a finite number
obtained by a step-by-step process beginning with our fixed basis Xr and then
expanding the last element of a basis previously constructed.

Example 4.4. Let Vr (6) be the group given by r = 1, s = 2, n1 = 5 and n2 = 7.
Then d = 2 and our chosen set of bases is of the form

{X i | i ≡ 1 mod 2}.

By simply expanding X1 by the colours 1 and 2 respectively, we obtain X5 and X7.
To obtain X3 we could contract the last 5 elements of X7 by colour 1, but there is
no way to obtain X3 from X1 by simply expanding.

Remark 4.5. We now describe the construction of our preferred maximal tree T in
Z/G, where G = Vr (6) is the automorphism group of a valid and bounded Cantor
algebra. We begin by showing that we can obtain all but finitely many of the bases

{X i | i ≡ r mod d}

from Xr applying descending operations only. In other words{
r +

s∑
i=1

ki (ni − 1) | 0≤ k1, . . . , ks

}
∪ P = {r + kd | 0≤ k},

where P is a finite set of integers. To see this, observe first that the problem can be
reduced to the case when r = 0 and d = 1. Now choose integers k1, . . . , ks such that

1=
s∑

i=1

ki (ni − 1)

and use them to produce integers m1, . . . ,ms with 0≤ m2, . . . ,ms such that

1=
s∑

i=1

mi (ni − 1).
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Hence,

1≡
s∑

i=2

mi (ni − 1) mod m1.

Multiplying this expression by the integers 2, . . . ,m1 we get positive numbers
a1, . . . , am1 which are a complete set of representatives of the residues modulo m1

and such that they all belong to
∑s

i=1 N(ni − 1). Now, let m be any integer with
m ≥max{ai | 1≤ i ≤ m1}. Then for some such i , we have m ≡ ai modulo m1 and
therefore m− ai = lm1 for some l ≥ 0. From this we deduce that m also belongs
to
∑s

i=1 N(ni − 1).
It is now easy to find a (nonmaximal) directed tree in Z/G having X r as a root

and such that the cardinalities of the vertices are precisely the set r+
∑s

i=1 N(ni−1).
Here, a root is the only vertex of the tree from which all other vertices can be reached
by paths respecting the directions of the edges. Moreover, we can do it in such a
way that the descending operations are always applied to the last element of each
tuple. There are only finitely many points of our space Z/G not in this tree. Choose
one of them and consider a directed path from that point to some point of the tree.
Adding this directed path we get a new tree which no longer has a single root in
the above sense. If there are still points left, repeat the process. Eventually, we get
a directed tree with the desired properties and with only finitely many roots.

4C. The presentation. Now we apply Theorem 4.1 to produce an explicit presen-
tation. We do get an abstract group presentation but we can also write it down as a
presentation in terms of elements given by pairs of ordered bases using the explicit
isomorphism in Section 4A, which allows one to recognise the group elements in a
much more familiar way. Recall that we have fixed a set of tuples

{X i | i ≡ r mod d}

which are lifts of the nodes of our tree T . Moreover there is a tree in Z that is a lift
of T .

By [Geoghegan 2008, Theorem 3.1.16], π1(Z/G) is generated by the edges
in Z/G, i.e., by the 1-simplices X i

ε
→ X j in Z/G. As we have seen before, these

correspond to elements g ∈ G which are given by pairs (X j , X iε) where ε is a set
of descending operations.

There are two sets of relators:

(i) Relators of the form ε= 1 whenever ε is an edge in the tree T . This means that
there are tuples X i and X j in T such that X j is obtained from X i performing
the operations ε. The group element that corresponds to ε is (X j , X j ).

(ii) Relators obtained from the boundaries of the 2-cells in Z/G. The 2-cells of
Z/G come from 2-cells in Z and these are of the form A0 - A1 - A2. Let ε1
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be the set of operations needed to obtain A1 from A0, ε2 the set of operations
needed to obtain A2 from A1 and ε the composition of ε1 and ε2. Passing
down to the quotient Z/G we get a 2-cell with boundary labelled ε1, ε2 and ε.
So we have the relator

ε = ε1ε2.

All this means that this second set of relators consists of the “composition of
paths”. We want to write this down in terms of pairs of ordered bases. Let i be
the cardinality of A0 and j1 the cardinality of A1. The edge ε1 represents the
element g1 = (X j1, X iε1) ∈ G. We may apply the descending operations ε2 to
this pair and then we observe that also g1 = (X j1ε2, X iε1ε2). Note here that
this follows from the definition of tree pair representation, and we do not need
to impose any conditions on the presentation that we are building. Let j2 be
the cardinality of A2, then ε2 represents the element g2 = (X j2, X j1ε2) and ε
represents g = (X j2, X iε). So we get the relator g = g1g2. In the particular
case when X j1ε2 belongs to the lift of our tree T , or equivalently when ε2

belongs to T , there is also a relator g2 = 1 and we deduce g = g1. This can
also be seen using tree pairs: as X j2 belongs to the prefixed set of nodes and
has the same cardinality as X j1ε2, we must have X j1ε2 = X j2 .

We may summarise as follows:

G = 〈W | R〉,
where

W = {(X j , X iε) | ε is a sequence of descending operations and X i 6= X j },

R = {g = g2g1 | g = (X j2, X iε), g1 = (X j1, X iε1), g2 = (X j2, X j1ε2), ε = ε1ε2}.

Alternatively, we may delete those pairs (X j , X iε) where ε lies in the tree T from
our list of generators.

4D. Reducing the generating set. A quick look to the generating set we have just
obtained shows that it is far too big. Reducing it can be a complicated task but there
is a reduction that seems natural: our generators come from edges in Z/G and
these edges come from descending operations, so one expects that edges coming
from “very elementary operations” should be enough. This is in fact the case but to
make it more precise we need now some additional technicalities. Let us fix what
should be called “very elementary” in our context. An edge A1

ε
- A2 in Z is very

elementary if it consists of a single operation, i.e., if it is either a permutation or it
is a single descending operation (in this case u(A1) < u(A2) is very elementary)
but we do not allow composition of both. The case when u(A1) < u(A2) will be
termed strict and for these type of operations we will assume that if the original
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tuple is (x1, . . . , xi ) and we apply the descending operation α at the k-th element
then the resulting tuple is

(x1, . . . , xk−1, xkα
1, . . . , xkα

nα , xk+1, . . . , xi ).

Any ε can be written as a composition of very elementary operations. Of course
it may happen that different sequences of operations give the same result when
applied to the same tuple. This happens in the following four ways, which we shall
refer to as moves:

(i) Disjoint type: we may apply two very elementary strict descending operations
acting on distinct elements of a tuple and we get the same result regardless of
the order of application of these two operations.

(ii) 6 type: we have different chains of elementary strict descending operations
such that, up to a permutation, they give the same result when applied to
any element of any tuple and which come from the defining relations for the
algebra encoded in 6.

(iii) Permutation-descending: we may first permute the elements of a tuple and
then apply a very elementary strict descending operation or do it the other way
around in a consistent manner and get the same result.

(iv) Permutation: the composition of two permutations is still a permutation.

Lemma 4.6. Let A1, A2 be tuples. If two different chains of very elementary
descending operations yield A2 when applied to A1, then one can be obtained from
the other by repeated application of moves of the four types above.

Proof. By making moves of types (iii) and (iv) only we may assume that our two
chains are of the form

ε1ε2 · · · εtσ,

ε′1ε
′

2 · · · ε
′

t ′σ
′,

where all εi , ε′i are very elementary and strict and σ , σ ′ are permutations. Consider
first what happens when we look at the underlying sets u(A1) and u(A2). The fact
that both series of operations give the same set when applied to u(A1), implies that,
for each particular element, we are either performing the same operation or the
same operation up to applying some of the relators encoded in 6. This means that
ε1ε2 · · · εt can be transformed to ε′1ε

′

2 · · · ε
′

t ′ by making moves of types (i) or (ii)
without taking the order of the elements into account. The fact that the relations
in 6 involve certain permutations implies that what we really get is that via some
extra moves of types (iii) and (iv), ε1ε2 · · · εt is transformed to ε′1ε

′

2 · · · ε
′

t ′τ for a
certain permutation τ . So at this point our two sequences are

ε′1ε
′

2 · · · ε
′

t ′τσ, ε′1ε
′

2 · · · ε
′

t ′σ
′.
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The fact that both sequences yield A2 when applied to A1 implies that Bτσ = Bσ ′

for B = A1ε
′

1ε
′

2 · · · ε
′

t ′ , which is a move of type (iv). �

We next use Tietze transformations to change the presentation above. Essentially,
what we need to do is the following: whenever there is a relator g= g1g2 we delete g
from our set of generators. The effect of this transformation on the generating
set is that we no longer have elements g coming from edges which are not very
elementary. Moreover we will have only two kinds of generators: strict generators
coming from strict very elementary edges, and finite order generators coming from
permutations. We denote these sets by

Ws = {(X j , X iε) | ε is a very elementary strict expansion, j = |X iε|}

and call these very elementary strict generators. We also consider the elements of
the set

Wp = {(X i , X iσ) | σ is a permutation},

and call them permutations. From now on we will use the term strict generators for
elements in Ws instead of the more precise very elementary strict generator.

The effect of this transformation on the set of relators is as follows: we no longer
have to consider relators coming from edges in the tree. Whenever there are two
sequences of very elementary operations that give the same A2 when applied to
some A1, we have a new relator. Lemma 4.6 implies that these relators can be
obtained from relators of the following types:

(i) RD contains relators of the form g1g2 = g′2g′1 with g1, g2, g′1, g′2 strict genera-
tors coming from moves of disjoint type.

(ii) R6 contains relators between strict generators possibly followed by a permu-
tation coming from moves of 6 type.

(iii) RPD contains relators of the form gσ = σg with g a strict generator and σ a
permutation coming from moves of type (iii).

(iv) RP contains relators of the form σ = σ1σ2 with σ , σ1 and σ2 permutations
coming from moves of type (iv).

Thus G admits the following (infinite) presentation:

(1) 〈Ws ∪Wp | RD ∪ R6 ∪ RP D ∪ RP〉.

4E. Being more explicit. Let us consider an arbitrary strict generator (X j , X iε)

associated to the strict edge ε. It is completely determined by a triple (i, k, t)
meaning that ε is obtained by applying the descending operation of colour t to the
k-th element of an orbit representative of the set of tuples of order i . We will use
the triple to denote the generator. Now we are going to write down explicitly what
relators of disjoint type look like with this new notation. Recall that these relators
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come from very elementary strict descending and disjoint operations ε1, ε2 on one
hand, and ε′2, ε

′

1 on the other. They are such that

ε1ε2 = ε
′

2ε
′

1,

where ε1 and ε′1 are operations of the same colour, say t , whereas ε2 and ε′2 are of
colour s. Moreover ε1 acts at the k1-th and ε′2 acts at the k2-th elements of X i . We
may assume that k1 < k2. Observe that this means that if we apply a descending
operation to the k2-th element first then the k1-th element remains the same, but
if we do it the other way around, i.e., apply a descending operation of colour t to
the k1-th element first, then the former k2-th element becomes the (k2+nt−1)-th.
Therefore the triples associated to each of ε1, ε2, ε

′

2, ε
′

1 are

ε1 : (i, k1, t)= (X i+nt−1, X iε1),

ε2 : (i + nt−1, k2+ nt−1, s)= (X i+nt−1+ns−1, X i+nt−1ε2),

ε′2 : (i, k2, s)= (X i+ns−1, X iε
′

2),

ε′1 : (i + ns−1, k1, t)= (X i+ns−1+nt−1, X i+ns−1ε1),

and our relator is

(2) (i, k1, t)(i + nt−1, k2+ nt−1, s)= (i, k2, s)(i + ns−1, k1, t).

Analogously, it is possible to represent a generator (X i , σ (X i )) of “permutation
type” using the pair (i, σ ). Now, relators of type RPD come from the fact that apply-
ing first a permutation and then a very elementary strict operation to a tuple, yields
the same as doing it the other way around for a suitable permutation. More explicitly,
assume that we start with the tuple X i . Let ε be the operation associated to the triple,
say, (i, k, t) and consider a permutation σ represented by the pair (i, σ ). Slightly
abusing notation view σ as a permutation of the numbers {1, . . . , i}. Starting with X i

and performing first the permutation σ and then applying the strict descending
operation associated to ε′ = (i, σ (k), t), yields the tuple X iσε

′ whose underlying
set is the same as that of the tuple X iε. Therefore there is some permutation σ ′

such that the tuples X iσε
′ and X iεσ

′ coincide. And this implies that we have a
relator σ · ε′ = ε · σ ′ or

(3) (i, σ )(i, σ (k), t)= (i, k, t)(i + nt−1, σ ′).

5. A finite generating set

In this section, we show that the generating system Ws ∪Wp can be reduced to a
finite one. We begin with Ws . We will use the following two particular cases of
relators of disjoint type.
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Case 1: Let (i, k, t) be a triple such that i − k > nl − 1 for any colour l where we
include the case l = t . Assume moreover that the terminal point of the associated
edge in Z/G, i.e., X i+nt−1, is not a root of the tree T . Recall that this edge consists
of applying a descending operation of colour t , which increases the cardinality
in nt − 1. Then there is some edge of T ending in X i+nt−1. Let s be the colour of
this last edge which is represented as a triple by (i + nt − ns, i + nt − ns, s) (recall
that we constructed the tree T in such a way that the last element of each tuple is
always being expanded). Now, as i − k > ns − 1 we deduce k < i − ns + 1. Thus
there is a relator of disjoint type such as in (2) but with i − ns + 1 instead of i ,
k instead of k1 and i − ns + 1 instead of k2. This relator is

(i − ns+1, k, t)(i + nt − ns, i + nt − ns, s)= (i − ns+1, i − ns+1, s)(i, k, t).

Since there is also a relator

(i + nt − ns, i + nt − ns, s)= 1,

because it belongs to T , we deduce

(4) (i, k, t)= (i − ns+1, i − ns+1, s)−1(i − ns+1, k, t).

This means that (i, k, t) can be expressed in terms of triples with a smaller value of i .

Case 2: Let (i, k, t) be a triple such that i ≥ k ≥ nt + 1. Then k− nt + 1> 1 and
i − nt + 1≥ 2. This means that there is a relator of disjoint type such as in (2) but
with i−nt+1 instead of i , 1 instead of k1 and k−nt+1 instead of k2. This relator is

(i − nt+1, 1, t)(i, k, t)= (i − nt+1, k− nt+1, t)(i, 1, t).

From this we deduce

(5) (i, k, t)= (i − nt+1, 1, t)−1(i − nt+1, k− nt+1, t)(i, 1, t),

meaning that (i, k, t) can be expressed in terms of triples with either a smaller value
of i or with k = 1.

Observe now that arguing by induction on i + k, equations (4) and (5) imply that
any element in Ws lies in the finite subgroup generated by the finite subset

{g ∈Ws | the associated triple fails to fulfil
both the conditions in Case 1 and in Case 2}.

Example 5.1. Let us consider the group V, i.e., where we have one colour t and
nt = 2. For now let us only concentrate on the strict generators Ws . Note that an
element (i, i, t) is the identity. Looking at the representation by tree-pair diagrams,
and the choice of X i in Example 4.3, we see that we expand the rightmost leaf of
the rightmost tree X i , hence we obtain X i+1 and the group element is represented
by (X i+1, X i+1), which is the identity. Now consider elements (i, k, t), where
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k < i − 1. Again, using the rightmost-tree, we see that after deleting unnecessary
carets on the right, we get

(i, k, t)= (k+1, k, t),

which is exactly the relator (4). For example, consider (3, 1, t). Then the corre-
sponding tree-pair diagram is

X4

−→

x0

X ′4 = X3ε

In particular, after deleting the rightmost caret in each tree, this is exactly the
element x0, see the picture after Remark 2.4.

Writing
xi−2 = (i, i−1, t),

we recover the well-known infinite generating set {xk | k ≥ 0} for F < V. Further-
more, this enables us to simplify the relator (2) above. We have

(i, k1, t)(i+1, k2+1, t)= (i, k2, t)(i+1, k1, t).

Using that (i, k, t)= (k+1, k, t) for k < i − 1, we get the well-known relator

x−1
k xl xk = xl+1

for any k and l. Moreover, observe that strict generators and disjoint relators give
us the well-known infinite presentation of Thompson’s group F ; see [Cannon et al.
1996].

Now we want to reduce Wp in a similar way. The most natural way to do that is
using relators of type RPD , i.e., those mixing permutations and strict generators. To
be able to argue by induction as before, we need to show that if i is big enough, any
element of the form (X i , σ (X i )), where σ is a permutation, can be expressed in
terms of permutations with a smaller i and possibly strict generators. As the group
of permutations of the tuple X i is generated by transpositions, we may assume
that σ itself is a transposition. Now, assume that i ≥ 3nt for t a colour with smallest
possible arity nt . As σ only moves two elements, we may find nt consecutive
elements in X i which are untouched by σ . Let k be such that the k-th element in X i

is the first one of those nt consecutive elements, and consider the strict generator
associated to the triple (i − nt+1, k, t). Let σ ′ be the transposition of X i−nt+1
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that moves precisely the elements that are also moved by σ . Then the associated
relator (3) with i − nt + 1 instead of i , and σ and σ ′ interchanged is

(i − nt+1, σ ′)(i − nt+1, k, t)= (i − nt+1, k, t)(i, σ ).

Thus

(6) (i, σ )= (i − nt+1, k, t)−1(i − nt+1, σ ′)(i − nt+1, k, t)

as we wanted to show.
This discussion can be summarised as follows:

Theorem 5.2. Assume that Ur (6) is valid and bounded. Then Vr (6) is generated
by the finite set consisting of elements of the following three types:

(1) Strict generators associated to triples (i, k, t) with i ≤ nt + 1 and i − k ≤ ns

for any colour s.

(2) Strict generators associated to triples (i, k, t) such that X i+nt−1 is a root of
the tree T .

(3) Permutations associated to pairs (i, σ ) such that i < 3nt for some colour t.

Example 5.3. Consider G = V. In Example 5.1, we have already recovered the
infinite presentation for F < V. In the tree of Example 4.3, the triples have a single
root X1 so we do not have to consider generators as in item (2) of Theorem 5.2.
As before, let i ≥ 2 and denote by xi−2 the group element associated to the triple
(i, i−1, t). Then from Theorem 5.2 one deduces the well-known fact that the
elements xi , i ≥ 1, together with the permutations generate the group and that x0

and x1 plus permutations are enough.

Remark 5.4. Similar generating systems can be obtained without using the space Z
by proceeding as Burillo and Cleary did for the Brin–Thompson groups sV [Burillo
and Cleary 2010, Theorem 2.1]. Instead of our first step (Section 4A), fix a set of
tuples, one for each possible cardinality, which are to be the “source tree” of our
tree pairs, and as “target tree” we allow anything that is obtained from one of these
tuples by descending operations and permutations only. If g ∈ G is an arbitrary
element, it follows from the fact that any two bases have a common descendant
that g = (Y1, Y2) where Y1 and Y2 are obtained in that way. Then, choose X i in
our previously fixed set of tuples (what used to be the set of nodes in T ) of the
same cardinality as Y1 and Y2, and observe that g = g2g−1

1 with g1 = (X i , Y1) and
g2 = (X i , Y2). These are precisely the type of elements we wanted to verify to be
the generators of the group.

The choice of that fixed set of tuples can be the same as in Section 4B, but now
we no longer need to construct the actual tree T , we only need the nodes. For
example, we can proceed as follows: as done before, fix a tuple Xr with r elements
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and choose integers m1, . . . ,ms with

d =
s∑

t=1

mt(nt − 1).

There is a sequence of operations (first descending, then ascending) that we can
perform on the last element of Xr to get a new tuple with exactly r + d elements
that we denote Xrτ . We may repeat the process to get a new tuple Xrτ

2 and so on.
We set Xrτ

0
:= Xr , let X i+rd := Xrτ

i for i ≥ 0 and take the obtained family as our
prefixed set of “sources”.

As seen above, our first set of generators is then

{(X j , X iε) | ε is a sequence of descending operations}.

Using Section 4D this can be further reduced to

{(X j , X iε) | ε is a single strict descending operation or permutation}.

Again, there is no serious need of the space Z to see that this reduction is
possible. One can just check that composition of these elements corresponds to
composition of the associated descending operations, in a way similar to that of
[Burillo and Cleary 2010]. The same happens with the reduction performed in
Section 4E: basically, we used Z only to have some identities available that allowed
us to eliminate some elements from our generating system, but all those identities
can be easily checked by hand and one gets the same finite set in the end.

6. Finite presentations

In this section, we still assume that Ur (6) is valid and bounded and we add the
extra hypothesis that it is also complete to exhibit a procedure that gives a finite
presentation. To do that, we just replace Z by a truncated version Zn and we use
the results of Section 4 to obtain an explicit finite presentation.

Definition 6.1. Using the notation of Definition 2.1, suppose that for all i 6= i ′,
i, i ′∈ S we have that6i,i ′

2 6=∅ and that f ( j)= i ′ for all j =1, . . . , ni and f ′( j ′)= i
for all j ′ = 1, . . . , ni ′ . Then we say that Ur (6) is complete.

Considering the Morse function t (A)= |A| in Sr (6) we can filter the complex
with respect to t , and define the truncated Stein complex

Sr (6)
n
:= full subcomplex supported on {A ∈ Sr (6) | t (A)≤ n}.

In particular this is just the simplicial complex Sr (6)
n obtained by considering

bases of cardinality bounded by n only. Note that in [Martínez-Pérez et al. 2016,
Theorem 3.1] this complex was used to show that under the conditions above Vr (6)
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is of type F∞. The purpose of this section is to give a recipe for constructing
explicit presentations.

Obviously, we can do the same with the complex Z and consider its truncated
version Zn where the tuples have at most n elements. The map u restricts to these
truncated versions and the same argument as in Section 3B shows that there is a
homotopy equivalence

u : Zn
→ |Sr (6)

n
|.

By [Fluch et al. 2013, Corollary 3.9] for the special case of sV and [Martínez-Pérez
et al. 2016, Section 3] for the general case, assuming that Ur (6) is valid, bounded
and complete, there is some positive integer n0 depending on 6, such that for any
n ≥ n0 and any basis B ∈ Sr (6) with cardinality |B| = n+1 the descending link of
B in the Stein complex Sr (6) is simply connected. Using Morse theory ([Bestvina
and Brady 1997, Corollary 2.6]) we deduce that for n ≥ n0 the inclusion

Sr (6)
n
⊆ Sr (6)

n+1

induces an isomorphism in π1 and π0. As the space Sr (6) is contractible we have

1= π1(Sr (6))= limπ1(Sr (6)
n),

1= π0(Sr (6))= limπ0(Sr (6)
n),

and 1= π1(Sr (6)
n)= π0(Sr (6)

n) for n ≥ n0. From this we deduce that Sr (6)
n is

path connected and simply connected for n ≥ n0. This, together with the fact that u
is a homotopy equivalence, implies that the same holds true for Zn. Finally, observe
that Zn being path connected implies that the same is true for Zn/G. Therefore
we can use Zn instead of Z in Theorem 4.1 and as Zn/G is finite we get a finite
presentation. Hence we have the following theorem.

Theorem 6.2. Let Ur (6) be a valid, bounded and complete Cantor algebra, and
let n ≥ 1 be such that Zn is simply connected. Then there is a finite presentation
of Vr (6) involving only strict generators (i, k, t) with i + nt − 1≤ n, permutations
(i, σ ) with i ≤ n, and relators involving these generators only, and which is obtained
by truncating the presentation

〈Ws ∪Wp | RD ∪ R6 ∪ RP D ∪ RP〉

given in (1).

The main difference with the reduction process of Section 5 is that we are now
also reducing the set of relators. Moreover, the “truncated” set of generators in
the finite presentation obtained this way can be further reduced using the same
arguments as in Section 5.
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Example 6.3. For G = V, in [Fluch et al. 2013, Corollary 3.9] there is an explicit
condition on n that implies that Zn is simply connected: we need

1≤
⌊n−1

3

⌋
− 1;

thus we can take n = 7. This means that the set of strict generators in Example 5.1
can be reduced to x0, . . . , x4 and the relators of disjoint type can be reduced to

x−1
k xl xk = xl+1,

where (k, l, l + 1) is one of the following tuples: (0, 1, 2), (0, 2, 3), (0, 3, 4),
(1, 2, 3), (1, 3, 4), (2, 3, 4). At this point it is not difficult to write down a finite
presentation of V. Note also that in Example 5.3 we had already reduced to two
strict generators x0 and x1.

Recently, Bleak and Quick [2017] found a short finite presentation for V with
two generators and nine relations using different methods.

Using our methods we get a finite presentation of Thompson’s group F, and by
using Tietze moves this presentation can be transformed to the well-known

〈x0, x1 | x−3
0 x1x3

0 = x−1
1 x−2

0 x1x2
0 x1, x−2

0 x1x2
0 = x−1

1 x−1
0 x1x0x1〉

Example 6.4. For G = sV we can also use [Fluch et al. 2013, Corollary 3.9] to
compute the value of n making Zn simply connected: we need

1≤
⌊n−1

2s

⌋
− 1,

thus we can take n = 1+2s+1. Recall that when choosing the maximal tree in Z/G
we chose expansion by one colour only (see Example 4.3). Let that colour be
denoted by 1. For the same reason as in Example 5.1 we now have that elements of
the form (i, i, 1) are the identity, and that for any colour t and any k < i − 1, we
have (i, k, t)= (k+1, k, t).

This now gives an infinite Ws , which for G = 2V can be listed as

(i+1, i, 1), (i+1, i, 2), and (k, k, 2),

which corresponds to the infinite order generators Ai−1, Bi−1 and Ci of Brin’s
infinite generating set of 2V; see [Brin 2004] or [Burillo and Cleary 2010]. Now
by Theorem 5.2(1), this can be reduced to a finite generating set with seven strict
generators; those where i ≤ 2 and k ≤ 3, as well as a finite number of permutation
generators. Using Theorem 6.2 without any further reductions, we get a finite
presentation where i ≤ 7 and k ≤ 8.
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7. Finite presentation for centralisers of finite subgroups

The proof of [Martínez-Pérez et al. 2016, Theorem 4.9] can be used to show that
whenever the group Vk(6) is finitely presented for any k, then so is CVr (6)(Q) for
any finite Q≤Vr (6), but the proof there does not yield an explicit finite presentation.
In this section we are going to construct a finite presentation of CVr (6)(Q). To
do that, we proceed as follows. Note first that, by [Martínez-Pérez et al. 2016,
Theorem 4.2], the group CVr (6)(Q) is a direct product of groups of the form

lim
−−→
(Ur ′(6), L)o Vr ′(6).

We now summarise the notation developed in [Martínez-Pérez et al. 2016]. The
semidirect product above is associated to a fixed transitive permutation represen-
tation ϕ : Q → Sm of the finite group Q, where Sm is the symmetric group of
degree m, the orbit length. Then L is the centraliser of the image ϕ(Q) in Sm and
thus is a finite group. The number r ′ depends on ϕ (see [Martínez-Pérez et al. 2016,
Theorem 4.2]), but in order to simplify notation we will just set r ′ = r . The set of
bases in Ur (6) together with the expansion maps can be viewed as a directed graph
and we let (Ur (6), L) be the following diagram of groups associated to this graph:
To each basis A we associate Maps(A, L), the group with elements the maps from
A to L where the group operation is induced by multiplication in L . Each simple
expansion A ≤ B corresponds to the diagonal map δ :Maps(A, L)→Maps(B, L)
with δ( f )(aα j

i )= f (a), where a ∈ A is the expanded element. Then we consider
the direct limit lim

−−→
(Ur (6), L) whose elements are determined by some basis A and

a map A→ L . Observe that we may always assume that the basis A satisfies Xr ≤ A.
We begin by studying presentations for lim

−−→
(Ur (6), L). We will obtain an in-

finite presentation (see Lemma 7.1 below) and then we will use the semidirect
product action of Vr (6) on this presentation together with the so-called Burnside
procedure described in the Appendix to get a (finite) presentation of the group
lim
−−→
(Ur (6), L)o Vr (6).
We begin by constructing a generating system for the group lim

−−→
(Ur (6), L).

Take x ∈ L and A a basis with Xr ≤ A. Take some subset A1 ⊆ A and let χA1,x ∈

lim
−−→
(Ur (6), L) be the element that maps every a∈ A1 to x and every a∈ ArA1 to the

identity 1 ∈ L . It is easy to see that the set of all the elements of this form generates
our group, but observe that there might be a uniqueness issue because if we had
another basis C with A ≤ C and C1 were the subset of those elements in C coming
from elements in A1, then χA1,x would equal χC1,x . To avoid this problem we set

ω(A1) := {b is a descendant of elements in Xr | aw = bw′

for some a ∈ A1 and descending words w,w′}

(this was denoted A1(L) in [Martínez-Pérez et al. 2016]) and

� := {ω(A1) | A1 is a subset of some basis A ≥ Xr }.
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At first sight, this set � seems different from the set � defined in [Martínez-Pérez
et al. 2016], which was defined for arbitrary finite subsets of the set of all descendants
of elements in Xr , but Lemma 4.5(i) in that paper shows that since we are assuming
that our Cantor algebra is valid and bounded they are in fact equal.

We set χω,x := χA1,x , where ω = ω(A1). Observe that the proof of [Martínez-
Pérez et al. 2016, Lemma 4.5(i)] also implies that ω(A1)= ω(C1), provided that
A ≤ C and C1 is the subset of those elements in C coming from elements in A1

(or, in other words, C1 = C ∩ω(A1)). As a consequence one easily sees that for
any B1 subset of a basis B with Xr ≤ B,

χA1,x = χB1,x ⇐⇒ ω(A1)= ω(B1),

implying that χω,x is well defined.
We will need a bit more of the notation from [Martínez-Pérez et al. 2016]. Let

ω ∈� and A1 ⊆ A ≥ Xr with ω = ω(A1). We set

‖ω‖ =

{
t if |A1| ≡ t mod d with 0< t ≤ d,
0 if ω =∅.

This does not depend on A1; see [Martínez-Pérez et al. 2016, Lemma 4.5(v)]. Now,
let ω1, ω2 ∈ � and A1, A2 ⊆ A ≥ Xr with ωi = ω(Ai ) for i = 1, 2. Observe that
the fact that our Cantor algebra is bounded means that we can always find such A1

and A2. If A1 ∩ A2 = ∅, we write ω1 ∧ω2 = ∅. Again, this is well defined, by
[Martínez-Pérez et al. 2016, Lemma 4.5(vi)].

Lemma 7.1. The following is a presentation of lim
−−→
(Ur (6), L):

〈(χω,x)ω∈�r∅,x∈L |R1,R2,R3〉,

where
R1 = {χ

−1
ω,xyχω,xχω,y | ω ∈�, x, y ∈ L},

R2 = {[χω,x , χω′,y] | ω,ω
′
∈�,ω∧ω′ =∅},

R3 = {χ
−1
ω,xχω1,xχω2,x | ω,ω1, ω2 ∈�,ω = ω1 ∪̇ ω2},

where ω1 ∪̇ ω2 denotes the disjoint union. Moreover Vr (6) acts by permutations
with finitely many orbits on this presentation.

Proof. As observed above, any χ ∈ lim
−−→
(Ur (6), L) is a product of elements of the

form χω,x for a suitable ω ∈� and x ∈ L . Let F denote the free group on the set
{χ̃ω,x | ω ∈�r∅, x ∈ L}. There is an epimorphism

F τ� lim
−−→
(Ur (6), L)

with τ(χ̃ω,x)= χω,x . Let G be the abstract group defined in the statement of the
result for the generators χ̃ω,x . It is immediate to verify that the epimorphism τ
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defined above induces an epimorphism from G to lim
−−→
(Ur (6), L) which we still

call τ . This follows since all relations inside G are easily verified to hold for the
images τ(χ̃ω,x). Assume that we have a word w̃ =w(χ̃ω1,x1, . . . , χ̃ωk ,xk ), for some
ω1, . . . , ωk ∈� and x1, . . . , xk ∈ L . Assume further that

1= τ(w̃)= τ(w(χ̃ω1,x1, . . . , χ̃ωk ,xk ))= w(τ(χ̃ω1,x1), . . . , τ (χ̃ωk ,xk )).

Let Xr ≤ A be a basis with subsets Ai ⊆ A such that ωi = Ai (L) for i = 1, . . . , k.
We now refine the set {A1, . . . , Ak} to a set {A′1, . . . , A′k′} of subsets of A such that
for all i, j ≤ k ′ either A′i ∩ A′j =∅ or A′i = A′j . By suitably applying the relations
in R3 to both the original word w(χ̃ω1,x1, . . . , χ̃ωk ,xk ) and its image

w := τ(w̃)= w(χω1,x1, . . . , χωk ,xk ),

we may rewrite each occurrence of χωi ,xi and χ̃ωi ,xi in terms of suitable new elements
τ(χ̃ω′j ,y j ) and χω′j ,y j for 1≤ j ≤ k ′, so that either ω′j ∧ω

′

i =∅ or ω′j = ω
′

i .
Reordering them so that ω1, . . . , ωu for 1 ≤ u ≤ k ′ are pairwise distinct and

applying the relations in R2 and R1 to group together the suitable products of
the y j ’s we obtain new words

w̃ ∼ w̃′ = χ̃ω′1,z1 · · · χ̃ω′u ,zu , w ∼ w′ = χω′1,z1 · · ·χω′u ,zu ,

where the ω′i ’s are pairwise disjoint.
If w′ ∼ 1, we must have zi = 1 for any 1 ≤ i ≤ u, by applying the word w′ to

an a ∈ Ai such that Ai (L)=ω′i. From R1 it is immediate to see that χ̃ω,1= 1 for any
ω ∈� so we also have w̃ ∼ w̃′ ∼ 1 and G gives a presentation of lim

−−→
(Ur (6), L).

By [Martínez-Pérez et al. 2016, Lemma 4.7], the group Vr (6) acts by permuta-
tions on�. Moreover, for any g ∈Vr (6), if ω,ω′ ∈� are such that ω∧ω′=∅, then
gω∧ gω′ =∅ and if ω= ω1∪ω2 for ω1, ω2 ∈�, then gω= gω1∪ gω2. Therefore
Vr (6) acts by permutations on this presentation. To prove the last statement, it
suffices to check the following:

Claim 1. The set of generators is Vr (6)-finite.

Claim 2. Each of the sets of relations R1,R2,R3 is Vr (6)-finite.

As the group L is finite, both claims follow from slight variations of the proof
of [Martínez-Pérez et al. 2016, Lemma 4.7]. For example, for Claim 2 for R2, it
suffices to check that whenever we have ω,ω′, ω̂, ω̂′ ∈� with

ω∧ω′ =∅, ω̂∧ ω̂′ =∅, ‖ω‖ = ‖ω̂‖ and ‖ω′‖ = ‖ω̂′‖,

then there is some g ∈ Vr (6) such that for any x ∈ L , we have χω̂,x = χ
g
ω,x and

χω̂′,x = χ
g
ω′,x . To get a suitable g, choose bases Xr ≤ A, Â so that for B, B ′ ⊆ A
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and B̂, B̂ ′ ⊆ Â, we have

ω = ω(B), ω′ = ω(B ′), ω̂ = ω(B̂), ω̂′ = ω(B̂ ′),

|A| = | Â|, |B| = |B̂|, |B ′| = |B̂ ′|.

The assumptions imply that B ∩ B ′ =∅= B̂ ∩ B̂ ′. So we may choose a g ∈ Vr (6)

with g A = Â, gB = B̂ and gB ′ = B̂ ′.
In a completely analogous way one proves that for ω,ω1, ω2, ω̂, ω̂1, ω̂2 ∈� with

ω = ω1 ∪ω2, ω̂ = ω̂1 ∪ ω̂2, ‖ω‖ = ‖ω̂‖, ‖ω1‖ = ‖ω̂1‖, ‖ω2‖ = ‖ω̂2‖,

there is some g ∈ Vr (6) such that for any x ∈ L ,

χω̂,x = χ
g
ω,x , χω̂1,x = χ

g
ω1,x and χω̂2,x = χ

g
ω2,x . �

Proposition 7.2. Assume that the group Vr (6) is finitely presented. Let Q ≤ Vr (6)

be a finite subgroup. Given a finite presentation of Vr (6), Lemma 7.1 together with
Theorem A.3 yield an explicit finite presentation of CVr (6)(Q).

Proof. By [Martínez-Pérez et al. 2016, Theorem 4.2], it suffices to construct an
explicit finite presentation of a group of the form

H = lim
−−→
(Ur (6), L)o Vr (6)

when L is an arbitrary finite group. Let Vr (6)= 〈Z | T 〉 be a finite presentation of
Vr (6) and let

lim
−−→
(Ur (6), L)= 〈Y | R〉

be the presentation constructed in Lemma 7.1. We need to verify the hypotheses of
Theorem A.3. In Lemma 7.1 we have already checked that the group Vr (6) acts
by permutations in this presentation and that there are only finitely many orbits
under that action. We may therefore choose Y0 ⊆ Y and R0 ⊆ R to be finite sets of
representatives of these orbits.

The argument in Section A1 thus implies that the group H has the presentation

〈Y0, Z | R̂0, T, [StabVr (6)(y), y], y ∈ Y0〉.

We can give explicit descriptions of possible choices for the sets Y0, R0. Set
Xr = {x1, . . . , xr } and let ωi = ω({x1, . . . , xi }) for i = 1, . . . , r . Then:

Y0 = {χωi ,z | 1≤ i ≤ r, z ∈ L}.

To describe R0, we are going to split it into three pairwise disjoint subsets
R0 = R1

0 ∪ R2
0 ∪ R3

0 , according to the three subsets of relations R1, R2 and R3 of
Lemma 7.1. The simplest one is R1

0 :

R1
0 = {χ

−1
ωi ,zyχωi ,zχωi ,y | 1≤ i ≤ r, z ∈ L}.
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For R2
0, R3

0 it is more convenient to fix a basis Xr ≤ A with |A| ≥ 2r . Then we
may choose

R2
0 = {[χω,z, χω′,z] | z ∈ L , ω = ω(A1), ω

′
= ω(A′1), A1, A′1 ⊆ A, A1 ∩ A′1 =∅},

R3
0 ={χ

−1
ω,zχω1,zχω2,z | z ∈ L , ω1=ω(A1), ω2=ω(A2), ω=ω1 ∪̇ω2, A1, A2⊆ A}.

Observe that these choices of R2
0 and R3

0 yield redundant presentations.
The previous presentation may not be finite because of all the relations needed

to form [StabVr (6)(y), y] where y ∈ Y0. Notice that g ∈ StabVr (6)(y) if and only
if g(ω) = ω where y = χω,z for some z ∈ L . By [Martínez-Pérez et al. 2016,
Lemma 4.7] and the assumption on Vr (6) we deduce that StabVr (6)(y) is finitely
generated by some generators µ1, . . . , µm .

Consider now the following m relations, which are a subset of the stabiliser
relations [StabVr (6)(y), y]:

(7) µiχω,zµ
−1
i = χω,z, i = 1, . . . ,m.

If g ∈ StabVr (6)(y), then g=w(µ1, . . . , µm) and the stabiliser relation gχω,zg−1
=

χω,z is thus obtained by starting from relation (7) for some i and then suitably
conjugating this relation to build the word w.

Therefore, by Lemmas A.1 and A.2, the group H has the finite presentation

〈Y0, Z | R̂0, T, [µi , y], i = 1, . . . ,m, y ∈ Y0〉,

where the elements µ1, . . . , µm are expressed as words in the generators Z . �

Appendix: The Burnside procedure

We shall now give an outline of the Burnside procedure used in the proof of
Proposition 7.2. As mentioned in the Introduction, we do not claim any originality
for this. For example, this procedure has been used, without proof, in [Guralnick
et al. 2011]. We are not aware of any place where a proof is presented. Hence we
include it here for completeness.

The goal is to find a small finite presentation of a group, in the cases where the
following procedure can be applied. The idea is to look for a possibly infinite, but
well-behaved, presentation of a group G and a group Q such that the action of Q
on the generators and relators of G cuts them down to a very small number. At a
later stage, the group Q will be assumed to be a subgroup of G and its action will
return a new smaller presentation.

A1. Preliminary lemmas. The beginning of this procedure is general and we only
require each of the groups G and Q to have a presentation, without any assumption
on them.
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Let G = 〈Y | R〉 and Q = 〈Z | T 〉 be groups. Let Q act on Y by permutations.
Notice that R⊆ F(Y ), where F(Y ) is the free group generated by Y, and observe that
Q also acts on F(Y ). We assume that Q(R)= R. Let Y0 be a set of representatives
for the Q-orbits in Y and R0 be a set of representatives for the Q-orbits in R. We
observe that R0 ⊆ F(Y ) = 〈 t (a0) | a0 ∈ Y0, t ∈ Q 〉, that is, we may express the
elements of R0 as products of the results of Q acting on elements of Y0. In the
special case that Q is a subgroup of G, we will be able to express elements in R0

as products of conjugates of elements in Y0 by elements in Q. Hence each element
of R0, seen as an element in G, can be written in more than one way and we fix an
expression of the type t1(a1) · · · tk(ak) for such elements. We then define the set
R̂0 ⊆ 〈ta0t−1

| a0 ∈ Y0, t ∈ Q〉 to be the set of fixed expressions for the elements
of R0, where we have replaced the action of Q on Y0 by the conjugation of elements.
That is, if t1(a1) · · · tk(ak) is a fixed expression in R0, the corresponding element
in R̂0 is t1a1t−1

1 · · · tkak t−1
k . The set R̂0 is thus a set of formal expressions which

will be used later to express relations in the groups.

Lemma A.1. Following the notation previously defined, we have

G o Q ∼= 〈Y0, Z | R̂0, T, [StabQ(y), y], y ∈ Y0〉,

where the semidirect product is given by the action of Q on G as follows: for all
g1, g2 ∈ G and t1, t2 ∈ Q, multiplication is given by

(g1, t1)(g2, t2)= (g1 · t1(g2), t1t2).

Proof. Let H be the group presented by 〈Y0, Z | R̂0, T, [StabQ(y), y], y ∈ Y0〉.
Define the group homomorphism ϕ : F(Y0 ∪ Z)→ G o Q by sending a0 ∈ Y0 to
(a0, 1) ∈ G o Q and c ∈ Z to (1, c) ∈ G o Q. By construction we see that

(∗) ϕ(t)ϕ(a0)ϕ(t)−1
= (t (a0), 1)

for any word t ∈ Q.

Claim 1. The map ϕ induces a homomorphism H→ G o Q, which we still call ϕ.

Proof. If d ∈ T is a relation in H, then d = c1 · · · ck , for some ci ∈ Z , and
ϕ(c1) · · ·ϕ(ck)= (1, 1). Let now b̂0 ∈ R̂0 be a relation in H, then

b̂0 = t1a1t−1
1 · · · tkak t−1

k ,

for some ai ∈ Y0 and ti ∈ Q. Moreover, by applying (∗), we get

k∏
i=1

ϕ(ti )ϕ(ai )ϕ(ti )−1
=

( k∏
i=1

ti (ai ), 1
)
= (1, 1).
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Finally let a0 ∈ Y0, t ∈ StabQ(a0). Thus we have, using (∗) again,

ϕ(t)ϕ(a0)ϕ(t)−1ϕ(a0)
−1
= (t (a0), 1)(a−1

0 , 1)= (1, 1).

Now we just apply von Dyck’s theorem. �

Claim 2. The map ϕ is surjective.

Proof. Any element (1, t)∈{1}×Q := {(1, s) | s ∈ Q} can be written as (1, c1 · · · ck)

for suitable ci ∈ Z and so ϕ(H) contains {1} × Q. We observe that any element
of G × {1} := {(h, 1) | h ∈ G} can be written as (t1(a1) · · · tk(ak), 1) for suitable
ai ∈ Y0 and ti ∈ Q. By arguing as in Claim 1 we have (g, 1) = ϕ(

∏k
i=1 ti ai t−1

i ).
Thus, ϕ(H)≥ 〈G×{1}, {1}× Q〉 = G o Q. �

Claim 3. The map ϕ is injective.

Proof. Any element of Y can be written as t (a0), for some a0 ∈Y0 and t ∈ Q. Define
Y ∗= {ta0t−1

| a0 ∈ Y0, t ∈ Q} to be the set of symbols of Y where we have replaced
the action of Q with the conjugation of elements. We notice that, if t (a0)= s(a0),
then t−1s ∈ StabQ(a0) and we thus define an equivalence relation on Y ∗ by writing
ta0t−1

∼ sa0s−1 if and only if t−1s ∈ StabQ(a0). We define Y := Y ∗/∼ to be the
collection of equivalence classes.

If a ∈ Y and a = t (a0), for some a0 ∈ Y0 and t ∈ Q, we define an element a of Y
by setting a = {sa0s−1

| t−1s ∈ StabQ(a0)}. With this notation, we observe that Q
acts on Y through

(s, a)→ s · a := sta0t−1s−1,

for some a0 ∈ Y0, t ∈ Q such that a = ta0t−1. Also, notice that the map ψ : Y → Y
sending a 7→ a is a Q-equivariant bijection, that is ψ(sa)= sψ(a)= s · a for all
s ∈ Q. Hence the action of Q on Y is equivalent to the action of Q on Y . For each
element a ∈ Y we can fix a representative ta0t−1

∈ F(Y0∪ Z) and we call the set of
representatives Ŷ . By construction, every element b̂0 ∈ R̂0 can be uniquely written
as b̂0 = t1a1t−1

1 · · · tkak t−1
k , so we define R0 ⊆ F(Y ) be the set of elements

t1a1t−1
1 · · · tkak t−1

k .

We then let R ⊆ F(Y ) be the set of all elements t t1a1t−1
1 t−1 · · · t tkak t−1

k t−1, for
any t ∈ Q.

With these definitions, it makes sense to say that the normal closure F(R)F(Y )

inside F(Y ) is isomorphic to F(R)F(Y ) inside F(Y ). Also notice that

F(Y )∼= F(Y ∗/∼)= 〈Y ∗ | R∼〉,

where R∼ is the set of all relations of the type ta0t−1
∼ sa0s−1 if and only if

t−1s ∈ StabQ(a0).
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Let w ∈ H be such that ϕ(w)= (1, 1). Let w = c1a1c2a2 · · · akck+1 for ai ∈ Y0

and ci ∈ 〈Z〉 and we rewrite w as

w = (c1a1c−1
1 )(c1c2a2c−1

2 c−1
1 ) · · · (c1c2 · · · ckakc−1

k · · · c
−1
1 )c1c2 · · · ckck+1.

Define ti = c1 · · · ci . Then, up to replacing ti with another suitable t ′i ∈ Q,
we can assume that ti ai t−1

i ∈ Ŷ . Hence we can write w = (t1a1t−1
1 · · · tkak t−1

k )tk+1

and, applying ϕ to the rewriting of w we get (1, 1)= (t1(a1) · · · tk(ak), tk+1).
Since tk+1 = 1 inside Q, we can use the relations of Q to rewrite tk+1 = 1

inside H. Similarly, since t1(a1) · · · tk(ak) = 1 inside G and since the normal
closure F(R)F(Y ) inside F(Y ) is isomorphic to F(R)F(Y ) inside F(Y ), we can use
the relations of G to rewrite t1a1t−1

1 · · · tkak t−1
k = 1 inside H. Therefore w = 1

in H and so ϕ is injective. �

The map ϕ is thus a group isomorphism and the proof of Lemma A.1 is complete.
�

The following result does not depend on the presentations of the relevant groups
and relies only on the definition of semidirect product.

Lemma A.2. Let G be a group and Q ≤ G. Let G o Q be the semidirect product
constructed using the action of Q on G by conjugation inside G. Then

G o Q ∼= G× Q.

Proof. Let H := G o Q with product given by (a, x)(b, y)= (axbx−1, xy). It is
clear that Q̃ = {(t−1, t) | t ∈ Q} is a subgroup of H and Q̃ ∼= Q. Since

(a, x)= (ax, 1)(x−1, x),

H is generated by G×{1} and Q̃. It is straightforward to verify that Q is normal
and so, since G×{1} is normal as well, we get GoQ∼= (G×{1})× Q̃∼=G×Q. �

A2. The Burnside procedure. We are now ready to explain the Burnside procedure.
We make two additional assumptions with respect to those in Section A1. We assume

(i) the presentation Q = 〈Z | T 〉 is finite,

(ii) the number of Q-orbits in Y is finite (and possibly very small, in practical
applications),

(iii) the number of Q-orbits in R is finite (and also possibly very small),

(iv) the stabilisers StabQ(y) are finitely generated, for y ∈ Y0.

Let G and Q be as defined in Lemma A.1, Q ≤ G and let Q act by conjugation
on G, then Lemmas A.1 and A.2 imply that

G× Q ∼= 〈Y0, Z | R̂0, T, [StabQ(y), y] for y ∈ Y0〉.
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We rewrite Z in terms of Y0 and then mod out Q. We also use the finite generation
of StabQ(y) to rewrite the stabiliser relations as conjugations. Therefore we obtain
the following theorem:

Theorem A.3 (Burnside procedure). Let G, Q be the groups defined in Lemma A.1.
Assume that

(i) Q ≤ G and Q acts by conjugation on G,

(ii) Q = 〈Z | T 〉 is finitely presented,

(iii) the number of Q-orbits in Y is finite,

(iv) the number of Q-orbits in R is finite,

(v) the stabilisers StabQ(y) are finitely generated, for y ∈ Y0.

Then there exists a finite presentation of G of the type

G =
〈
Y0, Z | R0, T, cyc−1

= y, for y ∈ Y0,

a generator c of StabQ(y), finitely many extra relations
〉
,

where the extra relations are obtained in the following way: there is a relation for
every element c ∈ Z and it has the form

c = word in conjugates of elements of Y0 by elements of Z .

A3. An application. The following example is taken from [Guralnick et al. 2011].
Recall the following presentation for the alternating group

Alt(n+ 2)= 〈x1, . . . , x p | (xi )
3, (xi x j )

2, i 6= j〉,

where xi can be realised as the 3-cycle (i n+1 n+2). Hence

Alt(7)= 〈x1, x2, x3, x4, x5 | (xi )
3, (xi x j )

2, i 6= j〉 := G.

On the other hand, it can be shown that

Alt(5)= 〈a, b | a5, b2, (ab)3〉 := Q,

where a can be realised as (1 2 3 4 5) and b = (2 3)(4 5). Let z := x1 = (1 6 7) and
observe that xi = zai−1

, for i = 1, . . . , 5. Now we check that

Y = {x1, . . . , x5}, Y0 = {z}, R = {(xi )
3, (xi x j )

2, i 6= j},

R0 = {z3, (zza)2}, Z = {a, b}, T = {a5, b2, (ab)3}

satisfy the conditions of Theorem A.3. Noting that {[StabQ(y), y] for y ∈ Y0} =

{[z, b], [z, (ba)a]}, we have

G× Q = 〈a, b, z | a5, b2, (ab)3, z3, (zza)2, [z, b], [z, (ba)a]〉.
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We can write a = w1(x1, . . . , x5) and b = w2(x1, . . . , x5), for suitable words
w1, w2 ∈ F(x1, . . . , x5) and then Theorem A.3 yields the following finite presenta-
tion for Alt(7):

Alt(7)=
〈
a, b, z | R0, T, [z, b], [z, (ba)a],

a−1w1(z, za, . . . , za4
), b−1w2(z, za, . . . , za4

)
〉
.
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