Pacific

Journal of Mathematics

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm

Matthias Aschenbrenner
Department of Mathematics University of California
Los Angeles, CA 90095-1555 matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Jiang-Hua Lu
Department of Mathematics The University of Hong Kong Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu
Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg
Sorin Popa
Department of Mathematics University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu
Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

CONGRUENCE SUBGROUPS AND SUPER-MODULAR CATEGORIES

Parsa Bonderson, Eric C. Rowell, Zhenghan Wang and Qing Zhang

Abstract

A super-modular category is a unitary premodular category with Müger center equivalent to the symmetric unitary category of super-vector spaces. Super-modular categories are important alternatives to modular categories as any unitary premodular category is the equivariantization of a either a modular or super-modular category. Physically, super-modular categories describe universal properties of quasiparticles in fermionic topological phases of matter. In general one does not have a representation of the modular group $\mathrm{SL}(2, \mathbb{Z})$ associated to a super-modular category, but it is possible to obtain a representation of the (index 3) θ-subgroup: $\Gamma_{\theta}<\operatorname{SL}(2, \mathbb{Z})$. We study the image of this representation and conjecture a super-modular analogue of the $\mathbf{N g}-$ Schauenburg congruence subgroup theorem for modular categories, namely that the kernel of the Γ_{θ} representation is a congruence subgroup. We prove this conjecture for any super-modular category that is a subcategory of modular category of twice its dimension, i.e., admitting a minimal modular extension. Conjecturally, every super-modular category admits (precisely 16) minimal modular extensions and our conjecture would be a consequence.

1. Introduction

A key part of the data for a modular category \mathcal{C} is the S and T matrices encoding the nondegeneracy of the braiding and the twist coefficients, respectively. We will denote by \tilde{S} the unnormalized matrix obtained as the invariants of the Hopf link so that $\tilde{S}_{0,0}=1$, while $S=\tilde{S} / D$ will denote the (unitary) normalized S-matrix where $D^{2}=\operatorname{dim}(\mathcal{C})$ is the categorical dimension and $D>0$. Later, we will use the same conventions for any premodular category (for which S may not be invertible). The diagonal matrix $T:=\theta_{i} \delta_{i, j}$ has finite order (Vafa's theorem, see [Bakalov and

[^0]Kirillov 2001]) for any premodular category. For a modular category the S and T matrices satisfy (see, e.g., [Bakalov and Kirillov 2001, Theorem 3.1.7]):
(1) $S^{2}=C$ where $C_{i, j}=\delta_{i, j^{*}}\left(\right.$ so $\left.S^{4}=C^{2}=I\right)$.
(2) $(S T)^{3}=\frac{D_{+}}{D} S^{2}$ where $D_{+}=\sum_{i} \tilde{S}_{0, i}^{2} \theta_{i}$.
(3) $T C=C T$.

These imply that from any modular category \mathcal{C} of rank r (i.e., with r isomorphism classes of simple objects) one obtains a projective unitary representation of the modular group $\rho: S L(2, \mathbb{Z}) \rightarrow \operatorname{PSU}(r)$ defined on generators by $\mathfrak{s}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \rightarrow S$ and $\mathfrak{t}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \rightarrow T$ composed with the canonical projection $\pi_{r}: \mathrm{U}(r) \rightarrow \mathrm{PSU}(r)$. By rescaling the S and T matrices, ρ may be lifted to a linear representation of $S L(2, \mathbb{Z})$, but these lifts are not unique. This representation has topological significance: one identifies the modular group with the mapping class group $\operatorname{Mod}\left(\Sigma_{1,0}\right)$ of the torus (\mathfrak{t} and $\mathfrak{s t}^{-1} \mathfrak{s}^{-1}$ correspond to Dehn twists about the meridian and parallel) and this projective representation is the action of the mapping class group on the Hilbert space associated to the torus by the modular functor obtained from \mathcal{C}.

A subgroup $H<\operatorname{SL}(2, \mathbb{Z})$ is called a congruence subgroup if H contains a principal congruence subgroup $\Gamma(n):=\{A \in \mathrm{SL}(2, \mathbb{Z}): A \equiv I(\bmod n)\}$ for some $n \geq 1$. Since $\Gamma(n)$ is the kernel of the reduction modulo n map $\operatorname{SL}(2, \mathbb{Z}) \rightarrow$ $\operatorname{SL}(2, \mathbb{Z} / n \mathbb{Z})$, any congruence subgroup has finite index. The level of a congruence subgroup H is the minimal n so that $\Gamma(n)<H$. More generally, for $G<\operatorname{SL}(2, \mathbb{Z})$ we say $H<G$ is a congruence subgroup if $G \cap \Gamma(n)<H$ with the level of H defined similarly.

The connection between topology and number theory found through the representation above is deepened by the following congruence subgroup theorem:

Theorem 1.1 [Ng and Schauenburg 2010]. Let \mathcal{C} be a modular category of rank r with T-matrix of order N. Then the projective representation $\rho: \mathrm{SL}(2, \mathbb{Z}) \rightarrow \mathrm{PSU}(r)$ has $\operatorname{ker}(\rho)$ a congruence subgroup of level N.

In particular the image of ρ factors over $\operatorname{SL}(2, \mathbb{Z} / N \mathbb{Z})$ and hence is a finite group. This fact has many important consequences: for example, it is related to rank-finiteness [Bruillard et al. 2016a] and can be used in classification problems [Bruillard et al. 2016b].

A super-modular category is a unitary ribbon fusion category whose Müger center is equivalent, as a unitary symmetric ribbon fusion category, to the category sVec of super-vector spaces (equipped with its unique structure as a unitary spherical symmetric fusion category). Super-modular categories (or slight variations) have been studied from several perspectives; see [Bonderson 2007; Davydov et al. 2013a; Bruillard et al. 2017; Lan et al. 2016] for a few examples. An algebraic motivation for studying these categories is the following: any unitary braided fusion category
is the equivariantization [Drinfeld et al. 2010] of either a modular or super-modular category (see [Sawin 2002, Theorem 2]). Physically, super-modular categories provide a framework for studying fermionic topological phases of matter [Bruillard et al. 2017]. Topological motivations include the study of spin 3-manifold invariants [Sawin 2002; Blanchet 2005; Blanchet and Masbaum 1996] and (3+1)-TQFTs [Walker and Wang 2012].

Remark. We restrict to unitary categories both for mathematical convenience and for their physical significance. On the other hand, there is a nonunitary version sVec^{-} of sVec: the underlying (non-Tannakian) symmetric fusion category is the same, but with the other possible spherical structure, which leads to negative dimensions. We could define super-modular categories more generally as premodular categories \mathcal{B} with Müger center equivalent to either of sVec or sVec^{-}. However, we do not know of any examples \mathcal{B} with $\mathcal{B}^{\prime} \cong \mathrm{sVec}^{-}$that are not simply of the form $\mathcal{C} \boxtimes \mathrm{sVec}^{-}$ for some modular category \mathcal{C} (A. Bruguières asked Rowell and Wang for such an example in 2016).

One interesting feature of super-modular categories \mathcal{B} is that their S and T matrices have tensor decompositions [Bonderson et al. 2013, Appendix; Bruillard et al. 2017, Theorem III.5]):

$$
S=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1 \tag{1-1}\\
1 & 1
\end{array}\right) \otimes \hat{S}, \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \otimes \hat{T},
$$

where \hat{S} is unitary and \hat{T} is a diagonal (unitary) matrix, depending on $r / 2-1$ sign choices. Two naive questions motivated by the above are whether \hat{S} and a choice of \hat{T} provide a (projective) representation of $\operatorname{SL}(2, \mathbb{Z})$, and whether the group generated by \hat{S} and a choice of \hat{T} is finite. Of course if $\mathcal{B}=\mathrm{sVec} \boxtimes \mathcal{D}$ for some modular category \mathcal{D} (split super-modular) then the answer to both is "yes". More generally, as Example 2.1 below illustrates, the answer to both questions is "no".

The physical and topological applications of super-modular categories motivate a more refined question as follows. The consideration of fermions on a torus [AlvarezGaumé et al. 1986] leads to the study of spin structures on the torus $\Sigma_{1,0}$: there are three even spin structures $(A, A),(A, P),(P, A)$ and one odd spin structure (P, P), where A, P denote antiperiodic and periodic boundary conditions. The full mapping class group $\operatorname{Mod}\left(\Sigma_{1,0}\right)=\operatorname{SL}(2, \mathbb{Z})$ permutes the even spin structures: \mathfrak{s} interchanges (P, A) and (A, P), and preserves (A, A), whereas \mathfrak{t} interchanges (A, A) and (P, A) and preserves (A, P). Note that both \mathfrak{s} and \mathfrak{t}^{2} preserve (A, A), so that the index 3 subgroup $\Gamma_{\theta}:=\left\langle\mathfrak{s}, \mathrm{t}^{2}\right\rangle<\operatorname{SL}(2, \mathbb{Z})$ is the spin mapping class group of the torus equipped with spin structure (A, A). The spin mapping class group of the torus with spin structure (A, P) or (P, A) is similarly generated by \mathfrak{s}^{2} and \mathfrak{t}, which is projectively isomorphic to \mathbb{Z}. On the other hand, Γ_{θ} is
projectively the free product of $\mathbb{Z} / 2 \mathbb{Z}$ with \mathbb{Z} [Rademacher 1929]. Now the matrix \hat{T}^{2} is unambiguously defined for any super-modular category \mathcal{B}, and in [Bruillard et al. 2017, Theorem II.7] it is shown that $\mathfrak{s} \rightarrow \hat{S}$ and $\mathfrak{t}^{2} \rightarrow \hat{T}^{2}$ define a projective representation $\hat{\rho}$ of Γ_{θ}. We propose the following:
Conjecture 1.2. Let \mathcal{B} be a super-modular category of rank $2 k$ and \hat{S} and \hat{T}^{2} the corresponding matrices as in (1-1). Then the kernel of the projective representation $\hat{\rho}: \Gamma_{\theta} \rightarrow \operatorname{PSU}(k)$ given by $\hat{\rho}(\mathfrak{s})=\pi_{k}(\hat{S})$ and $\hat{\rho}\left(\mathfrak{t}^{2}\right)=\pi_{k}\left(\hat{T}^{2}\right)$ is a congruence subgroup.

In particular if this conjecture holds then $\hat{\rho}\left(\Gamma_{\theta}\right)$ is finite. We do not know what to expect the level of ker $\hat{\rho}$ to be (in terms of, say, the order of \hat{T}^{2}), but we provide some examples below.

An important outstanding conjecture [Davydov et al. 2013b, Question 5.15; Bruillard et al. 2017, Conjecture III.9; Müger 2003, Conjecture 5.2] is that every super-modular category \mathcal{B} has a minimal modular extension, that is, \mathcal{B} can be embedded in a modular category \mathcal{C} of dimension $\operatorname{dim}(\mathcal{C})=2 \operatorname{dim}(\mathcal{B})$. One may characterize such \mathcal{C} : they are called spin modular categories [Beliakova et al. 2017]; see Section 3A below. Our main result proves Conjecture 1.2 for super-modular categories admitting minimal modular extensions.

2. Preliminaries

2A. Super-modular categories. Though one may always define an S-matrix for any ribbon fusion category \mathcal{B}, it may be degenerate. This failure of modularity is encoded in the subcategory of transparent objects called the Müger center \mathcal{B}^{\prime}. Here an object X is called transparent if all the double braidings with X are trivial:

$$
c_{Y, X} c_{X, Y}=\operatorname{Id}_{X \otimes Y} .
$$

By Proposition 1.1 of [Bruguières 2000], the simple objects in \mathcal{B}^{\prime} are those X with $\tilde{S}_{X, Y}=d_{X} d_{Y}$ for all simple Y, where $d_{Y}=\operatorname{dim}(Y)=\tilde{S}_{1, Y}$ is the categorical dimension of the object Y. The Müger center is obviously symmetric, that is, $c_{Y, X} c_{X, Y}=\mathrm{Id}_{X \otimes Y}$ for all $X, Y \in \mathcal{B}^{\prime}$. Symmetric fusion categories have been classified by Deligne [1990], in terms of representations of supergroups. In the case that $\mathcal{B}^{\prime} \cong \operatorname{Rep}(G)$ (i.e., is Tannakian), the modularization (de-equivariantization) procedure of Bruguières [2000] and Müger [2004] yields a modular category \mathcal{B}_{G} of dimension $\operatorname{dim}(\mathcal{B}) /|G|$. Otherwise, by taking a maximal Tannakian subcategory $\operatorname{Rep}(G) \subset \mathcal{B}^{\prime}$, the deequivariantization \mathcal{B}_{G} has Müger center $\left(\mathcal{B}_{G}\right)^{\prime} \cong \mathrm{sVec}$, the symmetric fusion category of super-vector spaces. Generally, a braided fusion category \mathcal{B} with $\mathcal{B}^{\prime} \cong \mathrm{sVec}$ as symmetric fusion categories is called slightly degenerate [Drinfeld et al. 2010].

The symmetric fusion category sVec has a unique spherical structure compatible with unitarity and has S - and T-matrices: $S_{\mathrm{sVec}}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and $T_{\mathrm{sVec}}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

From this point on we will assume that all our categories are unitary, so that sVec is a unitary symmetric fusion category. A unitary slightly degenerate ribbon category will be called super-modular. In other terminology, we say \mathcal{B} is supermodular if its Müger center is generated by a fermion, that is, an object ψ with $\psi^{\otimes 2} \cong 1$ and $\theta_{\psi}=-1$.

Equation (1-1) shows that the S and T matrices of any super-modular category can be expressed as (Kronecker) tensor products: $S=S_{\mathrm{sVec}} \otimes \hat{S}$ and $T=T_{\mathrm{sVec}} \otimes \hat{T}$ with \hat{S} uniquely determined and \hat{T} determined by some sign choices. The projective group generated by \hat{S} and \hat{T} may be infinite for all choices of \hat{T} as the following example illustrates:

Example 2.1. Consider the modular category $\operatorname{SU}(2)_{6}$. The label set is

$$
I=\{0,1,2,3,4,5,6\} .
$$

The subcategory $\operatorname{PSU}(2)_{6}$ is generated by four simple objects with even labels: $X_{0}=\mathbf{1}, X_{2}, X_{4}, X_{6}$. We have

$$
\hat{S}=\frac{1}{\sqrt{4+2 \sqrt{2}}}\left(\begin{array}{cc}
1 & 1+\sqrt{2} \\
1+\sqrt{2} & -1
\end{array}\right) \quad \text { and } \quad \hat{T}=\left(\begin{array}{cc}
1 & 0 \\
0 & \pm i
\end{array}\right) .
$$

For either choice of \hat{T} the eigenvalues of $\hat{S} \hat{T}$ are not roots of unity: one checks that they satisfy the irreducible polynomial $x^{16}-x^{12}+\frac{1}{4} x^{8}-x^{4}+1$, which has nonabelian Galois group and is not monic over \mathbb{Z}.

2B. The $\boldsymbol{\theta}$-subgroup of $\mathbf{S L}(\mathbf{2}, \mathbb{Z})$. The index 3 subgroup $\Gamma_{\theta}<\operatorname{SL}(2, \mathbb{Z})$ generated by \mathfrak{s} and \mathfrak{t}^{2} has a uniform description (see, e.g., [Köhler 1988]):

$$
\Gamma_{\theta}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z}): a c \equiv b d \equiv 0(\bmod 2)\right\} .
$$

The notation Γ_{θ} comes from the fact that Jacobi's θ series $\theta(z):=\sum_{n=-\infty}^{\infty} e^{n^{2} \pi \mathrm{i} z}$ is a modular form of weight $\frac{1}{2}$ on Γ_{θ}. Moreover, Γ_{θ} is isomorphic to $\Gamma_{0}(2)$, the Hecke congruence subgroup of level 2 defined as those matrices in $\operatorname{SL}(2, \mathbb{Z})$ that are upper triangular modulo 2 , and $\Gamma(2)$ is a subgroup of both $\Gamma_{0}(2)$ and Γ_{θ}. In particular, $\Gamma_{0}(2)$ and Γ_{θ} are distinct, yet isomorphic, congruence subgroups of level 2. An explicit isomorphism $\vartheta: \Gamma_{\theta} \rightarrow \Gamma_{0}(2)$ is given by $\vartheta(\mathfrak{g})=M \mathfrak{g} M^{-1}$ where $M=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$. This can be verified directly, via:

$$
M\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) M^{-1}=\left(\begin{array}{cc}
a+c & \frac{d+b-a-c}{2} \\
2 c & d-c
\end{array}\right)
$$

Observe that $\vartheta(\Gamma(n))=\Gamma(n)$ for any n, and for n even $\Gamma(n) \triangleleft \Gamma_{\theta}$. In particular, we see that $\Gamma_{\theta} / \Gamma(n)<\operatorname{SL}(2, \mathbb{Z}) / \Gamma(n)$ is isomorphic to an index 3 subgroup of $\operatorname{SL}(2, \mathbb{Z} / n \mathbb{Z})$ that is not normal. Suppose $\varphi: \Gamma_{\theta} \rightarrow H$ has a kernel which is a
congruence subgroup, i.e., $\Gamma(n)<\operatorname{ker}(\varphi)$. The congruence level of $\operatorname{ker}(\varphi)$, i.e., the minimal n with $\Gamma(n)<\operatorname{ker}(\varphi)$, is the minimal n so that $\Gamma_{\theta} / \Gamma(n) \rightarrow \varphi\left(\Gamma_{\theta}\right)$. The following provides a characterization of such quotients:

Lemma 2.2. Suppose that $n=2^{k} q$ with $k \geq 1$ and q odd. Denote by P_{k} a 2-Sylow subgroup of $\mathrm{SL}\left(2, \mathbb{Z} / 2^{k} \mathbb{Z}\right)$. Then,

$$
\Gamma_{\theta} / \Gamma(n) \cong P_{k} \times \operatorname{SL}(2, \mathbb{Z} / q \mathbb{Z})
$$

Proof. By the Chinese remainder theorem, nonnormal index 3 subgroups of

$$
\mathrm{SL}(2, \mathbb{Z} / n \mathbb{Z}) \cong \prod_{p \mid n} \mathrm{SL}\left(2, \mathbb{Z} / p^{\ell_{p}} \mathbb{Z}\right)
$$

correspond to nonnormal index 3 subgroups of $\operatorname{SL}\left(2, \mathbb{Z} / p^{\ell_{p}} \mathbb{Z}\right)$ where $n=\prod_{p \mid n} p^{\ell_{p}}$ is the prime factorization of n. Any 2 -Sylow subgroup of $\operatorname{SL}\left(2, \mathbb{Z} / 2^{k} \mathbb{Z}\right)$ has index 3 and is not normal (since reduction modulo 2 gives a surjection to $\left.\operatorname{SL}(2, \mathbb{Z} / 2 \mathbb{Z}) \cong \mathfrak{S}_{3}\right)$ so it is enough to show that this fails for $\operatorname{SL}\left(2, \mathbb{Z} / p^{k} \mathbb{Z}\right)$ with $p>2$.

In general, if $H<G$ is a nonnormal subgroup of index 3 then the (transitive) left action of G on the coset space G / H provides a homomorphism to the symmetric group on three letters, i.e., $\phi: G \rightarrow \mathfrak{S}_{3}$. If $\phi(G)=\mathfrak{A}_{3}$ (the alternating group on three letters) then we would have $\operatorname{ker}(\phi)=H \triangleleft G$. Thus $\phi(G)=\mathfrak{S}_{3}$, so that any such group G must have an irreducible 2-dimensional representation with character values $2,-1,0$.

By [Nobs 1976; Eholzer 1995], we see that for $p>2$, the groups $\operatorname{SL}\left(2, \mathbb{Z} / p^{k} \mathbb{Z}\right)$ only have 2 -dimensional irreducible representations for $p=3,5$, and each of these representations factor over the reduction modulo p map $\operatorname{SL}\left(2, \mathbb{Z} / p^{k} \mathbb{Z}\right) \rightarrow$ $\operatorname{SL}(2, \mathbb{Z} / p \mathbb{Z})$. By inspection neither $\operatorname{SL}(2, \mathbb{Z} / 3 \mathbb{Z})$ nor $\operatorname{SL}(2, \mathbb{Z} / 5 \mathbb{Z})$ have \mathfrak{S}_{3} as quotients.

3. Main results

In this section we prove Conjecture 1.2 for any super-modular category that admits a minimal (spin) modular extension.

3A. Spin modular categories. A spin modular category \mathcal{C} is a modular category with a (chosen) fermion. Let \mathcal{C} be a spin modular category, with fermion ψ, (unnormalized) S-matrix \tilde{S} and T-matrix T. Proposition II. 3 of [Bruillard et al. 2017] provides a number of useful symmetries of \tilde{S} and T :
(1) $\tilde{S}_{\psi, \alpha}=\epsilon_{\alpha} d_{\alpha}$, where $\epsilon_{\alpha}= \pm 1$ and $\epsilon_{\psi}=1$.
(2) $\theta_{\psi \alpha}=-\epsilon_{\alpha} \theta_{\alpha}$.
(3) $\tilde{S}_{\psi \alpha, \beta}=\epsilon_{\beta} \tilde{S}_{\alpha, \beta}$.

We have a canonical $\mathbb{Z} / 2 \mathbb{Z}$-grading $\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ with simple objects $X \in \mathcal{C}_{0}$ if $\epsilon_{X}=1$
and $X \in \mathcal{C}_{1}$ when $\epsilon_{X}=-1$. The trivial component \mathcal{C}_{0} is a super-modular category, since $\mathcal{C}_{0}^{\prime}=\langle\psi\rangle \cong$ sVec.

Since $\theta_{X}=-\epsilon_{X} \theta_{\psi X}$ it is clear that $\psi X \neq X$ for $X \in \mathcal{\mathcal { C } _ { 0 }}$. However, objects in \mathcal{C}_{1} may be fixed by $-\otimes \psi$ or not. This provides another canonical decomposition $\mathcal{C}_{1}=\mathcal{C}_{v} \oplus \mathcal{C}_{\sigma}$ as abelian categories, where a simple object $X \in \mathcal{C}_{v} \subset \mathcal{C}_{1}$ if $X \psi \not \approx X$ and $X \in \mathcal{C}_{\sigma} \subset \mathcal{C}_{1}$ if $X \psi \cong X$. Finally, using the action of $-\otimes \psi$ we make a (noncanonical) decomposition of $\mathcal{C}_{0}=\breve{\mathcal{C}}_{0} \oplus \psi \breve{\mathcal{C}}_{0}$ and $\mathcal{C}_{v}=\breve{\mathcal{C}}_{v} \oplus \psi \breve{\mathcal{C}}_{v}$ so that when $X \in \breve{\mathcal{C}}_{0}$ we have $X \psi \in \psi \breve{\mathcal{C}}_{0}$ and similarly for \mathcal{C}_{v}. Notice that for $X \in \mathcal{C}_{0}$ we have $X^{*} \not \nexists \psi \otimes X$ since $\theta_{X}=\theta_{X^{*}}$, so that we may ensure X and X^{*} are both in $\breve{\mathcal{C}}_{0}$ or both in $\psi \breve{\mathcal{C}}_{0}$. On the other hand, for $Y \in \mathcal{C}_{v}$ it is possible that $X^{*} \cong \psi \otimes X$ - for example, this occurs for $\mathrm{SO}(2)_{1}$.

We choose an ordered basis

$$
\Pi=\Pi_{0} \sqcup \psi \Pi_{0} \sqcup \Pi_{v} \sqcup \psi \Pi_{v} \sqcup \Pi_{\sigma}
$$

for the Grothendieck ring of \mathcal{C} that is compatible with the above partition $\mathcal{C}=$ $\breve{\mathcal{C}}_{0} \oplus \psi \breve{\mathcal{C}}_{0} \oplus \breve{\mathcal{C}}_{v} \oplus \psi \breve{\mathcal{C}}_{v} \oplus \mathcal{C}_{\sigma}$. Using [Bruillard et al. 2017, Proposition II.3] we have the block matrix decomposition for the S and T matrices:

$$
S=\left(\begin{array}{crrrr}
\frac{1}{2} \hat{S} & \frac{1}{2} \hat{S} & A & A & X \\
\frac{1}{2} \hat{S} & \frac{1}{2} \hat{S} & -A & -A & -X \\
A^{T} & -A^{T} & B & -B & 0 \\
A^{T} & -A^{T} & -B & B & 0 \\
X^{T} & -X^{T} & 0 & 0 & 0
\end{array}\right) \quad T=\left(\begin{array}{ccccc}
\hat{T} & 0 & 0 & 0 & 0 \\
0 & -\hat{T} & 0 & 0 & 0 \\
0 & 0 & \hat{T}_{v} & 0 & 0 \\
0 & 0 & 0 & \hat{T}_{v} & 0 \\
0 & 0 & 0 & 0 & T_{\sigma}
\end{array}\right) .
$$

Here B and \hat{S} are symmetric matrices, and each of \hat{T}, \hat{T}_{v} and T_{σ} are diagonal matrices.

Now consider the following ordered partitioned basis:
(1) $\Pi_{0}^{+}:=\left\{X_{i}+\psi X_{i}: X_{i} \in \Pi_{0}\right\}$,
(2) $\Pi_{0}^{-}:=\left\{X_{i}-\psi X_{i}: X_{i} \in \Pi_{0}\right\}$,
(3) $\Pi_{v}^{+}:=\left\{Y_{i}+\psi Y_{i}: Y_{i} \in \Pi_{v}\right\}$,
(4) $\Pi_{\sigma}:=\left\{Z_{i} \in \Pi_{\sigma}\right\}$ and
(5) $\Pi_{v}^{-}:=\left\{Y_{i}-\psi Y_{i}: Y_{i} \in \Pi_{v}\right\}$.

With respect to this partitioned basis, the S and T matrices have the block form:

$$
S^{\prime}=\left(\begin{array}{ccccc}
\hat{S} & 0 & 0 & 0 & 0 \\
0 & 0 & 2 A & X & 0 \\
0 & 2 A^{T} & 0 & 0 & 0 \\
0 & 2 X^{T} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 B
\end{array}\right) \quad T^{\prime}=\left(\begin{array}{ccccc}
0 & \hat{T} & 0 & 0 & 0 \\
\hat{T} & 0 & 0 & 0 & 0 \\
0 & 0 & \hat{T}_{v} & 0 & 0 \\
0 & 0 & 0 & T_{\sigma} & 0 \\
0 & 0 & 0 & 0 & \hat{T}_{v}
\end{array}\right) .
$$

From this choice of basis one sees that the representation ρ restricted to $\Gamma_{\theta}=\left\langle\mathfrak{s}, \mathfrak{t}^{2}\right\rangle$ has three invariant (projective) subspaces, spanned by $\Pi_{0}^{+}, \Pi_{0}^{-} \cup \Pi_{v}^{+} \cup \Pi_{\sigma}$ and Π_{v}^{-}, respectively. In particular, we have a surjection $\rho\left(\Gamma_{\theta}\right) \rightarrow \hat{\rho}\left(\Gamma_{\theta}\right)$, mapping the image of S in $\operatorname{PSU}(|\Pi|)$ to the image of \hat{S} in $\operatorname{PSU}\left(\left|\Pi_{0}^{+}\right|\right)$. We can now prove:
Theorem 3.1. Suppose that \mathcal{B} is a super-modular category with minimal modular extension \mathcal{C} so that $\mathcal{B}=\mathcal{C}_{0}$. Assume further that the T-matrix of \mathcal{C} has order N. Then $\hat{\rho}: \Gamma_{\theta} \rightarrow \operatorname{PSU}(k)$ has $\operatorname{ker}(\hat{\rho})$ which is a congruence subgroup of level at most N.
Proof. Let S and T be the S-matrix and T-matrix of \mathcal{C}. Consider the projective representation ρ of $\operatorname{SL}(2, \mathbb{Z})$ defined by $\rho(\mathfrak{s})=S$ and $\rho(\mathfrak{t})=T$. By Theorem 1.1, $\operatorname{ker}(\rho)$ is a congruence subgroup of level N, i.e., $\Gamma(N)<\operatorname{ker}(\rho)$. Now the restriction of $\rho_{\mid \Gamma_{\theta}}$ to Γ_{θ} has

$$
\operatorname{ker}\left(\rho_{\mid \Gamma_{\theta}}\right)=\operatorname{ker}(\rho) \cap \Gamma_{\theta} \supset \Gamma(N) \cap \Gamma_{\theta} .
$$

However, since \mathcal{C} contains a fermion N is even, so $\Gamma(N)<\Gamma(2)<\Gamma_{\theta}$ hence $\Gamma(N) \cap \Gamma_{\theta}=\Gamma(N)$. It follows that $\Gamma(N)<\operatorname{ker}\left(\rho_{\mid \Gamma_{\theta}}\right)$. The discussion above now implies $\Gamma(N)<\operatorname{ker}\left(\rho_{\mid \Gamma_{\theta}}\right)<\operatorname{ker}(\hat{\rho})$ as we have a surjection $\rho\left(\Gamma_{\theta}\right) \rightarrow \hat{\rho}\left(\Gamma_{\theta}\right)$. Thus, we have shown that $\operatorname{ker}(\hat{\rho})$ is a congruence subgroup of level at most N, and in particular, $\hat{\rho}$ has finite image.

3B. Further questions. The charge conjugation matrix C in the basis above has the form $C_{i, j}^{\prime}= \pm \delta_{i, j^{*}}$. Since we have arranged that $X_{i} \in \Pi_{0}$ implies $X_{i}^{*} \in \Pi_{0}$, $C_{i, j}^{\prime}=-1$ can only occur for $i=j \in \Pi_{v}^{-}$: if $(W-\psi W)^{*}=-(W-\psi W)$ for some simple object W, then $W^{*}=\psi W$. We see that this can only happen if $W \in \mathcal{C}_{v}$ by comparing twists. Under this change of basis, we have

$$
\left(S^{\prime}\right)^{2}=\operatorname{dim}(\mathcal{C}) C^{\prime} \quad \text { and } \quad\left(S^{\prime} T^{\prime}\right)^{3}=\frac{D_{+}}{D}\left(S^{\prime}\right)^{2} .
$$

It would be interesting to explore the extra relations among the various submatrices of S^{\prime} and T^{\prime}.

The 16 spin modular categories of dimension 4 are of the form $\mathrm{SO}(n)_{1}$ (where $\mathrm{SO}(n)_{1} \cong \mathrm{SO}(m)_{1}$ if and only if $\left.n \cong m(\bmod 16)\right)$. For n odd $\operatorname{SO}(n)_{1}$ has rank 3 whereas for n even $\operatorname{SO}(n)_{1}$ has rank 4 . For example, the Ising modular category corresponds to $n=1$ and $\operatorname{SO}(2)_{1}$ has fusion rules like the group \mathbb{Z}_{4}. For any modular category \mathcal{D} and $1 \leq n \leq 16$ the spin modular category $\mathrm{SO}(n)_{1} \boxtimes \mathcal{D}$ with fermion $(\psi, \mathbf{1})$ has either $\mathcal{C}_{\sigma}=\varnothing$ or $\mathcal{C}_{v}=\varnothing$. An interesting problem is to classify spin modular categories with either $\mathcal{C}_{\sigma}=\varnothing$ or $\mathcal{C}_{v}=\varnothing$, particularly those with no \boxtimes-factorization.

4. A case study

Our result gives an upper bound on the level of $\operatorname{ker}(\hat{\rho})$ for super-modular categories \mathcal{B} with minimal modular extensions \mathcal{C} : the level of $\operatorname{ker}(\hat{\rho})$ is at most the order of
the T-matrix of \mathcal{C}. The actual level can be lower: for a trivial example we consider the super-modular category sVec. In this case $\hat{S}=\hat{T}^{2}=I$ so the level $\operatorname{ker}(\hat{\rho})$ is 1 , yet the order of the T matrix for its (sixteen) minimal modular extensions can be $2,4,8$ or 16 . More generally for any split super-modular category $\mathcal{B}=$ $\mathcal{D} \boxtimes \mathrm{sVec} \subset \mathcal{D} \boxtimes \operatorname{SO}(n)_{1}=\mathcal{C}$ (with fermion $(\mathbf{1}, \psi)$) the ratio of the levels of the kernels of the $\operatorname{SL}(2, \mathbb{Z})$ (for \mathcal{C}) and Γ_{θ} (for \mathcal{B}, i.e., \mathcal{D}) representations can be 2^{k} for $0 \leq k \leq 4$.

To gain further insight we consider a family of nonsplit super-modular categories obtained from the spin modular category (see [Bruillard et al. 2017, Lemma III.7]) $\mathrm{SU}(2)_{4 m+2}$. This has modular data:

$$
\tilde{S}_{i, j}:=\frac{\sin \frac{(i+1)(j+1) \pi}{4 m+4}}{\sin \frac{\pi}{4 m+4}}, \quad T_{j, j}:=e^{\pi \mathrm{i}\left(j^{2}+2 j\right) /(8 m+8)},
$$

where $0 \leq i, j \leq 4 m+2$. Since T has order $16(m+1)$, Theorem 1.1 implies that the image of the projective representation $\rho: \operatorname{SL}(2, \mathbb{Z}) \rightarrow \operatorname{PSU}(4 m+3)$ defined via the normalized S-matrix S and T factors over $\operatorname{SL}(2, \mathbb{Z} / N \mathbb{Z})$ where $N=16(m+1)$.

The super-modular subcategory $\operatorname{PSU}(2)_{4 m+2}$ has simple objects labeled by even i, j. The factorization (1-1) yields

$$
\begin{equation*}
\hat{S}_{i, j}=\frac{\sin \frac{(2 i+1)(2 j+1) \pi}{4 m+4}}{\Xi \sin \frac{\pi}{4 m+4}}, \quad \hat{T}_{j, j}=e^{\pi \mathrm{i}\left(j^{2}+j\right) /(2 m+2)} \tag{4-1}
\end{equation*}
$$

for $0 \leq i, j \leq m$, where

$$
\Xi=\sqrt{\frac{m+1}{2}} / \sin \frac{\pi}{4 m+4} .
$$

In [Bruillard et al. 2017] all 16 minimal modular extensions of $\operatorname{PSU}(2)_{4 m+2}$ are explicitly constructed and each has T-matrix of order $16(m+1)$ so that the kernel of the corresponding projective $\operatorname{SL}(2, \mathbb{Z})$ representation is a congruence subgroup of level $16(m+1)$. Our computations suggest the following conjecture, with cases verified using Magma indicated in parentheses. A sample of the results of these computations are found in Table 1. The notation $\langle n, k\rangle$ indicates the k th group of order n in the GAP library of small groups [Besche et al. 2002]. In the last column, we sometimes give a slightly different description than is indicated in part (f) below. We include the groups $\hat{\rho}\left(\Gamma_{\theta}\right), A_{m}^{\prime}:=\left[A_{m}, A_{m}\right]$ and $\bar{A}_{m}:=A_{m} / Z\left(A_{m}\right)$. As $\hat{\rho}$ is not necessarily irreducible, we have $\hat{\rho}\left(\Gamma_{\theta}\right) \rightarrow \bar{A}_{m}$. The congruence level of ker $\hat{\rho}$ is computed using Lemma 2.2.

m	$\left\|\bar{A}_{m}\right\|$	\bar{A}_{m}	A_{m}^{\prime}	$\hat{\rho}\left(\Gamma_{\theta}\right)$
1	2^{4}	D_{16}	\mathbb{Z}_{8}	$D_{16}=A_{1}^{\prime} \rtimes \mathbb{Z}_{2}$
2	12	$\operatorname{PSL}\left(2, \mathbb{Z}_{3}\right)$	\boldsymbol{Q}_{8}	$\operatorname{SL}\left(2, \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}$
3	2^{7}	$\langle 128,71\rangle$	$\langle 64,184\rangle$	$\langle 128,71\rangle$
4	60	$\operatorname{PSL}\left(2, \mathbb{Z}_{5}\right)$	$\operatorname{SL}\left(2, \mathbb{Z}_{5}\right)$	$A_{4}^{\prime} \rtimes \mathbb{Z}_{2}$
5	$2^{4} \cdot 12$	$D_{16} \times \operatorname{PSL}\left(2, \mathbb{Z}_{3}\right)$	$\mathbb{Z}_{8} \times \boldsymbol{Q}_{8}$	$\left(\mathbb{Z}_{8} \times \operatorname{SL}\left(2, \mathbb{Z}_{3}\right)\right) \rtimes \mathbb{Z}_{2}$
6	168	$\operatorname{PSL}\left(2, \mathbb{Z}_{7}\right)$	$\operatorname{SL}\left(2, \mathbb{Z}_{7}\right)$	$A_{6}^{\prime} \rtimes \mathbb{Z}_{2}$
7	2^{10}	\bar{A}_{7}	$\|\cdot\|=2^{9}$	\bar{A}_{7}
8	324	$\operatorname{PSL}\left(2, \mathbb{Z}_{9}\right)$	$\left(\mathbb{Z}_{3}\right)^{3} \rtimes \boldsymbol{Q}_{8}$	$\left(A_{8}^{\prime} \rtimes \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}$
9	$2^{4} \cdot 60$	$D_{16} \times \operatorname{PSL}\left(2, \mathbb{Z}_{5}\right)$	$\mathbb{Z}_{8} \times \operatorname{SL}\left(2, \mathbb{Z}_{5}\right)$	$A_{9}^{\prime} \rtimes \mathbb{Z}_{2}$
10	660	$\operatorname{PSL}\left(2, \mathbb{Z}_{11}\right)$	$\operatorname{SL}\left(2, \mathbb{Z}_{11}\right)$	$A_{10}^{\prime} \rtimes \mathbb{Z}_{2}$
11	$2^{7} \cdot 12$	$\langle 128,71\rangle \times \operatorname{PSL}\left(2, \mathbb{Z}_{3}\right)$	$\langle 64,184\rangle \times \boldsymbol{Q}_{8}$	$\mathrm{SL}\left(2, \mathbb{Z}_{3}\right) \rtimes\langle 128,71\rangle$
12	1092	$\operatorname{PSL}\left(2, \mathbb{Z}_{13}\right)$	$\operatorname{SL}\left(2, \mathbb{Z}_{13}\right)$	$\operatorname{SL}\left(2, \mathbb{Z}_{13}\right) \rtimes \mathbb{Z}_{2}$
13	$2^{4} \cdot 168$	$D_{16} \times \operatorname{PSL}\left(2, \mathbb{Z}_{7}\right)$	$\mathbb{Z}_{8} \times \operatorname{SL}\left(2, \mathbb{Z}_{7}\right)$	$A_{13}^{\prime} \rtimes \mathbb{Z}_{2}$
14	720	$\operatorname{PSL}\left(2, \mathbb{Z}_{15}\right)$	$\boldsymbol{Q}_{8} \times \operatorname{SL}\left(2, \mathbb{Z}_{5}\right)$	$\operatorname{SL}\left(2, \mathbb{Z}_{15}\right) \rtimes \mathbb{Z}_{2}$

Table 1. A sample of $\operatorname{PSU}(2)_{4 k+2}$ results.

Conjecture 4.1. Let A_{m} be the subgroup of $\operatorname{SU}(k)$ generated by \hat{S} and \hat{T}^{2} associated with $\operatorname{PSU}(2)_{4 m+2}$, the quotient $\bar{A}_{m}:=A_{m} / Z\left(A_{m}\right)$ and the commutator subgroup $A_{m}^{\prime}:=\left[A_{m}, A_{m}\right]$. Then:
(a) When $m+1=q$ is odd, $\bar{A}_{m}=\bar{A}_{q-1} \cong \operatorname{PSL}(2, \mathbb{Z} / q \mathbb{Z})$ (verified for $\left.2 \leq m \leq 18\right)$.
(b) When $m+1=2^{n}$ we have $\left|\bar{A}_{m}\right|=\left|\bar{A}_{2^{n}-1}\right|=2^{3 n+1}$ (verified for $1 \leq n \leq 5$).
(c1) If we write $m+1=2^{n} q$ where q is odd, then $\bar{A}_{m} \cong \bar{A}_{2^{n}-1} \times \bar{A}_{q-1}$ (verified for $1 \leq m \leq 14$).
(c2) If we write $m+1=2^{n} q$ where q is odd, $\left|\bar{A}_{m}\right|=2^{3 n+1} q^{3} \prod_{p \mid q}\left(p^{2}-1\right) / 2 p^{2}$ (primes p) (verified for $1 \leq m \leq 21$).
(d) For $5 \leq m+1=p$ prime, $A_{p-1}^{\prime} \cong \operatorname{SL}(2, \mathbb{Z} / p \mathbb{Z})($ verified for $4 \leq m \leq 12)$.
(e) If we write $m+1=2^{n} q$ where q is odd, then $A_{m}^{\prime} \cong A_{2^{n}-1}^{\prime} \times A_{q-1}^{\prime}$ (verified for $1 \leq m \leq 14)$.
(f) For $m+1 \not \equiv 0(\bmod 4)$, we have $A_{m}^{\prime} \triangleleft \hat{\rho}\left(\Gamma_{\theta}\right)$ and $\hat{\rho}\left(\Gamma_{\theta}\right)$ is an iterated semidirect product of A_{m}^{\prime} with cyclic group actions (verified for $1 \leq m \leq 14$). In general, $\operatorname{ker}(\hat{\rho})$ is a congruence subgroup of level $4(m+1)$ (verified for $1 \leq m \leq 12$).

Appendix: Magma code

For our computational experiments we used the symbolic algebra software Magma [Bosma et al. 1997]. In this appendix we give some basic pseudo-code and some sample Magma code to illustrate how we found the image of $\hat{\rho}\left(\Gamma_{\theta}\right)$ in our case study, so that the interested reader can do similar explorations. Given an integer m, the $(m+1) \times(m+1) \hat{S}$ and \hat{T}^{2} matrices obtained from $\operatorname{PSU}(2)_{4 m+2}$ are given in (4-1). In order to use the Magma software we express the entries of \hat{S} and \hat{T}^{2} in the cyclotomic field $\boldsymbol{Q}(\omega)$, where ω is an $(8 m+8)$-th root of unity. For this we must write

$$
\sin \frac{(2 i+1)(2 j+1) \pi}{4 m+4} \text { and } \sqrt{2(m+1)}
$$

in terms of ω, for which we use the result of generalized form of quadratic Gauss sums [Berndt and Evans 1981].

Here is the pseudocode to find $\hat{\rho}\left(\Gamma_{\theta}\right)$ for $\operatorname{PSU}(2)_{4 m+2}$:

Algorithm: projective image

input: an integer m
output: $\hat{\rho}\left(\Gamma_{\theta}\right)$ for $\operatorname{PSU}(2)_{4 m+2}$
set K to the cyclotomic field $\boldsymbol{Q}(\omega)$, where ω is an ($8 m+8$)-th root of unity.
set $M=2(m+1)$.
initialize S and $T 2$ to be $(m+1) \times(m+1)$ zero matrices over K.
Step 1: calculate auxiliary factor α.
if $M \equiv 0(\bmod 4)$
set $\alpha=\sum_{n=0}^{M-1} \omega^{4 n^{2}} /\left(1+\omega^{M}\right)$
else
set $\alpha=\left(\left(\omega^{m+1}-\omega^{-(m+1)}\right) \sum_{n=0}^{m} \omega^{8 n^{2}}\right) / \omega^{2 m+2}$
if $m+1 \equiv 3(\bmod 4)$
set $\alpha=\alpha / \omega^{M}$
set $\alpha=2 / \alpha$
Step 2: define the entries of S and $T 2$.
for $1 \leq i, j \leq m+1$
set $S_{i, j}=\alpha\left(\omega^{(2 i-1)(2 j-1)}-\omega^{-(2 i-1)(2 j-1)}\right) /\left(2 \omega^{M}\right)$
for $1 \leq j \leq m+1$
set $T 2_{j, j}=\omega^{(2(j-1))^{2}+4(j-1)}$
Step 3: find the projective image.
set A to the matrix group generated by S and $T 2$
set $Z K$ to the group of scalar matrices over K
return $A /(Z K \cap A)$, the projective image of A.

The following code can be used in Magma [Bosma et al. 1997] to find the $\hat{\rho}\left(\Gamma_{\theta}\right)$ in this case, and slight modifications will give the other headings of Table 1:

```
m:=1;
K<w>:=CyclotomicField(8*m+8);
GL:=GeneralLinearGroup(m+1,K);
M:=2*(m+1);
alpha:=0;
if M mod 4 eq 0 then
    for n:=0 to M-1 do
        alpha:=alpha + w^(4*(n^2));
    end for;
    alpha:=alpha/(w^M+1);
else
    for n:=0 to m do
        alpha:= alpha + w^(8*(n^2));
    end for;
    if (m+1) mod 4 eq 3 then
        alpha:=alpha/(w^M);
    end if;
    alpha:=((w^(m + 1) - w^(-(m + 1)))/(w^(2*m + 2)))*alpha;
end if;
alpha:=2/alpha;
S:=ZeroMatrix(K,m+1,m+1);
for i:=1 to m+1 do
    for j:=1 to m+1 do
        S[i,j]:=(w^((2*i-1)*(2*j-1))-w^(-(2*i-1)*(2*j-1)))/(2*(w^M));
        S[i,j]:=S[i,j]*alpha;
    end for;
end for;
T2:=ZeroMatrix(K,m+1,m+1);
for j:=1 to m+1 do
    T2[j,j]:=w^}((2*(j-1))^2+4*(j-1))
end for;
A:=MatrixGroup<m+1,K|S,T2>;
ZK:=MatrixGroup<m+1,K|w*IdentityMatrix(K,m+1)>;
F:=(A/(A meet ZK));
```


References

[Alvarez-Gaumé et al. 1986] L. Alvarez-Gaumé, G. Moore, and C. Vafa, "Theta functions, modular invariance, and strings", Comm. Math. Phys. 106:1 (1986), 1-40. MR Zbl
[Bakalov and Kirillov 2001] B. Bakalov and A. Kirillov, Jr., Lectures on tensor categories and modular functors, University Lecture Series 21, American Mathematical Society, Providence, RI, 2001. MR Zbl
[Beliakova et al. 2017] A. Beliakova, C. Blanchet, and E. Contreras, "Spin modular categories", Quantum Topol. 8:3 (2017), 459-504. MR Zbl
[Berndt and Evans 1981] B. C. Berndt and R. J. Evans, "The determination of Gauss sums", Bull. Amer. Math. Soc. (N.S.) 5:2 (1981), 107-129. MR Zbl
[Besche et al. 2002] H. U. Besche, B. Eick, and E. O'Brien, "GAP: The SmallGroups Library", software package, 2002, available at https://www.gap-system.org/Packages/sgl.html.
[Blanchet 2005] C. Blanchet, "A spin decomposition of the Verlinde formulas for type A modular categories", Comm. Math. Phys. 257:1 (2005), 1-28. MR Zbl
[Blanchet and Masbaum 1996] C. Blanchet and G. Masbaum, "Topological quantum field theories for surfaces with spin structure", Duke Math. J. 82:2 (1996), 229-267. MR Zbl
[Bonderson 2007] P. H. Bonderson, Non-abelian anyons and interferometry, Ph.D. thesis, California Institute of Technology, 2007, available at https://tinyurl.com/bondanyon.
[Bonderson et al. 2013] P. Bonderson, C. Nayak, and X.-L. Qi, "A time-reversal invariant topological phase at the surface of a 3D topological insulator", J. Stat. Mech. Theory Exp. 2013:9 (2013), art. id. P09016. MR
[Bosma et al. 1997] W. Bosma, J. Cannon, and C. Playoust, "The Magma algebra system, I: The user language", J. Symbolic Comput. 24:3-4 (1997), 235-265. MR Zbl
[Bruguières 2000] A. Bruguières, "Catégories prémodulaires, modularisations et invariants des variétés de dimension 3", Math. Ann. 316:2 (2000), 215-236. MR Zbl
[Bruillard et al. 2016a] P. Bruillard, S.-H. Ng, E. C. Rowell, and Z. Wang, "Rank-finiteness for modular categories", J. Amer. Math. Soc. 29:3 (2016), 857-881. MR Zbl
[Bruillard et al. 2016b] P. Bruillard, S.-H. Ng, E. C. Rowell, and Z. Wang, "On classification of modular categories by rank", Int. Math. Res. Not. 2016:24 (2016), 7546-7588. MR Zbl
[Bruillard et al. 2017] P. Bruillard, C. Galindo, T. Hagge, S.-H. Ng, J. Y. Plavnik, E. C. Rowell, and Z. Wang, "Fermionic modular categories and the 16-fold way", J. Math. Phys. 58:4 (2017), art. id. 041704. MR Zbl
[Davydov et al. 2013a] A. Davydov, M. Müger, D. Nikshych, and V. Ostrik, "The Witt group of non-degenerate braided fusion categories", J. Reine Angew. Math. 677 (2013), 135-177. MR Zbl
[Davydov et al. 2013b] A. Davydov, D. Nikshych, and V. Ostrik, "On the structure of the Witt group of braided fusion categories", Selecta Math. (N.S.) 19:1 (2013), 237-269. MR Zbl
[Deligne 1990] P. Deligne, "Catégories tannakiennes", pp. 111-195 in The Grothendieck Festschrift, II, edited by P. Cartier et al., Progr. Math. 87, Birkhäuser, Boston, 1990. MR Zbl
[Drinfeld et al. 2010] V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, "On braided fusion categories, I", Selecta Math. (N.S.) 16:1 (2010), 1-119. MR Zbl
[Eholzer 1995] W. Eholzer, "On the classification of modular fusion algebras", Comm. Math. Phys. 172:3 (1995), 623-659. MR Zbl
[Köhler 1988] G. Köhler, "Theta series on the theta group", Abh. Math. Sem. Univ. Hamburg 58 (1988), 15-45. MR Zbl
[Lan et al. 2016] T. Lan, L. Kong, and X.-G. Wen, "Theory of $(2+1)$-dimensional fermionic topological orders and fermionic/bosonic topological orders with symmetries", Phys. Rev. B 94:15 (2016), art. id. 155113.
[Müger 2003] M. Müger, "On the structure of modular categories", Proc. London Math. Soc. (3) 87:2 (2003), 291-308. MR Zbl
[Müger 2004] M. Müger, "Galois extensions of braided tensor categories and braided crossed G categories", J. Algebra 277:1 (2004), 256-281. MR Zbl
[Ng and Schauenburg 2010] S.-H. Ng and P. Schauenburg, "Congruence subgroups and generalized Frobenius-Schur indicators", Comm. Math. Phys. 300:1 (2010), 1-46. MR Zbl
[Nobs 1976] A. Nobs, "Die irreduziblen Darstellungen der Gruppen $\mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right)$, insbesondere $\mathrm{SL}_{2}\left(\mathbb{Z}_{2}\right)$, I", Comment. Math. Helv. 51:4 (1976), 465-489. MR Zbl
[Rademacher 1929] H. Rademacher, "Über die Erzeugenden von Kongruenzuntergruppen der Modulgruppe", Abh. Math. Sem. Univ. Hamburg 7:1 (1929), 134-148. MR Zbl
[Sawin 2002] S. F. Sawin, "Invariants of spin three-manifolds from Chern-Simons theory and finite-dimensional Hopf algebras", Adv. Math. 165:1 (2002), 35-70. MR Zbl
[Walker and Wang 2012] K. Walker and Z. Wang, "(3+1)-TQFTs and topological insulators", Front. Phys. 7:2 (2012), 150-159.

Received April 15, 2017.

Parsa Bonderson

Microsoft Research-Station Q
University of California,
Santa Barbara, CA
United States
parsab@microsoft.com
Eric C. Rowell
Department of Mathematics
Texas A\&M University
College Station, TX
United States
rowell@math.tamu.edu

Zhenghan Wang
Microsoft Research-Station Q
University of California,
Santa Barbara, CA
United States
zhenghwa@microsoft.com
Qing Zhang
Department of Mathematics
Texas A\&M University
College Station, TX
United States
zhangqing@math.tamu.edu

ON THE CHOW RING OF THE STACK OF TRUNCATED BARSOTTI-TATE GROUPS

Dennis Brokemper

Abstract

We determine the Chow ring of the stack of truncated displays and more generally the Chow ring of the stack of G-zips. We also investigate the pullback morphism of the truncated display functor. From this we can determine the Chow ring of the stack of truncated Barsotti-Tate groups over a field of characteristic p up to p-torsion.

Introduction 271

1. Equivariant intersection theory 275
2. The Chow ring of the stack of level- n Barsotti-Tate groups 286
Acknowledgements 302
References 302

Introduction

Edidin and Graham [1998] developed an equivariant intersection theory for actions of linear algebraic groups G on algebraic spaces X. For such G-spaces they defined G-equivariant Chow groups $A_{*}^{G}(X)$ generalizing Totaro's definition [1999] of the G-equivariant Chow ring of a point. They are an invariant of the corresponding quotient stack $[X / G]$, i.e., they are independent of the choice of presentation. Hence they can be used to define the integral Chow group of a quotient stack. If X is smooth these groups carry a ring structure making them into commutative graded rings. Edidin and Graham used their theory to compute the Chow ring of the stacks $\mathscr{M}_{1,1}$ and $\tilde{\mathscr{M}}_{1,1}$ of elliptic curves. In an appendix to that paper, Vistoli computed the Chow ring of \mathscr{M}_{2}. Edidin and Fulghesu [2009] computed the integral Chow ring of the stack of hyperelliptic curves of even genus. In this article we investigate the Chow ring of the stack of truncated Barsotti-Tate groups over a field of characteristic $p>0$.

Let us denote the stack of level-n Barsotti-Tate groups by BT_{n}. A level-n BT group has a height and a dimension, which are locally constant functions on the base. If $\mathrm{BT}_{n}^{h, d}$ denotes the stack of level-n BT groups of constant height h and

[^1]dimension d we obtain a decomposition $\mathrm{BT}_{n}=\coprod_{0 \leq d \leq h} \mathrm{BT}_{n}^{h, d}$ into open and closed substacks. For example, if A is an abelian scheme of relative dimension g then its p^{n}-torsion subscheme $A\left[p^{n}\right]$ is a level-n BT group of height $2 g$ and dimension g.

Although $\mathrm{BT}_{n}^{h, d}$ has a natural presentation $\left[X / \mathrm{GL}_{p^{n h}}\right]$ as a quotient stack with quasiaffine and smooth X (see [Wedhorn 2001]), it seems unlikely that this presentation can be used directly to compute the Chow ring. Instead we compare the stack of truncated Barsotti-Tate groups to a stack whose Chow ring is easier to compute, but still closely related to the Chow ring of BT_{n}.

Our choice for this stack is the stack \mathcal{D} isp ${ }_{n}$ of truncated displays introduced in [Lau 2013]. Displays were first introduced in [Zink 2002] to provide a Dieudonné theory that is valid not only over perfect fields but more generally over \mathbb{F}_{p}-algebras or p-adic rings. While displays are given by an invertible matrix with entries in the ring of Witt vectors $W(R)$, if a basis of the underlying modules is fixed, a truncated display is given by an invertible matrix over the truncated Witt ring $W_{n}(R)$.

Using crystalline Dieudonné theory one can associate to every p-divisible group a display. This induces a morphism $\phi: \mathrm{BT} \rightarrow \mathcal{D}$ isp from the stack of Barsotti-Tate groups to the stack of displays, which in turn induces a morphism,

$$
\phi_{n}: \mathrm{BT}_{n} \rightarrow \mathcal{D i s p}_{n},
$$

compatible with the truncations on both sides. By [Lau 2013], this morphism is a smooth morphism of smooth algebraic stacks over k and an equivalence on geometric points.
Theorem A. The pullback $\phi_{n}^{*}: A^{*}\left(\mathcal{D}\right.$ isp $\left.p_{n}\right) \rightarrow A^{*}\left(\mathrm{BT}_{n}\right)$ is injective and an isomorphism after inverting p.

Let us sketch the proof. Consider a field L and a morphism $\operatorname{Spec} L \rightarrow \mathrm{BT}_{n}$. After base change to a finite field extension of p-power degree the fiber $\phi_{n}^{-1}(\operatorname{Spec} L)$ is equal to the classifying space of an infinitesimal group scheme necessarily of p-power degree. It follows that the pullback map of Bloch's higher Chow groups $A_{*}(\operatorname{Spec} L, m) \rightarrow A_{*}\left(\phi_{n}^{-1}(\operatorname{Spec} L), m\right)$ becomes an isomorphism after inverting p. Using the long localization exact sequence the theorem follows from a limit argument and noetherian induction similar to that in [Quillen 1973, Proposition 4.1]. The injectivity assertion follows since $A^{*}\left(\mathcal{D}^{\text {isp }}{ }_{n}\right)$ is p-torsion free.

Thus to compute the Chow ring of BT_{n} at least up to p-torsion it suffices to compute the Chow ring of $\mathcal{D i s p}{ }_{n}$, which is much easier due to the simpler presentation as a quotient stack. More precisely, if \mathcal{D} isp $_{n}^{h, d}$ denotes the open and closed substack in \mathcal{D} isp $_{n}$ of truncated displays with constant dimension d and height h we have

$$
\mathcal{D} \operatorname{isp}_{n}^{h, d}=\left[\mathrm{GL}_{h}\left(W_{n}(\cdot)\right) / G_{n}^{h, d}\right],
$$

where W_{n} refers to the ring of truncated Witt vectors and $G_{n}^{h, d}$ is an extension of
$\mathrm{GL}_{d} \times \mathrm{GL}_{h-d}$ by a unipotent group. The following result reduces the calculation of $A^{*}\left(\mathcal{D} \operatorname{isp}_{n}\right)$ to the case $n=1$.

Theorem B. The pullback $\tau_{n}^{*}: A^{*}\left(\mathcal{D i s p}_{1}\right) \rightarrow A^{*}\left(\mathcal{D} i s p_{n}\right)$ of the truncation map $\tau_{n}: \mathcal{D i s p}_{n} \rightarrow \mathcal{D i s p}_{1}$ is an isomorphism.

This is proved using the factorization

$$
\left[\mathrm{GL}_{h}\left(W_{n}(\cdot)\right) / G_{n}^{h, d}\right] \rightarrow\left[G L_{h} / G_{n}^{h, d}\right] \rightarrow\left[G L_{h} / G_{1}^{h, d}\right]
$$

of τ_{n} and the fact that the first map is an affine bundle and that $G_{n}^{h, d}$ is an extension of $G_{1}^{h, d}$ by a unipotent group.

In a similar way one shows that the Chow ring of \mathcal{D} isp ${ }_{1}^{h, d}$ coincides with that of the quotient stack

$$
\left[\mathrm{GL}_{h} /\left(\mathrm{GL}_{d} \times \mathrm{GL}_{h-d}\right)\right]
$$

where the action is given by conjugation with the Frobenius. This situation is a special case of Proposition 2.3.2.

Theorem C. The following equation holds:

$$
\begin{aligned}
A^{*}\left(\mathcal{D} \text { isp }_{1}^{h, d}\right) & =A_{\mathrm{GL}_{d} \times \mathrm{GL}_{h-d}}^{*}\left(\mathrm{GL}_{h}\right) \\
& =\mathbb{Z}\left[t_{1}, \ldots, t_{h}\right]^{S_{d} \times S_{h-d}} /\left((p-1) c_{1}, \ldots,\left(p^{h}-1\right) c_{h}\right)
\end{aligned}
$$

where c_{1}, \ldots, c_{h} are the elementary symmetric polynomials in the variables t_{1}, \ldots, t_{h}.
Moreover, t_{1}, \ldots, t_{d} and t_{d+1}, \ldots, t_{h} are the Chern roots of the vector bundle $\mathcal{L} i e$ and ${ }^{t} \mathcal{L i} e^{\vee}$, respectively, over $\mathcal{D i s p}{ }_{1}^{h, d}$. Here $\mathcal{L} i e$ is a vector bundle of rank d assigning to a display its Lie algebra, and ${ }^{t} \mathcal{L} i e^{\vee}$ is of rank $h-d$ assigning to a display the dual Lie algebra of its dual display.

It follows that the \mathbb{Q}-vectorspace $A^{*}\left(\mathcal{D} \operatorname{isp}_{1}^{h, d}\right)_{\mathbb{Q}}$ is finite-dimensional of dimension $\binom{h}{d}$, which also equals the number of isomorphism classes of truncated displays of level 1 with height h and dimension d over an algebraically closed field. We show that a basis is given by the cycles of the closures of the respective EO strata. We prove this fact in greater generality for the stack of G-zips [Pink et al. 2011] in Section 2.4. In that section we will also compute the Chow ring of the stack of G-zips for a connected algebraic zip datum. As in the case of displays the computation can be reduced to the situation of Proposition 2.3.2. In fact, truncated displays of level 1 are a special case of G-zips.

To state our result we recall that an algebraic zip datum \mathcal{Z} is a 4-tuple (G, P, Q, φ) consisting of a split reductive group G, parabolic subgroups P and Q, and an isogeny $\varphi: P / R_{u}(P) \rightarrow Q / R_{u}(Q)$. To \mathcal{Z} one associates the stack of G-zips $\left[G / E_{\mathcal{Z}}\right]$, where $E_{\mathcal{Z}}$ is the group $\left\{(p, q) \in P \times Q \mid \varphi\left(\pi_{P}(p)\right)=\pi_{Q}(q)\right\}$ acting on G by the rule $((p, q), g) \mapsto p g q^{-1}$. We also recall that an algebraic group is called special if every principal G-bundle is locally trivial for the Zariski topology.

Theorem D. Let $\mathcal{Z}=(G, P, Q, \varphi)$ be an algebraic zip datum, where G is connected. Let $W_{G}=W(G, T)$ be the Weyl group of G and $W_{L}=W(L, T)$ be the Weyl group of a Levi component L of P with respect to a split maximal torus $T \subset L$ of G. Let $g_{0} \in G(k)$ be such that $\varphi(T)={ }^{g_{0}} T$ and let $\tilde{\varphi}: T \rightarrow T$ denote the composition of φ followed by conjugation with g_{0}^{-1}. Then $\tilde{\varphi}$ induces an action on $S=\operatorname{Sym}(\widehat{T})$, which we will also denote by $\tilde{\varphi}$. We then have

$$
A^{*}\left(\left[G / E_{\mathcal{Z}}\right]\right)_{\mathbb{Q}}=S_{\mathbb{Q}}^{W_{L}} /\left(f-\tilde{\varphi} f \mid f \in S_{+}^{W_{G}}\right)_{\mathbb{Q}} .
$$

If G is special we have

$$
A^{*}\left(\left[G / E_{\mathcal{Z}}\right]\right)=S^{W_{L}} /\left(f-\tilde{\varphi} f \mid f \in S_{+}^{W_{G}}\right) .
$$

(Note that the action of $\tilde{\varphi}$ on $S^{W_{G}}$ is independent of the choice of g_{0} since two choices differ by an element of $N_{G}(T)$.)

Gathering the above results we gain the following information on the Chow ring of the stack of truncated Barsotti-Tate groups.

Theorem E. (i) We have

$$
A^{*}\left(\mathrm{BT}_{n}^{h, d}\right)_{p}=\mathbb{Z}\left[p^{-1}\right]\left[t_{1}, \ldots, t_{h}\right]^{S_{d} \times S_{h-d}} /\left((p-1) c_{1}, \ldots,\left(p^{h}-1\right) c_{h}\right),
$$

where c_{i} denotes the i-th elementary symmetric polynomial in the variables t_{1}, \ldots, t_{h}, and t_{1}, \ldots, t_{d} and t_{d+1}, \ldots, t_{h} are the Chern roots of $\mathcal{L i e}$ and $^{t} \mathcal{L} i e^{\vee}$, respectively.
(ii) We have $\operatorname{dim}_{\mathbb{Q}} A^{*}\left(\mathrm{BT}_{n}^{h, d}\right)_{\mathbb{Q}}=\binom{h}{d}$ and a basis is given by the cycles of the closures of the EO strata.
(iii) $\left(\operatorname{Pic}_{\mathrm{BT}_{n}^{h, d}}\right)_{p}= \begin{cases}\mathbb{Z}\left[p^{-1}\right] /(p-1) & \text { if } d=0, h, \\ \mathbb{Z}\left[p^{-1}\right] \times \mathbb{Z}\left[p^{-1}\right] /(p-1) & \text { otherwise, }\end{cases}$
where the generators for the free and torsion parts are, respectively, $\operatorname{det}(\mathcal{L i e})$ and $\operatorname{det}\left(\mathcal{L i e} \otimes^{t} \mathcal{L} i e^{\vee}\right)$.

It would be interesting to know if the Chow ring of BT_{n} has p-torsion, and more specifically if the Picard group of BT_{n} has p-torsion. However, since ϕ_{n}^{*} is injective and the Chow ring of \mathcal{D} isp $_{n}$ is p-torsion free, p-torsion in the Chow ring of BT_{n} cannot be constructed using displays.

Terminology and notation. Every scheme is assumed to be of finite type and separated over the base field k. In Section 2, we assume k to be of characteristic $p>0$. Algebraic groups are affine smooth group schemes over k. We call an algebraic group G unipotent if G admits a filtration $G=G_{0} \supset G_{1} \supset \cdots \supset G_{e}=\{1\}$ by subgroups such that G_{i} is normal in G_{i-1} with quotient isomorphic to \mathbb{G}_{a}. The character group of an algebraic group G will be denoted by \widehat{G}. If X is a scheme, $A^{*}(X)$ will always denote the operational Chow ring of X [Fulton 1998, Chapter 17]. $A_{*}(X)$
and $\mathrm{CH}^{*}(X)$ will be the Chow group of X graded by dimension and codimension, respectively. If X is an algebraic space over k with a left action of an algebraic group G we will refer to X as a G-space. We write $[X / G]$ for the corresponding quotient stack. If G acts freely on X, i.e., the stabilizer of every point is trivial, then $[X / G]$ is an algebraic space. In this case we will write X / G instead of $[X / G]$ and call $X \rightarrow X / G$ the principal bundle quotient of X with structure group G.

1. Equivariant intersection theory

1.1. Equivariant Chow groups. Consider an algebraic group G over k. By [Edidin and Graham 1998, Lemma 9], we can find a representation V of G, and an open subset U in V such that the complement of U has arbitrary high codimension, and such that the principal bundle quotient U / G exists in the category of schemes. If X is an algebraic space on which G acts then G acts diagonally on $X \times U$ and we will denote the principal bundle quotient $(X \times U) / G$ by X_{G}.
Convention 1.1.1. We call a pair (V, U) consisting of a G-representation V and an open subset U a good pair for G if G acts freely on U, i.e., the stabilizer of every point is trivial. Sometimes we will call the quotient $X_{G}=(X \times U) / G$ a mixed space for the G-space X. If (V, U) is a good pair for G with $\operatorname{codim}\left(U^{c}, V\right)>i$ we will also call $(X \times U) / G$ an approximation of $[X / G]$ up to codimension i.

If X has dimension n the i-th equivariant Chow group $A_{i}^{G}(X)$ is defined in the following way. Choose a good pair (V, U) for G such that the complement of U has codimension greater than $n-i$. Then one defines

$$
A_{i}^{G}(X)=A_{i+l-g}\left(X_{G}\right)
$$

where l denotes the dimension of V and g is the dimension of G. The definition is independent of the choice of the pair (V, U) as long as $\operatorname{codim}\left(U^{c}, V\right)>n-i$ holds [Edidin and Graham 1998, Definition-Proposition 1].

The equivariant Chow groups have the same functorial properties as ordinary Chow groups [Edidin and Graham 1998, Section 2]. In particular, we have an operational equivariant Chow ring $A_{G}^{*}(X)$ [Edidin and Graham 1998, Section 2.6], i.e., an element $c \in A_{G}^{i}(X)$ consists of operations $c(Y \rightarrow X): A_{*}^{G}(Y) \rightarrow A_{*-i}^{G}(Y)$ for each G-equivariant map $Y \rightarrow X$ that are compatible with flat pullback, proper pushforward and Gysin homomorphisms.

We will denote by $\mathrm{CH}_{G}^{*}(X)$ the G-equivariant Chow group of X graded by codimension. If X is a pure dimensional G-scheme and (V, U) a good pair for G with $\operatorname{codim}\left(U^{c}, V\right)>i$ then

$$
\mathrm{CH}_{G}^{j}(X)=\mathrm{CH}^{j}((X \times U) / G)
$$

for all $j \leq i$. This motivates the term "approximation of $[X / G]$ up to codimension i " in Convention 1.1.1.

If X is smooth then $\mathrm{CH}_{G}^{*}(X)$ carries a ring structure which makes it into a commutative graded ring with unit element. Moreover, there is a natural isomorphism $A_{G}^{*}(X) \cong \mathrm{CH}_{G}^{*}(X)$ of graded rings [Edidin and Graham 1998, Proposition 4].

By [Edidin and Graham 1998, Proposition 16], the equivariant Chow groups do not depend on the presentation as a quotient, meaning if X is a G-space and Y is an H-space such that $[X / G] \cong[Y / H]$, then $A_{i+g}^{G}(X)=A_{i+h}^{H}(Y)$, where $g=\operatorname{dim} G$ and $h=\operatorname{dim} H$. Hence one can define the Chow group of a quotient stack $[X / G]$ to be

$$
A_{i}([X / G])=A_{i+g}^{G}(X)
$$

with $g=\operatorname{dim} G$. By [Edidin and Graham 1998, Proposition 19], one has

$$
A^{*}([X / G]) \cong A_{*}([X / G])
$$

whenever X is smooth.
1.2. Higher equivariant Chow groups. The reason we shall need higher Chow groups is that they extend the localization exact sequence to the left. Higher Chow groups were introduced by Bloch [1986]. For a scheme X, higher Chow groups $A_{i}(X, m)$ are defined as the homology of the complex $z_{i}(X, *)$, where $z_{i}(X, m)$ is the group of cycles of dimension $m+i$ in $X \times \Delta^{m}$ meeting all faces properly. For $m=0$ one gets back the usual Chow group $A_{*}(X)$, and $A_{i}(X, m)$ may be nontrivial for $-m \leq i \leq \operatorname{dim} X$. The definition of these higher Chow groups also works for algebraic spaces.

In order to define G-equivariant versions $A_{*}^{G}(X, m)$ of higher Chow groups we need the homotopy property for the mixed spaces X_{G}, i.e., the pullback map

$$
A_{*}\left(X_{G}, m\right) \rightarrow A_{*}(\mathcal{E}, m)
$$

for a vector bundle \mathcal{E} over X_{G} is an isomorphism. This is true for any scheme if \mathcal{E} is trivial by [Bloch 1986, Theorem 2.1]. To prove the assertion for arbitrary vector bundles one needs the localization exact sequence of higher Chow groups proved by Bloch in the case of quasiprojective schemes: if X is an equidimensional, quasiprojective scheme over k and $Y \subset X$ is a closed subscheme with complement $U=X-Y$, then there is a long exact sequence of higher Chow groups

$$
\begin{aligned}
\cdots \rightarrow A_{*}(Y, m) \rightarrow A_{*}(X, m) \rightarrow A_{*}(U, m) & \rightarrow A_{*}(Y, m-1) \rightarrow \\
\cdots & \rightarrow A_{*}(Y) \rightarrow A_{*}(X) \rightarrow A_{*}(U) \rightarrow 0
\end{aligned}
$$

For a proof see [Edidin and Graham 1998, Lemma 4] and [Bloch 1986, Theorem 3.1].
Remark 1.2.1. Levine extended Bloch's proof of the existence of the long localization exact sequence to all separated schemes of finite type over k [Levine 2001, Theorem 1.7]. Hence for the equivariant higher Chow groups to be well defined
it suffices that we can choose the mixed spaces to be separated schemes over k. However, in all applications we have in mind the conditions of Lemma 1.2.2 will be satisfied.

Lemma 1.2.2. Let G be an algebraic group and X a normal, quasiprojective G scheme. Then for any $i>0$ there is a representation V of G and an invariant open subset $U \subset V$ whose complement has codimension greater than i such that G acts freely on U and the principal bundle quotient $(X \times U) / G$ is a quasiprojective scheme. In other words, the quotient stack $[X / G]$ can be approximated by quasiprojective schemes.
Proof. Embed G into GL_{n} for some n. Then there is a representation V of GL_{n} and an open subset $U \subset V$, whose complement has codimension greater than i such that U / GL_{n} is a Grassmannian (see [Edidin and Graham 1998, Lemma 9]). Since GL_{n} is special the GL_{n} / G-bundle $\pi: U / G \rightarrow U / \mathrm{GL}_{n}$ is locally trivial for the Zariski topology, and we will first show that π is quasiprojective.

Since GL_{n} / G is quasiprojective and normal there is an ample GL_{n}-linearizable line bundle $L \rightarrow \mathrm{GL}_{n} / G$ [Thomason 1988, Section 5.7]. Then

$$
(U \times L) / \mathrm{GL}_{n} \rightarrow\left(U \times\left(\mathrm{GL}_{n} / G\right)\right) / \mathrm{GL}_{n}=U / G
$$

is a line bundle relatively ample for π. This shows that π is quasiprojective. The same holds then for U / G. Again by [Thomason 1988, Section 5.7], there is an ample G-linearizable line bundle on X. The pullback to $X \times U$ is then relatively ample for the projection $X \times U \rightarrow U$. Applying [Mumford et al. 1994, Proposition 7.1] to this situation yields the claim.

Definition 1.2.3. (i) A pair (V, U) will be called an admissible pair for a G scheme X if (V, U) is a good pair for G and if the mixed space X_{G} is quasiprojective and (locally) equidimensional over k. X will be called an admissible G-scheme if for any i there is an admissible pair (V, U) for X with $\operatorname{codim}\left(U^{c}, V\right)>i$.
(ii) If X is an admissible G-scheme we define its higher equivariant Chow groups to be

$$
A_{i}^{G}(X, m)=A_{i+l-g}\left(X_{G}, m\right),
$$

where $g=\operatorname{dim} G$ and X_{G} is formed from an l-dimensional admissible pair (V, U) such that $\operatorname{codim}\left(U^{c}, V\right)>\operatorname{dim} X+m-i$.
(iii) We will say that a stack \mathscr{X} admits an admissible presentation if there exists an admissible G-scheme X such that $\mathscr{X}=[X / G]$.
(iv) Let \mathscr{X} be a quotient stack that admits a presentation $\mathscr{X}=[X / G]$ by an admissible G-scheme X. We define the higher equivariant Chow groups of \mathscr{X} as

$$
A_{*}(\mathscr{X}, m)=A_{*+g}^{G}(X, m),
$$

where $g=\operatorname{dim} G$.

Remark 1.2.4. The proof that (ii) and (iv) of Definition 1.2.3 are independent of the choice of the admissible pair (V, U) and the presentation $[X / G]$, respectively, is the same as for ordinary equivariant Chow groups (see Definition-Proposition 1 and Proposition 16, respectively, in [Edidin and Graham 1998]) by using the homotopy property for the mixed spaces.

Remark 1.2.5. We will frequently encounter the situation of a morphism $T \rightarrow X$ of G-schemes such that T is open in a G-equivariant vector bundle over X. We remark that, if X is an admissible G-scheme, so is T. This follows since a vector bundle over a quasiprojective scheme is again quasiprojective.

Lemma 1.2.6. Let $f: \mathscr{X} \rightarrow \mathscr{Y}$ be a flat map of quotient stacks of relative dimension r. Then there is a flat pullback map $f^{*}: A_{*}(\mathscr{Y}) \rightarrow A_{*+r}(\mathscr{X})$ between the Chow groups. If \mathscr{X} and \mathscr{Y} admit admissible presentations the same assertion holds for the higher Chow groups.

Furthermore, if \mathscr{X} and \mathscr{Y} are smooth then under the identification $A_{*}(\mathscr{X})=$ $A^{*}(\mathscr{X})$, the above morphism is just the natural pullback map between the operational Chow rings.

Proof. Consider presentations $\mathscr{X}=[X / G]$ and $\mathscr{Y}=[Y / H]$. By definition $A_{i}(\mathscr{X})=$ $A_{i+g}^{G}(X)$ with $g=\operatorname{dim} G$ and similarly for $A_{i}(\mathscr{Y})$. Choose a good pair $\left(V_{1}, U_{1}\right)$ for G and a good pair $\left(V_{2}, U_{2}\right)$ for H. Let $l_{i}=\operatorname{dim} V_{i}$. As usual we will write X_{G} and Y_{H} for the mixed spaces $\left(X \times U_{1}\right) / G$ and $\left(Y \times U_{2}\right) / H$, respectively. Consider the following fiber square:

Then Z^{\prime} is a bundle over X_{G} and \mathscr{Z} with fibers U_{2} and U_{1}, respectively, and $Z^{\prime} \rightarrow Y_{H}$ is a flat map of algebraic spaces of relative dimension $l_{1}+r$. Hence

$$
A_{i+l_{1}+l_{2}+r}\left(Z^{\prime}\right)=A_{i+l_{1}+r}\left(X_{G}\right)=A_{i+r}(\mathscr{X})
$$

and we define f^{*} to be the ordinary pullback of the flat map $Z^{\prime} \rightarrow Y_{H}$. The exact same construction works for the higher equivariant Chow groups if \mathscr{X} and \mathscr{Y} admit admissible presentations.

For the last part we recall that the isomorphism $A^{i}(\mathscr{X}) \cong A_{\operatorname{dim} X-i}^{G}(X)$ maps $c \in A^{i}(\mathscr{X})$ to $c\left(X_{G} \rightarrow \mathscr{X}\right) \cap\left[X_{G}\right] \in A_{\operatorname{dim} X-i}^{G}(X)$. Thus we need to check the equality

$$
f^{*}\left(d\left(Y_{H} \rightarrow \mathscr{Y}\right) \cap\left[Y_{H}\right]\right)=d\left(X_{G} \rightarrow \mathscr{X} \rightarrow \mathscr{Y}\right) \cap\left[X_{G}\right]
$$

for $d \in A^{i}(\mathscr{Y})$. This follows from the compatibility of d with flat pullbacks.

1.3. Auxiliary results.

Lemma 1.3.1. Let $X \rightarrow Y$ be a flat morphism of schemes and $Y^{\prime} \rightarrow Y$ be a finite, flat and surjective map of degree d. Let $X^{\prime} \rightarrow Y^{\prime}$ be the base change of $X \rightarrow Y$ along $Y^{\prime} \rightarrow Y$. Assume the pullback $A_{*}\left(Y^{\prime}, m\right) \rightarrow A_{*}\left(X^{\prime}, m\right)$ becomes an isomorphism after inverting some integer d^{\prime}. Then the pullback $A_{*}(Y, m) \rightarrow A_{*}(X, m)$ is an isomorphism after inverting $d d^{\prime}$.
Proof. The injectivity of the pullback $A_{*}(Y, m)_{d d^{\prime}} \rightarrow A_{*}(X, m)_{d d^{\prime}}$ follows from the exact diagram:

and the surjectivity from the exact diagram

where the horizontal maps in the first diagram are induced by pullback and in the second diagram by pushforward. The commutativity of the second diagram is shown by [Fulton 1998, Proposition 1.7].

Lemma 1.3.2. Let $T \rightarrow X$ be a morphism of quasiprojective schemes over k. We assume that X is equidimensional and that $T \rightarrow X$ is flat of relative dimension a. Let $d, i \in \mathbb{Z}$ and for $x \in X$ let $h(x)$ denote the dimension of the closure of $\{x\}$ in X. If the pullback $A_{i-h(x)}(\operatorname{Spec} k(x), m)_{d} \rightarrow A_{i-h(x)+a}\left(T_{x}, m\right)_{d}$ is an isomorphism for every $x \in X$ and for any m, then $A_{i}(X, m)_{d} \rightarrow A_{i+a}(T, m)_{d}$ is an isomorphism.

Proof. We follow Quillen's proof of the analogous result in higher K-theory [1973, Proposition 4.1]. First we may assume that X is irreducible for if $X=W_{1} \cup \cdots \cup W_{r}$ is a decomposition into irreducible components we may consider the long localization exact sequence of the pair ($W_{1}, X-W_{1}$). By induction we are thus reduced to the irreducible case. Since the Chow groups only depend on the reduced structure, we may also assume that X is reduced. Let K denote the function field of X. We have

$$
\begin{aligned}
A_{i-n}(\operatorname{Spec} K, m) & =\underset{U}{\lim } A_{i}(U, m), \\
A_{i-n+a}\left(T_{K}, m\right) & =\underset{U}{\lim } A_{i+a}\left(T_{U}, m\right),
\end{aligned}
$$

where the limit goes over all nonempty open subsets of X and n denotes the dimension of X. In fact, it suffices to go over all nonempty open subsets with
equidimensional complement, since for all nonempty open U in X there exists a nonempty open subset U^{\prime} contained in U with equidimensional complement. We obtain a commutative diagram

with exact rows, where the limit goes over all proper closed equidimensional subsets of X. After inverting d the first and fourth vertical maps become isomorphisms and we conclude by noetherian induction.

Corollary 1.3.3. Let $T \rightarrow X$ be a flat morphism of quasiprojective schemes over k with fibers being affine spaces of some dimension n. Then the pullback $A_{*}(X, m) \rightarrow$ $A_{*+n}(T, m)$ is an isomorphism.

Proof. This is an immediate consequence of Lemma 1.3.2.
Remark 1.3.4. The assertion of the above corollary in the case $m=0$ also holds without the quasiprojective assumption. One can use the same proof but using Gillet's higher Chow groups. For his higher Chow groups a long localization exact sequence exists for arbitrary schemes. For details see Chapter 8 in [Gillet 1981].

Lemma 1.3.5. Let K be a unipotent subgroup of an algebraic group G such that the quotient G / K is finite of degree d. Then the pullback $A_{G}^{*}(m) \rightarrow A_{\{0\}}^{*}(m)$ is an isomorphism after inverting d.

Proof. Let (V, U) be an admissible pair for G. Then $U / K \rightarrow U / G$ is a $G / K-$ bundle locally trivial for the flat topology. By assumption on G / K the morphism $U / K \rightarrow U / G$ is therefore finite, flat and surjective of degree d. It follows that the pullback $A_{*}(U / G, m) \rightarrow A_{*}(U / K, m) \cong A_{*}(U, m)$ is injective after inverting d. Also for sufficiently high degree we know that $A_{*}(\operatorname{Spec} k, m) \rightarrow A_{*}(U, m)$ is surjective. Since we can assume the codimension of U^{c} in V to be arbitrarily high, we obtain the surjectivity of $A_{G}^{*}(m) \rightarrow A_{\{0\}}^{*}(m)$.

Lemma 1.3.6. Let K / k be a Galois extension with Galois group G and let X be a scheme over k. Then pulling back along $X_{K} \rightarrow X$ induces an isomorphism $A_{*}(X, m)_{\mathbb{Q}} \cong A_{*}\left(X_{K}, m\right)_{\mathbb{Q}}^{G}$. If K / k is a finite Galois extension of degree d it suffices to invert d.

Proof. We first assume that K / k is finite of degree d. Then on the level of cycles we have an injection $z_{*}(X, \cdot)_{d} \hookrightarrow z_{*}\left(X_{K}, \cdot\right){ }_{d}^{G}$ since $X_{K} \rightarrow X$ is finite and flat of degree d. We claim that this map is also surjective. Let $W \subset X_{K} \times_{K} \Delta_{K}^{r}$ be a subvariety meeting all faces properly. Let $S \subset G$ be the isotropy group of W. It suffices to see that $\sum_{g \in G / S}[g W]$ lies in $z_{*}(X, \cdot)_{d}$. For this consider the closed subscheme $V=\cup_{g \in G / S} g W$ (equipped with the reduced structure). Then V is a G-invariant equidimensional subscheme of $X_{K} \times_{K} \Delta_{K}^{r}$ that meets all faces properly. Thus it has a model \widetilde{V} over k also meeting all faces properly. Finally all components $g W$ have the same multiplicity 1 in the cycle [V] and therefore $\sum_{g \in G / S}[g W]=\left[\widetilde{V}_{K}\right]$. To complete the proof in the finite case it suffices now to note that taking G-invariants is an exact functor on the category of $\mathbb{Z}\left[\frac{1}{d}\right]$-modules with G-action, hence $H_{i}\left(z_{*}\left(X_{K}, \cdot\right){ }_{d}^{G}\right)=H_{i}\left(z_{*}\left(X_{K}, \cdot\right)\right)_{d}^{G}$. The general case follows from the finite case and the fact that $A_{*}\left(X_{K}, m\right)^{G}=\underline{\lim }_{L / k} A_{*}\left(X_{L}, m\right)^{G(L / k)}$, where the limit goes over all finite Galois subextensions L / k of K.
1.4. A pullback lemma. Throughout we consider the situation of an exact sequence

$$
0 \longrightarrow A \longrightarrow G \longrightarrow H \longrightarrow 0
$$

of algebraic groups and an admissible H-scheme X such that the induced G-action on X makes X also into an admissible G-scheme. These conditions are always satisfied if X is quasiprojective and normal by Lemma 1.2.2. We are then interested in properties of the pullback homomorphism (Lemma 1.2.6),

$$
A_{*}([X / H], m) \rightarrow A_{*}([X / G], m) .
$$

Proposition 1.4.1. Let

$$
0 \longrightarrow A \longrightarrow G \longrightarrow H \longrightarrow 0
$$

be an exact sequence of algebraic groups and X an admissible H-scheme such that the induced G-action makes X also into an admissible G-scheme. We also assume H to be special.

Let $d \in \mathbb{Z}$ be such that $A_{A_{L}}^{*}(m) \rightarrow A_{\{0\}}^{*}(m)$ becomes an isomorphism after inverting d for every field extension L of k and every m. Then the pullback $A_{*}([X / H], m) \rightarrow A_{*}([X / G], m)$ becomes an isomorphism after inverting d.

Proof. First note that the natural map $[X / G] \rightarrow[X / H]$ is flat of relative dimension $-a$ with $a=\operatorname{dim} A$. We can choose for any $i \in \mathbb{Z}$ an admissible pair (V, U) for the H-action such that $A_{j+l}([(X \times U) / G], m)=A_{j}([X / G], m)$ and
$A_{j+l}((X \times U) / H, m)=A_{j}([X / H], m)$ for all $j>i$. Here l denotes the dimension of V. Note that $X \times U$ is again an admissible G-scheme (see Remark 1.2.5). Replacing X by $X \times U$ we may thus assume that $[X / H]$ is a quasiprojective scheme.

Now, let $(X \times U) / G$ be a quasiprojective mixed space for G. Let \bar{U} be the quotient U / A. Then we can identify $(X \times U) / G$ with the quotient $(X \times \bar{U}) / H$ and under this identification the map $(X \times U) / G \rightarrow X / H$ corresponds to the \bar{U}-bundle $(X \times \bar{U}) / H \rightarrow X / H$. It is Zariski locally trivial since H is special. We are left to show that the pullback of this map is an isomorphism after inverting d. This will follow from Lemma 1.3.2 once we have seen that the pullback $A_{j-h(x)}(\operatorname{Spec} k(x), m)_{d} \rightarrow A_{j-h(x)+l-a}\left(\bar{U}_{k(x)}, m\right)_{d}$ is an isomorphism for every $x \in X / H$. Here $h(x)$ is the dimension of the closure of $\{x\}$ in X / H. Let us write $L=k(x)$. Assuming the codimension of U^{c} in V to be sufficiently large we obtain by assumption

$$
A_{j-h(x)}(\operatorname{Spec} L, m)_{d}=A_{j-h(x)+l}\left(U_{L}, m\right)_{d}=A_{j-h(x)+l-a}\left(\bar{U}_{L}, m\right)_{d} .
$$

For this recall $A_{j+l-a}\left(\bar{U}_{L}, m\right)=A_{j}^{A_{L}}(m)$ and $A_{j+l}\left(U_{L}, m\right)=A_{j}^{\{0\}}(m)$. This proves the claim.

The above proposition applies to the following cases.
Corollary 1.4.2. In the situation of Proposition 1.4.1 the following assertions hold.
(i) If A is unipotent then $A_{*}([X / H], m) \rightarrow A_{*}([X / G], m)$ is an isomorphism.
(ii) If A is finite of degree d then $A_{*}([X / H], m) \rightarrow A_{*}([X / G], m)$ becomes an isomorphism after inverting d.
Proof. The first part follows from Corollary 1.3.3 and the second part follows from Lemma 1.3.5 applied to the case $K=\{0\}$.

The assumption on H to be special is crucial for the proof of Proposition 1.4.1, since we need to know that the fibers of the \bar{U}-bundle $(X \times \bar{U}) / H \rightarrow X / H$ appearing in the proof are given by \bar{U} in order to apply Lemma 1.3.2. However, we have the following version when H is finite.

Proposition 1.4.3. Let

$$
0 \longrightarrow A \longrightarrow G \longrightarrow H \longrightarrow 0
$$

be an exact sequence of algebraic groups and X an admissible H-scheme such that the induced G-action makes X also into an admissible G-scheme. We assume that H is finite of degree d.

Let $d^{\prime} \in \mathbb{Z}$ be such that $A_{A_{L}}^{*}(m) \rightarrow A_{\{0\}}^{*}(m)$ becomes an isomorphism after inverting d^{\prime} for every field extension L of k and any m. Then the pullback $A_{*}([X / H], m) \rightarrow A_{*}([X / G], m)$ becomes an isomorphism after inverting d^{\prime}.

Proof. We argue the same way as in Proposition 1.4.1 and then have to see that the pullback of $(X \times \bar{U}) / H \rightarrow X / H$ becomes an isomorphism after inverting $d d^{\prime}$. As mentioned earlier we cannot apply Lemma 1.3.2 since the above \bar{U}-bundle is not locally trivial for the Zariski topology. Instead it becomes trivial after the finite, flat and surjective base change $X \rightarrow X / H$ of degree d, i.e., there is a cartesian diagram

The claim thus follows from Lemma 1.3.1.
Corollary 1.4.4. In the situation of Proposition 1.4 .3 the following assertions hold.
(i) If A is unipotent then $A_{*}([X / H], m)_{d} \rightarrow A_{*}([X / G], m)_{d}$ is an isomorphism.
(ii) If A is finite of degree d^{\prime} then $A_{*}([X / H], m)_{d d^{\prime}} \rightarrow A_{*}([X / G], m)_{d d^{\prime}}$ is an isomorphism.

In the next proposition we show that the assertion of Proposition 1.4.1 is valid over \mathbb{Q} for arbitrary H.

Proposition 1.4.5. Let

$$
0 \longrightarrow A \longrightarrow G \longrightarrow H \longrightarrow 0
$$

be an exact sequence of algebraic groups and X an admissible H-scheme such that the induced G-action makes X also into an admissible G-scheme.

Assume $A_{A_{L}}^{*}(m)_{\mathbb{Q}} \rightarrow A_{\{0\}}^{*}(m)_{\mathbb{Q}}$ is an isomorphism for every field extension L of k and any m. Then the pullback $A_{*}([X / H], m)_{\mathbb{Q}} \rightarrow A_{*}([X / G], m)_{\mathbb{Q}}$ is an isomorphism.

Proof. Using the notation of the proof of Proposition 1.4.1 we need to see that the pullback of the \bar{U}-bundle $T:=(X \times \bar{U}) / H \rightarrow X / H$ is an isomorphism over \mathbb{Q}. It suffices to see that $A_{*}(\operatorname{Spec} k(x), m)_{\mathbb{Q}} \rightarrow A_{*}\left(T_{x}, m\right)_{\mathbb{Q}}$ is an isomorphism for $x \in X / H$. The above \bar{U}-bundle may not be trivial for the Zariski topology, but we still have $T_{\bar{x}}=\bar{U}_{\bar{x}}$ and thus $A_{*}\left(\operatorname{Spec} k(x)^{\text {sep }}, m\right)_{\mathbb{Q}} \rightarrow A_{*}\left(T_{\bar{x}}, m\right)_{\mathbb{Q}}$ is an isomorphism by assumption. The claim then follows from Lemma 1.3.6 and the fact that the Galois action is compatible with pullback.

Corollary 1.4.6. In the situation of Proposition 1.4 .5 the following assertions hold.
(i) If A is unipotent then $A_{*}([X / H], m)_{\mathbb{Q}} \rightarrow A_{*}([X / G], m)_{\mathbb{Q}}$ is an isomorphism.
(ii) If A is finite then $A_{*}([X / H], m)_{\mathbb{Q}} \rightarrow A_{*}([X / G], m)_{\mathbb{Q}}$ is an isomorphism.

Lemma 1.4.7. Let G be a split extension

$$
0 \longrightarrow K \longrightarrow G \longrightarrow H \longrightarrow 0
$$

of an algebraic group H by a unipotent group K. Choose a splitting $H \hookrightarrow G$ and let X be a normal, quasiprojective G-scheme. Then the pullback map

$$
A_{*}^{G}(X, m)_{\mathbb{Q}} \rightarrow A_{*}^{H}(X, m)_{\mathbb{Q}}
$$

is an isomorphism. If G is special, this above map is an isomorphism over \mathbb{Z}.
Proof. Let (V, U) be an admissible pair for the G-action on X. It follows from the proof of Lemma 1.2.2 that (V, U) is then also admissible for the induced H-action. The morphism $(X \times U) / H \rightarrow(X \times U) / G$ is a G / H-bundle. If G is special this bundle is locally trivial for the Zariski topology. Hence the lemma follows from Corollary 1.3.3 in the special case and Lemmas 1.3.2 and 1.3.6 in the general case.
1.5. The restriction map. We want to describe properties of the restriction map $\operatorname{res}_{T}^{G}: A_{*}^{G}(X) \rightarrow A_{*}^{T}(X)$, where T is a split torus in G. This map is defined via flat pullback of the natural map $X_{T} \rightarrow X_{G}$ between the mixed spaces. Note that more generally one has a restriction map $\operatorname{res}_{H}^{G}: A_{*}^{G}(X) \rightarrow A_{*}^{H}(X)$ for every subgroup H of G. We will need the following result.

Theorem 1.5.1. Let G be a connected reductive group with split maximal torus T and Weyl group $W=W(G, T)$. Let X be a G-scheme.
(i) W acts on $A_{*}^{T}(X)$. Furthermore, the restriction morphism $A_{*}^{G}(X) \rightarrow A_{*}^{T}(X)$ induces a map $r: A_{*}^{G}(X) \rightarrow A_{*}^{T}(X)^{W}$.
(ii) Assume X is smooth. Then r is an isomorphism after tensoring with \mathbb{Q}.
(iii) Assume X is smooth and that G is special. Then r is injective. Moreover, r is an isomorphism if $A_{T}^{*}(X)$ is \mathbb{Z}-torsion free (e.g., if $X=\operatorname{Spec} k$).

Part (iii) is basically proved in [Edidin and Graham 1997], where the case $X=\operatorname{Spec} k$ is considered. However, there seems to be no complete proof of part (ii) in the literature. We therefore give a proof.

In the following $A^{*}(X ; \mathbb{Q})$ will denote the operational Chow ring of X consisting of characteristic classes with values in rational Chow groups, i.e., an element $c \in A^{*}(X ; \mathbb{Q})$ assigns to each $T \rightarrow X$ a morphism

$$
c(T \rightarrow X): A_{*}(T)_{\mathbb{Q}} \rightarrow A_{*}(T)_{\mathbb{Q}}
$$

satisfying the usual compatibility conditions [Fulton 1998, Section 17.1]. A proper map $\pi: \widetilde{X} \rightarrow X$ is called an envelope if for each irreducible subspace $V \subset X$ there exists an irreducible subspace $\widetilde{V} \subset \widetilde{X}$ such that π maps \widetilde{V} birationally onto V.

Remark 1.5.2. There is a natural map $A^{*}(X)_{\mathbb{Q}} \rightarrow A^{*}(X ; \mathbb{Q})$ and this map is an isomorphism if X is smooth. This follows from

We recall the following easy lemma.
Lemma 1.5.3. (i) Let $\pi: \widetilde{X} \rightarrow X$ be a proper surjective map. Then

$$
\pi_{*}: A_{*}(\tilde{X})_{\mathbb{Q}} \rightarrow A_{*}(X)_{\mathbb{Q}}
$$

is surjective and $\pi^{*}: A^{*}(X ; \mathbb{Q}) \rightarrow A^{*}(\tilde{X} ; \mathbb{Q})$ is injective.
(ii) Let $\pi: \tilde{X} \rightarrow X$ be a birational envelope. Then $\pi_{*}: A_{*}(\tilde{X}) \rightarrow A_{*}(X)$ is surjective and $\pi^{*}: A^{*}(X) \rightarrow A^{*}(\widetilde{X})$ is injective.
Proof. The first part of (i) is [Kimura 1992, Proposition 1.3]. The first part of (ii) follows immediately from the definition of an envelope. The second part of (i) and (ii) are formal consequences of their first parts.

In order to prove Theorem 1.5 .1 we consider the following situation: Let G be a connected reductive group with split maximal torus T and Weyl group $W=$ $W(G, T)$. Let M be smooth and $E \rightarrow M$ be a principal G-bundle. Consider a Borel subgroup $B \supset T$. Now W acts on $A^{*}(E / B)$ in the following way. We identify $W=N_{G}(T) / T$ and choose $w \in N_{G}(T)$. Then w induces an automorphism $w: E / T \rightarrow E / T$ and hence an automorphism $w^{*}: A^{*}(E / T) \rightarrow A^{*}(E / T)$. This defines an action of W on $A^{*}(E / T)=A^{*}(E / B)$. The following lemma is also mentioned (without proof) in [Vistoli 1989, Section 2.5].
Lemma 1.5.4. Pullback induces an isomorphism $A^{*}(M)_{\mathbb{Q}} \cong A^{*}(E / B)_{\mathbb{Q}}^{W}$.
Proof. Let $w \in N_{G}(T)$. Since w lies in G the diagram

commutes and this implies that the image of the pullback $A^{*}(M) \rightarrow A^{*}(E / B)$ lies in $A^{*}(E / B)^{W}$. We are left to show that

$$
A^{*}(M)_{\mathbb{Q}} \rightarrow A^{*}(E / B)_{\mathbb{Q}}^{W}
$$

is an isomorphism. Let us first show that $A_{*}(M)_{\mathbb{Q}} \rightarrow A_{*}(E / B)_{\mathbb{Q}}^{W}$ is surjective. For this the smoothness assumption on M is not needed. We recall that every G-torsor
is locally isotrivial by [Raynaud 1970, XIV, Lemma 1.4]. This means that there exists a covering of M by open subsets U with the property that for each U there is a finite, étale and surjective map $U^{\prime} \rightarrow U$ such that $E_{U^{\prime}}=E \times{ }_{M} U^{\prime} \rightarrow U^{\prime}$ becomes a trivial G-torsor. Let V denote the complement of such a U in M and consider the commutative diagram

with exact rows. An easy diagram chase shows that if the first and last vertical map are surjective so is $A^{*}(M)_{\mathbb{Q}} \rightarrow A^{*}(E / B)_{\mathbb{Q}}^{W}$. Using noetherian induction we are thus reduced to the case that there exists a proper surjective map $M^{\prime} \rightarrow M$ such that $E_{M^{\prime}} \rightarrow M^{\prime}$ is trivial. Since the diagram

commutes [Fulton 1998, Proposition 1.7], and since $A_{*}\left(E_{M^{\prime}} / B\right)_{\mathbb{Q}}^{W} \rightarrow A_{*}(E / B)_{\mathbb{Q}}^{W}$ is surjective by part (i) of the previous lemma we are further reduced to the case of a trivial G-torsor $E=G \times M \rightarrow M$. Now G / B has a decomposition into affine cells and therefore we obtain in the case of a trivial G-torsor $A_{*}(E / B)_{\mathbb{Q}}=A_{*}(G / B)_{\mathbb{Q}} \otimes A_{*}(M)_{\mathbb{Q}}$ by [Totaro 2014, Section 3]. From [Demazure 1973, Section 8] we get $A_{*}(G / B)_{\mathbb{Q}}=S_{\mathbb{Q}} /\left(S_{+}^{W}\right)$, where $S=\operatorname{Sym}(\widehat{T})$ and S_{+}^{W} denotes the submodule generated by homogeneous W-invariant elements of positive degree. Since $\left(S_{\mathbb{Q}} /\left(S_{+}^{W}\right)\right)^{W}=\mathbb{Q}$ we obtain $A_{*}(E / B)_{\mathbb{Q}}^{W}=A_{*}(M)$ as wanted.

By the previous lemma we know that $A^{*}(M ; \mathbb{Q}) \rightarrow A^{*}(E / B ; \mathbb{Q})$ is injective but since M (and therefore E) is smooth we obtain the injectivity of $A^{*}(M)_{\mathbb{Q}} \rightarrow$ $A^{*}(E / B)_{\mathbb{Q}}$.

Proof of Theorem 1.5.1. The assertions (i) and (ii) are immediate consequences of Lemma 1.5.4. Under the assumption that $A_{T}^{*}(X)$ is \mathbb{Z}-torsion free the surjectivity of r follows from part (ii) by using the argumentation of the proof of Lemma 5 in [Edidin and Graham 1997].

2. The Chow ring of the stack of level- n Barsotti-Tate groups

2.1. The stack of truncated displays. Let R be an \mathbb{F}_{p}-algebra. We denote by $W_{n}(R)$ the ring of truncated Witt vectors of length n. Let $I_{n, R} \subset W_{n}(R)$ be the image
of the Verschiebung $W_{n-1}(R) \rightarrow W_{n}(R)$ and $J_{n, R} \subset W_{n}(R)$ be the kernel of the projection $W_{n}(R) \rightarrow W_{n-1}(R)$. The Frobenius on R induces a ring homomorphism $\sigma: W_{n}(R) \rightarrow W_{n}(R)$ and the inverse of the Verschiebung induces a bijective σ-linear map $\sigma_{1}: I_{n+1, R} \rightarrow W_{n}(R)$. Note that $p R=0$ implies $I_{n, R} J_{n, R}=0$, hence we may view $I_{n+1, R}$ as a $W_{n}(R)$-module. We call a σ-linear map f : $M \rightarrow N$ between $W_{n}(R)$-modules a σ-linear isomorphism, if its linearization $f^{\sharp}: W_{n}(R) \otimes_{\sigma, W_{n}(R)} M \rightarrow M$ is an isomorphism of $W_{n}(R)$-modules.

Truncated displays were introduced in [Lau 2013]. Let us recall the necessary notation. We are only going to need the following description of truncated displays.

Definition 2.1.1. A truncated display of level n over an \mathbb{F}_{p}-algebra R is a triple (L, T, Ψ) consisting of projective $W_{n}(R)$-modules L and T of finite rank and a σ-linear automorphism $\Psi: L \oplus T \rightarrow L \oplus T$.

A morphism between truncated displays is defined as follows. First we can use Ψ to define σ-linear maps

$$
\begin{aligned}
F: L \oplus T & \rightarrow L \oplus T, & & l+t \mapsto p \Psi(l)+\Psi(t) \\
F_{1}: L \oplus\left(T \otimes_{W_{n}(R)} I_{n+1, R}\right) & \rightarrow L \oplus T, & & l+(t \otimes \omega) \mapsto \Psi(l)+\sigma_{1}(\omega) \Psi(t)
\end{aligned}
$$

Then a morphism between two truncated displays (L, T, Ψ) and $\left(L^{\prime}, T^{\prime}, \Psi^{\prime}\right)$ of level n is given by a matrix $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where $A \in \operatorname{Hom}\left(L, L^{\prime}\right), B \in \operatorname{Hom}\left(T, L^{\prime}\right)$, $C \in \operatorname{Hom}\left(L, T^{\prime} \otimes_{W_{n}(R)} I_{n+1, R}\right)$ and $D \in \operatorname{Hom}\left(T, T^{\prime}\right)$ such that

commute.
The height of a truncated display is defined as the rank of $L \oplus T$ and the dimension as the rank of T. Both are locally constant functions on $\operatorname{Spec} R$. Let $\mathcal{D i s p}_{n} \rightarrow \operatorname{Spec} \mathbb{F}_{p}$ denote the stack of truncated displays of level n. That is, for R an \mathbb{F}_{p}-algebra, $\mathcal{D} \operatorname{isp}_{n}(\operatorname{Spec} R)$ is the groupoid of truncated displays of level n. It is proved in [Lau 2013, Proposition 3.15] that $\mathcal{D i s p}_{n}$ is a smooth Artin algebraic stack of dimension zero over \mathbb{F}_{p} with affine diagonal.

For $h \in \mathbb{N}$ and $0 \leq d \leq h$ we denote by $\mathcal{D} \operatorname{isp}_{n}^{h, d}$ the open and closed substack of truncated displays of level n with constant height h and constant dimension d. Then

$$
\mathcal{D} \operatorname{isp}_{n}=\coprod_{h, d} \mathcal{D} \operatorname{isp}_{n}^{h, d}
$$

A presentation of $\mathcal{D i s p} n_{n}^{h, d}$. We will adopt the notation of the proof of Proposition 3.15 in [Lau 2013]. Let $X_{n}^{h, d}$ be the functor on affine \mathbb{F}_{p}-schemes with
$X_{n}^{h, d}(R)=\mathrm{GL}_{h}\left(W_{n}(R)\right)$. This is an affine open subscheme of $\mathbb{A}^{n h^{2}}$. Furthermore, let $G_{n}^{h, d}$ be the functor such that $G_{n}^{h, d}(R)$ is the group of invertible matrices $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ with $A \in \mathrm{GL}_{h-d}\left(W_{n}(R)\right), B \in \operatorname{Hom}\left(W_{n}(R)^{d}, W_{n}(R)^{h-d}\right), C \in$ $\operatorname{Hom}\left(W_{n}(R)^{h-d}, I_{n+1, R}^{d}\right)$ and $T \in \mathrm{GL}_{d}\left(W_{n}(R)\right)$. Then $G_{n}^{h, d}$ is a connected algebraic group of dimension $n h^{2}$.
Remark 2.1.2. Since $I_{2, R}$ is in bijection to R via σ_{1} we may view $G_{1}^{h, d}(R)$ as the group of invertible matrices with entries in R with respect to the multiplication given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
A A^{\prime} & A B^{\prime}+B D^{\prime} \\
C \sigma\left(A^{\prime}\right)+\sigma(D) C^{\prime} & D D^{\prime}
\end{array}\right),
$$

where in the four blocks we have the usual matrix multiplication.
Let $\pi_{n}^{h, d}: X_{n}^{h, d} \rightarrow \mathcal{D i s p}_{n, d}$ be the functor that assigns to an invertible matrix $\Psi \in \mathrm{GL}_{h}\left(W_{n}(R)\right)$ the truncated display $\left(W_{n}(R)^{h-d}, W_{n}(R)^{d}, \Psi\right)$, where we view Ψ as a σ-linear map $W_{n}(R)^{h} \rightarrow W_{n}(R)^{h}$ via $x \mapsto \Psi \cdot \sigma x$. Now if we let $G_{n}^{h, d}$ act on $X_{n}^{h, d}$ via

$$
G \cdot \Psi=G \Psi \sigma_{1}(G)^{-1}
$$

where

$$
\sigma_{1}(G)=\left(\begin{array}{cc}
\sigma(A) & p \sigma(B) \\
\sigma_{1}(C) & \sigma(D)
\end{array}\right),
$$

then every $G \in G_{n}^{h, d}$ defines an isomorphism $\pi_{n}^{h, d}(\Psi) \rightarrow \pi_{n}^{h, d}(G \cdot \Psi)$ of truncated displays. On the other hand, if G defines an isomorphism $\pi_{n}^{h, d}(\Psi) \rightarrow \pi_{n}^{h, d}\left(\Psi^{\prime}\right)$ then necessarily $\Psi^{\prime}=G \Psi \sigma_{1}(G)^{-1}$. We thus obtain the following theorem.
Theorem 2.1.3. The functor $\pi_{n}^{h, d}$ induces an isomorphism of stacks

$$
\left[X_{n}^{h, d} / G_{n}^{h, d}\right] \cong \mathcal{D} i s p_{n}^{h, d} .
$$

There are the following two obvious vector bundles on $\mathcal{D} \mathrm{isp}_{n}^{h, d}$.
Definition 2.1.4. Let $\operatorname{Spec} R \rightarrow \mathcal{D} \operatorname{isp}_{n}^{h, d}$ be a map corresponding to a truncated display $\mathcal{P}=(L, T, \Psi)$.
(i) We denote by \mathcal{L} ie the vector bundle of rank d over \mathcal{D} isp $_{n}^{h, d}$ that assigns to $\operatorname{Spec} R \rightarrow \mathcal{D}$ isp $_{n}^{h, d}$ the vector bundle $\operatorname{Lie}(\mathcal{P})=T / I_{n, R} T$ of rank d over R.
(ii) We denote by ${ }^{t} \mathcal{L} i e^{\vee}$ the vector bundle of rank $h-d$ that assigns to Spec $R \rightarrow$ $\mathcal{D} \mathrm{isp}_{n}^{h, d}$ the vector bundle $L / I_{n, R} L$ of rank $h-d$ over R.

Remark 2.1.5. The notation ${ }^{t} \mathcal{L} i e^{\vee}$ in the above definition stems from the fact that the dual of $L / I_{n, R} L$ gives the Lie algebra of the dual display \mathcal{P}^{t}. For the definition of the dual display see [Zink 2002, Definition 19].

The truncated display functor. As mentioned in the introduction the strategy for computing the Chow ring of the stack of truncated Barsotti-Tate groups is to relate it to the stack of truncated displays. This happens via the truncated display functor

$$
\phi_{n}: \mathrm{BT}_{n} \rightarrow \mathcal{D} \mathrm{isp}_{n}
$$

constructed in [Lau 2013]. Let us briefly sketch the construction.
Let G be a p-divisible group over an \mathbb{F}_{p}-algebra R. The ring of Witt vectors $W(R)$ is p-adically complete and the ideal I_{R} in $W(R)$ carries natural divided powers compatible with the canonical divided powers of p. Let $\mathbb{D}(G)$ denote the covariant Dieudonné crystal of G. We can evaluate $\mathbb{D}(G)$ at $W(R) \rightarrow R$ and set $P=\mathbb{D}(G)_{W(R) \rightarrow R}$ and $Q=\operatorname{Ker}(P \rightarrow \operatorname{Lie}(G))$. Furthermore, let $F^{\sharp}: P^{\sigma} \rightarrow P$ and $V^{\sharp}: P \rightarrow P^{\sigma}$ be the maps induced by the Frobenius and Verschiebung of G. One can show that there are σ-linear maps $F: P \rightarrow P$ and $\dot{F}: Q \rightarrow P$ compatible with base change in R such that (P, Q, F, \dot{F}) is a display which induces the maps F^{\sharp} and V^{\sharp}. See [Lau 2013, Proposition 2.4] for the precise statement. This construction yields a 1-morphism

$$
\phi: \mathrm{BT} \rightarrow \mathcal{D} \mathrm{isp}
$$

from the stack of Barsotti-Tate groups to the stack of displays. It is clear from the construction that the Lie algebra of G is equal to the Lie algebra of $\phi(G)$ defined by P / Q.

Moreover, one can prove that for all n there are maps $\phi_{n}: \mathrm{BT}_{n} \rightarrow \mathcal{D} \operatorname{isp}_{n}$ compatible with the truncation maps on both sides such that ϕ is the projective limit of the system $\left(\phi_{n}\right)_{n \geq 1}$. The central result in [Lau 2013] is that ϕ_{n} is a smooth morphism of smooth algebraic stacks over \mathbb{F}_{p} which is an equivalence on geometric points.
2.2. Group theoretic properties of $\boldsymbol{G}_{\boldsymbol{n}}^{\boldsymbol{h}, \boldsymbol{d}}$. We denote by $K_{(n, m)}^{h, d}$ the kernel of the projection $G_{n}^{h, d} \rightarrow G_{m}^{h, d}$ for $m<n$ and by $\widetilde{K}_{n}^{h, d}$ the kernel of the projection $G_{n}^{h, d} \rightarrow \mathrm{GL}_{h-d} \times \mathrm{GL}_{d}$. Note that $G_{n}^{h, 0}=\mathrm{GL}_{h}\left(W_{n}(\cdot)\right)$. We recall the following well known facts about the Witt ring. For an \mathbb{F}_{p}-algebra R we denote by $[\cdot]: R \rightarrow W_{n}(R)$ the map $r \mapsto(r, 0, \ldots, 0)$ and ${ }^{V}(\cdot): W(R) \rightarrow W(R)$ is the Verschiebung.

Lemma 2.2.1. Let R be an \mathbb{F}_{p}-algebra and $x, y \in R$. Then $[x+y]-[x]-[y]$ lies in ${ }^{V} W(R)$. Furthermore, ${ }^{r} W(R) \cdot{ }^{V^{s}} W(R) \subset V^{r+s} W(R)$.

Proof. The first part follows immediately from the fact that ${ }^{V} W(R)$ is the kernel of the ring homomorphism $\mathbb{W}_{0}: W(R) \rightarrow R$ and the fact $\mathbb{W}_{0}([x])=x$ for all $x \in R$.

For the second part we may assume $r \geq s$. We then write

$$
V^{r} x^{V^{s}} y=V^{r}\left(x^{F^{r} V^{s}} y\right)=p^{s} \cdot{ }^{r}\left(x^{F^{r-s}} y\right)
$$

Since $p R=0$ we have $p\left(x_{0}, x_{1}, \ldots\right)=\left(0, x_{0}^{p}, x_{1}^{p}, \ldots\right)$ in $W(R)$ and the lemma follows.

Lemma 2.2.2. (i) $K_{(n, m)}^{h, d}$ is unipotent.
(ii) $\widetilde{K}_{n}^{h, d}$ is unipotent.

Proof. (i) First note that $K_{(n, n-1)}^{h, 0}=\operatorname{ker}\left(\operatorname{GL}_{h}\left(W_{n}(\cdot)\right) \rightarrow \mathrm{GL}_{h}\left(W_{n-1}(\cdot)\right)\right)$ is unipotent. To see this we consider the Verschiebung ${ }^{V}(\cdot)$ as a map $W_{n}(R) \rightarrow W_{n}(R)$. Then by the above lemma the map

$$
\mathbb{G}_{a}^{h^{2}} \rightarrow K_{(n, n-1)}^{h, 0}, \quad A \mapsto I_{h}+{ }^{V^{n-1}}[A]
$$

is an isomorphism of algebraic groups.
Next we show that $K_{(n, n-1)}^{h, d}$ is unipotent. This is the group of matrices $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with $A \in K_{(n, n-1)}^{h-d, 0}, B \in J_{n}^{(h-d) \times d}, C \in J_{n+1}^{d \times(h-d)}$ and $D \in K_{(n, n-1)}^{d, 0}$. The multiplication in this group is given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
A A^{\prime} & A B^{\prime}+B D^{\prime} \\
C A^{\prime}+D C^{\prime} & D D^{\prime}
\end{array}\right)
$$

Starting with the normal subgroup

$$
\left(\begin{array}{cc}
I_{h-d} & J_{n}^{(h-d) \times d} \\
J_{n+1}^{d \times(h-d)} & I_{d}
\end{array}\right)
$$

which is isomorphic to $\mathbb{G}_{a}^{2 d(h-d)}$, and then using the fact that $K_{(n, n-1)}^{h-d, 0}$ and $K_{(n, n-1)}^{d, 0}$ are isomorphic to $\mathbb{G}_{a}^{(h-d)^{2}}$ and $\mathbb{G}_{a}^{d^{2}}$, respectively, one obtains a filtration of $K_{(n, n-1)}^{h, d}$ by normal subgroups, whose successive quotients are isomorphic to a product of copies of \mathbb{G}_{a}. Now we have an exact sequence

$$
0 \longrightarrow K_{(n, n-1)}^{h, d} \longrightarrow K_{(n, m)}^{h, d} \longrightarrow K_{(n-1, m)}^{h, d} \longrightarrow 0
$$

and by induction we may assume that $K_{(n-1, m)}^{h, d}$ is unipotent. It follows that $K_{(n, m)}^{h, d}$ is unipotent.
(ii) For $n=1$ the assertion is obvious in view of Remark 2.1.2. For $n>1$ we use the exact sequence

$$
0 \longrightarrow K_{(n, n-1)}^{h, d} \longrightarrow \widetilde{K}_{n}^{h, d} \longrightarrow \widetilde{K}_{n-1}^{h, d} \longrightarrow 0 .
$$

By induction and part (i) it follows that $\widetilde{K}_{n}^{h, d}$ is unipotent.
Corollary 2.2.3. (i) $G_{n}^{h, d}$ is special.
(ii) $\widetilde{K}_{n}^{h, d}$ is the unipotent radical of $G_{n}^{h, d}$.
(iii) The projection $X_{n}^{h, d} \rightarrow X_{1}^{h, d}$ is a trivial $K_{(n, 1)}^{h, 0}$-torsor.

Proof. We have the exact sequence

$$
0 \longrightarrow \widetilde{K}_{n}^{h, d} \longrightarrow G_{n}^{h, d} \longrightarrow \mathrm{GL}_{h-d} \times \mathrm{GL}_{d} \longrightarrow 0
$$

Now $\widetilde{K}_{n}^{h, d}$ is unipotent, and thus special. Since $\mathrm{GL}_{h-d} \times \mathrm{GL}_{d}$ is also special part (i) follows.

Clearly the projection $X_{n}^{h, d} \rightarrow X_{1}^{h, d}$ is a $K_{(n, 1)}^{h, 0}$-torsor by definition of $K_{(n, 1)}^{h, 0}$. It is trivial since $K_{(n, 1)}^{h, 0}$ is unipotent and $X_{1}^{h, d}$ is affine.
2.3. The Chow ring of $\operatorname{Disp}_{\boldsymbol{n}}$. We start with the following result which reduces the calculation of $A^{*}\left(\mathcal{D} \mathrm{Disp}_{n}\right)$ to the case $n=1$.

Theorem 2.3.1. The pullback

$$
\tau_{n}^{*}: A^{*}\left(\mathcal{D} i s p_{1}^{h, d}\right) \rightarrow A^{*}\left(\mathcal{D} i s p_{n}^{h, d}\right)
$$

of the truncation $\tau_{n}: \mathcal{D}$ isp $n_{n}^{h, d} \rightarrow$ Disp ${ }_{1}^{h, d}$ is an isomorphism.
Proof. Under the presentation $\mathcal{D} \operatorname{isp}_{n}^{h, d}=\left[X_{n}^{h, d} / G_{n}^{h, d}\right]$ the truncation τ_{n} is induced by the natural projections $X_{n}^{h, d} \rightarrow X_{1}^{h, d}$ and $G_{n}^{h, d} \rightarrow G_{1}^{h, d}$. Thus τ_{n} factors as

$$
\left[X_{n}^{h, d} / G_{n}^{h, d}\right] \rightarrow\left[X_{1}^{h, d} / G_{n}^{h, d}\right] \rightarrow\left[X_{1}^{h, d} / G_{1}^{h, d}\right]
$$

By Lemma 2.2.2 and Corollary 1.4.2, the pullback of the second map is an isomorphism. To show that the pullback of the first map is also an isomorphism let us abbreviate $X=X_{1}^{h, d}$ and $G=G_{n}^{h, d}$. By part (iii) of Corollary 2.2 .3 we know that $X_{n}^{h, d}=X \times K$ with $K=K_{(n, 1)}^{h, 0}$, and the projection $X \times K \rightarrow X$ is G-equivariant. Moreover, K is an affine space by Lemma 2.2.2. After replacing $[X / G]$ by an appropriate mixed space (see Convention 1.1.1), i.e., replacing X by $X \times U$ where (V, U) is an admissible pair with high codimension, we may assume that $[X / G]$ is a quasiprojective scheme. We claim that $(X \times K) / G \rightarrow X / G$ is a Zariski locally trivial affine bundle. Since G is special by part (i) of Corollary 2.2.3 the principal G-bundle $X \rightarrow X / G$ is locally trivial for the Zariski topology and after replacing X / G by an appropriate open subset we may assume $X=G \times(X / G)$. We then have an isomorphism $(G \times(X / G) \times K) / G \cong(X / G) \times K$ given by the assignment $(g, x, k) \mapsto\left(x, k^{\prime}\right)$, where k^{\prime} is defined by $g^{-1}(g, x, k)=\left(1, x, k^{\prime}\right)$. This proves the claim and hence the pullback of the first map is also an isomorphism by Corollary 1.3.3.

The main ingredient of the computation of $A^{*} \mathcal{D} \operatorname{isp}_{1}^{h, d}$ is the following proposition.
Proposition 2.3.2. Let G be a connected split reductive group over a field k with split maximal torus T. Consider an isogeny $\varphi: L \rightarrow M$, where L and M are Levi components of parabolic subgroups P and Q of G. Assume $T \subset L$ and let $g_{0} \in G(k)$ such that $\varphi(T)={ }^{g_{0}} T$. Let $\tilde{\varphi}: T \rightarrow T$ denote the isogeny φ followed by conjugation with g_{0}^{-1}. We write $S=\operatorname{Sym}(\widehat{T})=A_{T}^{*}$ and $S_{+}=A_{T}^{\geq 1}$. We have a natural action of $\tilde{\varphi}$ on S, that we will also denote by $\tilde{\varphi}$.

Consider the action of L on G by φ-conjugation. If $W_{G}=W(G, T)$ and $W_{L}=$ $W(L, T)$ denote the respective Weyl groups we have

$$
A_{L}^{*}(G)_{\mathbb{Q}}=S_{\mathbb{Q}}^{W_{L}} /\left(f-\tilde{\varphi} f \mid f \in S_{+}^{W_{G}}\right)_{\mathbb{Q}}
$$

If G is special we have

$$
A_{L}^{*}(G)=S^{W_{L}} /\left(f-\tilde{\varphi} f \mid f \in S_{+}^{W_{G}}\right) .
$$

(Note that the action of $\tilde{\varphi}$ on $S^{W_{G}}$ is independent of the choice of g_{0} since two choices differ by an element of $N_{G}(T)$.)
Proof. The case of special G is proven in [Brokemper 2016, Proposition 1.1]. Let I denote the ideal $\left(f-\varphi f \mid f \in S_{+}^{W_{G}}\right)_{\mathbb{Q}}$ in $S_{\mathbb{Q}}^{W_{G}}$. It remains to show $A_{L}^{*}(G)_{\mathbb{Q}}=$ $S_{\mathbb{Q}}^{W_{L}} / I S_{\mathbb{Q}}^{W_{L}}$ in the nonspecial case. Using the same argumentation as in the special case we arrive at

$$
A_{T}^{*}(G)_{\mathbb{Q}}=S_{\mathbb{Q}} / I S_{\mathbb{Q}} .
$$

Now by Theorem 1.5.1 we know $A_{L}^{*}(G)_{\mathbb{Q}}=A_{T}^{*}(G)_{\mathbb{Q}}^{W_{L}}$. Since $S_{\mathbb{Q}}^{W_{L}} \hookrightarrow S_{\mathbb{Q}}$ is finite free [Demazure 1973, Theorem 2(d)], it is also faithfully flat. Hence we obtain $S_{\mathbb{Q}}^{W_{L}} \cap I S_{\mathbb{Q}}=I S_{\mathbb{Q}}^{W_{L}}$ and the assertion follows.

In the following we will write c_{i} for the i-th elementary symmetric polynomial in the variables t_{1}, \ldots, t_{h} and $c_{i}^{(j, k)}$ will denote the i-th elementary symmetric polynomial in the variables t_{j}, \ldots, t_{k}, where $1 \leq j<k \leq h$ and $1 \leq i \leq k-j+1$. We then have $\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]^{S_{h-d} \times S_{d}}=\mathbb{Z}\left[c_{1}^{(1, h-d)}, \ldots, c_{h-d}^{(1, h-d)}, c_{1}^{(h-d+1, h)}, \ldots, c_{d}^{(h-d+1, h)}\right]$.
Theorem 2.3.3. $A^{*}\left(\mathcal{D}\right.$ isp $\left.1_{1}^{h, d}\right)=A_{\mathrm{GL}_{h-d} \times \mathrm{GL}_{d}}^{*}\left(\mathrm{GL}_{h}\right)$

$$
=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]^{S_{h-d} \times S_{d}} /\left((p-1) c_{1}, \ldots,\left(p^{h}-1\right) c_{h}\right),
$$

where the $c_{i}^{(1, h-d)}$ and $c_{i}^{(h-d+1, h)}$ are the Chern classes of ${ }^{t} \mathcal{L} i e^{\vee}$ and $\mathcal{L} i e$, respectively.
Proof. We have that $G_{1}^{h, d}$ is a split extension of the group $\mathrm{GL}_{h-d} \times \mathrm{GL}_{d}$ by the unipotent group

$$
\left\{\left(\begin{array}{cc}
I_{h-d} & * \\
* & I_{d}
\end{array}\right)\right\},
$$

where $*$ denotes an arbitrary matrix (see Remark 2.1.2). The splitting is given by the canonical inclusion $\mathrm{GL}_{h-d} \times \mathrm{GL}_{d} \hookrightarrow G_{1}^{h, d}$. Hence by Lemma 1.4.7 we know

$$
A^{*}\left(\mathcal{D} \operatorname{isp}_{1}^{h, d}\right)=A_{\mathrm{GL}_{h-d} \times \mathrm{GL}_{d}}^{*}\left(\mathrm{GL}_{h}\right),
$$

where the action of $\mathrm{GL}_{h-d} \times \mathrm{GL}_{d}$ on GL_{h} is given by σ-conjugation. Since $\mathrm{GL}_{h-d} \times \mathrm{GL}_{d}$ is special with Weyl group $S_{h-d} \times S_{d}$ we obtain from Proposition 2.3.2

$$
A_{\mathrm{GL}_{h-d} \times \mathrm{GL}_{d}}^{*}\left(\mathrm{GL}_{h}\right)=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]^{S_{h-d} \times S_{d}} /\left((p-1) c_{1}, \ldots,\left(p^{h}-1\right) c_{h}\right) .
$$

For this, note that the Frobenius σ acts on $S=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ via $\sigma t_{i}=p t_{i}$ and that c_{i} is a homogenous polynomial in t_{1}, \ldots, t_{n} of degree i.

The assertion that the $c_{i}^{(1, h-d)}$ and $c_{i}^{(h-d+1, h)}$ are the Chern classes of $\mathcal{L i e}$ and ${ }^{t} \mathcal{L i} e^{\vee}$, respectively, follows from the following simple fact. Let us write \mathcal{E}_{d}
(resp. \mathcal{E}_{h-d}) for the vector bundle over $\left[* / \mathrm{GL}_{d}\right]$ (resp. $\left[* / \mathrm{GL}_{h-d}\right]$) that corresponds to the canonical representation of GL_{d} (resp. GL_{h-d}). Then $\mathcal{L} i e$ is the pullback of \mathcal{E}_{d} under the natural map

$$
\mathcal{D} \operatorname{isp}_{1}^{h, d}=\left[G L_{h} / G_{1}^{h, d}\right] \longrightarrow\left[* /\left(\mathrm{GL}_{d} \times G L_{h-d}\right)\right] \longrightarrow\left[* / G L_{d}\right]
$$

and similarly for ${ }^{t} \mathcal{L} i e^{\vee}$.
Corollary 2.3.4. $\operatorname{Pic}\left(\mathcal{D i s p} 1_{1}^{h, d}\right)= \begin{cases}\mathbb{Z} /(p-1) \mathbb{Z} & \text { if } d=0, h, \\ \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z} & \text { otherwise. }\end{cases}$
A generator for the free part is $\operatorname{det}(\mathcal{L i e})$ and a generator for the torsion part is $\operatorname{det}\left(\mathcal{L} i e \otimes{ }^{t} \mathcal{L} i e^{\vee}\right)$.
Proof. Note Pic $\mathcal{D} \mathrm{isp}_{n}^{h, d}=A^{1} \mathcal{D}$ isp $_{n}^{h, d}$ by [Edidin and Graham 1998, Corollary 1].
Remark 2.3.5. There is also a more direct approach to compute the above Picard groups. By using a theorem of Rosenlicht, namely that for irreducible varieties X and Y the natural map

$$
\mathcal{O}(X)^{*} \times \mathcal{O}(Y)^{*} \rightarrow \mathcal{O}(X \times Y)^{*}
$$

is surjective, it is not difficult to establish the exact sequence

$$
\mathcal{O}(X)^{*} / k^{*} \longrightarrow \widehat{G} \longrightarrow \operatorname{Pic}^{G}(X) \longrightarrow \operatorname{Pic}(X)
$$

for G connected and X an irreducible G-scheme. The first map assigns to a nonvanishing regular function on X its eigenvalue. In our case we have $G=$ $\mathrm{GL}_{h-d} \times \mathrm{GL}_{d}$ and $X=\mathrm{GL}_{h}$. Then $\mathcal{O}\left(\mathrm{GL}_{h}\right)^{*} / k^{*}=\mathbb{Z}$ with generator given by the determinant and eigenvalue given by the character $(p-1)\left(\operatorname{det}_{\mathrm{GL}_{h-d}}+\operatorname{det}_{\mathrm{GL}_{d}}\right) \in \widehat{G}$. Since $\operatorname{Pic}\left(\mathrm{GL}_{h}\right)=0$ we again obtain the result of the above Corollary.
Remark 2.3.6. The fact that $\left(\operatorname{det} \mathcal{L} i e \otimes \operatorname{det}^{t} \mathcal{L} i e^{\vee}\right)^{p-1}$ is trivial can also be seen directly as follows: $\left(\operatorname{det} \mathcal{L i} e \otimes \operatorname{det}^{t} \mathcal{L} i e^{\vee}\right)^{p-1}$ being trivial means that $\operatorname{det} \mathcal{L} i e \otimes$ $\operatorname{det}^{t} \mathcal{L} i e^{\vee}$ is fixed under the pullback of the Frobenius map Frob: \mathcal{D} isp $_{1}^{2,1} \rightarrow \mathcal{D}$ isp $_{1}^{2,1}$ assigning to a display \mathcal{P} over an \mathbb{F}_{p}-algebra R the display \mathcal{P}^{σ} obtained by base change via the Frobenius $\sigma: R \rightarrow R$. But by definition of a truncated display we have an isomorphism

$$
\Psi: L \oplus T \cong L^{\sigma} \oplus T^{\sigma}
$$

of R-modules. Taking the determinant of Ψ yields the desired isomorphism

$$
\operatorname{det} L \otimes \operatorname{det} T \cong \operatorname{det} L^{\sigma} \otimes \operatorname{det} T^{\sigma} .
$$

Remark 2.3.7. Let us put this result into context by relating it to the corresponding result for elliptic curves. Let $\mathcal{M}_{1,1} \rightarrow$ Spec k denote the moduli stack of elliptic curves. A morphism Spec $R \rightarrow \mathcal{M}_{1,1}$ corresponds to a pair ($C \rightarrow \operatorname{Spec} R, \sigma$) where
$C \rightarrow \operatorname{Spec} R$ is a smooth projective curve of genus 1 and $\sigma: \operatorname{Spec} R \rightarrow C$ is a smooth section. We now have the diagram

where $\mathcal{M}_{1,1} \rightarrow \mathrm{BT}^{h=2, d=1}$ sends an elliptic curve C to its associated Barsotti-Tate group $C\left[p^{\infty}\right]$. Let us consider the pullback map $A^{*}\left(\mathcal{D} \operatorname{isp}_{1}^{2,1}\right) \rightarrow A^{*}\left(\mathcal{M}_{1,1}\right)$. In characteristic p different from 2 and 3, Edidin and Graham computed $A^{*}\left(\mathcal{M}_{1,1}\right)=$ $\mathbb{Z}[t] /(12 t)$, where t is given by the first Chern class of the Hodge bundle on $\mathcal{M}_{1,1}$ [Edidin and Graham 1998, Proposition 21].

By construction of the truncated display functor the pullback of $\mathcal{L i e}$ to $\mathcal{M}_{1,1}$ is the dual of the Hodge bundle on $\mathcal{M}_{1,1}$. Since the dual of an elliptic curve is the elliptic curve itself, it follows from Remark 2.1.5 that the pullback of ${ }^{t} \mathcal{L} i e^{\vee}$ is given by the Hodge bundle. Hence $A^{*}\left(\mathcal{D} \operatorname{isp}_{1}^{2,1}\right) \rightarrow A^{*}\left(\mathcal{M}_{1,1}\right)$ is the map

$$
\mathbb{Z}\left[t_{1}, t_{2}\right] /\left((p-1) c_{1},\left(p^{2}-1\right) c_{2}\right) \rightarrow \mathbb{Z}[t] /(12 t)
$$

that sends t_{1} to $-t$ and t_{2} to t. Note that $p^{2}-1$ is divisible by 12 if and only if $p \geq 5$. In particular, there can be no such map for $p=2,3$, and we deduce that the description $A^{*}\left(\mathcal{M}_{1,1}\right)=\mathbb{Z}[t] /(12 t)$ does not hold in characteristic 2 and 3 .
2.4. The Chow ring of the stack of \boldsymbol{G}-zips. Let us first consider the case of F-zips introduced in [Moonen and Wedhorn 2004]. We denote by F-zip the stack of F-zips over a field k of characteristic $p>0$. For S a k-scheme F-zip (S) is the groupoid of F-zips over S. If $\tau: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ is a function with finite support we denote by F-zip ${ }^{\tau}$ the open and closed substack of F-zips of type τ. Note that

$$
F \text {-zip }=\coprod_{\tau} F \text {-zip }{ }^{\tau} .
$$

The stacks F-zip ${ }^{\tau}$ are smooth Artin algebraic stacks over k which follows for example from the following representation as a quotient stack. Let X_{τ} denote the k-scheme whose S-valued points are given by

$$
X_{\tau}(S)=\left\{\underline{M}=\left(M, C^{\bullet}, D_{\bullet}, \varphi_{\bullet}\right) \mid \underline{M} \text { is an } F \text {-zip of type } \tau, M=\mathcal{O}_{S}^{h}\right\} .
$$

This is a smooth scheme of dimension h^{2}. Here $h=\sum_{i \in \mathbb{Z}} \tau(i)$ is also called the height of \underline{M}. The group GL_{h} acts on X_{τ} by

$$
G \cdot \underline{M}=\left(\mathcal{O}_{S}^{h}, G\left(C^{\bullet}\right), G\left(D_{\bullet}\right), G \varphi_{\bullet}\left(G^{-1}\right)^{\sigma}\right) .
$$

It is easy to see that two F-zips over S of the above form are isomorphic if and
only if they lie in the same $\mathrm{GL}_{h}(S)$-orbit. Thus

$$
F-\mathrm{zip}^{\tau}=\left[X_{\tau} / \mathrm{GL}_{h}\right] .
$$

An F-zip \underline{M} of type τ with support in $\{0,1\}$ over an \mathbb{F}_{p}-algebra R is just a tuple

$$
\underline{M}=\left(M, C, D, \varphi_{0}, \varphi_{1}\right),
$$

where M is a projective R-module with submodules C and D, which are direct summands of M and isomorphisms

$$
\varphi_{0}: C^{\sigma} \rightarrow M / D, \quad \varphi_{1}:(M / C)^{\sigma} \rightarrow D .
$$

Lemma 2.4.1. Let R be an \mathbb{F}_{p}-algebra. Then we have an equivalence of categories

$$
\mathcal{D i s p}_{1}(R) \rightarrow \coprod_{\tau, \operatorname{Supp}(\tau) \in\{0,1\}} F-\operatorname{zip}^{\tau}(R)
$$

given by

$$
(L, T, \Psi) \mapsto\left(L \oplus T, T, \Psi^{\sigma}\left(L^{\sigma}\right),\left.\Psi^{\sigma}\right|_{T^{\sigma}},\left.\Psi^{\sigma}\right|_{L^{\sigma}}\right)
$$

The above assignment commutes with pulling back. In particular, we get an isomorphism of stacks

$$
F-\mathrm{zip}^{\tau} \cong \mathcal{D} i s p_{1}^{\tau(0)+\tau(1), \tau(1)}
$$

for every type τ with support lying in $\{0,1\}$.
Proof. An inverse functor is given by the assignment

$$
\left(M, C, D, \varphi_{0}, \varphi_{1}\right) \mapsto\left(C, M / C, \varphi_{0} \oplus \varphi_{1}\right)
$$

More generally, there is the stack of G-zips introduced in [Pink et al. 2011]. Here G refers to an arbitrary reductive group. It is defined as follows. Let \mathcal{Z} be an algebraic zip datum, i.e., a 4-tuple (G, P, Q, φ) consisting of a split reductive group G, parabolic subgroups P and Q and an isogeny $\varphi: P / R_{u}(P) \rightarrow Q / R_{u}(Q)$. To \mathcal{Z} one associates the group

$$
E_{\mathcal{Z}}=\left\{(p, q) \in P \times Q \mid \varphi\left(\pi_{P}(p)\right)=\pi_{Q}(q)\right\} .
$$

Now $E_{\mathcal{Z}}$ acts on G by the rule

$$
((p, q), g) \mapsto p g q^{-1}
$$

and the quotient stack $\left[G / E_{\mathcal{Z}}\right]$ is called the stack of G-zips. If G is connected \mathcal{Z} is called a connected zip datum [Pink et al. 2011, Definition 3.1].

Let us recall how the stack of F-zips is just a special case of this construction. For this let $\tau: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ be a function with finite support, say $i_{1} \leq \cdots \leq i_{r}$. If we denote $n_{k}=\tau\left(i_{k}\right)$, then $\left(n_{1}, \ldots, n_{r}\right)$ defines a partition of $h=\sum_{k} n_{k}$. We denote the standard parabolic of type $\left(n_{1}, \ldots, n_{r}\right)$ in GL_{h} by P_{τ}.

Lemma 2.4.2. Let $\tau: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ be a function with finite support and let $\mathcal{Z}=$ ($\mathrm{GL}_{h}, P_{\tau}, P_{\tau}^{-}, \sigma$) be the algebraic zip datum with P_{τ}^{-}the opposite parabolic of P_{τ} and σ the Frobenius isogeny. Then there is an isomorphism of stacks

$$
\left[\mathrm{GL}_{h} / E_{\mathcal{Z}}\right] \xrightarrow{\sim} F \text {-zip }^{\tau} .
$$

Proof. Let S be an k-scheme. We denote by $C_{\tau}^{\boldsymbol{\bullet}}$ the descending filtration

$$
C_{\tau}^{\bullet}=\mathcal{O}_{S}^{h} \supset \mathcal{O}_{S}^{n_{1}+\cdots+n_{r-1}} \supset \cdots \supset
$$

in \mathcal{O}_{S}^{h} given by the standard flag of type $\left(n_{1}, \ldots, n_{r}\right)$ and by $D_{\bullet}^{\tau^{-}}$the ascending filtration

$$
D_{\bullet}^{\tau^{-}}=0 \subset \mathcal{O}_{S}^{n_{r}} \subset \cdots \subset \mathcal{O}_{S}^{n_{r}+\cdots+n_{2}} \subset \mathcal{O}_{S}^{h}
$$

given by the flag of type opposite to $\left(n_{1}, \ldots, n_{r}\right)$. To $g \in \mathrm{GL}_{h}(S)$ we assign the F-zip

$$
\underline{M}_{g}=\left(\mathcal{O}_{S}^{h}, C_{\tau}^{\bullet}, g\left(D_{\bullet}^{\tau^{-}}\right), \varphi_{\bullet}\right),
$$

where φ is given by the restriction of g to the successive quotients of C_{τ}^{\bullet}. Note that we can consider g as a σ-linear map.

If (p, q) is an element of $E_{\mathcal{Z}}$ we get an isomorphism $M_{g} \rightarrow M_{p g q^{-1}}$ of F-zips induced by p. The fact that p commutes with the φ_{i} is exactly the condition $\sigma(\pi(p))=\pi(q)$. On the other hand if an isomorphism $p: M_{g} \rightarrow M_{g^{\prime}}$ of F-zips is given, we see that $g^{\prime-1} p g$ preserves the flag of type opposite to $\left(n_{1}, \ldots, n_{r}\right)$. Thus $q=g^{\prime-1} p g \in P_{\tau}^{-}$and again the compatibility of p with the φ_{i} implies the condition $\sigma(\pi(p))=\pi(q)$.

We can also use Proposition 2.3.2 to say something about the Chow ring of the stack of G-zips for an arbitrary connected algebraic zip datum.
Definition 2.4.3. We call an algebraic zip datum $\mathcal{Z}=(G, P, Q, \varphi)$ special, if G is special.
Theorem 2.4.4. Let $\mathcal{Z}=(G, P, Q, \varphi)$ be a connected algebraic zip datum. Let $W_{G}=W(G, T)$ be the Weyl group of G and $W_{L}=W(L, T)$ be the Weyl group of a Levi component L of P with respect to a split maximal torus $T \subset L$ of G. Let $g_{0} \in G(k)$ be such that $\varphi(T)={ }^{g_{0}} T$ and let $\tilde{\varphi}: T \rightarrow T$ denote the composition of φ followed by conjugation with g_{0}^{-1}. Then $\tilde{\varphi}$ induces an action on $S=\operatorname{Sym}(\widehat{T})$ that we will also denote by $\tilde{\varphi}$. We then have

$$
A^{*}\left(\left[G / E_{\mathcal{Z}}\right]\right)_{\mathbb{Q}}=S_{\mathbb{Q}}^{W_{L}} /\left(f-\tilde{\varphi} f \mid f \in S_{+}^{W_{G}}\right)_{\mathbb{Q}}
$$

If \mathcal{Z} is special we have

$$
A^{*}\left(\left[G / E_{\mathcal{Z}}\right]\right)=S^{W_{L}} /\left(f-\tilde{\varphi} f \mid f \in S_{+}^{W_{G}}\right)
$$

(Note that the action of $\tilde{\varphi}$ on $S^{W_{G}}$ is independent of the choice of g_{0} since two choices differ by an element of $N_{G}(T)$.)

Proof. By definition of the group $E_{\mathcal{Z}}$ we have a split exact sequence

$$
0 \longrightarrow R_{u}(P) \times R_{u}(Q) \longrightarrow E_{\mathcal{Z}} \longrightarrow L \longrightarrow 0,
$$

where the splitting is given by $L \hookrightarrow E_{\mathcal{Z}}, l \mapsto(l, \varphi(l))$. From Lemma 1.4 .7 we deduce

$$
A^{*}\left(\left[G / E_{\mathcal{Z}}\right]\right)_{\mathbb{Q}}=A_{L}^{*}(G)_{\mathbb{Q}},
$$

where the action of L on G is given by φ-conjugation. If G is special the above equality holds over \mathbb{Z}. We conclude by Proposition 2.3.2.
Example 2.4.5. We consider the case $\mathcal{Z}=\left(\operatorname{Sp}(2 n), P, P^{-}, \sigma\right)$, where σ denotes the q-th power Frobenius. Recall that $\operatorname{Sp}(2 n)$ is special and the Weyl group of $\operatorname{Sp}(2 n)$ is the wreath product $S_{n} \imath(\mathbb{Z} / 2 \mathbb{Z})=S_{n} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{n}$. It acts on $\operatorname{Sym}(\widehat{T})=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ in the following way. S_{n} acts by permuting the variables t_{1}, \ldots, t_{n} and after identifying $\mathbb{Z} / 2 \mathbb{Z}=\{ \pm 1\}$ an element $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathbb{Z} / 2 \mathbb{Z}^{n}$ acts by $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \cdot t_{i}=\varepsilon_{i} t_{i}$.

If P is a Borel we obtain from the above theorem that

$$
\left.A^{*}\left(\left[S p(2 n) / E_{\mathcal{Z}}\right]\right)\right)=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] /\left(\left(q^{2}-1\right) c_{1}\left(\underline{t}^{2}\right), \ldots,\left(q^{2 n}-1\right) c_{n}\left(\underline{t}^{2}\right)\right) .
$$

If P is the maximal parabolic subgroup fixing a maximal isotropic subspace then $L=\mathrm{GL}_{n}$ and $W_{L}=S_{n}$ and therefore

$$
A^{*}\left(\left[S p(2 n) / E_{\mathcal{Z}}\right]\right)=\mathbb{Z}\left[c_{1}, \ldots, c_{n}\right] /\left(\left(q^{2}-1\right) c_{1}\left(\underline{t}^{2}\right), \ldots,\left(q^{2 n}-1\right) c_{n}\left(\underline{t}^{2}\right)\right) .
$$

It turns out that a \mathbb{Q}-basis of the Chow ring of the stack of G-zips is given by the closures of the orbits of the action of $E_{\mathcal{Z}}$ on G. To prove this let us introduce the naive Chow group of a quotient stack.
Definition 2.4.6. Let G be an algebraic group and let X be a G-scheme. Let $Z_{*}([X / G])$ be the free abelian group generated by the set of G-invariant closed subvarieties of X graded by dimension. Let $W_{i}([X / G])$ be the group $\bigoplus_{Y} k(Y)^{G}$, where the sum goes over all G-invariant closed subvarieties of X of dimension $i+1$. There is the usual divisor map div : $W_{i}([X / G]) \rightarrow Z_{i}([X / G])$ and we define the i-th naive Chow group of $[X / G]$ to be

$$
A_{i}^{o}[X / G]=Z_{i}([X / G]) / \operatorname{div}\left(W_{i}([X / G])\right) .
$$

Remark 2.4.7. There is more generally a definition of naive Chow groups for arbitrary algebraic stacks ([Kresch 1999, Definition 2.1.4]) which in the case of a quotient stack agrees with the one given above. Thus the above definition is independent of the presentation as a quotient stack.
Remark 2.4.8. There is a natural map $A_{*}^{o}[X / G] \rightarrow A_{*}[X / G]$. When X is DeligneMumford, i.e., the stabilizer of every point is finite and geometrically reduced, the induced map $A_{*}^{o}[X / G]_{\mathbb{Q}} \rightarrow A_{*}[X / G]_{\mathbb{Q}}$ is an isomorphism of groups and an isomorphism of rings if $[X / G]$ is smooth [Kresch 1999, Theorem 2.1.12(ii)].

The stack of G-zips is not Deligne-Mumford. However, we still have the following proposition.

Proposition 2.4.9. Let G be a connected algebraic group and X be an admissible G-scheme (see Definition 1.2.3) with finitely many orbits such that the stabilizer of every point is an extension of a finite group by a unipotent group. Then $A_{*}^{o}[X / G]_{\mathbb{Q}} \rightarrow A_{*}[X / G]_{\mathbb{Q}}$ is an isomorphism.

Proof. We prove this by induction on the number of orbits. Let U denote the open G-orbit and W its complement. We have a commutative diagram

and we claim that the rows of this diagram are exact. Since there are only finitely many orbits every G-invariant subvariety Y of X is the closure of a G-orbit. Since Y admits a dense G-invariant subset every G-invariant rational function on Y is constant. It follows that $A_{*}^{o}[X / G]=\bigoplus_{Z} \mathbb{Z}[\bar{Z}]$ where the sum goes over all G-orbits Z of X. From this we obtain the exactness of the top row. For the exactness of the lower row we need to see that the pullback map $A_{*}([X / G], 1)_{\mathbb{Q}} \rightarrow$ $A_{*}([U / G], 1)_{\mathbb{Q}}$ is surjective. But $[U / G]$ is isomorphic to the classifying space of the stabilizer group scheme of U. By assumption and Corollary 1.4.4 we get that $A_{*}([U / G], m)_{\mathbb{Q}} \rightarrow A_{*}(B\{0\}, m)_{\mathbb{Q}}$ is an isomorphism. Equivalently the pullback of the structure morphism $[U / G] \rightarrow \operatorname{Spec} k$ is an isomorphism for the higher Chow groups with rational coefficients and hence the claim follows.

Now the right vertical arrow is an isomorphism since both groups are isomorphic to \mathbb{Q}. By induction we may assume that the first vertical arrow is also an isomorphism.

Recall that an algebraic zip datum \mathcal{Z} is called orbitally finite if G has finitely many $E_{\mathcal{Z}}$-orbits [Pink et al. 2011, Definition 7.2].

Theorem 2.4.10. Let \mathcal{Z} be an orbitally finite connected algebraic zip datum and $\left[G / E_{\mathcal{Z}}\right]$ be the corresponding stack of G-zips. Then the following assertions hold.
(i) $A_{*}^{o}\left[G / E_{\mathcal{Z}}\right]_{\mathbb{Q}} \rightarrow A_{*}\left[G / E_{\mathcal{Z}}\right]_{\mathbb{Q}}$ is an isomorphism.
(ii) $A_{*}^{o}\left[G / E_{\mathcal{Z}}\right]=\bigoplus_{Z} \mathbb{Z}[\bar{Z}]$ where the sum goes over all orbits Z.

In particular, the dimension of $A_{*}\left[G / E_{\mathcal{Z}}\right]_{\mathbb{Q}}$ as a \mathbb{Q}-vector space is equal to the number of orbits.

Proof. The assumption of the previous proposition on the stabilizer group schemes hold by [Pink et al. 2011, Theorem 8.1].

Corollary 2.4.11. Let $\mathcal{Z}=(G, P, Q, \varphi)$ be a connected algebraic zip datum and T be a split maximal torus of G in a Levi component L of P. If \mathcal{Z} is orbitally finite the \mathbb{Q}-vectorspace $A^{*}\left(\left[G / E_{\mathcal{Z}}\right]\right)_{\mathbb{Q}}$ is finite dimensional of dimension $\left|W_{G} / W_{L}\right|$, where as usual $W_{G}=W(G, T)$ is the Weyl group of G and $W_{L}=W(L, T)$ is the Weyl group of L.

Proof. By the above theorem $\operatorname{dim}_{\mathbb{Q}} A^{*}\left(\left[G / E_{\mathcal{Z}}\right]\right)_{\mathbb{Q}}$ equals the number of $E_{\mathcal{Z}}$-orbits in G. This number equals $\left|W_{G} / W_{L}\right|$ by [Pink et al. 2011, Theorem 7.5].

In the case of F-zips the above results read as follows.
Corollary 2.4.12. Let $\tau: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ be a function with finite support $i_{1} \leq \cdots \leq i_{r}$ and $n_{k}=\tau\left(i_{k}\right)$. Let $h=\sum_{i} n_{i}$ be its height. Then:

$$
\begin{equation*}
A^{*} F-\text { zip }^{\tau}=\mathbb{Z}\left[t_{1}, \ldots, t_{h}\right]^{S_{n_{1}} \times \cdots \times S_{n r}} /\left((p-1) c_{1}, \ldots,\left(p^{h}-1\right) c_{h}\right), \tag{i}
\end{equation*}
$$

with c_{i} the i-th elementary symmetric polynomial in the variables t_{1}, \ldots, t_{h}.

$$
\begin{align*}
& \operatorname{Pic}\left(F-\mathrm{zip}^{\tau}\right)=\mathbb{Z}^{r-1} \times \mathbb{Z} /(p-1) \mathbb{Z} \tag{ii}\\
& \operatorname{dim}_{\mathbb{Q}} A^{*}\left(F-\mathrm{zip}^{\tau}\right)_{\mathbb{Q}}=\frac{h!}{n_{1}!\times \cdots \times n_{r}!} .
\end{align*}
$$

2.5. The Chow ring of $\mathbf{B T}_{n}$. The goal of this section is to prove the following result.

Theorem 2.5.1. The pullback $\phi_{n}^{*}: A^{*}\left(\mathcal{D i s p}_{n}\right) \rightarrow A^{*}\left(\mathrm{BT}_{n}\right)$ is injective and an isomorphism after inverting p.

We know that \mathcal{D} isp $_{n}=\coprod_{d \leq h} \mathcal{D}$ isp $_{n}^{h, d}$ is a decomposition into open and closed substacks. The same holds for BT_{n} and the morphism ϕ_{n} maps $\mathrm{BT}_{n}^{h, d}$ to \mathcal{D} isp ${ }_{n}^{h, d}$. It suffices to prove the theorem for the restriction of ϕ_{n} to $\mathrm{BT}_{n}^{h, d}$. The following proposition is the crucial point in the proof of Theorem 2.5.1.

Proposition 2.5.2. Let L be a field extension of k and $\operatorname{Spec} L \rightarrow \mathcal{D}$ isp ${ }_{n}$ be a morphism. Then there is a finite field extension L^{\prime} of L of p-power degree and an infinitesimal commutative group scheme A over L^{\prime} such that the fiber $\phi_{n}^{-1}\left(\operatorname{Spec} L^{\prime}\right)$ is the classifying space of A.
Proof. The diagonal $\Delta: \mathrm{BT}_{n} \rightarrow \mathrm{BT}_{n} \times{ }_{\mathcal{D i s p}_{n}} \mathrm{BT}_{n}$ is flat and surjective by [Lau 2013, Theorem 4.7]. This means that two Barsotti-Tate groups of level n having the same associated display become isomorphic when pulled back to a suitable fppf-covering. It follows that the fiber $\left(\mathrm{BT}_{n}\right)_{L}$ of a display P over some field L is a gerbe over L. If L is perfect there is a truncated Barsotti-Tate group G over L with $\phi_{n}(G)=P$, i.e., $\left(\mathrm{BT}_{n}\right)_{L}$ is a neutral gerbe. In this case $\left(\mathrm{BT}_{n}\right)_{L}=B \underline{\operatorname{Aut}^{o}}(G)$ where $\underline{\operatorname{Aut}{ }^{\circ}}(G)=\operatorname{Ker}(\underline{\operatorname{Aut}} G \rightarrow \underline{\operatorname{Aut}} P)$ is commutative and infinitesimal again by [Lau 2013, Theorem 4.7]. If L is not perfect we may consider the perfect hull $L^{p^{-\infty}}$ in an algebraic closure of L. Then $L \subset L^{p^{-\infty}}$ is purely inseparable and
$\left(\mathrm{BT}_{n}\right)_{L}\left(L^{p^{-\infty}}\right)$ is nonempty. Since $\left(\mathrm{BT}_{n}\right)_{L}\left(L^{p^{-\infty}}\right)=\varliminf_{\lim _{L^{\prime}}}\left(\mathrm{BT}_{n}\right)_{L}\left(L^{\prime}\right)$, where the limit goes over all finite subextensions $L \subset L^{\prime} \subset L^{p^{-\infty}}$, we find some L^{\prime} such that $\left(\mathrm{BT}_{n}\right)_{L^{\prime}}$ has a section corresponding to a truncated Barsotti-Tate group G over L^{\prime}. Thus $A=\underline{\operatorname{Aut}}{ }^{\circ}(G)$ and L^{\prime} have the desired properties.
Remark 2.5.3. Over the open and closed substack of BT_{n} consisting of level-n BT-groups of constant dimension d and codimension c the degree of Aut ${ }^{\circ}\left(G^{\text {univ }}\right)$ is $p^{n c d}$. See Remark 4.8 in [Lau 2013].

Note that $\mathcal{D} \mathrm{isp}_{n}^{h, d}$ and $\mathrm{BT}_{n}^{h, d}$ both admit admissible presentations in the sense of Definition 1.2.3. In the case of $\mathcal{D i s p}_{n}^{h, d}$ this follows from Theorem 2.1.3 and Lemma 1.2.2. To obtain the assertion for $\mathrm{BT}_{n}^{h, d}$ we use [Wedhorn 2001, Proposition 1.8] which yields a presentation $\mathrm{BT}_{n}^{h}=\left[Y_{n}^{h} / \mathrm{GL}_{p^{n h}}\right]$ with Y_{n}^{h} quasiaffine and of finite type over k. Now BT_{n}^{h} is smooth over $\operatorname{Spec} k$ [Lau 2013]. Hence Y_{n}^{h} is also smooth and in particular normal and equidimensional.

We now consider the flat pullback map

$$
\phi_{n}^{*}: A_{*}\left(\mathcal{D} \operatorname{isp}_{n}^{h, d}, m\right) \rightarrow A_{*}\left(\mathrm{BT}_{n}^{h, d}, m\right)
$$

from Lemma 1.2.6.
Proposition 2.5.4. $\phi_{n}^{*}: A_{*}\left(\mathcal{D}\right.$ isp $\left.n_{n}^{h, d}, m\right) \rightarrow A_{*}\left(\mathrm{BT}_{n}^{h, d}, m\right)$ is an isomorphism after inverting p.
Proof. Let us write $\mathscr{X}=\mathrm{BT}_{n}^{h, d}$ and $\mathscr{Y}=\mathcal{D}$ isp $_{n}^{h, d}$. We fix some $i_{o} \in \mathbb{Z}$ and show that $\phi_{n}: A_{i_{o}}\left(\mathcal{D} \text { isp }_{n}^{h, d}, m\right)_{p} \rightarrow A_{i_{o}}\left(\mathrm{BT}_{n}^{h, d}, m\right)_{p}$ is an isomorphism.

Consider an approximation of \mathscr{Y} (see Convention 1.1.1) by a quasiprojective scheme $Y \rightarrow \mathscr{Y}$ so that $A_{i_{o}}(\mathscr{Y}, m)=A_{i_{o}}(Y, m)$ and similarly an approximation $X \rightarrow \mathscr{X}$ of \mathscr{X}. Let r denote the relative dimension of $X \rightarrow \mathscr{X}$. Let Z be the fiber product $X \times_{y_{y}} Y$. The morphism $Z \rightarrow Y$ is then smooth of relative dimension r and we need to see that the pullback $A_{i_{o}}(Y, m)_{p} \rightarrow A_{i_{o}+r}(Z, m)_{p}$ is an isomorphism. Note that Z is again quasiprojective since it is open in a vector bundle over the quasiprojective scheme X (see Remark 1.2.5). We have the cartesian diagram

By Lemma 1.3.2 it suffices to see that $A_{i}(\operatorname{Spec} k(y), m)_{p} \rightarrow A_{i+r}\left(Z_{y}, m\right)_{p}$ with $i=i_{o}-\operatorname{dim} \overline{\{y\}}$ is an isomorphism. According to the previous proposition there is a finite field extension K of $k(y)$ of p-power degree such that $\mathscr{X}_{K}=B A$ holds for an infinitesimal group scheme A over K.

Since Z_{K} is open in a vector bundle over \mathscr{X}_{K} of rank r we have $Z_{K}=U / A$, where U is open in a representation V of A. Note that V is of dimension r. Hence by choosing codim X^{c} to be big enough, we may assume $A_{i}(\operatorname{Spec} K, m) \rightarrow$ $A_{i+r}(U, m)$ is an isomorphism. Since A is of p-power degree it follows that the $\operatorname{map} A_{i}(\operatorname{Spec} K, m)_{p} \rightarrow A_{i+r}\left(Z_{K}, m\right)_{p}$ is an isomorphism. Now since the field extension $K \supset k(y)$ is of p-power degree it follows from Lemma 1.3.1 that

$$
A_{i}(\operatorname{Spec} k(y), m)_{p} \rightarrow A_{i+r}\left(Z_{y}, m\right)_{p}
$$

is also an isomorphism. We are done.
Proof of Theorem 2.5.1. Since BT_{n} and $\mathcal{D} \mathrm{isp}_{n}$ are smooth the pullback

$$
\left(\phi_{n}\right)_{p}^{*}: A^{*}\left(\mathcal{D i s p}_{n}\right)_{p} \rightarrow A^{*}\left(\mathrm{BT}_{n}\right)_{p}
$$

is an isomorphism by Lemma 1.2.6 and the proposition above. We already know $A^{*}\left(\mathcal{D} \mathrm{isp}_{n}\right)$ is p-torsion free by Theorems 2.3.1 and 2.3.3. Thus ϕ_{n}^{*} is injective.

Gathering the results of Section 2, we obtain the following theorem:
Theorem 2.5.5. (i) We have

$$
A^{*}\left(\mathrm{BT}_{n}^{h, d}\right)_{p}=\mathbb{Z}\left[p^{-1}\right]\left[t_{1}, \ldots, t_{h}\right]^{S_{d} \times S_{h-d}} /\left((p-1) c_{1}, \ldots,\left(p^{h}-1\right) c_{h}\right)
$$

where c_{i} denotes the i-th elementary symmetric polynomial in the variables t_{1}, \ldots, t_{h}, and t_{1}, \ldots, t_{d} and t_{d+1}, \ldots, t_{h} are the Chern roots of \mathcal{L} ie and ${ }^{t} \mathcal{L i} e^{\vee}$, respectively.
(ii) We have $\operatorname{dim}_{\mathbb{Q}} A^{*}\left(\mathrm{BT}_{n}^{h, d}\right)_{\mathbb{Q}}=\binom{h}{d}$ and a basis is given by the cycles of the closures of the EO strata.

where the generator for the free part is $\operatorname{det}(\mathcal{L i e})$ and for the torsion part is $\operatorname{det}\left(\mathcal{L i} e \otimes^{t} \mathcal{L} i e^{\vee}\right)$.
Proof. By Theorem 2.5.1 we know $A^{*}\left(\mathcal{D} \operatorname{isp}_{n}^{h, d}\right)_{p} \cong A^{*}\left(\mathrm{BT}_{n}^{h, d}\right)_{p}$. Further, we have

$$
A^{*}\left(\mathcal{D} \operatorname{isp}_{n}^{h, d}\right) \cong A^{*}\left(\mathcal{D i s p}_{1}^{h, d}\right)
$$

by Theorem 2.3.1 and $A^{*}\left(\mathcal{D} \operatorname{isp}_{1}^{h, d}\right)$ was computed in Theorem 2.3.3. This proves part (i). By Lemmas 2.4.1 and 2.4.2 we know that $\mathcal{D} \mathrm{isp}_{1}^{h, d}$ is isomorphic to the stack $\left[\mathrm{GL}_{h} / E_{\mathcal{Z}}\right]$ corresponding to the Frobenius zip datum $\mathcal{Z}=\left(\mathrm{GL}_{h}, P, P^{-}, \sigma\right)$, where P is the standard parabolic of type $(d, h), P^{-}$is the opposite parabolic and σ is the Frobenius isogeny. Now the dimension of $A^{*}\left(\mathcal{D} \operatorname{isp}_{1}^{h, d}\right)_{\mathbb{Q}}$ as a \mathbb{Q}-vectorspace follows from Corollary 2.4.12 and a basis is given by Theorem 2.4.10. This proves (ii). Finally (iii) follows from (i) together with the fact that $\mathrm{Pic}_{\mathrm{BT}}^{n} h=A^{1}\left(\mathrm{BT}_{n}^{h, d}\right)$.

Acknowledgements

This article is part of the author's PhD thesis. He wishes to thank his advisor Eike Lau for guidance and support, and for many helpful comments on earlier versions of this article. He is also grateful to Jean-Stefan Koskivirta for many valuable discussions on G-zips and mathematics in general.

References

[Bloch 1986] S. Bloch, "Algebraic cycles and higher K-theory", Adv. in Math. 61:3 (1986), 267-304. MR Zbl
[Brokemper 2016] D. Brokemper, "On the Chow ring of the classifying space of some Chevalley groups", preprint, 2016. arXiv
[Demazure 1973] M. Demazure, "Invariants symétriques entiers des groupes de Weyl et torsion", Invent. Math. 21 (1973), 287-301. MR Zbl
[Edidin and Fulghesu 2009] D. Edidin and D. Fulghesu, "The integral Chow ring of the stack of hyperelliptic curves of even genus", Math. Res. Lett. 16:1 (2009), 27-40. MR Zbl
[Edidin and Graham 1997] D. Edidin and W. Graham, "Characteristic classes in the Chow ring", J. Algebraic Geom. 6:3 (1997), 431-443. MR Zbl
[Edidin and Graham 1998] D. Edidin and W. Graham, "Equivariant intersection theory", Invent. Math. 131:3 (1998), 595-634. MR Zbl
[Fulton 1998] W. Fulton, Intersection theory, 2nd ed., Ergebnisse der Math. (3) 2, Springer, 1998. MR Zbl
[Gillet 1981] H. Gillet, "Riemann-Roch theorems for higher algebraic K-theory", Adv. in Math. 40:3 (1981), 203-289. MR Zbl
[Kimura 1992] S.-i. Kimura, "Fractional intersection and bivariant theory", Comm. Algebra 20:1 (1992), 285-302. MR Zbl
[Kresch 1999] A. Kresch, "Cycle groups for Artin stacks", Invent. Math. 138:3 (1999), 495-536. MR Zbl
[Lau 2013] E. Lau, "Smoothness of the truncated display functor", J. Amer. Math. Soc. 26:1 (2013), 129-165. MR Zbl
[Levine 2001] M. Levine, "Techniques of localization in the theory of algebraic cycles", J. Algebraic Geom. 10:2 (2001), 299-363. MR Zbl
[Moonen and Wedhorn 2004] B. Moonen and T. Wedhorn, "Discrete invariants of varieties in positive characteristic", Int. Math. Res. Not. 2004:72 (2004), 3855-3903. MR Zbl
[Mumford et al. 1994] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Math. (2) 34, Springer, 1994. MR Zbl
[Pink et al. 2011] R. Pink, T. Wedhorn, and P. Ziegler, "Algebraic zip data", Doc. Math. 16 (2011), 253-300. MR Zbl
[Quillen 1973] D. Quillen, "Higher algebraic K-theory. I", pp. 85-147 in Algebraic K-theory, I: Higher K-theories, edited by H. Bass, Lecture Notes in Math. 341, Springer, 1973. MR Zbl
[Raynaud 1970] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics 119, Springer, 1970. MR Zbl
[Thomason 1988] R. W. Thomason, "Equivariant algebraic vs. topological K-homology Atiyah-Segal-style", Duke Math. J. 56:3 (1988), 589-636. MR Zbl
[Totaro 1999] B. Totaro, "The Chow ring of a classifying space", pp. 249-281 in Algebraic K-theory, edited by W. Raskind and C. Weibel, Proc. Sympos. Pure Math. 67, Amer. Math. Soc., Providence, RI, 1999. MR Zbl
[Totaro 2014] B. Totaro, "Chow groups, Chow cohomology, and linear varieties", Forum Math. Sigma 2 (2014). MR Zbl
[Vistoli 1989] A. Vistoli, "Characteristic classes of principal bundles in algebraic intersection theory", Duke Math. J. 58:2 (1989), 299-315. MR Zbl
[Wedhorn 2001] T. Wedhorn, "The dimension of Oort strata of Shimura varieties of PEL-type", pp. 441-471 in Moduli of abelian varieties (Texel Island, 1999), edited by C. Faber et al., Progr. Math. 195, Birkhäuser, Basel, 2001. MR Zbl
[Zink 2002] T. Zink, "The display of a formal p-divisible group", pp. 127-248 in Cohomologies p-adiques et applications arithmétiques, I, edited by P. Berthelot et al., Astérisque 278, Société Mathématique de France, 2002. MR Zbl

Received February 2, 2018. Revised April 16, 2018.
DENNIS BROKEMPER
University of Paderborn
Paderborn
Germany
dennis.brokemper@gmx.de

HYPERBOLIC MANIFOLDS CONTAINING HIGH TOPOLOGICAL INDEX SURFACES

Marion Campisi and Matt Rathbun

Abstract

If a graph is in bridge position in a 3-manifold so that the graph complement is irreducible and boundary-irreducible, we generalize a result of Bachman and Schleimer to prove that the complexity of a surface properly embedded in the complement of the graph bounds the graph distance of the bridge surface. We use this result to construct, for any natural number n, a hyperbolic manifold containing a surface of topological index n.

1. Introduction

It has become increasingly common and useful to measure distances in complexes associated to surfaces between certain important subcomplexes associated with the surface embedded in a 3-manifold. These techniques provide a means to indicate the inherent complexity of links in a manifold, decomposing surfaces, or the manifold itself. Bachman [2010] defined the topological index of a surface as a topological analogue of the index of an unstable minimal surface. When the distance is small, the notion of topological index refines this distance, by looking at the homotopy type of a certain subcomplex.

In the same way that incompressible surfaces share important properties with strongly irreducible surfaces (distance >2) despite being compressible, the topological index provides a degree of measurement of how similar irreducible, but weakly reducible (distance $=1$) surfaces are to incompressible surfaces. Bachman [2012a; 2012b; 2012c] has shown that surfaces with a well-defined topological index in a 3-manifold can be put into a sort of normal form with respect to a triangulation of the manifold, generalizing the ideas of normal form introduced by Kneser [1929] and almost normal form introduced by Rubinstein [1995], and mirroring results about geometrically minimal surfaces due to Colding and Minicozzi [2004a; 2004b; 2004c; 2004d; 2015].

Lee [2015] has shown that an irreducible manifold containing an incompressible surface contains topologically minimal surfaces of arbitrarily high genus, but has

[^2]only shown that the topological index of such surfaces is at least two. Bachman and Johnson [2010] showed that surfaces of arbitrarily high index exist. These surfaces are the lifts of Heegaard surfaces in an n-fold cover of a manifold obtained by gluing together boundary components of the complement of a link in S^{3}. A byproduct of their construction is that the resulting manifolds are toroidal.

This leaves open the question of whether the much more ubiquitous class of hyperbolic manifolds can also contain high topological index surfaces. Here we construct certain hyperbolic manifolds containing such surfaces. We generalize the construction in [Bachman and Johnson 2010] by gluing along the boundary components of the complement of a graph in S^{3} to show:

Theorem 1.1. There is a closed 3-manifold M^{1}, with an index 1 Heegaard surface S, such that for each n, the lift of S to some n-fold cover M^{n} of M^{1} has topological index n. Moreover, M^{n} is hyperbolic for all n.

In order to guarantee the hyperbolicity of M^{n}, we must rule out the existence of high Euler characteristic surfaces in the graph complement. To that end, we define the graph distance, $d_{\mathcal{G}}$, of graphs in S^{3}, an analogue of bridge distance of links. In the spirit of Hartshorn [2002] and Bachman and Schleimer [2005], we show that the complexity of an essential surface is bounded below by the graph bridge distance:

Theorem 1.2. Let Γ be a graph in a closed, orientable 3-manifold, M, which is in bridge position with respect to a Heegaard surface, B, so that $M \backslash n(\Gamma)$ is irreducible and boundary-irreducible. Let S be a properly embedded, orientable, incompressible, boundary-incompressible, non-boundary-parallel surface in $M \backslash n(\Gamma)$. Then $d_{\mathcal{G}}(B, \Gamma)$ is bounded above by $2(2 g(S)+|\partial S|-1)$.

In Section 2 we lay out the definitions of the various complexes and distances we will use, and prove Theorem 1.2. In Section 3, we prove Theorem 1.1.

2. Definitions

Given a $\operatorname{link} \mathcal{L} \subset S^{3}$, a bridge sphere for \mathcal{L} is a sphere, B, embedded in S^{3}, intersecting the link \mathcal{L} transversely, and dividing S^{3} into two 3-balls, V and W, so that there exist disks D_{V} and D_{W} properly embedded in V and W, respectively, so that $\mathcal{L} \cap V \subset D_{V}$ and $\mathcal{L} \cap W \subset D_{W}$ are each a collection of arcs. If there are b arcs, the link is said to be b-bridge with respect to B.

Goda [1997] introduced the notion of a bridge sphere for a spatial θ-graph, and this was extended by Ozawa [2012]. A bridge sphere for a (spatial) graph Γ is a sphere, B, embedded in S^{3}, intersecting Γ transversely in the interior of edges, and dividing S^{3} into two 3-balls, V and W, so that there exist disks D_{V} and D_{W} properly embedded in V and W, respectively, so that $\Gamma \cap V \subset D_{V}$ and $\Gamma \cap W \subset D_{W}$ are each a collection of trees and/or arcs.

If B is a bridge sphere for a link \mathcal{L}, then a bridge disk is a disk properly embedded in one of the components of $\overline{\left(S^{3} \backslash n(\mathcal{L})\right) \backslash B}$, whose boundary consists of exactly two arcs, meeting at their endpoints, with one arc essential in $B \backslash n(\mathcal{L})$, and the other essential in $\partial n(\mathcal{L}) \backslash B$. We refer to the arc in the boundary of the disk that is contained in B as a bridge arc. Similarly, if B is a bridge sphere for a graph Γ, then a graph-bridge disk is a disk properly embedded in one of the components of $\overline{\left.\left(S^{3} \backslash n(\Gamma)\right) \backslash B\right)}$, whose boundary consists of exactly two arcs, meeting at their endpoints, with one arc essential in $B \backslash n(\Gamma)$, and the other essential in $\partial n(\Gamma) \backslash B$. We refer to the arc in the boundary of the disk that is contained in B as a graph-bridge arc.

Definition 2.1. The curve complex for a surface B with (possibly empty) boundary is the complex with vertices corresponding to the isotopy classes of essential simple closed curves in B, so that a collection of vertices defines a simplex if representatives of the corresponding isotopy classes can be chosen to be pairwise disjoint. We will denote the curve complex for a surface B by $\mathcal{C}(B)$.

Definition 2.2. The arc and curve complex for a surface B^{\prime} with boundary is the complex with vertices corresponding to the (free) isotopy classes of essential simple closed curves and properly embedded arcs in B^{\prime}. A collection of vertices defines a simplex if representatives of the corresponding isotopy classes can be chosen to be pairwise disjoint. We will denote the arc and curve complex for a surface B^{\prime} by $\mathcal{A C}\left(B^{\prime}\right)$.

If B is a surface embedded in a manifold, and a 1-dimensional complex intersects B transversely, we will refer to the surface obtained by removing a neighborhood of the 1 -complex by B^{\prime}. We will often refer to $\mathcal{C}\left(B^{\prime}\right)$ simply by $\mathcal{C}(B)$, and $\mathcal{A C}\left(B^{\prime}\right)$ simply by $\mathcal{A C}(B)$.

Definition 2.3. Let B be a surface with at least two distinct, essential curves. Given two collections X and Y of vertices in the complex $\mathcal{C}(B)$ (resp., $\mathcal{A C}(B)$), the distance between X and Y, denoted $d_{\mathcal{C}(B)}(X, Y)$ (resp., $d_{\mathcal{A C}(B)}(X, Y)$), is the minimal number of edges in any path in $\mathcal{C}(B)$ (resp., $\mathcal{A C}(B)$) from a vertex in X to a vertex in Y. When the surface is understood, we often just write $d_{\mathcal{C}}$ (resp., $d_{\mathcal{A C}}$).

We will be working with four subtly different but closely related subcomplexes, and some associated notions of distance.

Definition 2.4. Let B be a properly embedded surface separating a manifold M into two components, V and W. Define the disk set of V (resp., W), denoted $\mathcal{D}_{V} \subset \mathcal{C}(B)$, (resp., $\mathcal{D}_{W} \subset \mathcal{C}(B)$), as the set of all vertices corresponding to essential simple closed curves in B that bound embedded disks in V (resp., W). Define the disk set of B, denoted \mathcal{D}_{B}, as the set of all vertices corresponding to essential simple closed curves in B that bound embedded disks in M.

Definition 2.5. Let B be a bridge sphere for a link \mathcal{L}, bounding 3-balls V and W, with at least 6 marked points corresponding to the transverse intersections of \mathcal{L} with B. The distance of the bridge surface, denoted $d_{\mathcal{C}}(B, \mathcal{L})$, is $d_{\mathcal{C}\left(B^{\prime}\right)}\left(\mathcal{D}_{V}, \mathcal{D}_{W}\right)$, the distance in the curve complex of B^{\prime} between \mathcal{D}_{V} and \mathcal{D}_{W}.

The fundamental building block in our construction will be the exterior of a graph that is highly complex as viewed from the arc and curve complex. The existence of such a block will follow from a result of Blair, Tomova, and Yoshizawa, using "warped pants decompositions" and Dehn twists to construct gluing maps resulting in high bridge distance link complements. It is a special case of [Blair et al. 2013, Corollary 5.3 and the proof of Theorem 4.9].

Theorem 2.6 [Blair et al. 2013]. Given nonnegative integers b_{1}, b_{2} and d, with $b_{1}+b_{2} \geq 3$, there exists a 2-component link \mathcal{L} in S^{3}, and a bridge sphere B for \mathcal{L} so that \mathcal{L} is $\left(b_{1}+b_{2}\right)$-bridge with respect to B, the components of \mathcal{L} are b_{1} - and b_{2}-bridge with respect to B, and $d_{\mathcal{C}}(B, \mathcal{L}) \geq d$.
Definition 2.7. Let B be a bridge sphere for a link \mathcal{L}, bounding 3-balls V and W. Define the bridge disk set of V (resp., W), denoted $\mathcal{B} \mathcal{D}_{V} \subset \mathcal{A C}(B)$ (resp., $\mathcal{B} \mathcal{D}_{W}$), as the set of all vertices either corresponding to essential simple closed curves in B^{\prime} that bound embedded disks in $V \backslash \mathcal{L}$ (resp., $W \backslash \mathcal{L}$), or corresponding to bridge arcs in B^{\prime} contained in the boundaries of bridge disks in V (resp., W).

Definition 2.8. Let B be a bridge sphere for a link \mathcal{L}, bounding 3-balls V and W. The bridge distance of the bridge surface B, which we denote by $d_{\mathcal{B D}}(B, \mathcal{L})$, is $d_{\mathcal{A C}\left(B^{\prime}\right)}\left(\mathcal{B} \mathcal{D}_{V}, \mathcal{B} \mathcal{D}_{W}\right)$, the distance in the arc and curve complex of B^{\prime} between $\mathcal{B} \mathcal{D}_{V}$ and $\mathcal{B} \mathcal{D}_{W}$.

Lemma 2.9 [Blair et al. 2017, Lemma 2]. If B is a bridge surface which is not a sphere with four or fewer punctures, then $d_{\mathcal{B D}}(B, \mathcal{L}) \leq d_{\mathcal{C}}(B, \mathcal{L}) \leq 2 d_{\mathcal{B D}}(B, \mathcal{L})$.
Definition 2.10. Let B be a bridge sphere for graph Γ, bounding 3-balls V and W. The graph disk set of V (resp., W) denoted $\mathcal{G} \mathcal{D}_{V} \subset \mathcal{A C}(B)$ (resp., $\mathcal{G} \mathcal{D}_{W} \subset \mathcal{A C}(B)$), is the set of all vertices either corresponding to essential simple closed curves in $B \backslash n(\Gamma)$ that bound embedded disks in $V \backslash n(\Gamma)$ (resp., $W \backslash n(\Gamma)$), or corresponding to graph-bridge arcs in $B \backslash n(\Gamma)$ contained in the boundaries of graph-bridge disks in V (resp., W).

Definition 2.11. Let B be a bridge sphere for graph Γ. The graph distance of the bridge surface, denoted $d_{\mathcal{G}}(B, \Gamma)$ is $d_{\mathcal{A C}\left(B^{\prime}\right)}\left(\mathcal{G} \mathcal{D}_{V}, \mathcal{G} \mathcal{D}_{W}\right)$, the distance in the arc and curve complex of $B^{\prime}=B \backslash n(\Gamma)$ between $\mathcal{G} \mathcal{D}_{V}$ and $\mathcal{G} \mathcal{D}_{W}$.

Lemma 2.12. Let \mathcal{L} be a link in bridge position with respect to a bridge sphere B, bounding 3-balls V and W, and let $\Gamma_{\mathcal{L}}$ be a graph in bridge position with respect to B formed by adding edges to \mathcal{L} in V that are simultaneously parallel into B in the complement of \mathcal{L}, and so that $\Gamma_{\mathcal{L}} \cap V$ has at least two components.

If $D \subset\left(V \backslash n\left(\Gamma_{\mathcal{L}}\right)\right)$ is a graph-bridge disk for $\Gamma_{\mathcal{L}}$, then there is a bridge disk D^{\prime} for \mathcal{L} in $(V \backslash n(\mathcal{L}))$ which is disjoint from D.
Proof. Let $\Gamma_{1}, \ldots, \Gamma_{\ell}$ be the connected components $\Gamma_{\mathcal{L}} \cap V$, and let Γ_{i} be the component of $\Gamma_{\mathcal{L}} \cap V$ to which D is incident.

Over all bridge disks $E \subset V$ for \mathcal{L} disjoint from Γ_{i}, choose one which minimizes $|D \cap E|$. Suppose the intersection is nonempty. Any loops of intersection can be removed because ($V \backslash n(\Gamma)$) is a handlebody and therefore irreducible. Any points of intersection between ∂D and ∂E are contained in $\partial D \cap B$ and $\partial E \cap B$. Choose an arc γ of $|D \cap E|$. The arc γ cuts D into two disks $D_{\gamma_{1}}$ and $D_{\gamma_{2}}$. For one of $j=1$ or $2, \partial D_{\gamma_{j}} \cap \partial D$ is contained in B. Call that disk D_{γ}. Consider an arc α of $|D \cap E|$ outermost in D_{γ}. If the interior of D_{γ} is disjoint from E then take α to be γ. The arc α cuts off a disk D_{α} from D_{γ} and cuts E into two disks E_{1} and E_{2}, only one of whose (say E_{2}) boundary is incident to \mathcal{L}. The disk $E_{2} \cup D_{\alpha}=E^{\prime}$ is a bridge disk for \mathcal{L} and intersects D fewer times than E, contradicting the minimality of $|D \cap E|$.

The above implies that the distance in the arc and curve complex of $B \backslash n(\Gamma)$ between $\mathcal{G} \mathcal{D}_{V}$ and $\mathcal{B} \mathcal{D}_{V}$ is less than or equal to 1 .

Corollary 2.13. Let \mathcal{L} and $\Gamma_{\mathcal{L}}$ be as above. Then $d_{\mathcal{B D}}(B, \mathcal{L}) \leq 1+d_{\mathcal{G}}\left(B, \Gamma_{\mathcal{L}}\right)$.
Proof. Since $W \backslash n(\Gamma)$ contains no graph-bridge disks, $\mathcal{G} \mathcal{D}_{W}=\mathcal{B} \mathcal{D}_{W}$. Suppose that the distance in $\mathcal{A C}\left(B^{\prime}\right)$ between $\mathcal{G} \mathcal{D}_{W}=\mathcal{B} \mathcal{D}_{W}$ and $\mathcal{G} \mathcal{D}_{V}$ is realized by a path between vertices $X \in \mathcal{G} \mathcal{D}_{W}$ and $Y \in \mathcal{G} \mathcal{D}_{V}$. Then, by Lemma 2.12, there is a vertex Z of $\mathcal{B D}{ }_{V}$ so that the distance between Y and Z is at most 1 , and therefore $d_{\mathcal{A C}\left(B^{\prime}\right)}\left(\mathcal{B D}_{W}, \mathcal{B D}_{V}\right) \leq d_{\mathcal{A C}\left(B^{\prime}\right)}\left(\mathcal{G D}_{W}, \mathcal{G} \mathcal{D}_{V}\right)+1$.

Hartshorn [2002] proved that an essential closed surface in a 3-manifold creates an upper bound on the possible distances of Heegaard splittings of that manifold in terms of the genus of the essential surface.
Theorem 2.14 [Hartshorn 2002, Theorem 1.2]. Let M be a Haken 3-manifold containing an incompressible surface of genus g. Then any Heegaard splitting of M has distance at most $2 g$.

This idea has been generalized in numerous ways, including in [Bachman and Schleimer 2005] where it is shown that the distance of a bridge Heegaard surface in a knot complement is bounded by twice the genus plus the number of boundary components of an essential properly embedded surface.
Theorem 2.15 [Bachman and Schleimer 2005, Theorem 5.1]. Let K be a knot in a closed, orientable 3-manifold M which is in bridge position with respect to a Heegaard surface B. Let S be a properly embedded, orientable, essential surface in $M \backslash n(K)$. Then the distance of K with respect to B is bounded above by twice the genus of S plus $|\partial S|$.

We will need a yet more general version, since we will be concerned with surfaces properly embedded in graph complements.

The essence of both results is that the distance of a bridge or Heegaard surface is bounded above in terms of the complexity of an essential properly embedded surface. We will generalize this result to link and graph complements, with the additional benefit of avoiding many of the technical details of [Bachman and Schleimer 2005] necessary to treat the boundary components. Unfortunately, our bound will be worse than that obtained by Bachman and Schleimer, though it will be sufficient for many applications of this type of bound (see, e.g., [Mossessian 2016; Du and Qiu 2016; Ohshika and Sakuma 2016; Bachman 2013; Namazi 2007]). We note also that our proof requires a minimal starting position similar to that used by Hartshorn, an assumption Bachman and Schleimer's method was able to avoid.

We now prove Theorem 1.2.
Theorem 1.2. Let Γ be a graph in a closed, orientable 3-manifold, M, which is in bridge position with respect to a Heegaard surface, B, so that $M \backslash n(\Gamma)$ is irreducible and boundary-irreducible. Let S be a properly embedded, orientable, incompressible, boundary-incompressible, non-boundary-parallel surface in $M \backslash n(\Gamma)$. Then $d_{\mathcal{G}}(B, \Gamma)$ is bounded above by $2(2 g(S)+|\partial S|-1)$.
Proof of Theorem 1.2. In the case that S is closed, we note that the proofs of Theorems 2.14 and 2.15 both apply to closed surfaces in manifolds with boundary as long as the manifold is irreducible. In the case that $\partial S \neq \varnothing$ we will double $M \backslash n(\Gamma)$ along $\partial n(\Gamma)$ to obtain a closed surface and show that the surface can be made to fulfill all the hypotheses necessary to use the machinery in the proof of Theorem 2.14 to obtain the bound on distance.

First, isotope S to intersect B minimally, among all isotopy representatives of S. Let V and W be the handlebodies on either side of B. Double $M \backslash n(\Gamma)$ along $\partial n(\Gamma)$, and call the resulting manifold \widehat{M}. Let the doubles of S, B, V, and W be \widehat{S}, \widehat{B}, \widehat{V}, and \widehat{W}, respectively, and let G be $\partial n(\Gamma)$ in \widehat{M}, with respective copies M_{i}, S_{i}, B_{i}, V_{i}, and W_{i}, for $i=1,2$.

Note that \widehat{B} is a Heegaard surface for \widehat{M}. (The proof of this is very similar to the proof of Proposition 3.2 below.) Also, note that since S is incompressible and ∂-incompressible in $M \backslash n(\Gamma), \widehat{S}$ is an incompressible closed surface in \widehat{M}, for otherwise an outermost arc of intersection between a compressing disk and G would show S to have been ∂-compressible in $M \backslash n(\Gamma)$. Since $\partial n(\Gamma)$ was incompressible in $M \backslash n(\Gamma), G$ is incompressible in \widehat{M}.
Claim 1. Each of $\widehat{S} \cap \widehat{V}$ and $\widehat{S} \cap \widehat{W}$ are incompressible.
Proof. If, say, $\widehat{S} \cap \widehat{V}$ had a compressing disk D, then since \widehat{S} is incompressible in \widehat{M}, there would have to be a disk D^{\prime} in \widehat{S} with $\partial D^{\prime}=\partial D$, and $D^{\prime} \cap \widehat{B} \neq \varnothing$. We may choose D to be a compressing disk which intersects G minimally. Further,
since G is incompressible, we may choose D to intersect G only in arcs, if at all. But \widehat{M} is irreducible, so $D \cup D^{\prime}$ bounds a ball and we may isotope \widehat{S} across this ball from D^{\prime} to D, lowering the number of intersections between \widehat{S} and \widehat{B}.

If $D^{\prime} \cap G=\varnothing$, then this can be viewed as an isotopy of S in $M \backslash n(\Gamma)$ which reduces the number of intersections between S and B, a contradiction.

If $D^{\prime} \cap G \neq \varnothing$ we still arrive at a contradiction. Consider a loop, ℓ, of intersection in $\left(D \cup D^{\prime}\right) \cap G$, innermost in $D \cup D^{\prime}$. Since $D \cap G$ only contains arcs, ℓ consists of two arcs, α and α^{\prime} in D and D^{\prime} respectively. Thus ℓ bounds a disk D_{ℓ} in G, α cuts off a subdisk D_{α} of D and α^{\prime} cuts off a subdisk $D_{\alpha^{\prime}}$ of D^{\prime}, both of which are in either M_{1} or M_{2}, say M_{1}. Now we have an isotopy of S_{1} from $D_{\alpha} \cup D_{\alpha^{\prime}}$ to D_{ℓ}.

Independent of whether $D_{\alpha^{\prime}}$ intersected B, we could have chosen D to have fewer intersections with G, contradicting our choice of D to minimize intersections.

Claim 2. Every intersection of \widehat{S} with \widehat{B} is essential in \widehat{B}.
Proof. Curves of intersection in $\widehat{S} \cap \widehat{B}$ which are inessential in both surfaces would either give rise to a reduction in $|S \cap B|$ or could have come from the doubling of arcs in $S \cap B$ which would give rise to a reduction in $|S \cap B|$ in a fashion similar to the previous claim.

Claim 3. There are no d-parallel annular components of $\widehat{S} \cap \widehat{W}$ or $\widehat{S} \cap \widehat{V}$.
Proof. Any such component disjoint from G would have been eliminated when $|S \cap B|$ was minimized. The intersection of any such component intersecting G with M_{1} would be a ∂-parallel disk which also would have been eliminated when $|S \cap B|$ was minimized.

Now we have satisfied all the hypotheses to obtain the sequence of isotopic copies of \widehat{S} described in Lemmas 4.4 and 4.5 of [Hartshorn 2002]. Depending on whether either of $\widehat{S} \cap \widehat{V}$ or $\widehat{S} \cap \widehat{W}$ contains disk components or not, we apply either Lemma 4.4 or 4.5 , respectively, of [Hartshorn 2002] to obtain a sequence of boundary compressions of \widehat{S} in \widehat{V} or \widehat{W}, which gives rise to a path in $\mathcal{C}(\widehat{S})$. A priori, this path would not restrict to a path in $\mathcal{A C}(S)$, but the following claim shows that we can choose the compressions to be symmetric across G, and so each compression will correspond to an edge in $\mathcal{A C}(S)$.

Claim 4. If there exists an elementary д-compression of \widehat{S} in \widehat{V} (resp., \widehat{W}), then there exists an elementary compression of \widehat{S} in \widehat{V} (resp., \widehat{W}) which is symmetric across G in the sense that either
(1) the ∂-compressing disk D_{1} is disjoint from G in M_{1}, and there is a corresponding ∂-compressing disk D_{2} in M_{2}, or
(2) the ∂-compression is along a disk that is symmetric across G.

Proof. Let D be an elementary ∂-compression disk for, say, $\widehat{S} \cap \widehat{V}$ chosen to minimize $|D \cap G|$. We may restrict attention to such disks with $|D \cap G|>0$.

First, we observe that $D \cap G$ cannot contain any loops of intersection, for a loop of $D \cap G$ innermost in D bounds a subdisk of D which would either give rise to a compression for G or would provide a means of isotoping D so as to lower $|D \cap G|$. Thus, $D \cap G$ consists only of arcs. These arcs are either

- vertical arcs, with one endpoint on each of \widehat{S} and \widehat{B},
- \widehat{S}-arcs, with both endpoints on \widehat{S}, or
- \widehat{B}-arcs, with both endpoints on \widehat{B}.

Consider an \widehat{S}-arc of $D \cap G$, outermost in D, cutting off subdisk D^{\prime} from D, with boundary consisting of σ in \widehat{S} and γ in G. Without loss of generality, assume $D^{\prime} \subset M_{1}$. If σ is essential in $\widehat{S} \cap M_{1}$, then D^{\prime} is a boundary-compression disk for S in M, which is impossible. If σ is inessential in $\widehat{S} \cap M_{1}$, then it must cobound a disk E in $\widehat{S} \cap M_{1}$ together with an arc $\sigma^{\prime} \subseteq \partial\left(\widehat{S} \cap M_{1}\right)$. The curve $\gamma \cup \sigma^{\prime}$ cannot be essential in G, else $D^{\prime} \cup E$ would be a compressing disk for G. Thus, $\gamma \cup \sigma^{\prime}$ bounds a disk, $F \subseteq G$. Now $F \cup D^{\prime} \cup E$ is a sphere bounding a ball in M_{1}, so $D \cup E$ is isotopic to F, and replacing D^{\prime} with F results in an elementary boundarycompressing disk for $\widehat{S} \cap V$ with fewer intersections with G than D. Thus we may assume that $D \cap G$ contains no \widehat{S}-arcs.

Now consider a subdisk D^{\prime} of D which is cut off by all the arcs of $D \cap G$ and whose boundary consists of no more than one vertical arc. Without loss of generality, assume $D^{\prime} \subseteq M_{1}$. Suppose ∂D^{\prime} has \widehat{B}-arcs, $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$. Then all the β_{i} are disjoint arcs on G. If any of them are inessential in $G \cap \widehat{V}$ then they bound disks $B_{i} \subseteq G \cap V_{1}$. If any of the β_{i} are essential in $G \cap \widehat{V}$, then they bound disks $B_{i} \subseteq V_{1}$ that are bridge disks for $n(\Gamma)$ in V_{1}. In either case, $D^{\prime} \cup\left(\bigcup_{i=1}^{k} B_{i}\right)$ results in a boundary-compressing disk for $S \cap \widehat{V}$ with fewer intersections with G than D. This boundary-compressing disk is still elementary as the arc in \widehat{S} remains unchanged. Thus, we may assume that $D \cap G$ consists solely of vertical arcs.

Let γ be an arc of $D \cap G$ outermost in D, cutting off a subdisk D_{1} from D. Without loss of generality, $D_{1} \subseteq M_{1}$. The boundary of D_{1} consists of three arcs; $\gamma \subseteq G, \sigma_{1} \subseteq S_{1}$ and $\beta_{1} \subseteq B_{1}$. By symmetry, there exists disk $D_{2} \subseteq M_{2}$ in M_{2}, so that $D_{1} \cup D_{2}$ is a disk in \widehat{V} with boundary consisting of $\operatorname{arcs} \sigma=\sigma_{1} \cup \sigma_{2} \subseteq \widehat{S}$ and $\beta=\beta_{1} \cup \beta_{2} \subseteq \widehat{B}$, intersecting G in exactly one arc, γ. Finally, we must show that σ is a "strongly essential" arc in $\widehat{S} \cap \widehat{V}$.

If σ is not strongly essential then it is either the meridian of a boundary-parallel annulus of $\widehat{S} \cap \widehat{V}$, which is not possible since σ_{1} was a subarc of the original elementary compression disk D, or σ is inessential in $\widehat{S} \cap \widehat{V}$. If σ is inessential then it would cobound a disk E in \widehat{S} together with an arc $\sigma^{\prime} \subseteq \widehat{S} \cap \widehat{B}$. This disk provides an isotopy in \widehat{S} of σ_{1} to σ_{2}.

If the disk $D^{\prime}=D \backslash D_{1}$ only intersects D_{2} in γ then $D^{\prime} \cup D_{2}$ is a compressing disk for $\widehat{S} \cap \widehat{V}$ with fewer arcs of intersection with G, as the disk can be isotoped away from γ. This disk is still an elementary compressing disk because σ_{1} is isotopic to σ_{2}, and so contradicts our original choice of D.

Thus, σ is strongly essential in $\widehat{S} \cap \widehat{V}$, and $D_{1} \cup D_{2}$ is a new compressing disk for $\widehat{S} \cap \widehat{V}$ that is symmetric across G.

We may, thus, proceed exactly as in Theorem 2.14. Each elementary boundary compression of \widehat{S} towards either of \widehat{V} or \widehat{W} can be performed in a symmetric way, demonstrating a path from $\mathcal{D}_{\widehat{V}}$ to $\mathcal{D}_{\widehat{W}}$ in $\mathcal{C}(\widehat{S})$ of length no greater than twice the genus of \widehat{S}, which is $2(g(S)+|\partial S|-1)$.

Each time a boundary compression for \widehat{S} corresponds to a pair of curves \hat{c}_{i} and \hat{c}_{i+1} in S_{1} that contribute an edge in a path in $\mathcal{C}(\widehat{S})$ from $\mathcal{D}_{\widehat{V}}$ to $\mathcal{D}_{\widehat{W}}$, there is immediately a pair of curves \hat{c}_{i+2} and \hat{c}_{i+3} in S_{2} also contributing an edge in a path from \mathcal{D}_{V} to \mathcal{D}_{W}, and this pair of paths corresponds to a single pair of curves c_{i} and c_{i+1} in S contributing a single edge in $\mathcal{A C}(S)$. Each time a boundary compression for \widehat{S} corresponds to a pair of curves intersecting G that contributes an edge in a path in $\mathcal{C}(\widehat{S})$ from $\mathcal{D}_{\widehat{V}}$ to $\mathcal{D}_{\widehat{W}}$, the restriction of these curves to S_{1} is a pair of arcs contributing an edge in $\mathcal{A C}(S)$.

Further, since the boundary compressions (and elimination of boundary-parallel annuli) are all being performed symmetrically, the resulting disks $D_{\widehat{V}} \in \mathcal{D}_{\widehat{V}}$ from $\widehat{S} \cap \widehat{V}$ and $D_{\widehat{W}} \in \mathcal{D}_{\widehat{W}}$ from $\widehat{S} \cap \widehat{W}$ are symmetric. That is, either $D_{\widehat{V}}$ (resp., $D_{\widehat{W}}$) is disjoint from G, so that we may assume that it sits in V_{1} (resp., W_{1}), or it is symmetric across G so that $D_{\widehat{V}} \cap M_{1}$ (resp., $D_{\widehat{W}} \cap M_{1}$) is a graph bridge disk for Γ in M. In either case, this demonstrates a path in $\mathcal{A C}(S)$ from $\mathcal{D \mathcal { G } _ { V }}$ to $\mathcal{D \mathcal { G } _ { W }}$ of length no greater than $2(g(S)+|\partial S|-1)$.

3. Theorem 1.1

Bachman [2010] defined the topological index of a surface. In contrast to the distances between subcomplexes each corresponding to some disks discussed in Section 2, he exploits the homotopy type of the complex of all disks.

Definition 3.1. The surface B is said to be topologically minimal if either \mathcal{D}_{B} is empty, or if there exists an $n \in \mathbb{N}$ so that $\pi_{n}\left(\mathcal{D}_{B}\right) \neq 0$. If a surface B is topologically minimal, then the topological index is defined to be the smallest $n \in \mathbb{N}$ so that $\pi_{n-1}\left(\mathcal{D}_{B}\right) \neq 0$, or 0 if \mathcal{D}_{B} is empty.

Bachman and Johnson [2010] showed that surfaces of arbitrarily high index exist, but their manifolds all contain essential tori. We prove an analogue of this.
Theorem 1.1. There is a closed 3 -manifold M^{1}, with an index 1 Heegaard surface S, such that for each n, the lift of S to some n-fold cover M^{n} of M^{1} has topological index n. Moreover, M^{n} is hyperbolic for all n.

3A. The construction. Let n be a positive integer. We will construct a hyperbolic manifold containing a Heegaard surface of topological index n.

Using the machinery in Theorem 2.6 , let \mathcal{L} be a link in S^{3} with two components, L and K, that are each 2-bridge with respect to a bridge sphere B of distance at least $24 n+7$. Let V and W be the two 3-balls bounded by B. Since \mathcal{L} is in bridge position, there exist disks D_{V} and D_{W} properly embedded in V and W, respectively, with $(\mathcal{L} \cap V) \subset D_{V}$, and $(\mathcal{L} \cap W) \subset D_{W}$. By modifying D_{V} if necessary, we can find two arcs τ_{L} and τ_{K} in the interior of V such that
(1) $\tau_{L} \cup \tau_{K} \subset D_{V}$,
(2) $\tau_{L} \cap \tau_{K}=\varnothing$,
(3) $\tau_{L} \cap \mathcal{L}=\partial \tau_{L} \subset L$ and $\tau_{K} \cap \mathcal{L}=\partial \tau_{K} \subset K$,
(4) the endpoints of τ_{K} are on different components of $K \cap V$, and the endpoints of τ_{L} are on different components of $L \cap V$.
Let $L^{\prime}=L \cup \tau_{L}$, let $G_{L}=\partial n\left(L^{\prime}\right)$, let $K^{\prime}=K \cup \tau_{K}$, let $G_{K}=\partial n\left(K^{\prime}\right)$, and let $\Gamma=$ $\mathcal{L} \cup \tau_{L} \cup \tau_{K}=L^{\prime} \cup K^{\prime}$. Observe that Γ is a graph in bridge position with respect to B. Let $M^{\prime}=\overline{S^{3} \backslash n(\Gamma)}$, let $V^{\prime}=\overline{V \backslash n(\Gamma)}$, and let $W^{\prime}=\overline{W \backslash n(\Gamma)}=\overline{W \backslash n(\mathcal{L})}$, and $B^{\prime}=B \backslash n(\Gamma)=B \backslash n(\mathcal{L})$.

For each $i=1,2, \ldots, n$, let M_{i}^{\prime} be homeomorphic to M^{\prime}, along with homeomorphic copies \mathcal{L}_{i} of $\mathcal{L},\left(G_{L}\right)_{i}$ of $G_{L},\left(G_{K}\right)_{i}$ of G_{K}, and B_{i}^{\prime} of B^{\prime}.

Then, for each $i=1,2, \ldots,(n-1)$, identify $\left(G_{K}\right)_{i}$ with $\left(G_{L}\right)_{i+1}$ and identify $\left(G_{K}\right)_{n}$ with $\left(G_{L}\right)_{1}$, all via the same homeomorphism. Call the resulting closed 3-manifold M^{n}. Observe that the union of the B_{i}^{\prime} is a closed surface that we will call B^{n}. We will show that B^{n} is a Heegaard surface for M^{n}, that B^{n} has high topological index, and that M^{n} is hyperbolic.

Proposition 3.2. For each $n, B^{n} \subset M^{n}$ is a genus $3 n+1$ Heegaard surface.
Proof. That the genus of B^{n} is $3 n+1$ can be verified by an Euler characteristic count. It suffices, then, to verify that the complement of B^{n} is two handlebodies, V^{n} and W^{n}.

Since Γ was in bridge position with respect to B, there are disks D_{V} and D_{W} properly embedded in V and W, respectively, so that $\Gamma \cap V \subset D_{V}$ and $\Gamma \cap W \subset D_{W}$. Then D_{V} and D_{W} cut along Γ is a collection of subdisks.

The result of cutting $V \backslash n(\Gamma)$ along all these subdisks of D_{V} is a pair of 3-balls, each with two subdisks, D_{1}^{+}and D_{2}^{+}, of $n(\Gamma)$ contained in the boundary. Each identification of $\left(G_{K}\right)_{i}$ with $\left(G_{L}\right)_{i+1}($ indices $\bmod n)$ glues pairs of these subdisks along arcs, resulting in disks in V^{n}, and further cutting along $(n-1)$ copies of each of D_{1}^{+}and D_{2}^{+}results in a collection of 3-balls, showing that V^{n} is a handlebody.

Similarly, the result of cutting $W \backslash n(\Gamma)$ along all of the subdisks of D_{W} is a pair of 3-balls, each with four subdisks of $n(\Gamma)$ contained in the boundary, $D_{1}^{-}, D_{2}^{-}, D_{3}^{-}$,
and D_{4}^{-}. Each identification of $\left(G_{K}\right)_{i}$ with $\left(G_{L}\right)_{i+1}($ indices $\bmod n)$ glues pairs of these subdisks along arcs, resulting in disks in W^{n}, and further cutting along $(n-1)$ copies of each of $D_{1}^{-}, D_{2}^{-}, D_{3}^{-}$, and D_{4}^{-}results in a collection of 3-balls, showing that W^{n} is a handlebody.

3B. Bounding from above.

Proposition 3.3. The surface B^{n} has topological index at most n.

Proof. Our proof will follow almost exactly the proof of Proposition 5 from [Bachman and Johnson 2010]. In each copy M_{i}^{\prime} of the manifold M^{\prime}, we have the surface B_{i}^{\prime}, a copy of B^{\prime}, dividing the manifold into V_{i}^{\prime} and W_{i}^{\prime}, copies of V^{\prime} and W^{\prime}. Observe that in each V_{i}^{\prime}, there is exactly one essential disk, D_{i}^{+}with boundary contained in B_{i}^{\prime}, just as in [Bachman and Johnson 2010]. However, in each W_{i}^{\prime}, there are several essential disks with boundary contained in B_{i}^{\prime}. We will call this collection of disks \mathscr{D}_{i}^{-}. From each \mathscr{D}_{i}^{-}, choose a single representative D_{i}^{-}.

Define the subcomplex, P, of \mathcal{D}_{M} spanned by the vertices corresponding to $\bigcup_{i}\left\{D_{i}^{+}, D_{i}^{-}\right\}$, which is homeomorphic to an $(n-1)$-sphere. Then, define a map $F: \mathcal{D}_{M} \rightarrow P$ by the identity on P, and by sending a vertex corresponding to a disk $D \notin \bigcup_{i}\left\{D_{i}^{+}, D_{i}^{-}\right\}$to the vertex corresponding to D_{j}^{+}or D_{j}^{-}, where either $D \in \mathscr{D}_{j}^{-}$, or j is the smallest index for which an essential outermost subdisk of $D \backslash\left(\bigcup_{i} G_{i}\right)$ is contained in V_{j}^{\prime} or W_{j}^{\prime}, respectively.

Just as in [Bachman and Johnson 2010], we claim that this map F is a simplicial map that fixes each vertex of P. To see this, consider any two disks D_{1} and D_{2} connected by an edge in \mathcal{D}_{M} (so that the disks are realized disjointly in M). Observe that by our construction of M^{\prime} and Corollary 2.13, any disk contained in V_{j}^{\prime} must intersect any disk contained in W_{j}^{\prime} (whether either disk is a bridge disk, a graphbridge disk, or the boundary is contained in B_{j}^{\prime}). So, if $D_{i}^{ \pm}=F\left(D_{1}\right) \neq F\left(D_{2}\right)=D_{j}^{ \pm}$, then $i \neq j$, and $F\left(D_{1}\right)$ is joined to $F\left(D_{2}\right)$ in P. Thus, F is a retraction onto the ($n-1$)-sphere, P, showing that $\pi_{n-1}\left(\mathcal{D}_{M}\right)$ is nontrivial, so the topological index of B^{n} is at most n.
Corollary 3.4. The topological index of B^{n} is well defined, and B^{n} is topologically minimal.

3C. Bounding from below. We make use of an important theorem in the development of the topological index by Bachman:
Theorem 3.5 [Bachman 2010, Theorem 3.7]. Let G be a properly embedded, incompressible surface in an irreducible 3-manifold M. Let B be a properly embedded surface in M with topological index n. Then B may be isotoped so that
(1) B meets G in p saddles, for some $p \leq n$, and
(2) the sum of the topological indices of the components of $B \backslash n(G)$, plus p, is at most n.

Proposition 3.6. The surface B^{n} has topological index no smaller than n.

Proof. Suppose B^{n} had topological index $\iota<n$. Let G be the union of all the genus two surfaces $G_{i}^{n}:=\left(G_{K}\right)_{i}=\left(G_{L}\right)_{i+1}($ indices $\bmod n)$ in the manifold M^{n}. By Theorem 3.5, B^{n} can be isotoped to a surface, B_{+}^{n}, so that B_{+}^{n} meets G in σ saddles, the sum of the topological indices of the components of $B_{+}^{n} \backslash n(G)$ is k, and $k+\sigma \leq \iota$. Observe that $\chi\left(B_{+}^{n} \backslash n(G)\right)=-6 n+\sigma$. We may isotope any annular components of $B_{+}^{n} \backslash n(G)$ that are boundary-parallel into $\partial n(G)$ completely into $n(G)$. Note that this will have no effect on the Euler characteristic of $B_{+}^{n} \backslash n(G)$, nor any effect on the topological index, since such a component will have topological index 0 .

Any component, Q, of $B_{+}^{n} \cap n(G)$ is contained in $n\left(G_{i}^{n}\right)$ for some i. Any such Q is a punctured sphere with, say, d boundary components, has $d-2$ saddles, and we will show that at most $d-2$ of its boundary components can bound disks of $B_{+}^{n} \backslash n(G)$ that are boundary-parallel into $\partial n(G)$ in $M_{i} \backslash n(G)$ or $M_{i+1} \backslash n(G)$.

As B_{+}^{n} is connected and not a sphere, all the boundary curves of Q cannot bound disks. Suppose, then, that $d-1$ of the curves bound disks that are boundary-parallel into $\partial n(G)$ in $M_{i} \backslash n(G)$ or $M_{i+1} \backslash n(G)$, and let c be the remaining boundary component of Q. As the other curves all bound disks that can be isotoped into $n\left(G_{i}^{n}\right)$, and G_{i}^{n} is incompressible in M^{n}, c must bound a disk in $\partial n\left(G_{i}^{n}\right)$. By pushing this disk slightly into M_{i} or M_{i+1}, we have a compressing disk for a component of $B_{+}^{n} \backslash n(G)$ that is disjoint from all other compressing disks for that component. Thus, the disk complex for that component is contractible, contrary to the fact that it is topologically minimal. Thus, at most $d-2$ of the boundary components of Q can bound disks that are boundary-parallel into $\partial n(G)$ in $M_{i} \backslash n(G)$ or $M_{i+1} \backslash n(G)$.

Therefore, the total number of disk components of $B_{+}^{n} \backslash n(G)$ that are boundaryparallel in $M^{n} \backslash n(G)$ is $\beta \leq \sigma$. So we may further isotope all β such boundaryparallel disks into $n(G)$, and call the resulting surface B_{0}^{n}. Still, then, each component of $B_{0}^{n} \backslash n(G)$ is topologically minimal, the topological index will be unchanged as each boundary-parallel disk has topological index $0, B_{0}^{n} \backslash n(G)$ has no boundaryparallel disks or annuli, and

$$
\chi\left(B_{0}^{n} \backslash n(G)\right)=\chi\left(B_{+}^{n} \backslash n(G)\right)-\beta \geq \chi\left(B_{+}^{n} \backslash n(G)\right)-\sigma=-6 n
$$

First, suppose that there is some component of $B_{0}^{n} \backslash n(G)$ with Euler characteristic less than $-6 n$. In this case, because the Euler characteristic of $B_{0}^{n} \backslash n(G)$ is greater than or equal to $-6 n$, there must be a component of $B_{0}^{n} \backslash n(G)$ with positive Euler characteristic. But there are no disks, as we have eliminated boundary-parallel disks and an essential disk would be a compression of G in M^{n}, and it cannot be a sphere, so this is impossible.

Thus, we may suppose that the Euler characteristic of each component of $B_{0}^{n} \backslash n(G)$ is bounded below by $-6 n$. Observe that each component of G is an incompressible surface, so B^{n} cannot be made disjoint from any component of G,
and so $\left(B_{0}^{n} \backslash n(G)\right) \cap M_{i}$ is nonempty for all i. As the sum of the topological indices of the components of $B_{0}^{n} \backslash n(G)$ is $k<n$, there must be at least one index j so that every component of $\left(B_{0}^{n} \backslash n(G)\right) \cap M_{j}$ has topological index 0 . Thus, there is some component of $\left(B_{0}^{n} \backslash n(G)\right) \cap M_{j}$, and all such components are incompressible and have Euler characteristic bounded below by $-6 n$. If necessary, maximally boundary compress $\left(B_{0}^{n} \backslash n(G)\right) \cap M_{j}$, and isotope any resulting boundary-parallel components into $n(G)$. As B_{0}^{n} cannot be isotoped away from any copy of G_{i}^{n}, there must be some component remaining that is incompressible, boundary-incompressible, and not boundary-parallel. Since boundary compressions only increase Euler characteristic, the resulting component has Euler characteristic bounded below by $-6 n$. Call this component $B^{\prime \prime}$.

By Lemma 2.9 and Corollary 2.13 , in M_{j} with B_{j} a copy of B^{\prime}, we have

$$
d_{\mathcal{C}}\left(B_{j}, \mathcal{L}\right) \leq 2 d_{\mathcal{B D}}\left(B_{j}, \mathcal{L}\right) \leq 2\left(1+d_{\mathcal{G}}\left(B_{j}, \Gamma\right)\right)
$$

By Theorem 1.2, $d_{\mathcal{G}}\left(B_{j}, \Gamma\right) \leq 2\left(2 g\left(B^{\prime \prime}\right)+\left|\partial B^{\prime \prime}\right|-1\right)$. By our choice of \mathcal{L} and the fact that $\chi(S)=2-2 g(S)-|\partial S|$, we have

$$
24 n+7 \leq d_{\mathcal{C}}\left(B_{j}, \mathcal{L}\right) \leq 2+2 d_{\mathcal{G}}\left(B_{j}, \Gamma\right) \leq 8 g\left(B^{\prime \prime}\right)+4\left|\partial B^{\prime \prime}\right|-2=-4 \chi\left(B^{\prime \prime}\right)+6
$$

On the other hand we have just shown that $-6 n \leq \chi\left(B^{\prime \prime}\right)$, a contradiction. Thus, the topological index of B^{n} cannot be less than n.

3D. Hyperbolicity. We have now shown that M^{n} contains a surface of topological index n. To prove Theorem 1.1 it remains to show that M^{n} is hyperbolic.

Proposition 3.7. For all n, M^{n} is hyperbolic.
Proof. Consider an essential surface S in M^{n} with Euler characteristic bounded below by 0 , chosen to intersect G minimally. If $S \cap G=\varnothing$, we arrive at a contradiction to Theorem 1.2 as S would lie in one of the copies of M^{\prime}. If $S \cap G \neq \varnothing$, the incompressibility and boundary-incompressibility of G guarantees that the curves of $S \cap G$ are essential in S. Thus $S \cap M_{i}^{\prime}$ is a collection of one or more planar surfaces for some i. This again contradicts Theorem 1.2. Thus, in particular, M^{n} is prime and atoroidal for all n. Then, as G is an incompressible surface in M^{n}, we conclude that M^{n} is hyperbolic.

Now the proof of Theorem 1.1 follows.
Proof of Theorem 1.1. Let M^{n} and B^{n} be as in Section 3A. We note that M^{n} is an n-fold cover of M^{1}. By Proposition $3.2, B^{n}$ is a genus $3 n+1$ Heegaard surface. By Propositions 3.3 and $3.6, B^{n}$ has topological index n, and by Proposition 3.7, M^{n} is hyperbolic.

References

[Bachman 2010] D. Bachman, "Topological index theory for surfaces in 3-manifolds", Geom. Topol. 14:1 (2010), 585-609. MR Zbl
[Bachman 2012a] D. Bachman, "Normalizing topologically minimal surfaces I: Global to local index", preprint, 2012. arXiv
[Bachman 2012b] D. Bachman, "Normalizing topologically minimal surfaces II: Disks", preprint, 2012. arXiv
[Bachman 2012c] D. Bachman, "Normalizing topologically minimal surfaces III: Bounded combinatorics", preprint, 2012. arXiv
[Bachman 2013] D. Bachman, "Stabilizing and destabilizing Heegaard splittings of sufficiently complicated 3-manifolds", Math. Ann. 355:2 (2013), 697-728. MR Zbl
[Bachman and Johnson 2010] D. Bachman and J. Johnson, "On the existence of high index topologically minimal surfaces", Math. Res. Lett. 17:3 (2010), 389-394. MR Zbl
[Bachman and Schleimer 2005] D. Bachman and S. Schleimer, "Distance and bridge position", Pacific J. Math. 219:2 (2005), 221-235. MR Zbl
[Blair et al. 2013] R. Blair, M. Tomova, and M. Yoshizawa, "High distance bridge surfaces", Algebr. Geom. Topol. 13:5 (2013), 2925-2946. MR Zbl
[Blair et al. 2017] R. Blair, M. Campisi, J. Johnson, S. A. Taylor, and M. Tomova, "Exceptional and cosmetic surgeries on knots", Math. Ann. 367:1-2 (2017), 581-622. MR Zbl
[Colding and Minicozzi 2004a] T. H. Colding and W. P. Minicozzi, II, "The space of embedded minimal surfaces of fixed genus in a 3-manifold, I: Estimates off the axis for disks", Ann. of Math. (2) 160:1 (2004), 27-68. MR Zbl
[Colding and Minicozzi 2004b] T. H. Colding and W. P. Minicozzi, II, "The space of embedded minimal surfaces of fixed genus in a 3-manifold, II: Multi-valued graphs in disks", Ann. of Math. (2) 160:1 (2004), 69-92. MR Zbl
[Colding and Minicozzi 2004c] T. H. Colding and W. P. Minicozzi, II, "The space of embedded minimal surfaces of fixed genus in a 3-manifold, III: Planar domains", Ann. of Math. (2) 160:2 (2004), 523-572. MR Zbl
[Colding and Minicozzi 2004d] T. H. Colding and W. P. Minicozzi, II, "The space of embedded minimal surfaces of fixed genus in a 3-manifold, IV: Locally simply connected", Ann. of Math. (2) 160:2 (2004), 573-615. MR Zbl
[Colding and Minicozzi 2015] T. H. Colding and W. P. Minicozzi, II, "The space of embedded minimal surfaces of fixed genus in a 3-manifold V; fixed genus", Ann. of Math. (2) 181:1 (2015), $1-153$. MR Zbl
[Du and Qiu 2016] K. Du and R. Qiu, "A note on the uniqueness of unstabilized Heegaard splittings of amalgamated 3-manifolds", Topology Appl. 204 (2016), 135-148. MR Zbl
[Goda 1997] H. Goda, "Bridge index for theta curves in the 3-sphere", Topology Appl. 79:3 (1997), 177-196. MR Zbl
[Hartshorn 2002] K. Hartshorn, "Heegaard splittings of Haken manifolds have bounded distance", Pacific J. Math. 204:1 (2002), 61-75. MR Zbl
[Kneser 1929] H. Kneser, "Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten", Jahresbericht der Deutschen Mathematiker-Vereinigung 38 (1929), 248-259. Zbl
[Lee 2015] J. H. Lee, "On topologically minimal surfaces of high genus", Proc. Amer. Math. Soc. 143:6 (2015), 2725-2730. MR Zbl
[Mossessian 2016] G. Mossessian, "Stabilizing Heegaard splittings of high-distance knots", Algebr. Geom. Topol. 16:6 (2016), 3419-3443. MR Zbl
[Namazi 2007] H. Namazi, "Big Heegaard distance implies finite mapping class group", Topology Appl. 154:16 (2007), 2939-2949. MR Zbl
[Ohshika and Sakuma 2016] K. Ohshika and M. Sakuma, "Subgroups of mapping class groups related to Heegaard splittings and bridge decompositions", Geom. Dedicata 180 (2016), 117-134. MR Zbl
[Ozawa 2012] M. Ozawa, "Bridge position and the representativity of spatial graphs", Topology Appl. 159:4 (2012), 936-947. MR Zbl
[Rubinstein 1995] J. H. Rubinstein, "An algorithm to recognize the 3-sphere", pp. 601-611 in Proceedings of the International Congress of Mathematicians (Zürich, 1994), vol. 1, edited by S. D. Chatterji, Birkhäuser, Basel, 1995. MR Zbl

Received June 16, 2017. Revised February 22, 2018.
MARION CAMPISI
Mathematics and Statistics Department
San José State University
San José, CA
United States
marion.campisi@sjsu.edu
Matt Rathbun
Department of Mathematics
California State University, Fullerton
Fullerton, CA
United States
mrathbun@fullerton.edu

LENGTH SPECTRA OF SUB-RIEMANNIAN METRICS ON COMPACT LIE GROUPS

András Domokos, Matthew Krauel, Vincent Pigno, Corey Shanbrom and Michael VanValkenburgh

Length spectra for Riemannian metrics have been well studied, while subRiemannian length spectra remain largely unexplored. Here we give the length spectrum for a canonical sub-Riemannian structure attached to any compact Lie group by restricting its Killing form to the sum of the root spaces. Surprisingly, the shortest loops are the same in both the Riemannian and subRiemannian cases. We provide specific calculations for $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$.

1. Introduction

While much is known about the existence and geometric properties of closed geodesics on Riemannian manifolds in general [Klingenberg 1978], and Lie groups in particular, we cannot say the same thing about their connection with the algebraic structure of Lie groups. Moreover, the sub-Riemannian setting has been mostly neglected.

In the case of simple, simply connected, compact Lie groups, Helgason [2001, Proposition 11.9] obtained the length of the shortest Riemannian geodesic loop in terms of the length of the highest root. We expand upon Helgason's work using more algebraic methods, obtaining the sub-Riemannian and Riemannian geodesic loop length spectra. The sub-Riemannian structure consists of the horizontal distribution defined by the orthogonal complement of a Cartan subalgebra and the restriction of the bi-invariant metric defined by the Killing form. To our knowledge, nothing was previously known about the connection between root systems and lengths of sub-Riemannian geodesic loops.

In Section 2 we provide the background for the root space decomposition of semisimple, compact Lie algebras and prove Theorem 2.7, which shows that all sub-Riemannian geodesics are normal. In Section 3 we work in a simple, simply connected, compact Lie group. We find connections between the algebraic information encoded in the root system of the Lie algebra and properties of Riemannian and sub-Riemannian geodesic loops. In Theorems 3.3 and 3.6 we describe the entire

[^3]length spectra of the Riemannian and certain sub-Riemannian geodesic loops. In Theorem 3.9 we find properties that help describe the remaining sub-Riemannian geodesic loops. In Theorem 3.7, we compute the lengths of the shortest Riemannian and sub-Riemannian loops, which unexpectedly turn out to be equal. Further, in Corollary 3.8 we derive a purely algebraic formula for the length of the highest root. In Sections 4 and 5 we provide relevant examples in $S U(2)$ and $S U(3)$.

Note that the terms length spectrum and geodesic have varying definitions in the literature. By length spectrum, we mean the set of lengths of all primitive geodesic loops. A sub-Riemannian geodesic is defined as in [Montgomery 2002] as a locally length minimizing curve. While in general such curves may not satisfy the geodesic equations, in our setting we show that the two notions coincide (see Theorem 2.7).

2. General results

In this section, we assume that \mathbb{G} is a semisimple, connected, compact matrix Lie group. This assumption is suited to present and prove some general results about sub-Riemannian geodesics, and we will use the more restrictive simple and simply connected assumptions in the following sections, where we prove results about sub-Riemannian geodesic loops. Our notation and definitions will be geared toward the presentation of the sub-Riemannian geometry, rather than the algebraic theory of Lie groups.

The Lie algebra of \mathbb{G} can be defined in terms of the matrix exponential:

$$
\mathcal{G}=\left\{X \in \mathcal{M}_{n}: e^{t X} \in \mathbb{G} \text { for all } t \in \mathbb{R}\right\},
$$

where \mathcal{M}_{n} is the linear space of $n \times n$ real or complex matrices in which \mathbb{G} is included. Then \mathcal{G} is a real Lie algebra endowed with the commutator operator

$$
[X, Y]=X Y-Y X
$$

A Lie algebra is called simple if it is noncommutative and does not have any nontrivial ideals, and it is called semisimple if it is the direct sum of simple Lie algebras. A Lie group is simple or semisimple if its Lie algebra has the corresponding property.

The adjoint representation of \mathbb{G} is the group homomorphism

$$
\operatorname{Ad}: \mathbb{G} \rightarrow \operatorname{Aut}(\mathcal{G}), \quad \operatorname{Ad}(g)(X)=g X g^{-1}
$$

while its differential at the identity is the adjoint representation of its Lie algebra

$$
\operatorname{ad}: \mathcal{G} \rightarrow \operatorname{End}(\mathcal{G}), \quad \operatorname{ad} X(Y)=[X, Y]
$$

Note that, among semisimple Lie algebras, Ad is an irreducible representation of \mathbb{G} if and only if \mathbb{G} is simple.

The Killing form,

$$
K(X, Y)=\operatorname{trace}(\operatorname{ad} X \cdot \operatorname{ad} Y)
$$

is negative definite and nondegenerate on the Lie algebra of a semisimple, compact Lie group, and hence we can define an inner product on \mathcal{G} as

$$
\begin{equation*}
\langle X, Y\rangle=-\rho K(X, Y) \tag{2-1}
\end{equation*}
$$

where $\rho>0$ is a constant which can be adjusted according to our normalization preferences. The inner product (2-1) generates a bi-invariant metric on \mathbb{G}. The Killing form is Ad-invariant, so $\operatorname{Ad}(g)$ is a unitary linear transformation of \mathcal{G} for all $g \in \mathbb{G}$ and ad X is skew-symmetric for all $X \in \mathcal{G}$.

Let \mathbb{T} be a maximal torus in \mathbb{G} and \mathcal{T} be its Lie algebra. In this case, \mathcal{T} is a maximal commutative subalgebra of \mathcal{G} called the Cartan subalgebra. Its dimension is called the rank of \mathcal{G}, and also the rank of \mathbb{G}. Consider an orthonormal basis $\mathcal{B}_{\mathcal{T}}=\left\{T_{1}, \ldots, T_{r}\right\}$ of \mathcal{T}, which will be fixed throughout the paper.

We extend the inner product (2-1) on \mathcal{G} bilinearly to the complexified Lie algebra $\mathcal{G}_{\mathbb{C}}=\mathcal{G} \oplus i \mathcal{G}$. The mappings ad $T: \mathcal{G}_{\mathbb{C}} \rightarrow \mathcal{G}_{\mathbb{C}}, T \in \mathcal{T}$, commute and are skewsymmetric, so they share eigenspaces and have purely imaginary eigenvalues.

Once we fix the orthonormal basis $\mathcal{B}_{\mathcal{T}}$, we can identify \mathcal{T}^{*} with \mathcal{T} and define the roots as elements of the Cartan subalgebra, as in [Domokos 2015].

Definition 2.1. We define $R \in \mathcal{T}$ to be a root if $R \neq 0$ and the root space $\mathcal{G}_{R} \neq\{0\}$, where

$$
\mathcal{G}_{R}=\left\{Z \in \mathcal{G}_{\mathbb{C}}: \operatorname{ad} T(Z)=i\langle R, T\rangle Z \text { for all } T \in \mathcal{T}\right\}
$$

Additionally, we use the notation $\mathcal{G}_{0}=\mathcal{T}_{\mathbb{C}}=\mathcal{T} \oplus i \mathcal{T}$.
Let \mathcal{R} be the set of all roots, which will be partially ordered by the relation $R_{1}>R_{2}$ if the first nonzero coordinate of $R_{1}-R_{2}$ relative to the ordered basis $\mathcal{B}_{\mathcal{T}}$ is positive. We call a root positive if its first nonzero coordinate is positive and let \mathcal{R}^{+}denote the set of all positive roots. For the most important properties of \mathcal{G}_{R} we quote [Duistermaat and Kolk 2000; Knapp 1986]:
(i) $\operatorname{dim}_{\mathbb{C}} \mathcal{G}_{R}=1$.
(ii) If $R \in \mathcal{R}$ then $-R \in \mathcal{R}$.
(iii) $\mathcal{G}_{-R}=\left\{X-i Y: X+i Y \in \mathcal{G}_{R}\right\}$.
(iv) $\left\langle\mathcal{G}_{R_{1}}, \mathcal{G}_{R_{2}}\right\rangle=0$ if $R_{1}, R_{2} \in \mathcal{R} \cup\{0\}, R_{1} \neq \pm R_{2}$.
(v) $\left[\mathcal{G}_{R_{1}}, \mathcal{G}_{R_{2}}\right] \begin{cases}=\mathcal{G}_{R_{1}+R_{2}} & \text { if } R_{1}+R_{2} \in \mathcal{R} \\ =\{0\} & \text { if } R_{1}+R_{2} \notin \mathcal{R} \text { and } R_{1}+R_{2} \neq 0 \\ \subset i \mathcal{T} & \text { if } \quad R_{1}+R_{2}=0 .\end{cases}$
(vi) If $Z_{R} \in \mathcal{G}_{R}$ and $Z_{-R} \in \mathcal{G}_{-R}$ then $\left[Z_{R}, Z_{-R}\right]=i\left\langle Z_{R}, Z_{-R}\right\rangle R$.

The above properties of \mathcal{G}_{R} and the real root space decomposition

$$
\mathcal{G}=\mathcal{T} \oplus \mathcal{H},
$$

where

$$
\begin{equation*}
\mathcal{H}=\mathcal{T}^{\perp}=\bigoplus_{R \in \mathcal{R}^{+}}\left(\mathcal{G}_{R} \oplus \mathcal{G}_{-R}\right) \cap \mathcal{G}, \tag{2-2}
\end{equation*}
$$

allow us to choose an orthonormal basis of \mathcal{H},

$$
\begin{equation*}
\mathcal{B}_{\mathcal{H}}=\left\{X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}\right\}, \tag{2-3}
\end{equation*}
$$

with the following properties:
(i) For all $1 \leq j \leq k$ there exists $R_{j} \in \mathcal{R}^{+}$such that $\left\{X_{j}, Y_{j}\right\} \subset\left(\mathcal{G}_{R_{j}} \oplus \mathcal{G}_{-R_{j}}\right) \cap \mathcal{G}$.
(ii) $E_{ \pm j}=X_{j} \pm i Y_{j} \in \mathcal{G}_{ \pm R_{j}}$.
(iii) $\left\langle E_{j}, E_{-j}\right\rangle=2$.
(iv) $\left[X_{j}, Y_{j}\right]=-R_{j}$.

Notice that $\left\{\left(g, \mathcal{H}_{g}\right): g \in \mathbb{G}\right\}$, where $\mathcal{H}_{g}=g \mathcal{H}$, forms a sub-bundle of the tangent bundle of \mathbb{G}, which we call the horizontal sub-bundle. The property $\mathcal{T} \subset[\mathcal{H}, \mathcal{H}]$ shows that this horizontal sub-bundle is bracket-generating, hence its choice defines a sub-Riemannian metric on \mathbb{G} in the following way (see [Montgomery 2002]).

We call an absolutely continuous curve $\gamma:[a, b] \rightarrow \mathbb{G}$ horizontal if $\gamma^{\prime}(t) \in \mathcal{H}_{\gamma(t)}$ for every $t \in[a, b]$ where $\gamma^{\prime}(t)$ exists. The length of a horizontal curve is defined as

$$
\begin{equation*}
\operatorname{Length}(\gamma)=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t \tag{2-4}
\end{equation*}
$$

The bracket-generating property implies that any two points can be connected by horizontal curves and therefore we can define a sub-Riemannian (also called Carnot-Carathéodory) distance as

$$
d(x, y)=\inf \{\operatorname{Length}(\gamma): \gamma \text { is a horizontal curve connecting } x \text { and } y\} .
$$

We say that a horizontal curve γ is a sub-Riemannian geodesic if locally it is a length minimizer. We call a sub-Riemannian geodesic $\gamma:[0,1] \rightarrow \mathbb{G}$ a subRiemannian geodesic loop if $\gamma(0)=\gamma(1)=I$ and $\gamma(t) \neq I$ for all $t \in(0,1)$. Here, I denotes the identity matrix.

If we do not restrict the curve γ to be horizontal, then similar definitions lead to Riemannian geodesics and geodesic loops. With the choice of the bi-invariant inner product (2-1), the Riemannian geodesics through the identity and in the direction of an arbitrary $X \in \mathcal{G}$ have the form

$$
\gamma(t)=e^{t X}
$$

see [Arvanitoyeorgos 2003, Chapter 3].

Remark 2.2. With our assumptions on \mathbb{G} and \mathcal{H}, all sub-Riemannian geodesics are smooth [Montgomery 1994, Theorem 3]. Moreover, as the inner product on \mathcal{H} is the restriction of the inner product (2-1) defined on \mathcal{G}, a sub-Riemannian geodesic is also a smooth curve of equal Riemannian length.

Sub-Riemannian geodesics can be characterized in various ways. We follow the description from [Montgomery 1994; 1995; 2002], but also see [Agrachev and Sarychev 1999; Boscain et al. 2002]. If a sub-Riemannian geodesic is a projection to \mathbb{G} of a solution to Hamilton's equations for the sub-Riemannian Hamiltonian, then we call it normal, otherwise we call it abnormal. If a sub-Riemannian geodesic is a critical point of the endpoint map, then we call it singular, otherwise we call it regular [Montgomery 1994]. The following implications hold.

Proposition 2.3 [Montgomery 2002, Theorem 5.8]. All regular sub-Riemannian geodesics are normal and, therefore, all abnormal geodesics are singular.

If the horizontal distribution is fat, which means that for all $X \in \mathcal{H}$

$$
\mathcal{H}+[X, \mathcal{H}]=\mathcal{G}
$$

then all sub-Riemannian geodesics are normal [Montgomery 1995, Proposition 4]. For example, the horizontal distribution is fat in the case of $S U(2)$, but not in the case of $\operatorname{SU}(3)$.

Regarding the form of the normal geodesics we have the following result, which is [Montgomery 2002, Theorem 11.8] adapted to our setting. See also [Boscain et al. 2002].

Proposition 2.4. Consider a semisimple, connected, compact Lie group \mathbb{G} endowed with horizontal distribution defined by the orthogonal complement \mathcal{H} of a Cartan subalgebra \mathcal{T}, and inner product (2-1). Then the normal sub-Riemannian geodesics through the identity are of the form

$$
\begin{equation*}
\gamma(t)=e^{t X} \cdot e^{-t X^{\perp}} \tag{2-5}
\end{equation*}
$$

where X is any element of \mathcal{G} and X^{\perp} is the orthogonal projection of X onto \mathcal{T}.
Definition 2.5. If $X \in \mathcal{H}$, then we call $\gamma_{X}(t)=e^{t X}$ a horizontal Riemannian geodesic.

These are precisely the Riemannian geodesics which are also sub-Riemannian. As we will see, they can be regular or singular.

If $R \in \mathcal{R}^{+}$, then let us use the notation $\mathcal{H}_{R}=\left(\mathcal{G}_{R} \oplus \mathcal{G}_{-R}\right) \cap \mathcal{G}$. With this notation we can rewrite (2-2) as

$$
\begin{equation*}
\mathcal{H}=\mathcal{T}^{\perp}=\bigoplus_{R \in \mathcal{R}^{+}} \mathcal{H}_{R} \tag{2-6}
\end{equation*}
$$

From the relations

$$
\left[\mathcal{H}_{R}, \mathcal{H}_{R}\right]=\operatorname{span}\{R\} \quad \text { and } \quad\left[R, \mathcal{H}_{R}\right]=\mathcal{H}_{R},
$$

we conclude that

$$
\begin{equation*}
\operatorname{su}(2)_{R}=\mathcal{H}_{R} \oplus \operatorname{span}\{R\} \tag{2-7}
\end{equation*}
$$

is a subalgebra of \mathcal{G}, isomorphic to $\operatorname{su}(2)$.
For each $T \in \mathcal{T}$ let

$$
\mathcal{R}^{T}=\left\{R \in \mathcal{R}^{+}:\langle R, T\rangle=0\right\}
$$

and

$$
\begin{equation*}
\mathcal{G}^{T}=\bigoplus_{R \in \mathcal{R}^{T}} \operatorname{su}(2)_{R} . \tag{2-8}
\end{equation*}
$$

If $\mathcal{R}^{T} \neq \varnothing$, then \mathcal{G}^{T} is a nontrivial Lie subalgebra of \mathcal{G} and therefore we can find a closed, connected subgroup \mathbb{G}^{T} of \mathbb{G}, which has \mathcal{G}^{T} as its Lie algebra. Note that \mathbb{G}^{T} carries a sub-Riemannian geometry, for which the horizontal distribution is

$$
\begin{equation*}
\mathcal{H}^{T}=\bigoplus_{R \in \mathcal{R}^{T}} \mathcal{H}_{R} \tag{2-9}
\end{equation*}
$$

Therefore, horizontal curves in \mathbb{G}^{T} are also horizontal in \mathbb{G} and if a normal subRiemannian geodesic of \mathbb{G} lies in \mathbb{G}^{T}, then it is a normal sub-Riemannian geodesic of \mathbb{G}^{T} too.

A characteristic subgroup for a singular sub-Riemannian geodesic γ is a closed connected subgroup within which γ is regular.

Proposition 2.6 [Montgomery 1994, Theorem 2]. Every singular sub-Riemannian geodesic of \mathbb{G} lies in some characteristic subgroup \mathbb{G}^{T} with dimension strictly less than the dimension of \mathbb{G}.

Propositions 2.3 and 2.6 allow us to give a simple algebraic proof of the following result, which is also proved using control theoretic methods, including generalized Maslov index theory, in [Boscain et al. 2002].

Theorem 2.7. Consider a semisimple, connected, compact Lie group \mathbb{G} endowed with the horizontal distribution defined by the orthogonal complement \mathcal{H} of a Cartan subalgebra \mathcal{T}, and inner product (2-1). Then we have the following results.
(i) All sub-Riemannian geodesics are normal.
(ii) All sub-Riemannian geodesics through the identity have the form

$$
\gamma(t)=e^{t X} \cdot e^{-t X^{\perp}},
$$

where $X \in \mathcal{G}$ and X^{\perp} is the orthogonal projection of X onto \mathcal{T}.

Proof. Let us assume that γ is an abnormal sub-Riemannian geodesic of \mathbb{G}. Then, by Proposition 2.3, γ is singular and by Proposition 2.6, there exists $T \in \mathcal{T}$ such that γ lies in a characteristic subgroup \mathbb{G}^{T}. But, as γ is regular in \mathbb{G}^{T}, by Proposition 2.3 it is also normal in \mathbb{G}^{T}. Hence, γ must have the form (2-5) in \mathbb{G}^{T}, which, by (2-6)-(2-9), gives a normal sub-Riemannian geodesic of \mathbb{G}.

Once all sub-Riemannian geodesics are normal, part (ii) is a direct consequence of Proposition 2.4.

3. Lengths of sub-Riemannian geodesic loops

In this section we assume that \mathbb{G} is a simple, simply connected, compact matrix Lie group.

For each root $R \in \mathcal{R}$ and $n \in \mathbb{Z}$ we define the hyperplane in \mathcal{T} :

$$
P(R, 2 \pi n)=\{T \in \mathcal{T}:\langle R, T\rangle=2 \pi n\}
$$

The reflections in \mathcal{T} across the hyperplanes $P(R, 0)$ will be denoted by r_{R}. Note that

$$
r_{R}(T)=T-\frac{2\langle R, T\rangle}{\|R\|^{2}} R
$$

The Weyl group of \mathbb{G} can be defined as the group W generated by the reflections $\left\{r_{R}: R \in \mathcal{R}\right\}$.

The set

$$
\mathcal{T} \backslash \bigcup_{R \in \mathcal{R}} P(R, 0)
$$

is a union of disjoint, open cones, called Weyl chambers. The Weyl group acts transitively on the Weyl chambers. We define the positive Weyl chamber by

$$
C=\left\{T \in \mathcal{T}:\langle R, T\rangle>0, \text { for all } R \in \mathcal{R}^{+}\right\}
$$

and let \bar{C} denote its closure.
Let us choose the simple roots $\mathcal{R}_{s}=\left\{R_{1}, \ldots, R_{m}\right\}$. In the case of a simple Lie algebra, the root system is irreducible and the length of the roots can take at most 2 values, which implies that the entries of the Cartan matrix,

$$
N\left(R_{j}, R_{k}\right)=\frac{2\left\langle R_{j}, R_{k}\right\rangle}{\left\|R_{k}\right\|^{2}}
$$

can take only the following values:

$$
N\left(R_{j}, R_{k}\right)= \begin{cases}2 & \text { if } j=k \\ 0,-1,-2,-3 & \text { if } j \neq k\end{cases}
$$

where at most one of -2 or -3 can appear in the matrix. For each $R \in \mathcal{R}$ we denote by

$$
\begin{equation*}
P_{R}=\frac{2 \pi R}{\|R\|^{2}} \tag{3-1}
\end{equation*}
$$

the orthogonal projection of the origin onto the hyperplane $P(R, 2 \pi)$. It is known from [Helgason 2001, Chapter 7, Lemma 7.6] that

$$
\begin{equation*}
e^{2 P_{R}}=I, \text { for all } R \in \mathcal{R} \tag{3-2}
\end{equation*}
$$

The unit lattice in \mathcal{T} is defined by

$$
\mathcal{L}_{\mathcal{T}}=\left\{T \in \mathcal{T}: e^{T}=I\right\},
$$

and let us also set

$$
\mathcal{Z}_{\mathcal{T}}=\left\{n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}: n_{1}, \ldots, n_{m} \in \mathbb{Z}\right\} .
$$

By the commutativity of \mathcal{T}, it is evident that $\mathcal{Z}_{\mathcal{T}} \subset \mathcal{L}_{\mathcal{T}}$. By [Simon 1996, Theorem IX.1.6] we know that $\mathcal{L}_{\mathcal{T}} / \mathcal{Z}_{\mathcal{T}} \cong \pi_{1}(\mathbb{G})$, where $\pi_{1}(\mathbb{G})$ is the fundamental group of \mathfrak{G}. Since \mathbb{G} is simply connected, it follows that

$$
\begin{equation*}
\mathcal{L}_{\mathcal{T}}=\mathcal{Z}_{\mathcal{T}} . \tag{3-3}
\end{equation*}
$$

From [Simon 1996, Theorem IX.1.4], it is also known that

$$
\begin{equation*}
\mathcal{L}_{\mathcal{T}} \subseteq\{T \in \mathcal{T}:\langle R, T\rangle \in 2 \pi \mathbb{Z} \text { for all } R \in \mathcal{R}\} \tag{3-4}
\end{equation*}
$$

and the two sets in (3-4) are equal only if the center of \mathbb{G} equals $\{I\}$.
Definition 3.1. We call the numbers $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ relatively prime if at least one of the numbers is nonzero and the greatest common factor of the nonzero numbers is 1 . In particular, if we have only one nonzero number, then it must be 1 .

Remark 3.2. By (3-3), if the numbers $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime, then the line segment joining the origin to $n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}$ intersects $\mathcal{L}_{\mathcal{T}}$ only at the endpoints.

Theorem 3.3. Let \mathbb{G} be a simple, simply connected, compact Lie group endowed with the bi-invariant inner product (2-1).
(a) If the numbers $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime and

$$
T=n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}},
$$

then $\gamma_{T}(t)=e^{t T}, 0 \leq t \leq 1$, is a Riemannian geodesic loop with length

$$
\left\|n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}\right\| .
$$

(b) All Riemannian geodesic loops in \mathbb{G} have lengths

$$
\left\|n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}\right\|,
$$

where $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime.

Proof. (a) If the rank of \mathbb{G} is 1 , then $\mathbb{T}=U(1)$ and any geodesic loop in \mathbb{T} has length 2π. Now suppose the rank of \mathbb{G} is greater than or equal to 2 . Let $T=n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}$, where $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime and $\gamma_{T}(t)=e^{t T}$. By the commutativity of the elements of \mathcal{T} we know that $\gamma_{T}(1)=I$. If, for some $0<t<1$, we have $\gamma_{T}(t)=I$, then $t\left(n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}\right) \in \mathcal{L}_{\mathcal{T}}$ and, by Remark 3.2, this contradicts the fact that n_{1}, \ldots, n_{m} are relatively prime. Hence, the length of one loop described by γ_{T} is

$$
\begin{equation*}
\text { Length }\left(\gamma_{T}\right)=\int_{0}^{1}\|T\| d t=\left\|n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}\right\| . \tag{3-5}
\end{equation*}
$$

(b) Let $X \in \mathcal{G}$ and $\gamma_{X}(t)=e^{t X}$. Assume that $\gamma_{X}(1)=I$ and $\gamma_{X}(t) \neq I$ if $0<t<1$. Since $\operatorname{Ad}(\mathbb{G})(X) \cap \mathcal{T}$ is nonempty and finite, and the Weyl group acts transitively on the Weyl chambers, and each element of the Weyl group can be written as $\operatorname{Ad}(g)$ for some $g \in \mathbb{G}$, it follows that there exists $g \in \mathbb{G}$ such that $T_{X}=\operatorname{Ad}(g) X \in \bar{C}$. Hence, $e^{T_{X}}=g e^{X} g^{-1}=I$ and therefore $T_{X} \in \mathcal{L}_{\mathcal{T}}$. By (3-3) we have that $T_{X}=$ $n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}$, where $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime. Using the fact that $\left\|T_{X}\right\|=\|X\|$ we find that

$$
\text { Length }\left(\gamma_{X}\right)=\int_{0}^{1}\left\|T_{X}\right\| d t=\left\|n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}\right\| .
$$

Remark 3.4. Moreover, for any $0 \neq T=n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}$ we have that $\operatorname{Ad}(\mathbb{G})(T) \cap(\mathcal{G} \backslash \mathcal{T}) \neq \varnothing$, so there exists $X \notin \mathcal{T}$ in the same conjugacy class with T. Hence we have a Riemannian geodesic loop outside of \mathbb{T}, corresponding to X, which has length equal to $\|T\|$ in (3-5).

We need the following lemma to generalize Theorem 3.3 to the case of horizontal Riemannian geodesic loops (see Definition 2.5).

Lemma 3.5. For any $T \in \mathcal{T}$ we have $\operatorname{Ad}(\mathbb{G})(T) \cap \mathcal{H} \neq \varnothing$.
Proof. By [D'Andrea and Maffei 2016, Lemma 2.2], given \mathcal{T}, we can construct another Cartan subalgebra \mathcal{T}^{\prime} which is orthogonal to \mathcal{T}. Hence, $\mathcal{T}^{\prime} \subset \mathcal{H}$ and, as any two Cartan subalgebras are conjugate, there exists some $g \in \mathbb{G}$ such that $\operatorname{Ad}(g) \mathcal{T}=\mathcal{T}^{\prime}$. Hence, we conclude that for any $T \in \mathcal{L}_{\mathcal{T}}$ we have that $\operatorname{Ad}(\mathbb{G})(T) \cap \mathcal{H} \neq \varnothing$.

Theorem 3.6. Consider a simple, simply connected, compact Lie group \mathbb{G} endowed with horizontal distribution defined by the orthogonal complement \mathcal{H} of a Cartan subalgebra \mathcal{T}, and inner product (2-1). Then the horizontal Riemannian geodesic loops have lengths

$$
\left\|n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}\right\|,
$$

where $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime.

Proof. Let $X \in \mathcal{H}$ and $\gamma_{X}(t)=e^{t X}$. If $\gamma_{X}(1)=I$ and $\gamma_{X}(t) \neq I$ for all $0<t<1$, then we can follow the proof of Theorem 3.3(b), to conclude that there exist $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ relatively prime such that

$$
\operatorname{Length}\left(\gamma_{X}\right)=\left\|n_{1} P_{R_{1}}+\cdots+n_{m} P_{R_{m}}\right\| .
$$

By Lemma 3.5, the entire length spectrum of $\left\|n_{1} P_{R_{1}}+\cdots+n_{m} P_{R_{m}}\right\|$, where $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime, is covered, and this finishes the proof.

One might expect the shortest sub-Riemannian geodesic loops to be longer than their Riemannian counterparts. Surprisingly, the following result, which generalizes the Riemannian case of [Helgason 2001, Chapter 7, Proposition 11.9], proves otherwise.

Theorem 3.7. The shortest sub-Riemannian geodesic loops are also the shortest Riemannian geodesic loops. Their common length is $4 \pi /\left\|R^{*}\right\|$, where R^{*} is the highest root.

Proof. We first consider the Riemannian case. Without loss of generality we can assume that the rank of \mathcal{G} is greater than 1 . Let $\gamma^{*}(t)=e^{t 2 P_{R^{*}}}$. By (3-2) we know that $\gamma^{*}(1)=I$. Moreover, there exists $R \in \mathcal{R}^{+}$such that

$$
N\left(R, R^{*}\right)=2 \frac{\left\langle R, R^{*}\right\rangle}{\left\|R^{*}\right\|^{2}}=1 .
$$

Therefore, for any $0<t<1$ we have

$$
\left\langle R, t 2 P_{R^{*}}\right\rangle=2 \pi t,
$$

which, by (3-4), implies that $\gamma^{*}(t) \neq I$ if $0<t<1$. Hence, the length of one loop described by γ^{*} is

$$
\text { Length }\left(\gamma^{*}\right)=\int_{0}^{1}\left\|2 P_{R^{*}}\right\| d t=\frac{4 \pi}{\left\|R^{*}\right\|}
$$

Let $T=n_{1} 2 P_{R_{1}}+\cdots+n_{m} 2 P_{R_{m}}$, where $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime and let $\gamma_{T}(t)=e^{t T}$. Assume that $\gamma_{T}(t) \neq I$ if $0<t<1$ and

$$
\text { Length }\left(\gamma_{T}\right) \leq \operatorname{Length}\left(\gamma^{*}\right) .
$$

Hence,

$$
\|T\| \leq \frac{4 \pi}{\left\|R^{*}\right\|}=\left\|2 P_{R^{*}}\right\| .
$$

As in the proof of Theorem 3.3, by the fact that the Weyl group acts transitively on the Weyl chambers, there exist $g \in \mathbb{G}$ and $T_{1} \in \bar{C}$ such that $T_{1}=\operatorname{Ad}(g) T$. Therefore, $e^{T_{1}}=I$ and hence $\left\langle R^{*}, T_{1}\right\rangle=2 \pi n$ for some $n \in \mathbb{N}$. By [Helgason 2001, Chapter 7, Theorem 6.1],

$$
P\left(R^{*}, 2 \pi\right) \cap \bar{C} \cap \mathcal{L}_{\mathcal{T}}=\varnothing,
$$

which implies that $n \neq 1$. On the other hand, $\left\|T_{1}\right\|=\|T\| \leq\left\|2 P_{R^{*}}\right\|$, which is the shortest distance from the origin to $P\left(R^{*}, 4 \pi\right)$. Therefore, $n=2$ and this implies that $T_{1}=2 P_{R^{*}}$. In conclusion, we have Length $\left(\gamma_{T}\right)=4 \pi /\left\|R^{*}\right\|$, which establishes the length of the shortest Riemannian geodesic loops. Note that this slight generalization of [Helgason 2001, Chapter 7, Proposition 11.9] is proved differently here.

We now consider the sub-Riemannian case. Theorem 3.6 implies that the shortest horizontal Riemannian geodesic loops have length equal to $4 \pi /\left\|R^{*}\right\|$, which equals the length of the shortest Riemannian geodesic loops by the argument above. By Remark 2.2, every sub-Riemannian geodesic is a smooth Riemannian curve of equal length, so we conclude that $4 \pi /\left\|R^{*}\right\|$ is the shortest length for any sub-Riemannian geodesic loop.

Theorem 3.7 implies the following result concerning the highest root.
Corollary 3.8. We have

$$
\left\|R^{*}\right\|=\max \frac{4 \pi}{\left\|n_{1} 2 P_{R_{1}}+\cdots+n_{m} P_{R_{m}}\right\|},
$$

where $n_{1}, \ldots, n_{m} \in \mathbb{N} \cup\{0\}$ are relatively prime.
Regarding the sub-Riemannian geodesic loops which are not necessarily horizontal Riemannian, we have the following result.
Theorem 3.9. Let $X=H+X^{\perp}$ be such that $H \in \mathcal{H}$ and $X^{\perp} \in \mathcal{T}$. Consider $\gamma(t)=e^{t X} \cdot e^{-t X^{\perp}}$ and assume that $\gamma(t) \neq I$ if $0<t<1$ and $\gamma(1)=I$. Then:
(a) The length of γ satisfies

$$
\text { Length }(\gamma)=\|H\| \geq \frac{4 \pi}{\left\|R^{*}\right\|},
$$

and there is an $X=H+X^{\perp}$ for which $4 \pi /\left\|R^{*}\right\|$ is attained.
(b) We have

$$
\begin{equation*}
H=e^{X^{\perp}} H e^{-X^{\perp}} . \tag{3-6}
\end{equation*}
$$

(c) If

$$
\operatorname{Ad}(\mathbb{G})\left(X^{\perp}\right) \cap \mathcal{T}=\left\{S_{1}, \ldots, S_{l}\right\}
$$

then for all $1 \leq j \leq l$ there exist $L_{j} \in \mathcal{L}_{\mathcal{T}}$ such that

$$
\operatorname{Ad}(\mathbb{G})(X) \cap \mathcal{T}=\left\{S_{1}+L_{1}, \ldots, S_{l}+L_{l}\right\}
$$

Proof. (a) Note that $\gamma(1)=I$ implies that $e^{X}=e^{X^{\perp}}$. Then,

$$
\begin{equation*}
\gamma^{\prime}(t)=e^{t X} \cdot X \cdot e^{-t X^{\perp}}-e^{t X} \cdot X^{\perp} \cdot e^{-t X^{\perp}}=e^{t X}\left(X-X^{\perp}\right) e^{-t X^{\perp}} \tag{3-7}
\end{equation*}
$$

and

$$
\left\|\gamma^{\prime}(t)\right\|_{\gamma(t)}=\left\|\gamma(t)^{-1} \cdot \gamma^{\prime}(t)\right\|_{I}=\left\|e^{t X^{\perp}} \cdot\left(X-X^{\perp}\right) \cdot e^{-t X^{\perp}}\right\|=\left\|X-X^{\perp}\right\| .
$$

Hence, the length of γ is $\left\|X-X^{\perp}\right\|=\|H\|$. The fact that $\|H\|$ is at least $4 \pi /\left\|R^{*}\right\|$ is an immediate consequence of Theorem 3.6.

Consider the simply connected Lie subgroup $\operatorname{SU}(2)_{R^{*}}$ of \mathbb{G} which has its Lie algebra equal to $\operatorname{su}(2)_{R^{*}}$, and denote by X^{*} and Y^{*} those elements of (2-3) which, together with R^{*}, generate $\operatorname{su}(2)_{R^{*}}$. The relations

$$
\left[R^{*}, X^{*}\right]=-\left\|R^{*}\right\|^{2} Y^{*} \quad \text { and } \quad\left[R^{*}, Y^{*}\right]=\left\|R^{*}\right\|^{2} X^{*}
$$

show that the only positive root, and hence the highest root in su(2) $R_{R^{*}}$, is R^{*}. In a similar way to the proof of (4-2), we can obtain a sub-Riemannian geodesic loop in $\mathrm{SU}(2)_{R^{*}}$ whose length is $4 \pi /\left\|R^{*}\right\|$.
(b) We claim that $\gamma^{\prime}(0)=\gamma^{\prime}(1)$. This information can be found in [Helgason 2001, page 148, Exercise 3] and its proof is based on the fact that for all $t \in \mathbb{R}$,

$$
\begin{aligned}
\gamma(t+1) & =e^{(t+1) X} e^{-(t+1) X^{\perp}}=e^{t X} e^{X} e^{-t X^{\perp}} e^{-X^{\perp}} \\
& =e^{t X} e^{X} e^{-X^{\perp}} e^{-t X^{\perp}}=e^{t X} e^{-t X^{\perp}}=\gamma(t) .
\end{aligned}
$$

By (3-7), it follows that

$$
X-X^{\perp}=e^{X}\left(X-X^{\perp}\right) e^{-X^{\perp}},
$$

which clearly implies (3-6).
(c) By the properties of the adjoint representation there exist $S_{1}, \ldots, S_{l} \in \mathcal{T}$ and $S_{1}^{\prime}, \ldots, S_{l}^{\prime} \in \mathcal{T}$, where l is the number of Weyl chambers, such that

$$
\begin{equation*}
\operatorname{Ad}(\mathbb{G})\left(X^{\perp}\right) \cap \mathcal{T}=\left\{S_{1}, \ldots, S_{l}\right\} \tag{3-8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Ad}(\mathbb{G})(X) \cap \mathcal{T}=\left\{S_{1}^{\prime}, \ldots, S_{l}^{\prime}\right\} \tag{3-9}
\end{equation*}
$$

Note that in (3-8) and (3-9) some of the S_{j} and S_{j}^{\prime} might be repeated if they belong to one of the hyperplanes $P(R, 0)$ for $R \in \mathcal{R}$.

Therefore,

$$
\begin{equation*}
\operatorname{Ad}(\mathbb{G})\left(e^{X^{\perp}}\right) \cap \mathbb{T}=\left\{e^{S_{1}}, \ldots, e^{S_{l}}\right\}, \tag{3-10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Ad}(\mathbb{G})\left(e^{X}\right) \cap \mathbb{T}=\left\{e^{S_{1}^{\prime}}, \ldots, e^{S_{l}^{\prime}}\right\} . \tag{3-11}
\end{equation*}
$$

The fact that $e^{X^{\perp}}=e^{X}$ implies that the sets in (3-10) and (3-11) must coincide. Therefore, by rearranging the elements if necessary, we can suppose that for all $1 \leq j \leq l$, we have $e^{S_{j}}=e^{S_{j}^{\prime}}$, which immediately implies the existence of $L_{j} \in \mathcal{L}_{\mathcal{T}}$ such that $S_{j}^{\prime}=S_{j}+L_{j}$.

Since $X^{\perp} \in \mathcal{T}$, we can see that one of S_{1}, \ldots, S_{l} in (3-8) must be X^{\perp}. Therefore, we have the following corollary.

Corollary 3.10. Under the assumptions of Theorem 3.9, there exist $g \in \mathbb{G}$ and $L \in \mathcal{L}_{\mathcal{T}}$ such that $X=\operatorname{Ad}(g)\left(X^{\perp}+L\right)$.

4. The case of $\mathbf{S U}(\mathbf{2})$

The special unitary group of 2×2 complex matrices is

$$
\mathrm{SU}(2)=\left\{g=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right): \alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1\right\} .
$$

Its Lie algebra is the three dimensional real Lie algebra

$$
\operatorname{su}(2)=\left\{X=\left(\begin{array}{cc}
i x_{1} & x_{2}+i x_{3} \\
-x_{2}+i x_{3} & -i x_{1}
\end{array}\right): x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\} .
$$

The Killing form of $\mathrm{su}(2)$ is

$$
K(X, Y)=4 \operatorname{trace}(X Y),
$$

while the inner product (2-1) is defined as

$$
\langle X, Y\rangle=-\frac{1}{2} \operatorname{trace}(X Y)
$$

The Cartan subalgebra \mathcal{T} is spanned by the unit vector

$$
T_{1}=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)
$$

and the orthonormal basis of \mathcal{H} is formed by

$$
X_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \text { and } Y_{1}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) .
$$

The exponential map exp : $\operatorname{su}(2) \rightarrow \mathrm{SU}(2)$ has the following simple form:

$$
\exp (X)=e^{X}=\cos (\|X\|) I+\frac{\sin (\|X\|)}{\|X\|} X
$$

Consider $X=a X_{1}+b Y_{1}+c T_{1}$. Then, for $0 \leq t \leq 1$,

$$
e^{t X}=\cos \left(t \sqrt{a^{2}+b^{2}+c^{2}}\right) I+\frac{\sin \left(t \sqrt{a^{2}+b^{2}+c^{2}}\right)}{\sqrt{a^{2}+b^{2}+c^{2}}} X,
$$

and

$$
e^{t X^{\perp}}=\cos (t c) I+\sin (t c) T_{1} .
$$

If we have $\sqrt{a^{2}+b^{2}+c^{2}}=2 \pi$, the Riemannian geodesic $e^{t X}$ closes the first time at $t=1$, which shows that the Riemannian length spectrum equals $\{2 \pi\}$. For the sub-Riemannian geodesic $\gamma(t)=e^{t X} e^{-t X^{\perp}}$, the condition $e^{X}=e^{X^{\perp}}$ implies that

$$
\begin{equation*}
\sqrt{a^{2}+b^{2}+c^{2}}=n \pi \quad \text { and } \quad|c|=m \pi \tag{4-1}
\end{equation*}
$$

where $m, n \in \mathbb{N} \cup\{0\}, m \leq n$, are both even or both odd. To ensure $\gamma(t) \neq I$ for all $0<t<1$, we require that $m, n \in \mathbb{N} \cup\{0\}$ are both odd and relatively prime or both even and $\frac{m}{2}, \frac{n}{2}$ are relatively prime with one of them odd and the other even.

Notice that, as the only positive root of $\mathrm{SU}(2)$ is $R_{1}=2 T_{1}$, we have $\left\|R^{*}\right\|=$ $\left\|2 T_{1}\right\|=2$, and therefore

$$
\begin{equation*}
\|H\|=\left\|X-X^{\perp}\right\|=\pi \sqrt{n^{2}-m^{2}}=\frac{2 \pi \sqrt{n^{2}-m^{2}}}{\left\|R^{*}\right\|} . \tag{4-2}
\end{equation*}
$$

The same result can be obtained by Theorem 3.9. In $\mathrm{SU}(2)$ the unit lattice is $\mathcal{L}_{\mathcal{T}}=\left\{2 k \pi T_{1}: k \in \mathbb{Z}\right\}$. The formula (3-6) implies that

$$
c=m \pi \in \pi \mathbb{Z} .
$$

The matrices S_{1}^{\prime} and S_{2}^{\prime} from (3-9) are diagonal with entries consisting of the eigenvalues of X. Thus, Theorem 3.9 implies that there exists some $k \in \mathbb{N}$ such that

$$
\sqrt{a^{2}+b^{2}+m^{2} \pi^{2}}-m \pi=2 k \pi,
$$

and this implies (4-1).
We have therefore presented two algebraic proofs of the following proposition, which is a special case of Theorems 3.3, 3.6, and 3.7, and which extends the results from [Chang et al. 2011; Klapheck and VanValkenburgh 2019].

Proposition 4.1. In $\mathrm{SU}(2)$ the following properties hold.

(a) The Riemannian geodesic loops have length equal to 2π.
(b) The horizontal Riemannian geodesic loops have length equal to 2π.
(c) The shortest sub-Riemannian geodesic loops have length equal to 2π.
(d) The sub-Riemannian geodesic loops have lengths equal to $\pi \sqrt{n^{2}-m^{2}}$, where $m, n \in \mathbb{N} \cup\{0\}$ are odd and relatively prime or even and $\frac{m}{2}, \frac{n}{2}$ are relatively prime with one of them odd and the other even.

Remark 4.2. As an introduction to the next section, let us show that we can use Viète's formulas to get the result of Proposition 4.1(d). Indeed, the characteristic polynomial of X is

$$
P(\lambda)=\lambda^{2}+\left(a^{2}+b^{2}+c^{2}\right),
$$

and by Theorem 3.9 and the first Viète formula, the eigenvalues of X must be of the form $\lambda_{1}=-c i-2 k \pi i$ and $\lambda_{2}=c i+2 k \pi i$, where $k \in \mathbb{N}$. The second Viète formula gives

$$
\lambda_{1} \lambda_{2}=(c+2 k \pi)^{2}=a^{2}+b^{2}+c^{2},
$$

which leads to (4-1).

Remark 4.3. For comparison with the case of $\operatorname{SU}(3)$ in the next section, note that in $\mathrm{SU}(2)$ the sub-Riemannian geodesic loops have the form

$$
\begin{equation*}
\gamma(t)=e^{t\left(a_{1} X_{1}+b_{1} Y_{1}+\frac{m}{2} R_{1}\right)} e^{-t \frac{m}{2} R_{1}}, \tag{4-3}
\end{equation*}
$$

where a, b, c, m satisfy (4-1).

5. The case of $\operatorname{SU}(3)$

Consider the special unitary group of 3×3 complex matrices

$$
\mathrm{SU}(3)=\left\{g \in \mathrm{GL}(3, \mathbb{C}): g \cdot g^{*}=I, \operatorname{det} g=1\right\},
$$

and its Lie algebra

$$
\operatorname{su}(3)=\left\{X \in \operatorname{gl}(3, \mathbb{C}): X+X^{*}=0, \text { trace } X=0\right\} .
$$

The inner product is defined by

$$
\langle X, Y\rangle=-\frac{1}{2} \operatorname{trace}(X Y)
$$

We consider the maximal torus

$$
\mathbb{T}=\left\{\left(\begin{array}{ccc}
e^{i a_{1}} & 0 & 0 \\
0 & e^{i a_{2}} & 0 \\
0 & 0 & e^{i a_{3}}
\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}, a_{1}+a_{2}+a_{3}=0\right\}
$$

and its Lie algebra

$$
\mathcal{T}=\left\{\left(\begin{array}{ccc}
i a_{1} & 0 & 0 \\
0 & i a_{2} & 0 \\
0 & 0 & i a_{3}
\end{array}\right): a_{1}, a_{2}, a_{3} \in \mathbb{R}, a_{1}+a_{2}+a_{3}=0\right\}
$$

which is our choice for the Cartan subalgebra. The following are the Gell-Mann matrices, which form an orthonormal basis of $\operatorname{su}(3)$ and satisfy the relations in (2-2), (2-3), and (i)-(iv) on page 324:

$$
\begin{aligned}
& T_{1}=\left(\begin{array}{ccc}
-i & 0 & 0 \\
0 & i & 0 \\
0 & 0 & 0
\end{array}\right), \quad T_{2}=\left(\begin{array}{ccc}
\frac{-i}{\sqrt{3}} & 0 & 0 \\
0 & \frac{-i}{\sqrt{3}} & 0 \\
0 & 0 & \frac{2 i}{\sqrt{3}}
\end{array}\right), \quad X_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Y_{1}=\left(\begin{array}{lll}
0 & i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& X_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right), \quad Y_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & -i & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad Y_{3}=\left(\begin{array}{lll}
0 & 0 & i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The positive roots are

$$
\begin{aligned}
& R_{1}=\left(\begin{array}{ccc}
-2 i & 0 & 0 \\
0 & 2 i & 0 \\
0 & 0 & 0
\end{array}\right)=2 T_{1}, \\
& R_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 i & 0 \\
0 & 0 & -2 i
\end{array}\right)=T_{1}-\sqrt{3} T_{2}, \\
& R_{3}=\left(\begin{array}{ccc}
-2 i & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2 i
\end{array}\right)=T_{1}+\sqrt{3} T_{2} .
\end{aligned}
$$

The highest root is $R^{*}=R_{1}$, while the two simple roots are R_{2} and R_{3}. The unit lattice is

$$
\mathcal{L}_{\mathcal{T}}=\left\{n \pi R_{2}+m \pi R_{3}: n, m \in \mathbb{Z}\right\},
$$

and observe that

$$
\begin{equation*}
e^{\pi R_{1}}=e^{\pi R_{2}}=e^{\pi R_{3}}=I . \tag{5-1}
\end{equation*}
$$

For $k=1,2,3$, the projections of the origin onto the hyperplanes $P\left(R_{k}, 2 \pi\right)$ are

$$
P_{R_{k}}=\frac{\pi}{2} R_{k},
$$

and, indeed, (5-1) is equivalent to

$$
e^{2 P_{R_{k}}}=I, \quad k=1,2,3
$$

Observing that

$$
\left\|n \pi R_{2}+m \pi R_{3}\right\|=2 \pi \sqrt{n^{2}-n m+m^{2}}
$$

we conclude that, in $\operatorname{SU}(3)$, Theorems 3.3, 3.6, and 3.7 have the following special form.

Proposition 5.1. In $\mathrm{SU}(3)$ the following properties hold.
(a) The Riemannian geodesic loops have lengths equal to

$$
2 \pi \sqrt{n^{2}-n m+m^{2}},
$$

where $n, m \in \mathbb{N} \cup\{0\}$ are relatively prime.
(b) The horizontal Riemannian geodesic loops have lengths equal to

$$
2 \pi \sqrt{n^{2}-n m+m^{2}},
$$

where $n, m \in \mathbb{N} \cup\{0\}$ are relatively prime.
(c) The shortest sub-Riemannian geodesic loops have length equal to 2π.

To obtain information about the full sub-Riemannian length spectrum in $\mathrm{SU}(3)$, consider

$$
\begin{aligned}
H & =a_{1} X_{1}+b_{1} Y_{1}+a_{2} X_{2}+b_{2} Y_{2}+a_{3} X_{3}+b_{3} Y_{3}, \\
X^{\perp} & =\frac{c_{1}}{2} R_{3}+\frac{c_{2}}{2} R_{2}=\left(\begin{array}{ccc}
-c_{1} i & 0 & 0 \\
0 & c_{2} i & 0 \\
0 & 0 & \left(c_{1}-c_{2}\right) i
\end{array}\right), \\
X & =H+X^{\perp}, \text { and } \gamma(t)=e^{t X} e^{-t X^{\perp}} .
\end{aligned}
$$

The characteristic polynomial of X is

$$
P(\lambda)=-\lambda^{3}-p \lambda+q i,
$$

where

$$
p=\sum_{j=1}^{3}\left(a_{j}^{2}+b_{j}^{2}\right)+c_{1}^{2}+c_{2}^{2}-c_{1} c_{2},
$$

and

$$
\begin{aligned}
q=c_{2}\left(a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}+c_{1}^{2}\right)-c_{1}\left(a_{2}^{2}\right. & \left.+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}+c_{2}^{2}\right) \\
& +2\left(a_{1} a_{2} b_{3}+a_{1} b_{2} a_{3}-b_{1} a_{2} a_{3}+b_{1} b_{2} b_{3}\right) .
\end{aligned}
$$

Note that $p=\|H\|^{2}+\left\|X^{\perp}\right\|^{2}$. Formula (3-6) gives

$$
\begin{align*}
c_{1}+c_{2} \in 2 \pi \mathbb{Z} & \text { if } a_{1}+b_{1} i \neq 0, \\
c_{1}-2 c_{2} \in 2 \pi \mathbb{Z} & \text { if } a_{2}+b_{2} i \neq 0, \tag{5-2}\\
2 c_{1}-c_{2} \in 2 \pi \mathbb{Z} & \text { if } a_{3}+b_{3} i \neq 0 .
\end{align*}
$$

To see the connection with the case of $\mathrm{SU}(2)$, let us start with the following simple cases.

Case 1: Consider $c_{2}=-c_{1}, a_{2}=b_{2}=a_{3}=b_{3}=0$. This corresponds to the case of $\mathrm{SU}(2)$ from the previous section and these geodesics are singular in $\operatorname{SU}(3)$. Therefore the sub-Riemannian geodesics have the form (4-3) and the lengths $\pi \sqrt{n^{2}-m^{2}}$ from Proposition 4.1(d).

Case 2: Consider $c_{2}=0, a_{2}=b_{2}=a_{3}=b_{3}=0$. These geodesics are not contained in any copy of $\operatorname{SU}(2)$ and are regular in $\operatorname{SU}(3)$. Here, $c_{1}=2 m \pi, m \in \mathbb{Z}$, and the eigenvalues of X are

$$
-2 m \pi i \quad \text { and } \quad\left(m \pi \pm \sqrt{a_{1}^{2}+b_{1}^{2}+m^{2} \pi^{2}}\right) i .
$$

By Theorem 3.9(c) we have that

$$
\begin{equation*}
\left|c_{1}\right|=2 m \pi \quad \text { and } \quad a_{1}^{2}+b_{1}^{2}+m^{2} \pi^{2}=n^{2} \pi^{2} \tag{5-3}
\end{equation*}
$$

where $m, n \in \mathbb{N} \cup\{0\}, m \leq n$, are both odd or even. Therefore, the sub-Riemannian geodesic loop corresponding to (5-3) is

$$
\gamma(t)=e^{t\left(a_{1} X_{1}+b_{1} Y_{1}+m R_{3}\right)} e^{-t m R_{3}},
$$

and its length is $\pi \sqrt{n^{2}-m^{2}}$.
Case 3: If at least two of $a_{j}+b_{j} i, j=1,2,3$, are not zero, then

$$
c_{1}=\frac{4 n+2 m}{3} \pi, \quad c_{2}=\frac{2 n-2 m}{3} \pi,
$$

where $n, m \in \mathbb{Z}$. Theorem 3.9(c) and the first Viète formula for the characteristic polynomial imply that the eigenvalues of X must have the form

$$
\begin{align*}
& \lambda_{1}=\left(-c_{1}-2 k \pi\right) i, \\
& \lambda_{2}=\left(c_{2}+2 l \pi\right) i, \tag{5-4}\\
& \lambda_{3}=\left(c_{1}-c_{2}+2(k-l) \pi\right) i .
\end{align*}
$$

The second Viète formula gives

$$
\begin{equation*}
\|H\|=\sqrt{c_{1}(4 k-2 l) \pi+c_{2}(4 l-2 k) \pi+4\left(k^{2}+l^{2}-k l\right) \pi^{2}} . \tag{5-5}
\end{equation*}
$$

From the third Viète formula we find

$$
\begin{array}{r}
4 c_{1} c_{2}(k-l) \pi+4 c_{1} l(2 k-l) \pi^{2}+4 c_{2} k(k-2 l) \pi^{2}+2 c_{1}^{2} l \pi-2 c_{2}^{2} k \pi+8 k l(k-l) \pi^{3} \\
=\left(a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}\right) c_{2}-\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right) c_{1} \\
+2\left(a_{1} a_{2} b_{3}+a_{1} b_{2} a_{3}-b_{1} a_{2} a_{3}+b_{1} b_{2} b_{3}\right) .
\end{array}
$$

The complexity of this formula hides its true geometric meaning; however, in the case when $q=0$, it reduces to $0=0$, and we have the following eigenvalues for X :

$$
0 \quad \text { and } \quad \pm \sqrt{\|H\|^{2}+\left\|X^{\perp}\right\|^{2}} i
$$

Without loss of generality we can assume that $\lambda_{1}=0$. Then $c_{1}=2 k \pi$, which implies that $m=3 k-2 n$ and $c_{2}=2(n-k)$. From (5-5) it follows that

$$
\|H\|=2 \pi \sqrt{(2 k-l)^{2}-n k+2 n l},
$$

which in the case of $k=l$ reduces to

$$
\|H\|=2 \pi \sqrt{k^{2}+n k}=2 \pi \sqrt{\left(k+\frac{n}{2}\right)^{2}-\frac{n^{2}}{4}} .
$$

This shows that, as expected, formula (5-5) includes the sub-Riemannian geodesic loop length spectrum of $\mathrm{SU}(2)$.

Note that $q=0$ is satisfied if $c_{2}=0, a_{1}^{2}+b_{1}^{2}=a_{2}^{2}+b_{2}^{2}$ and $a_{3}=b_{3}=0$. As a numerical example we can give the sub-Riemannian geodesic loop of length 8π described by

$$
\gamma(t)=e^{\pi\left(5 X_{1}+\sqrt{7} Y_{1}+5 X_{2}+\sqrt{7} Y_{2}+3 R_{3}\right) t} e^{-3 \pi R_{3} t}
$$

In conclusion, we have the following result.
Proposition 5.2. In $\mathrm{SU}(3)$ the sub-Riemannian geodesic loops have lengths equal to

$$
2 \pi \sqrt{\left(\frac{(2 n+m)(2 k-l)}{3}+\frac{(n-m)(2 l-k)}{3}\right)+\left(k^{2}+l^{2}-k l\right)},
$$

where $m, n, k, l \in \mathbb{Z}$.

Acknowledgements

The authors are grateful to Richard Montgomery for helpful discussions and advice on exposition. We also thank the referees for valuable suggestions.

References

[Agrachev and Sarychev 1999] A. A. Agrachev and A. V. Sarychev, "Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity", ESAIM Control Optim. Calc. Var. 4 (1999), 377-403. MR Zbl
[Arvanitoyeorgos 2003] A. Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, Student Mathematical Library 22, American Mathematical Society, Providence, RI, 2003. MR Zbl
[Boscain et al. 2002] U. Boscain, T. Chambrion, and J.-P. Gauthier, "On the $K+P$ problem for a three-level quantum system: optimality implies resonance", J. Dynam. Control Systems 8:4 (2002), 547-572. MR Zbl
[Chang et al. 2011] D.-C. Chang, I. Markina, and A. Vasil'ev, "Hopf fibration: geodesics and distances", J. Geom. Phys. 61:6 (2011), 986-1000. MR Zbl
[D'Andrea and Maffei 2016] A. D'Andrea and A. Maffei, "Commutators of small elements in compact semisimple groups and Lie algebras", J. Lie Theory 26:3 (2016), 683-690. MR
[Domokos 2015] A. Domokos, "Subelliptic Peter-Weyl and Plancherel theorems on compact, connected, semisimple Lie groups", Nonlinear Anal. 126 (2015), 131-142. MR Zbl
[Duistermaat and Kolk 2000] J. J. Duistermaat and J. A. C. Kolk, Lie groups, Springer, 2000. MR Zbl
[Helgason 2001] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society, Providence, RI, 2001. MR Zbl
[Klapheck and VanValkenburgh 2019] D. Klapheck and M. VanValkenburgh, "The length spectrum of the sub-Riemannian three-sphere", Involve 12:1 (2019), 45-61.
[Klingenberg 1978] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Math. Wissenschaften 230, Springer, 1978. MR Zbl
[Knapp 1986] A. W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series 36, Princeton University Press, 1986. MR Zbl
[Montgomery 1994] R. Montgomery, "Singular extremals on Lie groups", Math. Control Signals Systems 7:3 (1994), 217-234. MR Zbl
[Montgomery 1995] R. Montgomery, "A survey of singular curves in sub-Riemannian geometry", J. Dynam. Control Systems 1:1 (1995), 49-90. MR Zbl
[Montgomery 2002] R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs 91, American Mathematical Society, Providence, RI, 2002. MR Zbl
[Simon 1996] B. Simon, Representations of finite and compact groups, Graduate Studies in Mathematics 10, American Mathematical Society, Providence, RI, 1996. MR Zbl

Received April 7, 2017. Revised December 11, 2017.

András Domokos

domokos@csus.edu
Matthew Krauel
krauel@csus.edu
Vincent Pigno
vincent.pigno@csus.edu

Corey Shanbrom

corey.shanbrom@csus.edu
Michael VanValkenburgh
mjv@csus.edu
(all authors)
Department of Mathematics and Statistics
California State University, Sacramento
Sacramento, CA
United States

THE ACTION OF THE HECKE OPERATORS ON THE COMPONENT GROUPS OF MODULAR JACOBIAN VARIETIES

taekyung Kim and Hwajong Yoo

Abstract

For a prime number $q \geq 5$ and a positive integer N prime to q, Ribet proved the action of the Hecke algebra on the component group of the Jacobian variety of the modular curve of level $N q$ at q is "Eisenstein", which means the Hecke operator T_{ℓ} acts by $\ell+1$ when ℓ is a prime number not dividing the level. We completely compute the action of the Hecke algebra on this component group by a careful study of supersingular points with extra automorphisms.

1. Introduction

Let $q \geq 5$ be a prime number, and let N be a positive integer. Let $X_{0}(N q)$ denote the modular curve over \mathbb{Q} and $J_{0}(N q)$ its Jacobian variety. For any integer n, there is the Hecke operator T_{n} acting on $J_{0}(N q)$. Let $\Phi_{q}(N q)$ denote the component group of the special fiber \mathcal{J} of the Néron model of $J_{0}(N q)$ at q. According to the theorems of Ribet [1988; 1990] (when q does not divide N) and Edixhoven [1991] (in general), the action of the Hecke algebra on $\Phi_{q}(N q)$ is "Eisenstein." Here by "Eisenstein" we mean the Hecke operator T_{ℓ} acts on $\Phi_{q}(N q)$ by $\ell+1$ when a prime number ℓ does not divide $N q .{ }^{1}$ In this article, we compute the action of the Hecke operators T_{ℓ} on the component group $\Phi_{q}(N q)$ when ℓ divides $N q$ and q does not divide N.

Here is an exotic example ${ }^{2}$ which leads us to this study: Let $N=\prod_{i=1}^{v} p_{i}$ be the product of distinct prime numbers with $v \geq 1$, and let $q \equiv 2$ or $5(\bmod 9)$ be an odd prime number. Assume that $p_{i} \equiv 4$ or $7(\bmod 9)$ for all $1 \leq i \leq \nu$. Let $\mathbb{T}(N q)$ and $\mathbb{T}(N)$ denote the \mathbb{Z}-subalgebras of $\operatorname{End}\left(J_{0}(N q)\right)$ and $\operatorname{End}\left(J_{0}(N)\right)$, respectively, generated by all the Hecke operators T_{n} for $n \geq 1$. Let
$\mathfrak{m}:=\left(3, T_{p_{i}}-1, T_{q}+1, T_{\ell}-\ell-1:\right.$ for all $1 \leq i \leq \nu$,
and for primes $\ell \nmid N q) \subset \mathbb{T}(N q)$
MSC2010: 11G05, 11G18, 14G35.
Keywords: Hecke operators, Hecke action, component group, modular Jacobian varieties.
${ }^{1}$ On the other hand, Ribet and Edixhoven did not proceed to compute the action of the Hecke operator T_{p} on $\Phi_{q}(N q)$ for a prime divisor p of the level $N q$ because their results were enough for their applications.
${ }^{2}$ This phenomenon cannot occur when the residual characteristic is greater than 3 .
and
$\mathfrak{n}:=\left(3, T_{p_{i}}-1, T_{\ell}-\ell-1:\right.$ for all $1 \leq i \leq v$, and for primes $\left.\ell \nmid N\right) \subset \mathbb{T}(N)$
be Eisenstein ideals. By [Yoo 2016, Theorem 1.4], \mathfrak{m} is maximal. Furthermore, \mathfrak{n} is maximal if and only if $v \geq 2$.

The dimension of $J_{0}(N)[\mathfrak{n}]$ is equal to v if \mathfrak{n} is maximal, i.e., $v \geq 2$. (Here $J_{0}(N)[\mathfrak{n}]:=\left\{x \in J_{0}(N)(\overline{\mathbb{Q}}): T x=0\right.$ for all $\left.T \in \mathfrak{n}\right\}$.) It is an extension of $\mu_{3}^{\oplus v-1}$ by $\mathbb{Z} / 3 \mathbb{Z}$, and it does not contain a submodule isomorphic to μ_{3}. On the other hand, the dimension of $J_{0}(N q)[\mathfrak{m}]$ is either $2 v$ or $2 v+1$. Furthermore $J_{0}(N q)[\mathfrak{m}]$ contains a submodule \mathcal{N} isomorphic to $J_{0}(N)[\mathfrak{n}]$, and it also contains $\mu_{3}^{\oplus \nu}$ (which is contributed from the Shimura subgroup). As \mathcal{N} is unramified at q, by [Serre and Tate 1968], \mathcal{N} maps injectively into $\mathcal{J}[\mathfrak{m}]$ and it turns out that its image is isomorphic to $\mathcal{J}^{0}[\mathfrak{m}]$, where \mathcal{J}^{0} is the identity component of \mathcal{J}. (Note that $\Phi_{q}(N q)$ is the quotient of \mathcal{J} by \mathcal{J}^{0}.) Since $\mu_{3}^{\oplus \nu}$ is also unramified at q, it maps into $\mathcal{J}[\mathfrak{m}]$ and therefore its image maps injectively to $\Phi_{q}(N q)[\mathfrak{m}]$. (This statement is also true when $v=1$.) The structure of the component group $\Phi_{q}(N q)$ is known by the work of Mazur and Rapoport [1977]: ${ }^{3}$

$$
\Phi_{q}(N q)=\Phi \oplus(\mathbb{Z} / 3 \mathbb{Z})^{2^{v}-1}
$$

where Φ is cyclic and generated by the image of the cuspidal divisor $(0)-(\infty)$. The action of the Hecke operators on Φ is well known (e.g., [Yoo 2014, Appendix A1]), and so $\Phi[\mathfrak{m}]=0$. Therefore $(\mathbb{Z} / 3 \mathbb{Z})^{2^{\nu}-1}[\mathfrak{m}] \neq 0$ and its dimension is at least v. Indeed it is equal to $2^{\nu-1}$, which can easily be computed by the theorems below.

Now, we introduce our results.
Theorem 1.1. For a prime divisor p of N, the Hecke operator T_{p} acts on $\Phi_{q}(N q)$ by p.

The key idea of the proof is that the two degeneracy maps coincide on the component group (see [Ribet 1988; Edixhoven 1991, §4.2, Lemme 2]).

Now, the missing action is that of the Hecke operator T_{q} on $\Phi_{q}(N q)$. Note that T_{q} acts on $\Phi_{q}(N q)$ by an involution because the action of the Hecke algebra on $\Phi_{q}(N q)$ is " q-new." To describe its action more precisely, we define some notation: for $N=\prod_{p \mid N} p^{n_{p}}$ being the prime factorization of N (i.e., $n_{p}>0$), let $v:=\#\{p: p \neq 2,3\}$ and let
$u:= \begin{cases}0 & \text { if } q \equiv 1(\bmod 4) \text { or } 4 \mid N \text { or if there exists } p \equiv-1(\bmod 4), \\ 1 & \text { otherwise },\end{cases}$
$v:= \begin{cases}0 & \text { if } q \equiv 1(\bmod 3) \text { or } 9 \mid N \text { or if there exists } p \equiv-1(\bmod 3), \\ 1 & \text { otherwise. }\end{cases}$

[^4]Suppose that $(u, v)=(0,0)$ or $v=0$. Then $\Phi_{q}(N q)=\Phi$ and T_{q} acts on Φ by 1 , where Φ is the cyclic subgroup generated by the image of the cuspidal divisor (0) $-(\infty)$ (Proposition 4.1). If $v \geq 1, \Phi_{q}(N q)$ becomes isomorphic to

$$
\Phi^{\prime} \oplus \boldsymbol{A} \oplus \boldsymbol{B}
$$

where $\boldsymbol{A} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{\oplus u\left(2^{v}-2\right)}, \boldsymbol{B} \simeq(\mathbb{Z} / 3 \mathbb{Z})^{\oplus v\left(2^{v}-1\right)}$ and Φ^{\prime} is a cyclic group containing Φ and $\Phi^{\prime} / \Phi \simeq\left(\mathbb{Z} / 2^{u} \mathbb{Z}\right){ }^{4}$

Theorem 1.2. Assume that $(u, v) \neq(0,0)$ and $v \geq 1$.
(1) Suppose that $v=1$. Then there are distinct subgroups $B_{i} \simeq \mathbb{Z} / 3 \mathbb{Z}$ of \boldsymbol{B} so that $\boldsymbol{B}=\bigoplus B_{i}$. For any $1 \leq i \leq\left(2^{\nu}-1\right), T_{q}$ acts on B_{i} by $(-1)^{i}$.
(2) Suppose that $u=1$. Then there are distinct subgroups $A_{i} \simeq \mathbb{Z} / 2 \mathbb{Z}$ of \boldsymbol{A} so that $A=\oplus A_{i}$. For any $1 \leq k \leq\left(2^{v-1}-2\right), T_{q}$ acts on $A_{2 k-1} \oplus A_{2 k}$ by the matrix $\left(\begin{array}{l}10 \\ 1\end{array} 1 .\right)^{5}$ In other words, if $A_{2 k-1}=\left\langle\boldsymbol{u}_{2 k-1}\right\rangle$ and $A_{2 k}=\left\langle\boldsymbol{u}_{2 k}\right\rangle$, then

$$
T_{q}\left(\boldsymbol{u}_{2 k-1}\right)=\boldsymbol{u}_{2 k-1}+\boldsymbol{u}_{2 k} \quad \text { and } \quad T_{q}\left(\boldsymbol{u}_{2 k}\right)=\boldsymbol{u}_{2 k} .
$$

For a complete description of the action of T_{q} on each subgroup, see Section 4.

2. Supersingular points of $X_{0}(N)$

From now on, we always assume that $q \geq 5$ is a prime number and N is a positive integer which is prime to q. Let p denote a prime divisor of N. Let \boldsymbol{F} be an algebraically closed field of characteristic q.

Let $\Sigma(N)$ denote the set of supersingular points of $X_{0}(N)(\boldsymbol{F})$. Since we assume that $q \geq 5$, the group of automorphisms of supersingular points is cyclic of order 2 , 4 or 6 . Let

$$
\Sigma_{n}(N):=\{s \in \Sigma(N): \# \operatorname{Aut}(s)=n\} \quad \text { and } \quad s_{n}(N):=\# \Sigma_{n}(N) .
$$

Note that $s_{4}(N)=u \cdot 2^{v}$ and $s_{6}(N)=v \cdot 2^{v}($ see [Edixhoven 1991, §4.2, Lemme 1]), where u, v and v are as in Section 1. Moreover $s_{2}(N)$ can be computed using Eichler's mass formula [Katz and Mazur 1985, Theorem 12.4.5, Corollary 12.4.6]:

$$
\begin{equation*}
\frac{s_{2}(N)}{2}+\frac{s_{4}(N)}{4}+\frac{s_{6}(N)}{6}=\frac{(q-1) Q}{24}, \tag{2-1}
\end{equation*}
$$

where $Q:=N \prod_{p \mid N}\left(1+p^{-1}\right)$ is the degree of the degeneracy map $X_{0}(N) \rightarrow X_{0}(1)$.

[^5]In the remainder of this section, we study $\Sigma_{4}(N)$ and $\Sigma_{6}(N)$ in detail. (See also [Ribet 1988, §2; 1995, §4; Edixhoven 1991, §4.2].) In the section below, we always assume that $v \geq 1$, i.e., there is a prime divisor $p \geq 5$ of N. (If $v=0$ then $s_{2 e}(N) \leq 1$ for $e=2$ or 3 , and the description is very simple.)

Let \mathcal{E} be a supersingular elliptic curve with $\operatorname{Aut}(\mathcal{E})=\langle\sigma\rangle$, and let C be a cyclic subgroup of \mathcal{E} of order N. Assume that $q \equiv-1(\bmod 4)(\operatorname{resp} . q \equiv-1(\bmod 3))$ if $\sigma=\sigma_{4}$ (resp. $\sigma=\sigma_{6}$), where σ_{k} is a primitive k-th root of unity.

Proposition 2.1. Let $N=p^{n}$ for some $n \geq 1$ with $p \geq 5$. Suppose $\operatorname{Aut}(\mathcal{E}, C)=\langle\sigma\rangle$. Then, there exists another cyclic subgroup D of order N such that $\mathcal{E}[N] \simeq C \oplus D$. Moreover, $\operatorname{Aut}(\mathcal{E}, D)=\langle\sigma\rangle$ and (\mathcal{E}, C) is not isomorphic to (\mathcal{E}, D).

Proof. Here, we closely follow the argument in the proof of Proposition 1 in [Ribet 1988, §2].

Let R be the subring $\mathbb{Z}[\sigma]$ of $\operatorname{End}(\mathcal{E}, C)$. Since $\operatorname{Aut}(\mathcal{E}, C)=\langle\sigma\rangle, p \equiv 1(\bmod 4)$ $($ resp. $p \equiv 1(\bmod 3))$ if $\sigma=\sigma_{4}\left(\right.$ resp. $\left.\sigma=\sigma_{6}\right)$. Therefore p splits completely in R. Note that $R=\mathbb{Z}[\sigma]$ is a principal ideal domain and therefore

$$
R / p R \simeq R / \gamma R \oplus R / \delta R \simeq \delta R / p R \oplus \gamma R / p R
$$

with $p=\gamma \delta$. Moreover,

$$
R / N R=R / p^{n} R \simeq R / \gamma^{n} R \oplus R / \delta^{n} R \simeq \delta^{n} R / N R \oplus \gamma^{n} R / N R
$$

Note that $\mathcal{E}[N]$ is a free module of rank 1 over $R / N R$ by the action of R on \mathcal{E}. We may identify C with the quotient $I / N R$ for some ideal I of R containing N if we fix an R-isomorphism between $\mathcal{E}[N]$ and $R / N R$. Thus, $I=\delta^{n} R$ or $\gamma^{n} R$. Suppose that $I=\delta^{n} R$. Then, by the fixed isomorphism, $C=\mathcal{E}\left[\gamma^{n}\right]$. Let $D:=\mathcal{E}\left[\delta^{n}\right]$ so that its corresponding ideal is $\gamma^{n} R$. Then, $\mathcal{E}[N] \simeq C \oplus D$. Moreover since $\gamma^{n} R$ is also an ideal of R, D is also stable under the action of σ. In other words, $\operatorname{Aut}(\mathcal{E}, D)=\langle\sigma\rangle$. Also, (\mathcal{E}, C) cannot be isomorphic to (\mathcal{E}, D) since $\operatorname{Aut}(\mathcal{E})=\langle\sigma\rangle$ and $\sigma(C)=C$.

From now on, we use the same notation as in the proof of Proposition 2.1.
Definition 2.2. By the above formulas, for every $n \geq 1$ and $p \equiv 1(\bmod 4)($ resp. $p \equiv 1(\bmod 3))$, there are precisely two cyclic subgroups C, D of \mathcal{E} of order p^{n} such that $\operatorname{Aut}(\mathcal{E}, C)=\operatorname{Aut}(\mathcal{E}, D)=\langle\sigma\rangle$ (and $\left.\mathcal{E}\left[p^{n}\right] \simeq C \oplus D\right)$ if $\sigma=\sigma_{4}$ (resp. if $\sigma=\sigma_{6}$). Thus, for each $n \geq 1$ we define $\mathcal{C}_{p^{n}}$ and $\mathcal{D}_{p^{n}}$ by

$$
\mathcal{C}_{p^{n}}:=\mathcal{E}\left[\gamma^{n}\right] \quad \text { and } \quad \mathcal{D}_{p^{n}}:=\mathcal{E}\left[\delta^{n}\right] .
$$

Proposition 2.3. For each $n \geq 1, \mathcal{C}_{p^{n+1}}\left[p^{n}\right]=\mathcal{C}_{p^{n}}$ and $\mathcal{D}_{p^{n+1}}\left[p^{n}\right]=\mathcal{D}_{p^{n}}$.
Proof. By the fixed R-isomorphism ι between $\mathcal{E}\left[p^{n+1}\right]$ and $R / p^{n+1} R$, we identify $\mathcal{C}_{p^{n+1}}$ with $I / p^{n+1} R$, where $I=\delta^{n+1} R$. As I is an ideal of $R, \gamma I=p\left(\delta^{n} R\right) \subset I$
and $I / \gamma I \simeq R / \gamma R \simeq \mathbb{Z} / p \mathbb{Z}$. Therefore

$$
\mathcal{C}_{p^{n+1}}\left[p^{n}\right] \xrightarrow{\iota}\left(I / p^{n+1} R\right)\left[p^{n}\right]=\gamma I / p^{n+1} R \underset{\times 1 / p}{\sim}\left(\delta^{n} R\right) / p^{n} R,
$$

which corresponds to $\mathcal{C}_{p^{n}}$. Similarly, we prove that $\mathcal{D}_{p^{n+1}}\left[p^{n}\right]=\mathcal{D}_{p^{n}}$, and the proposition follows.

Let $N=M p^{n}$ with $(6 M, p)=1$ and $n \geq 1$. Let L be a cyclic subgroup of \mathcal{E} of order M.
Proposition 2.4. Suppose that $\operatorname{Aut}\left(\mathcal{E}, \mathcal{C}_{p^{n+1}}, L\right)=\langle\sigma\rangle$. Then, there is an isomorphism between $\left.\left(\mathcal{E} / \mathcal{C}_{p}, \mathcal{C}_{p^{n+1}} / \mathcal{C}_{p},\left(L \oplus \mathcal{C}_{p}\right) / \mathcal{C}_{p}\right)\right)$ and $\left(\mathcal{E}, \mathcal{C}_{p^{n}}, L\right)$.
Proof. We mostly follow the idea of the proof of Proposition 2 in [Ribet 1988, §2].
The endomorphism γ sends $\mathcal{E}\left[\gamma^{n+1}\right]=\mathcal{C}_{p^{n+1}}$ to $\mathcal{E}\left[\gamma^{n}\right]=\mathcal{C}_{p^{n}}$, and L to itself (because $L \cap \mathcal{E}[p]=0$). Now we denote by $\bar{\gamma}$ the map $\mathcal{E} / \mathcal{C}_{p} \rightarrow \mathcal{E}$ induced by γ. Note that $\bar{\gamma}$ is an isomorphism because \mathcal{C}_{p} is $\mathcal{E}[\gamma]$, the kernel of γ. By the above consideration, this isomorphism $\bar{\gamma}$ sends $\left(\mathcal{C}_{p^{n+1}} / \mathcal{C}_{p},\left(L \oplus \mathcal{C}_{p}\right) / \mathcal{C}_{p}\right)$ to $\left(\mathcal{C}_{p}, L\right)$ because $\mathcal{C}_{p^{n+1}} / \mathcal{C}_{p}$ and $\left(L \oplus \mathcal{C}_{p}\right) / \mathcal{C}_{p}$, respectively, are the images of $\mathcal{C}_{p^{n+1}}$ and L by the quotient map $\mathcal{E} \rightarrow \mathcal{E} / \mathcal{C}[p]$. Therefore $\bar{\gamma}$ gives rise to the desired isomorphism between triples.
Corollary 2.5. The map $(\mathcal{E}, C, L) \rightarrow\left(\mathcal{E}, C\left[p^{n}\right], L\right)$ induces a bijection between $\Sigma_{2 e}(N p)$ and $\Sigma_{2 e}(N)$, where $\sigma=\sigma_{2 e}$. Moreover if $(\mathcal{E}, C, L) \in \Sigma_{2 e}(N p)$, we have

$$
\left(\mathcal{E}, C\left[p^{n}\right], L\right) \simeq(\mathcal{E} / C[p], C / C[p],(L \oplus C[p]) / C[p]) .
$$

The corollary tells us that two degeneracy maps α_{p} and β_{p} in Section 3 coincide on $\Sigma_{2 e}(N p)$, which is a generalization of [Edixhoven 1991, §4.2, Lemme 2].

Proposition 2.6. Suppose that $\operatorname{Aut}\left(\mathcal{E}, \mathcal{C}_{p^{n}}, L\right)=\langle\sigma\rangle$. Then, $\operatorname{Frob}(\mathcal{E})=\mathcal{E}$ and $\operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right)=\mathcal{D}_{p^{n}}$, where Frob is the Frobenius morphism in characteristic q. Furthermore, $\operatorname{Frob}^{2}\left(\mathcal{E}, \mathcal{C}_{p^{n}}, L\right)=\left(\mathcal{E}, \mathcal{C}_{p^{n}}, L\right)$.
Proof. Since \mathcal{E} is isomorphic to the reduction of the elliptic curve with j-invariant 1728 (resp. 0) if $\sigma=\sigma_{4}$ (resp. $\sigma=\sigma_{6}$), the Frobenius morphism is an endomorphism of \mathcal{E} (see [Silverman 2009, Chapter V, Examples 4.4 and 4.5]). Moreover, the Frobenius morphism and σ generate $\operatorname{End}(\mathcal{E})$, which is a quaternion algebra. (Note that the degree of the Frobenius morphism is q.) Since $\operatorname{End}(\mathcal{E})$ is a quaternion algebra, we have

$$
\sigma \circ \text { Frob }=\text { Frob } \circ \bar{\sigma}=\text { Frob } \circ \sigma^{-1},
$$

where $\bar{\sigma}$ denotes the complex conjugation in $R=\mathbb{Z}[\sigma]$. Analogously, we have

$$
\gamma \circ \text { Frob }=\text { Frob } \circ \bar{\gamma}=\text { Frob } \circ \delta .
$$

Since $\sigma\left(\operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right)\right)=\operatorname{Frob}\left(\sigma^{-1}\left(\mathcal{C}_{p^{n}}\right)\right)=\operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right), \operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right)$ is also stable under the action of σ. Moreover $\mathcal{C}_{p^{n}}$ does not intersect with the kernel of Frob.

Thus, $\operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right)$ is either $\mathcal{C}_{p^{n}}$ or $\mathcal{D}_{p^{n}}$. As an endomorphism of \mathcal{E}, γ sends $\mathcal{C}_{p^{n}}$ (resp. $\left.\mathcal{D}_{p^{n}}\right)$ to $\mathcal{C}_{p^{n-1}}\left(\right.$ resp. $\left.\mathcal{D}_{p^{n}}\right) . S$ Similarly, $\delta \operatorname{maps} \mathcal{C}_{p^{n}}\left(\right.$ resp. $\left.\mathcal{D}_{p^{n}}\right)$ to $\mathcal{C}_{p^{n}}\left(\right.$ resp. $\left.\mathcal{D}_{p^{n-1}}\right)$. Therefore if $\operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right)=\mathcal{C}_{p^{n}}$, then

$$
\gamma \circ \operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right)=\gamma\left(\mathcal{C}_{p^{n}}\right)=\mathcal{C}_{p^{n-1}} \quad \text { and } \quad \operatorname{Frob} \circ \delta\left(\mathcal{C}_{p^{n}}\right)=\operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right)=\mathcal{C}_{p^{n}}
$$

which is a contradiction. Thus, we get $\operatorname{Frob}\left(\mathcal{C}_{p^{n}}\right)=\mathcal{D}_{p^{n}}$.
Since every supersingular point can be defined over $\mathbb{F}_{q^{2}}$, the quadratic extension of \mathbb{F}_{q}, Frob ${ }^{2}$ acts trivially on $\Sigma(N)$ (see [Ribet 1990, Remark 3.5.b]), which proves the last claim.

Remark 2.7. By taking $H=(\mathbb{Z} / N \mathbb{Z})^{*}$ in Lemma 1 of [Ribet 1995], we can obtain a similar result if we show that the Atkin-Lehner style involution in [Ribet 1995, §4] is equal to the Frobenius morphism.

3. The action of $\boldsymbol{T}_{\boldsymbol{p}}$ on the component group

Before discussing the action of the Hecke operators on the component group, we study it on the group of divisors supported on supersingular points, which we denote by $\operatorname{Div}(\Sigma(N))$.

Let $N=M p^{n}$ with $(M, p)=1$ and $n \geq 1$, and assume that $(N, q)=1$. Let $\alpha_{p}, \beta_{p}: X_{0}(N p q) \rightrightarrows X_{0}(N q)$ denote two degeneracy maps of degree p, defined by

$$
\alpha_{p}(E, C, L):=\left(E, C\left[p^{n}\right], L\right)
$$

and

$$
\beta_{p}(E, C, L):=(E / C[p], C / C[p],(L+C[p]) / C[p]),
$$

where C (resp. L) denotes a cyclic subgroup of order p^{n+1} (resp. $M q$) in an elliptic curve E (see [Mazur and Ribet 1991, §13]). Let T_{p} and ξ_{p} be two Hecke correspondences defined by the following diagram:

$$
X_{0}(N q) \leftarrow=-\frac{\xi_{p}}{T_{p}}= - \pm X_{0}(N q)
$$

By pullback, the Hecke correspondence T_{p} (resp. ξ_{p}) induces the Hecke operator $T_{p}:=\beta_{p, *} \circ \alpha_{p}^{*}$ (resp. $\xi_{p}:=\alpha_{p, *} \circ \beta_{p}^{*}$) on $J_{0}(N q)$.

The same description of the Hecke operator T_{p} on $\operatorname{Div}(\Sigma(N))$ as above works. In other words, we have two degeneracy maps ${ }^{6} \alpha_{p}, \beta_{p}: \Sigma(N p) \rightrightarrows \Sigma(N)$ of degree p, defined by

$$
\alpha_{p}(E, C, L):=\left(E, C\left[p^{n}\right], L\right)
$$

[^6]and
$$
\beta_{p}(E, C, L):=(E / C[p], C / C[p],(L+C[p]) / C[p])
$$
where C (resp. L) denotes a cyclic subgroup of order p^{n+1} (resp. M) in a supersingular elliptic curve E over \boldsymbol{F}. These maps induce the maps
$$
\operatorname{Div}(\Sigma(N)) \underset{\beta_{p}^{*}}{\stackrel{\alpha_{p}^{*}}{\leftrightarrows}} \operatorname{Div}(\Sigma(N p)) \xrightarrow[\beta_{p, *}]{\stackrel{\alpha_{p, *}}{\longrightarrow}} \operatorname{Div}(\Sigma(N))
$$
on their divisor groups, and the Hecke operator T_{p} (resp. ξ_{p}) can be defined by $\beta_{p, *} \circ \alpha_{p}^{*}\left(\right.$ resp. $\left.\alpha_{p, *} \circ \beta_{p}^{*}\right)$. (For the details when $n=0$, see [Ribet 1990, §3; 1991, pp. 18-22; Edixhoven 1991, §4.1; Emerton 2002, §7]. By the same method, we get the above description without further difficulties.)

Now, let $\Phi_{q}(N q)$ denote the component group of the special fiber \mathcal{J} of the Néron model of $J_{0}(N q)$ at q. To compute the action of T_{p} on it, we closely follow the method of Ribet (see [Ribet 1988; 1990, §2, §3; Edixhoven 1991, §1]). Since N is not divisible by q, the identity component \mathcal{J}^{0} of \mathcal{J} is a semiabelian variety by Deligne and Rapoport [1973] and Raynaud [1970]. Moreover, \mathcal{J}^{0} is an extension of $J_{0}(N)_{\boldsymbol{F}} \times J_{0}(N)_{\boldsymbol{F}}$ by \mathcal{T}, the torus of \mathcal{J}^{0}. Let \mathcal{X} be the character group of the torus \mathcal{T}. By Grothendieck, there is a (Hecke-equivariant) monodromy exact sequence [SGA 7 1972] (see also [Ribet 1990, §2, §3; Raynaud 1991; Illusie 2015, §4]),

$$
0 \longrightarrow \mathcal{X} \xrightarrow{\iota} \operatorname{Hom}\left(\mathcal{X}^{t}, \mathbb{Z}\right) \longrightarrow \Phi_{q}(N q) \longrightarrow 0
$$

Here \mathcal{X}^{t} denotes the character group corresponding to the dual abelian variety of $J_{0}(N q)$, which is equal to $J_{0}(N q)$. Namely, $\mathcal{X}^{t}=\mathcal{X}$ as sets, but the action of the Hecke operator T_{ℓ} on \mathcal{X}^{t} is equal to the action of its dual ξ_{ℓ} on \mathcal{X} (see [Ribet 1988; 1990, §3; Emerton 2002, §7]). Note that \mathcal{X} is the group of degree 0 elements in $\mathbb{Z}^{\Sigma(N)}$. For $s, t \in \Sigma(N)$, let $e(s):=\frac{1}{2} \# \operatorname{Aut}(s)$ and

$$
\phi_{s}(t):=\left\{\begin{array}{cc}
e(s) & \text { if } s=t \\
0 & \text { otherwise }
\end{array}\right.
$$

and extends via linearity, i.e., $\phi_{s}\left(\sum a_{i} t_{i}\right)=\sum a_{i} \phi_{s}\left(t_{i}\right)$. Then, $\iota(s-t)=\phi_{s}-\phi_{t}$. Note also that $\operatorname{Hom}\left(\mathbb{Z}^{\Sigma(N)}, \mathbb{Z}\right)$ is generated by $\psi_{s}:=1 / e(s) \phi_{s}$, and $\operatorname{Hom}\left(\mathcal{X}^{t}, \mathbb{Z}\right)$ is its quotient by the relation

$$
\sum_{s \in \Sigma(N)} \psi_{s}=\sum_{s \in \Sigma(N)} \frac{1}{e(s)} \phi_{s}=0
$$

(This is the minimal relation to make $\sum a_{w} \psi_{w}$ vanish for all the divisors of the form $s-t$, which are the generators of \mathcal{X}.) For more details, see [Ribet 1990, §2, §3, Raynaud 1991].

In conclusion, the component group $\Phi_{q}(N q)$ is isomorphic to

$$
\operatorname{Hom}\left(\mathbb{Z}^{\Sigma(N)}, \mathbb{Z}\right) / R,
$$

where R is the set of relations

$$
\begin{equation*}
R=\left\{e(s) \psi_{s}=e(t) \psi_{t} \quad \text { for any } s, t \in \Sigma(N), \quad \sum_{t \in \Sigma(N)} \psi_{t}=0\right\} . \tag{3-1}
\end{equation*}
$$

Let Ψ_{s} denote the image of ψ_{s} by the natural projection $\operatorname{Hom}\left(\mathbb{Z}^{\Sigma(N)}, \mathbb{Z}\right) \rightarrow$ $\Phi_{q}(N q)$. The Hecke operator T_{p} acts on $\operatorname{Hom}\left(\mathbb{Z}^{\Sigma(N)}, \mathbb{Z}\right)$ via the action of ξ_{p} on $\operatorname{Div}(\Sigma(N))$, i.e.,

$$
T_{p}\left(\psi_{s}\right)(t):=\psi_{s}\left(\xi_{p}(t)\right)=\psi_{s}\left(\alpha_{p, *} \circ \beta_{p}^{*}(t)\right) .
$$

For $s \in \Sigma(N)$, we temporarily denote $\alpha_{p}^{*}(s)=\sum_{i=1}^{p} A^{i}(s)$ and $\beta_{p}^{*}(s)=\sum_{i=1}^{p} B^{i}(s)$ (allowing repetition). We note that if $e(s)=1$ then there is no repetition, i.e., $A^{i}(s) \nsucceq A^{j}(s)$ and $B^{i}(s) \nsucceq B^{j}(s)$ if $i \neq j$. If $e(s)=e>1$, then after renumbering the index properly we have

$$
e\left(A^{i}(s)\right)=1 \quad \text { for } \quad 1 \leq i \leq p-1 \text { and } e\left(A^{p}(s)\right)=e .
$$

Moreover, we have

$$
A^{e(k-1)+1}(s) \simeq \cdots \simeq A^{e k}(s) \quad \text { for } \quad 1 \leq k \leq \frac{p-1}{e},
$$

and

$$
A^{i}(s) \not \not ㇒ A^{j}(s) \quad \text { if } \quad\left[\frac{i-1}{e}\right] \neq\left[\frac{j-1}{e}\right],
$$

where $[x]$ denotes the largest integer less than or equal to x. This can be seen as follows: Let $\sigma=\sigma_{2 e}$, and let s represent a pair (\mathcal{E}, C), where C is a cyclic subgroup of E of order N. Since $e(s)=e, \sigma(C)=C$. Suppose that $s^{\prime} \in \Sigma(N p)$ with $\alpha_{p, *}\left(s^{\prime}\right)=s$. Then s^{\prime} represents a pair (\mathcal{E}, D) with $D[N]=C$. If $\sigma(D)=D$, then $\operatorname{Aut}([(\mathcal{E}, D)])=\langle\sigma\rangle$ and $(\mathcal{E}, D) \nsucceq\left(\mathcal{E}, D^{\prime}\right)$ if $D \neq D^{\prime}$. (Note that there is a unique such D.) On the other hand, if $\sigma(D) \neq D$ then

$$
(\mathcal{E}, D) \simeq(\mathcal{E}, \sigma(D)) \simeq \cdots \simeq\left(\mathcal{E}, \sigma^{e-1}(D)\right) \simeq\left(\mathcal{E}, \sigma^{e}(D)\right)=(\mathcal{E}, D)
$$

and $\operatorname{Aut}([(\mathcal{E}, D)])=\{ \pm 1\}$. Thus, we can rearrange $A^{i}(s)$ as above. (Note that this can only be possible when $p \equiv 1(\bmod 2 e)$, which is true because $e(s)=e$.)

Now, we claim that $\phi_{s}\left(\alpha_{p, *}(t)\right)=\phi_{t}\left(\alpha_{p}^{*}(s)\right)$. Indeed, $\phi_{s}\left(\alpha_{p, *}(t)\right)$ is nonzero if and only if $t \in\left\{A^{1}(s), \ldots, A^{p}(s)\right\}$. So, it suffices to show this equality when $t \in\left\{A^{1}(s), \ldots, A^{p}(s)\right\}$. If $e(s)=1$, then there is no repetition and the claim follows clearly (both are 1). Now, let $e(s)=e>1$. If $e(t)=1$, then $t=A^{i}(s)$ for some $1 \leq i \leq p-1$. Since the number of repetitions of $t=A^{i}(s)$ in $\left\{A^{1}(s), \ldots, A^{p}(s)\right\}$ is e,
the above equality holds. If $e(t)=e$, then $t=A^{p}(s)$ and $\phi_{s}\left(\alpha_{p, *}(t)\right)=e=\phi_{t}\left(\alpha_{p}^{*}(s)\right)$, as claimed. Analogously, we have

$$
\phi_{t}\left(\beta_{p, *}(s)\right)=\phi_{s}\left(\beta_{p}^{*}(t)\right)
$$

More generally, we get

$$
\begin{aligned}
\phi_{s}\left(\alpha_{p, *} \circ \beta_{p}^{*}(t)\right) & =\sum_{i=1}^{p} \phi_{s}\left(\alpha_{p, *}\left(B^{i}(t)\right)\right)=\sum_{i=1}^{p} \sum_{j=1}^{p} \phi_{B^{i}(t)}\left(A^{j}(s)\right) \\
& =\sum_{j=1}^{p} \sum_{i=1}^{p} \phi_{A^{j}(s)}\left(B^{i}(t)\right)=\sum_{j=1}^{p} \phi_{A^{j}(s)}\left(\beta_{p}^{*}(t)\right) \\
& =\sum_{j=1}^{p} \phi_{t}\left(\beta_{p, *}\left(A^{j}(s)\right)\right)=\phi_{t}\left(\beta_{p, *} \circ \alpha_{p}^{*}(s)\right)=\phi_{t}\left(T_{p}(s)\right)
\end{aligned}
$$

If we set $T_{p}(s)=\sum s_{j}$, then $\phi_{t}\left(T_{p}(s)\right)=\sum \phi_{s_{i}}(t)=\sum e\left(s_{i}\right) \psi_{s_{i}}(t)$ and hence for any $t \in \Sigma(N)$,

$$
e(s) T_{p}\left(\psi_{s}\right)(t)=\phi_{s}\left(\alpha_{p, *} \circ \beta_{p}^{*}(t)\right)=\phi_{t}\left(T_{p}(s)\right)=e\left(s_{i}\right) \psi_{s_{i}}(t)
$$

In other words, we get

$$
\begin{equation*}
T_{p}\left(\Psi_{s}\right)=\frac{1}{e(s)} \sum e\left(s_{i}\right) \Psi_{s_{i}} \tag{3-2}
\end{equation*}
$$

We can also define the action of T_{p} on the component group via functorialities. Namely, let

$$
\Phi_{q}(N q) \underset{\beta_{p}^{*}}{\stackrel{\alpha_{p}^{*}}{\leftrightarrows}} \Phi_{q}(N p q) \stackrel{\alpha_{p, *}}{\beta_{p, *}} \Phi_{q}(N q)
$$

denote the maps functorially induced from the degeneracy maps. ${ }^{7}$ Then, as before, $T_{p}:=\beta_{p, *} \circ \alpha_{p}^{*}$. Note that since the degrees of α_{p} and β_{p} are p, we have $\alpha_{p, *} \circ \alpha_{p}^{*}=$ $\beta_{p, *} \circ \beta_{p}^{*}=p$.
Lemma 3.1. The operator $\alpha_{p, *}$ is equal to $\beta_{p, *}$ on $\Phi_{q}(N p q)$.
Proof. For $s \in \Sigma_{2 e}(N p q)$ with $e=2$ or $3, \alpha_{p}(s)=\beta_{p}(s)$ by Corollary 2.5, and hence $\alpha_{p, *}\left(\Psi_{s}\right)=\beta_{p, *}\left(\Psi_{s}\right)$. For $s \in \Sigma_{2}(N p q)$, let $\alpha_{p}(s)=t$ and $\beta_{p}(s)=w$. Then, $\alpha_{p, *}\left(\Psi_{s}\right)=e(t) \Psi_{t}=e(w) \Psi_{w}=\beta_{p, *}\left(\Psi_{s}\right)$. In other words, for any $s \in \Sigma(N p q)$, $\alpha_{p, *}\left(\Psi_{s}\right)=\beta_{p, *}\left(\Psi_{s}\right)$. Since Ψ_{s} 's generate $\Phi_{q}(N p q)$, the result follows.

In fact, Theorem 1.1 is an easy corollary of the above lemma.

[^7]Proof of Theorem 1.1. Since $\alpha_{p, *}=\beta_{p, *}$ on $\Phi_{q}(N p q)$, we have

$$
T_{p}\left(\Psi_{s}\right)=\beta_{p, *} \circ \alpha_{p}^{*}\left(\Psi_{s}\right)=\alpha_{p, *} \circ \alpha_{p}^{*}\left(\Psi_{s}\right)=p \Psi_{s},
$$

which implies the result.

4. The action of T_{q} on the component group

In this section, we provide a complete description of the action of T_{q} on the component group $\Phi_{q}(N q)$. See Propositions 4.2, 4.3 and 4.4, which imply Theorem 1.2.

Note that the Hecke operator T_{q} acts on $\Sigma(N)$ by the Frobenius morphism [Ribet 1990, Proposition 3.8], and the same is true for ξ_{q}. Since the Frobenius morphism is an involution on $\Sigma(N)$ (see Proposition 2.6), we have

$$
\begin{equation*}
T_{q}\left(\psi_{s}\right)(t)=\psi_{s}\left(\xi_{q}(t)\right)=\psi_{s}(\operatorname{Frob}(t))=\psi_{\operatorname{Frob}(s)}(t) \quad \text { for any } t \in \Sigma(N), \tag{4-1}
\end{equation*}
$$

which implies that $T_{q}\left(\psi_{s}\right)=\psi_{\operatorname{Frob}(s)}$.
From now on, if there is no confusion we remove (N) from the notation for simplicity. Let $n:=\frac{1}{12}(q-1) Q$ (which is not necessarily an integer), and let Φ denote the cyclic subgroup of $\Phi_{q}(N q)$ generated by $\Psi_{\mathfrak{s}}$ for a fixed $\mathfrak{s} \in \Sigma_{2}$. (Note that this Φ is the same as that of Mazur and Rapoport [1977], namely, Φ is equal to the cyclic subgroup generated by the image of the cuspidal divisor $(0)-(\infty)$.)

Case 1: $(\boldsymbol{u}, \boldsymbol{v})=(\mathbf{0}, \mathbf{0})$ or $\boldsymbol{v}=\mathbf{0}$. Let $e=1$ if $(u, v)=(0,0)$ and $e=2 u+3 v$ if $(u, v) \neq(0,0)$ and $\nu=0$. If $(u, v)=(0,0), s_{2}=n$ and $s_{4}=s_{6}=0$. If $(u, v) \neq(0,0)$ and $\nu=0$, then $s_{2 e}=1$ and $s_{2}=\frac{1}{e}(e n-1)$. (Note that s_{2} is an integer but n is not.)

Proposition 4.1. The component group $\Phi_{q}(N q)$ is equal to Φ, which is cyclic of order en. The Hecke operator T_{q} acts on it by 1 .

Proof. First, we assume that $(u, v)=(0,0)$. Then $\Psi_{s}=\Psi_{\mathfrak{s}}$ for any $s \in \Sigma=\Sigma_{2}$. Therefore $\Phi_{q}(N q)=\Phi$ and $n \Psi_{\mathfrak{s}}=\sum_{s \in \Sigma} \Psi_{s}=0$. Moreover, $T_{q}\left(\Psi_{\mathfrak{s}}\right)=\Psi_{s^{\prime}}=\Psi_{\mathfrak{s}}$, where $s^{\prime}=\operatorname{Frob}(\mathfrak{s})$.

Now, we assume that $(u, v) \neq(0,0)$ and $v=0$. In this case, either $N=2 q$ (with $(u, v)=(1,0)$ and $e=2$) or $N=3 q$ (with $(u, v)=(0,1)$ and $e=3$). In each case, let $z \in \Sigma_{2 e}$. Then

$$
\sum_{s \in \Sigma_{2}} \Psi_{s}+\Psi_{z}=s_{2} \Psi_{\mathfrak{s}}+\Psi_{z}=0 \quad \text { and } \quad \Psi_{\mathfrak{s}}=e \Psi_{z} .
$$

Therefore the component group is generated by Ψ_{z}, and its order is $\left(e s_{2}+1\right)=e n$. Since en $=e s_{2}+1$ is prime to e, this group is also generated by $\Psi_{\mathfrak{s}}=e \Psi_{z}$. (In fact, $\Psi_{z}=-s_{2} \Psi_{\mathfrak{s}}$. Moreover we have $T_{q}\left(\Psi_{\mathfrak{s}}\right)=\Psi_{\mathfrak{s}}$ as above.

Case 2: $(\boldsymbol{u}, \boldsymbol{v})=(\mathbf{0}, \mathbf{1})$ and $\boldsymbol{v} \geq \mathbf{1}$. In this case, $s_{4}=0, s_{6}=2^{\nu}$, and $s_{2}=\frac{1}{3}\left(3 n-2^{\nu}\right)$. Let $\Sigma_{6}:=\left\{t_{1}, t_{2}, \ldots, t_{2^{v}}\right\}$. Here we assume that $\operatorname{Frob}\left(t_{2 k-1}\right)=t_{2 k}$ for $1 \leq k \leq 2^{\nu-1.8}$ Let $t:=t_{2^{v}-1}$ and $t^{\prime}:=t_{2^{v}}$.
Proposition 4.2. The component group $\Phi_{q}(N q)$ decomposes as follows:

$$
\Phi_{q}(N q)=\bigoplus_{i=0}^{2^{v}-1} B_{i}=: B_{0} \oplus \boldsymbol{B}
$$

where $B_{0}=\Phi$ is cyclic of order $3 n$, and for $1 \leq i \leq 2^{\nu}-1, B_{i}$ is cyclic of order 3 . For $1 \leq k \leq 2^{v-1}, B_{2 k-1}$ and $B_{2 k}$ are generated by

$$
\boldsymbol{v}_{2 k-1}:=\Psi_{t_{2 k-1}}-\Psi_{t_{2 k}}
$$

and

$$
\boldsymbol{v}_{2 k}:=\Psi_{t_{2 k-1}}+\Psi_{t_{2 k}}-\Psi_{t}-\Psi_{t^{\prime}},
$$

respectively. The Hecke operator T_{q} acts on B_{i} by $(-1)^{i}$.
Proof. Note that $\Psi_{s}=3 \Psi_{t_{i}}=3 \Psi_{t_{j}}$ for all i, j and $\sum_{i=1}^{2^{v}} \Psi_{t_{i}}+s_{2} \Psi_{s}=0$. Therefore $\Phi_{q}(N q)$ is generated by $\Psi_{t_{i}}$ for $1 \leq i \leq 2^{\nu}-1$. The order of each group $\left\langle\Psi_{t_{i}}\right\rangle$ is $9 n$ because

$$
9 n \Psi_{t_{i}}=3 s_{2}\left(3 \Psi_{t_{i}}\right)+\sum_{i=1}^{2^{v}} 3 \Psi_{t_{i}}=3\left(\sum_{s \in \Sigma_{2}} \Psi_{s}+\sum_{i=1}^{2^{v}} \Psi_{t_{i}}\right)=0,
$$

and $9 n$ is the smallest positive integer to make this happen. Moreover $\left\langle\Psi_{t_{i}}\right\rangle \cap\left\langle\Psi_{t_{j}}\right\rangle$ is of order $3 n$ for any $i \neq j$. Since $3 n=3 s_{2}+2^{v}$ is prime to 3 , we can decompose the component group into

$$
\begin{equation*}
\left\langle 3 \Psi_{t}\right\rangle \oplus\left\langle\left(3 s_{2}+2^{\nu}\right) \Psi_{t}\right\rangle \bigoplus_{i=1}^{2^{v}-2}\left\langle\Psi_{t_{i}}-\Psi_{t}\right\rangle . \tag{4-2}
\end{equation*}
$$

Since $\Psi_{s}=3 \Psi_{t_{i}}=3 \Psi_{t}=3 \Psi_{t^{\prime}}$ for any i and

$$
\sum_{i=1}^{2^{v}} \Psi_{t_{i}}=-3 s_{2} \Psi_{t}
$$

we have

$$
\begin{aligned}
\Psi_{2 k-1}-\Psi_{t} & =2 \boldsymbol{v}_{2 k-1}+2 \boldsymbol{v}_{2 k}+\boldsymbol{v}_{2^{v}-1}, \\
\Psi_{2 k}-\Psi_{t} & =\boldsymbol{v}_{2 k-1}+2 \boldsymbol{v}_{2 k}+\boldsymbol{v}_{2^{v}-1}, \\
\left(3 s_{2}+2^{v}\right) \Psi_{t} & =\sum_{i=1}^{2^{v}}\left(\Psi_{t}-\Psi_{t_{i}}\right)=-\sum_{k=1}^{2^{v-1}} \boldsymbol{v}_{2 k}-(-1)^{v} \boldsymbol{v}_{2^{v}-1} .
\end{aligned}
$$

Therefore the decomposition in the proposition is isomorphic to (4-2). The action of T_{q} on each B_{i} is obvious from its construction.

[^8]Case 3: $(\boldsymbol{u}, \boldsymbol{v})=(\mathbf{1}, \mathbf{0})$ and $\boldsymbol{v} \geq \mathbf{1}$. Note that $s_{4}=2^{\nu}, s_{6}=0$, and $s_{2}=n-2^{v-1}$. Let $\Sigma_{4}=\left\{w_{1}, w_{2}, \ldots, w_{2^{v}}\right\}$. As before, we assume that $\operatorname{Frob}\left(w_{2 k-1}\right)=w_{2 k}$ for $1 \leq k \leq 2^{\nu-1}{ }^{9}$ Let $w:=w_{2^{\nu}-1}$ and $w^{\prime}:=w_{2^{\nu}}$.

Proposition 4.3. The component group $\Phi_{q}(N q)$ decomposes as

$$
\Phi_{q}(N q)=\bigoplus_{i=0}^{2^{v}-2} A_{i}=A_{0} \oplus \boldsymbol{A}
$$

where A_{0} is cyclic of order $4 n$ generated by Ψ_{w}, and for $1 \leq i \leq 2^{\nu}-2, A_{i}$ is cyclic of order 2 . For $1 \leq k \leq 2^{\nu-1}-2, A_{2 k-1}$ and $A_{2 k}$ are generated by

$$
\boldsymbol{u}_{2 k-1}:=\Psi_{w_{2 k-1}}-\Psi_{w} \text { and } \boldsymbol{u}_{2 k}:=\Psi_{w_{2 k-1}}+\Psi_{w_{2 k}}-\Psi_{w}-\Psi_{w^{\prime}}, \text { respectively. }
$$

And $A_{2^{v-3}}$ and $A_{2^{v}-2}$ are generated by

$$
\boldsymbol{u}_{2^{v}-3}:=\Psi_{w_{2^{v}-3}}-\Psi_{w} \text { and } \boldsymbol{u}_{2^{v}-2}:=\Psi_{w_{2^{v}-3}}-\Psi_{w_{2^{v}-2}} \text {, respectively. }
$$

Moreover, the action of the Hecke operator T_{q} on each group is as follows:

$$
\begin{aligned}
T_{q}\left(\Psi_{w}\right) & =(1+2 n) \Psi_{w}+\sum_{i=1}^{2^{v-1}-1} \boldsymbol{u}_{2 i} \\
T_{q}\left(\boldsymbol{u}_{2 k-1}\right) & =\boldsymbol{u}_{2 k-1}+\boldsymbol{u}_{2 k} \quad \text { and } \quad T_{q}\left(\boldsymbol{u}_{2 k}\right)=\boldsymbol{u}_{2 k} \quad \text { for } 1 \leq k \leq 2^{v-1}-2, \\
T_{q}\left(\boldsymbol{u}_{2^{v}-3}\right) & =2 n \Psi_{w}+\boldsymbol{u}_{2^{v}-3}+\sum_{i=1}^{2^{v-1}-2} \boldsymbol{u}_{2 i} \quad \text { and } \quad T_{q}\left(\boldsymbol{u}_{2^{v}-2}\right)=\boldsymbol{u}_{2^{v}-2}
\end{aligned}
$$

Proof. The argument in Proposition 4.2 applies mutatis mutandis. For instance, when $v \geq 2$ an isomorphism between $A_{0} \bigoplus_{i=1}^{2^{v}-2}\left\langle\Psi_{w_{i}}-\Psi_{w}\right\rangle$ and $A_{0} \oplus \boldsymbol{A}$ can be given as follows: for $1 \leq k \leq 2^{\nu-1}-2$,

$$
\begin{aligned}
\Psi_{w_{2 k}}-\Psi_{w} & =\boldsymbol{u}_{2 k}+\boldsymbol{u}_{2 k-1}+\left(\Psi_{w^{\prime}}-\Psi_{w}\right), \\
\Psi_{w}-\Psi_{w^{\prime}} & =2 n \Psi_{w}+\sum_{i=1}^{2^{v-1}-1} \boldsymbol{u}_{2 i}, \\
\Psi_{w_{2} v_{-2}}-\Psi_{w} & =\boldsymbol{u}_{2^{v}-3}+\boldsymbol{u}_{2^{v}-2} .
\end{aligned}
$$

The action of the Hecke operator T_{q} on each A_{i} is clear except

$$
\begin{aligned}
& T_{q}\left(\Psi_{w}\right)=\Psi_{w^{\prime}}=\Psi_{w}-\left(\Psi_{w}-\Psi_{w^{\prime}}\right)=(1+2 n) \Psi_{w}+\sum_{i=1}^{2^{v-1}-1} \boldsymbol{u}_{2 i} \\
& T_{q}\left(\boldsymbol{u}_{2^{v}-3}\right)=\Psi_{w_{2^{v}-2}}-\Psi_{w^{\prime}}=\boldsymbol{u}_{2^{v}-3}+\boldsymbol{u}_{2^{v}-2}+\left(\Psi_{w}-\Psi_{w^{\prime}}\right) \\
&=2 n \Psi_{w}+\boldsymbol{u}_{2^{v}-3}+\sum_{i=1}^{2^{v-1}-2} \boldsymbol{u}_{2 i} .
\end{aligned}
$$

[^9]Case 4: $(\boldsymbol{u}, \boldsymbol{v})=(1,1)$ and $\boldsymbol{v} \geq \mathbf{1}$. Note that $s_{4}=s_{6}=2^{\nu}$ and $s_{2}=\frac{1}{6}\left(6 n-5 \cdot 2^{\nu}\right)$. Let $\Sigma_{4}=\left\{w_{1}, \ldots, w_{2^{v}}\right\}$ and $\Sigma_{6}:=\left\{t_{1}, \ldots, t_{2^{v}}\right\}$. As before, we assume that $\operatorname{Frob}\left(w_{2 k-1}\right)=w_{2 k}$ and $\operatorname{Frob}\left(t_{2 k-1}\right)=t_{2 k}$ for $1 \leq k \leq 2^{\nu-1}$. Let $w:=w_{2^{v}-1}$ and $w^{\prime}:=w_{2^{v}}$. Also, let $t:=t_{2^{v}-1}$ and $t^{\prime}:=t_{2^{v}}$.
Proposition 4.4. The component group $\Phi_{q}(N q)$ decomposes as

$$
\Phi_{q}(N q)=A_{0} \oplus \boldsymbol{A} \oplus \boldsymbol{B}
$$

where A_{0} is cyclic of order $12 n$ generated by Ψ_{w}. The structures of \boldsymbol{A} and \boldsymbol{B} are the same as those in Propositions 4.2 and 4.3. The actions of T_{q} on \boldsymbol{A} and \boldsymbol{B} are the same as before except on $A_{2^{v}-3}$ (when $v \geq 2$), where T_{q} acts by

$$
T_{q}\left(\boldsymbol{u}_{2^{v}-3}\right)=6 n \Psi_{w}+\boldsymbol{u}_{2^{v}-3}+\sum_{i=1}^{2^{v-1}-2} \boldsymbol{u}_{2 i}
$$

Moreover, the action of T_{q} on A_{0} is analogous to the previous case:

$$
T_{q}\left(\Psi_{w}\right)=(1+6 n) \Psi_{w}+\sum_{i=1}^{2^{v-1}-1} \boldsymbol{u}_{2 i} .
$$

Proof. Note that from (3-1), we have

$$
s_{2} \Psi_{s}+\Psi_{w_{1}}+\cdots+\Psi_{w^{\prime}}+\Psi_{t_{1}}+\cdots+\Psi_{t^{\prime}}=0
$$

Multiplying by 3 , we have

$$
\begin{equation*}
\Psi_{w_{1}}+\cdots+\Psi_{w^{\prime}}=-\left(3 s_{2}+2 \cdot 2^{v}\right) \Psi_{s}=-\left(6 s_{2}+4 \cdot 2^{v}\right) \Psi_{w} . \tag{4-3}
\end{equation*}
$$

Also, multiplying by 4 , we have

$$
\begin{equation*}
\Psi_{t_{1}}+\cdots+\Psi_{t^{\prime}}=-\left(4 s_{2}+3 \cdot 2^{\nu}\right) \Psi_{s}=-\left(12 s_{2}+9 \cdot 2^{\nu}\right) \Psi_{t} . \tag{4-4}
\end{equation*}
$$

Therefore $\Psi_{w_{1}}, \ldots, \Psi_{w}, \Psi_{t_{1}}, \ldots, \Psi_{t}$ can generate the whole group. By a similar computation, the order of $\left\langle\Psi_{w_{i}}\right\rangle$ is $12 n$ and the order of $\left\langle\Psi_{t_{i}}\right\rangle$ is $18 n$. All of them contain Φ as a subgroup, which is of order $6 n$. Here we note that $\left\langle\Psi_{t}\right\rangle=$ $\left\langle 3 \Psi_{t}\right\rangle \oplus\left\langle 6 n \Psi_{t}\right\rangle$ because $6 n=6 s_{2}+5 \cdot 2^{\nu}$ is prime to 3 . Therefore we can decompose $\Phi_{q}(N q)$ into

$$
\begin{equation*}
\left\langle\Psi_{w}\right\rangle \bigoplus_{i=1}^{2^{v}-2}\left\langle\Psi_{w_{i}}-\Psi_{w}\right\rangle \bigoplus_{i=1}^{2^{v}-2}\left\langle\Psi_{t_{i}}-\Psi_{t}\right\rangle \bigoplus\left\langle 6 n \Psi_{t}\right\rangle . \tag{4-5}
\end{equation*}
$$

As in Propositions 4.2 and 4.3, we can find an isomorphism between (4-5) and $A_{0} \oplus \boldsymbol{A} \oplus \boldsymbol{B}$, which proves the first part. From (4-3) (and the previous discussions) we have

$$
\Psi_{w}-\Psi_{w^{\prime}}=\left(6 s_{2}+5 \cdot 2^{\nu}\right) \Psi_{w}+\sum_{i=1}^{2^{v-1}-1} \boldsymbol{u}_{2 i}=6 n \Psi_{w}+\sum_{i=1}^{2^{v-1}-1} \boldsymbol{u}_{2 i}
$$

The action of T_{q} on each component is also obvious except

$$
\begin{aligned}
& T_{q}\left(\Psi_{w}\right)=\Psi_{w^{\prime}}=\Psi_{w}-\left(\Psi_{w}-\Psi_{w^{\prime}}\right)=(1+6 n) \Psi_{w}+\sum_{i=1}^{2^{\nu-1}-1} \boldsymbol{u}_{2 i} \\
& T_{q}\left(\boldsymbol{u}_{2^{v}-3}\right)=\Psi_{w_{2^{v}-2}}-\Psi_{w^{\prime}}=\boldsymbol{u}_{2^{v}-3}+\boldsymbol{u}_{2^{\nu}-2}+\left(\Psi_{w}-\Psi_{w^{\prime}}\right) \\
&=6 n \Psi_{w}+\boldsymbol{u}_{2^{v}-3}+\sum_{i=1}^{2^{v-1}-2} \boldsymbol{u}_{2 i}
\end{aligned}
$$

Acknowledgements

Yoo would like to thank Kenneth Ribet for a number of very helpful discussions about Eisenstein ideals and component groups. The referee deserves special thanks for a thorough reading of the manuscript and for many useful comments and suggestions. This work was supported by IBS-R003-D1.

References

[Deligne and Rapoport 1973] P. Deligne and M. Rapoport, "Les schémas de modules de courbes elliptiques", pp. 143-316 in Modular functions of one variable, II (Antwerp, 1972), edited by P. Deligne and W. Kuyk, Lecture Notes in Math. 349, Springer, 1973. MR Zbl
[Edixhoven 1991] B. Edixhoven, "L'action de l'algèbre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est 'Eisenstein"', pp. 159-170 in Courbes modulaires et courbes de Shimura (Orsay, 1987/1988), Astérisque 196-197, Société Mathématique de France, Paris, 1991. MR Zbl
[Emerton 2002] M. Emerton, "Supersingular elliptic curves, theta series and weight two modular forms", J. Amer. Math. Soc. 15:3 (2002), 671-714. MR Zbl
[Illusie 2015] L. Illusie, "Grothendieck and vanishing cycles", preprint, 2015, Available at https:// tinyurl.com/lucillus.
[Katz and Mazur 1985] N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108, Princeton Univ. Press, 1985. MR Zbl
[Mazur 1977] B. Mazur, "Modular curves and the Eisenstein ideal", Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33-186. MR Zbl
[Mazur and Rapoport 1977] B. Mazur and M. Rapoport, "Behavior of the Néron model of the Jacobian of $X_{0}(N)$ at bad primes", Inst. Hautes Études Sci. Publ. Math. 47 (1977), 173-186. Appendix to [Mazur 1977].
[Mazur and Ribet 1991] B. Mazur and K. A. Ribet, "Two-dimensional representations in the arithmetic of modular curves", pp. 215-255 in Courbes modulaires et courbes de Shimura (Orsay, 1987/1988), Astérisque 196-197, Société Mathématique de France, Paris, 1991. MR Zbl
[Raynaud 1970] M. Raynaud, "Spécialisation du foncteur de Picard", Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27-76. MR Zbl
[Raynaud 1991] M. Raynaud, "Jacobienne des courbes modulaires et opérateurs de Hecke", pp. 9-25 in Courbes modulaires et courbes de Shimura (Orsay, 1987/1988), Astérisque 196-197, Société Mathématique de France, Paris, 1991. MR Zbl
[Ribet 1988] K. A. Ribet, "On the component groups and the Shimura subgroup of $J_{0}(N)$ ", exp. 6, 10 pp. in Séminaire de Théorie des Nombres (Talence, France, 1987/1988), Univ. Bordeaux I, Talence, 1988. MR Zbl
[Ribet 1990] K. A. Ribet, "On modular representations of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ arising from modular forms", Invent. Math. 100:2 (1990), 431-476. MR Zbl
[Ribet 1995] K. A. Ribet, "Irreducible Galois representations arising from component groups of Jacobians", pp. 131-147 in Elliptic curves, modular forms, \& Fermat's last theorem (Hong Kong, 1993), edited by J. Coates, Ser. Number Theory 1, Int. Press, Cambridge, 1995. MR Zbl
[Serre and Tate 1968] J.-P. Serre and J. Tate, "Good reduction of abelian varieties", Ann. of Math. (2) 88 (1968), 492-517. MR Zbl
[SGA 7 ${ }_{I}$ 1972] A. Grothendieck, "Modèles de Néron et monodromie", exp. IX, 313-523 in Groupes de monodromie en géométrie algébrique, I (Séminaire de Géométrie Algébrique du Bois Marie 1967-1969), edited by A. Grothendieck, Lecture Notes in Math. 288, Springer, 1972. MR Zbl
[Silverman 2009] J. H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Math. 106, Springer, 2009. MR Zbl
[Yoo 2014] H. Yoo, "Non-optimal levels of a reducible mod ℓ modular representation", 2014. To appear in Trans. Amer. Math. Soc. arXiv
[Yoo 2016] H. Yoo, "On Eisenstein ideals and the cuspidal group of $J_{0}(N)$ ", Israel J. Math. 214:1 (2016), 359-377. MR Zbl

Received October 23, 2017. Revised February 5, 2018.

TAEKYUNG Kim

Center for Geometry and Physics
Institute for Basic Science
POHANG
South Korea
taekyung.kim.maths@gmail.com

Hwajong Yoo
Center for Geometry and Physics
Institute for Basic Science
POHANG
South Korea
hwajong@gmail.com

LIOUVILLE THEOREMS, VOLUME GROWTH, AND VOLUME COMPARISON FOR RICCI SHRINKERS

Li MA

Abstract

We study volume growth, a Liouville theorem for f-harmonic functions, and a volume comparison property of unit balls in complete noncompact gradient Ricci shrinkers and gradient steady Ricci solitons. We also study integral properties of \boldsymbol{f}-harmonic functions and harmonic functions on complete manifolds, such as the Ricci-Einstein solitons.

1. Introduction

In the study of Ricci flow on a compact Riemannian manifold, because of its complicated nonlinearity, one meets singularities of the flow in finite time. After blowing up, one expects to get self-similar Ricci shrinkers or steady Ricci solitons [Hamilton 1995]. In the case of a type-I singularity in dimension three, one gets nontrivial gradient Ricci shrinkers via the use of the Ivey-Hamilton pinching estimate, and the classification of this type of self-similar Ricci shrinker was done by G. Perelman [2000]. In the case of a type-I singularity of dimension four, A. Naber [2010] showed that one gets a gradient Ricci shrinker, and nontrivial properties of this Ricci shrinker have been studied by others. These solitons can be considered as special examples of weighted Riemannian manifolds or metric measure spaces [Bakry and Émery 1985; Wei and Wylie 2009; Lott and Villani 2009; Chen 2009; Chow et al. 2006; Lichnerowicz 1970; Lott 2003; Ma 2013; Sturm 2006a; 2006b; Yang 2009; Munteanu and Wang 2011; 2014; 2015]. Because of the importance of four-dimensional Ricci shrinkers, many people study various properties of them; see for example [Ma 2013; Cao and Zhou 2010; Cao 2007; 2010; Carrillo and Ni 2009; Munteanu and Wang 2015; Haslhofer and Müller 2011]. In this paper, we examine three questions about Ricci shrinking and steady solitons, in particular for Ricci shrinkers which are the complete Riemannian manifold (M, g) such that $\operatorname{Ric} f:=\operatorname{Ric}+D^{2} f=\lambda g$ on M, where Ric is the Ricci curvature of (M, g), $f: M \rightarrow R$ is a smooth function in M, and $\lambda>0$ is a constant. One question under

[^10]consideration in this paper is about the volume comparison of unit balls on Ricci shrinkers. The other two are about f-harmonic functions and harmonic functions with finite energy. The volume comparison of unit balls is an important step to understanding the volume growth of geodesic balls in gradient Ricci shrinkers. The Liouville theorems for f-harmonic and harmonic functions with finite energy are important to understanding the connectivity at infinity about gradient Ricci solitons; see [Munteanu and Wang 2015].

We have the following new results. The first is the volume comparison of unit balls at any point $x \in M$ with a unit ball at a fixed point $p \in M$, which deals with the injectivity radius decay from the point p to the point x and is important to understanding the topology of the underlying manifold at infinity.

Theorem 1. On the complete noncompact gradient Ricci shrinker (M, g, f) with Ricci curvature bounded by $-(n-1) k^{2}$ for some constant $k \geq 0$, we have

$$
\operatorname{Vol}\left(B_{x}(1)\right) \geq \exp \left(-\sqrt{c_{0}(n-1) R}\right) \operatorname{Vol}\left(B_{p}(1)\right),
$$

where c_{0} is a uniform constant which does not depend on x and $R=d(p, x)>R_{0}$ for some uniform constant $R_{0}>1$.

The above result is motivated by the work of Ovidiu Munteanu and Jiaping Wang [2014] and the result is not sharp, as pointed out by the referee. In fact, if the Ricci curvature is bounded from below, the logarithmic Sobolev inequality of [Carrillo and Ni 2009] implies a uniform lower bound of the volume of unit balls, $\operatorname{Vol}\left(B_{x}(1)\right) \geq \frac{1}{c} \operatorname{Vol}\left(B_{p}(1)\right)$. However, from our argument, our result is true on a complete smooth measure space of dimension n with $\operatorname{Ric}_{f} \geq \frac{1}{2} g$ and $|\nabla f|^{2} \leq f$ and with Ricci curvature bounded below by $-(n-1) k^{2}$ for some constant $k \geq 0$ on M. Notice that with the extra bound on Ricci curvature, our result improves the result of Lemma 5.2 in [Munteanu and Wang 2014]. We remark that the above result is still true for steady Ricci solitons. See Theorem 5 in Section 2.

We want to understand the topology and geometry from properties of (superor sub-) harmonic functions and f-harmonic functions on Ricci solitons. By a well-known argument, we know that there is no nontrivial positive f-harmonic function on a gradient Ricci shrinker. In fact there is no nonconstant positive f superharmonic function $u\left(\Delta_{f} u:=\Delta u-\nabla f . \nabla u \leq 0\right)$ on the complete Riemannian manifold (M, g) with $\operatorname{Ric}_{f} \geq \frac{1}{2} g$ on M. The process of proving this is below. Recall that the weighted volume of (M, g) is finite [Morgan 2005]; i.e., $V_{f}(M):=$ $\int_{M} e^{-f} d v_{g}<\infty$. Assume $u>0$ is such a positive f-superharmonic function on M. Let $v=\log u$. Then we have

$$
\Delta_{f} v=\frac{\Delta_{f} u}{u}-|\nabla v|^{2} \leq-|\nabla v|^{2} .
$$

Thus, for any cut-off function $\phi \geq 0$ on the ball $B_{p}(2 R) \subset M$ with $\phi=1$ in $B_{p}(R)$, we have

$$
\int_{M}|\nabla v|^{2} \phi^{2} e^{-f} d v_{g} \leq 2 \int_{M} \phi \nabla \phi \cdot \nabla v e^{-f} d v_{g}
$$

By the Cauchy-Schwarz inequality we get

$$
\int_{M}|\nabla v|^{2} \phi^{2} e^{-f} d v_{g} \leq 4 \int_{M}|\nabla \phi|^{2} e^{-f} d v_{g} \leq \frac{16}{R^{2}} V_{f}(M) \rightarrow 0
$$

as $R \rightarrow \infty$. Hence, $|\nabla v|^{2}=0$ in M, which implies that u is a constant on M.
Although this result is known to experts, we cannot find it in the literature. We formulate it as below.

Proposition 2. Let (M, g, f) be a complete Riemannian manifold (M, g) with potential function f satisfying $\operatorname{Ric}_{f} \geq \frac{1}{2} g$ on M. Then there is no nonconstant positive f-superharmonic function on (M, g).

We are now trying to find another kind of Liouville theorem for an f-harmonic function with weighted finite energy on a gradient Ricci shrinker. We show that as a direct consequence of a Bochner-type formula, see [Ma and Du 2010], we have the following Liouville-type theorem.
Theorem 3. Let (M, g) be a complete noncompact Riemannian manifold such that $\operatorname{Ric}_{f} \geq h(x) g$ for some potential functions $f(x)$ and some nontrivial nonnegative function $h(x)$ in M. There is no nontrivial f-harmonic function u defined in (M, g) with weighted finite energy; i.e.,

$$
\int_{M}|\nabla u|^{2} e^{-f} d v_{g}<\infty
$$

The proof of this result is given in Section 3. We remark that when one studies self-similar solutions to the Ricci-Einstein-type flow

$$
\partial_{t} g=-2 \operatorname{Rc}(g)+\gamma R g,
$$

where γ is a physical constant and $R=R(g)$ is the scalar curvature of the manifold (M, g), one gets the soliton equation of it in the form

$$
\operatorname{Ric}_{f}=\gamma R g+\lambda g,
$$

which gives what may be called Ricci-Einstein solitons. Theorem 3 can be used for these solitons.

Proposition 4. Fix any $p \in M$. Assume that the complete noncompact Riemannian manifold (M, g) satisfies $\operatorname{Ric}_{f} \geq h(x) g$ for some potential functions $f(x)$ and some smooth function $h(x)$ with

$$
|\nabla f(x)| \leq \alpha d(x, p)+b
$$

for some uniform constants $\alpha \geq 0$ and $b>0$ in M. Then for any harmonic function u with finite energy, i.e.,

$$
\int_{M}|\nabla u|^{2}<\infty
$$

we have the integral inequality

$$
\int_{M}\left|\nabla^{2} u\right|^{2}+\int_{M} h(x)|\nabla u|^{2} \leq \frac{1}{2} \int_{M} \Delta f|\nabla u|^{2} .
$$

As a consequence, when $\Delta f(x) \leq 2 h(x)$ on M, we have $D^{2} u=0$ in M; i.e., ∇u is a parallel vector field on M.

We now give a few remarks related to this result.
(1) Naber [2010] proved that for the weighted smooth metric space (M, g, f) satisfying $\operatorname{Ric}_{f} \leq \frac{1}{2} g$ and $|\operatorname{Ric}| \leq C$, there exists $\alpha>0$ such that if $\Delta_{f} u:=$ $\Delta u-\nabla f . \nabla u=0$ on M with $|u(x)| \leq A \exp \left(\alpha d(x, p)^{2}\right)$ for some $A>0$ and $p \in M$, then u is a constant.
(2) Munteanu and Sesum [2013] proved that for gradient shrinking Kähler-Ricci solitons, if the harmonic function u has finite energy, i.e., $\int_{M}|\nabla u|^{2}<\infty$, then u is a constant. As a consequence of this result, they showed that such a manifold has at most one nonparabolic end; see [Munteanu and Sesum 2013] for the definition of nonparabolic end. In the earlier work [Munteanu and Wang 2011], they proved that on a weighted smooth metric space (M, g, f) satisfying $\operatorname{Ric}_{f} \geq 0$ and f is a bounded function, any sublinear growth f-harmonic function on M must be a constant.
(3) Some consequences of Proposition 4 are given in Section 3.

Here is the plan of the paper. We study the volume comparison of unit balls of gradient Ricci shrinkers and gradient steady Ricci solitons in Section 2. We prove Proposition 2 and Theorem 3 in Section 3. In the last section, we consider integral properties for harmonic functions on Ricci solitons and prove Proposition 4.

2. Volume comparison of unit balls

We now prove Theorems 1 and 5. We use an idea similar to the proof of Theorem 2.3 in [Munteanu and Wang 2014].

We first give a proof of an improved volume comparison of unit balls on the weighted Riemannian manifold of shrinking type.

Proof of Theorem 1. Again, we take any point $x \in M$ and express the volume form in the geodesic polar coordinates centered at x as

$$
\left.d V\right|_{\exp _{x}(r \xi)}=J(x, r, \xi) d r d \xi
$$

for $r>0$ and $\xi \in S_{x} M$ a unit tangent vector at x. We let $R=d(p, x)$ and omit the dependence of the geometric quantities on ξ. Let $R=d(p, x)>2$. Let $\gamma(s)$ be the minimizing geodesic starting from x connecting $\gamma(0)=x$ to any point $\gamma(T) \in B_{p}(1)$. By the triangle inequality we know that $T \in[R-1, R+1]$. It is well known [Li 1993] that along the minimizing geodesic curve γ, we have

$$
m^{\prime}(r)+\frac{1}{n-1} m^{2}(r)+\operatorname{Ric}\left(\partial_{r}, \partial_{r}\right) \leq 0,
$$

where $r>0$ and $m=m(r)=\frac{d}{d r}(\log J)(r)$. Using the Ricci soliton equation $\operatorname{Ric}_{f}=\frac{1}{2} g$ we immediately obtain

$$
m^{\prime}(r)+\frac{1}{n-1} m^{2}(r) \leq-\frac{1}{2}+f^{\prime \prime}(r) .
$$

Integrating this relation, we get for $r>1$,

$$
m(r)+\frac{1}{n-1} \int_{1}^{r} m^{2}(t) d t \leq-\frac{r-1}{2}+f^{\prime}(r)-f^{\prime}(1)+m(1) .
$$

Recall the well-known fact (see (2.3) and (2.8) in [Cao and Zhou 2010] in different notation) that for any $T>\tau>0$, we have

$$
\begin{equation*}
-\frac{1}{2}(T-\tau)-c \leq f^{\prime}(\tau) \leq-\frac{1}{2}(T-\tau)+c \tag{1}
\end{equation*}
$$

and $\left|f^{\prime}(T)\right| \leq c$ since $\gamma(T) \in B_{p}(1)$. Here and everywhere in the proofs, c denotes a constant depending only on the dimension n and $f(p)$. By this we know

$$
-\frac{r-1}{2}+f^{\prime}(r)-f^{\prime}(1) \leq c_{0}
$$

for some uniform constant $c_{0}>0$.
Using the Ricci curvature lower bound, a standard argument shows, see (1.1.8) in [Schoen and Yau 1994], that there is a uniform constant $c_{1}>0$ such that $m(s) \leq c_{1}$ for $s \geq \frac{1}{2}$. Then we have for another uniform constant $c_{0}>0$ and for any $r>1$,

$$
m(r)+\frac{1}{n-1} \int_{1}^{r} m^{2}(t) d t \leq c_{0} .
$$

By the Cauchy-Schwarz inequality we obtain

$$
\begin{equation*}
m(r)+\frac{1}{(n-1) r}\left(\int_{1}^{r} m(t) d t\right)^{2}<c \tag{2}
\end{equation*}
$$

for any $c>c_{0}$ and $r>1$.
Claim. For any $r>1$,

$$
\begin{equation*}
\int_{1}^{r} m(t) d t \leq \sqrt{c(n-1) r} . \tag{3}
\end{equation*}
$$

In fact, let

$$
v(t)=\sqrt{c(n-1) t}-\int_{1}^{t} m(r) d r .
$$

Then

$$
v^{\prime}(t)=\frac{\sqrt{c(n-1)}}{2 \sqrt{t}}-m(t) .
$$

Clearly $v(1)>0$ by the fact that $c>c_{0}$. Suppose that v is negative somewhere for $t>1$. Let $d>1$ be the first zero point of v; i.e., $v(d)=0$. Then by the choice of d, we have $v^{\prime}(d) \leq 0$. That is,

$$
\int_{1}^{d} m(t) d t=\sqrt{c(n-1) d}
$$

and

$$
m(d) \geq \frac{\sqrt{c(n-1)}}{2 \sqrt{d}} .
$$

By direct computation we know

$$
m(d)+\frac{1}{(n-1) d}\left(\int_{1}^{d} m(t) d t a\right)^{2} \geq \frac{\sqrt{c(n-1)}}{2 \sqrt{d}}+c,
$$

which is a contradiction with (2) at $r=d$.
The relation (3) implies

$$
\log J(x, r, \xi) / J(x, 1, \xi) \leq \sqrt{c(n-1) r}
$$

for any $r>1$ and we have at $r=R$,

$$
J(x, 1, \xi) \geq \exp (-\sqrt{c(n-1) R}) J(x, R, \xi)
$$

Integrating over the unit tangent vectors ξ we get

$$
\operatorname{Area}\left(\partial B_{x}(1)\right) \geq \exp (-\sqrt{c(n-1) R}) \operatorname{Vol}\left(B_{p}(1)\right),
$$

where $R=d(p, x)>2$. Similarly we have

$$
\operatorname{Area}\left(\partial B_{x}(s)\right) \geq \exp (-\sqrt{c(n-1) R}) \operatorname{Vol}\left(B_{p}(1)\right)
$$

for any $s \in\left[\frac{1}{2}, 1\right]$. Hence, we have

$$
\operatorname{Vol}\left(B_{x}(1)\right) \geq \exp (-\sqrt{c(n-1) R}) \operatorname{Vol}\left(B_{p}(1)\right) .
$$

A similar argument gives us the result below for gradient steady Ricci solitons.
Theorem 5. On the complete noncompact Riemannian manifold (M, g, f) with Ricci curvature bounded below by $-(n-1) k^{2}$ for some constant $k \geq 0$ and $\operatorname{Rc}_{f} \geq 0$ on M and $|\nabla f| \leq C$ on M for some uniform constant $C>0$, we have

$$
\operatorname{Vol}\left(B_{x}(1)\right) \geq \exp \left(-\sqrt{c_{0}(n-1) R}\right) \operatorname{Vol}\left(B_{p}(1)\right),
$$

where c_{0} is a uniform constant which does not depends on p and $R=d(p, x)>R_{0}$ for some uniform constant $R_{0}>1$.

The proof of Theorem 5 is almost the same as the previous proof. So we only present the necessary modification and use the same notation as above. Again we have along the minimizing geodesic curve γ,

$$
m^{\prime}(r)+\frac{1}{n-1} m^{2}(r)+\operatorname{Ric}\left(\partial_{r}, \partial_{r}\right) \leq 0 .
$$

Using the relation $\operatorname{Ric}_{f} \geq 0$ we immediately obtain

$$
m^{\prime}(r)+\frac{1}{n-1} m^{2}(r) \leq f^{\prime \prime}(r) .
$$

Integrating this relation we get for $t>1$ and $s \in\left[\frac{1}{2}, 1\right]$,

$$
m(t)+\frac{1}{n-1} \int_{s}^{t} m^{2}(r) d r \leq f^{\prime}(t)-f^{\prime}(1)+m(s) .
$$

This means that for any $t>1$ and $s=1$,

$$
m(t)+\frac{1}{n-1} \int_{1}^{t} m^{2}(r) d r \leq C_{0}
$$

for some uniform constant C_{0}. The remaining part of the proof is the same as the proof of Theorem 1 and we omit the details.

We now consider the volume growth of geodesic balls in manifolds with density and we show that for $\left(M, g, e^{-f} d v\right)$ a complete smooth metric measure space of dimension n with $\operatorname{Ric}_{f} \geq \frac{1}{2},|\nabla f|^{2} \leq f$, and also with both Ricci curvature and Δf bounded from above, the volume growth of geodesic balls is in polynomial order (which may be smaller than n).
Proposition 6. Let $\left(M, g, e^{-f} d v\right)$ be a complete smooth metric measure space of dimension n. Assume that $\operatorname{Ric}_{f} \geq \frac{1}{2},|\nabla f|^{2} \leq f$. Assume further that $\Delta f \leq K$ and Ric $\leq K_{1}$ for some constants $K>0$ and $K_{1}>0$. Then for some $p \in M$, the volume growth of geodesic balls $B_{p}(r)$ is of polynomial order; i.e., there is a uniform constant $C>0$ such that

$$
V(r) \leq C r^{2 K} .
$$

Proof. Recall that under the conditions $\operatorname{Ric}_{f} \geq \frac{1}{2}$ and $|\nabla f|^{2} \leq f$, there are a point $p \in M$, two constants $r_{0}>0$ and a depending only on n and $f(p)$ such that

$$
\begin{equation*}
\left(\frac{1}{2} d(x, p)-a\right)^{2} \leq f(x) \leq\left(\frac{1}{2} d(x, p)+a\right)^{2} . \tag{4}
\end{equation*}
$$

This is from Proposition 4.2 in the interesting paper [Munteanu and Wang 2014]. By this we know that $|\nabla f(x)| \leq \frac{1}{2} d(x, p)+a$. We may assume that $d(x, p)>2$. Consider any minimizing normal geodesic $\gamma(s), 0 \leq s \leq r:=d(x, p)$, starting from
the point $\gamma(0)=p$ to the point $\gamma(r)=x$. Let $X=\dot{\gamma}(s)$. By the second variation formula of arc length we know

$$
\int_{0}^{r} \phi^{2} \operatorname{Ric}(X, X) d s \leq(n-1) \int_{0}^{r}|\dot{\phi}(s)|^{2} d s
$$

for any $\phi \in C_{0}^{1-}([0, r])$. Let $\phi(s)=s$ on $[0,1], \phi(s)=r-s$ on $[r-1, r]$, and $\phi(s)=1$ on $[1, r-1]$. Then we have

$$
\int_{0}^{r} \operatorname{Ric}(X, X) d s=\int_{0}^{r} \phi^{2} \operatorname{Ric}(X, X) d s+\int_{0}^{r}\left(1-\phi^{2}\right) \operatorname{Ric}(X, X) d s
$$

We derive via the use of $\operatorname{Ric} \leq K_{1}$, and by an argument similar to the proof before (2.8) in [Cao and Zhou 2010], that

$$
\int_{0}^{r} \operatorname{Ric}(X, X) d s \leq 2(n-1)+2 K_{1}
$$

Since

$$
\nabla_{X} \dot{f}=\nabla^{2} f(X, X) \geq \frac{1}{2}-\operatorname{Ric}(X, X)
$$

integrating it from 0 to r, we get

$$
\begin{equation*}
\dot{f}(r)=\frac{1}{2} r-\int_{0}^{r} \operatorname{Ric}(X, X) d s \geq \frac{1}{2} r-c \tag{5}
\end{equation*}
$$

for some constant c depending only on K_{1}, n and $f(p)$. Hence,

$$
|\nabla f|(x) \geq \dot{f}(r) \geq \frac{1}{2} d(x, p)-c
$$

Define

$$
\rho(x)=2 \sqrt{f(x)}
$$

Then,

$$
|\nabla \rho|=\frac{|\nabla f|}{\sqrt{f}} \leq 1
$$

Let, for $r>0$ large,

$$
D(r)=\{x \in M ; \rho(x) \leq r\}, \quad V(r)=\operatorname{Vol}(D(r))
$$

As in [Cao and Zhou 2010], by using the coarea formula we have

$$
\begin{aligned}
V(r) & =\int_{0}^{r} d s \int_{\partial D(r)} \frac{1}{|\nabla \rho|} d A \\
V^{\prime}(r) & =\int_{\partial D(r)} \frac{1}{|\nabla \rho|} d A=\frac{r}{2} \int_{\partial D(r)} \frac{1}{|\nabla f|} d A
\end{aligned}
$$

By the assumption $\Delta f \leq K$ and the divergence theorem we have

$$
2 K V(r) \geq 2 \int_{D(r)} \Delta f=2 \int_{\partial D(r)}|\nabla f| d A
$$

By (5) we know that on $\partial D(r)$, there is a uniform constant $C>2$ such that for $r \geq 2 C$,

$$
|\nabla f|^{2} \geq f-C
$$

Then we have

$$
2 \int_{\partial D(r)}|\nabla f| d A \geq 2 \int_{\partial D(r)} \frac{f-C}{|\nabla f|} d A .
$$

The right side of above inequality is greater than or equal to

$$
(r-2) V^{\prime}(r) .
$$

Hence we have

$$
2 K V(r) \geq(r-2) V^{\prime}(r),
$$

which then implies

$$
V(r) \leq V(2 C) r^{2 K}
$$

for $r>2 C$.
We remark that the above argument is motivated by the proof of the volume growth estimate in [Cao and Zhou 2010]. Our result is different from the deep result Theorem 1.4 in [Munteanu and Wang 2014] in the case when the constant $2 K$ is smaller than n.

3. Harmonic and \boldsymbol{f}-harmonic functions on Ricci-Einstein solitons

We now prove Theorem 3. We wish that we could use the Caccioppoli argument (see the proof of Proposition 8.1 in [Naber 2010], with the use of Lemma 2.2 replaced by Proposition 4.2 in [Munteanu and Wang 2014]) to conclude that with some decay assumption such as finite energy, an f-harmonic function u is a constant function on M. However, we have a simpler proof of this result below.

Proof of Theorem 3. Recall the Bochner formula for the f-harmonic function $u: M \rightarrow R$,

$$
\frac{1}{2} \Delta_{f}|\nabla u|^{2}=\left|\nabla^{2} u\right|^{2}+\operatorname{Rc}_{f}(\nabla u, \nabla u) .
$$

By our assumption that $\operatorname{Ric}_{f} \geq h(x) g$, we know

$$
\frac{1}{2} \Delta_{f}|\nabla u|^{2} \geq\left|\nabla^{2} u\right|^{2}+h(x)|\nabla u|^{2} .
$$

Let ϕ be the standard cut-off function on $B_{p}(2 r)$ and let $d m=\exp (-f) d v_{g}$. Then we have

$$
\int_{M}\left(\left|\nabla^{2} u\right|^{2}+h(x)|\nabla u|^{2}\right) \phi d m \leq \int_{M}\left(\frac{1}{2} \Delta_{f} \phi\right)|\nabla u|^{2} d m .
$$

The right side goes to zero as $r \rightarrow \infty$. Hence we have

$$
\int_{M}\left(\left|\nabla^{2} u\right|^{2}+h(x)|\nabla u|^{2}\right) d m=0,
$$

which implies that u is a constant.
Let (M, g) be a complete noncompact Riemannian manifold of dimension n. Fix $p \in M$. In this section we always assume that (M, g) satisfies $\operatorname{Ric}_{f} \geq h(x) g$ for some function $h(x)$ and $|\nabla f| \leq \alpha d(x, p)+b$. Then we have $R+\Delta f \geq n h(x)$ on M. We study the L^{2} estimate for the Hessian matrix for harmonic functions with finite energy.
Proof of Proposition 4. Let $u: M \rightarrow R$ be a harmonic function on (M, g, f) with finite energy

$$
\int_{M}|\nabla u|^{2}<\infty
$$

Recall the Bochner formula for the harmonic function $u: M \rightarrow R$,

$$
\frac{1}{2} \Delta|\nabla u|^{2}=\left|\nabla^{2} u\right|^{2}+\operatorname{Rc}(\nabla u, \nabla u) .
$$

Using the assumption $\operatorname{Ric}_{f} \geq h(x) g$ we have

$$
\begin{equation*}
\frac{1}{2} \Delta|\nabla u|^{2} \geq\left|\nabla^{2} u\right|^{2}+h(x)|\nabla u|^{2}-\nabla^{2} f(\nabla u, \nabla u) . \tag{6}
\end{equation*}
$$

Recall the Hessian matrix $\nabla^{2} f=\left(f_{i j}\right)$ in local coordinates $\left(x_{i}\right)$ in M.
Let $\phi=\phi_{r}$ be the cut-off function on $B_{2 r}(p)$. We write by $o(1)$ the quantities such that $o(1) \rightarrow 0$ as $r \rightarrow \infty$. Then, we have

$$
\begin{equation*}
\int_{M}\left(\left|\nabla^{2} u\right|^{2}+h(x)|\nabla u|^{2}\right) \phi^{2} \leq \int_{M}\left(\frac{1}{2} \Delta|\nabla u|^{2}+\nabla^{2} f(\nabla u, \nabla u)\right) \phi^{2} . \tag{7}
\end{equation*}
$$

By direct computation we have, for $\epsilon>0$ small,

$$
\int_{M}\left(\frac{1}{2} \Delta|\nabla u|^{2}\right) \phi^{2}=-2 \int_{M} \phi D^{2} u(\nabla u, \nabla \phi) \leq \epsilon \int_{M}\left|\nabla^{2} u\right|^{2} \phi^{2}+o(1) .
$$

Using $|\nabla f| \leq \alpha d(x, p)+b$ and integrating by parts, we obtain

$$
\int_{M} f_{i j} u_{i} u_{j} \phi^{2}=-\int f_{i} u_{i j} u_{j} \phi^{2}+o(1) .
$$

Furthermore, we have

$$
\int_{M} f_{i j} u_{i} u_{j} \phi^{2}=\frac{1}{2} \int_{M} \Delta f|\nabla u|^{2} \phi^{2}+o(1) .
$$

Hence by (6) we have

$$
\int_{M}\left((1-\epsilon)\left|\nabla^{2} u\right|^{2}+h(x)|\nabla u|^{2}\right) \phi^{2}-\frac{1}{2} \int_{M} \Delta f|\nabla u|^{2} \phi^{2} \leq o(1) .
$$

That is,

$$
\int_{M}(1-\epsilon)\left|\nabla^{2} u\right|^{2} \phi^{2}+\int_{M} h(x)|\nabla u|^{2} \phi^{2} \leq \frac{1}{2} \int_{M} \Delta f|\nabla u|^{2} \phi^{2}+o(1)
$$

Sending $r \rightarrow \infty$ and letting $\epsilon \rightarrow 0$, we obtain

$$
\begin{equation*}
\int_{M}\left|\nabla^{2} u\right|^{2}+\int_{M} h(x)|\nabla u|^{2} \leq \frac{1}{2} \int_{M} \Delta f|\nabla u|^{2} \tag{8}
\end{equation*}
$$

Note that when $\Delta f \leq 2 h(x)$ on M, by (8) we have $D^{2} u=0$ in M; i.e., ∇u is a parallel vector field on M.

We remark that when $\operatorname{Ric}_{f}=\lambda g($ and $R+\Delta f=n \lambda)$ with λ being a constant, by the proof of Proposition 4 we have

$$
\int_{M}\left|\nabla^{2} u\right|^{2}+\frac{1}{2} \int_{M} R|\nabla u|^{2} \leq \int_{M} \frac{(n-2) \lambda}{2}|\nabla u|^{2}
$$

Note that the assumption about the potential function f in Proposition 4 is true on the steady soliton (M, g); see [Hamilton 1995]. We now give an application of this integral inequality (8). A special case of the Liouville-type theorem below, due to Munteanu and Sesum [2013, Theorem 4.1], can be derived from the integral estimate (8).

Proposition 7. Let $n=2$. Assume that the complete noncompact surface (M, g, f) satisfies $\operatorname{Ric}_{f}=h(x) g$ on M with $R \geq 0$, and $|\nabla f| \leq b$ for some $b>0$ in M. Then there is no nontrivial harmonic function on (M, g) with finite energy on (M, g).

Proof. Note that $R+\Delta f=n h(x)=2 h(x)$ in M. Then $\Delta f=2 h(x)-R$ in M. By (8) we have

$$
\int_{M}\left|\nabla^{2} u\right|^{2}+\frac{1}{2} \int_{M} R|\nabla u|^{2} \leq 0
$$

If $R=0$, then (M, g) is flat and the result follows from Theorem 4.1 in [Munteanu and Sesum 2013].

We may assume $R>0$ in M. We argue by contradiction. Assume that there is a nontrivial harmonic function with finite energy on (M, g). By (8) we know

$$
\int_{M}\left|\nabla^{2} u\right|^{2}+\frac{1}{2} \int_{M} R|\nabla u|^{2}=0
$$

Hence ∇u is a parallel vector field on M and $R=0$, a contradiction with $R>0$.
We remark that we can give a new proof of Theorem 4.1 in [Munteanu and Sesum 2013], which is on a gradient steady Ricci soliton. It says that there is no nontrivial harmonic function with finite energy on the steady Ricci soliton (M, g). The proof is below. We may assume that (M, g, f) is a nontrivial steady Ricci
soliton. Recall that it is well known that either $R>0$ or $R=0$ on M. By (8), we have $R=0$, and then

$$
\Delta_{f} R=-2|\mathrm{Ric}|^{2}
$$

and we know that Ric $=0$ on M. By [Schoen and Yau 1994], we know that there is no nontrivial harmonic function with finite energy.

Acknowledgements

The author thanks the anonymous referees very much for useful suggestions. This work was done when the author was visiting the University of Minnesota in September 2016; he would like to thank Prof. Jiaping Wang for helpful discussions and the hospitality of the School of Mathematics.

References

[Bakry and Émery 1985] D. Bakry and M. Émery, "Diffusions hypercontractives", pp. 177-206 in Séminaire de Probabilités XIX (Strasbourg, 1983/84), edited by J. Azéma and M. Yor, Lecture Notes in Math. 1123, Springer, 1985. MR Zbl
[Cao 2007] X. Cao, "Compact gradient shrinking Ricci solitons with positive curvature operator", J. Geom. Anal. 17:3 (2007), 425-433. MR Zbl
[Cao 2010] H.-D. Cao, "Recent progress on Ricci solitons", pp. 1-38 in Recent advances in geometric analysis, edited by Y.-I. Lee et al., Adv. Lect. Math. (ALM) 11, International, Somerville, MA, 2010. MR Zbl
[Cao and Zhou 2010] H.-D. Cao and D. Zhou, "On complete gradient shrinking Ricci solitons", J. Differential Geom. 85:2 (2010), 175-185. MR Zbl
[Carrillo and Ni 2009] J. A. Carrillo and L. Ni, "Sharp logarithmic Sobolev inequalities on gradient solitons and applications", Comm. Anal. Geom. 17:4 (2009), 721-753. MR Zbl
[Chen 2009] B.-L. Chen, "Strong uniqueness of the Ricci flow", J. Differential Geom. 82:2 (2009), 363-382. MR Zbl
[Chow et al. 2006] B. Chow, P. Lu, and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics 77, American Mathematical Society, Providence, RI, 2006. MR Zbl
[Hamilton 1995] R. S. Hamilton, "The formation of singularities in the Ricci flow", pp. 7-136 in Surveys in differential geometry, II (Cambridge, MA, 1993), edited by S.-T. Yau, International, Cambridge, MA, 1995. MR Zbl
[Haslhofer and Müller 2011] R. Haslhofer and R. Müller, "A compactness theorem for complete Ricci shrinkers", Geom. Funct. Anal. 21:5 (2011), 1091-1116. MR Zbl
[Li 1993] P. Li, Lecture notes on geometric analysis, Lecture Notes Series 6, Seoul National University, Seoul, 1993. MR Zbl
[Lichnerowicz 1970] A. Lichnerowicz, "Variétés riemanniennes à tenseur C non négatif", C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650-A653. MR Zbl
[Lott 2003] J. Lott, "Some geometric properties of the Bakry-Émery-Ricci tensor", Comment. Math. Helv. 78:4 (2003), 865-883. MR Zbl
[Lott and Villani 2009] J. Lott and C. Villani, "Ricci curvature for metric-measure spaces via optimal transport", Ann. of Math. (2) 169:3 (2009), 903-991. MR Zbl
[Ma 2013] L. Ma, "Remarks on compact shrinking Ricci solitons of dimension four", C. R. Math. Acad. Sci. Paris 351:21-22 (2013), 817-823. MR Zbl
[Ma and Du 2010] L. Ma and S.-H. Du, "Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians", C. R. Math. Acad. Sci. Paris 348:21-22 (2010), 1203-1206. MR Zbl
[Morgan 2005] F. Morgan, "Manifolds with density", Notices Amer. Math. Soc. 52:8 (2005), 853-858. MR Zbl
[Munteanu and Sesum 2013] O. Munteanu and N. Sesum, "On gradient Ricci solitons", J. Geom. Anal. 23:2 (2013), 539-561. MR Zbl
[Munteanu and Wang 2011] O. Munteanu and J. Wang, "Smooth metric measure spaces with nonnegative curvature", Comm. Anal. Geom. 19:3 (2011), 451-486. MR Zbl
[Munteanu and Wang 2014] O. Munteanu and J. Wang, "Geometry of manifolds with densities", Adv. Math. 259 (2014), 269-305. MR Zbl
[Munteanu and Wang 2015] O. Munteanu and J. Wang, "Geometry of shrinking Ricci solitons", Compos. Math. 151:12 (2015), 2273-2300. MR Zbl
[Naber 2010] A. Naber, "Noncompact shrinking four solitons with nonnegative curvature", J. Reine Angew. Math. 645 (2010), 125-153. MR Zbl
[Perelman 2000] G. Perelman, "The entropy formula for the Ricci flow and its geometric applications", preprint, 2000. Zbl arXiv
[Schoen and Yau 1994] R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology 1, International, Cambridge, MA, 1994. MR Zbl
[Sturm 2006a] K.-T. Sturm, "On the geometry of metric measure spaces, I", Acta Math. 196:1 (2006), 65-131. MR Zbl
[Sturm 2006b] K.-T. Sturm, "On the geometry of metric measure spaces, II", Acta Math. 196:1 (2006), 133-177. MR Zbl
[Wei and Wylie 2009] G. Wei and W. Wylie, "Comparison geometry for the Bakry-Emery Ricci tensor", J. Differential Geom. 83:2 (2009), 377-405. MR Zbl
[Yang 2009] N. Yang, "A note on nonnegative Bakry-Émery Ricci curvature", Arch. Math. (Basel) 93:5 (2009), 491-496. MR Zbl

Received January 3, 2017. Revised December 5, 2017.
Li MA
School of Mathematics and Physics
University of Science and Technology Beijing
Beijing
China
and
Department of Mathematics
Henan Normal University
Xinxiang
China
lma@tsinghua.edu.cn

PRESENTATIONS OF GENERALISATIONS OF THOMPSON'S GROUP V

Conchita Martínez-PÉrez, Francesco Matucci and Brita Nucinkis

Abstract

We consider generalisations of Thompson's group V, denoted by $V_{r}(\Sigma)$, which also include the groups of Higman, Stein and Brin. We showed earlier (Forum Math. 28:5 (2016), 909-921) that under some mild conditions these groups and centralisers of their finite subgroups are of type F_{∞}. Under more general conditions we show that the groups $V_{r}(\Sigma)$ are finitely generated and, under the mild conditions mentioned above for which they are of type F_{∞} and hence finitely presented, we give a recipe to find explicit presentations. For the centralisers of finite subgroups we find a suitable infinite presentation and then show how to apply a general procedure to shorten this presentation. In the appendix, we give a proof of this general shortening procedure.

1. Introduction

The original Thompson groups $F \leq T \leq V$ are groups of homeomorphisms of the unit interval, the circle and the Cantor set respectively. In this note we consider generalisations of these groups, which are described as groups of automorphisms of certain Cantor algebras. These groups include Higman's [1974], Stein's [1992] and Brin's [2004] generalisations of V.

The groups F, T and V have attracted the attention of group theorists for several reasons, one of them being that there are nice presentations and ways to represent elements available, making it possible to prove interesting results about metrics, geodesics and decision problems. However, the situation changes when one moves to some of their generalisations. There are presentations available for Higman's groups $V_{n, r}$ [1974], Stein's generalisations [Brin and Squier 2001; Stein 1992]

[^11]and Brin's higher dimensional Thompson groups $s V$ [Hennig and Matucci 2012], but not for more complicated generalisations such as the groups $V_{r}(\Sigma)$ we are considering here. These were defined in [Kochloukova et al. 2013; Martínez-Pérez and Nucinkis 2013] and were denoted $G_{r}(\Sigma)$. It is worth pointing out that elements in $V_{r}(\Sigma)$ admit a tree-pair representation similar to that of the original groups F, T and V. The authors show in [Martínez-Pérez et al. 2016] that, under some mild hypotheses, being valid and bounded, $V_{r}(\Sigma)$ is the full automorphism group of a Cantor algebra. In the same paper it is shown that under some further minor restrictions, being complete, these groups are of type F_{∞} and that this also implies that centralisers of finite subgroups are of type F_{∞}. We introduce all necessary background in Section 2. The structure of centralisers in $V_{r}(\Sigma)$ is studied in detail in [Martínez-Pérez et al. 2016; Martínez-Pérez and Nucinkis 2013].

One of the objectives of the present paper is to introduce a common framework providing recipes; first to find explicit finite generating sets for the groups $V_{r}(\Sigma)$ in the case when the underlying Cantor algebra $U_{r}(\Sigma)$ is valid and bounded, and second, to find explicit presentations under the additional assumption that $U_{r}(\Sigma)$ is complete. To do that, we construct a model for the classifying space for free actions $\mathrm{E} G$ for $G=V_{r}(\Sigma)$, and use this model to obtain presentations of these groups. As far as we are aware, this construction is new even for the group V, and hence could be of independent interest.

In Section 7 we also give an explicit finite presentation for centralisers of finite subgroups for those $V_{r}(\Sigma)$ that are finitely presented. To do so we use the socalled Burnside procedure as used by Guralnick, Kantor, Kassabov and Lubotzky [Guralnick et al. 2011].

In the Appendix we shall give an outline and proof of the Burnside procedure as used in [Guralnick et al. 2011]. This procedure is well known, but we are not aware of any proofs elsewhere. The point is to look for a simple presentation for G that is somehow symmetric and elementary. Initially it may have infinitely many generators and relations; the Burnside procedure offers a way to cut it down to a more manageable, and sometimes finite, presentation.

2. Background on generalised Thompson groups

In this section we introduce only those properties of valid bounded Cantor algebras used to make this paper self-contained. For detailed definitions and notation the reader is referred to [Martínez-Pérez and Nucinkis 2013, Section 2], and for proofs of statements cited here, to [Kochloukova et al. 2013; Martínez-Pérez et al. 2016; Martínez-Pérez and Nucinkis 2013].

Let $S=\{1, \ldots, s\}$ be a finite set of colours and associate to each $i \in S$ an integer $n_{i}>1$, called the arity of the colour i. For every $i \in S$ consider the following right operations on a set U :
(i) One n_{i}-ary operation $\lambda_{i}: U^{n_{i}} \rightarrow U$, and
(ii) n_{i} unary operations $\alpha_{i}^{1}, \ldots, \alpha_{i}^{n_{i}}$, where α_{i}^{j} is a map $U \rightarrow U$.

We also consider, for each $i \in S$ and $v \in U$, the map

$$
\alpha_{i}: U \rightarrow U^{n_{i}}
$$

given by $v \alpha_{i}:=\left(v \alpha_{i}^{1}, v \alpha_{i}^{2}, \ldots, v \alpha_{i}^{n_{i}}\right)$. The maps α_{i} are called descending operations, or expansions, and the maps λ_{i} are called ascending operations, or contractions.

Fix a finite set X_{r} of cardinality $\left|X_{r}\right|=r$. One can define the free object on the set X_{r} with respect to the previous operations which we denote U. To define our generalisations of Thompson's group V, we will be interested in the free object constructed under the extra requirement that a certain set of laws Σ described below must be satisfied. We denote this last free object by $U_{r}(\Sigma)$ and call it the (free) Cantor algebra on X_{r} satisfying Σ.

Definition 2.1 [Martínez-Pérez and Nucinkis 2013, Section 2]. Fix a finite set X_{r} of cardinality $\left|X_{r}\right|=r$ and consider the free object U on X_{r} with respect to operations (i) and (ii) above. Then $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ with Σ_{1} and Σ_{2} the following set of laws:
(i) Σ_{1} is given by

$$
u \alpha_{i} \lambda_{i}=u, \quad\left(u_{1}, \ldots, u_{n_{i}}\right) \lambda_{i} \alpha_{i}=\left(u_{1}, \ldots, u_{n_{i}}\right)
$$

for every $u \in U, i \in S$, and n_{i}-tuple, $\left(u_{1}, \ldots, u_{n_{i}}\right) \in U^{n_{i}}$.
(ii) Σ_{2} is given by

$$
\Sigma_{2}=\bigcup_{1 \leq i<i^{\prime} \leq s} \Sigma_{2}^{i, i^{\prime}}
$$

where each $\Sigma_{2}^{i, i^{\prime}}$ is either empty or consists of the following laws: consider first i and fix a map $f:\left\{1, \ldots, n_{i}\right\} \rightarrow\{1, \ldots, s\}$. For each $1 \leq j \leq n_{i}$, we see $\alpha_{i}^{j} \alpha_{f(j)}$ as a set of sequences of length 2 of descending operations and let

$$
\Lambda_{i}=\cup_{j=1}^{n_{i}} \alpha_{i}^{j} \alpha_{f(j)}
$$

Do the same for i^{\prime} (with a corresponding map f^{\prime}) to get $\Lambda_{i^{\prime}}$. We need to assume that f and f^{\prime} are chosen so that $\left|\Lambda_{i}\right|=\left|\Lambda_{i^{\prime}}\right|$ and fix a bijection $\phi: \Lambda_{i} \rightarrow \Lambda_{i^{\prime}}$. Then $\Sigma_{2}^{i, i^{\prime}}$ is

$$
u v=u \phi(v), \quad v \in \Lambda_{i}, u \in U
$$

Let $U_{r}(\Sigma)$ be the algebra obtained from U by quotienting out the relations in Σ. We say that $U_{r}(\Sigma)$ is valid if for any set $Y \in U$, we have $|Y|=|\bar{Y}|$, where \bar{Y} is the image of Y in $U_{r}(\Sigma)$. In particular this implies that $U_{r}(\Sigma)$ is a free object on X in
the class of those algebras with the descending and ascending operations (i) and (ii) above which satisfy the identities Σ.

From now on we work with the free object $U_{r}(\Sigma)$ only. Let $B \subset U_{r}(\Sigma), b \in B$, and let i be a colour of arity n_{i}. The set

$$
(B \backslash\{b\}) \cup\left\{b \alpha_{i}^{1}, \ldots, b \alpha_{i}^{n_{i}}\right\}
$$

is called a simple expansion of B. Analogously, if $b_{1}, \ldots, b_{n_{i}} \subseteq B$ are pairwise distinct,

$$
\left(B \backslash\left\{b_{1}, \ldots, b_{n_{i}}\right\}\right) \cup\left\{\left(b_{1}, \ldots, b_{n_{i}}\right) \lambda_{i}\right\}
$$

is a simple contraction of B. A finite chain of simple expansions is an expansion and a finite chain of simple contractions is a contraction. A subset $A \subseteq U_{r}(\Sigma)$ is called admissible if it can be obtained from the set X_{r} by finitely many expansions or contractions. If a subset A_{1} is obtained from a subset A by an expansion (simple or not), then we write $A \leq A_{1}$.

Remark 2.2. Recall that $U_{r}(\Sigma)$ is said to be bounded (see [Martínez-Pérez and Nucinkis 2013, Definition 2.7]) if for all admissible subsets Y and Z such that there is some admissible $A \leq Y, Z$, there is a unique least upper bound of Y and Z. By a unique least upper bound we mean an admissible subset T such that $Y \leq T$ and $Z \leq T$, and whenever there is an admissible set S also satisfying $Y \leq S$ and $Z \leq S$, then $T \leq S$.

By [Kochloukova et al. 2013, Lemma 2.5], any admissible set is a basis of $U_{r}(\Sigma)$. Conversely, by [Martínez-Pérez et al. 2016, Theorem 2.5], if Σ is valid and bounded, any basis of $U_{r}(\Sigma)$ is also an admissible set. Furthermore, for every admissible subset of cardinality m, we have that

$$
m \equiv r \bmod d \quad \text { for } d:=\operatorname{gcd}\left\{n_{i}-1 \mid i=1, \ldots, s\right\} .
$$

In particular, any basis with m elements can be transformed into one of r elements. Hence $U_{r}(\Sigma)=U_{m}(\Sigma)$ and we may assume that $r \leq d$.

Definition 2.3. [Martínez-Pérez and Nucinkis 2013, Definition 2.12] Let $U_{r}(\Sigma)$ be a valid Cantor algebra. We denote the group of all Cantor algebra automorphisms of $U_{r}(\Sigma)$ by $V_{r}(\Sigma)$. In particular, these automorphisms are induced by a map $V \rightarrow W$, where V and W are admissible subsets of $U_{r}(\Sigma)$ of the same cardinality. In our notation automorphisms act on the left.

For example, when $s=1$ we have $\Sigma_{2}=\varnothing$ and we retrieve the original HigmanThompson groups $G_{r, n}$ (here, $n=n_{1}$) [Higman 1974]. For

$$
s=2, \quad r=1 \quad \text { and } \quad n_{1}=n_{2}=2
$$

the Brin-Thompson groups are now given by the set Σ_{2} that can be visualised as follows:

Here dashed and solid lines represent expansions of different colours. For more examples the reader is referred to [Martínez-Pérez et al. 2016; Martínez-Pérez and Nucinkis 2013].

Remark 2.4. If $U_{r}(\Sigma)$ is valid and bounded every element of $V_{r}(\Sigma)$ can be given by a bijection $V \rightarrow W$, where V and W are descendants of the fixed basis X_{r}.

For $r=1$, this means that we can visualise elements of $V_{1}(\Sigma)$ by tree-pair diagrams of rooted trees, where the root represents the basis $X_{1}=\{x\}$. So, for example, when $s=1$ and $n_{1}=2, V_{1}(\Sigma)$ is equal to V (the original Thompson group), and the well-known generator $x_{0} \in F \subset V$ is visualised as

Definition 2.5 [Martínez-Pérez et al. 2016, Definition 3.2]. Let $B \leq A$ be admissible subsets of $U_{r}(\Sigma)$. We say that the expansion $B \leq A$ is elementary if there are no repeated colours in the paths from elements in B to their descendants in A. We denote an elementary expansion by $B \preceq A$. We say that the expansion is very elementary if all paths have length at most 1 .

Denote by \mathcal{P}_{r} the poset of admissible subsets in $U_{r}(\Sigma)$, and by $\left|\mathcal{P}_{r}\right|$ its geometric realisation. (It was shown in [Martínez-Pérez and Nucinkis 2013] that $\left|\mathcal{P}_{r}\right|$ is a model for $\underline{E} G$, the classifying space for proper actions). We now describe the Stein complex $\mathcal{S}_{r}(\Sigma)$ [Stein 1992], which is a subcomplex of $\left|\mathcal{P}_{r}\right|$. The vertices in $\mathcal{S}_{r}(\Sigma)$ are given by the admissible subsets of $U_{r}(\Sigma)$. The k-simplices are given by chains of expansions $Y_{0} \leq \cdots \leq Y_{k}$, where $Y_{0} \preceq Y_{k}$ is an elementary expansion.

From now on we will denote $V_{r}(\Sigma)$ by G. In the next section we will use $\mathcal{S}_{r}(\Sigma)$ to construct a model for EG. Recall that by [Martínez-Pérez et al. 2016, Lemma 3.6 and Remark 3.7], $\mathcal{S}_{r}(\Sigma)$ is contractible and has finite stabilisers.

3. A model for EG

In this section we construct a model for the space $\mathrm{E} G$ when G is the automorphism group of a valid and bounded Cantor algebra $U_{r}(\Sigma)$ as before. We shall use this model to get, initially infinite, presentations for our groups, which we will then reduce to obtain a finite generating set, and later a finite presentation under some extra hypothesis on $U_{r}(\Sigma)$.
3A. Some technical observations. To begin with, we collect few technical observations that we will use later on. As seen before, the elements g in our group G can be expressed via a bijection between a pair of admissible subsets (or bases) (B, B^{\prime}) both of the same cardinality. Observe that the pair above is not enough to determine g and that we have to specify the explicit bijection. A way to overcome this problem is to work with ordered bases, in the sense that instead of a basis B viewed as a set, we will be considering an ordered tuple A with underlying set B. We say $u(A)=B$ (u for underlying). A pair of ordered tuples $\left(A, A^{\prime}\right.$), with both A and A^{\prime} of the same cardinality, uniquely determines the element of G mapping the elements of A to the elements of A^{\prime} in the prescribed order; conversely, any group element is expressible in this way. Of course, just as for the representation of the pair of bases, there is not a unique pair $\left(A, A^{\prime}\right)$ determining a given $g \in G$: we may apply descending or ascending operations to A and A^{\prime} in a consistent way to get a new pair of ordered tuples representing the same group element. Moreover, we may also permute the elements of both tuples in a consistent way and still get the same g. This means that when we represent elements of G as pairs $\left(A, A^{\prime}\right)$ we should be talking about equivalence classes of pairs under the obvious equivalence relation that identifies pairs yielding the same element. However, to make the notation lighter we will talk about pairs and denote them as above. The following definition will be useful later on: given tuples A_{1}, A_{2} with bases as underlying sets we put

$$
A_{1} \precsim A_{2} \Longleftrightarrow u\left(A_{1}\right) \leq u\left(A_{2}\right) \text { is an elementary expansion. }
$$

Equivalently, $A_{1} \precsim A_{2}$ if $u\left(A_{1}\right) \leq u\left(A_{2}\right)$ in the Stein poset. Observe that this is not a partial order, as it is not antisymmetric: we could have $A_{1} \precsim A_{2}$ and $A_{2} \precsim A_{1}$ but $A_{1} \neq A_{2}$. When $A_{1} \precsim A_{2}$, abusing the terminology slightly, we will say that A_{2} is obtained from A_{1} by descending operations. Essentially this means that we are considering the permutation of the elements of a tuple as a new type of descending operation. Of course this could equally be viewed as an "ascending" operation, but it turns out to be convenient to view it as descending. If we want to record the precise operations that yield A_{2} when applied to A_{1} we will write

$$
A_{1} \stackrel{\varepsilon}{\sim} A_{2}
$$

and will also set $A_{2}=A_{1} \varepsilon$. Observe that ε can be seen as a precise recipe to get A_{2}, and ε encodes exactly which elements are modified, permuted and so on.

3B. The model for $\boldsymbol{E G}$. Let Z be the complex constructed as follows: The points of Z are the ordered tuples A with underlying set a basis $u(A)$ in the Stein complex $\mathcal{S}_{r}(\Sigma)$. For each chain

$$
A_{0} \precsim \cdots \precsim A_{k}
$$

we attach an (oriented) k-simplex at the vertices A_{0}, \ldots, A_{k}. Observe that there might be repeated vertices, so this is not a simplicial complex but rather has the structure of a Δ-complex; see [Hatcher 2002, Section 2.1]. The group G acts on the set of bases, and using that action one can define a G-action on Z in the obvious way. Note that this action is free. In particular this implies that two different 1 -simplices starting in A_{0}, say $A_{0} \precsim A_{1}$ and $A_{0} \precsim A_{1}^{\prime}$ cannot be in the same G-orbit. Hence they yield different 1 -simplices in the quotient complex Z / G. Conversely, if $\bar{A}_{0} \xrightarrow{\bar{\varepsilon}} \bar{A}_{1}$ is an edge in Z / G, then once we have fixed a lift A_{0} of \bar{A}_{0} to $Z, \bar{\varepsilon}$ lifts to a unique 1 -simplex of Z. Therefore there is some well-defined set of descending operations giving a tuple A_{1}^{\prime} which is uniquely determined so that $A_{0} \stackrel{\varepsilon}{\sim} A_{1}^{\prime}$ is the lift of $\bar{\varepsilon}$. Moreover, the tuple A_{1}^{\prime} is uniquely determined. Note that we have the extra restriction coming from the Stein poset: we can only apply descending operations of the same colour once to any element of A_{0}.

Applying the same argument implies that this also holds for any lift of a path in Z / G to Z.

We now show that Z is contractible by using the contractibility of $\mathcal{S}_{r}(\Sigma)$, [Stein 1992]. There is a G-map

$$
u: Z \rightarrow \mathcal{S}_{r}(\Sigma)
$$

associating the underlying basis to an ordered tuple.
Fix a basis $B \in \mathcal{S}_{r}(\Sigma)$ of cardinality k. Then $u^{-1}(B)$ is the full subcomplex of Z with 0 -simplices given by the tuples with underlying set B, i.e., given by all possible permutations of the elements in B. Let H the stabiliser of B in G. Then H is isomorphic to the symmetric group of degree k and acts freely on the 0 -simplices of $u^{-1}(B)$. In fact we may choose a bijection between the 0 -simplices of $u^{-1}(B)$ and the elements of H and the definition of the complex structure of Z means that any $(k+1)$-element subset of 0 -simplices spans a k-simplex.

For example if $H=S_{2}$ is the symmetric group on two letters with elements 1 and x, then the 1 -simplices are $\{1,1\},\{1, x\},\{x, 1\}$ and $\{x, x\}$, and the 2 -simplices are $\{1,1,1\},\{1,1, x\}$ etc.

In other words, $u^{-1}(B)$ is easily seen to be the usual complex associated to the bar resolution of the finite group H; see for example [Hatcher 2002, Example 1B.7]. In particular this shows that $u^{-1}(B)$ is contractible.

Using [Quillen 1973, Theorem A], we can now show that u is a homotopy equivalence. To see this, let J_{Z} be the category with objects the simplices of Z and morphisms given by the face relations. Note that since Z is not a simplicial
complex, this is not a poset. Let J_{S} be the poset of simplices in $\mathcal{S}_{r}(\Sigma)$. The map u induces a functor

$$
J_{u}: J_{Z} \rightarrow J_{S},
$$

and the geometric realisations of nerves of the categories J_{Z} and J_{S} are the barycentric subdivisions of Z and $\mathcal{S}_{r}(\Sigma)$, respectively. Once we show that for any $\sigma: B_{0}<B_{1}<\cdots<B_{t}$ in J_{S},

$$
J_{u} / \sigma:=\left\{\tau \in J_{Z} \mid J_{u}(\tau) \text { is a subsimplex of } \sigma\right\}
$$

is a contractible subcategory of J_{Z}, we can use Quillen's Theorem A to deduce that J_{u} is a homotopy equivalence. The category J_{u} / σ is just the category with objects the simplices in the join

$$
u^{-1}\left(B_{0}\right) \star \cdots \star u^{-1}\left(B_{t}\right)
$$

and morphisms given by face relations. As $u^{-1}\left(B_{0}\right) \star \cdots \star u^{-1}\left(B_{t}\right)$ is contractible, this category is also contractible. Hence J_{u} is a homotopy equivalence and thus u is, too. Since $\mathcal{S}_{r}(\Sigma)$ is contractible we deduce that Z is contractible as required.

4. An infinite presentation

In this section we use the model for $\mathrm{E} G$ that we have just constructed to obtain a presentation for our group. As the model is of infinite type, our presentation will initially be infinite. But in the case when the Cantor algebra is valid and bounded it is possible to reduce the generating system to a finite one, as we will see in the next section.

We obtain our presentation using the following well known result that we recall here for the reader's convenience.

Theorem 4.1 [Geoghegan 2008, Theorem 3.1.16 and Corollary 3.1.17]. Let G be a group and Z a simply connected CW-complex with a free G-action such that Z / G is oriented and path connected. Let \mathcal{T} be a maximal tree in Z / G. Let:

- W be the set of (oriented) 1-cells of Z / G.
- R be the set of words in the alphabet $W \cup W^{-1}$ obtained as follows: for each (oriented) 2 -cell e_{γ}^{2} in Z / G, let $\tau\left(e_{\gamma}^{2}\right)$ be a word representing the boundary δe_{γ}^{2} and set

$$
R=\left\{\tau\left(e_{\gamma}^{2}\right) \mid e_{\gamma}^{2} \text { is an oriented } 2 \text {-cell of } Z / G\right\} .
$$

- $S \subset W$ be the set of (oriented) 1-cells of \mathcal{T} (seen as one letter words in W).

Then

$$
\langle W \mid R \cup S\rangle
$$

is a presentation of the group $G \cong \pi_{1}(Z / G)$. If, moreover, Z / G has a finite 2 -skeleton, then this is a finite presentation.

4A. The isomorphism $\boldsymbol{G} \cong \boldsymbol{\pi}_{\mathbf{1}}(\boldsymbol{Z} / \boldsymbol{G})$. We now give an explicit isomorphism between G and the fundamental group of Z / G, where we return to our previous notation so $G=V_{r}(\Sigma)$ and Z is the same complex as in Section 3B. The standard way to show this isomorphism is to fix some point $x_{0} \in Z$ and map the element $g \in G$ to the path in Z / G obtained by taking the quotient of a path from x_{0} to $g x_{0}$ in Z. As x_{0} and $g x_{0}$ have the same cardinality, what we get is a loop path in Z / G. We shall take as x_{0} a tuple with underlying set our preferred basis of r elements X_{r}. To ease notation, we denote this tuple by X_{r} as well. As the G-action on Z preserves the cardinality of each tuple, the 0 -simplices of Z / G correspond to the possible cardinalities of tuples (or of bases). By Remark 2.2, we recall that the possible cardinalities of the bases are exactly the integers congruent to r modulo d where n_{1}, \ldots, n_{s} are the arities and

$$
d=\operatorname{gcd}\left(n_{1}-1, \ldots, n_{s}-1\right) .
$$

So the 0 -simplices of Z / G can be labelled as

$$
\left\{\bar{X}_{i} \mid i \equiv r \bmod d\right\}
$$

where the subscript is the cardinality of the associated bases. Now, choose a maximal tree \mathcal{T} in Z / G. The vertices of \mathcal{T} are all the 0 -simplices above and there is a unique path in \mathcal{T} from \bar{X}_{r} to every other \bar{X}_{i}. This path determines uniquely a precise tuple X_{i} that is a lift of \bar{X}_{i} (observe that X_{i} depends on the choice of \mathcal{T}).

Let $\bar{X}_{i} \xrightarrow{\varepsilon} \bar{X}_{j}$ be an edge (thus $i \leq j$). By the comments above there is a uniquely determined lift $X_{i} \xrightarrow{\varepsilon} X_{j}^{\prime}$ of $\bar{\varepsilon}$; here X_{j}^{\prime} is a new tuple which is in the same orbit as X_{j}. Therefore there is a uniquely determined $g \in G$ such that $X_{j}^{\prime}=g X_{j}$, and this is precisely the element in G corresponding to the generator

$$
\bar{\varepsilon} \in \pi_{1}(Z / G) .
$$

We have $g=\left(X_{j}, X_{j}^{\prime}\right)$ and $X_{j}^{\prime}=X_{i} \varepsilon$.
Example 4.2. Let G be the original Thompson group V. In particular, $r=1, s=1$, $n_{1}=2$. We can represent bases of $U_{1}(\Sigma)$ by finite rooted binary trees, and hence can choose X_{1} to be a single point, and X_{2} and X_{3} to be the bases represented thus:

23
X_{3}

Suppose we take ε to be the expansion of X_{2} on the left-hand leaf. This gives us X_{3}^{\prime} as

and the corresponding element of V is x_{0} as described after Remark 2.4.
4B. The maximal tree \mathcal{T}. To be able to write down an explicit presentation, the choice for \mathcal{T} becomes important. This relies heavily on the choice of representative for $\overline{X_{i}}$ above. This amounts to choosing a particular set of bases X_{i} in $U_{r}(\Sigma)$, where $i \equiv r \bmod d$.

Example 4.3. For $G=s V$ we have $r=1$ and for each $k \in \mathbb{N}$ there is a basis X_{k}. Again, these can be represented by finite rooted binary trees. Now fix a colour $i \in S$ and choose the X_{k} as follows: we begin with X_{1} our fixed one-element basis represented by a single point. Now X_{2} is the basis obtained by applying the descending operation of colour i to X_{1}. We successively chose X_{k} as obtained from X_{k-1} by applying the descending operation of colour i to the last element of X_{k-1} and labelling the elements in successive order. The representation for X_{k} by a binary tree then looks as follows:

Notice that for $V_{1}(\Sigma)$ we can always choose the X_{k} to be represented by a rightmost tree as above, provided that all colours have the same arity. Now the construction shows that the maximal tree \mathcal{T} in Z / G is a rooted infinite line.

For example, the baker's map $b \in 2 V$ can easily be described using the bases chosen above. Let X_{1} be a single point and X_{2} be as in Example 4.2; note that we expanded with colour 1 . Now we consider X_{2}^{\prime} the basis obtained from X_{1} by
expanding once with colour 2 (represented by a dashed line). Hence this gives rise to the element $b \in 2 V$.

For the general case with mixed arities we will not be able to find such a straightforward set of representatives X_{i} as before. We will show that we can, however, find a maximal tree \mathcal{T} in Z / G, whose vertices are all but a finite number obtained by a step-by-step process beginning with our fixed basis X_{r} and then expanding the last element of a basis previously constructed.

Example 4.4. Let $V_{r}(\Sigma)$ be the group given by $r=1, s=2, n_{1}=5$ and $n_{2}=7$. Then $d=2$ and our chosen set of bases is of the form

$$
\left\{X_{i} \mid i \equiv 1 \bmod 2\right\} .
$$

By simply expanding X_{1} by the colours 1 and 2 respectively, we obtain X_{5} and X_{7}. To obtain X_{3} we could contract the last 5 elements of X_{7} by colour 1, but there is no way to obtain X_{3} from X_{1} by simply expanding.

Remark 4.5. We now describe the construction of our preferred maximal tree \mathcal{T} in Z / G, where $G=V_{r}(\Sigma)$ is the automorphism group of a valid and bounded Cantor algebra. We begin by showing that we can obtain all but finitely many of the bases

$$
\left\{X_{i} \mid i \equiv r \bmod d\right\}
$$

from X_{r} applying descending operations only. In other words

$$
\left\{r+\sum_{i=1}^{s} k_{i}\left(n_{i}-1\right) \mid 0 \leq k_{1}, \ldots, k_{s}\right\} \cup P=\{r+k d \mid 0 \leq k\},
$$

where P is a finite set of integers. To see this, observe first that the problem can be reduced to the case when $r=0$ and $d=1$. Now choose integers k_{1}, \ldots, k_{s} such that

$$
1=\sum_{i=1}^{s} k_{i}\left(n_{i}-1\right)
$$

and use them to produce integers m_{1}, \ldots, m_{s} with $0 \leq m_{2}, \ldots, m_{s}$ such that

$$
1=\sum_{i=1}^{s} m_{i}\left(n_{i}-1\right)
$$

Hence,

$$
1 \equiv \sum_{i=2}^{s} m_{i}\left(n_{i}-1\right) \bmod m_{1} .
$$

Multiplying this expression by the integers $2, \ldots, m_{1}$ we get positive numbers $a_{1}, \ldots, a_{m_{1}}$ which are a complete set of representatives of the residues modulo m_{1} and such that they all belong to $\sum_{i=1}^{s} \mathbb{N}\left(n_{i}-1\right)$. Now, let m be any integer with $m \geq \max \left\{a_{i} \mid 1 \leq i \leq m_{1}\right\}$. Then for some such i, we have $m \equiv a_{i}$ modulo m_{1} and therefore $m-a_{i}=l m_{1}$ for some $l \geq 0$. From this we deduce that m also belongs to $\sum_{i=1}^{s} \mathbb{N}\left(n_{i}-1\right)$.

It is now easy to find a (nonmaximal) directed tree in Z / G having \bar{X}_{r} as a root and such that the cardinalities of the vertices are precisely the set $r+\sum_{i=1}^{s} \mathbb{N}\left(n_{i}-1\right)$. Here, a root is the only vertex of the tree from which all other vertices can be reached by paths respecting the directions of the edges. Moreover, we can do it in such a way that the descending operations are always applied to the last element of each tuple. There are only finitely many points of our space Z / G not in this tree. Choose one of them and consider a directed path from that point to some point of the tree. Adding this directed path we get a new tree which no longer has a single root in the above sense. If there are still points left, repeat the process. Eventually, we get a directed tree with the desired properties and with only finitely many roots.

4C. The presentation. Now we apply Theorem 4.1 to produce an explicit presentation. We do get an abstract group presentation but we can also write it down as a presentation in terms of elements given by pairs of ordered bases using the explicit isomorphism in Section 4A, which allows one to recognise the group elements in a much more familiar way. Recall that we have fixed a set of tuples

$$
\left\{X_{i} \mid i \equiv r \bmod d\right\}
$$

which are lifts of the nodes of our tree \mathcal{T}. Moreover there is a tree in Z that is a lift of \mathcal{T}.

By [Geoghegan 2008, Theorem 3.1.16], $\pi_{1}(Z / G)$ is generated by the edges in Z / G, i.e., by the 1 -simplices $\bar{X}_{i} \xrightarrow{\bar{\varepsilon}} \bar{X}_{j}$ in Z / G. As we have seen before, these correspond to elements $g \in G$ which are given by pairs ($X_{j}, X_{i} \varepsilon$) where ε is a set of descending operations.

There are two sets of relators:
(i) Relators of the form $\bar{\varepsilon}=1$ whenever $\bar{\varepsilon}$ is an edge in the tree \mathcal{T}. This means that there are tuples X_{i} and X_{j} in \mathcal{T} such that X_{j} is obtained from X_{i} performing the operations ε. The group element that corresponds to ε is (X_{j}, X_{j}).
(ii) Relators obtained from the boundaries of the 2-cells in Z / G. The 2-cells of Z / G come from 2-cells in Z and these are of the form $A_{0} \precsim A_{1} \precsim A_{2}$. Let ε_{1}
be the set of operations needed to obtain A_{1} from A_{0}, ε_{2} the set of operations needed to obtain A_{2} from A_{1} and ε the composition of ε_{1} and ε_{2}. Passing down to the quotient Z / G we get a 2 -cell with boundary labelled $\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}$ and $\bar{\varepsilon}$. So we have the relator

$$
\bar{\varepsilon}=\bar{\varepsilon}_{1} \bar{\varepsilon}_{2}
$$

All this means that this second set of relators consists of the "composition of paths". We want to write this down in terms of pairs of ordered bases. Let i be the cardinality of A_{0} and j_{1} the cardinality of A_{1}. The edge $\bar{\varepsilon}_{1}$ represents the element $g_{1}=\left(X_{j_{1}}, X_{i} \varepsilon_{1}\right) \in G$. We may apply the descending operations ε_{2} to this pair and then we observe that also $g_{1}=\left(X_{j_{1}} \varepsilon_{2}, X_{i} \varepsilon_{1} \varepsilon_{2}\right)$. Note here that this follows from the definition of tree pair representation, and we do not need to impose any conditions on the presentation that we are building. Let j_{2} be the cardinality of A_{2}, then $\bar{\varepsilon}_{2}$ represents the element $g_{2}=\left(X_{j_{2}}, X_{j_{1}} \varepsilon_{2}\right)$ and $\bar{\varepsilon}$ represents $g=\left(X_{j_{2}}, X_{i} \varepsilon\right)$. So we get the relator $g=g_{1} g_{2}$. In the particular case when $X_{j_{1}} \varepsilon_{2}$ belongs to the lift of our tree \mathcal{T}, or equivalently when $\bar{\varepsilon}_{2}$ belongs to \mathcal{T}, there is also a relator $g_{2}=1$ and we deduce $g=g_{1}$. This can also be seen using tree pairs: as $X_{j_{2}}$ belongs to the prefixed set of nodes and has the same cardinality as $X_{j_{1}} \varepsilon_{2}$, we must have $X_{j_{1}} \varepsilon_{2}=X_{j_{2}}$.

We may summarise as follows:

$$
G=\langle W \mid R\rangle,
$$

where

$$
\begin{aligned}
W & =\left\{\left(X_{j}, X_{i} \varepsilon\right) \mid \varepsilon \text { is a sequence of descending operations and } X_{i} \neq X_{j}\right\}, \\
R & =\left\{g=g_{2} g_{1} \mid g=\left(X_{j_{2}}, X_{i} \varepsilon\right), g_{1}=\left(X_{j_{1}}, X_{i} \varepsilon_{1}\right), g_{2}=\left(X_{j_{2}}, X_{j_{1}} \varepsilon_{2}\right), \varepsilon=\varepsilon_{1} \varepsilon_{2}\right\} .
\end{aligned}
$$

Alternatively, we may delete those pairs $\left(X_{j}, X_{i} \varepsilon\right.$) where $\bar{\varepsilon}$ lies in the tree \mathcal{T} from our list of generators.

4D. Reducing the generating set. A quick look to the generating set we have just obtained shows that it is far too big. Reducing it can be a complicated task but there is a reduction that seems natural: our generators come from edges in Z / G and these edges come from descending operations, so one expects that edges coming from "very elementary operations" should be enough. This is in fact the case but to make it more precise we need now some additional technicalities. Let us fix what should be called "very elementary" in our context. An edge $A_{1} \stackrel{\varepsilon}{\sim} A_{2}$ in Z is very elementary if it consists of a single operation, i.e., if it is either a permutation or it is a single descending operation (in this case $u\left(A_{1}\right)<u\left(A_{2}\right)$ is very elementary) but we do not allow composition of both. The case when $u\left(A_{1}\right)<u\left(A_{2}\right)$ will be termed strict and for these type of operations we will assume that if the original
tuple is $\left(x_{1}, \ldots, x_{i}\right)$ and we apply the descending operation α at the k-th element then the resulting tuple is

$$
\left(x_{1}, \ldots, x_{k-1}, x_{k} \alpha^{1}, \ldots, x_{k} \alpha^{n_{\alpha}}, x_{k+1}, \ldots, x_{i}\right)
$$

Any ε can be written as a composition of very elementary operations. Of course it may happen that different sequences of operations give the same result when applied to the same tuple. This happens in the following four ways, which we shall refer to as moves:
(i) Disjoint type: we may apply two very elementary strict descending operations acting on distinct elements of a tuple and we get the same result regardless of the order of application of these two operations.
(ii) Σ type: we have different chains of elementary strict descending operations such that, up to a permutation, they give the same result when applied to any element of any tuple and which come from the defining relations for the algebra encoded in Σ.
(iii) Permutation-descending: we may first permute the elements of a tuple and then apply a very elementary strict descending operation or do it the other way around in a consistent manner and get the same result.
(iv) Permutation: the composition of two permutations is still a permutation.

Lemma 4.6. Let A_{1}, A_{2} be tuples. If two different chains of very elementary descending operations yield A_{2} when applied to A_{1}, then one can be obtained from the other by repeated application of moves of the four types above.
Proof. By making moves of types (iii) and (iv) only we may assume that our two chains are of the form

$$
\begin{aligned}
& \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{t} \sigma, \\
& \varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \cdots \varepsilon_{t^{\prime}}^{\prime} \sigma^{\prime}
\end{aligned}
$$

where all $\varepsilon_{i}, \varepsilon_{i}^{\prime}$ are very elementary and strict and σ, σ^{\prime} are permutations. Consider first what happens when we look at the underlying sets $u\left(A_{1}\right)$ and $u\left(A_{2}\right)$. The fact that both series of operations give the same set when applied to $u\left(A_{1}\right)$, implies that, for each particular element, we are either performing the same operation or the same operation up to applying some of the relators encoded in Σ. This means that $\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{t}$ can be transformed to $\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \cdots \varepsilon_{t^{\prime}}^{\prime}$ by making moves of types (i) or (ii) without taking the order of the elements into account. The fact that the relations in Σ involve certain permutations implies that what we really get is that via some extra moves of types (iii) and (iv), $\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{t}$ is transformed to $\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \cdots \varepsilon_{t}^{\prime} \tau$ for a certain permutation τ. So at this point our two sequences are

$$
\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \cdots \varepsilon_{t^{\prime}}^{\prime} \tau \sigma, \quad \quad \varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \cdots \varepsilon_{t^{\prime}}^{\prime} \sigma^{\prime}
$$

The fact that both sequences yield A_{2} when applied to A_{1} implies that $B \tau \sigma=B \sigma^{\prime}$ for $B=A_{1} \varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \cdots \varepsilon_{t^{\prime}}^{\prime}$, which is a move of type (iv).

We next use Tietze transformations to change the presentation above. Essentially, what we need to do is the following: whenever there is a relator $g=g_{1} g_{2}$ we delete g from our set of generators. The effect of this transformation on the generating set is that we no longer have elements g coming from edges which are not very elementary. Moreover we will have only two kinds of generators: strict generators coming from strict very elementary edges, and finite order generators coming from permutations. We denote these sets by

$$
W_{s}=\left\{\left(X_{j}, X_{i} \varepsilon\right) \mid \varepsilon \text { is a very elementary strict expansion, } j=\left|X_{i} \varepsilon\right|\right\}
$$

and call these very elementary strict generators. We also consider the elements of the set

$$
W_{p}=\left\{\left(X_{i}, X_{i} \sigma\right) \mid \sigma \text { is a permutation }\right\},
$$

and call them permutations. From now on we will use the term strict generators for elements in W_{s} instead of the more precise very elementary strict generator.

The effect of this transformation on the set of relators is as follows: we no longer have to consider relators coming from edges in the tree. Whenever there are two sequences of very elementary operations that give the same A_{2} when applied to some A_{1}, we have a new relator. Lemma 4.6 implies that these relators can be obtained from relators of the following types:
(i) R_{D} contains relators of the form $g_{1} g_{2}=g_{2}^{\prime} g_{1}^{\prime}$ with $g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}$ strict generators coming from moves of disjoint type.
(ii) R_{Σ} contains relators between strict generators possibly followed by a permutation coming from moves of Σ type.
(iii) $R_{P D}$ contains relators of the form $g \sigma=\sigma g$ with g a strict generator and σ a permutation coming from moves of type (iii).
(iv) R_{P} contains relators of the form $\sigma=\sigma_{1} \sigma_{2}$ with σ, σ_{1} and σ_{2} permutations coming from moves of type (iv).
Thus G admits the following (infinite) presentation:

$$
\begin{equation*}
\left\langle W_{s} \cup W_{p} \mid R_{D} \cup R_{\Sigma} \cup R_{P D} \cup R_{P}\right\rangle . \tag{1}
\end{equation*}
$$

4E. Being more explicit. Let us consider an arbitrary strict generator ($X_{j}, X_{i} \varepsilon$) associated to the strict edge $\bar{\varepsilon}$. It is completely determined by a triple (i, k, t) meaning that $\bar{\varepsilon}$ is obtained by applying the descending operation of colour t to the k-th element of an orbit representative of the set of tuples of order i. We will use the triple to denote the generator. Now we are going to write down explicitly what relators of disjoint type look like with this new notation. Recall that these relators
come from very elementary strict descending and disjoint operations $\varepsilon_{1}, \varepsilon_{2}$ on one hand, and $\varepsilon_{2}^{\prime}, \varepsilon_{1}^{\prime}$ on the other. They are such that

$$
\varepsilon_{1} \varepsilon_{2}=\varepsilon_{2}^{\prime} \varepsilon_{1}^{\prime},
$$

where ε_{1} and ε_{1}^{\prime} are operations of the same colour, say t, whereas ε_{2} and ε_{2}^{\prime} are of colour s. Moreover ε_{1} acts at the k_{1}-th and ε_{2}^{\prime} acts at the k_{2}-th elements of X_{i}. We may assume that $k_{1}<k_{2}$. Observe that this means that if we apply a descending operation to the k_{2}-th element first then the k_{1}-th element remains the same, but if we do it the other way around, i.e., apply a descending operation of colour t to the k_{1}-th element first, then the former k_{2}-th element becomes the ($k_{2}+n_{t}-1$)-th. Therefore the triples associated to each of $\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}, \bar{\varepsilon}_{2}^{\prime}, \bar{\varepsilon}_{1}^{\prime}$ are

$$
\begin{aligned}
\bar{\varepsilon}_{1} & :\left(i, k_{1}, t\right)=\left(X_{i+n_{t}-1}, X_{i} \varepsilon_{1}\right), \\
\bar{\varepsilon}_{2} & :\left(i+n_{t}-1, k_{2}+n_{t}-1, s\right)=\left(X_{i+n_{t}-1+n_{s}-1}, X_{i+n_{t}-1} \varepsilon_{2}\right), \\
\bar{\varepsilon}_{2}^{\prime} & :\left(i, k_{2}, s\right)=\left(X_{i+n_{s}-1}, X_{i} \varepsilon_{2}^{\prime}\right), \\
\bar{\varepsilon}_{1}^{\prime} & :\left(i+n_{s}-1, k_{1}, t\right)=\left(X_{i+n_{s}-1+n_{t}-1}, X_{i+n_{s}-1} \varepsilon_{1}\right),
\end{aligned}
$$

and our relator is

$$
\begin{equation*}
\left(i, k_{1}, t\right)\left(i+n_{t}-1, k_{2}+n_{t}-1, s\right)=\left(i, k_{2}, s\right)\left(i+n_{s}-1, k_{1}, t\right) . \tag{2}
\end{equation*}
$$

Analogously, it is possible to represent a generator $\left(X_{i}, \sigma\left(X_{i}\right)\right)$ of "permutation type" using the pair (i, σ). Now, relators of type $R_{P D}$ come from the fact that applying first a permutation and then a very elementary strict operation to a tuple, yields the same as doing it the other way around for a suitable permutation. More explicitly, assume that we start with the tuple X_{i}. Let ε be the operation associated to the triple, say, (i, k, t) and consider a permutation σ represented by the pair (i, σ). Slightly abusing notation view σ as a permutation of the numbers $\{1, \ldots, i\}$. Starting with X_{i} and performing first the permutation σ and then applying the strict descending operation associated to $\bar{\varepsilon}^{\prime}=(i, \sigma(k), t)$, yields the tuple $X_{i} \sigma \varepsilon^{\prime}$ whose underlying set is the same as that of the tuple $X_{i} \varepsilon$. Therefore there is some permutation σ^{\prime} such that the tuples $X_{i} \sigma \varepsilon^{\prime}$ and $X_{i} \varepsilon \sigma^{\prime}$ coincide. And this implies that we have a relator $\bar{\sigma} \cdot \bar{\varepsilon}^{\prime}=\bar{\varepsilon} \cdot \bar{\sigma}^{\prime}$ or

$$
\begin{equation*}
(i, \sigma)(i, \sigma(k), t)=(i, k, t)\left(i+n_{t}-1, \sigma^{\prime}\right) . \tag{3}
\end{equation*}
$$

5. A finite generating set

In this section, we show that the generating system $W_{s} \cup W_{p}$ can be reduced to a finite one. We begin with W_{s}. We will use the following two particular cases of relators of disjoint type.

Case 1: Let (i, k, t) be a triple such that $i-k>n_{l}-1$ for any colour l where we include the case $l=t$. Assume moreover that the terminal point of the associated edge in Z / G, i.e., $\bar{X}_{i+n_{t}-1}$, is not a root of the tree \mathcal{T}. Recall that this edge consists of applying a descending operation of colour t, which increases the cardinality in $n_{t}-1$. Then there is some edge of \mathcal{T} ending in $\bar{X}_{i+n_{t}-1}$. Let s be the colour of this last edge which is represented as a triple by $\left(i+n_{t}-n_{s}, i+n_{t}-n_{s}, s\right)$ (recall that we constructed the tree \mathcal{T} in such a way that the last element of each tuple is always being expanded). Now, as $i-k>n_{s}-1$ we deduce $k<i-n_{s}+1$. Thus there is a relator of disjoint type such as in (2) but with $i-n_{s}+1$ instead of i, k instead of k_{1} and $i-n_{s}+1$ instead of k_{2}. This relator is

$$
\left(i-n_{s}+1, k, t\right)\left(i+n_{t}-n_{s}, i+n_{t}-n_{s}, s\right)=\left(i-n_{s}+1, i-n_{s}+1, s\right)(i, k, t) .
$$

Since there is also a relator

$$
\left(i+n_{t}-n_{s}, i+n_{t}-n_{s}, s\right)=1,
$$

because it belongs to \mathcal{T}, we deduce

$$
\begin{equation*}
(i, k, t)=\left(i-n_{s}+1, i-n_{s}+1, s\right)^{-1}\left(i-n_{s}+1, k, t\right) . \tag{4}
\end{equation*}
$$

This means that (i, k, t) can be expressed in terms of triples with a smaller value of i. Case 2: Let (i, k, t) be a triple such that $i \geq k \geq n_{t}+1$. Then $k-n_{t}+1>1$ and $i-n_{t}+1 \geq 2$. This means that there is a relator of disjoint type such as in (2) but with $i-n_{t}+1$ instead of $i, 1$ instead of k_{1} and $k-n_{t}+1$ instead of k_{2}. This relator is

$$
\left(i-n_{t}+1,1, t\right)(i, k, t)=\left(i-n_{t}+1, k-n_{t}+1, t\right)(i, 1, t) .
$$

From this we deduce

$$
\begin{equation*}
(i, k, t)=\left(i-n_{t}+1,1, t\right)^{-1}\left(i-n_{t}+1, k-n_{t}+1, t\right)(i, 1, t), \tag{5}
\end{equation*}
$$

meaning that (i, k, t) can be expressed in terms of triples with either a smaller value of i or with $k=1$.

Observe now that arguing by induction on $i+k$, equations (4) and (5) imply that any element in W_{s} lies in the finite subgroup generated by the finite subset
$\left\{g \in W_{s} \mid\right.$ the associated triple fails to fulfil
both the conditions in Case 1 and in Case 2\}.
Example 5.1. Let us consider the group V, i.e., where we have one colour t and $n_{t}=2$. For now let us only concentrate on the strict generators W_{s}. Note that an element (i, i, t) is the identity. Looking at the representation by tree-pair diagrams, and the choice of X_{i} in Example 4.3, we see that we expand the rightmost leaf of the rightmost tree X_{i}, hence we obtain X_{i+1} and the group element is represented by (X_{i+1}, X_{i+1}), which is the identity. Now consider elements (i, k, t), where
$k<i-1$. Again, using the rightmost-tree, we see that after deleting unnecessary carets on the right, we get

$$
(i, k, t)=(k+1, k, t),
$$

which is exactly the relator (4). For example, consider (3, 1,t). Then the corresponding tree-pair diagram is

X_{4}

$$
X_{4}^{\prime}=X_{3} \varepsilon
$$

In particular, after deleting the rightmost caret in each tree, this is exactly the element x_{0}, see the picture after Remark 2.4.

Writing

$$
x_{i-2}=(i, i-1, t),
$$

we recover the well-known infinite generating set $\left\{x_{k} \mid k \geq 0\right\}$ for $F<V$. Furthermore, this enables us to simplify the relator (2) above. We have

$$
\left(i, k_{1}, t\right)\left(i+1, k_{2}+1, t\right)=\left(i, k_{2}, t\right)\left(i+1, k_{1}, t\right) .
$$

Using that $(i, k, t)=(k+1, k, t)$ for $k<i-1$, we get the well-known relator

$$
x_{k}^{-1} x_{l} x_{k}=x_{l+1}
$$

for any k and l. Moreover, observe that strict generators and disjoint relators give us the well-known infinite presentation of Thompson's group F; see [Cannon et al. 1996].

Now we want to reduce W_{p} in a similar way. The most natural way to do that is using relators of type $R_{P D}$, i.e., those mixing permutations and strict generators. To be able to argue by induction as before, we need to show that if i is big enough, any element of the form ($X_{i}, \sigma\left(X_{i}\right)$), where σ is a permutation, can be expressed in terms of permutations with a smaller i and possibly strict generators. As the group of permutations of the tuple X_{i} is generated by transpositions, we may assume that σ itself is a transposition. Now, assume that $i \geq 3 n_{t}$ for t a colour with smallest possible arity n_{t}. As σ only moves two elements, we may find n_{t} consecutive elements in X_{i} which are untouched by σ. Let k be such that the k-th element in X_{i} is the first one of those n_{t} consecutive elements, and consider the strict generator associated to the triple ($i-n_{t}+1, k, t$). Let σ^{\prime} be the transposition of $X_{i-n_{t}+1}$
that moves precisely the elements that are also moved by σ. Then the associated relator (3) with $i-n_{t}+1$ instead of i, and σ and σ^{\prime} interchanged is

$$
\left(i-n_{t}+1, \sigma^{\prime}\right)\left(i-n_{t}+1, k, t\right)=\left(i-n_{t}+1, k, t\right)(i, \sigma) .
$$

Thus

$$
\begin{equation*}
(i, \sigma)=\left(i-n_{t}+1, k, t\right)^{-1}\left(i-n_{t}+1, \sigma^{\prime}\right)\left(i-n_{t}+1, k, t\right) \tag{6}
\end{equation*}
$$

as we wanted to show.
This discussion can be summarised as follows:
Theorem 5.2. Assume that $U_{r}(\Sigma)$ is valid and bounded. Then $V_{r}(\Sigma)$ is generated by the finite set consisting of elements of the following three types:
(1) Strict generators associated to triples (i, k, t) with $i \leq n_{t}+1$ and $i-k \leq n_{s}$ for any colour s.
(2) Strict generators associated to triples (i, k, t) such that $\bar{X}_{i+n_{t}-1}$ is a root of the tree \mathcal{T}.
(3) Permutations associated to pairs (i, σ) such that $i<3 n_{t}$ for some colour t.

Example 5.3. Consider $G=V$. In Example 5.1, we have already recovered the infinite presentation for $F<V$. In the tree of Example 4.3, the triples have a single root X_{1} so we do not have to consider generators as in item (2) of Theorem 5.2. As before, let $i \geq 2$ and denote by x_{i-2} the group element associated to the triple $(i, i-1, t)$. Then from Theorem 5.2 one deduces the well-known fact that the elements $x_{i}, i \geq 1$, together with the permutations generate the group and that x_{0} and x_{1} plus permutations are enough.

Remark 5.4. Similar generating systems can be obtained without using the space Z by proceeding as Burillo and Cleary did for the Brin-Thompson groups $s V$ [Burillo and Cleary 2010, Theorem 2.1]. Instead of our first step (Section 4A), fix a set of tuples, one for each possible cardinality, which are to be the "source tree" of our tree pairs, and as "target tree" we allow anything that is obtained from one of these tuples by descending operations and permutations only. If $g \in G$ is an arbitrary element, it follows from the fact that any two bases have a common descendant that $g=\left(Y_{1}, Y_{2}\right)$ where Y_{1} and Y_{2} are obtained in that way. Then, choose X_{i} in our previously fixed set of tuples (what used to be the set of nodes in \mathcal{T}) of the same cardinality as Y_{1} and Y_{2}, and observe that $g=g_{2} g_{1}^{-1}$ with $g_{1}=\left(X_{i}, Y_{1}\right)$ and $g_{2}=\left(X_{i}, Y_{2}\right)$. These are precisely the type of elements we wanted to verify to be the generators of the group.

The choice of that fixed set of tuples can be the same as in Section 4B, but now we no longer need to construct the actual tree \mathcal{T}, we only need the nodes. For example, we can proceed as follows: as done before, fix a tuple X_{r} with r elements
and choose integers m_{1}, \ldots, m_{s} with

$$
d=\sum_{t=1}^{s} m_{t}\left(n_{t}-1\right)
$$

There is a sequence of operations (first descending, then ascending) that we can perform on the last element of X_{r} to get a new tuple with exactly $r+d$ elements that we denote $X_{r} \tau$. We may repeat the process to get a new tuple $X_{r} \tau^{2}$ and so on. We set $X_{r} \tau^{0}:=X_{r}$, let $X_{i+r d}:=X_{r} \tau^{i}$ for $i \geq 0$ and take the obtained family as our prefixed set of "sources".

As seen above, our first set of generators is then

$$
\left\{\left(X_{j}, X_{i} \varepsilon\right) \mid \varepsilon \text { is a sequence of descending operations }\right\}
$$

Using Section 4D this can be further reduced to

$$
\left\{\left(X_{j}, X_{i} \varepsilon\right) \mid \varepsilon \text { is a single strict descending operation or permutation }\right\} .
$$

Again, there is no serious need of the space Z to see that this reduction is possible. One can just check that composition of these elements corresponds to composition of the associated descending operations, in a way similar to that of [Burillo and Cleary 2010]. The same happens with the reduction performed in Section 4E: basically, we used Z only to have some identities available that allowed us to eliminate some elements from our generating system, but all those identities can be easily checked by hand and one gets the same finite set in the end.

6. Finite presentations

In this section, we still assume that $U_{r}(\Sigma)$ is valid and bounded and we add the extra hypothesis that it is also complete to exhibit a procedure that gives a finite presentation. To do that, we just replace Z by a truncated version Z^{n} and we use the results of Section 4 to obtain an explicit finite presentation.

Definition 6.1. Using the notation of Definition 2.1, suppose that for all $i \neq i^{\prime}$, $i, i^{\prime} \in S$ we have that $\Sigma_{2}^{i, i^{\prime}} \neq \varnothing$ and that $f(j)=i^{\prime}$ for all $j=1, \ldots, n_{i}$ and $f^{\prime}\left(j^{\prime}\right)=i$ for all $j^{\prime}=1, \ldots, n_{i^{\prime}}$. Then we say that $U_{r}(\Sigma)$ is complete.

Considering the Morse function $t(A)=|A|$ in $\mathcal{S}_{r}(\Sigma)$ we can filter the complex with respect to t, and define the truncated Stein complex

$$
\mathcal{S}_{r}(\Sigma)^{n}:=\text { full subcomplex supported on }\left\{A \in \mathcal{S}_{r}(\Sigma) \mid t(A) \leq n\right\}
$$

In particular this is just the simplicial complex $\mathcal{S}_{r}(\Sigma)^{n}$ obtained by considering bases of cardinality bounded by n only. Note that in [Martínez-Pérez et al. 2016, Theorem 3.1] this complex was used to show that under the conditions above $V_{r}(\Sigma)$
is of type F_{∞}. The purpose of this section is to give a recipe for constructing explicit presentations.

Obviously, we can do the same with the complex Z and consider its truncated version Z^{n} where the tuples have at most n elements. The map u restricts to these truncated versions and the same argument as in Section 3B shows that there is a homotopy equivalence

$$
u: Z^{n} \rightarrow\left|\mathcal{S}_{r}(\Sigma)^{n}\right| .
$$

By [Fluch et al. 2013, Corollary 3.9] for the special case of $s V$ and [Martínez-Pérez et al. 2016, Section 3] for the general case, assuming that $U_{r}(\Sigma)$ is valid, bounded and complete, there is some positive integer n_{0} depending on Σ, such that for any $n \geq n_{0}$ and any basis $B \in \mathcal{S}_{r}(\Sigma)$ with cardinality $|B|=n+1$ the descending link of B in the Stein complex $\mathcal{S}_{r}(\Sigma)$ is simply connected. Using Morse theory ([Bestvina and Brady 1997, Corollary 2.6]) we deduce that for $n \geq n_{0}$ the inclusion

$$
\mathcal{S}_{r}(\Sigma)^{n} \subseteq \mathcal{S}_{r}(\Sigma)^{n+1}
$$

induces an isomorphism in π_{1} and π_{0}. As the space $\mathcal{S}_{r}(\Sigma)$ is contractible we have

$$
\begin{aligned}
& 1=\pi_{1}\left(\mathcal{S}_{r}(\Sigma)\right)=\lim \pi_{1}\left(\mathcal{S}_{r}(\Sigma)^{n}\right), \\
& 1=\pi_{0}\left(\mathcal{S}_{r}(\Sigma)\right)=\lim \pi_{0}\left(\mathcal{S}_{r}(\Sigma)^{n}\right),
\end{aligned}
$$

and $1=\pi_{1}\left(\mathcal{S}_{r}(\Sigma)^{n}\right)=\pi_{0}\left(\mathcal{S}_{r}(\Sigma)^{n}\right)$ for $n \geq n_{0}$. From this we deduce that $\mathcal{S}_{r}(\Sigma)^{n}$ is path connected and simply connected for $n \geq n_{0}$. This, together with the fact that u is a homotopy equivalence, implies that the same holds true for Z^{n}. Finally, observe that Z^{n} being path connected implies that the same is true for Z^{n} / G. Therefore we can use Z^{n} instead of Z in Theorem 4.1 and as Z^{n} / G is finite we get a finite presentation. Hence we have the following theorem.

Theorem 6.2. Let $U_{r}(\Sigma)$ be a valid, bounded and complete Cantor algebra, and let $n \geq 1$ be such that Z^{n} is simply connected. Then there is a finite presentation of $V_{r}(\Sigma)$ involving only strict generators (i, k, t) with $i+n_{t}-1 \leq n$, permutations (i, σ) with $i \leq n$, and relators involving these generators only, and which is obtained by truncating the presentation

$$
\left\langle W_{s} \cup W_{p} \mid R_{D} \cup R_{\Sigma} \cup R_{P D} \cup R_{P}\right\rangle
$$

given in (1).
The main difference with the reduction process of Section 5 is that we are now also reducing the set of relators. Moreover, the "truncated" set of generators in the finite presentation obtained this way can be further reduced using the same arguments as in Section 5.

Example 6.3. For $G=V$, in [Fluch et al. 2013, Corollary 3.9] there is an explicit condition on n that implies that Z^{n} is simply connected: we need

$$
1 \leq\left\lfloor\frac{n-1}{3}\right\rfloor-1 ;
$$

thus we can take $n=7$. This means that the set of strict generators in Example 5.1 can be reduced to x_{0}, \ldots, x_{4} and the relators of disjoint type can be reduced to

$$
x_{k}^{-1} x_{l} x_{k}=x_{l+1},
$$

where $(k, l, l+1)$ is one of the following tuples: $(0,1,2),(0,2,3),(0,3,4)$, $(1,2,3),(1,3,4),(2,3,4)$. At this point it is not difficult to write down a finite presentation of V. Note also that in Example 5.3 we had already reduced to two strict generators x_{0} and x_{1}.

Recently, Bleak and Quick [2017] found a short finite presentation for V with two generators and nine relations using different methods.

Using our methods we get a finite presentation of Thompson's group F, and by using Tietze moves this presentation can be transformed to the well-known

$$
\left\langle x_{0}, x_{1} \mid x_{0}^{-3} x_{1} x_{0}^{3}=x_{1}^{-1} x_{0}^{-2} x_{1} x_{0}^{2} x_{1}, x_{0}^{-2} x_{1} x_{0}^{2}=x_{1}^{-1} x_{0}^{-1} x_{1} x_{0} x_{1}\right\rangle
$$

Example 6.4. For $G=s V$ we can also use [Fluch et al. 2013, Corollary 3.9] to compute the value of n making Z^{n} simply connected: we need

$$
1 \leq\left\lfloor\frac{n-1}{2^{s}}\right\rfloor-1,
$$

thus we can take $n=1+2^{s+1}$. Recall that when choosing the maximal tree in Z / G we chose expansion by one colour only (see Example 4.3). Let that colour be denoted by 1. For the same reason as in Example 5.1 we now have that elements of the form $(i, i, 1)$ are the identity, and that for any colour t and any $k<i-1$, we have $(i, k, t)=(k+1, k, t)$.

This now gives an infinite W_{s}, which for $G=2 V$ can be listed as

$$
(i+1, i, 1), \quad(i+1, i, 2), \quad \text { and } \quad(k, k, 2),
$$

which corresponds to the infinite order generators A_{i-1}, B_{i-1} and C_{i} of Brin's infinite generating set of $2 V$; see [Brin 2004] or [Burillo and Cleary 2010]. Now by Theorem 5.2(1), this can be reduced to a finite generating set with seven strict generators; those where $i \leq 2$ and $k \leq 3$, as well as a finite number of permutation generators. Using Theorem 6.2 without any further reductions, we get a finite presentation where $i \leq 7$ and $k \leq 8$.

7. Finite presentation for centralisers of finite subgroups

The proof of [Martínez-Pérez et al. 2016, Theorem 4.9] can be used to show that whenever the group $V_{k}(\Sigma)$ is finitely presented for any k, then so is $C_{V_{r}(\Sigma)}(Q)$ for any finite $Q \leq V_{r}(\Sigma)$, but the proof there does not yield an explicit finite presentation. In this section we are going to construct a finite presentation of $C_{V_{r}(\Sigma)}(Q)$. To do that, we proceed as follows. Note first that, by [Martínez-Pérez et al. 2016, Theorem 4.2], the group $C_{V_{r}(\Sigma)}(Q)$ is a direct product of groups of the form

$$
\underline{\lim }\left(U_{r^{\prime}}(\Sigma), L\right) \rtimes V_{r^{\prime}}(\Sigma) .
$$

We now summarise the notation developed in [Martínez-Pérez et al. 2016]. The semidirect product above is associated to a fixed transitive permutation representation $\varphi: Q \rightarrow S_{m}$ of the finite group Q, where S_{m} is the symmetric group of degree m, the orbit length. Then L is the centraliser of the image $\varphi(Q)$ in S_{m} and thus is a finite group. The number r^{\prime} depends on φ (see [Martínez-Pérez et al. 2016, Theorem 4.2]), but in order to simplify notation we will just set $r^{\prime}=r$. The set of bases in $U_{r}(\Sigma)$ together with the expansion maps can be viewed as a directed graph and we let $\left(U_{r}(\Sigma), L\right)$ be the following diagram of groups associated to this graph: To each basis A we associate $\operatorname{Maps}(A, L)$, the group with elements the maps from A to L where the group operation is induced by multiplication in L. Each simple expansion $A \leq B$ corresponds to the diagonal map $\delta: \operatorname{Maps}(A, L) \rightarrow \operatorname{Maps}(B, L)$ with $\delta(f)\left(a \alpha_{i}^{j}\right)=f(a)$, where $a \in A$ is the expanded element. Then we consider the direct limit $\lim _{(}\left(U_{r}(\Sigma), L\right)$ whose elements are determined by some basis A and a map $A \rightarrow L$. Observe that we may always assume that the basis A satisfies $X_{r} \leq A$.

We begin by studying presentations for $\underline{\underline{l i m}}\left(U_{r}(\Sigma), L\right)$. We will obtain an infinite presentation (see Lemma 7.1 below) and then we will use the semidirect product action of $V_{r}(\Sigma)$ on this presentation together with the so-called Burnside procedure described in the Appendix to get a (finite) presentation of the group $\xrightarrow{\lim }\left(U_{r}(\Sigma), L\right) \rtimes V_{r}(\Sigma)$.

We begin by constructing a generating system for the group $\varliminf_{\underline{l}}\left(U_{r}(\Sigma), L\right)$. Take $x \in L$ and A a basis with $X_{r} \leq A$. Take some subset $A_{1} \subseteq A$ and let $\chi_{A_{1}, x} \in$ $\underline{\varliminf}\left(U_{r}(\Sigma), L\right)$ be the element that maps every $a \in A_{1}$ to x and every $a \in A \backslash A_{1}$ to the identity $1 \in L$. It is easy to see that the set of all the elements of this form generates our group, but observe that there might be a uniqueness issue because if we had another basis C with $A \leq C$ and C_{1} were the subset of those elements in C coming from elements in A_{1}, then $\chi_{A_{1}, x}$ would equal $\chi_{C_{1}, x}$. To avoid this problem we set $\omega\left(A_{1}\right):=\left\{b\right.$ is a descendant of elements in $X_{r} \mid a w=b w^{\prime}$

$$
\text { for some } \left.a \in A_{1} \text { and descending words } w, w^{\prime}\right\}
$$

(this was denoted $A_{1}(\mathcal{L})$ in [Martínez-Pérez et al. 2016]) and

$$
\Omega:=\left\{\omega\left(A_{1}\right) \mid A_{1} \text { is a subset of some basis } A \geq X_{r}\right\} .
$$

At first sight, this set Ω seems different from the set Ω defined in [Martínez-Pérez et al. 2016], which was defined for arbitrary finite subsets of the set of all descendants of elements in X_{r}, but Lemma 4.5(i) in that paper shows that since we are assuming that our Cantor algebra is valid and bounded they are in fact equal.

We set $\chi_{\omega, x}:=\chi_{A_{1}, x}$, where $\omega=\omega\left(A_{1}\right)$. Observe that the proof of [MartínezPérez et al. 2016, Lemma 4.5(i)] also implies that $\omega\left(A_{1}\right)=\omega\left(C_{1}\right)$, provided that $A \leq C$ and C_{1} is the subset of those elements in C coming from elements in A_{1} (or, in other words, $C_{1}=C \cap \omega\left(A_{1}\right)$). As a consequence one easily sees that for any B_{1} subset of a basis B with $X_{r} \leq B$,

$$
\chi_{A_{1}, x}=\chi_{B_{1}, x} \Longleftrightarrow \omega\left(A_{1}\right)=\omega\left(B_{1}\right),
$$

implying that $\chi_{\omega, x}$ is well defined.
We will need a bit more of the notation from [Martínez-Pérez et al. 2016]. Let $\omega \in \Omega$ and $A_{1} \subseteq A \geq X_{r}$ with $\omega=\omega\left(A_{1}\right)$. We set

$$
\|\omega\|= \begin{cases}t & \text { if }\left|A_{1}\right| \equiv t \bmod d \text { with } 0<t \leq d, \\ 0 & \text { if } \omega=\varnothing\end{cases}
$$

This does not depend on A_{1}; see [Martínez-Pérez et al. 2016, Lemma 4.5(v)]. Now, let $\omega_{1}, \omega_{2} \in \Omega$ and $A_{1}, A_{2} \subseteq A \geq X_{r}$ with $\omega_{i}=\omega\left(A_{i}\right)$ for $i=1,2$. Observe that the fact that our Cantor algebra is bounded means that we can always find such A_{1} and A_{2}. If $A_{1} \cap A_{2}=\varnothing$, we write $\omega_{1} \wedge \omega_{2}=\varnothing$. Again, this is well defined, by [Martínez-Pérez et al. 2016, Lemma 4.5(vi)].

Lemma 7.1. The following is a presentation of $\underset{\longrightarrow}{\lim }\left(U_{r}(\Sigma), L\right)$:

$$
\left\langle\left(\chi_{\omega, x}\right)_{\omega \in \Omega \backslash \varnothing, x \in L} \mid \mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}\right\rangle,
$$

where

$$
\begin{aligned}
& \mathcal{R}_{1}=\left\{\chi_{\omega, x y}^{-1} \chi_{\omega, x} \chi_{\omega, y} \mid \omega \in \Omega, x, y \in L\right\}, \\
& \mathcal{R}_{2}=\left\{\left[\chi_{\omega, x}, \chi_{\omega^{\prime}, y}\right] \mid \omega, \omega^{\prime} \in \Omega, \omega \wedge \omega^{\prime}=\varnothing\right\}, \\
& \mathcal{R}_{3}=\left\{\chi_{\omega, x}^{-1} \chi_{\omega_{1}, x} \chi_{\omega_{2}, x} \mid \omega, \omega_{1}, \omega_{2} \in \Omega, \omega=\omega_{1} \dot{\cup} \omega_{2}\right\},
\end{aligned}
$$

where $\omega_{1} \dot{\cup} \omega_{2}$ denotes the disjoint union. Moreover $V_{r}(\Sigma)$ acts by permutations with finitely many orbits on this presentation.

Proof. As observed above, any $\chi \in \underline{\lim }\left(U_{r}(\Sigma), L\right)$ is a product of elements of the form $\chi_{\omega, x}$ for a suitable $\omega \in \Omega$ and $x \in L$. Let F denote the free group on the set $\left\{\tilde{\chi}_{\omega, x} \mid \omega \in \Omega \backslash \varnothing, x \in L\right\}$. There is an epimorphism

$$
F \xrightarrow{\tau} \underline{\lim }\left(U_{r}(\Sigma), L\right)
$$

with $\tau\left(\tilde{\chi}_{\omega, x}\right)=\chi_{\omega, x}$. Let G be the abstract group defined in the statement of the result for the generators $\tilde{\chi}_{\omega, x}$. It is immediate to verify that the epimorphism τ
defined above induces an epimorphism from G to $\underline{\lim }\left(U_{r}(\Sigma), L\right)$ which we still call τ. This follows since all relations inside G are easily verified to hold for the images $\tau\left(\tilde{\chi}_{\omega, x}\right)$. Assume that we have a word $\widetilde{w}=w\left(\tilde{\chi}_{\omega_{1}, x_{1}}, \ldots, \tilde{\chi}_{\omega_{k}, x_{k}}\right)$, for some $\omega_{1}, \ldots, \omega_{k} \in \Omega$ and $x_{1}, \ldots, x_{k} \in L$. Assume further that

$$
1=\tau(\widetilde{w})=\tau\left(w\left(\tilde{\chi}_{\omega_{1}, x_{1}}, \ldots, \tilde{\chi}_{\omega_{k}, x_{k}}\right)\right)=w\left(\tau\left(\tilde{\chi}_{\omega_{1}, x_{1}}\right), \ldots, \tau\left(\tilde{\chi}_{\omega_{k}, x_{k}}\right)\right) .
$$

Let $X_{r} \leq A$ be a basis with subsets $A_{i} \subseteq A$ such that $\omega_{i}=A_{i}(\mathcal{L})$ for $i=1, \ldots, k$. We now refine the set $\left\{A_{1}, \ldots, A_{k}\right\}$ to a set $\left\{A_{1}^{\prime}, \ldots, A_{k^{\prime}}^{\prime}\right\}$ of subsets of A such that for all $i, j \leq k^{\prime}$ either $A_{i}^{\prime} \cap A_{j}^{\prime}=\varnothing$ or $A_{i}^{\prime}=A_{j}^{\prime}$. By suitably applying the relations in \mathcal{R}_{3} to both the original word $w\left(\tilde{\chi}_{\omega_{1}, x_{1}}, \ldots, \tilde{\chi}_{\omega_{k}, x_{k}}\right)$ and its image

$$
w:=\tau(\widetilde{w})=w\left(\chi_{\omega_{1}, x_{1}}, \ldots, \chi_{\omega_{k}, x_{k}}\right),
$$

we may rewrite each occurrence of $\chi_{\omega_{i}, x_{i}}$ and $\widetilde{\chi}_{\omega_{i}, x_{i}}$ in terms of suitable new elements $\tau\left(\tilde{\chi}_{\omega_{j}^{\prime}, y_{j}}\right)$ and $\chi_{\omega_{j}^{\prime}, y_{j}}$ for $1 \leq j \leq k^{\prime}$, so that either $\omega_{j}^{\prime} \wedge \omega_{i}^{\prime}=\varnothing$ or $\omega_{j}^{\prime}=\omega_{i}^{\prime}$.

Reordering them so that $\omega_{1}, \ldots, \omega_{u}$ for $1 \leq u \leq k^{\prime}$ are pairwise distinct and applying the relations in \mathcal{R}_{2} and \mathcal{R}_{1} to group together the suitable products of the y_{j} 's we obtain new words

$$
\widetilde{w} \sim \widetilde{w}^{\prime}=\tilde{\chi}_{\omega_{1}^{\prime}, z_{1}} \cdots \tilde{\chi}_{\omega_{u}^{\prime}, z_{u}}, \quad w \sim w^{\prime}=\chi_{\omega_{1}^{\prime}, z_{1}} \cdots \chi_{\omega_{u}^{\prime}, z_{u}},
$$

where the ω_{i}^{\prime} 's are pairwise disjoint.
If $w^{\prime} \sim 1$, we must have $z_{i}=1$ for any $1 \leq i \leq u$, by applying the word w^{\prime} to an $a \in A_{i}$ such that $A_{i}(\mathcal{L})=\omega_{i}^{\prime}$. From \mathcal{R}_{1} it is immediate to see that $\tilde{\chi}_{\omega, 1}=1$ for any $\omega \in \Omega$ so we also have $\widetilde{w} \sim \widetilde{w}^{\prime} \sim 1$ and G gives a presentation of $\underline{\longrightarrow}\left(U_{r}(\Sigma), L\right)$.

By [Martínez-Pérez et al. 2016, Lemma 4.7], the group $V_{r}(\Sigma)$ acts by permutations on Ω. Moreover, for any $g \in V_{r}(\Sigma)$, if $\omega, \omega^{\prime} \in \Omega$ are such that $\omega \wedge \omega^{\prime}=\varnothing$, then $g \omega \wedge g \omega^{\prime}=\varnothing$ and if $\omega=\omega_{1} \cup \omega_{2}$ for $\omega_{1}, \omega_{2} \in \Omega$, then $g \omega=g \omega_{1} \cup g \omega_{2}$. Therefore $V_{r}(\Sigma)$ acts by permutations on this presentation. To prove the last statement, it suffices to check the following:
Claim 1. The set of generators is $V_{r}(\Sigma)$-finite.
Claim 2. Each of the sets of relations $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}$ is $V_{r}(\Sigma)$-finite.
As the group L is finite, both claims follow from slight variations of the proof of [Martínez-Pérez et al. 2016, Lemma 4.7]. For example, for Claim 2 for \mathcal{R}_{2}, it suffices to check that whenever we have $\omega, \omega^{\prime}, \widehat{\omega}, \widehat{\omega}^{\prime} \in \Omega$ with

$$
\omega \wedge \omega^{\prime}=\varnothing, \quad \widehat{\omega} \wedge \widehat{\omega}^{\prime}=\varnothing, \quad\|\omega\|=\|\widehat{\omega}\| \quad \text { and } \quad\left\|\omega^{\prime}\right\|=\left\|\widehat{\omega}^{\prime}\right\|,
$$

then there is some $g \in V_{r}(\Sigma)$ such that for any $x \in L$, we have $\chi_{\widehat{\omega}, x}=\chi_{\omega, x}^{g}$ and $\chi_{\widehat{\omega}^{\prime}, x}=\chi_{\omega^{\prime}, x}^{g}$. To get a suitable g, choose bases $X_{r} \leq A, \widehat{A}$ so that for $B, B^{\prime} \subseteq A$
and $\widehat{B}, \widehat{B}^{\prime} \subseteq \widehat{A}$, we have

$$
\begin{gathered}
\omega=\omega(B), \quad \omega^{\prime}=\omega\left(B^{\prime}\right), \quad \widehat{\omega}=\omega(\widehat{B}), \quad \widehat{\omega}^{\prime}=\omega\left(\widehat{B}^{\prime}\right), \\
|A|=|\widehat{A}|, \quad|B|=|\widehat{B}|, \quad\left|B^{\prime}\right|=\left|\widehat{B}^{\prime}\right| .
\end{gathered}
$$

The assumptions imply that $B \cap B^{\prime}=\varnothing=\widehat{B} \cap \widehat{B}^{\prime}$. So we may choose a $g \in V_{r}(\Sigma)$ with $g A=\widehat{A}, g B=\widehat{B}$ and $g B^{\prime}=\widehat{B}^{\prime}$.

In a completely analogous way one proves that for $\omega, \omega_{1}, \omega_{2}, \widehat{\omega}, \widehat{\omega}_{1}, \widehat{\omega}_{2} \in \Omega$ with

$$
\omega=\omega_{1} \cup \omega_{2}, \quad \widehat{\omega}=\widehat{\omega}_{1} \cup \widehat{\omega}_{2}, \quad\|\omega\|=\|\widehat{\omega}\|, \quad\left\|\omega_{1}\right\|=\left\|\widehat{\omega}_{1}\right\|, \quad\left\|\omega_{2}\right\|=\left\|\widehat{\omega}_{2}\right\|,
$$

there is some $g \in V_{r}(\Sigma)$ such that for any $x \in L$,

$$
\chi_{\widehat{\omega}, x}=\chi_{\omega, x}^{g}, \quad \chi_{\widehat{\omega}_{1}, x}=\chi_{\omega_{1}, x}^{g} \quad \text { and } \quad \chi_{\widehat{\omega}_{2}, x}=\chi_{\omega_{2}, x}^{g} .
$$

Proposition 7.2. Assume that the group $V_{r}(\Sigma)$ is finitely presented. Let $Q \leq V_{r}(\Sigma)$ be a finite subgroup. Given a finite presentation of $V_{r}(\Sigma)$, Lemma 7.1 together with Theorem A. 3 yield an explicit finite presentation of $C_{V_{r}(\Sigma)}(Q)$.
Proof. By [Martínez-Pérez et al. 2016, Theorem 4.2], it suffices to construct an explicit finite presentation of a group of the form

$$
H=\underline{\lim _{\longrightarrow}}\left(U_{r}(\Sigma), L\right) \rtimes V_{r}(\Sigma)
$$

when L is an arbitrary finite group. Let $V_{r}(\Sigma)=\langle Z \mid T\rangle$ be a finite presentation of $V_{r}(\Sigma)$ and let

$$
\underline{\underline{\lim }}\left(U_{r}(\Sigma), L\right)=\langle Y \mid R\rangle
$$

be the presentation constructed in Lemma 7.1. We need to verify the hypotheses of Theorem A.3. In Lemma 7.1 we have already checked that the group $V_{r}(\Sigma)$ acts by permutations in this presentation and that there are only finitely many orbits under that action. We may therefore choose $Y_{0} \subseteq Y$ and $R_{0} \subseteq R$ to be finite sets of representatives of these orbits.

The argument in Section A1 thus implies that the group H has the presentation

$$
\left\langle Y_{0}, Z \mid \widehat{R}_{0}, T,\left[\operatorname{Stab}_{V_{r}(\Sigma)}(y), y\right], y \in Y_{0}\right\rangle .
$$

We can give explicit descriptions of possible choices for the sets Y_{0}, R_{0}. Set $X_{r}=\left\{x_{1}, \ldots, x_{r}\right\}$ and let $\omega_{i}=\omega\left(\left\{x_{1}, \ldots, x_{i}\right\}\right)$ for $i=1, \ldots, r$. Then:

$$
Y_{0}=\left\{\chi_{\omega_{i}, z} \mid 1 \leq i \leq r, z \in L\right\} .
$$

To describe R_{0}, we are going to split it into three pairwise disjoint subsets $R_{0}=R_{0}^{1} \cup R_{0}^{2} \cup R_{0}^{3}$, according to the three subsets of relations $\mathcal{R}_{1}, \mathcal{R}_{2}$ and \mathcal{R}_{3} of Lemma 7.1. The simplest one is R_{0}^{1} :

$$
R_{0}^{1}=\left\{\chi_{\omega_{i}, z y}^{-1} \chi_{\omega_{i}, z} \chi_{\omega_{i}, y} \mid 1 \leq i \leq r, z \in L\right\} .
$$

For R_{0}^{2}, R_{0}^{3} it is more convenient to fix a basis $X_{r} \leq A$ with $|A| \geq 2 r$. Then we may choose

$$
\begin{aligned}
& R_{0}^{2}=\left\{\left[\chi_{\omega, z}, \chi_{\omega^{\prime}, z}\right] \mid z \in L, \omega=\omega\left(A_{1}\right), \omega^{\prime}=\omega\left(A_{1}^{\prime}\right), A_{1}, A_{1}^{\prime} \subseteq A, A_{1} \cap A_{1}^{\prime}=\varnothing\right\}, \\
& R_{0}^{3}=\left\{\chi_{\omega, z}^{-1} \chi_{\omega_{1}, z} \chi_{\omega_{2}, z} \mid z \in L, \omega_{1}=\omega\left(A_{1}\right), \omega_{2}=\omega\left(A_{2}\right), \omega=\omega_{1} \dot{\cup} \omega_{2}, A_{1}, A_{2} \subseteq A\right\} .
\end{aligned}
$$

Observe that these choices of R_{0}^{2} and R_{0}^{3} yield redundant presentations.
The previous presentation may not be finite because of all the relations needed to form $\left[\operatorname{Stab}_{V_{r}(\Sigma)}(y), y\right]$ where $y \in Y_{0}$. Notice that $g \in \operatorname{Stab}_{V_{r}(\Sigma)}(y)$ if and only if $g(\omega)=\omega$ where $y=\chi_{\omega, z}$ for some $z \in L$. By [Martínez-Pérez et al. 2016, Lemma 4.7] and the assumption on $V_{r}(\Sigma)$ we deduce that $\operatorname{Stab}_{V_{r}(\Sigma)}(y)$ is finitely generated by some generators μ_{1}, \ldots, μ_{m}.

Consider now the following m relations, which are a subset of the stabiliser relations $\left[\operatorname{Stab}_{V_{r}(\Sigma)}(y), y\right]$:

$$
\begin{equation*}
\mu_{i} \chi_{\omega, z} \mu_{i}^{-1}=\chi_{\omega, z}, \quad i=1, \ldots, m . \tag{7}
\end{equation*}
$$

If $g \in \operatorname{Stab}_{V_{r}(\Sigma)}(y)$, then $g=w\left(\mu_{1}, \ldots, \mu_{m}\right)$ and the stabiliser relation $g \chi_{\omega, z} g^{-1}=$ $\chi_{\omega, z}$ is thus obtained by starting from relation (7) for some i and then suitably conjugating this relation to build the word w.

Therefore, by Lemmas A. 1 and A.2, the group H has the finite presentation

$$
\left\langle Y_{0}, Z \mid \widehat{R}_{0}, T,\left[\mu_{i}, y\right], i=1, \ldots, m, y \in Y_{0}\right\rangle,
$$

where the elements μ_{1}, \ldots, μ_{m} are expressed as words in the generators Z.

Appendix: The Burnside procedure

We shall now give an outline of the Burnside procedure used in the proof of Proposition 7.2. As mentioned in the Introduction, we do not claim any originality for this. For example, this procedure has been used, without proof, in [Guralnick et al. 2011]. We are not aware of any place where a proof is presented. Hence we include it here for completeness.

The goal is to find a small finite presentation of a group, in the cases where the following procedure can be applied. The idea is to look for a possibly infinite, but well-behaved, presentation of a group G and a group Q such that the action of Q on the generators and relators of G cuts them down to a very small number. At a later stage, the group Q will be assumed to be a subgroup of G and its action will return a new smaller presentation.

A1. Preliminary lemmas. The beginning of this procedure is general and we only require each of the groups G and Q to have a presentation, without any assumption on them.

Let $G=\langle Y \mid R\rangle$ and $Q=\langle Z \mid T\rangle$ be groups. Let Q act on Y by permutations. Notice that $R \subseteq F(Y)$, where $F(Y)$ is the free group generated by Y, and observe that Q also acts on $F(Y)$. We assume that $Q(R)=R$. Let Y_{0} be a set of representatives for the Q-orbits in Y and R_{0} be a set of representatives for the Q-orbits in R. We observe that $R_{0} \subseteq F(Y)=\left\langle t\left(a_{0}\right) \mid a_{0} \in Y_{0}, t \in Q\right\rangle$, that is, we may express the elements of R_{0} as products of the results of Q acting on elements of Y_{0}. In the special case that Q is a subgroup of G, we will be able to express elements in R_{0} as products of conjugates of elements in Y_{0} by elements in Q. Hence each element of R_{0}, seen as an element in G, can be written in more than one way and we fix an expression of the type $t_{1}\left(a_{1}\right) \cdots t_{k}\left(a_{k}\right)$ for such elements. We then define the set $\widehat{R}_{0} \subseteq\left\langle t a_{0} t^{-1} \mid a_{0} \in Y_{0}, t \in Q\right\rangle$ to be the set of fixed expressions for the elements of R_{0}, where we have replaced the action of Q on Y_{0} by the conjugation of elements. That is, if $t_{1}\left(a_{1}\right) \cdots t_{k}\left(a_{k}\right)$ is a fixed expression in R_{0}, the corresponding element in \widehat{R}_{0} is $t_{1} a_{1} t_{1}^{-1} \cdots t_{k} a_{k} t_{k}^{-1}$. The set \widehat{R}_{0} is thus a set of formal expressions which will be used later to express relations in the groups.

Lemma A.1. Following the notation previously defined, we have

$$
G \rtimes Q \cong\left\langle Y_{0}, Z \mid \widehat{R}_{0}, T,\left[\operatorname{Stab}_{Q}(y), y\right], y \in Y_{0}\right\rangle,
$$

where the semidirect product is given by the action of Q on G as follows: for all $g_{1}, g_{2} \in G$ and $t_{1}, t_{2} \in Q$, multiplication is given by

$$
\left(g_{1}, t_{1}\right)\left(g_{2}, t_{2}\right)=\left(g_{1} \cdot t_{1}\left(g_{2}\right), t_{1} t_{2}\right)
$$

Proof. Let H be the group presented by $\left\langle Y_{0}, Z\right| \widehat{R}_{0}, T$, $\left.\left[\operatorname{Stab}_{Q}(y), y\right], y \in Y_{0}\right\rangle$. Define the group homomorphism $\varphi: F\left(Y_{0} \cup Z\right) \rightarrow G \rtimes Q$ by sending $a_{0} \in Y_{0}$ to $\left(a_{0}, 1\right) \in G \rtimes Q$ and $c \in Z$ to $(1, c) \in G \rtimes Q$. By construction we see that

$$
\begin{equation*}
\varphi(t) \varphi\left(a_{0}\right) \varphi(t)^{-1}=\left(t\left(a_{0}\right), 1\right) \tag{*}
\end{equation*}
$$

for any word $t \in Q$.
Claim 1. The map φ induces a homomorphism $H \rightarrow G \rtimes Q$, which we still call φ.
Proof. If $d \in T$ is a relation in H, then $d=c_{1} \cdots c_{k}$, for some $c_{i} \in Z$, and $\varphi\left(c_{1}\right) \cdots \varphi\left(c_{k}\right)=(1,1)$. Let now $\widehat{b}_{0} \in \widehat{R}_{0}$ be a relation in H, then

$$
\widehat{b}_{0}=t_{1} a_{1} t_{1}^{-1} \cdots t_{k} a_{k} t_{k}^{-1},
$$

for some $a_{i} \in Y_{0}$ and $t_{i} \in Q$. Moreover, by applying (*), we get

$$
\prod_{i=1}^{k} \varphi\left(t_{i}\right) \varphi\left(a_{i}\right) \varphi\left(t_{i}\right)^{-1}=\left(\prod_{i=1}^{k} t_{i}\left(a_{i}\right), 1\right)=(1,1) .
$$

Finally let $a_{0} \in Y_{0}, t \in \operatorname{Stab}_{Q}\left(a_{0}\right)$. Thus we have, using (*) again,

$$
\varphi(t) \varphi\left(a_{0}\right) \varphi(t)^{-1} \varphi\left(a_{0}\right)^{-1}=\left(t\left(a_{0}\right), 1\right)\left(a_{0}^{-1}, 1\right)=(1,1) .
$$

Now we just apply von Dyck's theorem.
Claim 2. The map φ is surjective.
Proof. Any element $(1, t) \in\{1\} \times Q:=\{(1, s) \mid s \in Q\}$ can be written as $\left(1, c_{1} \cdots c_{k}\right)$ for suitable $c_{i} \in Z$ and so $\varphi(H)$ contains $\{1\} \times Q$. We observe that any element of $G \times\{1\}:=\{(h, 1) \mid h \in G\}$ can be written as $\left(t_{1}\left(a_{1}\right) \cdots t_{k}\left(a_{k}\right), 1\right)$ for suitable $a_{i} \in Y_{0}$ and $t_{i} \in Q$. By arguing as in Claim 1 we have $(g, 1)=\varphi\left(\prod_{i=1}^{k} t_{i} a_{i} t_{i}^{-1}\right)$. Thus, $\varphi(H) \geq\langle G \times\{1\},\{1\} \times Q\rangle=G \rtimes Q$.

Claim 3. The map φ is injective.
Proof. Any element of Y can be written as $t\left(a_{0}\right)$, for some $a_{0} \in Y_{0}$ and $t \in Q$. Define $\bar{Y}^{*}=\left\{t a_{0} t^{-1} \mid a_{0} \in Y_{0}, t \in Q\right\}$ to be the set of symbols of Y where we have replaced the action of Q with the conjugation of elements. We notice that, if $t\left(a_{0}\right)=s\left(a_{0}\right)$, then $t^{-1} s \in \operatorname{Stab}_{Q}\left(a_{0}\right)$ and we thus define an equivalence relation on \bar{Y}^{*} by writing $t a_{0} t^{-1} \sim s a_{0} s^{-1}$ if and only if $t^{-1} s \in \operatorname{Stab}_{Q}\left(a_{0}\right)$. We define $\bar{Y}:=\bar{Y}^{*} / \sim$ to be the collection of equivalence classes.

If $a \in Y$ and $a=t\left(a_{0}\right)$, for some $a_{0} \in Y_{0}$ and $t \in Q$, we define an element \bar{a} of \bar{Y} by setting $\bar{a}=\left\{s a_{0} s^{-1} \mid t^{-1} s \in \operatorname{Stab}_{Q}\left(a_{0}\right)\right\}$. With this notation, we observe that Q acts on \bar{Y} through

$$
(s, \bar{a}) \rightarrow s \cdot \bar{a}:=\overline{s t a_{0} t^{-1} s^{-1}},
$$

for some $a_{0} \in Y_{0}, t \in Q$ such that $\bar{a}=\overline{t a_{0} t^{-1}}$. Also, notice that the map $\psi: Y \rightarrow \bar{Y}$ sending $a \mapsto \bar{a}$ is a Q-equivariant bijection, that is $\psi(s a)=s \psi(a)=s \cdot \bar{a}$ for all $s \in Q$. Hence the action of Q on Y is equivalent to the action of Q on \bar{Y}. For each element $\bar{a} \in \bar{Y}$ we can fix a representative $t a_{0} t^{-1} \in F\left(Y_{0} \cup Z\right)$ and we call the set of representatives \widehat{Y}. By construction, every element $\widehat{b}_{0} \in \widehat{R}_{0}$ can be uniquely written as $\widehat{b}_{0}=t_{1} a_{1} t_{1}^{-1} \cdots t_{k} a_{k} t_{k}^{-1}$, so we define $\bar{R}_{0} \subseteq F(\bar{Y})$ be the set of elements

$$
\overline{t_{1} a_{1} t_{1}^{-1}} \cdots \overline{t_{k} a_{k} t_{k}^{-1}}
$$

We then let $\bar{R} \subseteq F(\bar{Y})$ be the set of all elements $\overline{t t_{1} a_{1} t_{1}^{-1} t^{-1}} \cdots \overline{t t_{k} a_{k} t_{k}^{-1} t^{-1}}$, for any $t \in Q$.

With these definitions, it makes sense to say that the normal closure $F(\bar{R})^{F(\bar{Y})}$ inside $F(\bar{Y})$ is isomorphic to $F(R)^{F(Y)}$ inside $F(Y)$. Also notice that

$$
F(\bar{Y}) \cong F\left(\bar{Y}^{*} / \sim\right)=\left\langle\bar{Y}^{*} \mid R \sim\right\rangle,
$$

where $R \sim$ is the set of all relations of the type $t a_{0} t^{-1} \sim s a_{0} s^{-1}$ if and only if $t^{-1} s \in \operatorname{Stab}_{Q}\left(a_{0}\right)$.

Let $w \in H$ be such that $\varphi(w)=(1,1)$. Let $w=c_{1} a_{1} c_{2} a_{2} \cdots a_{k} c_{k+1}$ for $a_{i} \in Y_{0}$ and $c_{i} \in\langle Z\rangle$ and we rewrite w as

$$
w=\left(c_{1} a_{1} c_{1}^{-1}\right)\left(c_{1} c_{2} a_{2} c_{2}^{-1} c_{1}^{-1}\right) \cdots\left(c_{1} c_{2} \cdots c_{k} a_{k} c_{k}^{-1} \cdots c_{1}^{-1}\right) c_{1} c_{2} \cdots c_{k} c_{k+1} .
$$

Define $t_{i}=c_{1} \cdots c_{i}$. Then, up to replacing t_{i} with another suitable $t_{i}^{\prime} \in Q$, we can assume that $\overline{t_{i} a_{i} t_{i}^{-1}} \in \widehat{Y}$. Hence we can write $w=\left(t_{1} a_{1} t_{1}^{-1} \cdots t_{k} a_{k} t_{k}^{-1}\right) t_{k+1}$ and, applying φ to the rewriting of w we get $(1,1)=\left(t_{1}\left(a_{1}\right) \cdots t_{k}\left(a_{k}\right), t_{k+1}\right)$.

Since $t_{k+1}=1$ inside Q, we can use the relations of Q to rewrite $t_{k+1}=1$ inside H. Similarly, since $t_{1}\left(a_{1}\right) \cdots t_{k}\left(a_{k}\right)=1$ inside G and since the normal closure $F(\bar{R})^{F(\bar{Y})}$ inside $F(\bar{Y})$ is isomorphic to $F(R)^{F(Y)}$ inside $F(Y)$, we can use the relations of G to rewrite $t_{1} a_{1} t_{1}^{-1} \cdots t_{k} a_{k} t_{k}^{-1}=1$ inside H. Therefore $w=1$ in H and so φ is injective.

The map φ is thus a group isomorphism and the proof of Lemma A. 1 is complete.

The following result does not depend on the presentations of the relevant groups and relies only on the definition of semidirect product.

Lemma A.2. Let G be a group and $Q \leq G$. Let $G \rtimes Q$ be the semidirect product constructed using the action of Q on G by conjugation inside G. Then

$$
G \rtimes Q \cong G \times Q .
$$

Proof. Let $H:=G \rtimes Q$ with product given by $(a, x)(b, y)=\left(a x b x^{-1}, x y\right)$. It is clear that $\widetilde{Q}=\left\{\left(t^{-1}, t\right) \mid t \in Q\right\}$ is a subgroup of H and $\widetilde{Q} \cong Q$. Since

$$
(a, x)=(a x, 1)\left(x^{-1}, x\right),
$$

H is generated by $G \times\{1\}$ and \widetilde{Q}. It is straightforward to verify that Q is normal and so, since $G \times\{1\}$ is normal as well, we get $G \rtimes Q \cong(G \times\{1\}) \times \widetilde{Q} \cong G \times Q$.

A2. The Burnside procedure. We are now ready to explain the Burnside procedure. We make two additional assumptions with respect to those in Section A1. We assume
(i) the presentation $Q=\langle Z \mid T\rangle$ is finite,
(ii) the number of Q-orbits in Y is finite (and possibly very small, in practical applications),
(iii) the number of Q-orbits in R is finite (and also possibly very small),
(iv) the stabilisers $\operatorname{Stab}_{Q}(y)$ are finitely generated, for $y \in Y_{0}$.

Let G and Q be as defined in Lemma A.1, $Q \leq G$ and let Q act by conjugation on G, then Lemmas A. 1 and A. 2 imply that

$$
\left.G \times Q \cong\left\langle Y_{0}, Z\right| \widehat{R}_{0}, T,\left[\operatorname{Stab}_{Q}(y), y\right] \text { for } y \in Y_{0}\right\rangle .
$$

We rewrite Z in terms of Y_{0} and then mod out Q. We also use the finite generation of $\operatorname{Stab}_{Q}(y)$ to rewrite the stabiliser relations as conjugations. Therefore we obtain the following theorem:

Theorem A. 3 (Burnside procedure). Let G, Q be the groups defined in Lemma A.1. Assume that
(i) $Q \leq G$ and Q acts by conjugation on G,
(ii) $Q=\langle Z \mid T\rangle$ is finitely presented,
(iii) the number of Q-orbits in Y is finite,
(iv) the number of Q-orbits in R is finite,
(v) the stabilisers $\operatorname{Stab}_{Q}(y)$ are finitely generated, for $y \in Y_{0}$.

Then there exists a finite presentation of G of the type

$$
\begin{aligned}
& G=\left\langle Y_{0}, Z\right| R_{0}, T, c y c^{-1}=y, \text { for } y \in Y_{0}, \\
&\text { a generator } \left.c \text { of } \operatorname{Stab}_{Q}(y), \text { finitely many extra relations }\right\rangle,
\end{aligned}
$$

where the extra relations are obtained in the following way: there is a relation for every element $c \in Z$ and it has the form

$$
c=\text { word in conjugates of elements of } Y_{0} \text { by elements of } Z .
$$

A3. An application. The following example is taken from [Guralnick et al. 2011]. Recall the following presentation for the alternating group

$$
\operatorname{Alt}(n+2)=\left\langle x_{1}, \ldots, x_{p} \mid\left(x_{i}\right)^{3},\left(x_{i} x_{j}\right)^{2}, i \neq j\right\rangle,
$$

where x_{i} can be realised as the 3 -cycle (i $n+1 n+2$). Hence

$$
\operatorname{Alt}(7)=\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \mid\left(x_{i}\right)^{3},\left(x_{i} x_{j}\right)^{2}, i \neq j\right\rangle:=G .
$$

On the other hand, it can be shown that

$$
\operatorname{Alt}(5)=\left\langle a, b \mid a^{5}, b^{2},(a b)^{3}\right\rangle:=Q
$$

where a can be realised as (12345) and $b=(23)(45)$. Let $z:=x_{1}=(167)$ and observe that $x_{i}=z^{a^{i-1}}$, for $i=1, \ldots, 5$. Now we check that

$$
\begin{aligned}
Y & =\left\{x_{1}, \ldots, x_{5}\right\}, & Y_{0} & =\{z\}, & & R=\left\{\left(x_{i}\right)^{3},\left(x_{i} x_{j}\right)^{2}, i \neq j\right\}, \\
R_{0} & =\left\{z^{3},\left(z z^{a}\right)^{2}\right\}, & Z & =\{a, b\}, & & T=\left\{a^{5}, b^{2},(a b)^{3}\right\}
\end{aligned}
$$

satisfy the conditions of Theorem A.3. Noting that $\left\{\left[\operatorname{Stab}_{Q}(y), y\right]\right.$ for $\left.y \in Y_{0}\right\}=$ $\left\{[z, b],\left[z,(b a)^{a}\right]\right\}$, we have

$$
G \times Q=\left\langle a, b, z \mid a^{5}, b^{2},(a b)^{3}, z^{3},\left(z z^{a}\right)^{2},[z, b],\left[z,(b a)^{a}\right]\right\rangle .
$$

We can write $a=w_{1}\left(x_{1}, \ldots, x_{5}\right)$ and $b=w_{2}\left(x_{1}, \ldots, x_{5}\right)$, for suitable words $w_{1}, w_{2} \in F\left(x_{1}, \ldots, x_{5}\right)$ and then Theorem A. 3 yields the following finite presentation for $\operatorname{Alt}(7)$:

$$
\begin{aligned}
& \operatorname{Alt}(7)=\langle a, b, z| R_{0}, T,[z, b],\left[z,(b a)^{a}\right] \\
& \left.\qquad a^{-1} w_{1}\left(z, z^{a}, \ldots, z^{a^{4}}\right), b^{-1} w_{2}\left(z, z^{a}, \ldots, z^{a^{4}}\right)\right\rangle .
\end{aligned}
$$

Acknowledgments

We would like to thank Collin Bleak for helpful discussions related to [Bleak et al. 2013] and Martin Kassabov for introducing to us the Burnside procedure used in [Guralnick et al. 2011].

References

[Bestvina and Brady 1997] M. Bestvina and N. Brady, "Morse theory and finiteness properties of groups", Invent. Math. 129:3 (1997), 445-470. MR Zbl
[Bleak and Quick 2017] C. Bleak and M. Quick, "The infinite simple group V of Richard J. Thompson: presentations by permutations", Groups Geom. Dyn. 11:4 (2017), 1401-1436. MR Zbl
[Bleak et al. 2013] C. Bleak, H. Bowman, A. Gordon Lynch, G. Graham, J. Hughes, F. Matucci, and E. Sapir, "Centralizers in the R. Thompson group V_{n} ", Groups Geom. Dyn. 7:4 (2013), 821-865. MR Zbl
[Brin 2004] M. G. Brin, "Higher dimensional Thompson groups", Geom. Dedicata 108 (2004), 163-192. MR Zbl
[Brin and Squier 2001] M. G. Brin and C. C. Squier, "Presentations, conjugacy, roots, and centralizers in groups of piecewise linear homeomorphisms of the real line", Comm. Algebra 29:10 (2001), 4557-4596. MR Zbl
[Burillo and Cleary 2010] J. Burillo and S. Cleary, "Metric properties of higher-dimensional Thompson's groups", Pacific J. Math. 248:1 (2010), 49-62. MR Zbl
[Cannon et al. 1996] J. W. Cannon, W. J. Floyd, and W. R. Parry, "Introductory notes on Richard Thompson's groups", Enseign. Math. (2) 42:3-4 (1996), 215-256. MR Zbl
[Fluch et al. 2013] M. G. Fluch, M. Marschler, S. Witzel, and M. C. B. Zaremsky, "The BrinThompson groups $s V$ are of type F_{∞} ", Pacific J. Math. 266:2 (2013), 283-295. MR Zbl
[Geoghegan 2008] R. Geoghegan, Topological methods in group theory, Graduate Texts in Math. 243, Springer, 2008. MR Zbl
[Guralnick et al. 2011] R. M. Guralnick, W. M. Kantor, M. Kassabov, and A. Lubotzky, "Presentations of finite simple groups: a computational approach", J. Eur. Math. Soc. 13:2 (2011), 391-458. MR Zbl
[Hatcher 2002] A. Hatcher, Algebraic topology, Cambridge Univ. Press, 2002. MR Zbl
[Hennig and Matucci 2012] J. Hennig and F. Matucci, "Presentations for the higher-dimensional Thompson groups $n V^{\prime}$, Pacific J. Math. 257:1 (2012), 53-74. MR Zbl
[Higman 1974] G. Higman, Finitely presented infinite simple groups, Notes on Pure Math. 8, Australian National Univ., Canberra, 1974. MR
[Kochloukova et al. 2013] D. H. Kochloukova, C. Martínez-Pérez, and B. E. A. Nucinkis, "Cohomological finiteness properties of the Brin-Thompson-Higman groups 2 V and 3 V ", Proc. Edinb. Math. Soc. (2) 56:3 (2013), 777-804. MR Zbl
[Martínez-Pérez and Nucinkis 2013] C. Martínez-Pérez and B. E. A. Nucinkis, "Bredon cohomological finiteness conditions for generalisations of Thompson groups", Groups Geom. Dyn. 7:4 (2013), 931-959. MR Zbl
[Martínez-Pérez et al. 2016] C. Martínez-Pérez, F. Matucci, and B. E. A. Nucinkis, "Cohomological finiteness conditions and centralisers in generalisations of Thompson's group V", Forum Math. 28:5 (2016), 909-921. MR Zbl
[Quillen 1973] D. Quillen, "Higher algebraic K-theory, I", pp. 85-147 in Algebraic K-theory, I : Higher K-theories (Seattle, 1972), edited by H. Bass, Lecture Notes in Math. 341, Springer, 1973. MR Zbl
[Stein 1992] M. Stein, "Groups of piecewise linear homeomorphisms", Trans. Amer. Math. Soc. 332:2 (1992), 477-514. MR Zbl

Received January 17, 2017. Revised December 12, 2017.

Conchita Martínez-Pérez
Departamento de Matemáticas
Universidad de Zaragoza
Zaragoza
Spain
conmar@unizar.es
Francesco Matucci
Instituto de Matemática, Estatística e Computação Científica
Universidade Estadual de Campinas
Campinas
Brazil
francesco@ime.unicamp.br
Brita Nucinkis
Department of Mathematics
Royal Holloway
University of London
United Kingdom
brita.nucinkis@rhul.ac.uk

LOCALIZATION FUNCTORS AND COSUPPORT IN DERIVED CATEGORIES OF COMMUTATIVE NOETHERIAN RINGS

Tsutomu Nakamura and Yuji Yoshino

Abstract

Let R be a commutative Noetherian ring. We introduce the notion of localization functors λ^{W} with cosupports in arbitrary subsets W of SpecR; it is a common generalization of localizations with respect to multiplicatively closed subsets and left derived functors of ideal-adic completion functors. We prove several results about the localization functors λ^{W}, including an explicit way to calculate λ^{W} using the notion of Čech complexes. As an application, we can give a simpler proof of a classical theorem by Gruson and Raynaud, which states that the projective dimension of a flat \boldsymbol{R}-module is at most the Krull dimension of R. As another application, it is possible to give a functorial way to replace complexes of flat \boldsymbol{R}-modules or complexes of finitely generated \boldsymbol{R}-modules by complexes of pure-injective \boldsymbol{R}-modules.

1. Introduction 405
2. Localization functors 408
3. Auxiliary results on localization functors 411
4. Projective dimension of flat modules 419
5. Cotorsion flat modules and cosupport 420
6. Complexes of cotorsion flat modules and cosupport 421
7. Localization functors via Čech complexes 424
8. Čech complexes and complexes of finitely generated modules 429
9. Cech complexes and complexes of pure-injective modules 431
Acknowledgements 433
References 434

1. Introduction

Throughout this paper, we assume that R is a commutative Noetherian ring. We denote by $\mathcal{D}=D(\operatorname{Mod} R)$ the derived category of all complexes of R-modules, by which we mean that \mathcal{D} is the unbounded derived category. For a triangulated subcategory \mathcal{T} of \mathcal{D}, its left and right orthogonal subcategories are defined as

[^12]${ }^{\perp} \mathcal{T}=\left\{X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(X, \mathcal{T})=0\right\}$ and $\mathcal{T}^{\perp}=\left\{Y \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(\mathcal{T}, Y)=0\right\}$, respectively. Moreover, \mathcal{T} is called localizing if \mathcal{T} is closed under arbitrary direct sums, and colocalizing if it is closed under arbitrary direct products.

Recall that the support of a complex $X \in \mathcal{D}$ is defined as

$$
\operatorname{supp} X=\left\{\mathfrak{p} \in \operatorname{Spec} R \mid X \otimes_{R}^{\mathrm{L}} \kappa(\mathfrak{p}) \neq 0\right\}
$$

where $\kappa(\mathfrak{p})=R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}$. We write $\mathcal{L}_{W}=\{X \in \mathcal{D} \mid \operatorname{supp} X \subseteq W\}$ for a subset W of Spec R. Then \mathcal{L}_{W} is a localizing subcategory of \mathcal{D}. Neeman [1992] proved that any localizing subcategory of \mathcal{D} is obtained in this way. The localization theory of triangulated categories [Krause 2010] yields a couple of adjoint pairs $\left(i_{W}, \gamma_{W}\right)$ and (λ_{W}, j_{W}) as it is indicated in the following diagram:

$$
\begin{equation*}
\mathcal{L}_{W} \underset{\gamma_{W}}{\stackrel{i_{W}}{\rightleftarrows}} \mathcal{D} \underset{j_{W}}{\stackrel{\lambda_{W}}{\rightleftarrows}} \mathcal{L}_{W}^{\perp} \tag{1.1}
\end{equation*}
$$

Here, i_{W} and j_{W} are the inclusion functors $\mathcal{L}_{W} \hookrightarrow \mathcal{D}$ and $\mathcal{L}_{W}^{\perp} \hookrightarrow \mathcal{D}$, respectively. In [Nakamura and Yoshino 2018], we introduced the colocalization functor with support in W as the functor γ_{W}. If V is a specialization-closed subset of $\operatorname{Spec} R$, then γ_{V} coincides with the right derived functor $\mathrm{R} \Gamma_{V}$ of the section functor Γ_{V} with support in V; it induces the local cohomology functors $H_{V}^{i}(-)=H^{i}\left(\mathrm{R} \Gamma_{V}(-)\right)$. In [loc. cit.], we established some methods to compute γ_{W} for general subsets W of Spec R. Furthermore, the local duality theorem and Grothendieck type vanishing theorem of local cohomology were extended to the case of γ_{W}.

On the other hand, in this paper, we introduce the notion of localization functors with cosupports in arbitrary subsets W of Spec R. Recall that the cosupport of a complex $X \in \mathcal{D}$ is defined as

$$
\operatorname{cosupp} X=\left\{\mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{RHom}_{R}(\kappa(\mathfrak{p}), X) \neq 0\right\} .
$$

We write $\mathcal{C}^{W}=\{X \in \mathcal{D} \mid \operatorname{cosupp} X \subseteq W\}$ for a subset W of Spec R. Then \mathcal{C}^{W} is a colocalizing subcategory of \mathcal{D}. Neeman [2011] proved that any colocalizing subcategory of \mathcal{D} is obtained in this way. ${ }^{1}$

We remark that there are equalities

$$
\begin{equation*}
{ }^{\perp} \mathcal{C}^{W}=\mathcal{L}_{W^{c}}, \quad \mathcal{C}^{W}=\mathcal{L}_{W^{c}}^{\perp}, \tag{1.2}
\end{equation*}
$$

where $W^{c}=\operatorname{Spec} R \backslash W$. The second equality follows from [Neeman 1992, Theorem 2.8], which states that $\mathcal{L}_{W^{c}}$ is equal to the smallest localizing subcategory of \mathcal{D} containing the set $\left\{\kappa(\mathfrak{p}) \mid \mathfrak{p} \in W^{c}\right\}$. Then it is seen that the first equality holds, since ${ }^{\perp}\left(\mathcal{L}_{W^{c}}^{\perp}\right)=\mathcal{L}_{W^{c}}($ see $[$ Krause 2010, §4.9]).

[^13]Now we write $\lambda^{W}=\lambda_{W^{c}}$ and $j^{W}=j_{W^{c}}$. By (1.1) and (1.2), there is a diagram of adjoint pairs:

$$
\perp_{\mathcal{C}^{W}}=\mathcal{L}_{W^{c}} \xrightarrow[\gamma_{W^{c}}]{i_{W^{c}}} \mathcal{D} \xrightarrow[j^{W}]{\rightleftarrows} \mathcal{C}^{W}=\mathcal{L}_{W^{c}}^{\perp}
$$

We call λ^{W} the localization functor with cosupport in W.
For a multiplicatively closed subset S of R, the localization functor $\lambda^{U_{S}}$ with cosupport in U_{S} is nothing but $(-) \otimes_{R} S^{-1} R$, where $U_{S}=\{\mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \cap S=\varnothing\}$. Moreover, for an ideal \mathfrak{a} of R, the localization functor $\lambda^{V(\mathfrak{a})}$ with cosupport in $V(\mathfrak{a})$ is isomorphic to the left derived functor $\mathrm{L} \Lambda^{V(\mathfrak{a})}$ of the \mathfrak{a}-adic completion functor $\Lambda^{V(\mathfrak{a})}=\lim \left(-\otimes_{R} R / \mathfrak{a}^{n}\right)$ defined on Mod R. See Section 2 for details.

In this paper, we establish several results about the localization functor λ^{W} with cosupport in a general subset W of $\operatorname{Spec} R$.

In Section 3, we prove that λ^{W} is isomorphic to $\prod_{\mathfrak{p} \in W} \mathrm{~L} \Lambda^{V(\mathfrak{p})}\left(-\otimes_{R} R_{\mathfrak{p}}\right)$ if there is no inclusion relation between two distinct prime ideals in W. Furthermore, we give a method to compute λ^{W} for a general subset W. We write $\eta^{W}: \operatorname{id}_{\mathcal{D}} \rightarrow \lambda^{W}$ $\left(=j^{W} \lambda^{W}\right)$ for the natural morphism given by the adjointness of $\left(\lambda^{W}, j^{W}\right)$. In addition, note that when $W_{0} \subseteq W$, there is a morphism $\eta^{W_{0}} \lambda^{W}: \lambda^{W} \rightarrow \lambda^{W_{0}} \lambda^{W} \cong \lambda^{W_{0}}$. The following theorem is one of the main results of this paper.

Theorem 1.3 (Theorem 3.15). Let W, W_{0} and W_{1} be subsets of $\operatorname{Spec} R$ with $W=$ $W_{0} \cup W_{1}$. We denote by ${\overline{W_{0}}}^{s}\left(\right.$ resp. $\left.\bar{W}_{1}{ }^{g}\right)$ the specialization (resp. generalization) closure of W. Suppose that one of the following conditions holds:
(1) $W_{0}=\bar{W}_{0}^{s} \cap W$.
(2) $W_{1}=W \cap \bar{W}_{1}{ }^{g}$.

Then, for any $X \in \mathcal{D}$, there is a triangle

$$
\lambda^{W} X \xrightarrow{f} \lambda^{W_{1}} X \oplus \lambda^{W_{0}} X \xrightarrow{g} \lambda^{W_{1}} \lambda^{W_{0}} X \longrightarrow \lambda^{W} X[1],
$$

where

$$
f=\binom{\eta^{W_{1}} \lambda^{W} X}{\eta^{W_{0}} \lambda^{W} X}, \quad g=\left(\lambda^{W_{1}} \eta^{W_{0}} X \quad(-1) \cdot \eta^{W_{1}} \lambda^{W_{0}} X\right)
$$

This theorem enables us to compute λ^{W} by using $\lambda^{W_{0}}$ and $\lambda^{W_{1}}$ for smaller subsets W_{0} and W_{1}. Furthermore, as long as we consider the derived category \mathcal{D}, this theorem and Theorem 3.22 generalize Mayer-Vietoris triangles by Benson, Iyengar and Krause [Benson et al. 2008, Theorem 7.5].

In Section 4, as an application, we give a simpler proof of a classical theorem due to Gruson and Raynaud. The theorem states that the projective dimension of a flat R-module is at most the Krull dimension of R.

Section 5 contains some basic facts about cotorsion flat R-modules.

Section 6 is devoted to studying the cosupport of a complex X consisting of cotorsion flat R-modules. As a consequence, we can calculate $\gamma_{V^{c}} X$ and $\lambda^{V} X$ explicitly for a specialization-closed subset V of Spec R.

In Section 7, using Theorem 1.3 above, we give a new way to get λ^{W}. In fact, provided that $d=\operatorname{dim} R$ is finite, we are able to calculate λ^{W} by a Čech complex of functors of the form

$$
\prod_{0 \leq i \leq d} \bar{\lambda}^{W_{i}} \longrightarrow \prod_{0 \leq i<j \leq d} \bar{\lambda}^{W_{j}} \bar{\lambda}^{W_{i}} \longrightarrow \cdots \longrightarrow \bar{\lambda}^{W_{d}} \cdots \bar{\lambda}^{W_{0}},
$$

where $W_{i}=\{\mathfrak{p} \in W \mid \operatorname{dim} R / \mathfrak{p}=i\}$ and $\bar{\lambda} W^{W_{i}}=\prod_{\mathfrak{p} \in W_{i}} \Lambda^{V(\mathfrak{p})}\left(-\otimes_{R} R_{\mathfrak{p}}\right)$ for $0 \leq i \leq d$. This Čech complex sends a complex X of R-modules to a double complex in a natural way. We shall prove that $\lambda^{W} X$ is isomorphic to the total complex of the double complex if X consists of flat R-modules.

Section 8 treats commutativity of λ^{W} with tensor products. Consequently, we show that $\lambda^{W} Y$ can be computed by using the Čech complex above if Y is a complex of finitely generated R-modules.

In Section 9, as an application, we give a functorial way to construct quasiisomorphisms from complexes of flat R-modules, or complexes of finitely generated R-modules to complexes of pure-injective R-modules.

2. Localization functors

In this section, we summarize some notions and basic facts used in the later sections.
We write Mod R for the category of all modules over a commutative Noetherian ring R. For an ideal \mathfrak{a} of $R, \Lambda^{V(\mathfrak{a})}$ denotes the \mathfrak{a}-adic completion functor $\varliminf_{幺}\left(-\otimes_{R} R / \mathfrak{a}^{n}\right)$ defined on Mod R. Moreover, we also denote by $M_{\mathfrak{a}}^{\wedge}$ the \mathfrak{a}-adic completion $\Lambda^{V(\mathfrak{a})} M=\lim M / \mathfrak{a}^{n} M$ of an R-module M. If the natural map $M \rightarrow M_{\mathfrak{a}}^{\wedge}$ is an isomorphism, then M is called \mathfrak{a}-adically complete. In addition, when R is a local ring with maximal ideal \mathfrak{m}, we simply write \widehat{M} for the \mathfrak{m}-adic completion of M.

We start with the following proposition.
Proposition 2.1. Let \mathfrak{a} be an ideal of R. If F is a flat R-module, then so is $F_{\mathfrak{a}}^{\wedge}$.
As stated in [Simon 1990, 2.4], this fact is known. For the reader's convenience, we mention that this proposition follows from the two lemmas below.
Lemma 2.2. Let \mathfrak{a} be an ideal of R and F be a flat R-module. We consider a short exact sequence of finitely generated R-modules

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 .
$$

Then

$$
0 \rightarrow\left(F \otimes_{R} L\right)_{\mathfrak{a}}^{\wedge} \rightarrow\left(F \otimes_{R} M\right)_{\mathfrak{a}}^{\wedge} \rightarrow\left(F \otimes_{R} N\right)_{\mathfrak{a}}^{\wedge} \rightarrow 0
$$

is exact.

Lemma 2.3. Let \mathfrak{a} and F be as above. Then we have a natural isomorphism,

$$
\left(F \otimes_{R} M\right)_{\mathfrak{a}}^{\wedge} \cong F_{\mathfrak{a}}^{\wedge} \otimes_{R} M,
$$

for any finitely generated R-module M.
Using the Artin-Rees lemma and [Bourbaki 1961, Chap. I, §2.6, Proposition 6], we can prove Lemma 2.2, from which we obtain Lemma 2.3. Furthermore, Lemmas 2.2 and 2.3 imply that $F_{\mathfrak{a}}^{\wedge} \otimes_{R}(-)$ is an exact functor from the category of finitely generated R-modules to $\operatorname{Mod} R$. Therefore Proposition 2.1 holds.

It is also possible to show that $F_{\mathfrak{a}}^{\wedge}$ is flat over $R_{\mathfrak{a}}^{\wedge}$ by the same argument as above.
If R is a local ring with maximal ideal \mathfrak{m}, then \mathfrak{m}-adically complete flat R modules are characterized as follows:

Lemma 2.4. Let (R, \mathfrak{m}, k) be a local ring and F a flat R-module. Set $B=$ $\operatorname{dim}_{k} F / \mathfrak{m} F$. Then there is an isomorphism

$$
\widehat{F} \cong \widehat{\bigoplus_{B} R}
$$

where $\bigoplus_{B} R$ is the direct sum of B-copies of R.
This lemma is proved in [Raynaud and Gruson 1971, Part. II, Proposition 2.4.3.1]. See also [Enochs and Jenda 2000, Lemma 6.7.4].

As in the introduction, we denote by $\mathcal{D}=D(\operatorname{Mod} R)$ the derived category of all complexes of R-modules. We write complexes X cohomologically:

$$
X=\left(\cdots \rightarrow X^{i-1} \rightarrow X^{i} \rightarrow X^{i+1} \rightarrow \cdots\right) .
$$

For a complex P of R-modules, we say that P is K-projective if $\operatorname{Hom}_{R}(P,-)$ preserves acyclicity of complexes, where a complex is called acyclic if all its cohomology modules are zero. Similarly, for a complex F of R-modules, we say that F is K-flat if $(-) \otimes_{R} F$ preserves acyclicity of complexes.

Let \mathfrak{a} be an ideal of R and $X \in \mathcal{D}$. If P is a K-projective resolution of X, then we have $\mathrm{L} \Lambda^{V(\mathfrak{a})} X \cong \Lambda^{V(\mathfrak{a})} P$. Moreover, $\mathrm{L} \Lambda^{V(\mathfrak{a})} X$ is also isomorphic to $\Lambda^{V(\mathfrak{a})} F$ if F is a K-flat resolution of X. Further, it is known that the following proposition holds.

Proposition 2.5. Let \mathfrak{a} be an ideal of R and X be a complex of flat R-modules. Then $\mathrm{L} \Lambda^{V(\mathfrak{a})} X$ is isomorphic to $\Lambda^{V(\mathfrak{a})} X$.

Proof. To show this, we note there is an integer $n \geq 0$ such that $H^{i}\left(\mathrm{~L} \Lambda^{V(a)} M\right)=0$ for all $i>n$ and all R-modules M, see [Greenlees and May 1992, Theorem 1.9] or [Alonso Tarrío et al. 1997, p. 15]. Using this fact, we can show that $\Lambda^{V(\mathfrak{a})}$ preserves acyclicity of complexes of flat R-modules. Then it is straightforward to see that $\mathrm{L} \Lambda^{V(\mathfrak{a})} X$ is isomorphic to $\Lambda^{V(\mathfrak{a})} X$.

Let W be any subset of $\operatorname{Spec} R$. Recall that γ_{W} denotes a right adjoint to the inclusion functor $i_{W}: \mathcal{L}_{W} \hookrightarrow \mathcal{D}$, and λ^{W} denotes a left adjoint to the inclusion functor $j^{W}: \mathcal{C}^{W} \hookrightarrow \mathcal{D}$. Moreover, γ_{W} and λ^{W} are identified with $i_{W} \gamma_{W}$ and $j^{W} \lambda^{W}$, respectively. We write $\varepsilon_{W}: \gamma_{W} \rightarrow \operatorname{id}_{\mathcal{D}}$ and $\eta^{W}: \operatorname{id}_{\mathcal{D}} \rightarrow \lambda^{W}$ for the natural morphisms induced by the adjointness of $\left(i_{W}, \gamma_{W}\right)$ and $\left(\lambda^{W}, j^{W}\right)$, respectively.

Note that $\lambda^{W} \eta^{W}$ (resp. $\gamma_{W} \varepsilon_{W}$) is invertible, and the equality $\lambda^{W} \eta^{W}=\eta^{W} \lambda^{W}$ (resp. $\gamma_{W} \varepsilon_{W}=\varepsilon_{W} \gamma_{W}$) holds, i.e., λ^{W} (resp. γ_{W}) is a localization (resp. colocalization) functor on \mathcal{D}. See [Krause 2010] for more details. In this paper, we call λ^{W} the localization functor with cosupport in W.

Using (1.2), we restate [Nakamura and Yoshino 2018, Lemma 2.1] as follows.
Lemma 2.6. Let W be a subset of $\operatorname{Spec} R$. For any $X \in \mathcal{D}$, there is a triangle of the following form:

$$
\gamma_{W^{c}} X \xrightarrow{\varepsilon_{W c} X} X \xrightarrow{\eta^{W} X} \lambda^{W} X \longrightarrow \gamma_{W^{c}} X[1] .
$$

Furthermore, if

$$
X^{\prime} \longrightarrow X \longrightarrow X^{\prime \prime} \longrightarrow X^{\prime}[1]
$$

is a triangle with $X^{\prime} \in{ }^{\perp} \mathcal{C}^{W}=\mathcal{L}_{W^{c}}$ and $X^{\prime \prime} \in \mathcal{C}^{W}=\mathcal{L}_{W^{c}}^{\perp}$, then there exist unique isomorphisms $a: \gamma_{W^{c}} X \rightarrow X^{\prime}$ and $b: \lambda^{W} X \rightarrow X^{\prime \prime}$ such that the following diagram is commutative:

Remark 2.7. (i) Let $X \in \mathcal{D}$ and W be a subset of Spec R. By Lemma 2.6, X belongs to ${ }^{\perp} \mathcal{C}^{W}=\mathcal{L}_{W^{c}}$ if and only if $\lambda^{W} X=0$. This is equivalent to saying that $\lambda^{\{p\}} X=0$ for all $\mathfrak{p} \in W$, since ${ }^{\perp} \mathcal{C}^{W}=\mathcal{L}_{W^{c}}=\bigcap_{\mathfrak{p} \in W} \mathcal{L}_{\{\mathfrak{p}\}^{c}}=\bigcap_{\mathfrak{p} \in W}{ }^{\perp} \mathcal{C}^{\{p\}}$.
(ii) Let W_{0} and W be subsets of $\operatorname{Spec} R$ with $W_{0} \subseteq W$. It follows from the uniqueness of adjoint functors that

$$
\lambda^{W_{0}} \lambda^{W} \cong \lambda^{W_{0}} \cong \lambda^{W} \lambda^{W_{0}} ;
$$

see also [Nakamura and Yoshino 2018, Remark 3.7(i)].
Now we give a typical example of localization functors. Let S be a multiplicatively closed subset S of R, and set $U_{S}=\{\mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \cap S=\varnothing\}$. It is known that the localization functor $\lambda^{U_{S}}$ with cosupport in U_{S} is nothing but $(-) \otimes_{R} S^{-1} R$. For the reader's convenience, we give a proof of this fact. Let $X \in \mathcal{D}$. It is clear that cosupp $X \otimes_{R} S^{-1} R \subseteq U_{S}$, or equivalently, $X \otimes_{R} S^{-1} R \in \mathcal{C}^{U_{S}}$. Moreover, embedding the natural morphism $X \rightarrow X \otimes_{R} S^{-1} R$ into a triangle,

$$
C \longrightarrow X \longrightarrow X \otimes_{R} S^{-1} R \longrightarrow C[1],
$$

we have $C \otimes_{R} S^{-1} R=0$. This yields an inclusion relation supp $C \subseteq\left(U_{S}\right)^{c}$. Hence it holds that $C \in \mathcal{L}_{\left(U_{S}\right)^{c}}$. Since we have shown that $C \in \mathcal{L}_{\left(U_{S}\right)^{c}}$ and $X \otimes_{R} S^{-1} R \in \mathcal{C}^{U_{S}}$, it follows from Lemma 2.6 that $\lambda^{U_{S}} X \cong X \otimes_{R} S^{-1} R$. Therefore we obtain the isomorphism

$$
\begin{equation*}
\lambda^{U_{S}} \cong(-) \otimes_{R} S^{-1} R . \tag{2.8}
\end{equation*}
$$

For $\mathfrak{p} \in \operatorname{Spec} R$, we write $U(\mathfrak{p})=\{\mathfrak{q} \in \operatorname{Spec} R \mid \mathfrak{q} \subseteq \mathfrak{p}\}$. If $S=R \backslash \mathfrak{p}$, then $U(\mathfrak{p})$ is equal to U_{S}, so that $\lambda^{U(\mathfrak{p})} \cong(-) \otimes_{R} R_{\mathfrak{p}}$ by (2.8). We remark that $\lambda^{U(\mathfrak{p})}=\lambda_{U(\mathfrak{p})^{c}}$ is written as $L_{Z(\mathfrak{p})}$ in [Benson et al. 2008], where $Z(\mathfrak{p})=U(\mathfrak{p})^{c}$.

There is another important example of localization functors. Let \mathfrak{a} be an ideal of R. It was proved by [Greenlees and May 1992] and [Alonso Tarrío et al. 1997] that $\mathrm{L} \Lambda^{V(\mathfrak{a})}: \mathcal{D} \rightarrow \mathcal{D}$ is a right adjoint to $\mathrm{R} \Gamma_{V(\mathfrak{a})}: \mathcal{D} \rightarrow \mathcal{D}$. In [Nakamura and Yoshino 2018, Proposition 5.1], using the adjointness property of $\left(\mathrm{R} \Gamma_{V(\mathfrak{a})}, \mathrm{L} \Lambda^{V(\mathfrak{a})}\right)$, we proved that $\lambda^{V(\mathfrak{a})}=\lambda_{V(\mathfrak{a})^{c}}$ coincides with $\mathrm{L} \Lambda^{V(\mathfrak{a})}$. Hence there is an isomorphism

$$
\begin{equation*}
\lambda^{V(\mathfrak{a})} \cong \mathrm{L} \Lambda^{V(\mathfrak{a})} . \tag{2.9}
\end{equation*}
$$

The functor $H_{i}^{\mathrm{a}}(-)=H^{-i}\left(\mathrm{~L} \Lambda^{V(\mathfrak{a})}(-)\right)$ is called the i-th local homology functor with respect to \mathfrak{a}.

A subset W of $\operatorname{Spec} R$ is said to be specialization-closed (resp. generalizationclosed) provided that the following condition holds: if $\mathfrak{p} \in W$ and $\mathfrak{q} \in \operatorname{Spec} R$ with $\mathfrak{p} \subseteq \mathfrak{q}($ resp. $\mathfrak{p} \supseteq \mathfrak{q})$, then $\mathfrak{q} \in W$.

If V is a specialization-closed subset, then we have

$$
\begin{equation*}
\gamma_{V} \cong \mathrm{R} \Gamma_{V} \tag{2.10}
\end{equation*}
$$

see [Lipman 2002, Appendix 3.5].

3. Auxiliary results on localization functors

In this section, we give several results to compute localization functors λ^{W} with cosupports in arbitrary subsets W of $\operatorname{Spec} R$.

We first give the following lemma.
Lemma 3.1. Let V be a specialization-closed subset of $\operatorname{Spec} R$. Then we have the following equalities;

$$
{ }^{\perp} \mathcal{C}^{V}=\mathcal{L}_{V^{c}}=\mathcal{L}_{V}^{\perp}=\mathcal{C}^{V^{c}}
$$

Proof. This follows from [Nakamura and Yoshino 2018, Lemma 4.3] and (1.2).
Let W be a subset of $\operatorname{Spec} R$. We denote by \bar{W}^{s} the specialization closure of W, which is the smallest specialization-closed subset of Spec R containing W. Moreover, for a subset W_{0} of W, we say that W_{0} is specialization-closed in W if $V(\mathfrak{p}) \cap W \subseteq W_{0}$ for any $\mathfrak{p} \in W_{0}$ (see [Nakamura and Yoshino 2018, Definition 3.10]). This is equivalent to saying that $\bar{W}^{s} \cap W=W_{0}$.

Corollary 3.2. Let $W_{0} \subseteq W \subseteq \operatorname{Spec} R$ be sets. Suppose that W_{0} is specializationclosed in W. Setting $W_{1}=W \backslash W_{0}$, we have $\mathcal{C}^{W_{1}} \subseteq{ }^{\perp} \mathcal{C}^{W_{0}}$.
Proof. Note that $W_{1} \subseteq\left(\bar{W}_{0}^{s}\right)^{c}$. Further, we have $\left.{ }^{\perp} \mathcal{C}^{\bar{W}_{0}^{s}}=\mathcal{C}^{\left(\bar{W}_{0}^{s}\right.}\right)^{c}$ by Lemma 3.1. Hence it holds that $\mathcal{C}^{W_{1}} \subseteq \mathcal{C}^{\left({\overline{W_{0}}}^{s}\right)^{c}}={ }^{\perp} \mathcal{C}^{\bar{W}_{0}^{s}} \subseteq{ }^{\perp} \mathcal{C}^{W_{0}}$.

Remark 3.3. For an ideal \mathfrak{a} of $R, \lambda^{V(\mathfrak{a})}$ is a right adjoint to $\gamma_{V(\mathfrak{a})}$ by (2.9) and (2.10). More generally, it is known that for any specialization-closed subset $V, \lambda^{V}: \mathcal{D} \rightarrow \mathcal{D}$ is a right adjoint to $\gamma_{V}: \mathcal{D} \rightarrow \mathcal{D}$. We now prove this fact, which will be used in the next proposition. Let $X, Y \in \mathcal{D}$, and consider the following triangles:

$$
\begin{aligned}
& \gamma_{V} X \longrightarrow X \longrightarrow \lambda^{V^{c}} X \longrightarrow \gamma_{V} X[1], \\
& \gamma_{V^{c}} Y \longrightarrow Y \longrightarrow \lambda^{V} Y \longrightarrow \gamma_{V^{c}} Y[1] .
\end{aligned}
$$

Since $\lambda^{V^{c}} X \in \mathcal{C}^{V^{c}}={ }^{\perp} \mathcal{C}^{V}$ by Lemma 3.1, applying $\operatorname{Hom}_{\mathcal{D}}\left(-, \lambda^{V} Y\right)$ to the first triangle, we have $\operatorname{Hom}_{\mathcal{D}}\left(\gamma_{V} X, \lambda^{V} Y\right) \cong \operatorname{Hom}_{\mathcal{D}}\left(X, \lambda^{V} Y\right)$. Moreover, Lemma 3.1 implies that $\gamma_{V^{c}} Y \in \mathcal{L}_{V^{c}}=\mathcal{L}_{V}^{\perp}$. Hence, applying $\operatorname{Hom}_{\mathcal{D}}\left(\gamma_{V} X,-\right)$ to the second triangle, we have $\operatorname{Hom}_{\mathcal{D}}\left(\gamma_{V} X, Y\right) \cong \operatorname{Hom}_{\mathcal{D}}\left(\gamma_{V} X, \lambda^{V} Y\right)$. Thus there is a natural isomorphism $\operatorname{Hom}_{\mathcal{D}}\left(\gamma_{V} X, Y\right) \cong \operatorname{Hom}_{\mathcal{D}}\left(X, \lambda^{V} Y\right)$, so that $\left(\gamma_{V}, \lambda^{V}\right)$ is an adjoint pair. See also [Nakamura and Yoshino 2018, Remark 5.2].

Proposition 3.4. Let V and U be arbitrary subsets of $\operatorname{Spec} R$. Suppose that one of the following conditions holds:
(1) V is specialization-closed.
(2) U is generalization-closed.

Then we have an isomorphism

$$
\lambda^{V} \lambda^{U} \cong \lambda^{V \cap U}
$$

Proof. Let $X \in \mathcal{D}$ and $Y \in \mathcal{C}^{V \cap U}=\mathcal{C}^{V} \cap \mathcal{C}^{U}$. Then there are natural isomorphisms

$$
\operatorname{Hom}_{\mathcal{D}}\left(\lambda^{V} \lambda^{U} X, Y\right) \cong \operatorname{Hom}_{\mathcal{D}}\left(\lambda^{U} X, Y\right) \cong \operatorname{Hom}_{\mathcal{D}}(X, Y)
$$

Recall that $\lambda^{V \cap U}$ is a left adjoint to the inclusion functor $\mathcal{C}^{V \cap U} \hookrightarrow \mathcal{D}$. Hence, by the uniqueness of adjoint functors, we only have to verify that $\lambda^{V} \lambda^{U} X \in \mathcal{C}^{V \cap U}$. Since $\lambda^{V} \lambda^{U} X \in \mathcal{C}^{V}$, it remains to show that $\lambda^{V} \lambda^{U} X \in \mathcal{C}^{U}$.

Case 1: Let $\mathfrak{p} \in U^{c}$. Since supp $\gamma_{V} \kappa(\mathfrak{p}) \subseteq\{\mathfrak{p}\}$, it follows from (1.2) that $\gamma_{V} \kappa(\mathfrak{p}) \in$ $\mathcal{L}_{U^{c}}={ }^{\perp} \mathcal{C}^{U}$. Thus, by the adjointness of $\left(\gamma_{V}, \lambda^{V}\right)$, we have

$$
\operatorname{RHom}_{R}\left(\kappa(\mathfrak{p}), \lambda^{V} \lambda^{U} X\right) \cong \operatorname{RHom}_{R}\left(\gamma_{V} \kappa(\mathfrak{p}), \lambda^{U} X\right)=0
$$

This implies that $\operatorname{cosupp} \lambda^{V} \lambda^{U} X \subseteq U$, i.e., $\lambda^{V} \lambda^{U} X \in \mathcal{C}^{U}$.

Case 2: Since U^{c} is specialization-closed, Case 1 yields an isomorphism $\lambda^{U^{c}} \lambda^{V} \cong$ $\lambda^{U^{c} \cap V}$. Furthermore, setting $W=\left(U^{c} \cap V\right) \cup U$, we see that $U^{c} \cap V$ is specializationclosed in W, and $W \backslash\left(U^{c} \cap V\right)=U$. Hence we have $\lambda^{U^{c}}\left(\lambda^{V} \lambda^{U} X\right) \cong \lambda^{U^{c} \cap V} \lambda^{U} X=0$, by Corollary 3.2. It then follows from Lemma 3.1 that $\lambda^{V} \lambda^{U} X \in{ }^{\perp} \mathcal{C}^{U^{c}}=\mathcal{C}^{U}$.

Remark 3.5. For arbitrary subsets W_{0} and W_{1} of $\operatorname{Spec} R$, Remark 2.7(ii) and Proposition 3.4 yield the isomorphisms

$$
\begin{aligned}
& \lambda^{W_{0}} \lambda^{W_{1}} \cong \lambda^{W_{0}} \lambda^{\bar{W}_{0}^{s}} \lambda^{W_{1}} \cong \lambda^{W_{0}} \lambda^{\bar{W}_{0}^{s}} \cap W_{1} \\
& \lambda^{W_{0}} \lambda^{W_{1}} \cong \lambda^{W_{0}} \lambda^{\bar{W}_{1}} \lambda^{W_{1}} \cong \lambda^{W_{0} \cap \bar{W}_{1}^{g}} \lambda^{W_{1}} .
\end{aligned}
$$

The next result is a corollary of (2.8), (2.9) and Proposition 3.4.
Corollary 3.6. Let S be a multiplicatively closed subset of R and \mathfrak{a} be an ideal of R. We set $W=V(\mathfrak{a}) \cap U_{S}$. Then we have

$$
\lambda^{W} \cong \mathrm{~L} \Lambda^{V(\mathfrak{a})}\left(-\otimes_{R} S^{-1} R\right) .
$$

Since $V(\mathfrak{p}) \cap U(\mathfrak{p})=\{\mathfrak{p}\}$ for $\mathfrak{p} \in \operatorname{Spec} R$, as a special case of this corollary, we have the following result.

Corollary 3.7. Let \mathfrak{p} be a prime ideal of R. Then we have

$$
\lambda^{\{\mathfrak{p}\}} \cong \mathrm{L} \Lambda^{V(\mathfrak{p})}\left(-\otimes_{R} R_{\mathfrak{p}}\right) .
$$

The next lemma follows from this corollary and Lemma 2.4.
Lemma 3.8. Let \mathfrak{p} be a prime ideal of R and F be a flat R-module. Then $\lambda^{\{p\}} F$ is isomorphic to $\left(\bigoplus_{B} R_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge}$, where $\bigoplus_{B} R_{\mathfrak{p}}$ is the direct sum of B-copies of $R_{\mathfrak{p}}$ and $B=\operatorname{dim}_{\kappa(\mathfrak{p})} F \otimes_{R} \kappa(\mathfrak{p})$.

Remark 3.9. If W_{1} and W_{2} are both specialization-closed or both generalizationclosed, then Proposition 3.4 implies that $\lambda^{W_{1}} \lambda^{W_{2}} \cong \lambda^{W_{2}} \lambda^{W_{1}}$. However, in general, $\lambda^{W_{1}}$ and $\lambda^{W_{2}}$ need not commute. For example, let $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec} R$ with $\mathfrak{p} \subsetneq \mathfrak{q}$. Then $\left(\lambda^{\{\mathfrak{p}\}} R\right) \otimes_{R} \kappa(\mathfrak{q})=\widehat{R}_{\mathfrak{p}} \otimes_{R} \kappa(\mathfrak{q})=0$ and $\left(\lambda^{\{\mathfrak{q}\}} R\right) \otimes_{R} \kappa(\mathfrak{p})=\widehat{R}_{\mathfrak{q}} \otimes_{R} \kappa(\mathfrak{p}) \neq 0$. Then we see from Lemma 3.8 that $\lambda^{\{q]} \lambda^{\{p]} R=0$ and $\lambda^{\{\rho]} \lambda^{\{q]} R \neq 0$.

Compare this remark with [Benson et al. 2008, Example 3.5]. See also [Nakamura and Yoshino 2018, Remark 3.7(ii)].

Let \mathfrak{p} be a prime ideal which is not maximal. Then $\lambda^{\{\mathfrak{p}\}}$ is distinct from $\Lambda^{\mathfrak{p}}=$ $\mathrm{L} \Lambda^{V(\mathfrak{p})} \mathrm{RHom}_{R}\left(R_{\mathfrak{p}},-\right)$, which is introduced in [Benson et al. 2012]. To see this, let \mathfrak{q} be a prime ideal with $\mathfrak{p} \subsetneq \mathfrak{q}$. Then it holds that cosupp $\widehat{R}_{\mathfrak{q}}=\{\mathfrak{q}\} \subseteq U(\mathfrak{p})^{c}$. Hence $\widehat{R}_{\mathfrak{q}}$ belongs to $\mathcal{C}^{U(\mathfrak{p})^{c}}$. Then we have $\operatorname{RHom}_{R}\left(R_{\mathfrak{p}}, \widehat{R}_{\mathfrak{q}}\right)=0$ since $R_{\mathfrak{p}} \in \mathcal{L}_{U(\mathfrak{p})}=$ ${ }^{\mathcal{C}^{U(\mathfrak{p})^{c}}}$ by (1.2). This implies that $\Lambda^{\mathfrak{p}} \widehat{R}_{\mathfrak{q}}=\mathrm{L} \Lambda^{V(\mathfrak{p})} \operatorname{RHom}_{R}\left(R_{\mathfrak{p}}, \widehat{R}_{\mathfrak{q}}\right)=0$, while $\lambda^{\{p\}} \widehat{R}_{\mathfrak{q}} \cong \lambda^{\{p\}} \lambda^{\{q\}} R \neq 0$ by Remark 3.9.

Let $X \in \mathcal{D}$, and write $\Gamma_{\mathfrak{p}}=\mathrm{R} \Gamma_{V(\mathfrak{p})}\left(-\otimes_{R} R_{\mathfrak{p}}\right)$ (see [Benson et al. 2008]). Recall that $\mathfrak{p} \in \operatorname{supp} X($ resp. $\mathfrak{p} \in \operatorname{cosupp} X)$ if and only if $\Gamma_{\mathfrak{p}} X \neq 0\left(\right.$ resp. $\left.\Lambda^{\mathfrak{p}} X \neq 0\right)$; see [Foxby and Iyengar 2003, Theorems 2.1 and 4.1] and [Benson et al. 2012, §4]. In contrast, $\mathfrak{p} \in \operatorname{cosupp} X($ resp. $\mathfrak{p} \in \operatorname{supp} X)$ if and only if $\gamma_{\{p\}} X \neq 0\left(\right.$ resp. $\left.\lambda^{\{\mathfrak{p}\}} X \neq 0\right)$, by Lemma 2.6. Here, $\gamma_{\{\mathfrak{p}\}} \cong \mathrm{R} \Gamma_{V(\mathfrak{p})} \mathrm{RHom}_{R}\left(R_{\mathfrak{p}},-\right)$ by [Nakamura and Yoshino 2018, Corollary 3.3]. See also [Sather-Wagstaff and Wicklein 2017, Propositions 3.6 and 4.4].

Let W be a subset of $\operatorname{Spec} R$. We denote by $\operatorname{dim} W$ the supremum of lengths of chains of distinct prime ideals in W (see [Nakamura and Yoshino 2018, Definition 3.6]).

Theorem 3.10. Let W be a subset of $\operatorname{Spec} R$. We assume that $\operatorname{dim} W=0$. Then there are isomorphisms

$$
\lambda^{W} \cong \prod_{\mathfrak{p} \in W} \lambda^{\{\mathfrak{p}\}} \cong \prod_{\mathfrak{p} \in W} \mathrm{~L} \Lambda^{V(\mathfrak{p})}\left(-\otimes_{R} R_{\mathfrak{p}}\right) .
$$

Proof. Let $X \in \mathcal{D}$, and consider the natural morphisms $\eta^{\{\mathfrak{p}\}} X: X \rightarrow \lambda^{\{\mathfrak{p}\}} X$ for $\mathfrak{p} \in W$. Take the product of the morphisms, and we obtain a morphism $f: X \rightarrow \prod_{\mathfrak{p} \in W} \lambda^{\{\mathfrak{p}\}} X$. Embed f into a triangle

$$
C \longrightarrow X \xrightarrow{f} \prod_{\mathfrak{p} \in W} \lambda^{\{\mathfrak{p}\}} X \longrightarrow C[1] .
$$

Note that $\prod_{p \in W} \lambda^{\{p\}} X \in \mathcal{C}^{W}$. We have to prove that $C \in{ }^{\perp} \mathcal{C}^{W}$. For this purpose, take any prime ideal $\mathfrak{q} \in W$. Then $\{\mathfrak{q}\}$ is specialization-closed in W, because $\operatorname{dim} W=0$. Hence we have

$$
\prod_{\mathfrak{p} \in W \backslash\{\mathfrak{q}\}} \lambda^{\{\mathfrak{p}\}} X \in \mathcal{C}^{W \backslash\{\mathfrak{q}\}} \subseteq{ }^{\perp} \mathcal{C}^{\{\mathfrak{q}\}}
$$

by Corollary 3.2. Thus an isomorphism $\lambda^{\{q\}}\left(\prod_{\mathfrak{p} \in W} \lambda^{\{\mathfrak{p}\}} X\right) \cong \lambda^{\{q\}} X$ holds. Then it is seen from the triangle above that $\lambda^{\{\mathfrak{q}\}} C=0$ for all $\mathfrak{q} \in W$, so that $C \in{ }^{\perp} \mathcal{C}^{W}$; see Remark 2.7(i). Therefore Lemma 2.6 yields $\lambda^{W} X \cong \prod_{p \in W} \lambda^{\{\mathfrak{p}\}} X$. The second isomorphism in the theorem follows from Corollary 3.7.

Example 3.11. Let W be a subset of $\operatorname{Spec} R$ such that W is an infinite set with $\operatorname{dim} W=0$. Let $X^{\{\mathfrak{p}\}}$ be a complex with cosupp $X^{\{\mathfrak{p}\}}=\{\mathfrak{p}\}$ for each $\mathfrak{p} \in W$. We take $\mathfrak{p} \in W$. Since $\operatorname{dim} W=0$, it holds that $X^{\{\mathfrak{q}\}} \in \mathcal{C}^{V(\mathfrak{p})^{c}}$ for any $\mathfrak{q} \in W \backslash\{\mathfrak{p}\}$. Furthermore, Lemma 3.1 implies that $\mathcal{C}^{V(\mathfrak{p})^{c}}$ is equal to ${ }^{\perp} \mathcal{C}^{V(\mathfrak{p})}$, which is closed under arbitrary direct sums. Thus it holds that

$$
\bigoplus_{\mathfrak{q} \in W \backslash\{\mathfrak{p}\}} X^{\{\mathfrak{q}\}} \in \mathcal{C}^{V(\mathfrak{p})^{c}}={ }^{\perp} \mathcal{C}^{V(\mathfrak{p})} \subseteq{ }^{\perp} \mathcal{C}^{\{\mathfrak{p}\}} .
$$

Therefore, setting $Y=\bigoplus_{\mathfrak{p} \in W} X^{\{\mathfrak{p}\}}$, we have $\lambda^{\{\mathfrak{p}\}} Y \cong X^{\{p\}}$. It then follows from Theorem 3.10 that

$$
\lambda^{W} Y \cong \prod_{\mathfrak{p} \in W} \lambda^{\{\mathfrak{p}\}} Y \cong \prod_{\mathfrak{p} \in W} X^{\{\mathfrak{p}\}}
$$

Under this identification, the natural morphism $Y \rightarrow \lambda^{W} Y$ coincides with the canonical morphism $\bigoplus_{p \in W} X^{\{p\}} \rightarrow \prod_{p \in W} X^{\{p\}}$.
Remark 3.12. Let $W, X^{\{\mathfrak{p}\}}$ be as in Example 3.11, and suppose that each $X^{\{\mathfrak{p}\}}$ is an R-module. Then $\bigoplus_{\mathfrak{p} \in W} X^{\{p\}}$ is not in \mathcal{C}^{W}, because the natural morphism $\bigoplus_{\mathfrak{p} \in W} X^{\{p\}} \rightarrow \lambda^{W}\left(\bigoplus_{\mathfrak{p} \in W} X^{\{p\}}\right)$ is not an isomorphism. Hence the cosupport of $\bigoplus_{\mathfrak{p} \in W} X^{\{p\}}$ properly contains W. In particular, setting $X^{\{p\}}=\kappa(\mathfrak{p})$, we have $W \subsetneq$ $\operatorname{cosupp} \bigoplus_{\mathfrak{p} \in W} \kappa(\mathfrak{p})$. Similarly, we can prove that $W \subsetneq \operatorname{supp} \prod_{\mathfrak{p} \in W} \kappa(\mathfrak{p})$. Nakamura noticed these facts through discussion with Srikanth Iyengar.

It is possible to give another type of example, by which we also see that a colocalizing subcategory of \mathcal{D} is not necessarily closed under arbitrary direct sums. Suppose that (R, \mathfrak{m}) is a complete local ring with $\operatorname{dim} R \geq 1$. Then we have $R \cong \widehat{R} \in \mathcal{C}^{V(\mathfrak{m})}$. However the free module $\bigoplus_{\mathbb{N}} R$ is never \mathfrak{m}-adically complete, so that $\bigoplus_{\mathbb{N}} R$ is not isomorphic to $\lambda^{V(\mathfrak{m})}\left(\bigoplus_{\mathbb{N}} R\right)$. Hence $\bigoplus_{\mathbb{N}} R$ is not in $\mathcal{C}^{V(\mathfrak{m})}$.

For a subset W of Spec R, \bar{W}^{g} denotes the generalization closure of W, which is the smallest generalization-closed subset of $\operatorname{Spec} R$ containing W. In addition, for a subset $W_{1} \subseteq W$, we say that W_{1} is generalization-closed in W if $W \cap U(\mathfrak{p}) \subseteq W_{1}$ for any $\mathfrak{p} \in W_{1}$. This is equivalent to saying that $W \cap \bar{W}_{1}^{g}=W_{1}$.

We extend Proposition 3.4 to the following corollary, which will be used in Theorem 3.15.

Corollary 3.13. Let W_{0} and W_{1} be arbitrary subsets of $\operatorname{Spec} R$. Suppose that one of the following conditions hold:
(1) W_{0} is specialization-closed in $W_{0} \cup W_{1}$.
(2) W_{1} is generalization-closed in $W_{0} \cup W_{1}$.

Then we have an isomorphism

$$
\lambda^{W_{0}} \lambda^{W_{1}} \cong \lambda^{W_{0} \cap W_{1}} .
$$

Proof. Set $W=W_{0} \cup W_{1}$. By the assumption, we have

$$
{\overline{W_{0}}}^{s} \cap W=W_{0} \text { or } W \cap{\overline{W_{1}}}^{g}=W_{1} .
$$

Therefore, it holds that

$$
{\overline{W_{0}}}^{s} \cap W_{1}=W_{0} \cap W_{1} \text { or } W_{0} \cap{\overline{W_{1}}}^{g}=W_{0} \cap W_{1} .
$$

Hence this proposition follows from Remark 3.5 and Remark 2.7(ii).

Remark 3.14. (i) Let W_{0} and W be subsets of $\operatorname{Spec} R$ with $W_{0} \subseteq W$. Under the isomorphism $\lambda^{W_{0}} \lambda^{W} \cong \lambda^{W_{0}}$ by Remark 2.7(ii), there is a morphism $\eta^{W_{0}} \lambda^{W}: \lambda^{W} \rightarrow \lambda^{W_{0}}$. (ii) Let W_{0} and W_{1} be subsets of Spec R. Let $X \in \mathcal{D}$. Since $\eta^{W_{1}}: \mathrm{id}_{\mathcal{D}} \rightarrow \lambda^{W_{1}}$ is a morphism of functors, there is a commutative diagram of the following form:

$$
\begin{array}{ccc}
X & \xrightarrow{\eta^{W_{0}} X} & \lambda^{W_{0}} X \\
\downarrow^{\eta^{W_{1}} X} & & \downarrow^{W_{1}} \lambda^{W_{0}} X \\
\lambda^{W_{1}} X & \xrightarrow{\lambda^{W_{1}} \eta^{W_{0}} X} & \lambda^{W_{1}} \lambda^{W_{0}} X
\end{array}
$$

Now we prove the following result, which is the main theorem of this section.
Theorem 3.15. Let W, W_{0} and W_{1} be subsets of $\operatorname{Spec} R$ with $W=W_{0} \cup W_{1}$. Suppose that one of the following conditions holds:
(1) W_{0} is specialization-closed in W.
(2) W_{1} is generalization-closed in W.

Then, for any $X \in \mathcal{D}$, there is a triangle of the form

$$
\lambda^{W} X \xrightarrow{f} \lambda^{W_{1}} X \oplus \lambda^{W_{0}} X \xrightarrow{g} \lambda^{W_{1}} \lambda^{W_{0}} X \longrightarrow \lambda^{W} X[1],
$$

where f and g are morphisms represented by the matrices

$$
f=\binom{\eta^{W_{1}} \lambda^{W} X}{\eta^{W_{0}} \lambda^{W} X}, \quad g=\left(\lambda^{W_{1}} \eta^{W_{0}} X \quad(-1) \cdot \eta^{W_{1}} \lambda^{W_{0}} X\right)
$$

Proof. We embed the morphism g into a triangle

$$
C \xrightarrow{a} \lambda^{W_{1}} X \oplus \lambda^{W_{0}} X \xrightarrow{g} \lambda^{W_{1}} \lambda^{W_{0}} X \longrightarrow C[1] .
$$

Notice that $C \in \mathcal{C}^{W}$ since $\mathcal{C}^{W_{0}}, \mathcal{C}^{W_{1}} \subseteq \mathcal{C}^{W}$. By Remark 3.14, it is easily seen that $g \cdot f=0$. Thus there is a morphism $b: \lambda^{W} X \rightarrow C$ making the following diagram commutative:

We only have to show that b is an isomorphism. To do this, embedding the morphism b into a triangle

$$
\begin{equation*}
Z \longrightarrow \lambda^{W} X \xrightarrow{b} C \longrightarrow Z[1], \tag{3.17}
\end{equation*}
$$

we prove that $Z=0$. Since $\lambda^{W} X, C \in \mathcal{C}^{W}, Z$ belongs to \mathcal{C}^{W}. Hence it suffices to show that $Z \in{ }^{\perp} \mathcal{C}^{W}$.

First, we prove that $\lambda^{W_{1}} b$ is an isomorphism. We employ a similar argument to [Benson et al. 2008, Theorem 7.5]. Consider the sequence

$$
\begin{equation*}
\lambda^{W} X \xrightarrow{f} \lambda^{W_{1}} X \oplus \lambda^{W_{0}} X \xrightarrow{g} \lambda^{W_{1}} \lambda^{W_{0}} X, \tag{3.18}
\end{equation*}
$$

and apply $\lambda^{W_{1}}$ to it. Then we obtain a sequence which can be completed to a split triangle. The triangle appears in the first row of the diagram below. Moreover, $\lambda^{W_{1}}$ sends the second row of the diagram (3.16) to a split triangle, which appears in the second row of the diagram below:

$$
\begin{aligned}
& \lambda^{W_{1}} X \xrightarrow{\lambda^{W_{1}} f} \lambda^{W_{1}} X \oplus \lambda^{W_{1}} \lambda^{W_{0}} X \xrightarrow{\lambda^{W_{1} g}} \lambda^{W_{1}} \lambda^{W_{0}} X \xrightarrow{0} \lambda^{W_{1}} X[1] \\
& \quad \lambda^{W_{1} b} \\
& \lambda^{W_{1}} C \xrightarrow{\lambda^{W_{1}} a} \lambda^{W_{1}} X \oplus \lambda^{W_{1}} \lambda^{W_{0}} X \xrightarrow{\lambda^{W_{1}} g} \lambda^{W_{1}} \lambda^{W_{0}} X \xrightarrow{0} \lambda^{W_{1} b[1]} \\
& \lambda^{W_{1}} C[1]
\end{aligned}
$$

Since this diagram is commutative, we conclude that $\lambda^{W_{1}} b$ is an isomorphism.
Next, we prove that $\lambda^{W_{0}} b$ is an isomorphism. Thanks to Corollary 3.13, we are able to follow the same process as above. In fact, the corollary implies that $\lambda^{W_{0}} \lambda^{W_{1}} \cong \lambda^{W_{0} \cap W_{1}}$. Thus, applying $\lambda^{W_{0}}$ to the sequence (3.18), we obtain a sequence which can be completed into a split triangle. Furthermore, $\lambda^{W_{0}}$ sends the second row of the diagram (3.16) to a split triangle. Consequently we see that there is a morphism of triangles:

$$
\begin{aligned}
& \lambda^{W_{0}} X \xrightarrow{\lambda^{W_{0}} f} \lambda^{W_{0} \cap W_{1}} X \oplus \lambda^{W_{0}} X \xrightarrow{\lambda^{W_{0} g}} \lambda^{W_{0} \cap W_{1}} X \xrightarrow{0} \lambda^{W_{0}} X[1] \\
& \quad \lambda^{W_{0}} b \\
& \lambda^{W_{0}} C \xrightarrow{\lambda^{W_{0}} a} \lambda^{W_{0} \cap W_{1}} X \oplus \lambda^{W_{0}} X \xrightarrow{\lambda^{W_{0}} b[1]} \\
& \lambda^{W_{0} \cap W_{1}} X \xrightarrow{0} \lambda^{W_{0}} C[1]
\end{aligned}
$$

Therefore $\lambda^{W_{0}} b$ is an isomorphism.
Since we have shown that $\lambda^{W_{0}} b$ and $\lambda^{W_{1}} b$ are isomorphisms, it follows from the triangle (3.17) that $\lambda^{W_{0}} Z=\lambda^{W_{1}} Z=0$. Thus we have $Z \in{ }^{\perp} \mathcal{C}^{W}$ by Remark 2.7(i).

Remark 3.19. Let f, g and a be as above. Let $h: X \rightarrow \lambda^{W_{1}} X \oplus \lambda^{W_{0}} X$ be a morphism induced by $\eta^{W_{1}} X$ and $\eta^{W_{0}} X$. Then $g \cdot h=0$ by Remark 3.14(ii). Hence there is a morphism $b^{\prime}: X \rightarrow C$ such that the following diagram is commutative:

We can regard any morphism b^{\prime} making this diagram commutative as the natural morphism $\eta^{W} X$. In fact, since $\lambda^{W} h=f$, applying λ^{W} to this diagram, and setting $\lambda^{W} b^{\prime}=b$, we obtain the diagram (3.16). Note that $b \cdot \eta^{W} X=b^{\prime}$. Moreover, the
above proof implies that $b: \lambda^{W} X \rightarrow C$ is an isomorphism. Thus we can identify b^{\prime} with $\eta^{W} X$ under the isomorphism b.

We give some examples of Theorem 3.15.
Example 3.20. (1) Let x be an element of R. Recall that $\lambda^{V(x)} \cong \mathrm{L} \Lambda^{V(x)}$ by (2.9). We put $S=\left\{1, x, x^{2}, \ldots\right\}$. Since $V(x)^{c}=U_{S}$, it holds that $\lambda^{V(x)^{c}}=\lambda^{U_{S}} \cong(-) \otimes_{R} R_{x}$ by (2.8). Set $W=\operatorname{Spec} R, W_{0}=V(x)$ and $W_{1}=V(x)^{c}$. Then the theorem yields the triangle

$$
R \longrightarrow R_{x} \oplus R_{(x)}^{\wedge} \longrightarrow\left(R_{(x)}^{\wedge}\right)_{x} \longrightarrow R[1] .
$$

(2) Suppose that (R, \mathfrak{m}) is a local ring with $\mathfrak{p} \in \operatorname{Spec} R$ and having $\operatorname{dim} R / \mathfrak{p}=1$. Setting $W=V(\mathfrak{p}), W_{0}=V(\mathfrak{m})$ and $W_{1}=\{\mathfrak{p}\}$, we see from the theorem and Corollary 3.7 that there is a short exact sequence,

$$
0 \longrightarrow R_{\mathfrak{p}}^{\wedge} \longrightarrow \widehat{R}_{\mathfrak{p}} \oplus \widehat{R} \longrightarrow\left(\widehat{\widehat{R}_{\mathfrak{p}}} \longrightarrow 0\right.
$$

Actually, this gives a pure-injective resolution of $R_{\mathfrak{p}}^{\wedge}$; see Section 9. Moreover, if R is a 1 -dimensional local domain with quotient field Q, then this short exact sequence is of the form

$$
0 \longrightarrow R \longrightarrow Q \oplus \widehat{R} \longrightarrow \widehat{R} \otimes_{R} Q \longrightarrow 0
$$

By similar arguments to Proposition 3.4 and Corollary 3.13, one can prove the following proposition, which is a generalized form of [Nakamura and Yoshino 2018, Proposition 3.1].

Proposition 3.21. Let W_{0} and W_{1} be arbitrary subsets of $\operatorname{Spec} R$. Suppose that one of the following conditions hold:
(1) W_{0} is specialization-closed in $W_{0} \cup W_{1}$.
(2) W_{1} is generalization-closed in $W_{0} \cup W_{1}$.

Then we have an isomorphism

$$
\gamma_{W_{0}} \gamma_{W_{1}} \cong \gamma_{W_{0} \cap W_{1}} .
$$

As with Theorem 3.15, it is possible to prove the following theorem, in which we implicitly use the fact that $\gamma_{W_{0}} \gamma_{W} \cong \gamma_{W_{0}}$ if $W_{0} \subseteq W$ (see [Nakamura and Yoshino 2018, Remark 3.7(i)]).

Theorem 3.22. Let W, W_{0} and W_{1} be subsets of $\operatorname{Spec} R$ with $W=W_{0} \cup W_{1}$. Suppose that one of the following conditions holds:
(1) W_{0} is specialization-closed in W.
(2) W_{1} is generalization-closed in W.

Then, for any $X \in \mathcal{D}$, there is a triangle of the form

$$
\gamma_{W_{1}} \gamma_{W_{0}} X \xrightarrow{f} \gamma_{W_{1}} X \oplus \gamma_{W_{0}} X \xrightarrow{g} \gamma_{W} X \longrightarrow \gamma_{W_{1}} \gamma_{W_{0}} X[1],
$$

where f and g are morphisms represented by the following matrices;

$$
f=\binom{\gamma_{W_{1}} \varepsilon_{W_{0}} X}{(-1) \cdot \varepsilon_{W_{1}} \gamma_{W_{0}} X}, \quad g=\left(\begin{array}{ll}
\varepsilon_{W_{1}} \gamma_{W} X & \varepsilon_{W_{0}} \gamma_{W} X
\end{array}\right) .
$$

Remark 3.23. As long as we work on the derived category \mathcal{D}, Theorem 3.15 and Theorem 3.22 generalize Mayer-Vietoris triangles in the sense of [Benson et al. 2008, Theorem 7.5], in which γ_{V} and λ_{V} are written as Γ_{V} and L_{V}, respectively, for a specialization-closed subset V of $\operatorname{Spec} R$.

4. Projective dimension of flat modules

As an application of results in Section 3, we give a simpler proof of a classical theorem due to Gruson and Raynaud.

Theorem 4.1 [Raynaud and Gruson 1971, Part. II, Corollary 3.2.7]. Let F be a flat R-module. Then the projective dimension of F is at most $\operatorname{dim} R$.

We start by showing the following lemma.
Lemma 4.2. Let F be a flat R-module and \mathfrak{p} be a prime ideal of R. Suppose that $X \in \mathcal{C}^{\{\mathfrak{p}\}}$. Then there is an isomorphism

$$
\operatorname{RHom}_{R}(F, X) \cong \prod_{B} X,
$$

where $B=\operatorname{dim}_{\kappa(\mathfrak{p})} F \otimes_{R} \kappa(\mathfrak{p})$.
Proof. Since $\lambda^{\{\mathfrak{p}\}}: \mathcal{D} \rightarrow \mathcal{C}^{\{\mathfrak{p}\}}$ is a left adjoint to the inclusion functor $\mathcal{C}^{\{\mathfrak{p}\}} \hookrightarrow \mathcal{D}$, we have $\operatorname{RHom}_{R}(F, X) \cong \operatorname{RHom}_{R}\left(\lambda^{\{p\}} F, X\right)$. Moreover, it follows from Lemma 3.8 that $\lambda^{\{\mathfrak{p}\}} F \cong\left(\bigoplus_{B} R_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge} \cong \lambda^{\{\mathfrak{p}\}}\left(\bigoplus_{B} R\right)$, where $B=\operatorname{dim}_{\kappa(\mathfrak{p})} F \otimes_{R} \kappa(\mathfrak{p})$. Therefore we obtain isomorphisms

$$
\operatorname{RHom}_{R}(F, X) \cong \operatorname{RHom}_{R}\left(\lambda^{\{\mathfrak{}\}}\left(\bigoplus_{B} R\right), X\right) \cong \operatorname{RHom}_{R}\left(\bigoplus_{B} R, X\right) \cong \prod_{B} X
$$

Let $a, b \in \mathbb{Z} \cup\{ \pm \infty\}$ with $a \leq b$. We write $\mathcal{D}^{[a, b]}$ for the full subcategory of \mathcal{D} consisting of all complexes X of R-modules such that $H^{i}(X)=0$ for $i \notin[a, b]$ (see [Kashiwara and Schapira 2006, Notation 13.1.11]). For a subset W of Spec R, max W denotes the set of prime ideals $\mathfrak{p} \in W$ which are maximal with respect to inclusion in W.

Proposition 4.3. Let F be a flat R-module and $X \in \mathcal{D}^{[-\infty, 0]}$. Suppose that W is a subset of $\operatorname{Spec} R$ such that $n=\operatorname{dim} W$ is finite. Then we have $\operatorname{Ext}_{R}^{i}\left(F, \lambda^{W} X\right)=0$ for $i>n$.

Proof. We use induction on n. First, we suppose that $n=0$. It then holds that

$$
\lambda^{W} X \cong \prod_{\mathfrak{p} \in W} \lambda^{\{\mathfrak{p}\}} X \cong \prod_{\mathfrak{p} \in W} \mathrm{~L} \Lambda^{V(\mathfrak{p})} X_{\mathfrak{p}} \in \mathcal{D}^{[-\infty, 0]},
$$

by Theorem 3.10. Hence, noting that

$$
\operatorname{RHom}_{R}\left(F, \lambda^{W} X\right) \cong \prod_{\mathfrak{p} \in W} \operatorname{RHom}_{R}\left(F, \lambda^{\{\mathfrak{p}\}} X\right),
$$

we have $\operatorname{Ext}_{R}^{i}\left(F, \lambda^{W} X\right)=0$ for $i>0$, by Lemma 4.2.
Next, we suppose $n>0$. Set $W_{0}=\max W$ and $W_{1}=W \backslash W_{0}$. By Theorem 3.15, there is a triangle

$$
\lambda^{W} X \longrightarrow \lambda^{W_{1}} X \oplus \lambda^{W_{0}} X \longrightarrow \lambda^{W_{1}} \lambda^{W_{0}} X \longrightarrow \lambda^{W} X[1] .
$$

Note that $\operatorname{dim} W_{0}=0$ and $\operatorname{dim} W_{1}=n-1$. By the argument above, it holds that $\operatorname{Ext}_{R}^{i}\left(F, \lambda^{W_{0}} X\right)=0$ for $i>0$. Furthermore, since $X, \lambda^{W_{0}} X \in \mathcal{D}^{[-\infty, 0]}$, we have $\operatorname{Ext}_{R}^{i}\left(F, \lambda^{W_{1}} X\right)=\operatorname{Ext}_{R}^{i}\left(F, \lambda^{W_{1}} \lambda^{W_{0}} X\right)=0$ for $i>n-1$, by the inductive hypothesis. Hence it is seen from the triangle that $\operatorname{Ext}_{R}^{i}\left(F, \lambda^{W} X\right)=0$ for $i>n$.
Proof of Theorem 4.1. We may assume that $d=\operatorname{dim} R$ is finite. Let M be any R module. We only have to show that $\operatorname{Ext}_{R}^{i}(F, M)=0$ for $i>d$. Setting $W=\operatorname{Spec} R$, we have $\operatorname{dim} W=d$ and $M \cong \lambda^{W} M$. It then follows from Proposition 4.3 that $\operatorname{Ext}_{R}^{i}(F, M) \cong \operatorname{Ext}_{R}^{i}\left(F, \lambda^{W} M\right)=0$ for $i>d$.

5. Cotorsion flat modules and cosupport

In this section, we summarize some basic facts about cotorsion flat R-modules.
Recall that an R-module M is called cotorsion if $\operatorname{Ext}_{R}^{1}(F, M)=0$ for any flat R module F. This is equivalent to saying that $\operatorname{Ext}_{R}^{i}(F, M)=0$ for any flat R-module F and any $i>0$. Clearly, all injective R-modules are cotorsion.

A cotorsion flat R-module means an R-module which is cotorsion and flat. If F is a flat R-module and $\mathfrak{p} \in \operatorname{Spec} R$, then Corollary 3.7 implies that $\lambda^{\{p\}} F$ is isomorphic to $\widehat{F}_{\mathfrak{p}}$, which is a cotorsion flat R-module by Lemma 4.2 and Proposition 2.1. Moreover, recall that $\widehat{F}_{\mathfrak{p}}$ is isomorphic to the \mathfrak{p}-adic completion of a free $R_{\mathfrak{p}}$-module by Lemma 3.8.

We remark that arbitrary direct products of flat R-modules are flat, since R is Noetherian. Hence, if $T_{\mathfrak{p}}$ is the \mathfrak{p}-adic completion of a free $R_{\mathfrak{p}}$ module for each $\mathfrak{p} \in \operatorname{Spec} R$, then $\prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}$ is a cotorsion flat R-module. Conversely, the following fact holds.

Proposition 5.1 [Enochs 1984]. Let F be a cotorsion flat R-module. Then there is an isomorphism

$$
F \cong \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}
$$

where $T_{\mathfrak{p}}$ is the \mathfrak{p}-adic completion of a free $R_{\mathfrak{p}}$ module.

Proof. See [Enochs 1984, Theorem; Enochs and Jenda 2000, Theorem 5.3.28].
Let S be a multiplicatively closed subset of R and \mathfrak{a} be an ideal of R. For a cotorsion flat R-module F, we have $\operatorname{RHom}_{R}\left(S^{-1} R, F\right) \cong \operatorname{Hom}_{R}\left(S^{-1} R, F\right)$ and $\mathrm{L} \Lambda^{V(\mathfrak{a})} F \cong \Lambda^{V(\mathfrak{a})} F$. Moreover, by Proposition 5.1, we may regard F as an R module of the form $\prod_{p \in \operatorname{Spec} R} T_{\mathfrak{p}}$. Then it holds that

$$
\begin{equation*}
\operatorname{RHom}_{R}\left(S^{-1} R, \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}\right) \cong \operatorname{Hom}_{R}\left(S^{-1} R, \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}\right) \cong \prod_{\mathfrak{p} \in U_{S}} T_{\mathfrak{p}} . \tag{5.2}
\end{equation*}
$$

This fact appears implicitly in [Xu 1996, §5.2]. Furthermore we have

$$
\begin{equation*}
\mathrm{L} \Lambda^{V(\mathfrak{a})} \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}} \cong \Lambda^{V(\mathfrak{a})} \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}} \cong \prod_{\mathfrak{p} \in V(\mathfrak{a})} T_{\mathfrak{p}} . \tag{5.3}
\end{equation*}
$$

One can show (5.2) and (5.3) by Lemma 3.1 and (2.9). See also Thompson's recent lemma [2017b, Lemma 2.2].

Let F be a cotorsion flat R-module with cosupp $F \subseteq W$ for a subset W of Spec R. Then it follows from Proposition 5.1 that F is isomorphic to an R-module of the form $\prod_{\mathfrak{p} \in W} T_{\mathfrak{p}}$. More precisely, using Lemma 2.4, (5.2) and (5.3), one can show the following corollary, which is essentially proved in [Enochs and Jenda 2000, Lemma 8.5.25].

Corollary 5.4. Let F be a cotorsion flat R-module, and set $W=\operatorname{cosupp} F$. Then we have an isomorphism

$$
F \cong \prod_{\mathfrak{p} \in W} T_{\mathfrak{p}},
$$

where $T_{\mathfrak{p}}$ is of the form $\left(\bigoplus_{B_{\mathfrak{p}}} R_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge}$ with $B_{\mathfrak{p}}=\operatorname{dim}_{\kappa(\mathfrak{p})} \operatorname{Hom}_{R}\left(R_{\mathfrak{p}}, F\right) \otimes_{R} \kappa(\mathfrak{p})$.

6. Complexes of cotorsion flat modules and cosupport

In this section, we study the cosupport of a complex X consisting of cotorsion flat R-modules. As a consequence, we obtain an explicit way to calculate $\gamma_{V^{c}} X$ and $\lambda^{V} X$ for a specialization-closed subset V of $\operatorname{Spec} R$.

Notation 6.1. Let W be a subset of $\operatorname{Spec} R$. Let X be a complex of cotorsion flat R-modules such that cosupp $X^{i} \subseteq W$ for all $i \in \mathbb{Z}$. Under Corollary 5.4, we use a presentation of the form

$$
X=\left(\cdots \rightarrow \prod_{\mathfrak{p} \in W} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in W} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right),
$$

where $X^{i}=\prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}^{i}$ and $T_{\mathfrak{p}}^{i}$ is the \mathfrak{p}-adic completion of a free $R_{\mathfrak{p}}$-module.

Remark 6.2. Let $X=\left(\cdots \rightarrow \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right)$ be a complex of cotorsion flat R-modules. Let V be a specialization-closed subset of $\operatorname{Spec} R$. By Lemma 3.1, we have $\operatorname{Hom}_{R}\left(\prod_{\mathfrak{p} \in V^{c}} T_{\mathfrak{p}}^{i}, \prod_{\mathfrak{p} \in V} T_{\mathfrak{p}}^{i+1}\right)=0$ for all $i \in \mathbb{Z}$. Therefore $Y=\left(\cdots \rightarrow \prod_{\mathfrak{p} \in V^{c}} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in V^{c}} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right)$ is a subcomplex of X, where the differentials in Y are the restrictions of ones in X.

We say that a complex X of R-modules is left (resp. right) bounded if $X^{i}=0$ for $i \ll 0$ (resp. $i \gg 0$). When X is left and right bounded, X is called bounded.

Proposition 6.3. Let W be a subset of $\operatorname{Spec} R$ and X be a complex of cotorsion flat R-modules such that $\operatorname{cosupp} X^{i} \subseteq W$ for all $i \in \mathbb{Z}$. Suppose that one of the following conditions holds:
(1) X is left bounded.
(2) W is equal to $V(\mathfrak{a})$ for an ideal \mathfrak{a} of R.
(3) W is generalization-closed.
(4) $\operatorname{dim} W$ is finite.

Then it holds that $\operatorname{cosupp} X \subseteq W$, i.e., $X \in \mathcal{C}^{W}$.
To show this, we use the elementary lemma below. Therein, for a complex X and $n \in \mathbb{Z}$, we define the truncations $\tau_{\leq n} X$ and $\tau_{>n} X$ as follows (see [Hartshorne 1966, Chapter I, §7]):

$$
\begin{aligned}
\tau_{\leq n} X & =\left(\cdots \rightarrow X^{n-1} \rightarrow X^{n} \rightarrow 0 \rightarrow \cdots\right), \\
\tau_{>n} X & =\left(\cdots \rightarrow 0 \rightarrow X^{n+1} \rightarrow X^{n+2} \rightarrow \cdots\right) .
\end{aligned}
$$

Lemma 6.4. Let W be a subset of $\operatorname{Spec} R$. We assume that $\tau_{\leq n} X \in \mathcal{C}^{W}$ (resp. $\tau_{>n} X \in \mathcal{L}_{W}$) for all $n \geq 0($ resp. $n<0)$. Then we have $X \in \mathcal{C}^{W}$ (resp. $X \in \mathcal{L}_{W}$).

Recall that \mathcal{C}^{W} (resp. \mathcal{L}_{W}) is closed under arbitrary direct products (resp. sums). Then one can show this lemma by using homotopy limits (resp. colimits), see [Bökstedt and Neeman 1993, Remarks 2.2 and 2.3].

Proof of Proposition 6.3. Case 1: We have $\tau_{\leq n} X \in \mathcal{C}^{W}$ for all $n \geq 0$, since $\tau_{\leq n} X$ are bounded. Thus Lemma 6.4 implies that $X \in \mathcal{C}^{W}$.
Case 2: By (2.9), Proposition 2.5 and (5.3), it holds that $\lambda^{V(\mathfrak{a})} X \cong \mathrm{~L} \Lambda^{V(\mathfrak{a})} X \cong$ $\Lambda^{V(\mathfrak{a})} X \cong X$. Hence X belongs to $\mathcal{C}^{V(\mathfrak{a})}$.
Case 3: It follows from Case 1 that $\tau_{>n} X \in \mathcal{C}^{W}$ for all $n<0$. Moreover, we have $\mathcal{C}^{W}=\mathcal{L}_{W}$ by Lemma 3.1. Thus Lemma 6.4 implies that $X \in \mathcal{L}_{W}=\mathcal{C}^{W}$.
Case 4: Under Notation 6.1, we write $X^{i}=\prod_{\mathfrak{p} \in W} T_{\mathfrak{p}}^{i}$ for $i \in \mathbb{Z}$. Set $n=\operatorname{dim} W$, and use induction on n. First, suppose that $n=0$. It is seen from Remark 6.2 that X is the direct product of complexes of the form $Y^{\{\mathfrak{p}\}}=\left(\cdots \rightarrow T_{\mathfrak{p}}^{i} \rightarrow T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right)$ for $\mathfrak{p} \in W$.

Furthermore, by Cases 2 and 3, we have $\operatorname{cosupp} Y^{\{\mathfrak{p}\}} \subseteq V(\mathfrak{p}) \cap U(\mathfrak{p})=\{\mathfrak{p}\}$. Thus it holds that $X \cong \prod_{p \in W} Y^{\{\mathfrak{p}\}} \in \mathcal{C}^{W}$.

Next, suppose that $n>0$. Set $W_{0}=\max W$ and $W_{1}=W \backslash W_{0}$. We write $Y=\left(\cdots \rightarrow \prod_{\mathfrak{p} \in W_{1}} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in W_{1}} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right)$, which is a subcomplex of X by Remark 6.2. Hence there is a short exact sequence of complexes,

$$
0 \longrightarrow Y \longrightarrow X \longrightarrow X / Y \longrightarrow 0
$$

where $X / Y=\left(\cdots \rightarrow \prod_{\mathfrak{p} \in W_{0}} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in W_{0}} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right)$. Note that $\operatorname{dim} W_{0}=0$ and $\operatorname{dim} W_{1}=n-1$. Then we have $\operatorname{cosupp} X / Y \subseteq W_{0}$, by the argument above. Moreover the inductive hypothesis implies that $\operatorname{cosupp} Y \subseteq W_{1}$. Hence it holds that $\operatorname{cosupp} X \subseteq W_{0} \cup W_{1}=W$.

Under some assumption, it is possible to extend condition (4) in Proposition 6.3 to the case where $\operatorname{dim} W$ is infinite; see Remark 7.15. See also [Thompson 2017a, Theorem 2.7].

Corollary 6.5. Let X be a complex of cotorsion flat R-modules and W be a specialization-closed subset of Spec R. Under Notation 6.1, we write

$$
X=\left(\cdots \rightarrow \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in \operatorname{Spec} R} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right) .
$$

Suppose that one of the conditions in Proposition 6.3 holds. Then it holds that

$$
\begin{align*}
& \gamma_{W^{c}} X \cong\left(\cdots \rightarrow \prod_{\mathfrak{p} \in W^{c}} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in W^{c}} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right), \tag{6.6}\\
& \lambda^{W} X \cong\left(\cdots \rightarrow \prod_{\mathfrak{p} \in W} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in W} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right)
\end{align*}
$$

Proof. Since $Y=\left(\cdots \rightarrow \prod_{\mathfrak{p} \in W^{c}} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in W^{c}} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right)$ is a subcomplex of X by Remark 6.2 , there is a triangle in \mathcal{D} :

$$
Y \longrightarrow X \longrightarrow X / Y \longrightarrow Y[1]
$$

where $X / Y=\left(\cdots \rightarrow \prod_{\mathfrak{p} \in W} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in W} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right)$. By Proposition 6.3, we have $X / Y \in \mathcal{C}^{W}$. Moreover, since W^{c} is generalization-closed, it holds that $Y \in$ $\mathcal{C}^{W^{c}}={ }^{\perp} \mathcal{C}^{W}$ by Proposition 6.3 and Lemma 3.1. Therefore we conclude that $\gamma_{W^{c}} X \cong Y$ and $\lambda^{W} X \cong X / Y$ by Lemma 2.6.

Let X be a complex of cotorsion flat R-modules and S be a multiplicatively closed subset of R. We assume that X is left bounded, or $\operatorname{dim} R$ is finite. It then
follows from the corollary and (5.2) that

$$
\gamma_{U_{S}} X \cong\left(\cdots \rightarrow \prod_{\mathfrak{p} \in U_{S}} T_{\mathfrak{p}}^{i} \rightarrow \prod_{\mathfrak{p} \in U_{S}} T_{\mathfrak{p}}^{i+1} \rightarrow \cdots\right) \cong \operatorname{Hom}_{R}\left(S^{-1} R, X\right) .
$$

We now recall that $\gamma_{U_{S}} \cong \operatorname{RHom}_{R}\left(S^{-1} R,-\right)$; see [Nakamura and Yoshino 2018, Proposition 3.1]. Hence it holds that $\operatorname{RHom}_{R}\left(S^{-1} R, X\right) \cong \operatorname{Hom}_{R}\left(S^{-1} R, X\right)$. This fact also follows from Lemma 9.1.

7. Localization functors via Čech complexes

In this section, we introduce a new notion of Čech complexes to calculate $\lambda^{W} X$, where W is a general subset W of $\operatorname{Spec} R$ and X is a complex of flat R-modules.

We first set the following notation.
Notation 7.1. Let W be a subset of $\operatorname{Spec} R$ with $\operatorname{dim} W=0$. We define a functor $\bar{\lambda}^{W}: \operatorname{Mod} R \rightarrow \operatorname{Mod} R$ by

$$
\bar{\lambda}^{W}=\prod_{\mathfrak{p} \in W} \Lambda^{V(\mathfrak{p})}\left(-\otimes_{R} R_{\mathfrak{p}}\right) .
$$

For a prime ideal \mathfrak{p} in W, we write

$$
\bar{\eta}^{\{\mathfrak{p}\}}: \mathrm{id}_{\operatorname{Mod} R} \rightarrow \bar{\lambda}^{\{\mathfrak{p}\}}=\Lambda^{V(\mathfrak{p})}\left(-\otimes_{R} R_{\mathfrak{p}}\right)
$$

for the composition of the natural morphisms id $\operatorname{Mod} R \rightarrow(-) \otimes_{R} R_{\mathfrak{p}}$ and $(-) \otimes_{R} R_{\mathfrak{p}} \rightarrow$ $\Lambda^{V(\mathfrak{p})}\left(-\otimes_{R} R_{\mathfrak{p}}\right)$. Moreover, $\bar{\eta}^{W}: \operatorname{id}_{\operatorname{Mod} R} \rightarrow \bar{\lambda}^{W}=\prod_{\mathfrak{p} \in W} \bar{\lambda}^{\{\mathfrak{p}\}}$ denotes the product of the morphisms $\bar{\eta}^{\{\mathfrak{p}\}}$ for $\mathfrak{p} \in W$.

Notation 7.2. Let $\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a family of subsets of $\operatorname{Spec} R$, and suppose that $\operatorname{dim} W_{i}=0$ for $0 \leq i \leq n$. For a sequence ($i_{m}, \ldots, i_{1}, i_{0}$) of integers with $0 \leq i_{0}<$ $i_{1}<\cdots<i_{m} \leq n$, we write

$$
\bar{\lambda}^{\left(i_{m}, \ldots, i_{1}, i_{0}\right)}=\bar{\lambda}^{W_{i_{m}}} \ldots \bar{\lambda}^{W_{i_{1}}} \bar{\lambda}^{W_{i_{0}}} .
$$

If the sequence is empty, then we use the general convention that $\lambda^{()}=\mathrm{id}_{\operatorname{Mod} R}$. For an integer s with $0 \leq s \leq m, \bar{\eta}^{W_{i_{s}}}: \mathrm{id}_{\operatorname{Mod} R} \rightarrow \bar{\lambda}^{\left(i_{s}\right)}$ induces a morphism

$$
\bar{\lambda}^{\left(i_{m}, \ldots, i_{s+1}\right)} \bar{\eta}_{i_{s}} \bar{\lambda}^{\left(i_{s-1}, \ldots, i_{0}\right)}: \bar{\lambda}^{\left(i_{m}, \ldots, \hat{i}_{s}, \ldots, i_{0}\right)} \rightarrow \bar{\lambda}^{\left(i_{m}, \ldots, i_{0}\right)},
$$

where we mean by \hat{i}_{s} that i_{s} is omitted. We set

$$
\partial^{m-1}: \prod_{0 \leq i_{0}<\cdots<i_{m-1} \leq n} \bar{\lambda}^{\left(i_{m-1}, \ldots, i_{0}\right)} \rightarrow \prod_{0 \leq i_{0}<\cdots<i_{m} \leq n} \bar{\lambda}^{\left(i_{m}, \ldots, i_{0}\right)}
$$

to be the product of the morphisms $\bar{\lambda}^{\left(i_{m}, \ldots, \hat{i}_{s}, \ldots, i_{0}\right)} \rightarrow \bar{\lambda}^{\left(i_{m}, \ldots, i_{0}\right)}$ multiplied by $(-1)^{s}$.

Remark 7.3. Let $W_{0}, W_{1} \subseteq \operatorname{Spec} R$ be subsets such that $\operatorname{dim} W_{0}=\operatorname{dim} W_{1}=0$. As with Remark 3.14(ii), the following diagram is commutative:

$$
\begin{array}{rlc}
\operatorname{id}_{\text {Mod } R} & \xrightarrow{\bar{\eta}^{W_{0}}} & \bar{\lambda}^{W_{0}} \\
\downarrow^{\bar{\eta}^{W_{1}}} & & \downarrow^{\bar{\eta}^{W_{1}} \bar{\lambda}^{W_{0}}} \\
\bar{\lambda}^{W_{1}} & \xrightarrow{\bar{\lambda}^{W_{1}} \bar{\eta}^{W_{0}}} & \bar{\lambda}^{W_{1}} \bar{\lambda}^{W_{0}}
\end{array}
$$

Definition 7.4. Let $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a family of subsets of $\operatorname{Spec} R$, and suppose that $\operatorname{dim} W_{i}=0$ for $0 \leq i \leq n$. By Remark 7.3, it is possible to construct a Čech complex of functors of the form

$$
\prod_{0 \leq i_{0} \leq n} \bar{\lambda}^{\left(i_{0}\right)} \xrightarrow{\partial^{0}} \prod_{0 \leq i_{0}<i_{1} \leq n} \bar{\lambda}^{\left(i_{1}, i_{0}\right)} \rightarrow \cdots \rightarrow \prod_{0 \leq i_{0}<\cdots<i_{n-1} \leq n} \bar{\lambda}^{\left(i_{n-1}, \ldots, i_{0}\right)} \xrightarrow{\partial^{n-1}} \bar{\lambda}^{(n, \ldots, 0)},
$$

which we denote by $L^{\mathbb{W}}$ and call it the Čech complex with respect to \mathbb{W}.
For an R-module $M, L^{\mathbb{W}} M$ denotes the complex of R-modules obtained by $L^{\mathbb{W}}$ in a natural way, where it is concentrated in degrees from 0 to n. We call $L^{\mathbb{W}} M$ the Čech complex of M with respect to \mathbb{W}. Note that there is a chain map $\ell^{\mathbb{W}} M: M \rightarrow L^{\mathbb{W}} M$ induced by the map $M \rightarrow \prod_{0 \leq i_{0} \leq n} \bar{\lambda}^{\left(i_{0}\right)} M$ in degree 0 , which is the product of $\bar{\eta}^{W_{i_{0}}} M: M \rightarrow \bar{\lambda}^{\left(i_{0}\right)} M$ for $0 \leq i_{0} \leq n$.

More generally, we regard every term of $L^{\mathbb{W}}$ as a functor $C(\operatorname{Mod} R) \rightarrow C(\operatorname{Mod} R)$, where $C(\operatorname{Mod} R)$ denotes the category of complexes of R-modules. Then $L^{\mathbb{W}}$ naturally sends a complex X to a double complex, which we denote by $L^{\mathbb{W}} X$. Furthermore, we write tot $L^{\mathbb{W}} X$ for the total complex of $L^{\mathbb{W}} X$. The family of chain maps $\ell^{\mathbb{W}} X^{j}: X^{j} \rightarrow L^{\mathbb{W}} X^{j}$ for $j \in \mathbb{Z}$ induces a morphism $X \rightarrow L^{\mathbb{W}} X$ as double complexes, from which we obtain a chain map $\ell^{\mathbb{W}} X: X \rightarrow$ tot $L^{\mathbb{W}} X$.
Remark 7.5. (i) We regard tot $L^{\mathbb{W}}$ as a functor $C(\operatorname{Mod} R) \rightarrow C(\operatorname{Mod} R)$. Then $\ell^{\mathbb{W}}$ is a morphism $\operatorname{id}_{C(\operatorname{Mod} R)} \rightarrow \operatorname{tot} L^{\mathbb{W}}$ of functors. Moreover, if M is an R-module, then tot $L^{\mathbb{W}} M=L^{\mathbb{W}} M$.
(ii) Let $a, b \in \mathbb{Z} \cup\{ \pm \infty\}$ with $a \leq b$ and X be a complex of R-modules such that $X^{i}=0$ for $i \notin[a, b]$. Then it holds that $\left(\operatorname{tot} L^{\mathbb{W}} X\right)^{i}=0$ for $i \notin[a, b+n]$, where n is the number given to $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$.
(iii) Let X be a complex of flat R-modules. Then we see that tot $L^{\mathbb{W}} X$ consists of cotorsion flat R-modules with cosupports in $\bigcup_{0 \leq i \leq n} W_{i}$.
Definition 7.6. Let W be a nonempty subset of $\operatorname{Spec} R$ and $\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a family of subsets of W. We say that $\left\{W_{i}\right\}_{0 \leq i \leq n}$ is a system of slices of W if the following conditions hold:
(1) $W=\bigcup_{0 \leq i \leq n} W_{i}$.
(2) $W_{i} \cap W_{j}=\varnothing$ if $i \neq j$.
(3) $\operatorname{dim} W_{i}=0$ for $0 \leq i \leq n$.
(4) W_{i} is specialization-closed in $\bigcup_{i \leq j \leq n} W_{j}$ for each $0 \leq i \leq n$.

Compare this definition with the filtrations in [Hartshorne 1966, Chapter IV, §3].
If $\operatorname{dim} W$ is finite, then there exists at least one system of slices of W. Conversely, if there is a system of slices of W, then $\operatorname{dim} W$ is finite.
Proposition 7.7. Let W be a subset of $\operatorname{Spec} R$ and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a system of slices of W. Then, for any flat R-module F, there is an isomorphism in \mathcal{D};

$$
\lambda^{W} F \cong L^{\mathbb{W}} F
$$

Under this isomorphism, $\ell^{\mathbb{W}} F: F \rightarrow L^{\mathbb{W}} F$ coincides with $\eta^{W} F: F \rightarrow \lambda^{W} F$ in \mathcal{D}. Proof. We use induction on n, which is the number given to $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$. Suppose that $n=0$. It then holds that $L^{\mathbb{W}} F=\bar{\lambda}^{W_{0}} F=\bar{\lambda}^{W} F$ and $\ell^{\mathbb{W}} F=\bar{\eta}^{W_{0}} F=\bar{\eta}^{W} F$. Hence this proposition follows from Theorem 3.10.

Next, suppose that $n>0$, and write $U=\bigcup_{1 \leq i \leq n} W_{i}$. Setting $U_{i-1}=W_{i}$, we obtain a system of slices $\mathbb{U}=\left\{U_{i}\right\}_{0 \leq i \leq n-1}$ of U. Consider the following two squares, where the first and second are in $C(\operatorname{Mod} R)$ and \mathcal{D}, respectively:

By Remarks 7.5(i) and 3.14(ii), both of them are commutative. Moreover, $\lambda^{U} \eta^{W_{0}} F$ is the unique morphism which makes the right square commutative, because λ^{U} is a left adjoint to the inclusion functor $\mathcal{C}^{U} \hookrightarrow \mathcal{D}$. Then, regarding the left square as being in \mathcal{D}, we see from the inductive hypothesis that the left and right squares coincide in \mathcal{D}.

Let $\bar{g}: L^{\mathbb{U}} F \oplus \bar{\lambda}^{W_{0}} F \rightarrow L^{\mathbb{U}} \bar{\lambda}^{W_{0}} F$ and $\bar{h}: F \rightarrow L^{\mathbb{U}} F \oplus \bar{\lambda}^{W_{0}} F$ be chain maps represented by the matrices

$$
\bar{g}=\left(L^{\mathbb{U}} \bar{\eta}^{W_{0}} F \quad(-1) \cdot \ell^{\cup} \bar{\lambda}^{W_{0}} X\right), \quad \bar{h}=\binom{\ell^{\mathbb{U}} F}{\bar{\eta}^{W_{0}} F} .
$$

Notice that the mapping cone of $\bar{g}[-1]$ is nothing but $L^{\mathbb{W}} F$. Then we can obtain the following morphism of triangles, regarded as being in \mathcal{D} :

Therefore, by Theorem 3.15 and Remark 3.19, there is an isomorphism $\lambda^{W} F \cong L^{\mathbb{W}} F$ such that $\ell^{\mathbb{W}} F$ coincides with $\eta^{W} F$ under this isomorphism.

The following corollary is one of the main results of this paper.
Corollary 7.9. Let W and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be as above. Let X be a complex of flat R-modules. Then there is an isomorphism in \mathcal{D};

$$
\lambda^{W} X \cong \operatorname{tot} L^{\mathbb{W}} X .
$$

Under this isomorphism, $\ell^{\mathbb{W}} X: X \rightarrow \operatorname{tot} L^{\mathbb{W}} X$ coincides with $\eta^{W} X: X \rightarrow \lambda^{W} X$ in \mathcal{D}. Proof. We embed $\ell^{\mathbb{W}} X: X \rightarrow$ tot $L^{\mathbb{W}} X$ into a triangle

$$
C \longrightarrow X \xrightarrow{\ell^{\mathbb{W}} X} \text { tot } L^{\mathbb{W}} X \longrightarrow C[1] .
$$

Proposition 6.3 and Remark 7.5 (iii) imply that tot $L^{\mathbb{W}} X \in \mathcal{C}^{W}$. Thus it suffices to show that $\lambda^{W_{i}} C=0$ for each i, by Lemma 2.6 and Remark 2.7(i). For this purpose, we prove that $\lambda^{W_{i}} \ell^{W} X$ is an isomorphism in \mathcal{D}. This is equivalent to showing that $\bar{\lambda}^{W_{i}} \ell^{\mathbb{W}} X$ is a quasi-isomorphism, since X and tot $L^{\mathbb{W}} X$ consist of flat R-modules.

Consider the natural morphism $X \rightarrow L^{\mathbb{W}} X$ of double complexes, which is induced by the chain maps $\ell^{\mathbb{W}} X^{j}: X^{j} \rightarrow L^{\mathbb{W}} X^{j}$ for $j \in \mathbb{Z}$. To prove that $\bar{\lambda}^{W_{i}} \ell^{\mathbb{W}} X$ is a quasi-isomorphism, it is enough to show that $\bar{\lambda}^{W_{i}} \ell^{W} X^{j}$ is a quasi-isomorphism for each $j \in \mathbb{Z}$; see [Kashiwara and Schapira 2006, Theorem 12.5.4]. Furthermore, by Proposition 7.7, each $\ell^{\mathbb{W}} X^{j}$ coincides with $\eta^{W} X^{j}: X^{j} \rightarrow \lambda^{W} X^{j}$ in \mathcal{D}. Since $W_{i} \subseteq W$, it follows from Remark 2.7(ii) that $\lambda^{W_{i}} \eta^{W} X^{j}$ is an isomorphism in \mathcal{D}. This means that $\bar{\lambda}^{W_{i}} \ell^{W} X^{j}$ is a quasi-isomorphism.

Let W be a subset of $\operatorname{Spec} R$, and suppose that $n=\operatorname{dim} W$ is finite. Then Corollary 7.9 implies $\lambda^{W} R \in \mathcal{D}^{[0, n]}$. We give an example such that $H^{n}\left(\lambda^{W} R\right) \neq 0$.

Example 7.10. Let (R, \mathfrak{m}) be a local ring of dimension $d \geq 1$. Then we have $\operatorname{dim} V(\mathfrak{m})^{c}=d-1$. By Lemma 2.6, there is a triangle

$$
\gamma_{V(\mathfrak{m})} R \longrightarrow R \longrightarrow \lambda^{V(\mathfrak{m})^{c}} R \longrightarrow \gamma_{V(\mathfrak{m})} R[1] .
$$

Since $\mathrm{R} \Gamma_{V(\mathfrak{m})} \cong \gamma_{V(\mathfrak{m})}$ by (2.10), Grothendieck's nonvanishing theorem implies that $H^{d}\left(\gamma_{V(\mathfrak{m})} R\right)$ is nonzero. Then we see from the triangle that $H^{d-1}\left(\lambda^{V(\mathfrak{m})^{c}} R\right) \neq 0$.

We denote by \mathcal{D}^{-}the full subcategory of \mathcal{D} consisting of complexes X such that $H^{i}(X)=0$ for $i \gg 0$. Let W be a subset of $\operatorname{Spec} R$ and $X \in \mathcal{D}^{-}$. If $\operatorname{dim} W$ is finite, then we have $\lambda^{W} R \in \mathcal{D}^{-}$by Corollary 7.9. However, as shown in the following example, it can happen that $\lambda^{W} R \notin \mathcal{D}^{-}$when $\operatorname{dim} W$ is infinite.

Example 7.11. Assume that $\operatorname{dim} R=+\infty$, and set $W=\max (\operatorname{Spec} R)$. Then it holds that $\operatorname{dim} W=0$ and $\operatorname{dim} W^{c}=+\infty$. Since each $\mathfrak{m} \in W$ is maximal, there are isomorphisms

$$
\gamma_{W} \cong \mathrm{R} \Gamma_{W} \cong \bigoplus_{\mathfrak{m} \in W} \mathrm{R} \Gamma_{V(\mathfrak{m})}
$$

Thus we see from Example 7.10 that $\gamma_{W} R \notin \mathcal{D}^{-}$. Then, considering the triangle

$$
\gamma_{W} R \longrightarrow R \longrightarrow \lambda^{W^{c}} R \longrightarrow \gamma_{W} R[1],
$$

we have $\lambda^{W^{c}} R \notin \mathcal{D}^{-}$.
Let W be a subset of $\operatorname{Spec} R$ and $X \in \mathcal{C}^{W}$. Then $\eta^{W} X: X \rightarrow \lambda^{W} X$ is an isomorphism in \mathcal{D}. Thus Remark 7.5(iii) and Corollary 7.9 yield the following result.
Corollary 7.12. Let W be a subset of $\operatorname{Spec} R$, and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a system of slices of W. Let X be a complex of flat R-modules with $\operatorname{cosupp} X \subseteq W$. Then the chain map $\ell^{\mathbb{W}} X: X \rightarrow$ tot $L^{\mathbb{W}} X$ is a quasi-isomorphism, where tot $L^{\mathbb{W}} X$ consists of cotorsion flat R-modules with cosupports in W.
Remark 7.13. If $d=\operatorname{dim} R$ is finite, then any complex Y is quasi-isomorphic to a K-flat complex consisting of cotorsion flat R-modules. To see this, set

$$
W_{i}=\{\mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{dim} R / \mathfrak{p}=i\}
$$

for $0 \leq i \leq d$. Then $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq d}$ is a system of slices of Spec R. We take a K-flat resolution X of Y such that X consists of flat R-modules. Corollary 7.12 implies that $\ell^{\mathbb{W}} X: X \rightarrow$ tot $L^{\mathbb{W}} X$ is a quasi-isomorphism, and tot $L^{\mathbb{W}} X$ consists of cotorsion flat R-modules. At the same time, the chain maps $\ell^{\mathbb{W}} X^{i}: X^{i} \rightarrow L^{\mathbb{W}} X^{i}$ are quasi-isomorphisms for all $i \in \mathbb{Z}$. Then it is not hard to see that the mapping cone of $\ell^{\mathbb{W}} X$ is K-flat. Thus tot $L^{\mathbb{W}} X$ is K-flat.

By Proposition 6.3 and Corollary 7.12, we have the next result.
Corollary 7.14. Let W be a subset of $\operatorname{Spec} R$ such that $\operatorname{dim} W$ is finite. Then a complex $X \in \mathcal{D}$ belongs to \mathcal{C}^{W} if and only if X is isomorphic to a complex Z of cotorsion flat R-modules such that $\operatorname{cosupp} Z^{i} \subseteq W$ for all $i \in \mathbb{Z}$.

Remark 7.15. If $\operatorname{dim} W$ is infinite, it is possible to construct a similar family to systems of slices. We first put $W_{0}=\max W$. Let $i>0$ be an ordinal, and suppose that subsets W_{j} of W are defined for all $j<i$. Then we put $W_{i}=\max \left(W \backslash \bigcup_{j<i} W_{j}\right)$. In this way, we obtain the smallest ordinal $o(W)$ satisfying the following conditions:
(1) $W=\bigcup_{0 \leq i<o(W)} W_{i}$.
(2) $W_{i} \cap W_{j}=\varnothing$ if $i \neq j$.
(3) $\operatorname{dim} W_{i} \leq 0$ for $0 \leq i<o(W)$.
(4) W_{i} is specialization-closed in $\bigcup_{i \leq j<o(W)} W_{j}$ for each $0 \leq i<o(W)$.

One should remark that the ordinal $o(W)$ can be uncountable in general; see [Gordon and Robson 1973, p. 48, Theorem 9.8]. However, if R is an infinitedimensional commutative Noetherian ring given by Nagata [1962, Appendix A1, Example 1], then $o(W)$ is at most countable. Moreover, using transfinite induction, it is possible to extend condition (4) in Proposition 6.3 and Corollary 6.5 to the case
where $o(W)$ is countable. One can also extend Corollary 7.14 to the case where $o(W)$ is countable.

Using Theorem 3.22 and results in [Nakamura and Yoshino 2018, §3], it is possible to give a similar result to Corollary 7.9, for colocalization functors γ_{W} and complexes of injective R-modules.

8. Čech complexes and complexes of finitely generated modules

Let W be a subset of Spec R and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a system of slices of W. In this section, we prove that $\lambda^{W} Y$ is isomorphic to tot $L^{\mathbb{W}} Y$ if Y is a complex of finitely generated R-modules.

We denote by $\mathcal{D}_{\mathrm{fg}}$ the full subcategory of \mathcal{D} consisting of all complexes with finitely generated cohomology modules, and set $\mathcal{D}_{\text {fg }}^{-}=\mathcal{D}^{-} \cap \mathcal{D}_{\text {fg }}$. We first prove the following proposition.

Proposition 8.1. Let W be a subset of $\operatorname{Spec} R$ such that $\operatorname{dim} W$ is finite. Let $X, Y \in \mathcal{D}$. We suppose that one of the following conditions holds:
(1) $X \in \mathcal{D}^{-}$and $Y \in \mathcal{D}_{\mathrm{fg}}^{-}$.
(2) X is a bounded complex of flat R-modules and $Y \in \mathcal{D}_{\mathrm{fg}}$.

Then there are natural isomorphisms

$$
\left(\gamma_{W^{c}} X\right) \otimes_{R}^{\mathrm{L}} Y \cong \gamma_{W^{c}}\left(X \otimes_{R}^{\mathrm{L}} Y\right), \quad\left(\lambda^{W} X\right) \otimes_{R}^{\mathrm{L}} Y \cong \lambda^{W}\left(X \otimes_{R}^{\mathrm{L}} Y\right) .
$$

For $X \in \mathcal{D}$ and $n \in \mathbb{Z}$, we define the cohomological truncations $\sigma_{\leq n} X$ and $\sigma_{>n} X$ as follows (see [Hartshorne 1966, Chapter I, §7]):

$$
\begin{aligned}
& \sigma_{\leq n} X=\left(\cdots \rightarrow X^{n-2} \rightarrow X^{n-1} \rightarrow \operatorname{Ker} d_{X}^{n} \rightarrow 0 \rightarrow \cdots\right), \\
& \sigma_{>n} X=\left(\cdots \rightarrow 0 \rightarrow \operatorname{Im} d_{X}^{n} \rightarrow X^{n+1} \rightarrow X^{n+2} \rightarrow \cdots\right) .
\end{aligned}
$$

Proof of Proposition 8.1. Applying $(-) \otimes_{R}^{L} Y$ to the triangle

$$
\gamma_{W^{c}} X \rightarrow X \rightarrow \lambda^{W} X \rightarrow \gamma_{W^{c}} X[1],
$$

we obtain the triangle

$$
\left(\gamma_{W^{c}} X\right) \otimes_{R}^{\mathrm{L}} Y \longrightarrow X \otimes_{R}^{\mathrm{L}} Y \longrightarrow\left(\lambda^{W} X\right) \otimes_{R}^{\mathrm{L}} Y \longrightarrow\left(\gamma_{W^{c}} X\right) \otimes_{R}^{\mathrm{L}} Y[1] .
$$

Since supp $\gamma_{W^{c}} X \subseteq W^{c}$, we have $\operatorname{supp}\left(\gamma_{W^{c}} X\right) \otimes_{R}^{\mathrm{L}} Y \subseteq W^{c}$, i.e., $\left(\gamma_{W^{c}} X\right) \otimes_{R}^{\mathrm{L}} Y \in \mathcal{L}_{W^{c}}$. Hence it remains to show that $\left(\lambda^{W} X\right) \otimes_{R}^{\mathrm{L}} Y \in \mathcal{C}^{W}$; see Lemma 2.6.
Case 1: We remark that X is isomorphic to a right bounded complex of flat R modules. Then it is seen from Corollary 7.9 that $\lambda^{W} X$ is isomorphic to a right bounded complex Z of cotorsion flat R-modules such that $\operatorname{cosupp} Z^{i} \subseteq W$ for all $i \in \mathbb{Z}$. Furthermore, Y is isomorphic to a right bounded complex P of finite
free R-modules. Hence it follows that $X \otimes_{R}^{\mathrm{L}} Y \cong Z \otimes_{R} P$, where the second one consists of cotorsion flat R-modules with cosupports in W. Then we have $X \otimes_{R}^{\mathrm{L}} Y \cong Z \otimes_{R} P \in \mathcal{C}^{W}$ by Proposition 6.3.
Case 2: By Corollary 7.9, $\lambda^{W} X$ is isomorphic to a bounded complex consisting of cotorsion flat R-modules with cosupports in W. Thus it is enough to prove that $Z \otimes_{R} Y \in \mathcal{C}^{W}$ for a cotorsion flat R-module Z with $\operatorname{cosupp} Z \subseteq W$.

We consider the triangle $\sigma_{\leq n} Y \rightarrow Y \rightarrow \sigma_{>n} Y \rightarrow \sigma_{\leq n} Y[1]$ for an integer n. Applying $Z \otimes_{R}(-)$ to this triangle, we obtain the following one:

$$
Z \otimes_{R} \sigma_{\leq n} Y \longrightarrow Z \otimes_{R} Y \longrightarrow Z \otimes_{R} \sigma_{>n} Y \longrightarrow Z \otimes_{R} \sigma_{\leq n} Y[1] .
$$

Let $\mathfrak{p} \in W^{c}$. Case 1 implies that $Z \otimes_{R} \sigma_{\leq n} Y \in \mathcal{C}^{W}$ for any $n \in \mathbb{Z}$, since $\lambda^{W} Z \cong Z$. Thus, applying $\operatorname{RHom}_{R}(\kappa(\mathfrak{p}),-)$ to the triangle above, we have

$$
\operatorname{RHom}_{R}\left(\kappa(\mathfrak{p}), Z \otimes_{R} Y\right) \cong \operatorname{RHom}_{R}\left(\kappa(\mathfrak{p}), Z \otimes_{R} \sigma_{>n} Y\right) .
$$

Furthermore, taking a projective resolution P of $\kappa(\mathfrak{p})$, we have

$$
\operatorname{RHom}_{R}\left(\kappa(\mathfrak{p}), Z \otimes_{R} \sigma_{>n} Y\right) \cong \operatorname{Hom}_{R}\left(P, Z \otimes_{R} \sigma_{>n} Y\right)
$$

Let j be any integer. To see that $\operatorname{RHom}_{R}\left(\kappa(\mathfrak{p}), Z \otimes_{R} Y\right)=0$, it suffices to show that there exists an integer n such that $H^{0}\left(\operatorname{Hom}_{R}\left(P[j], Z \otimes_{R} \sigma_{>n} Y\right)\right)=0$. Note that $P^{i}=0$ for $i>0$. Moreover, each element of $H^{0}\left(\operatorname{Hom}_{R}\left(P[j], Z \otimes_{R} \sigma_{>n} Y\right)\right) \cong$ $\operatorname{Hom}_{\mathcal{D}}\left(P[j], Z \otimes_{R} \sigma_{>n} Y\right)$ is represented by a chain map $P[j] \rightarrow Z \otimes_{R} \sigma_{>n} Y$. Therefore it holds that $H^{0}\left(\operatorname{Hom}_{R}\left(P[j], Z \otimes_{R} \sigma_{>n} Y\right)\right)=0$ if $n>-j$.

Remark 8.2. (i) In the proposition, we can remove the finiteness condition on $\operatorname{dim} W$ if $W=V(\mathfrak{a})$ for an ideal \mathfrak{a}. In such cases, we need only use \mathfrak{a}-adic completions of free R-modules instead of cotorsion flat R-modules.
(ii) If W is a generalization-closed subset of $\operatorname{Spec} R$, then the isomorphisms in the proposition hold for any $X, Y \in \mathcal{D}$ because $\gamma_{W^{c}}$ is isomorphic to $\mathrm{R} \Gamma_{W^{c}}$.

Let W be a subset of $\operatorname{Spec} R$ and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a system of slices of W. Let $Y \in \mathcal{D}_{\mathrm{fg}}$. By Propositions 8.1 and 7.7, we have

$$
\begin{equation*}
\lambda^{W} Y \cong\left(\lambda^{W} R\right) \otimes_{R}^{\mathrm{L}} Y \cong\left(L^{\mathbb{W}} R\right) \otimes_{R} Y . \tag{8.3}
\end{equation*}
$$

Let F be a flat R-module and M be a finitely generated R-module. Then we see from Lemma 2.3 that

$$
\left(\bar{\lambda}^{W_{i}} F\right) \otimes_{R} M \cong \bar{\lambda}^{W_{i}}\left(F \otimes_{R} M\right) .
$$

This fact ensures that $\left(\bar{\lambda}^{\left(i_{m}, \ldots, i_{1}, i_{0}\right)} R\right) \otimes_{R} M \cong \bar{\lambda}^{\left(i_{m}, \ldots, i_{1}, i_{0}\right)} M$. Thus, if Y is a complex of finitely generated R-modules, then there is a natural isomorphism

$$
\begin{equation*}
\left(L^{\mathbb{W}} R\right) \otimes_{R} Y \cong \operatorname{tot} L^{\mathbb{W}} Y \tag{8.4}
\end{equation*}
$$

in $C(\operatorname{Mod} R)$. By (8.3) and (8.4), we have shown the following proposition.

Proposition 8.5. Let W be a subset of $\operatorname{Spec} R$ and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a system of slices of W. Let Y be a complex of finitely generated R-modules. Then there is an isomorphism in \mathcal{D};

$$
\lambda^{W} Y \cong \operatorname{tot} L^{\mathbb{W}} Y .
$$

Under this identification, $\ell^{\mathbb{W}} Y: Y \rightarrow$ tot $L^{\mathbb{W}} Y$ coincides with $\eta^{W} Y: Y \rightarrow \lambda^{W} Y$ in \mathcal{D}.
We see from (8.4) and the remark below that it is also possible to give a quick proof of this proposition, provided that Y is a right bounded complex of finitely generated R-modules.
Remark 8.6. Let W be a subset of $\operatorname{Spec} R$ and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a system of slices of W. We denote by $K(\operatorname{Mod} R)$ the homotopy category of complexes of R modules. Note that tot $L^{\mathbb{W}}$ induces a triangulated functor $K(\operatorname{Mod} R) \rightarrow K(\operatorname{Mod} R)$, which we also write tot $L^{\mathbb{W}}$. Then it is seen from Corollary 7.9 that $\lambda^{W}: \mathcal{D} \rightarrow \mathcal{D}$ is isomorphic to the left derived functor of tot $L^{\mathbb{W}}: K(\operatorname{Mod} R) \rightarrow K(\operatorname{Mod} R)$.

Let W be a subset of $\operatorname{Spec} R$ such that $n=\operatorname{dim} W$ is finite. By Proposition 8.5 , if an R-module M is finitely generated, then $\lambda^{W} M \in \mathcal{D}^{[0, n]}$. On the other hand, since $\lambda^{V(\mathfrak{a})} \cong \mathrm{L} \Lambda^{V(\mathfrak{a})}$ for an ideal \mathfrak{a}, it can happen that $H^{i}\left(\lambda^{W} M\right) \neq 0$ for some $i<0$ when M is not finitely generated; see [Nakamura and Yoshino 2018, Example 5.3].
Remark 8.7. Let $n \geq 0$ be an integer. Let \mathfrak{a}_{i} be ideals of R and S_{i} be multiplicatively closed subsets of R for $0 \leq i \leq n$. In Notation 7.2 and Definition 7.4, one can replace $\bar{\lambda}^{(i)}=\bar{\lambda}^{W_{i}}$ by $\Lambda^{V\left(\mathfrak{c}_{i}\right)}\left(-\otimes_{R} S_{i}^{-1} R\right)$, and construct a kind of Čech complex. For this Čech complex and λ^{W} with $W=\bigcup_{0 \leq i \leq n}\left(V\left(\mathfrak{a}_{i}\right) \cap U_{S_{i}}\right)$, it is possible to show similar results to Corollary 7.9 and Proposition 8.5 , provided that one of the following conditions holds:
(1) $V\left(\mathfrak{a}_{i}\right) \cap U_{S_{i}}$ is specialization-closed in $\bigcup_{i \leq j \leq n}\left(V\left(\mathfrak{a}_{j}\right) \cap U_{S_{j}}\right)$ for each $0 \leq i \leq n$.
(2) $V\left(\mathfrak{a}_{i}\right) \cap U_{S_{i}}$ is generalization-closed in $\bigcup_{0 \leq j \leq i}\left(V\left(\mathfrak{a}_{j}\right) \cap U_{S_{j}}\right)$ for each $0 \leq i \leq n$.

9. Čech complexes and complexes of pure-injective modules

In this section, as an application, we give a functorial way to construct a quasiisomorphism from a complex of flat R-modules or a complex of finitely generated R-modules to a complex of pure-injective R-modules.

We start with the following well known fact.
Lemma 9.1. Let X be a complex of flat R-modules and Y be a complex of cotorsion R-modules. We assume that one of the following conditions holds:
(1) X is right bounded and Y is left bounded.
(2) X is bounded and $\operatorname{dim} R$ is finite.

Then we have $\mathrm{RHom}_{R}(X, Y) \cong \operatorname{Hom}_{R}(X, Y)$.

One can prove this lemma by [Kashiwara and Schapira 2006, Theorem 12.5.4] and Theorem 4.1.

Next, we recall the notion of pure-injective modules and resolutions. We say that a morphism $f: M \rightarrow N$ of R-modules is pure if $f \otimes_{R} L$ is a monomorphism in $\operatorname{Mod} R$ for any R-module L. Moreover, an R-module P is called pure-injective if $\operatorname{Hom}_{R}(f, P)$ is an epimorphism in $\operatorname{Mod} R$ for any pure morphism $f: M \rightarrow N$ of R modules. Clearly, all injective R-modules are pure-injective. Furthermore, all pureinjective R-modules are cotorsion; see [Enochs and Jenda 2000, Lemma 5.3.23].

Let M be an R-module. A complex P together with a quasi-isomorphism $M \rightarrow P$ is called a pure-injective resolution of M if P consists of pure-injective R-modules and $P^{i}=0$ for $i<0$. It is known that any R-module has a minimal pure-injective resolution, which is constructed by using pure-injective envelopes, see [Enochs 1987] and [Enochs and Jenda 2000, Example 6.6.5, Definition 8.1.4]. Moreover, if F is a flat R-module and P is a pure-injective resolution of M, then we have $\operatorname{RHom}_{R}(F, M) \cong \operatorname{Hom}_{R}(F, P)$ by Lemma 9.1.

Now we observe that any cotorsion flat R-module is pure-injective. Consider an R-module of the form $\left(\bigoplus_{B} R_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge}$ with some index set B and a prime ideal \mathfrak{p}, which is a cotorsion flat R-module. Writing $E_{R}(R / \mathfrak{p})$ for the injective hull of R / \mathfrak{p}, we have

$$
\left(\bigoplus_{B} R_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge} \cong \operatorname{Hom}_{R}\left(E_{R}(R / \mathfrak{p}), \bigoplus_{B} E_{R}(R / \mathfrak{p})\right) ;
$$

see [Enochs and Jenda 2000, Theorem 3.4.1]. It follows from tensor-hom adjunction that $\operatorname{Hom}_{R}(M, I)$ is pure-injective for any R-module M and any injective R-module I. Hence $\left(\bigoplus_{B} R_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge}$ is pure-injective. Thus any cotorsion flat R-module is pure-injective; see Proposition 5.1.

There is another example of pure-injective R-modules. Let M be a finitely generated R-module. Using the Five Lemma, we are able to prove an isomorphism

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(E_{R}(R / \mathfrak{p}), \bigoplus_{B} E_{R}(R / \mathfrak{p})\right) & \otimes_{R} M \\
& \cong \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}\left(M, E_{R}(R / \mathfrak{p})\right), \bigoplus_{B} E_{R}(R / \mathfrak{p})\right) .
\end{aligned}
$$

Therefore $\left(\bigoplus_{B} R_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge} \otimes_{R} M$ is pure-injective; it is also isomorphic to $\left(\bigoplus_{B} M_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge}$ by Lemma 2.3. Further, Proposition 8.1 implies that $\operatorname{cosupp}\left(\bigoplus_{B} M_{\mathfrak{p}}\right)_{\mathfrak{p}}^{\wedge} \subseteq\{\mathfrak{p}\}$.

By the above observation, we see that Corollary 7.12, (8.4) and Proposition 8.5 yield the following theorem, which is one of the main results of this paper.

Theorem 9.2. Let W be a subset of $\operatorname{Spec} R$ and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq n}$ be a system of slices of W. Let Z be a complex of flat R-modules or a complex of finitely generated
R-modules. We assume that $\operatorname{cosupp} Z \subseteq W$. Then $\ell^{\mathbb{W}} Z: Z \rightarrow \operatorname{tot} L^{\mathbb{W}} Z$ is a quasiisomorphism, where tot $L^{\mathbb{W}} Z$ consists of pure-injective R-modules with cosupports in W.

Remark 9.3. Let N be a flat or finitely generated R-module. Suppose that $d=$ $\operatorname{dim} R$ is finite. Set $W_{i}=\{\mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{dim} R / \mathfrak{p}=i\}$ and $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq d}$. By Theorem 9.2, we obtain a pure-injective resolution $\ell^{\mathbb{W}} N: N \rightarrow L^{\mathbb{W}} N$ of N, that is, there is an exact sequence of R-modules of the form

$$
0 \rightarrow N \rightarrow \prod_{0 \leq i_{0} \leq d} \bar{\lambda}^{\left(i_{0}\right)} N \rightarrow \prod_{0 \leq i_{0}<i_{1} \leq d} \bar{\lambda}^{\left(i_{1}, i_{0}\right)} N \rightarrow \cdots \rightarrow \bar{\lambda}^{(d, \ldots, 0)} N \rightarrow 0 .
$$

We remark that, in $C(\operatorname{Mod} R), L^{\mathbb{W}} N$ need not be isomorphic to a minimal pureinjective resolution P of N. In fact, when N is a projective or finitely generated R-module, it holds that $P^{0} \cong \prod_{\mathfrak{m} \in W_{0}} \widehat{N_{\mathfrak{m}}}=\bar{\lambda}^{(0)} N$ (see [Warfield 1969, Theorem 3] and [Enochs and Jenda 2000, Remark 6.7.12]), while $\left(L^{\mathbb{W}} N\right)^{0}=\prod_{0 \leq i_{0} \leq d} \bar{\lambda}^{\left(i_{0}\right)} N$. Furthermore, Enochs [1987, Theorem 2.1] proved that if N is a flat R-module, then P^{i} is of the form $\prod_{\mathfrak{p} \in W_{\geq i}} T_{\mathfrak{p}}^{i}$ for $0 \leq i \leq d$ (see Notation 6.1), where

$$
W_{\geq i}=\{\mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{dim} R / \mathfrak{p} \geq i\} .
$$

On the other hand, for a flat or finitely generated R-module N, the differential maps in the pure-injective resolution $L^{\mathbb{W}} N$ are concretely described. In addition, our approach based on the localization functor λ^{W} and the Čech complex $L^{\mathbb{W}}$ provide a natural morphism $\ell^{\mathbb{W}}: \operatorname{id}_{C(\operatorname{Mod} R)} \rightarrow \operatorname{tot} L^{\mathbb{W}}$ which induces isomorphisms in \mathcal{D} for all complexes of flat R-modules and complexes of finitely generated R modules. The reader should also compare Theorem 9.2 with [Thompson 2017b, Theorem 5.2].

We close this paper with the following example of Theorem 9.2.
Example 9.4. Let R be a 2-dimensional local domain with quotient field Q. Let $\mathbb{W}=\left\{W_{i}\right\}_{0 \leq i \leq 2}$ be as in Remark 9.3. Then $L^{\mathbb{W}} R$ is a pure-injective resolution of R, and $L^{\mathbb{W}} R$ is of the following form:
$0 \rightarrow Q \oplus\left(\prod_{\mathfrak{p} \in W_{1}} \widehat{R}_{\mathfrak{p}}\right) \oplus \widehat{R} \rightarrow\left(\prod_{\mathfrak{p} \in W_{1}} \widehat{R}_{\mathfrak{p}}\right)_{(0)} \oplus(\widehat{R})_{(0)} \oplus \prod_{\mathfrak{p} \in W_{1}}\left({\widehat{\widehat{R}})_{\mathfrak{p}}} \rightarrow\left(\prod_{\mathfrak{p} \in W_{1}}\left(\widehat{\widehat{R})_{\mathfrak{p}}}\right)_{(0)} \rightarrow 0\right.\right.$

Acknowledgements

Nakamura is grateful to Srikanth Iyengar for his helpful comments and suggestions. Yoshino was supported by JSPS Grant-in-Aid for Scientific Research 26287008.

References

[Alonso Tarrío et al. 1997] L. Alonso Tarrío, A. Jeremías López, and J. Lipman, "Local homology and cohomology on schemes", Ann. Sci. Éc. Norm. Supér (4) 30:1 (1997), 1-39. Correction available at https://tinyurl.com/lipmanfix. MR Zbl
[Benson et al. 2008] D. Benson, S. B. Iyengar, and H. Krause, "Local cohomology and support for triangulated categories", Ann. Sci. Éc. Norm. Supér. (4) 41:4 (2008), 573-619. MR Zbl
[Benson et al. 2012] D. J. Benson, S. B. Iyengar, and H. Krause, "Colocalizing subcategories and cosupport", J. Reine Angew. Math. 673 (2012), 161-207. MR Zbl
[Bökstedt and Neeman 1993] M. Bökstedt and A. Neeman, "Homotopy limits in triangulated categories", Compositio Math. 86:2 (1993), 209-234. MR Zbl
[Bourbaki 1961] N. Bourbaki, Algèbre commutative: Chapitre 1: Modules plats; Chapitre 2: Localisation, Hermann, Paris, 1961. MR Zbl
[Enochs 1984] E. Enochs, "Flat covers and flat cotorsion modules", Proc. Amer. Math. Soc. 92:2 (1984), 179-184. MR Zbl
[Enochs 1987] E. E. Enochs, "Minimal pure injective resolutions of flat modules", J. Algebra 105:2 (1987), 351-364. MR Zbl
[Enochs and Jenda 2000] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, de Gruyter Expositions in Math. 30, de Gruyter, Berlin, 2000. MR Zbl
[Foxby and Iyengar 2003] H.-B. Foxby and S. Iyengar, "Depth and amplitude for unbounded complexes", pp. 119-137 in Commutative algebra (Grenoble/Lyon, 2001), edited by L. L. Avramov et al., Contemp. Math. 331, Amer. Math. Soc., Providence, RI, 2003. MR Zbl
[Gordon and Robson 1973] R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc. 133, Amer. Math. Soc., Providence, RI, 1973. MR Zbl
[Greenlees and May 1992] J. P. C. Greenlees and J. P. May, "Derived functors of I-adic completion and local homology", J. Algebra 149:2 (1992), 438-453. MR Zbl
[Hartshorne 1966] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer, 1966. MR Zbl
[Kashiwara and Schapira 2006] M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der Math. Wissenschaften 332, Springer, 2006. MR Zbl
[Krause 2010] H. Krause, "Localization theory for triangulated categories", pp. 161-235 in Triangulated categories, edited by T. Holm et al., London Math. Soc. Lecture Note Ser. 375, Cambridge Univ. Press, 2010. MR Zbl
[Lipman 2002] J. Lipman, "Lectures on local cohomology and duality", pp. 39-89 in Local cohomology and its applications (Guanajuato, 1999), edited by G. Lyubeznik, Lecture Notes in Pure and Appl. Math. 226, Dekker, New York, 2002. MR Zbl
[Nagata 1962] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math. 13, Interscience, New York, 1962. MR Zbl
[Nakamura and Yoshino 2018] T. Nakamura and Y. Yoshino, "A local duality principle in derived categories of commutative Noetherian rings", J. Pure Appl. Algebra 222:9 (2018), 2580-2595.
[Neeman 1992] A. Neeman, "The chromatic tower for $D(R)$ ", Topology 31:3 (1992), 519-532. MR Zbl
[Neeman 2011] A. Neeman, "Colocalizing subcategories of $D(R)$ ", J. Reine Angew. Math. 653 (2011), 221-243. MR Zbl
[Raynaud and Gruson 1971] M. Raynaud and L. Gruson, "Critères de platitude et de projectivité: techniques de 'platification' d'un module", Invent. Math. 13 (1971), 1-89. MR Zbl
[Sather-Wagstaff and Wicklein 2017] S. Sather-Wagstaff and R. Wicklein, "Support and adic finiteness for complexes", Comm. Algebra 45:6 (2017), 2569-2592. MR Zbl
[Simon 1990] A.-M. Simon, "Some homological properties of complete modules", Math. Proc. Cambridge Philos. Soc. 108:2 (1990), 231-246. MR Zbl
[Thompson 2017a] P. Thompson, "Cosupport computations for finitely generated modules over commutative Noetherian rings", preprint, 2017. arXiv
[Thompson 2017b] P. Thompson, "Minimal complexes of cotorsion flat modules", preprint, 2017. arXiv
[Warfield 1969] R. B. Warfield, Jr., "Purity and algebraic compactness for modules", Pacific J. Math. 28 (1969), 699-719. MR Zbl
[Xu 1996] J. Xu, Flat covers of modules, Lecture Notes in Math. 1634, Springer, 1996. MR Zbl
Received October 25, 2017. Revised February 23, 2018.

Tsutomu Nakamura
Graduate School of Natural Science and Technology
Okayama University
Okayama
JAPAN
t.nakamura@s.okayama-u.ac.jp

Yuji Yoshino
Graduate School of Natural Science and Technology
Okayama University
Tsushima-NaKa
Okayama
JAPAN
yoshino@math.okayama-u.ac.jp

ZETA INTEGRALS FOR GSP(4) VIA BESSEL MODELS

Ralf Schmidt and Long Tran

Abstract

We give a revised treatment of Piatetski-Shapiro's theory of zeta integrals and L-factors for irreducible, admissible representations of $\operatorname{GSp}(4, F)$ via Bessel models. We explicitly calculate the local L-factors in the nonsplit case for all representations. In particular, we introduce the new concept of Jacquet-Waldspurger modules which play a crucial role in our calculations.

1. Introduction 437
2. Definitions and notations 438
3. Jacquet-Waldspurger modules 440
4. Asymptotic behavior 446
5. Local zeta integrals and L-factors 455
References 479

1. Introduction

An irreducible, admissible representation of an algebraic reductive group over a local field is called generic if it has a Whittaker model. Whittaker models are one of the main tools to define local and global L-functions and ε-factors of representations. The theory was developed by Jacquet and Langlands for GL(2) following ideas of Tate's thesis for GL(1). The general case of GL(n) was developed in a series of works by Jacquet, Piatetski-Shapiro and Shalika. It is well known that any infinite dimensional irreducible, admissible representation of GL(2) is always generic.

Let F be a nonarchimedean local field of characteristic zero. Takloo-Bighash [2000] computed L-functions for all generic representations of the group $\operatorname{GSp}(4, F)$. It is similar to the theory of $\mathrm{GL}(n)$ in that the approach is based on the existence of Whittaker models and zeta integrals. The method was first introduced by Novodvorsky [1979] in the Corvallis conference. However, it turns out that there are many irreducible, admissible representations of $\mathrm{GSp}(4, F)$ which are not generic.

In the 1970s, Novodvorsky and Piatetski-Shapiro introduced the concept of Bessel models. In contrast to Whittaker models, every irreducible, admissible, infinite-dimensional representation of $\operatorname{GSp}(4, F)$ admits a Bessel model of some

[^14]kind; see Theorem 6.1.4 of [Roberts and Schmidt 2016]. Piatetski-Shapiro [1997] defined a new type of zeta integral with respect to Bessel models which led to a parallel method to the GL(2) case of defining local factors. However, some of his results were only sketched, and not many factors were calculated explicitly.

Danișman calculated many Piatetski-Shapiro L-factors explicitly in the case of nonsplit Bessel models. In [Danișman 2014], representations were treated whose Jacquet module with respect to the Siegel parabolic has at most length 2. In [Danişman 2015a], this was extended to length at most 3. Nongeneric supercuspidals were the topic of [Danişman 2015b].

In this work we revisit both Piatetski-Shapiro's original theory and Danișman's explicit calculations. We generalize the theory of [Piatetski-Shapiro 1997] in that we do not restrict ourselves to unitary representations. We also fill in some of the missing proofs, for example in the argument that generic representations do not admit "exceptional poles".

Generalizing Danișman's approach, we give a unified treatment of the asymptotics of Bessel functions in the nonsplit case which works for all representations. The key here is to consider a new type of finite-dimensional module $V_{N, T, \Lambda}$ associated to an irreducible, admissible representation (π, V) of $\operatorname{GSp}(4, F)$. These JacquetWaldspurger modules control the asymptotics of Bessel functions. Table 2 contains the semisimplifications of all Jacquet-Waldspurger modules, and Table 3 contains their precise algebraic structure as F^{\times}-modules. A key lemma in the nonsplit case is due to Danișman; see Proposition 4.3.3.

Once the asymptotic behavior is known, it is easy to calculate the regular part $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$ of the Piatetski-Shapiro L-factor; see Table 5. Our results show that in all generic cases, $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$ coincides with the usual spin Euler factor defined via the local Langlands correspondence, but for nongeneric representations these factors generally disagree. The results of Table 5 also imply that $L_{\text {reg }}^{\mathrm{PS}}(s, \pi, \mu)$ is independent of the choice of Bessel model.

2. Definitions and notations

Let F be a nonarchimedean local field of characteristic zero. Let \mathfrak{o} be its ring of integers, \mathfrak{p} the maximal ideal of \mathfrak{o}, and ϖ a generator of \mathfrak{p}. Let q be the cardinality of $\mathfrak{o} / \mathfrak{p}$. We fix a nontrivial character ψ of F. Let v be the normalized valuation on F, and let v or $|\cdot|$ be the normalized absolute value on F. Hence $v(x)=q^{-v(x)}$ for $x \in F^{\times}$.

Let $\operatorname{GSp}(4, F):=\left\{g \in \operatorname{GL}(4, F):{ }^{t} g J g=\lambda J\right.$, for some $\left.\lambda=\lambda(g) \in F^{\times}\right\}$be defined with respect to the symplectic form

$$
J=\left[\begin{array}{lr}
1_{2} \tag{1}\\
-1_{2} &
\end{array}\right] .
$$

Let $P=M N$ be the Levi decomposition of the Siegel parabolic subgroup P, where

$$
P=\operatorname{GSp}(4, F) \cap\left[\begin{array}{r}
* * * * \tag{2}\\
* * * * \\
* \\
* \\
*
\end{array}\right], \quad N=\left\{\left[\begin{array}{lll}
1 & x & y \\
& 1 & y \\
& & z \\
& & \\
& & 1
\end{array}\right]: x, y, z \in F\right\}
$$

and $\left.M=\left\{\left[{ }^{x A}{ }^{{ }^{t} A^{-1}}\right] \quad\right]: A \in \mathrm{GL}(2, F), x \in F^{\times}\right\}$. We let

$$
H:=\left\{\left[\begin{array}{ll}
x I_{2} & \tag{3}\\
& I_{2}
\end{array}\right]: x \in F^{\times}\right\} \cong F^{\times} .
$$

Let

$$
\beta=\left[\begin{array}{cc}
a & b / 2 \tag{4}\\
b / 2 & c
\end{array}\right], \quad a, b, c \in F
$$

be a symmetric matrix. Then β determines a character ψ_{β} of N by

$$
\psi_{\beta}\left(\left[\begin{array}{cc}
1 & X \tag{5}\\
& 1
\end{array}\right]\right)=\psi(\operatorname{tr}(\beta X)), \quad X=\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] .
$$

Every character of N is of this form for a uniquely determined β. We say that ψ_{β} is nondegenerate if $\beta \in \mathrm{GL}(2, F)$.

Attached to a nondegenerate ψ_{β} is a quadratic extension L / F. If $-\operatorname{det}(\beta) \notin F^{\times 2}$, we set $L=F(\sqrt{-\operatorname{det}(\beta)})$; this is the nonsplit case. If $-\operatorname{det}(\beta) \in F^{\times 2}$, we set $L=F \oplus F$; this is the split case. Let

$$
\begin{align*}
A_{\beta} & =\left\{g \in M_{2}(F):{ }^{t} g \beta g=\operatorname{det}(g) \beta\right\} \tag{6}\\
& =\left\{\left[\begin{array}{cc}
x+y b / 2 & y c \\
-y a & x-y b / 2
\end{array}\right]: x, y \in F\right\} .
\end{align*}
$$

Then A_{β} is an F-algebra isomorphic to L via the map

$$
\left[\begin{array}{cc}
x+y b / 2 & y c \tag{7}\\
-y a & x-y b / 2
\end{array}\right] \longmapsto x+y \Delta,
$$

where $\Delta=\sqrt{-\operatorname{det}(\beta)}$ in the nonsplit case, and $\Delta=(-\delta, \delta)$ if $-\operatorname{det}(\beta)=\delta^{2}$.
Let T be the connected component of the stabilizer of ψ_{β} in M. It is easy to check that $T \cong A_{\beta}^{\times} \cong L^{\times}$. We always consider T a subgroup of $\operatorname{GSp}(4, F)$ via

$$
T \ni g \longmapsto\left[\begin{array}{ll}
g & \tag{8}\\
& \operatorname{det}(g)^{t} g^{-1}
\end{array}\right] .
$$

Explicitly, T consists of all elements
(9) $\left[\begin{array}{cccc}x+y b / 2 & y c & & \\ -y a & x-y b / 2 & & \\ & & x-y b / 2 & y a \\ & & -y c & x+y b / 2\end{array}\right], \quad x, y \in F, x^{2}-y^{2} \Delta^{2} \neq 0$.

Let $R:=T N$ be the Bessel subgroup of $\operatorname{GSp}(4, F)$. If Λ is a character of T, then we can define a character $\Lambda \otimes \psi_{\beta}$ of R by $t n \mapsto \Lambda(t) \psi_{\beta}(n)$ for $t \in T$ and $n \in N$.

Let (π, V) be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$. Nonzero elements of $\operatorname{Hom}_{R}\left(V, \mathbb{C}_{\Lambda \otimes \psi_{\beta}}\right)$ are called (Λ, β)-Bessel functionals. It is known that if such a Bessel functional ℓ exists, then $\operatorname{Hom}_{R}\left(V, \mathbb{C}_{\Lambda \otimes \psi_{\beta}}\right)$ is one-dimensional. In this case the space of functions

$$
\begin{equation*}
\mathcal{B}(\pi, \Lambda, \beta):=\left\{B_{v}: g \mapsto \ell(\pi(v) g): v \in V\right\}, \tag{10}
\end{equation*}
$$

endowed with the action of $\operatorname{GSp}(4, F)$ given by right translations, is called the (Λ, β)-Bessel model of π.

3. Jacquet-Waldspurger modules

In this section we introduce a certain finite-dimensional F^{\times}-module attached to an irreducible, admissible representation of $\operatorname{GSp}(4, F)$. Since it is derived from the usual Jacquet module by applying a Waldspurger functor, we call it a JacquetWaldspurger module. Its relevance is that it controls the asymptotics of Bessel functions along the subgroup H defined in (3). The main result of this section is Table 2, which lists the semisimplifications of the Jacquet-Waldspurger modules in the nonsplit case for all representations.
3.1. Jacquet modules. Let (π, V) be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$,

$$
V(N)=\langle\pi(n) v-v \mid v \in V, n \in N\rangle \quad \text { and } \quad V_{N}=V / V(N)
$$

be the usual Jacquet module with respect to the Siegel parabolic subgroup. We identify M with $\operatorname{GL}(2, F) \times \operatorname{GL}(1, F)$ via the map

$$
(A, x) \longmapsto\left[\begin{array}{ll}
x A & \tag{11}\\
& \operatorname{det}(A)^{t} A^{-1}
\end{array}\right], \quad A \in \mathrm{GL}(2, F), x \in F^{\times},
$$

so V_{N} carries an action of M, and thus an action of $\mathrm{GL}(2, F) \times \mathrm{GL}(1, F)$ via this isomorphism. We have tabulated the semisimplifications of these Jacquet modules in Table 1. Note that this table differs from Table A. 3 of [Roberts and Schmidt 2007] in three ways:

- Roberts and Schmidt used a different version of $\operatorname{GSp}(4, F)$. Switching the last two rows and columns provides an isomorphism.
- The Jacquet modules listed in [Roberts and Schmidt 2007, Table A.3] are normalized, while the Jacquet modules listed in Table 1 are not. The normalized Jacquet module is obtained from the unnormalized one by twisting by $\delta_{P}^{-1 / 2}$, where

$$
\delta_{P}\left(\left[\begin{array}{ll}
A & \\
& \\
& x^{t} A^{-1}
\end{array}\right]\right)=\left|x^{-1} \operatorname{det}(A)\right|^{3} .
$$

Hence, we replace each component $\tau \otimes \sigma$ in [Roberts and Schmidt 2007, Table A.3] by $\left(\nu^{3 / 2} \tau\right) \otimes\left(\nu^{-3 / 2} \sigma\right)$ in order to obtain the unnormalized Jacquet modules.

- Roberts and Schmidt used the isomorphism

$$
(A, x) \longmapsto\left[\begin{array}{ll}
A & \tag{12}\\
& x^{t} A^{-1}
\end{array}\right], \quad A \in \mathrm{GL}(2, F), x \in F^{\times} .
$$

Calculations show that we have to replace each component $\left(v^{3 / 2} \tau\right) \otimes\left(v^{-3 / 2} \sigma\right)$ of the unnormalized Jacquet module by $(\sigma \tau) \otimes\left(\nu^{3 / 2} \omega_{\tau} \sigma\right)$.
3.2. Waldspurger functionals for $\mathbf{G L}(\mathbf{2})$. Recall the algebra $A_{\beta} \subset M_{2}(F)$ defined in (6), and its unit group $T \subset \operatorname{GL}(2, F)$. Let Λ be a character of T. Let (τ, V) be a smooth representation of $\operatorname{GL}(2, F)$ admitting a central character ω_{τ}. A Λ Waldspurger functional on τ is a nonzero linear map $\delta: V \rightarrow \mathbb{C}$ such that

$$
\delta(\tau(t) v)=\Lambda(t) \delta(v) \quad \text { for all } v \in V \text { and } t \in T .
$$

Since T contains the center Z of $\operatorname{GL}(2, F)$, a necessary condition for such a δ to exist is that $\left.\Lambda\right|_{F^{\times}}=\omega_{\tau}$. As in the case of Bessel functionals, we call a Waldspurger functional split if $-\operatorname{det}(\beta) \in F^{\times 2}$, otherwise nonsplit.

The (Λ, β)-Waldspurger functionals are the nonzero elements of the space $\operatorname{Hom}_{T}\left(\tau, \mathbb{C}_{\Lambda}\right)$. If we put

$$
\begin{equation*}
V(T, \Lambda)=\langle\tau(t) v-\Lambda(t) v: v \in V, t \in T\rangle \quad \text { and } \quad V_{T, \Lambda}=V / V(T, \Lambda), \tag{13}
\end{equation*}
$$

then $\operatorname{Hom}_{T}\left(\tau, \mathbb{C}_{\Lambda}\right) \cong \operatorname{Hom}\left(V_{T, \Lambda}, \mathbb{C}\right)$. Note that if L is a field, so that T / Z is compact, then the space $V(T, \Lambda)$ can also be characterized as

$$
\begin{equation*}
V(T, \Lambda)=\left\{v \in V: \int_{T / Z} \Lambda(t)^{-1} \tau(t) v d t=0\right\} . \tag{14}
\end{equation*}
$$

The map $V \mapsto V_{T, \Lambda}$ defines a functor, called the Waldspurger functor, from the category of smooth representations of $\mathrm{GL}(2, F)$ to the category of F^{\times}-modules. This can be seen just as the analogous statement in the case of Jacquet modules. In
particular, if L is a field, then the Waldspurger functor is exact; this follows from (14) with similar arguments as in [Bernstein and Zelevinskii 1976, Proposition 2.35].

representation			semisimplification
I		$\chi_{1} \times \chi_{2} \rtimes \sigma$ (irreducible)	$\begin{aligned} & \sigma\left(\chi_{1} \times \chi_{2}\right) \otimes v^{3 / 2} \chi_{1} \chi_{2} \sigma+\sigma\left(\chi_{2} \times \chi_{1}\right) \otimes v^{3 / 2} \sigma \\ & \quad+\sigma\left(\chi_{1} \chi_{2} \times 1_{F^{\times}}\right) \otimes v^{3 / 2} \chi_{1} \sigma+\sigma\left(\chi_{1} \chi_{2} \times 1_{F^{\times}}\right) \otimes v^{3 / 2} \chi_{2} \sigma \end{aligned}$
II	a	$\chi \mathrm{St}_{\mathrm{GL}(2)} \rtimes \sigma$	$\sigma \chi \mathrm{St}_{\mathrm{GL}(2)} \otimes \nu^{3 / 2} \chi^{2} \sigma+\sigma \chi \mathrm{St}_{\mathrm{GL}(2)} \otimes \nu^{3 / 2} \sigma+\left(\chi^{2} \sigma \times \sigma\right) \otimes \nu^{2} \chi \sigma$
	b	$\chi 1_{\mathrm{GL}(2)} \rtimes \sigma$	$\sigma \chi 1_{\mathrm{GL}(2)} \otimes \nu^{3 / 2} \chi^{2} \sigma+\sigma \chi 1_{\mathrm{GL}(2)} \otimes \nu^{3 / 2} \sigma+\left(\chi^{2} \sigma \times \sigma\right) \otimes \nu \chi \sigma$
III	a	$\chi \rtimes \sigma \mathrm{St}_{\mathrm{GSp}(2)}$	$\sigma\left(\chi \nu^{-1 / 2} \times \nu^{1 / 2}\right) \otimes \chi \nu^{2} \sigma+\sigma\left(\chi \nu^{1 / 2} \times \nu^{-1 / 2}\right) \otimes \nu^{2} \sigma$
	b	$\chi \rtimes \sigma 1_{\mathrm{GSp}(2)}$	$\sigma\left(\chi \nu^{1 / 2} \times \nu^{-1 / 2}\right) \otimes \chi \nu \sigma+\sigma\left(\chi \nu^{-1 / 2} \times \nu^{1 / 2}\right) \otimes v \sigma$
IV	a	$\sigma \operatorname{St}_{\mathrm{GSp}(4)}$	$\sigma \mathrm{St}_{\mathrm{GL}(2)} \otimes \nu^{3} \sigma$
		$L\left(v^{2}, v^{-1} \sigma \operatorname{St}_{\mathrm{GSp}(2)}\right)$	$\sigma 1_{\mathrm{GL}(2)} \otimes \nu^{3} \sigma+\sigma\left(v^{3 / 2} \times v^{-3 / 2}\right) \otimes v \sigma$
		$L\left(v^{3 / 2} \mathrm{St}_{\mathrm{GL}(2)}, v^{-3 / 2} \sigma\right)$	$\sigma \mathrm{St}_{\mathrm{GL}(2)} \otimes \sigma+\sigma\left(v^{3 / 2} \times v^{-3 / 2}\right) \otimes v^{2} \sigma$
	d	$\sigma 1_{\mathrm{GSp}(4)}$	$\sigma 1_{\mathrm{GL}(2)} \otimes \sigma$
V		$\delta\left([\xi, \nu \xi], \nu^{-1 / 2} \sigma\right)$	$\sigma \xi \mathrm{St}_{\mathrm{GL}(2)} \otimes \nu^{2} \sigma+\sigma \mathrm{St}_{\mathrm{GL}(2)} \otimes \xi v^{2} \sigma$
		$L\left(v^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1 / 2} \sigma\right)$	$\sigma \xi \mathrm{St}_{\mathrm{GL}(2)} \otimes v \sigma+\sigma 1_{\mathrm{GL}(2)} \otimes \xi \nu^{2} \sigma$
		$L\left(\nu^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, \xi v^{-1 / 2} \sigma\right)$	$\sigma \mathrm{St}_{\mathrm{GL}(2)} \otimes \xi v \sigma+\sigma \xi 1_{\mathrm{GL}(2)} \otimes \nu^{2} \sigma$
	d	$L\left(\nu \xi, \xi \rtimes \nu^{-1 / 2} \sigma\right)$	$\sigma 1_{\mathrm{GL}(2)} \otimes \xi v \sigma+\sigma \xi 1_{\mathrm{GL}(2)} \otimes v \sigma$
	a	$\tau\left(S, \nu^{-1 / 2} \sigma\right)$	$2 \cdot\left(\sigma \mathrm{St}_{\mathrm{GL}(2)} \otimes \nu^{2} \sigma\right)+\sigma 1_{\mathrm{GL}(2)} \otimes \nu^{2} \sigma$
	b	$\tau\left(T, \nu^{-1 / 2} \sigma\right)$	$\sigma 1_{\mathrm{GL}(2)} \otimes \nu^{2} \sigma$
		$L\left(v^{1 / 2} \mathrm{St}_{\mathrm{GL}(2)}, v^{-1 / 2} \sigma\right)$	$\sigma \mathrm{St}_{\mathrm{GL}(2)} \otimes v \sigma$
	d	$L\left(\nu, 1_{F \times} \rtimes \nu^{-1 / 2} \sigma\right)$	$2 \cdot\left(\sigma 1_{\mathrm{GL}(2)} \otimes v \sigma\right)+\sigma \mathrm{St}_{\mathrm{GL}(2)} \otimes v \sigma$
VII		$\chi \rtimes \pi$	0
VIII		$\tau(S, \pi)$	0
	b	$\tau(T, \pi)$	0
IX	a	$\delta\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$	0
	b	$L\left(\nu \xi, v^{-1 / 2} \pi(\mu)\right)$	0
X		$\pi \rtimes \sigma$	$\sigma \pi \otimes \nu^{3 / 2} \omega_{\pi} \sigma+\sigma \pi \otimes \nu^{3 / 2} \sigma$
XI	a	$\delta\left(v^{1 / 2} \pi, v^{-1 / 2} \sigma\right)$	$\sigma \pi \otimes \nu^{2} \sigma$
	b	$L\left(v^{1 / 2} \pi, v^{-1 / 2} \sigma\right)$	$\sigma \pi \otimes v \sigma$
		supercuspidal	0

Table 1. Jacquet modules with respect to P, using the isomorphism (11).

Now assume that (τ, V) is irreducible and admissible. Then it is known by [Tunnell 1983; Saito 1993; Waldspurger 1985, Lemme 8] that the space $\operatorname{Hom}_{T}\left(\tau, \mathbb{C}_{\Lambda}\right)$ is at most one-dimensional. It follows that

$$
\begin{equation*}
\operatorname{dim} V_{T, \Lambda} \leq 1 . \tag{15}
\end{equation*}
$$

The following facts are known for any character Λ of T such that $\left.\Lambda\right|_{F^{\times}}=\omega_{\tau}$:

- For principal series representations, we have

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Hom}_{T}\left(\chi_{1} \times \chi_{2}, \mathbb{C}_{\Lambda}\right)\right)=1 \quad \text { for all } \Lambda ; \tag{16}
\end{equation*}
$$

see [Tunnell 1983, Proposition 1.6 and Theorem 2.3].

- For twists of the Steinberg representation, we have

$$
\operatorname{dim}\left(\operatorname{Hom}_{T}\left(\sigma \operatorname{St}_{\mathrm{GL}(2)}, \mathbb{C}_{\Lambda}\right)\right)= \begin{cases}0 & \text { if } L \text { is a field and } \Lambda=\sigma \circ \mathrm{N}_{L / F}, \tag{17}\\ 1 & \text { otherwise } ;\end{cases}
$$

see [Tunnell 1983, Proposition 1.7 and Theorem 2.4].

- If τ is infinite-dimensional and $L=F \times F$, then

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Hom}_{T}\left(\pi, \mathbb{C}_{\Lambda}\right)\right)=1 \quad \text { for all } \Lambda ; \tag{18}
\end{equation*}
$$

see Lemme 8 of [Waldspurger 1985].

- For one-dimensional representations, we have

$$
\operatorname{dim}\left(\operatorname{Hom}_{T}\left(\sigma 1_{\mathrm{GL}(2)}, \mathbb{C}_{\Lambda}\right)\right)= \begin{cases}1 & \text { if } \Lambda=\sigma \circ \mathrm{N}_{L / F}, \tag{19}\\ 0 & \text { otherwise }\end{cases}
$$

this is obvious.
3.3. Jacquet-Waldspurger modules. Recall the groups N and T defined in (2) and (9), respectively. Let (π, V) be an admissible representation of $\operatorname{GSp}(4, F)$. We now consider

$$
\begin{align*}
V(N, T, \Lambda) & =\langle\pi(t n) v-\Lambda(t) v: v \in V, t \in T, n \in N\rangle \tag{20}\\
V_{N, T, \Lambda} & =V / V(N, T, \Lambda) .
\end{align*}
$$

Evidently, there is a surjective map $V_{N} \rightarrow V_{N, T, \Lambda}$ which induces an isomorphism

$$
\begin{equation*}
\left(V_{N}\right)_{T, \Lambda} \cong V_{N, T, \Lambda} . \tag{21}
\end{equation*}
$$

Here, on the left we use the notation (13) for the GL($2, F)$-module V_{N}. Note that, in view of (8), we have to embed $\operatorname{GL}(2, F)$ into $\operatorname{GSp}(4, F)$ via the map

$$
\mathrm{GL}(2, F) \ni g \longmapsto\left[\begin{array}{ll}
g & \tag{22}\\
& \operatorname{det}(g)^{t} g^{-1}
\end{array}\right],
$$

and consider V_{N} a GL($\left.2, F\right)$-module via this embedding. We call $V_{N, T, \Lambda}$ the Jacquet-Waldspurger module of π. This module retains an action of F^{\times}, coming from the action of the $\operatorname{group}\left\{\operatorname{diag}(x, x, 1,1): x \in F^{\times}\right\}$on V. The map $V \mapsto V_{N, T, \Lambda}$ defines a functor, called the Jacquet-Waldspurger functor, from the category of admissible $\operatorname{GSp}(4, F)$-representations to the category of F^{\times}-modules.
Lemma 3.3.1. Let $V, V^{\prime}, V^{\prime \prime}$ be admissible representations of $\mathrm{GSp}(4, F)$.
(i) If $V=V^{\prime} \oplus V^{\prime \prime}$ is a direct sum, then

$$
\begin{equation*}
V_{N, T, \Lambda}=V_{N, T, \Lambda}^{\prime} \oplus V_{N, T, \Lambda}^{\prime \prime} . \tag{23}
\end{equation*}
$$

(ii) The Jacquet-Waldspurger functor is right exact, i.e, if $0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0$ is exact, then

$$
\begin{equation*}
V_{N, T, \Lambda}^{\prime} \rightarrow V_{N, T, \Lambda} \rightarrow V_{N, T, \Lambda}^{\prime \prime} \rightarrow 0 \tag{24}
\end{equation*}
$$

is exact. Moreover, if we are in the nonsplit case, then the Jacquet-Waldspurger functor is exact.

Proof. These are general properties of Jacquet-type functors. See Proposition 2.35 of [Bernstein and Zelevinskii 1976].

Lemma 3.3.2. Let (π, V) be an admissible representation of $\operatorname{GSp}(4, F)$ of finite length. Then the F^{\times}-module $V_{N, T, \Lambda}$ is finite-dimensional. More precisely, if n is the length of the $\mathrm{GL}(2, F)$-module V_{N}, then $\operatorname{dim} V_{N, T, \Lambda} \leq n$.
Proof. The proof is by induction on n. If $n=1$, then V_{N} is an irreducible, admissible representation of $\mathrm{GL}(2, F)$. In this case the assertion follows from (15).

Assume that $n>1$. Let V^{\prime} be a submodule of V_{N} of length $n-1$. Then $V^{\prime \prime}:=V_{N} / V^{\prime}$ is irreducible. By (24), we have an exact sequence

$$
\begin{equation*}
V_{T, \Lambda}^{\prime} \xrightarrow{\alpha} V_{N, T, \Lambda} \rightarrow V_{T, \Lambda}^{\prime \prime} \rightarrow 0 . \tag{25}
\end{equation*}
$$

By induction and (15), it follows that

$$
\begin{equation*}
\operatorname{dim} V_{N, T, \Lambda}=\operatorname{dimim}(\alpha)+\operatorname{dim} V_{T, \Lambda}^{\prime \prime} \leq n-1+1=n . \tag{26}
\end{equation*}
$$

This concludes the proof.
Assume that we are in the nonsplit case, i.e., the quadratic extension L is a field. Then the semisimplifications of the $V_{N, T, \Lambda}$ can easily be calculated from V_{N} using (21). We already noted that in the nonsplit case the Waldspurger functor is exact. Therefore, to calculate the $V_{N, T, \Lambda}$, we can simply take $(\tau \otimes \sigma)_{T, \Lambda}$ for each constituent $\tau \otimes \sigma$ occurring in Table 1. If $\tau_{T, \Lambda}$ is one-dimensional, then $(\tau \otimes \sigma)_{T, \Lambda}=\sigma 1_{F^{\times}}$as an F^{\times}-module, and if $\tau_{T, \Lambda}=0$, then $(\tau \otimes \sigma)_{T, \Lambda}=0$. We have listed the semisimplifications of the $V_{N, T, \Lambda}$ for all irreducible, admissible representations in Table 2.

representation			semisimplification of $V_{N, T, \Lambda}$
I		$\chi_{1} \times \chi_{2} \rtimes \sigma$ (irreducible)	$\nu^{3 / 2} \chi_{1} \chi_{2} \sigma 1_{F^{\times}}+v^{3 / 2} \sigma 1_{F^{\times}}+v^{3 / 2} \chi_{1} \sigma 1_{F^{\times}}+v^{3 / 2} \chi_{2} \sigma 1_{F^{\times}}$
II	a	$\chi \mathrm{St}_{\mathrm{GL}(2)} \rtimes \sigma$	$\nu^{3 / 2} \chi^{2} \sigma 1_{F^{\times}}+v^{3 / 2} \sigma 1_{F^{\times}}+v^{2} \chi \sigma 1_{F^{\times}}$
	b	$\chi 1_{\text {GL(2) }} \rtimes \sigma$	$\nu^{3 / 2} \chi^{2} \sigma 1_{F^{\times}}+v^{3 / 2} \sigma 1_{F^{\times}}+v \chi \sigma 1_{F^{\times}}$
III	a	$\chi \rtimes \sigma \mathrm{St}_{\mathrm{GSp}(2)}$	$\chi \nu^{2} \sigma 1_{F^{\times}}+\nu^{2} \sigma 1_{F^{\times}}$
	b	$\chi \rtimes \sigma 1_{\mathrm{GSp}(2)}$	-
IV	a	$\sigma \mathrm{St}_{\mathrm{GSp}(4)}$	$\nu^{3} \sigma 1_{F^{\times}}$
	b	$L\left(v^{2}, v^{-1} \sigma \mathrm{St}_{\mathrm{GSp}(2)}\right)$	$\nu^{3} \sigma 1_{F^{\times}}+v \sigma 1_{F^{\times}}$
		$L\left(\nu^{3 / 2} \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-3 / 2} \sigma\right)$	-
	d	$\sigma 1_{\mathrm{GSp}(4)}$	-
V	a	$\delta\left([\xi, \nu \xi], \nu^{-1 / 2} \sigma\right)$	$\nu^{2} \sigma 1_{F^{\times}}+\xi v^{2} \sigma 1_{F^{\times}}$
	b	$L\left(v^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1 / 2} \sigma\right)$	$\nu \sigma 1_{F^{\times}}+\xi \nu^{2} \sigma 1_{F^{\times}}$
		$L\left(v^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, v^{-1 / 2} \xi \sigma\right)$	$\xi v \sigma 1_{F \times}+v^{2} \sigma 1_{F^{\times}}$
	d	$L\left(\nu \xi, \xi \rtimes \nu^{-1 / 2} \sigma\right)$	$\xi v \sigma 1_{F^{\times}}+v \sigma 1_{F^{\times}}$
VI	a	$\tau\left(S, v^{-1 / 2} \sigma\right)$	$2 \cdot\left(\nu^{2} \sigma 1_{F^{\times}}\right)$
	b	$\tau\left(T, v^{-1 / 2} \sigma\right)$	$\nu^{2} \sigma 1_{F^{\times}}$
	c	$L\left(v^{1 / 2} \mathrm{St}_{\mathrm{GL}(2)}, v^{-1 / 2} \sigma\right)$	-
	d	$L\left(v, 1_{F^{\times}} \rtimes v^{-1 / 2} \sigma\right)$	-
VII		$\chi \rtimes \pi$	0
VIII	a	$\tau(S, \pi)$	0
	b	$\tau(T, \pi)$	0
IX	a	$\delta\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$	0
	b	$L\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$	0
X		$\pi \rtimes \sigma$	$v^{3 / 2} \omega_{\pi} \sigma 1_{F^{\times}}+v^{3 / 2} \sigma 1_{F^{\times}}$
XI	a	$\delta\left(v^{1 / 2} \pi, v^{-1 / 2} \sigma\right)$	$\nu^{2} \sigma 1_{F^{\times}}$
	b	$L\left(v^{1 / 2} \pi, v^{-1 / 2} \sigma\right)$	$v \sigma 1_{F^{\times}}$
		supercuspidal	0

Table 2. The semisimplifications of Jacquet-Waldspurger modules. It is assumed that L is a field, and that the representation of $\operatorname{GSp}(4, F)$ admits a (Λ, β)-Bessel functional. A "-" indicates that no such Bessel functional exists.

4. Asymptotic behavior

We begin this section by developing a simple theory of finite-dimensional F^{\times}modules, which applies to the Jacquet-Waldspurger modules of the previous section. In Section 4.2 we clarify the notion of "asymptotic function". Using our previous results on Jacquet-Waldspurger modules, as well as a result of Danișman in the nonsplit case (Proposition 4.3.3), we can calculate the asymptotic behavior of all Bessel functions of all representations; see Table 4. Simultaneously, we obtain the precise structure as an F^{\times}-module of the Jacquet-Waldspurger modules; see Table 3.
4.1. Finite-dimensional \boldsymbol{F}^{\times}-modules. Recall that $F^{\times}=\langle\varpi\rangle \times \mathfrak{o}^{\times}$. We consider representations of F^{\times}on finite-dimensional complex vector spaces. All such representations are assumed to be continuous.

Let n be a positive integer and U be an n-dimensional complex vector space with basis e_{1}, \ldots, e_{n}. We define an action of F^{\times}on U as follows:

- \mathfrak{o}^{\times}acts trivially on all of U.
- ϖ acts by sending e_{j} to $e_{j}+e_{j-1}$ for all $j \in\{1, \ldots, n\}$, where we understand $e_{0}=0$. In other words, the matrix of ϖ with respect to the basis e_{1}, \ldots, e_{n} is a Jordan block

$$
\left[\begin{array}{cccc}
1 & 1 & & \tag{27}\\
& \ddots & \ddots & \\
& & 1 & 1 \\
& & & \\
& &
\end{array}\right]
$$

We denote the equivalence class of the F^{\times}-module thus defined by $[n]$. Note that [n] is canonically defined, even though ω is not. Clearly, $[n]$ is an indecomposable F^{\times}-module. If σ is a character of F^{\times}, then $\sigma[n]:=\sigma \otimes[n]$ is also indecomposable.

Lemma 4.1.1. Every finite-dimensional indecomposable F^{\times}-module is of the form $\sigma[n]$ for some character σ of F^{\times}and positive integer n.
Proof. Let (φ, U) be an indecomposable F^{\times}-module. We may decompose U over \mathfrak{o}^{\times}, i.e.,

$$
\begin{equation*}
U=\bigoplus_{i=1}^{r} U\left(\sigma_{i}\right) \tag{28}
\end{equation*}
$$

where the σ_{i} are pairwise distinct characters of F^{\times}, and

$$
\begin{equation*}
U\left(\sigma_{i}\right)=\left\{u \in U: \varphi(x) u=\sigma_{i}(x) u \text { for all } x \in \mathfrak{o}^{\times}\right\} . \tag{29}
\end{equation*}
$$

Let $f=\varphi(\varpi)$. Since each $U\left(\sigma_{i}\right)$ is f-invariant and U is indecomposable, it follows that $r=1$, i.e., $U=U(\sigma)$ for some character σ of \mathfrak{o}^{\times}. Indecomposability implies
that the Jordan normal form of f consists of only one Jordan block

$$
\left[\begin{array}{llll}
\lambda & 1 & & \tag{30}\\
& \ddots & \ddots & \\
& & \lambda & 1 \\
& & & \lambda
\end{array}\right], \quad \lambda \in \mathbb{C}^{\times},
$$

of size n. Extend σ to a character of F^{\times}by setting $\sigma(\varpi)=\lambda$. Then it is easy to see that $\varphi \cong \sigma[n]$.

Lemma 4.1.2. Let U be a finite-dimensional F^{\times}-module. Then

$$
\begin{equation*}
U \cong \bigoplus_{i=1}^{r} \sigma_{i}\left[n_{i}\right] \tag{31}
\end{equation*}
$$

with characters σ_{i} of F^{\times}and positive integers n_{i}. A decomposition as in (31) is unique up to permutation of the summands.

Proof. A decomposition as in (31) exists by Lemma 4.1.1. To prove uniqueness, assume that

$$
\begin{equation*}
\bigoplus_{i=1}^{r} \sigma_{i}\left[n_{i}\right] \cong \bigoplus_{j=1}^{s} \tau_{j}\left[m_{j}\right] . \tag{32}
\end{equation*}
$$

By considering isotypical components with respect to characters of \mathfrak{o}^{\times}, we may assume that all σ_{i} and τ_{j} agree when restricted to \mathfrak{o}^{\times}. After appropriate tensoring we may assume this restriction is trivial. The uniqueness statement then follows from the uniqueness of Jordan normal forms.

Lemma 4.1.3. Let σ be a character of F^{\times}, and n a positive integer. Let $m \in$ $\{0, \ldots, n\}$.
(i) There exists exactly one F^{\times}-invariant submodule U_{m} of $\sigma[n]$ of dimension m. We have $U_{k} \subset U_{m}$ for $k \leq m$.
(ii) The representation of F^{\times}on U_{m} is isomorphic to $\sigma[m]$.
(iii) The representation of F^{\times}on $\sigma[n] / U_{m}$ is isomorphic to $\sigma[n-m]$.

Proof. (i) Since the invariant subspaces of $[n]$ and $\sigma[n]$ coincide, we may assume that $\sigma=1$, so that $\sigma[n]=[n]$. Let e_{1}, \ldots, e_{n} be a basis of $[n]$ with respect to which ϖ acts via the matrix (27). Let $U_{m}=\left\langle e_{1}, \ldots, e_{m}\right\rangle$. Then U_{m} is invariant and isomorphic to $[m]$ as an F^{\times}-module.

Conversely, let $U \subset[n]$ be any nonzero invariant subspace. Then U is also invariant under the endomorphism f with matrix

$$
\left[\begin{array}{cccc}
0 & 1 & & \tag{33}\\
& \ddots & \ddots & \\
& & & 0 \\
& & & \\
& & & 0
\end{array}\right] .
$$

The effect of f on a column vector u is to shift its entries "up" and fill in a 0 at the bottom. Let m be maximal with the property that there exists a $u \in U$ of the form

$$
u={ }^{t}\left[u_{1}, \ldots, u_{m}, 0, \ldots, 0\right] \quad \text { with } u_{m} \neq 0 .
$$

The vector $f^{m-1} u$ is a nonzero multiple of e_{1}, showing that $e_{1} \in U$. Considering $f^{m-2} u$, we see that $e_{2} \in U$ as well. Continuing, we see that $e_{1}, \ldots, e_{m} \in U$. The maximality of m implies that $U=U_{m}$.
(ii) We already saw that the subspace U_{m} of $[n]$ is isomorphic to $[m]$. Hence the subspace $\sigma \otimes U_{m}$ of $\sigma[n]$ is isomorphic to $\sigma[m]$.
(iii) Clearly $[n] / U_{m}$ is isomorphic to $[n-m]$. Hence $\sigma[n] /\left(\sigma \otimes U_{m}\right)$ is isomorphic to $\sigma[n-m]$.

Let U be a finite-dimensional F^{\times}-module. For a character σ of F^{\times}, let U_{σ} be the sum of all submodules of U isomorphic to $\sigma[n]$ for some n. We call U_{σ} the σ-component of U. By (31), U is the direct sum of its σ-components. A homomorphism $U \rightarrow V$ of finite-dimensional F^{\times}-modules induces a map $U_{\sigma} \rightarrow V_{\sigma}$ for all σ; this follows from Lemma 4.1.3.
4.2. Asymptotic functions. Let \mathcal{L} be the vector space of functions $f: F^{\times} \rightarrow \mathbb{C}$ with the following properties:
(i) There exists an open-compact subgroup Γ of F^{\times}such that $f(u \gamma)=f(u)$ for all $u \in F^{\times}$and all $\gamma \in \Gamma$.
(ii) $f(u)=0$ for $v(u) \ll 0$.

Such f arise if we restrict Bessel functions on $\operatorname{GSp}(4, F)$ to the subgroup

$$
\left\{\operatorname{diag}(u, u, 1,1): u \in F^{\times}\right\} \cong F^{\times}
$$

Clearly \mathcal{L} contains the Schwartz space $\mathcal{S}\left(F^{\times}\right)$, i.e., the space of locally constant, compactly supported functions $F^{\times} \rightarrow \mathbb{C}$. We may think of the quotient $\mathcal{L} / \mathcal{S}\left(F^{\times}\right)$ as a space of "asymptotic functions", in the sense that the image of some $f \in \mathcal{L}$ in this quotient is determined by the values $f(u)$ for $v(u) \gg 0$.

There is an action $\bar{\pi}$ of F^{\times}on \mathcal{L} given by translation: $(\bar{\pi}(x) f)(u)=f(u x)$ for $x, u \in F^{\times}$. This is a smooth action by the properties of the elements of \mathcal{L}. The action preserves the subspace $\mathcal{S}\left(F^{\times}\right)$, so that we get an action on the quotient $\mathcal{L} / \mathcal{S}\left(F^{\times}\right)$.

For the proof of the following lemma, we will use the formula

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} P(k)=0 \quad \text { for all } P \in \mathbb{C}[X] \text { with } \operatorname{deg}(P)<n \tag{34}
\end{equation*}
$$

This formula follows by differentiating the identity $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$ repeatedly and setting $x=-1$.

Lemma 4.2.1. Let $\beta \in \mathbb{C}^{\times}$. For a positive integer n, let $\mathcal{F}_{n}(\beta)$ be the space of functions $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-\beta)^{n-k} f(m+k)=0 \quad \text { for all } m \geq 0 \tag{35}
\end{equation*}
$$

Then $\operatorname{dim} \mathcal{F}_{n}(\beta)=n$, and a basis of $\mathcal{F}_{n}(\beta)$ is given by the functions

$$
\begin{equation*}
f_{j}(m)=m^{j} \beta^{m}, \quad m \geq 0, \tag{36}
\end{equation*}
$$

for $j=0, \ldots, n-1$.
Proof. It is clear from (35) that any $f \in \mathcal{F}_{n}(\beta)$ is determined by the values $f(0), \ldots, f(n-1)$. Hence $\operatorname{dim} \mathcal{F}_{n}(\beta) \leq n$, and we only need to show that the functions f_{j} lie in $\mathcal{F}_{n}(\beta)$ and are linearly independent. The fact that the functions f_{j} lie in $\mathcal{F}_{n}(\beta)$ follows from (34). It is easy to prove that they are linearly independent.

Proposition 4.2.2. Let \mathcal{K} be an F^{\times}-invariant subspace of \mathcal{L} which contains $\mathcal{S}\left(F^{\times}\right)$ with finite codimension n. Assume that, as an F^{\times}-module, the quotient $\mathcal{K} / \mathcal{S}\left(F^{\times}\right)$is isomorphic to $\sigma[n]$ for some character σ of F^{\times}. Then there exist $f_{0}, \ldots, f_{n-1} \in \mathcal{K}$ with the following properties:
(i) The images of f_{0}, \ldots, f_{n-1} in $\mathcal{K} / \mathcal{S}\left(F^{\times}\right)$are a basis of the quotient space.
(ii) f_{j} has asymptotic behavior

$$
\begin{equation*}
f_{j}(x)=v(x)^{j} \sigma(x) \quad \text { for all } x \in F^{\times} \text {with } v(x) \gg 0, \tag{37}
\end{equation*}
$$

for all $j \in\{0, \ldots, n-1\}$.
Proof. It suffices to show that every $f \in \mathcal{K}$ has the asymptotic form

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n-1} c_{k} v(x)^{k} \sigma(x) \quad \text { for all } x \in F^{\times} \text {with } v(x) \gg 0 \tag{38}
\end{equation*}
$$

for some constants c_{k}. We have $\sigma[n](u)=\sigma(u)$ id for $u \in \mathfrak{o}^{\times}$on all of $\sigma[n]$. Hence, for a fixed unit $u \in \mathfrak{o}^{\times}$,

$$
\begin{equation*}
\bar{\pi}(u) f-\sigma(u) f \in \mathcal{S}\left(F^{\times}\right) . \tag{39}
\end{equation*}
$$

It follows that there exists a $j_{0} \geq 0$ such that

$$
\begin{equation*}
f\left(u \varpi^{m+j_{0}}\right)=\sigma(u) f\left(\varpi^{m+j_{0}}\right) \quad \text { for all } m \geq 0 . \tag{40}
\end{equation*}
$$

Since \mathfrak{o}^{\times}is compact and both sides of (40) are locally constant, we may choose j_{0} large enough so that (40) holds for all $u \in \mathfrak{o}^{\times}$.

Every vector in $\sigma[n]$ is annihilated by $(\sigma[n](\varpi)-\lambda \mathrm{id})^{n}$, where we abbreviate $\lambda=\sigma(\varpi)$. Hence

$$
\begin{equation*}
(\bar{\pi}(\varpi)-\lambda \mathrm{id})^{n} f \in \mathcal{S}\left(F^{\times}\right) \tag{41}
\end{equation*}
$$

for all $f \in \mathcal{K}$, or

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-\lambda)^{n-k} \bar{\pi}\left(\varpi^{k}\right) f \in \mathcal{S}\left(F^{\times}\right) \tag{42}
\end{equation*}
$$

It follows that there exists a $j_{0} \geq 0$ such that

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-\lambda)^{n-k} f\left(\varpi^{m+k+j_{0}}\right)=0 \quad \text { for all } m \geq 0 \tag{43}
\end{equation*}
$$

We may assume that the same j_{0} works for both (40) and (43). Setting $h(m):=$ $f\left(\varpi^{m+j_{0}}\right)$, (43) reads

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}(-\lambda)^{n-k} h(m+k)=0 \quad \text { for all } m \geq 0 \tag{44}
\end{equation*}
$$

By Lemma 4.2.1, there exist constants d_{0}, \ldots, d_{n-1} such that

$$
\begin{equation*}
h(m)=\sum_{k=0}^{n-1} d_{k} m^{k} \lambda^{m} \quad \text { for all } m \geq 0 \tag{45}
\end{equation*}
$$

We can then also find constants c_{0}, \ldots, c_{n-1} such that

$$
\begin{equation*}
h(m)=\sum_{k=0}^{n-1} c_{k}\left(m+j_{0}\right)^{k} \lambda^{m+j_{0}} \quad \text { for all } m \geq 0 \tag{46}
\end{equation*}
$$

(To get the c_{k} 's from the d_{k} 's, expand $m^{k}=\left(\left(m+j_{0}\right)-j_{0}\right)^{k}$ in (45).) For $x \in F^{\times}$ with $v(x) \geq j_{0}$, write $x=u \sigma^{j}$ with $u \in \mathfrak{o}^{\times}$and $j \geq j_{0}$. Then

$$
\begin{aligned}
f(x) & =\sigma(u) f\left(\varpi^{j}\right) \\
& =\sigma(u) \sum_{k=0}^{n-1} c_{k} j^{k} \lambda^{j} \quad \text { by (46) } \\
& =\sum_{k=0}^{n-1} c_{k} v(x)^{k} \sigma(x)
\end{aligned}
$$

Corollary 4.2.3. Let U be a finite-dimensional submodule of $\mathcal{L} / \mathcal{S}\left(F^{\times}\right)$. Then each σ-component of U is indecomposable.
Proof. Let \mathcal{K} be the preimage of U under the projection $\mathcal{L} \rightarrow \mathcal{L} / \mathcal{S}\left(F^{\times}\right)$. Assume that there exists a σ for which U_{σ} is decomposable. Then U_{σ} contains a direct sum $\sigma[n] \oplus \sigma\left[n^{\prime}\right]$ with $n, n^{\prime}>0$. By Proposition 4.2.2, there exist two functions $f, f^{\prime} \in \mathcal{K}$ such that the image of f in

$$
U=\mathcal{K} / \mathcal{S}\left(F^{\times}\right)
$$

lies in $\sigma[n]$, the image of f^{\prime} lies in $\sigma\left[n^{\prime}\right]$, and such that

$$
\begin{equation*}
f(x)=\sigma(x) \text { and } f^{\prime}(x)=\sigma(x) \quad \text { for all } x \in F^{\times} \text {with } v(x) \gg 0 . \tag{47}
\end{equation*}
$$

It follows from (47) that f and f^{\prime} have the same image in $\mathcal{K} / \mathcal{S}\left(F^{\times}\right)$, which is a contradiction.
4.3. Asymptotic behavior of Bessel functions. Let (π, V) be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$. Assume that V is the (Λ, β)-Bessel model of π with respect to a character Λ of T. We associate with each Bessel function $B \in V$ the function $\varphi_{B}: F^{\times} \rightarrow \mathbb{C}$ defined by

$$
\varphi_{B}(u)=B(\operatorname{diag}(u, u, 1,1)) .
$$

Let \mathcal{K} be the space spanned by all functions φ_{B}.
Lemma 4.3.1. \mathcal{K} contains $\mathcal{S}\left(F^{\times}\right)$.
Proof. This follows by the same arguments as in Lemma 4.1 of [Danișman 2014].
An easy argument as in Proposition 4.7.2 of [Bump 1997], or as in Proposition 3.1 of [Danișman 2014], shows that if $B \in V(N)$, then φ_{B} has compact support. It is also true, and equally easy to see, that

$$
B \in V(N, T, \Lambda) \quad \Longrightarrow \quad \varphi_{B} \text { has compact support in } F^{\times} .
$$

It follows that the linear map $B \mapsto \varphi_{B}$ induces a surjection

$$
\begin{equation*}
V_{N, T, \Lambda} \rightarrow \mathcal{K} / \mathcal{S}\left(F^{\times}\right) . \tag{48}
\end{equation*}
$$

Lemma 4.3.2. Assume that the map (48) is an isomorphism. Then every σ component of $V_{N, T, \Lambda}$ is indecomposable as an F^{\times}-module.
Proof. The map (48) induces an isomorphism of the respective σ-components. Hence the assertion follows from Corollary 4.2.3.
Proposition 4.3.3. Suppose we are in the nonsplit case. Then the map (48) is an isomorphism.
Proof. See Theorem 4.9 of [Danișman 2014].

Recall that in Table 2 we determined the semisimplifications of the JacquetWaldspurger modules for all irreducible, admissible representations. In the nonsplit case, we can now determine the precise algebraic structure of these modules.

Corollary 4.3.4. The algebraic structure of the Jacquet-Waldspurger modules $V_{N, T, \Lambda}$ for all irreducible, admissible representations of $\operatorname{GSp}(4, F)$ is given in Table 3, under the assumption that the representation (π, V) admits a nonsplit (Λ, β)-Bessel functional. (A "-" indicates that no such Bessel functional exists.)

Proof. By Proposition 4.3.3 and Lemma 4.3.2, every σ-component of $V_{N, T, \Lambda}$ is indecomposable. This information, together with the semisimplifications from Table 2, gives the precise structure.

For type I, we have to distinguish various cases, depending on the regularity of the inducing character:
(49) $V_{N, T, \Lambda}$

$$
= \begin{cases}v^{3 / 2} \chi_{1} \chi_{2} \sigma \oplus v^{3 / 2} \chi_{1} \sigma \oplus v^{3 / 2} \chi_{2} \sigma \oplus v^{3 / 2} \sigma & \text { if } \chi_{1} \chi_{2}, \chi_{1}, \chi_{2}, 1 \\ \text { are pairwise different, } \\ v^{3 / 2} \chi^{2} \sigma \oplus\left(v^{3 / 2} \chi \sigma\right)[2] \oplus v^{3 / 2} \sigma & \text { if } \chi:=\chi_{1}=\chi_{2} \neq 1, \chi^{2} \neq 1, \\ \left(v^{3 / 2} \chi \sigma\right)[2] \oplus\left(v^{3 / 2} \sigma\right)[2] & \text { if } \chi:=\chi_{1}=\chi_{2} \neq 1, \chi^{2}=1, \\ \left(v^{3 / 2} \chi \sigma\right)[2] \oplus\left(v^{3 / 2} \sigma\right)[2] & \text { if }\left\{\chi_{1}, \chi_{2}\right\}=\{\chi \neq 1,1\} \\ \left(v^{3 / 2} \sigma\right)[4] & \text { if } \chi_{1}=\chi_{2}=1 .\end{cases}
$$

Corollary 4.3.5. Table 4 shows the asymptotic behavior of the functions

$$
B(\operatorname{diag}(u, u, 1,1))
$$

for all irreducible, admissible representations (π, V) of $\mathrm{GSp}(4, F)$, where B runs through a nonsplit (Λ, β)-Bessel model of π. (A "-" indicates that no such Bessel model exists.)

Proof. By Proposition 4.3.3, the map (48) is an isomorphism. We can thus use Proposition 4.2.2, which translates the algebraic structure of $V_{N, T, \Lambda}$ given in Table 3 into the asymptotic behavior of Bessel functions.

Remark. This result is to be understood in the sense that all the constants given in Table 4 are necessary, i.e., for any choice of C_{1}, C_{2}, \ldots there exists a Bessel function B such that $B(\operatorname{diag}(u, u, 1,1))$ has the asymptotic behavior given by this choice of constants.

representation				$V_{N, T, \Lambda}$
I		$\chi_{1} \times \chi_{2} \rtimes \sigma$		see (49)
II	a	$\chi \mathrm{St}_{\mathrm{GL}(2)} \rtimes \sigma$	$\chi^{2} \neq 1$	$v^{2} \chi \sigma \oplus \nu^{3 / 2} \chi^{2} \sigma \oplus \nu^{3 / 2} \sigma$
			$\chi^{2}=1$	$\nu^{2} \chi \sigma \oplus\left(\nu^{3 / 2} \sigma\right)[2]$
	b	$\chi 1_{\mathrm{GL}(2)} \rtimes \sigma$	$\chi^{2} \neq 1$	$\nu \chi \sigma \oplus \nu^{3 / 2} \chi^{2} \sigma \oplus \nu^{3 / 2} \sigma$
			$\chi^{2}=1$	$\nu \chi \sigma \oplus\left(\nu^{3 / 2} \sigma\right)[2]$
III	a	$\chi \rtimes \sigma \mathrm{St}_{\mathrm{GSp}(2)}$		$\chi \nu^{2} \sigma \oplus \nu^{2} \sigma$
	b	$\chi \rtimes \sigma 1_{\mathrm{GSp}(2)}$		-
IV	a	$\sigma \operatorname{St}_{\mathrm{GSp}(4)}$		$\nu^{3} \sigma$
	b	$L\left(v^{2}, v^{-1} \sigma \operatorname{St}_{\mathrm{GSp}(2)}\right)$		$\nu^{3} \sigma \oplus \nu \sigma$
	c	$L\left(v^{3 / 2} \mathrm{St}_{\mathrm{GL}(2)}, v^{-3 / 2} \sigma\right)$		-
	d	$\sigma 1_{\mathrm{GSp}(4)}$		-
V	a	$\delta\left([\xi, \nu \xi], \nu^{-1 / 2} \sigma\right)$		$\nu^{2} \sigma \oplus \xi \nu^{2} \sigma$
	b	$L\left(v^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, v^{-1 / 2} \sigma\right)$		$\nu \sigma \oplus \xi \nu^{2} \sigma$
	c	$L\left(\nu^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1 / 2} \xi \sigma\right)$		$\xi \nu \sigma \oplus \nu^{2} \sigma$
	d	$L\left(\nu \xi, \xi \rtimes \nu^{-1 / 2} \sigma\right)$		$\xi \nu \sigma \oplus \nu \sigma$
VI	a	$\tau\left(S, \nu^{-1 / 2} \sigma\right)$		$\left(\nu^{2} \sigma\right)[2]$
	b	$\tau\left(T, \nu^{-1 / 2} \sigma\right)$		$\nu^{2} \sigma$
	c	$L\left(\nu^{1 / 2} \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1 / 2} \sigma\right)$		-
	d	$L\left(\nu, 1_{F^{\times}} \rtimes \nu^{-1 / 2} \sigma\right)$		-
VII		$\chi \rtimes \pi$		0
VIII	a	$\tau(S, \pi)$		0
	b	$\tau(T, \pi)$		0
IX	a	$\delta\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$		0
	b	$L\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$		0
X		$\pi \rtimes \sigma$	$\omega_{\pi} \neq 1$	$\nu^{3 / 2} \omega_{\pi} \sigma \oplus \nu^{3 / 2} \sigma$
			$\omega_{\pi}=1$	$\left(\nu^{3 / 2} \sigma\right)[2]$
XI	a	$\delta\left(\nu^{1 / 2} \pi, \nu^{-1 / 2} \sigma\right)$		$\nu^{2} \sigma$
	b	$L\left(\nu^{1 / 2} \pi, \nu^{-1 / 2} \sigma\right)$		$\nu \sigma$
		supercuspidal		0

Table 3. Jacquet-Waldspurger modules $V_{N, T, \Lambda}$. It is assumed that L is a field, and that the representation of $\operatorname{GSp}(4, F)$ admits a $\left(\Lambda, \psi_{\beta}\right)$-Bessel functional. A "-" indicates that no nonsplit Bessel functional exists.

representation				$\|u\|^{-3 / 2} B(\operatorname{diag}(u, u, 1,1))$
I		$\chi_{1} \times \chi_{2} \rtimes \sigma$		see (50)
II		$\chi \mathrm{St}_{\text {GL(2) }} \rtimes \sigma$	$\chi^{2} \neq 1$	$C_{1}\left(\nu^{1 / 2} \chi \sigma\right)(u)+C_{2}\left(\chi^{2} \sigma\right)(u)+C_{3} \sigma(u)$
			$\chi^{2}=1$	$C_{1}\left(\nu^{1 / 2} \chi \sigma\right)(u)+\left(C_{2}+C_{3} v(u)\right) \sigma(u)$
	b	$\chi 1_{\text {GL(2) }} \rtimes \sigma$	$\chi^{2} \neq 1$	$C_{1}\left(\nu^{-1 / 2} \chi \sigma\right)(u)+C_{2}\left(\chi^{2} \sigma\right)(u)+C_{3} \sigma(u)$
			$\chi^{2}=1$	$C_{1}\left(v^{-1 / 2} \chi \sigma\right)(u)+\left(C_{2}+C_{3} v(u)\right) \sigma(u)$
	a	$\chi \rtimes \sigma \operatorname{St}_{\mathrm{GSp}(2)}$		$C_{1}\left(\nu^{1 / 2} \chi \sigma\right)(u)+C_{2}\left(\nu^{1 / 2} \sigma\right)(u)$
	b	$\chi \rtimes \sigma 1_{\mathrm{GSp}(2)}$		-
IV	a	$\sigma \operatorname{St}_{\mathrm{GSp}(4)}$		$C\left(\nu^{3 / 2} \sigma\right)(u)$
	b	$L\left(v^{2}, v^{-1} \sigma \operatorname{St}_{\mathrm{GSp}(2)}\right)$		$C_{1}\left(\nu^{3 / 2} \sigma\right)(u)+C_{2}\left(v^{-1 / 2} \sigma\right)(u)$
	c	$L\left(\nu^{3 / 2} \operatorname{St}_{\mathrm{GL}(2)}, \nu^{-3 / 2} \sigma\right)$		-
	d	$\sigma 1_{\mathrm{GSp}(4)}$		-
V	a	$\delta\left([\xi, \nu \xi], \nu^{-1 / 2} \sigma\right)$		$C_{1}\left(\nu^{1 / 2} \xi \sigma\right)(u)+C_{2}\left(\nu^{1 / 2} \sigma\right)(u)$
	b	$L\left(\nu^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1 / 2} \sigma\right)$		$C_{1}\left(\nu^{1 / 2} \xi \sigma\right)(u)+C_{2}\left(\nu^{-1 / 2} \sigma\right)(u)$
	c	$L\left(\nu^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1 / 2} \xi \sigma\right)$		$C_{1}\left(\nu^{-1 / 2} \xi \sigma\right)(u)+C_{2}\left(\nu^{1 / 2} \sigma\right)(u)$
	d	$L\left(\nu \xi, \xi \rtimes \nu^{-1 / 2} \sigma\right)$		$C_{1}\left(\nu^{-1 / 2} \xi \sigma\right)(u)+C_{2}\left(v^{-1 / 2} \sigma\right)(u)$
VI	a	$\tau\left(S, v^{-1 / 2} \sigma\right)$		$\left(C_{1}+C_{2} v(u)\right)\left(v^{1 / 2} \sigma\right)(u)$
	b	$\tau\left(T, \nu^{-1 / 2} \sigma\right)$		$C\left(\nu^{1 / 2} \sigma\right)(u)$
	c	$L\left(\nu^{1 / 2} \mathrm{St}_{\mathrm{GL}(2)}, v^{-1 / 2} \sigma\right)$		-
	d	$L\left(\nu, 1_{F \times} \rtimes \nu^{-1 / 2} \sigma\right)$		-
VII		$\chi \rtimes \pi$		0
VIII	a	$\tau(S, \pi)$		0
	b	$\tau(T, \pi)$		0
IX	a	$\delta\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$		0
	b	$L\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$		0
X		$\pi \rtimes \sigma$	$\omega_{\pi} \neq 1$	$C_{1}\left(\omega_{\pi} \sigma\right)(u)+C_{2} \sigma(u)$
			$\omega_{\pi}=1$	$\left(C_{1}+C_{2} v(u)\right) \sigma(u)$
	a	$\delta\left(\nu^{1 / 2} \pi, \nu^{-1 / 2} \sigma\right)$		$C\left(\nu^{1 / 2} \sigma\right)(u)$
	b	$L\left(\nu^{1 / 2} \pi, \nu^{-1 / 2} \sigma\right)$		$C\left(\nu^{-1 / 2} \sigma\right)(u)$
		supercuspidal		0

Table 4. Asymptotic behavior of $B(\operatorname{diag}(u, u, 1,1))$ in the nonsplit case. A "-" indicates that no nonsplit Bessel functional exists.

Again, for type I we have to distinguish various cases:
(50)

$$
\begin{equation*}
|u|^{-3 / 2} B(\operatorname{diag}(u, u, 1,1)) \tag{50}
\end{equation*}
$$

Remark 4.3.6. The proof of Proposition 4.3 .3 given in [Danișman 2014] is based on the exactness of the Waldspurger functor, which is only true in the nonsplit case. Assume that (π, V) is an irreducible, admissible representation of $\mathrm{GSp}(4, F)$ which admits a split Bessel model $\mathcal{B}(\pi, \Lambda, \beta)$. Then we still have the surjection (48), which implies that the space of asymptotic functions $\mathcal{K} / \mathcal{S}\left(F^{\times}\right)$, as an F^{\times}-module, is a quotient of the Jacquet-Waldspurger module $V_{N, T, \Lambda}$. Starting from the $V_{N, T}$ given in Table 1, the $V_{N, T, \Lambda}$ can be calculated in many cases, but some of them pose difficulties, again due to the fact that the Waldspurger functor in the split case is not exact. Thus, complete results in the split case would follow from the solution of the following two problems:

- Calculate the Jacquet-Waldspurger modules $V_{N, T, \Lambda}$ in all cases.
- Control the kernel of the map (48).

The current methods still allow for some preliminary results on the asymptotic behavior of the functions $B(\operatorname{diag}(u, u, 1,1))$ in the split case. More precisely, it is not difficult to create a table similar to Table 4 , but it is unclear if all the constants C_{i} in such a table are really necessary. What is clear is that every $B(\operatorname{diag}(u, u, 1,1))$ is of the general form

$$
\begin{equation*}
B(\operatorname{diag}(u, u, 1,1))=\sum_{i=1}^{n} C_{i} v(u)^{k_{i}} \sigma_{i}(u) \quad \text { for } v(u) \gg 0 \tag{51}
\end{equation*}
$$

with k_{i} nonnegative integers, σ_{i} characters of F^{\times}, and $C_{i} \in \mathbb{C}$.

5. Local zeta integrals and L-factors

Given an irreducible, admissible, unitary representation π of $\operatorname{GSp}(4, F)$ and a character μ of F^{\times}, a certain type of zeta integral was introduced in Section 3 of [Piatetski-Shapiro 1997] and used to define an L-factor $L^{\mathrm{PS}}(s, \pi, \mu)$. These zeta integrals depend on a choice of Bessel model for π, and hence the L-factor may
also depend on this choice. In many cases, though, one can prove that $L^{\mathrm{PS}}(s, \pi, \mu)$ is independent of the choice of Bessel data.

In Section 5.1 we introduce a simplified type of zeta integral and use it to define the regular part $L_{\text {reg }}^{\mathrm{PS}}(s, \pi, \mu)$ of the Piatetski-Shapiro L-factor. The simplified zeta integrals also depend on the choice of a Bessel model for π. Using the asymptotic behavior given in Table 4, we explicitly calculate $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$ in the nonsplit case for all representations. It turns out that $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$ is independent of the choice of Bessel model, and coincides with the usual degree-4 (spin) Euler factor if π is generic. For nongeneric representations, however, the two factors do not agree in general.

We then investigate the Piatetski-Shapiro zeta integrals (78). Their definition involves a certain subgroup G of $\operatorname{GSp}(4, F)$, to which we dedicate Section 5.2. The resulting L-factor $L^{\mathrm{PS}}(s, \pi, \mu)$ is either equal to $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$, or has an additional factor $L\left(s+1 / 2, \Lambda_{\mu}\right)$, where $\Lambda_{\mu}=\Lambda \cdot\left(\mu \circ N_{L / F}\right)$ depends on the Bessel data. In Section 5.5 we will identify several cases where $L^{\mathrm{PS}}(s, \pi, \mu)=L_{\text {reg }}^{\mathrm{PS}}(s, \pi, \mu)$.

Overall in this section we closely follow [Piatetski-Shapiro 1997]. However, we treat all representations, not only unitary ones. Our notion of exceptional pole is slightly more general than the one given in [Piatetski-Shapiro 1997]. Also, we fill in some of the missing proofs of that paper.
5.1. The simplified zeta integrals. Let π be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$. Let $\mathcal{B}(\pi, \Lambda, \beta)$ be a (Λ, β)-Bessel model for π. Let μ be a character of F^{\times}. For $B \in \mathcal{B}(\pi, \Lambda, \beta)$ and $s \in \mathbb{C}$, we define the simplified zeta integrals

$$
\zeta(s, B, \mu)=\int_{F^{\times}} B\left(\left[\begin{array}{ll}
x & \tag{52}\\
& 1
\end{array}\right]\right) \mu(x)|x|^{s-3 / 2} d^{\times} x .
$$

The same integrals appear in Proposition 18 of [Danișman 2015b]. Using the general form (51) of the functions $B\left(\left[\begin{array}{c}x \\ 1\end{array}\right]\right)$, which holds both in the split and the nonsplit case, it is easy to see that $\zeta(s, B, \mu)$ converges to an element of $\mathbb{C}\left(q^{-s}\right)$ for real part of s large enough. Let $I(\pi, \mu)$ be the \mathbb{C}-vector subspace of $\mathbb{C}\left(q^{-s}\right)$ spanned by all $\zeta(s, B, \mu)$ as B runs through $\mathcal{B}(\pi, \Lambda, \beta)$.
Proposition 5.1.1. Let π be an irreducible, admissible representation of $\mathrm{GSp}(4, F)$ admitting $a(\Lambda, \beta)$-Bessel model with β as in (4). Then $I(\pi, \mu)$ is a nonzero $\mathbb{C}\left[q^{-s}, q^{s}\right]$ module containing \mathbb{C}, and there exists $R(X) \in \mathbb{C}[X]$ such that

$$
R\left(q^{-s}\right) I(\pi, \mu) \subset \mathbb{C}\left[q^{-s}, q^{s}\right],
$$

so that $I(\pi, \mu)$ is a fractional ideal of the principal ideal domain $\mathbb{C}\left[q^{-s}, q^{s}\right]$ whose quotient field is $\mathbb{C}\left(q^{-s}\right)$. The fractional ideal $I(\pi, \mu)$ admits a generator of the form $1 / Q\left(q^{-s}\right)$ with $Q(0)=1$, where $Q(X) \in \mathbb{C}[X]$.

Proof. One can argue as in the proof of Proposition 2.6.4 of [Roberts and Schmidt 2007]. One step in the proof is to show that $I(\pi, \mu)$ contains \mathbb{C}. This follows from Lemma 4.3.1.

Using the notation of this proposition, we set

$$
\begin{equation*}
L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu):=1 / Q\left(q^{-s}\right) \tag{53}
\end{equation*}
$$

and call this the regular part of the Piatetski-Shapiro L-factor; see [Piatetski-Shapiro 1997]. As the notation indicates, $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$ does not depend on the Bessel data β and Λ. This is implied by the following result.

Theorem 5.1.2. Table 5 shows the factors $L_{\text {reg }}^{\mathrm{PS}}(s, \pi, \mu)$ for all irreducible, admissible representations (π, V) of $\operatorname{GSp}(4, F)$ in the nonsplit case. (A "-" indicates that no nonsplit Bessel functional exists.)

Proof. Up to an element of $\mathcal{S}\left(F^{\times}\right)$, the functions $x \mapsto B\left(\left[\begin{array}{c}x \\ \\ 1\end{array}\right]\right)$, where $B \in$ $\mathcal{B}(\pi, \Lambda, \beta)$, are listed in Table 4. Using the fact that

$$
\begin{equation*}
\sum_{m=m_{0}}^{\infty} m^{j} z^{m}=g(z) \frac{1}{(1-z)^{j+1}} \tag{54}
\end{equation*}
$$

with a function $g(z)$ which is holomorphic and nonvanishing at $z=1$, the integrals in (52) are thus easily calculated up to elements of $\mathbb{C}\left[q^{s}, q^{-s}\right]$.

Also indicated in Table 5 are the generic representations (i.e., those that admit a Whittaker model); supercuspidals may or may not be generic. We see that for all generic representations $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)=L(s, \varphi)$ if $\mu=1_{F^{\times}}$. Here $L(s, \varphi)$ is the L-factor of the Langlands parameter φ of π, as listed in Table A. 8 of [Roberts and Schmidt 2007].
5.2. The group G. We now recall the setup of [Piatetski-Shapiro 1997]. Let L be the quadratic extension of F as in Section 2. Let $V=L^{2}$, which we consider as a space of row vectors. We endow V with the skew-symmetric F-linear form

$$
\begin{equation*}
\rho(x, y)=\operatorname{Tr}_{L / F}\left(x_{1} y_{2}-x_{2} y_{1}\right), \quad x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \tag{55}
\end{equation*}
$$

Let

$$
\begin{aligned}
\mathrm{GSp}_{\rho}=\{g \in \mathrm{GL}(4, F): \rho(x g, y g)= & \lambda \rho(x, y), \\
& \text { for some } \left.\lambda=\lambda(g) \in F^{\times}, \text {for all } x, y \in V\right\}
\end{aligned}
$$

be the symplectic similitude group of the form ρ. Let

$$
\begin{equation*}
G=\left\{g \in \operatorname{GL}(2, L): \operatorname{det}(g) \in F^{\times}\right\} \tag{56}
\end{equation*}
$$

The group G acts on V by matrix multiplication from the right. A calculation shows

$$
\begin{equation*}
\rho(x g, y g)=\operatorname{det}(g) \rho(x, y) \tag{57}
\end{equation*}
$$

representation		$L_{\text {reg }}^{\mathrm{PS}}(s, \pi, \mu)$	generic
I	$\chi_{1} \times \chi_{2} \rtimes \sigma$ (irreducible)	$L\left(s, \chi_{1} \chi_{2} \sigma \mu\right) L(s, \sigma \mu) L\left(s, \chi_{1} \sigma \mu\right) L\left(s, \chi_{2} \sigma \mu\right)$	-
II	$\mathrm{a} \quad \chi \mathrm{St}_{\mathrm{GL}(2)} \rtimes \sigma$	$L\left(s, \nu^{1 / 2} \chi \sigma \mu\right) L\left(s, \chi^{2} \sigma \mu\right) L(s, \sigma \mu)$	-
	$\mathrm{b} \quad \chi 1_{\mathrm{GL}(2)} \rtimes \sigma$	$L\left(s, \nu^{-1 / 2} \chi \sigma \mu\right) L\left(s, \chi^{2} \sigma \mu\right) L(s, \sigma \mu)$	
III	a $\quad \chi \rtimes \sigma \operatorname{St}_{\mathrm{GSp}(2)}$	$L\left(s, \nu^{1 / 2} \chi \sigma \mu\right) L\left(s, \nu^{1 / 2} \sigma \mu\right)$	-
	$\mathrm{b} \quad \chi \rtimes \sigma 1_{\mathrm{GSp}(2)}$	-	
IV	a $\quad \sigma \mathrm{St}_{\mathrm{GSp}(4)}$	$L\left(s, \nu^{3 / 2} \sigma \mu\right)$	-
	b $\quad L\left(v^{2}, v^{-1} \sigma \operatorname{St}_{\mathrm{GSp}(2)}\right)$	$L\left(s, v^{3 / 2} \sigma \mu\right) L\left(s, v^{-1 / 2} \sigma \mu\right)$	
	c $L\left(v^{3 / 2} \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-3 / 2} \sigma\right)$	-	
	$\mathrm{d} \quad \quad \sigma 1_{\mathrm{GSp}(4)}$	-	
V	a $\delta\left([\xi, \nu \xi], \nu^{-1 / 2} \sigma\right)$	$L\left(s, v^{1 / 2} \xi \sigma \mu\right) L\left(s, \nu^{1 / 2} \sigma \mu\right)$	-
	$\mathrm{b} \quad L\left(\nu^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1 / 2} \sigma\right)$	$L\left(s, v^{1 / 2} \xi \sigma \mu\right) L\left(s, v^{-1 / 2} \sigma \mu\right)$	
	c $L\left(\nu^{1 / 2} \xi \mathrm{St}_{\mathrm{GL}(2)}, \nu^{-1 / 2} \xi \sigma\right)$	$L\left(s, v^{-1 / 2} \xi \sigma \mu\right) L\left(s, v^{1 / 2} \sigma \mu\right)$	
	d $L\left(\nu \xi, \xi \rtimes \nu^{-1 / 2} \sigma\right)$	$L\left(s, v^{-1 / 2} \xi \sigma \mu\right) L\left(s, v^{-1 / 2} \sigma \mu\right)$	
VI	a $\quad \tau\left(S, \nu^{-1 / 2} \sigma\right)$	$L\left(s, \nu^{1 / 2} \sigma \mu\right)^{2}$	-
	$\mathrm{b} \quad \tau\left(T, \nu^{-1 / 2} \sigma\right)$	$L\left(s, v^{1 / 2} \sigma \mu\right)$	
	c $L\left(\nu^{1 / 2} \operatorname{St}_{\text {GL }(2)}, \nu^{-1 / 2} \sigma\right)$	-	
	d $L\left(\nu, 1_{F^{\times} \rtimes} \rtimes \nu^{-1 / 2} \sigma\right)$	-	
VII	$\chi \rtimes \pi$	1	-
VIII	a $\quad \tau(S, \pi)$	1	-
	$\mathrm{b} \quad \tau(T, \pi)$	1	
IX	a $\quad \delta\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$	1	-
	$\mathrm{b} \quad L\left(\nu \xi, \nu^{-1 / 2} \pi(\mu)\right)$	1	
X	$\pi \rtimes \sigma$	$L\left(s, \omega_{\pi} \sigma \mu\right) L(s, \sigma \mu)$	-
XI	a $\quad \delta\left(\nu^{1 / 2} \pi, \nu^{-1 / 2} \sigma\right)$	$L\left(s, \nu^{1 / 2} \sigma \mu\right)$	-
	$\mathrm{b} \quad L\left(\nu^{1 / 2} \pi, \nu^{-1 / 2} \sigma\right)$	$L\left(s, \nu^{-1 / 2} \sigma \mu\right)$	
	supercuspidal	1	\bigcirc

Table 5. Regular parts of Piatetski-Shapiro L-factors (nonsplit case).
for $x, y \in V$ and $g \in G$. Hence, $G \subset \mathrm{GSp}_{\rho}$. Since all four-dimensional symplectic F-spaces are isomorphic to the standard space F^{4} with the form (1), the groups GSp_{ρ} and $\operatorname{GSp}(4, F)$ are isomorphic; here, we think of $\operatorname{GSp}(4, F)$ as acting on the right on the space of row vectors F^{4}. We wish to find one such isomorphism under which the group G takes on a particularly simple shape inside $\operatorname{GSp}(4, F)$.

For this we assume that the matrix β in (4) is diagonal and nondegenerate, i.e., $b=0$ and $a, c \neq 0$; after a suitable conjugation, every nondegenerate β can be brought into this form. Consider the following F-basis of V,

$$
\begin{equation*}
f_{1}=(1,0), \quad f_{2}=(\Delta / c, 0), \quad f_{3}=(0,1 / 2), \quad f_{4}=(0, c /(2 \Delta)) . \tag{58}
\end{equation*}
$$

Let e_{1}, \ldots, e_{4} be the standard basis of F^{4}. Then the map $f_{i} \mapsto e_{i}$ establishes an isomorphism $V \cong F^{4}$ preserving the symplectic form on both spaces (the form ρ on V, and the form J defined in (1) on F^{4}). The resulting isomorphism $\mathrm{GSp}_{\rho} \cong \mathrm{GSp}(4, F)$ has the following properties:

$$
\begin{align*}
& G \ni\left[\begin{array}{ll}
x & \\
& 1
\end{array}\right] \longmapsto\left[\begin{array}{llll}
x & & & \\
& x & & \\
& & 1 & \\
& & & 1
\end{array}\right], \tag{59}\\
& G \ni\left[\begin{array}{ll}
1 & \\
& x
\end{array}\right] \longmapsto\left[\begin{array}{llll}
1 & & \\
& 1 & \\
& & x \\
& & & x
\end{array}\right] \text {, } \tag{60}\\
& G \ni\left[\begin{array}{ll}
t & \\
& \bar{t}
\end{array}\right] \longmapsto\left[\begin{array}{cccc}
x & y c & & \\
-y a & x & & \\
& & x & y a \\
& & -y c & x
\end{array}\right] \text { for } t=x+y \Delta \in L^{\times}, \tag{61}\\
& G \ni\left[\begin{array}{cc}
1 & x+y \Delta \\
& 1
\end{array}\right] \longmapsto\left[\begin{array}{ccc}
1 & 2 x & -2 a y \\
& 1 & -2 a y \\
& 1 & -2 a c^{-1} x \\
& & 1
\end{array}\right] \text {. }
\end{align*}
$$

Here, $\bar{t}=x-y \Delta$ is the Galois conjugate of t. Recall from (9) that the matrices on the right hand side of (61) are precisely the elements of T. It is easy to verify that the matrices on the right-hand side of (62) are precisely those elements of N that lie in

$$
N_{0}=\left\{\left[\begin{array}{cc}
1 & X \tag{63}\\
& 1
\end{array}\right]: \operatorname{tr}(\beta X)=0\right\}=\left\{\left[\begin{array}{ccc}
1 & x & y \\
& 1 & y \\
& & z \\
& & \\
& &
\end{array}\right]: a x+b y+c z=0\right\} .
$$

In particular, if we consider G a subgroup of $\operatorname{GSp}(4, F)$, then we see that

$$
G \cap R=T N_{0} ;
$$

see Proposition 2.1 of [Piatetski-Shapiro 1997]. We define the following subgroups of G :

$$
\begin{align*}
& A^{G}=G \cap\left[\begin{array}{l}
* \\
*
\end{array}\right]=\left\{\left[\begin{array}{ll}
x t & \bar{t}
\end{array}\right] \in \operatorname{GL}(2, L): x \in F^{\times}, t \in L^{\times}\right\}, \tag{64}\\
& N_{0}=G \cap\left[\begin{array}{rr}
1 & * \\
& 1
\end{array}\right]=\left\{\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right] \in \mathrm{GL}(2, L): b \in L\right\}, \tag{65}\\
& B^{G}=G \cap\left[\begin{array}{r}
* \\
*
\end{array}\right]=\left\{\left[\begin{array}{ll}
a & b \\
d
\end{array}\right] \in \mathrm{GL}(2, L): a d \in F^{\times}\right\}, \tag{66}\\
& K^{G}=G \cap \operatorname{GL}\left(2, \mathfrak{o}_{L}\right)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{GL}\left(2, \mathfrak{o}_{L}\right): a d-b c \in F^{\times}\right\} . \tag{67}
\end{align*}
$$

By our remarks above, when embedded into $\operatorname{GSp}(4, F)$, the group N_{0} coincides with the group introduced in (63), so that the notation is consistent. The Iwasawa decomposition for $\mathrm{GL}(2, L)$ implies that $G=B^{G} K^{G}$. The modular factor for B^{G} is $\delta\left(\left[\begin{array}{cc}a & b \\ d\end{array}\right]\right)=|a / d|_{L}$, where $|\cdot|_{L}$ is the normalized absolute value on L. Note that $|t|_{L}=\left|N_{L / F}(t)\right|_{F}$ for $t \in L^{\times}$. Let $d n$ be the Haar measure on N_{0} that gives $N_{0} \cap K^{G}$ volume 1. Let $d a$ be the Haar measure on A^{G} that gives $A^{G} \cap K^{G}$ volume 1. Let $d k$ be the Haar measure on K^{G} with total volume 1. There is a Haar measure on G given by

$$
\begin{equation*}
\int_{N_{0}} \int_{A^{G}} \int_{K^{G}} f(n a k) \delta(a)^{-1} d k d a d n \tag{68}
\end{equation*}
$$

The measure (68) gives K^{G} volume 1 . We will also use the integration formula

$$
\begin{equation*}
\int_{N_{0} \backslash G} f(g) d g=\int_{B^{G}} f(w b) d b=\int_{N_{0} A^{G}} \int f(w n a) d a d n \tag{69}
\end{equation*}
$$

for a function f on G that is left N_{0}-invariant (the $d b$ in the middle integral is a right Haar measure on B^{G}). Here, $w=\left[{ }_{-1}{ }^{1}\right] \in G$, which is embedded into $\operatorname{GSp}(4, F)$ as

$$
w \longmapsto\left[\begin{array}{llll}
2 & & & \tag{70}\\
& -2 a c^{-1} & & \\
& & \frac{1}{2} & \\
& & & -\frac{1}{2} c a^{-1}
\end{array}\right]\left[\begin{array}{llll}
& & 1 & \\
& & & 1 \\
-1 & & & \\
& -1 & &
\end{array}\right] .
$$

Principal series representations of G. Let Λ be a character of L^{\times}, let μ be a character of F^{\times}, and $s \in \mathbb{C}$. We denote by $\mathcal{J}(\Lambda, \mu, s)$ the induced representation $\operatorname{ind}_{B^{G}}^{G}(\chi)$ (unnormalized induction), where

$$
\chi\left(\left[\begin{array}{cc}
x t & * \tag{71}\\
& \bar{t}
\end{array}\right]\right)=\mu(x)|x|^{s+1 / 2} \Lambda(t)^{-1} .
$$

It is easy to see that the contragredient of $\mathcal{J}(\Lambda, \mu, s)$ is $\mathcal{J}\left(\Lambda^{-1}, \mu^{-1}, 1-s\right)$.
Let $V=L^{2}$, considered as a space of row vectors. Let $\mathcal{S}(V)$ be the space of Schwartz-Bruhat functions on V, i.e., the space of locally constant functions with compact support. For $g \in G, \Phi \in \mathcal{S}(V)$ and a complex number s, we define

$$
\begin{align*}
& f^{\Phi}(g, \mu, \Lambda, s) \tag{72}\\
& \quad:=\mu(\operatorname{det}(g))|\operatorname{det}(g)|^{s+1 / 2} \int_{L^{\times}} \Phi((0, \bar{t}) g)|t \bar{t}|^{s+1 / 2} \mu(t \bar{t}) \Lambda(t) d^{\times} t .
\end{align*}
$$

This is the same definition as on page 265 of [Piatetski-Shapiro 1997], except we have $(0, \bar{t})$ instead of $(0, t)$, in order to be compatible with our conventions about Bessel models. Assuming convergence, a calculation shows that $f^{\Phi} \in \mathcal{J}(\Lambda, \mu, s)$.

Let $\mathcal{S}_{0}(V)$ be the subspace of $\Phi \in \mathcal{S}(V)$ for which $\Phi(0,0)=0$. If $\Phi \in \mathcal{S}_{0}(V)$ and $g \in G$, then $\Phi((0, \bar{t}) g)=0$ for t outside a compact set of L^{\times}. It follows that the integral (72) converges absolutely for $\Phi \in \mathcal{S}_{0}(V)$, for any $s \in \mathbb{C}$.

Lemma 5.2.1. $\mathcal{J}(\Lambda, \mu, s)=\left\{f^{\Phi}(\cdot, \mu, \Lambda, s): \Phi \in \mathcal{S}_{0}(V)\right\}$.
Proof. Given $f \in \mathcal{J}(\Lambda, \mu, s)$, we need to find $\Phi \in \mathcal{S}_{0}(V)$ such that $f^{\Phi}=f$. We define Φ by

$$
\Phi(x, y)=\left\{\begin{array}{cl}
\mu^{-1}(\operatorname{det}(k)) f(k) & \text { if }(x, y)=(0,1) k \text { for some } k \in K^{G}, \tag{73}\\
0 & \text { if }(x, y) \notin(0,1) K^{G} .
\end{array}\right.
$$

It is straightforward to verify that Φ is well defined, that $\Phi \in \mathcal{S}_{0}(V)$, and that f^{Φ} is a multiple of f.

Lemma 5.2.2. Let $\Lambda_{\mu}=\Lambda \cdot\left(\mu \circ N_{L / F}\right)$.
(i) The representation $\mathcal{J}(\Lambda, \mu, s)$ contains a one-dimensional G-invariant subspace if and only if

$$
\begin{equation*}
\Lambda_{\mu}(t)=|t|_{L}^{-s-1 / 2} \quad \text { for all } t \in L^{\times} . \tag{74}
\end{equation*}
$$

In this case the function

$$
\begin{equation*}
f(g)=\mu(\operatorname{det}(g))|\operatorname{det}(g)|^{s+1 / 2}, \quad g \in G, \tag{75}
\end{equation*}
$$

spans a one-dimensional G-invariant subspace of $\operatorname{ind}_{B^{G}}^{G}(\chi)$.
(ii) The representation $\mathcal{J}(\Lambda, \mu, s)$ contains a one-dimensional G-invariant quotient if and only if

$$
\begin{equation*}
\Lambda_{\mu}(t)=|t|_{L}^{-s+3 / 2} \quad \text { for all } t \in L^{\times} . \tag{7}
\end{equation*}
$$

Proof. Part (i) is an easy exercise. Part (ii) follows from (i), observing that the contragredient of $\mathcal{J}(\Lambda, \mu, s)$ is $\mathcal{J}\left(\Lambda^{-1}, \mu^{-1}, 1-s\right)$.

Note that condition (74) is equivalent to saying that s is a pole of $L\left(s+1 / 2, \Lambda_{\mu}\right)$. Later we will define the notion of exceptional pole; see (92). The exceptional poles will be among the poles of $L\left(s+1 / 2, \Lambda_{\mu}\right)$. Note that, by (73), the function f in (75) is a multiple of f^{Φ}, where

$$
\Phi(x, y)= \begin{cases}1 & \text { if }(x, y)=(0,1) k \text { for some } k \in K^{G} \tag{77}\\ 0 & \text { if }(x, y) \notin(0,1) K^{G} .\end{cases}
$$

Hence, in the nonsplit case, Φ is the characteristic function of $\left(\mathfrak{o}_{L} \oplus \mathfrak{o}_{L}\right) \backslash\left(\mathfrak{p}_{L} \oplus \mathfrak{p}_{L}\right)$.
5.3. The zeta integrals. Let Λ be a character of $T \cong L^{\times}$, and let μ be a character of F^{\times}. Recall the definition of the functions $f^{\Phi}(g, \mu, \Lambda, s)$ in (72). Let π be an irreducible, admissible representation of $\operatorname{GSp}(4, F)$. Let $\mathcal{B}(\pi, \Lambda, \beta)$ be a (Λ, β) Bessel model for π. For $B \in \mathcal{B}(\pi, \Lambda, \beta)$ and $s \in \mathbb{C}$, let

$$
\begin{equation*}
Z(s, B, \Phi, \mu)=\int_{T N_{0} \backslash G} B(g) f^{\Phi}(g, \mu, \Lambda, s) d g \tag{78}
\end{equation*}
$$

provided this integral converges. (In [Piatetski-Shapiro 1997] this integral was denoted by $L(W, \Phi, \mu, s)$.) Substituting the definition of $f^{\Phi}(g, \mu, \Lambda, s)$ and unfolding the integral shows that

$$
\begin{equation*}
Z(s, B, \Phi, \mu)=\int_{N_{0} \backslash G} B(g) \Phi((0,1) g) \mu(\operatorname{det}(g))|\operatorname{det}(g)|^{s+1 / 2} d g . \tag{79}
\end{equation*}
$$

By (68), we have

$$
\begin{align*}
& Z(s, B, \Phi, \mu) \tag{80}\\
& \quad=\int_{A^{G}} \int_{K^{G}} \delta(a)^{-1} B(a k) \Phi((0,1) a k) \mu(\operatorname{det}(a k))|\operatorname{det}(a k)|^{s+1 / 2} d k d a .
\end{align*}
$$

Recall that $\mathcal{S}_{0}(V)$ is the space of $\Phi \in \mathcal{S}(V)$ satisfying $\Phi(0,0)=0$. Let $\Phi_{1} \in \mathcal{S}(V)$ be the characteristic function of $\mathfrak{o}_{L} \oplus \mathfrak{o}_{L}$. Then every $\Phi \in \mathcal{S}(V)$ can be written in a unique way as $\Phi=\Phi_{0}+c \Phi_{1}$ with $\Phi_{0} \in \mathcal{S}_{0}(V)$ and $c \in \mathbb{C}$. We will first investigate $Z(s, B, \Phi, \mu)$ for $\Phi \in \mathcal{S}_{0}(V)$.

Lemma 5.3.1. Let the notations and hypotheses be as above.
(i) For any $B \in \mathcal{B}(\pi, \Lambda, \beta)$ and $\Phi \in \mathcal{S}_{0}(V)$, the function $Z(s, B, \Phi, \mu)$ converges for real part of s large enough to an element of $\mathbb{C}\left(q^{-s}\right)$. This element lies in the ideal $I(\pi, \mu)$ generated by all simplified zeta integrals; see Proposition 5.1.1.
(ii) For any $B \in \mathcal{B}(\pi, \Lambda, \beta)$, there exists $\Phi \in \mathcal{S}_{0}(V)$ such that $Z(s, B, \Phi, \mu)=$ $\zeta(s, B, \mu)$.

Hence, the integrals $Z(s, B, \Phi, \mu)$, as B runs through $\mathcal{B}(\pi, \Lambda, \beta)$ and Φ runs through $\mathcal{S}_{0}(V)$, generate the ideal $I(\pi, \mu)$ already exhibited in Proposition 5.1.1.

Proof. (i) Let $\Phi \in \mathcal{S}_{0}(V)$. We have

$$
\Phi((0,1) a k)=\Phi\left(\bar{t} k_{3}, \bar{t} k_{4}\right) \quad \text { if } a=\left[\begin{array}{cc}
x t & \tag{81}\\
& \bar{t}
\end{array}\right] \in A^{G}, k=\left[\begin{array}{ll}
k_{1} & k_{2} \\
k_{3} & k_{4}
\end{array}\right] \in K^{G} .
$$

Since one of k_{3} or k_{4} is a unit and $\Phi(0,0)=0$, it follows that $\Phi((0,1) a k)=0$ if t is outside a compact set of L^{\times}. As a consequence, there exists a small subgroup Γ of K^{G} such that

$$
\Phi((0,1) a k \gamma)=\Phi((0,1) a k)
$$

for all $a \in A^{G}, k \in K^{G}$ and $\gamma \in \Gamma$. By making Γ even smaller, we may assume that B and $\mu \circ$ det are right Γ-invariant. It follows that $Z(s, B, \Phi, \mu)$ as in (80) is a finite sum of integrals of the form

$$
\begin{equation*}
I(s, B, \Phi, \mu)=\int_{A^{G}} \delta(a)^{-1} B(a) \Phi((0,1) a) \mu(\operatorname{det}(a))|\operatorname{det}(a)|^{s+1 / 2} d a \tag{82}
\end{equation*}
$$

with different B and $\Phi \in \mathcal{S}_{0}(V)$. Using coordinates on A^{G}, we have

$$
\begin{align*}
& I(s, B, \Phi, \mu) \tag{83}\\
& =\int_{F^{\times}} \int_{L^{\times}}\left|x t \bar{t}^{-1}\right|_{L}^{-1} B\left(\left[\begin{array}{ll}
x t & \\
& \bar{t}
\end{array}\right]\right) \Phi(0, \bar{t}) \mu(x t \bar{t})|x t \bar{t}|^{s+1 / 2} d^{\times} t d^{\times} x \\
& =\int_{F^{\times}} \int_{L^{\times}}|x|^{-2} \Lambda(t) B\left(\left[\begin{array}{ll}
x & \\
& 1
\end{array}\right]\right) \Phi(0, \bar{t}) \mu(x t \bar{t})|x t \bar{t}|^{s+1 / 2} d^{\times} t d^{\times} x \\
& =\left(\int_{F^{\times}} B\left(\left[\begin{array}{ll}
x & \\
& 1
\end{array}\right]\right) \mu(x)|x|^{s-3 / 2} d^{\times} x\right)\left(\int_{L^{\times}} \Lambda(t) \Phi(0, \bar{t}) \mu(t \bar{t})|t \bar{t}|^{s+1 / 2} d^{\times} t\right) .
\end{align*}
$$

The first integral is precisely $\zeta(s, B, \mu)$; see (52). Since the integration in the second integral is over a compact subset of L^{\times}, this integral is in $\mathbb{C}\left[q^{s}, q^{-s}\right]$. It follows that $I(s, B, \Phi, \mu)$ lies in the ideal $I(\pi, \mu)$.
(ii) By (79) and (69), we have

$$
\begin{aligned}
Z(s, B, \Phi, \mu) & =\int_{N_{0}} \int_{A^{G}} B(w n a) \Phi((0,1) w n a) \mu(\operatorname{det}(a))|\operatorname{det}(a)|^{s+1 / 2} d a d n \\
& =\int_{N_{0}} \int_{A^{G}} B(w n a) \Phi((-1,0) n a) \mu(\operatorname{det}(a))|\operatorname{det}(a)|^{s+1 / 2} d a d n
\end{aligned}
$$

$$
\begin{aligned}
& =\iint_{L} \int_{F^{\times}} \int_{L^{\times}} B\left(w\left[\begin{array}{ll}
1 & n \\
& 1
\end{array}\right]\left[\begin{array}{ll}
x t & \\
& \bar{t}
\end{array}\right]\right) \Phi\left((-1,0)\left[\begin{array}{ll}
1 & n \\
& 1
\end{array}\right]\left[\begin{array}{ll}
x t & \\
& \bar{t}
\end{array}\right]\right) \\
& \times \mu(x t \bar{t})|x t \bar{t}|^{s+1 / 2} d^{\times} t d^{\times} x d n \\
& =\int_{L} \int_{F^{\times}} \int_{L^{\times}} B\left(w\left[\begin{array}{c}
x t \\
\bar{t} n \\
\bar{t}
\end{array}\right]\right) \Phi(-x t,-\bar{t} n) \mu(x t \bar{t})|x|^{s+1 / 2}|t|_{L}^{s+1 / 2} d^{\times} t d^{\times} x d n \\
& =\int_{L} \int_{F^{\times}} \int_{L^{\times}} B\left(w\left[\begin{array}{cc}
x t & n \\
& \bar{t}
\end{array}\right]\right) \Phi(-x t,-n) \mu(x t \bar{t})|x|^{s+1 / 2}|t|_{L}^{s-1 / 2} d^{\times} t d^{\times} x d n \\
& \left.=\iint_{L} \int_{F^{\times}} \int_{L^{\times}} B\left(w^{1} \begin{array}{ll}
1 & \\
& x^{-1}
\end{array}\right]\left[\begin{array}{cc}
t & n \\
\bar{t}
\end{array}\right]\right) \Phi(-t,-n) \\
& \times \mu(x)^{-1} \mu(t \bar{t})|x|^{3 / 2-s}|t|_{L}^{s-1 / 2} d^{\times} t d^{\times} x d n .
\end{aligned}
$$

Now choose Φ such that $\Phi(-t,-n)$ is zero unless t is close to 1 and n is close to 0 . If the support of Φ is chosen small enough, then, after appropriate normalization,

$$
Z(s, B, \Phi, \mu)=\int_{F^{\times}} B\left(\left[\begin{array}{ll}
x^{-1} & \\
& 1
\end{array}\right] w\right) \mu(x)^{-1}|x|^{3 / 2-s} d^{\times} x .
$$

This is just $\zeta(s, w B, \mu)$. The assertion follows.
We see from Lemma 5.3.1 that, instead of (53), we could have chosen to define $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$ as the gcd of all $Z(s, B, \Phi, \mu)$, as B runs through $\mathcal{B}(\pi, \Lambda, \beta)$ and Φ runs through $\mathcal{S}_{0}(V)$. The same observation was made in [Danişman 2015b, Proposition 18(i)].

Next we investigate $Z\left(s, B, \Phi_{1}, \mu\right)$, where we recall Φ_{1} is the characteristic function of $\mathfrak{o}_{L} \oplus \mathfrak{o}_{L}$. In the split case, a character Λ of $L^{\times}=F^{\times} \times F^{\times}$is a pair (λ_{1}, λ_{2}) of characters of F^{\times}, and by $L(s, \Lambda)$ we mean $L\left(s, \lambda_{1}\right) L\left(s, \lambda_{2}\right)$.

Lemma 5.3.2. Let $\Lambda_{\mu}=\Lambda \cdot\left(\mu \circ N_{L / F}\right)$.
(i) Assume that Λ_{μ} is ramified. Then $Z\left(s, B, \Phi_{1}, \mu\right)=0$.
(ii) Assume that Λ_{μ} is unramified. Then

$$
\begin{equation*}
Z\left(s, B, \Phi_{1}, \mu\right)=\zeta\left(s, B_{\mu}, \mu\right) L\left(s+1 / 2, \Lambda_{\mu}\right), \tag{84}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{\mu}(g):=\int_{K^{G}} B(g k) \mu(\operatorname{det}(k)) d k, \quad g \in \mathrm{GSp}(4, F) . \tag{85}
\end{equation*}
$$

Proof. Evidently, $\Phi_{1}((x, y) k)=\Phi_{1}(x, y)$ for all $(x, y) \in V$ and $k \in K^{G}$. Therefore, from (80), we get

$$
\begin{align*}
& Z\left(s, B, \Phi_{1}, \mu\right) \tag{86}\\
& \qquad=\int_{A^{G}} \int_{K^{G}} \delta(a)^{-1} B(a k) \Phi_{1}((0,1) a) \mu(\operatorname{det}(a k))|\operatorname{det}(a)|^{s+1 / 2} d k d a \\
& \quad=\int_{A^{G}} \delta(a)^{-1} B_{\mu}(a) \Phi_{1}((0,1) a) \mu(\operatorname{det}(a))|\operatorname{det}(a)|^{s+1 / 2} d a .
\end{align*}
$$

Clearly, B_{μ} is an element of $\mathcal{B}(\pi, \Lambda, \beta)$ satisfying

$$
B_{\mu}(g k)=\mu^{-1}(\operatorname{det}(k)) B_{\mu}(g)
$$

for $k \in K^{G}$. Using coordinates on A^{G}, we have

$$
\begin{align*}
Z\left(s, B, \Phi_{1}\right. & \mu) \tag{87}\\
& =\int_{F^{\times}} \int_{L^{\times}}\left|x t \bar{t}^{-1}\right|_{L}^{-1} B_{\mu}(a) \Phi_{1}((0, \bar{t})) \mu(x t \bar{t})|x t \bar{t}|^{s+1 / 2} d^{\times} t d^{\times} x \\
& =\int_{F^{\times}} \int_{L^{\times}} B_{\mu}\left(\left[\begin{array}{ll}
x t & \\
& \bar{t}
\end{array}\right]\right) \Phi_{1}((0, \bar{t})) \mu(x t \bar{t})|t \bar{t}|^{s+1 / 2}|x|^{s-3 / 2} d^{\times} t d^{\times} x \\
& =\int_{F^{\times}} \int_{L^{\times} \cap \mathfrak{o}_{L}} \Lambda(t) B_{\mu}\left(\left[\begin{array}{ll}
x & \\
& 1
\end{array}\right]\right) \mu(x t \bar{t})|t \bar{t}|^{s+1 / 2}|x|^{s-3 / 2} d^{\times} t d^{\times} x \\
& =\zeta\left(s, B_{\mu}, \mu\right) \int_{L^{\times} \cap_{o_{L}}} \Lambda(t) \mu(t \bar{t})|t \bar{t}|^{s+1 / 2} d^{\times} t .
\end{align*}
$$

It is straightforward to calculate that

$$
\int_{L^{\times} \cap_{O_{L}}} \Lambda(t) \mu(t \bar{t})|t \bar{t}|^{s+1 / 2} d^{\times} t=\left\{\begin{array}{cl}
L\left(s+1 / 2, \Lambda_{\mu}\right) & \text { if } \Lambda_{\mu} \text { is unramified } \tag{88}\\
0 & \text { if } \Lambda_{\mu} \text { is ramified. }
\end{array} \square\right.
$$

We see from Lemma 5.3.1 and Lemma 5.3.2 that $Z(s, B, \Phi, \mu)$ converges for real part of s large enough to an element of $\mathbb{C}\left(q^{-s}\right)$, for any $B \in \mathcal{B}(\pi, \Lambda, \beta)$ and $\Phi \in \mathcal{S}(V)$. Let $I_{\Lambda, \beta}(\pi, \mu)$ be the \mathbb{C}-vector subspace of $\mathbb{C}\left(q^{-s}\right)$ spanned by all $\zeta(s, B, \mu)$ as B runs through $\mathcal{B}(\pi, \Lambda, \beta)$.
Proposition 5.3.3. Let π be an irreducible, admissible representation of $\mathrm{GSp}(4, F)$ admitting $a(\Lambda, \beta)$-Bessel model with β as in (4). Then $I_{\Lambda, \beta}(\pi, \mu)$ is a nonzero $\mathbb{C}\left[q^{-s}, q^{s}\right]$ module containing \mathbb{C}, and there exists $R(X) \in \mathbb{C}[X]$ such that

$$
R\left(q^{-s}\right) I_{\Lambda, \beta}(\pi, \mu) \subset \mathbb{C}\left[q^{-s}, q^{s}\right],
$$

so that $I_{\Lambda, \beta}(\pi, \mu)$ is a fractional ideal of the principal ideal domain $\mathbb{C}\left[q^{-s}, q^{s}\right]$ whose quotient field is $\mathbb{C}\left(q^{-s}\right)$. The fractional ideal $I_{\Lambda, \beta}(\pi, \mu)$ admits a generator of the form $1 / Q\left(q^{-s}\right)$ with $Q(0)=1$, where $Q(X) \in \mathbb{C}[X]$.

Proof. The proof is similar to that of Proposition 5.1.1. It follows easily from (79) that $I_{\Lambda, \beta}(\pi, \mu)$ is a $\mathbb{C}\left[q^{s}, q^{-s}\right]$-module. It follows from Proposition 5.1.1 and Lemma 5.3.1 that $I_{\Lambda, \beta}(\pi, \mu)$ contains \mathbb{C}.

Using the notation of this proposition, we set

$$
\begin{equation*}
L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu):=1 / Q\left(q^{-s}\right) . \tag{89}
\end{equation*}
$$

This is the Piatetski-Shapiro L-factor, as defined in [Piatetski-Shapiro 1997]. Our notation indicates that these factors may depend on Λ (and β, which we suppress from the notation).

We now distinguish two cases. In the first, assume

$$
\begin{equation*}
\frac{Z(s, B, \Phi, \mu)}{L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)} \text { is entire for all } B \in \mathcal{B}(\pi, \Lambda, \beta) \text { and } \Phi \in \mathcal{S}(V) \tag{90}
\end{equation*}
$$

Being entire is equivalent to lying in $\mathbb{C}\left[q^{s}, q^{-s}\right]$. Hence, in this case the fractional ideal generated by all $Z(s, B, \Phi, \mu)$ is generated by $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$, and we have

$$
\begin{equation*}
L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu)=L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu) . \tag{91}
\end{equation*}
$$

In particular, the Piatetski-Shapiro L-factor does not depend on Λ in this case.
For the second case, assume

$$
\begin{equation*}
\frac{Z(s, B, \Phi, \mu)}{L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)} \text { has a pole for some } B \in \mathcal{B}(\pi, \Lambda, \beta) \text { and } \Phi \in \mathcal{S}(V) \text {. } \tag{92}
\end{equation*}
$$

Such poles are called exceptional poles. By (84), exceptional poles are precisely the poles of

$$
\begin{equation*}
\frac{\zeta\left(s, B_{\mu}, \mu\right)}{L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)} L\left(s+1 / 2, \Lambda_{\mu}\right), \tag{93}
\end{equation*}
$$

as B runs through $\mathcal{B}(\pi, \Lambda, \beta)$. Since the fraction in (93) is entire, exceptional poles are found among the poles of $L\left(s+1 / 2, \Lambda_{\mu}\right)$. If we write

$$
\begin{equation*}
L\left(s, \Lambda_{\mu}\right)=\frac{1}{\left(1-\gamma_{1} q^{-s}\right)\left(1-\gamma_{2} q^{-s}\right)}, \tag{94}
\end{equation*}
$$

where one of the complex numbers γ_{1}, γ_{2} may be zero, then

$$
\begin{equation*}
L^{\mathrm{PS}}(s, \pi, \mu)=L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu) \frac{1}{P\left(q^{-s-1 / 2}\right)}, \tag{95}
\end{equation*}
$$

where $P \in \mathbb{C}[X]$ is either $1-\gamma_{i} X$ or $\left(1-\gamma_{1} X\right)\left(1-\gamma_{2} X\right)$.

Remark. Our definition of exceptional pole is slightly more general than the one given in [Piatetski-Shapiro 1997]. Therein, a complex number s_{0} is called an exceptional pole if s_{0} is a pole of $L^{\mathrm{PS}}(s, \pi, \mu)$ but not of $L_{\text {reg }}^{\mathrm{PS}}(s, \pi, \mu)$. It follows easily that an exceptional pole according to Piatetski-Shapiro is also an exceptional pole according to our definition. However, the two notions may not coincide if there is overlap between the poles of $L_{\text {reg }}^{\mathrm{PS}}(s, \pi, \mu)$ and the poles of $L\left(s+1 / 2, \Lambda_{\mu}\right)$.

The regular poles are the poles of $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$. According to our definition, an exceptional pole can also be regular, while in [Piatetski-Shapiro 1997] the two notions are exclusive. Our definition is designed in such a way that $L^{\mathrm{PS}}(s, \pi, \mu) \neq$ $L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$ precisely if there exist exceptional poles.
5.4. Double coset decompositions. We first prove the following double coset decomposition for GL(2,F). Let β be as in (4), and let T be the group of all

$$
\left[\begin{array}{cc}
x+y b / 2 & y c \tag{96}\\
-y a & x-y b / 2
\end{array}\right] \in \mathrm{GL}(2, F), \quad x^{2}-y^{2}\left(\frac{b^{2}}{4}-a c\right) \neq 0
$$

Recall that we are in the split case if and only if $b^{2}-4 a c \in F^{\times 2}$. We can and will make the assumption that

$$
\begin{equation*}
a, c \neq 0 \tag{97}
\end{equation*}
$$

In the split case, let $r_{1}, r_{2} \in F^{\times}$be the two roots of the equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{98}
\end{equation*}
$$

Let B_{1} be the subgroup of $\operatorname{GL}(2, F)$ consisting of all elements of the form $\left[\begin{array}{c}1 \\ * \\ *\end{array}\right]$, and let B_{2} be the subgroup consisting of all elements of the form $\left[\begin{array}{c}1 \\ * *\end{array}\right]$.

Lemma 5.4.1. (i) In the nonsplit case, $\operatorname{GL}(2, F)=T B_{1}=T B_{2}$.
(ii) In the split case,
(99) $\mathrm{GL}(2, F)=T B_{1} \sqcup T g_{1} s B_{1} \sqcup T g_{2} s B_{1}$

$$
=T B_{2} \sqcup T g_{1} B_{2} \sqcup T g_{2} B_{2}, \quad \text { where } g_{i}=\left[\begin{array}{rr}
1 & r_{i} \\
& 1
\end{array}\right], s=\left[\begin{array}{rr}
1 \\
-1 &
\end{array}\right]
$$

The set $T B_{1}$ (resp. T B_{2}) is open and dense in $\mathrm{GL}(2, F)$, and consists of all $\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right] \in \mathrm{GL}(2, F)$ with $a a_{1}^{2}+b a_{1} a_{3}+c a_{3}^{2} \neq 0\left(\right.$ resp. $\left.a a_{2}^{2}+b a_{2} a_{4}+c a_{4}^{2} \neq 0\right)$. For $i=1$ or 2 , the set $T g_{i} s B_{1}$ (resp. $T g_{i} B_{2}$) consists of all $\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right] \in \operatorname{GL}(2, F)$ with $a_{1}=a_{3} r_{i}\left(\right.$ resp. $\left.a_{2}=a_{4} r_{i}\right)$.
Proof. Calculations show that if $a a_{1}^{2}+b a_{1} a_{3}+c a_{3}^{2} \neq 0$, then the equation

$$
\left[\begin{array}{cc}
x+y b / 2 & y c \\
-y a & x-y b / 2
\end{array}\right]\left[\begin{array}{ll}
1 & z \\
& d
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]
$$

can be solved for x, y, z, d. Assume that $a a_{1}^{2}+b a_{1} a_{3}+c a_{3}^{2}=0$. Then $a_{1}=a_{3} r_{i}$ for $i=1$ or $i=2$. Calculations show that the equation

$$
\left[\begin{array}{cc}
x+y b / 2 & y c \\
-y a & x-y b / 2
\end{array}\right] g_{i} s\left[\begin{array}{rl}
1 & z \\
& d
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]
$$

can be solved for x, y, z, d. This proves the statements for B_{1}, and the proof for B_{2} is similar.

Let P be the (F-points of the) Siegel parabolic subgroup of $\operatorname{GSp}(4, F)$; see (2). Let G be the group defined in (56). We assume that $\beta=\left[\begin{array}{c}a \\ \\ c\end{array}\right]$ with $a c \neq 0$, and embed G into $\operatorname{GSp}(4, F)$ such that (59) to (62) hold. More generally, if

$$
g=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \in G,
$$

then a calculation shows that, as an element of $\operatorname{GSp}(4, F)$,

$$
g=\left[\begin{array}{cccc}
\alpha_{1} & c \alpha_{2} & 2 \beta_{1} & -2 a \beta_{2} \tag{100}\\
-a \alpha_{2} & \alpha_{1} & -2 a \beta_{2} & -\frac{2 a}{c} \beta_{1} \\
\frac{1}{2} \gamma_{1} & \frac{c}{2} \gamma_{2} & \delta_{1} & -a \delta_{2} \\
\frac{c}{2} \gamma_{2} & -\frac{c}{2 a} \gamma_{1} & c \delta_{2} & \delta_{1}
\end{array}\right] .
$$

Here, $\alpha=\alpha_{1}+\Delta \alpha_{2}$ etc., with Δ as defined after (7). The following result is a more precise version of a remark made in the proof of Theorem 4.3 of [Piatetski-Shapiro 1997].

Lemma 5.4.2. Assume the above notations and hypotheses. Let

$$
s_{2}=\left[\begin{array}{ccc}
& & 1 \tag{101}\\
& 1 & \\
-1 & & \\
& & \\
& &
\end{array}\right] .
$$

Then

$$
\begin{equation*}
\operatorname{GSp}(4, F)=G P \sqcup G s_{2} P . \tag{102}
\end{equation*}
$$

The double coset $G s_{2} P$ is open and dense in $\operatorname{GSp}(4, F)$, and

$$
s_{2}^{-1} G s_{2} \cap P=\left\{\left[\begin{array}{ll}
A & \tag{103}\\
& \operatorname{det}(A)^{t} A^{-1}
\end{array}\right]: A \in \operatorname{GL}(2, F)\right\} .
$$

We have $G s_{2} P=G s_{2} H N$, where H and N are defined in (3) and (2), respectively. Furthermore,

$$
G P=\left\{\begin{array}{cl}
G B_{2} N & \text { in the nonsplit case, } \tag{104}\\
G B_{2} N \sqcup G g_{1} B_{2} N \sqcup G g_{2} B_{2} N & \text { in the split case, }
\end{array}\right.
$$

where

$$
B_{2}=\left\{\left[\begin{array}{ccc}
1 & & \tag{105}\\
x & y & \\
& & y \\
& & -x \\
& & 1
\end{array}\right]: x \in F, y \in F^{\times}\right\}, \quad g_{i}=\left[\begin{array}{cccc}
1 & r_{i} & & \\
& 1 & & \\
& & 1 & \\
& & -r_{i} & 1
\end{array}\right]
$$

with $r_{1}, r_{2} \in F^{\times}$being the two roots of the equation $a r^{2}+c=0$.

Proof. Using the description (100) of the elements of G, it is easy to verify (103). As a consequence, $G s_{2} P=G s_{2} H N$. Equation (104) follows from (99); the disjointness in the split case is easy to verify.

By the Bruhat decomposition,
(106) $\operatorname{GSp}(4, F)=P \sqcup\left[\begin{array}{llll}1 & & * & \\ & 1 & & \\ & & & \\ & & & \\ & & & 1\end{array}\right] s_{2} P \sqcup\left[\begin{array}{llll}1 & & & \\ * & 1 & & * \\ & & 1 & * \\ & & & 1\end{array}\right] s_{1} s_{2} P \sqcup\left[\begin{array}{llll}1 & & * & * \\ & 1 & * & * \\ & & 1 & \\ & & & 1\end{array}\right] s_{2} s_{1} s_{2} P$.

Calculations show that
(107) $G s_{2} P \cap\left[\begin{array}{rrrr}1 & & * & * \\ & 1 & * & * \\ & & 1 & \\ & & & 1\end{array}\right] s_{2} s_{1} s_{2} P=\left\{\left[\begin{array}{cc}1 & X \\ & 1\end{array}\right] s_{2} s_{1} s_{2} p: p \in P, \operatorname{tr}(\beta X) \neq 0\right\}$,
(108) $\quad G s_{2} P \cap\left[\begin{array}{llll}1 & & & \\ * & 1 & & * \\ & & 1 & * \\ & & & 1\end{array}\right] s_{1} s_{2} P=\left\{\left[\begin{array}{cccc}1 & & & \\ x & 1 & & z \\ & & 1 & -x \\ & & & 1\end{array}\right] s_{1} s_{2} p: p \in P, x^{2} \neq-a / c\right\}$,
(109) $G s_{2} P \cap$

$$
\begin{equation*}
G s_{2} P \cap P=\varnothing \tag{110}
\end{equation*}
$$

and
(111) $\quad G P \cap\left[\begin{array}{rrrr}1 & & * & * \\ & 1 & * & * \\ & & 1 & \\ & & & 1\end{array}\right] s_{2} s_{1} s_{2} P=\left\{\left[\begin{array}{cc}1 & X \\ & 1\end{array}\right] s_{2} s_{1} s_{2} p: p \in P, \operatorname{tr}(\beta X)=0\right\}$,

$$
\begin{align*}
& G P \cap\left[\begin{array}{lll}
1 & & \\
* & 1 & * \\
& & 1
\end{array}\right] \quad s_{1} s_{2} P=\left\{\left[\begin{array}{ccc}
1 & & \\
x & 1 & z \\
& & 1 \\
& & \\
& & 1
\end{array}\right] s_{1} s_{2} p: p \in P, x^{2}=-a / c\right\} \text {, } \tag{112}\\
& G P \cap\left[\begin{array}{llll}
1 & & * & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right] s_{2} P=\varnothing, \tag{113}\\
& G P \cap P=P . \tag{114}
\end{align*}
$$

It follows that $\operatorname{GSp}(4, F)=G P \sqcup G s_{2} P$. Since the big Bruhat cell is dense in $\operatorname{GSp}(4, F)$, (107) implies that $G s_{2} P$ is also dense in $\operatorname{GSp}(4, F)$. Since $G P=$ $K^{G} B^{G} P=K^{G} P$ is the product of a compact and a closed set, it is closed in $\operatorname{GSp}(4, F)$.

In the proof of the following lemma we will make use of the fact that a continuous bijection $X \rightarrow Y$ between p-adic spaces is a homeomorphism. This is because we can cover X with open-compact subsets, and a continuous bijection from a compact topological space to a Hausdorff space is a homeomorphism.

For a locally compact, totally disconnected space X, we denote by $\mathcal{S}(X)$ the space of locally constant functions $X \rightarrow \mathbb{C}$ with compact support. If X is a group, $h \in X$ and $\phi \in \mathcal{S}(X)$, we denote by $R_{h} \phi$ the element of $\mathcal{S}(X)$ given by $x \mapsto \phi(x h)$, and by $L_{h} \phi$ the element of $\mathcal{S}(X)$ given by $x \mapsto \phi\left(h^{-1} x\right)$.

Let U be the unipotent radical of the Borel subgroup of $\operatorname{GSp}(4, F)$. Then U consists of all matrices of the form

$$
\left[\begin{array}{lll}
1 & & * \\
* & 1 & * \\
& & * \\
& & 1
\end{array}\right]
$$

in $\operatorname{GSp}(4, F)$. For $c_{1}, c_{2} \in F$, we define a character $\psi_{c_{1}, c_{2}}$ of U by

$$
\psi_{c_{1}, c_{2}}\left(\left[\begin{array}{ccc}
1 & y & * \tag{115}\\
x & 1 & * \\
& & 1 \\
& & \\
& & 1
\end{array}\right]\right)=\psi\left(c_{1} x+c_{2} y\right) .
$$

The statement of the following result was mentioned in the proof of Theorem 4.3 of [Piatetski-Shapiro 1997].

Lemma 5.4.3. Let $D: \mathcal{S}(\operatorname{GSp}(4, F)) \rightarrow \mathbb{C}$ be a distribution on $\operatorname{GSp}(4, F)$ with the following properties:

- There exist $c_{1}, c_{2} \in F^{\times}$such that

$$
\begin{equation*}
D\left(R_{u} \phi\right)=\psi_{c_{1}, c_{2}}(u) D(\phi) \quad \text { for all } u \in U \tag{116}
\end{equation*}
$$

and all $\phi \in \mathcal{S}(\operatorname{GSp}(4, F))$.

- There exists a character β of G such that

$$
\begin{equation*}
D\left(L_{h} \phi\right)=\beta(h) D(\phi) \quad \text { for all } h \in G \tag{117}
\end{equation*}
$$

and all $\phi \in \mathcal{S}(\operatorname{GSp}(4, F))$.
Then $D=0$.
Proof. Since $\operatorname{GSp}(4, F)=G P \sqcup G s_{2} P$, it suffices to show that a distribution on $\mathcal{S}\left(G s_{2} P\right)$ with the properties (116) and (117) is zero, and a distribution on $\mathcal{S}(G P)$ with those properties is also zero.
(1) First we prove that a distribution D on $G s_{2} P$ with the properties (116) and (117) must be zero. For $x \in F^{\times}$, let $h_{x}=\operatorname{diag}(x, x, 1,1)$. By Lemma 5.4.2, $G s_{2} P=$ $G s_{2} H N$. In fact, every element of $G s_{2} P$ can be written in the form $g s_{2} h_{x} n$ with $g \in G$ and uniquely determined $x \in F^{\times}$and $n \in N$. Hence $G s_{2} P$ is homeomorphic to $G \times H \times N$. We consider the continuous map

$$
p: G s_{2} P \rightarrow F^{\times} \quad \text { defined by } g s_{2} h_{x} n \longmapsto x .
$$

The set $G s_{2} P$ is invariant under the left action of G and the right action of U. It is easy to see that every fiber $p^{-1}(x)$ is $G \times U$-invariant. By Corollary 2.1 of [Aizenbud et al. 2010], Bernstein's localization principle, it is sufficient to prove that any distribution D on $\mathcal{S}\left(p^{-1}(x)\right)$ with the properties (116) and (117) vanishes, for all $x \in F^{\times}$.

We apply Proposition 4.3.2 of [Bump 1997] with

$$
G \times N \cong G s_{2} h_{x} N=p^{-1}(x)
$$

It shows that there exists a constant $c_{1} \in \mathbb{C}$ such that

$$
D(\phi)=c_{1} \int_{G} \int_{N} \beta(g) \psi_{c_{1}, c_{2}}^{-1}(n) \phi\left(g s_{2} h_{x} n\right) d n d g
$$

for all $\phi \in \mathcal{S}\left(p^{-1}(x)\right)$. We may choose some $z \in F$ such that

$$
\psi_{c_{1}, c_{2}}\left(u_{z}\right) \neq 1 \quad \text { for } u_{z}=\left[\begin{array}{cccc}
1 & & & \\
z & 1 & & \\
& & 1 & -z \\
& & & 1
\end{array}\right] .
$$

By (62),

$$
n_{z}:=s_{2} u_{z} s_{2}^{-1}=\left[\begin{array}{cccc}
1 & & & -z \\
& 1 & -z & \\
& & 1 & \\
& & &
\end{array}\right] \in N_{0} \subset G
$$

so that $D\left(L_{n_{z}^{-1}} \phi\right)=\beta\left(n_{z}^{-1}\right) D(\phi)=D(\phi)$ by (117). On the other hand, the substitution $g \mapsto n_{z}^{-1} g n_{z}$ shows that

$$
\begin{aligned}
D\left(L_{n_{z}^{-1}} \phi\right) & =c_{1} \int_{G} \int_{N} \phi\left(n_{z} g s_{2} h_{x} n\right) \beta(g) \psi_{c_{1}, c_{2}}^{-1}(n) d n d g \\
& =c_{1} \int_{G} \int_{N} \phi\left(g n_{z} s_{2} h_{x} n\right) \beta(g) \psi_{c_{1}, c_{2}}^{-1}(n) d n d g \\
& =c_{1} \int_{G} \int_{N} \Phi\left(g s_{2} u_{z} h_{x} n\right) \beta(g) \psi_{c_{1}, c_{2}}^{-1}(n) d n d g \\
& =c_{1} \int_{G} \int_{N} \Phi\left(g s_{2} h_{x} n u_{z}\right) \beta(g) \psi_{c_{1}, c_{2}}^{-1}(n) d n d g \\
& =\psi_{c_{1}, c_{2}}\left(u_{z}\right) c_{1} \int_{G} \int_{N} \Phi\left(g s_{2} h_{x} n\right) \beta(g) \psi_{c_{1}, c_{2}}^{-1}(n) d n d g
\end{aligned}
$$

In the last step we used (116). Hence $D(\phi)=\psi_{c_{1}, c_{2}}\left(u_{z}\right) D(\phi)$, which implies $D=0$ on $\mathcal{S}\left(p^{-1}(x)\right)$.
(2) Next, using the decomposition (104), we prove that a distribution D on $G P$ with the properties (116) and (117) must be zero.
(2.1) We will first show that a distribution D on $G B_{2} N$ with the properties (116) and (117) must be zero. We define the groups

$$
H_{1}:=\left\{k_{x}=\left[\begin{array}{llll}
1 & & & \tag{118}\\
& x & & \\
& & x & \\
& & & 1
\end{array}\right]: x \in F^{\times}\right\}, \quad U_{1}:=\left[\begin{array}{llll}
1 & & & \\
* & 1 & & * \\
& & 1 & * \\
& & & 1
\end{array}\right] \cap \operatorname{GSp}(4, F)
$$

Then, with N_{0} as in (63),

$$
\begin{equation*}
G B_{2} N=G U H_{1}=G N_{0} U_{1} H_{1}=G U_{1} H_{1}=G H_{1} U_{1} . \tag{119}
\end{equation*}
$$

In fact, it is not difficult to see that any element of $G P$ can be written in the form $g k_{x} u$ with uniquely determined $g \in G, x \in F^{\times}$and $u \in U_{1}$. Hence $G B_{2} N$ is homeomorphic to $G \times H_{1} \times U_{1}$. We consider the continuous map

$$
p: G B_{2} N \rightarrow F^{\times} \quad \text { defined by } g k_{x} u \longmapsto x
$$

The set $G B_{2} N$ is invariant under the left action of G and the right action of U. It is easy to see that every fiber $p^{-1}(x)$ is $G \times U$-invariant. By Bernstein's localization principle, it is enough to show that a distribution D on $p^{-1}(x)$ with the properties (116) and (117) vanishes.

We apply Proposition 4.3 .2 of [Bump 1997] to

$$
G \times U_{1} \cong G k_{x} U_{1}=p^{-1}(x)
$$

It shows that there exists a constant $c_{2} \in \mathbb{C}$ such that

$$
D(\phi)=c_{2} \int_{G} \int_{U_{1}} \beta(g) \psi_{c_{1}, c_{2}}^{-1}\left(u_{1}\right) \phi\left(g\left[\begin{array}{lll}
1 & & \tag{120}\\
& x & \\
& & x \\
& & 1
\end{array}\right] u_{1}\right) d u_{1} d g
$$

for any $\phi \in \mathcal{S}\left(p^{-1}(x)\right)$. Let $t \in F^{\times}$be such that $\psi\left(c_{2} 2 t x\right) \neq 1$,

$$
n:=\left[\begin{array}{ccc}
1 & & 2 t \tag{121}\\
& 1 & \\
& & -2 a c^{-1} t \\
& & 1
\end{array}\right] \in N_{0} \subset G \quad \text { and } \quad u:=\left[\begin{array}{cccc}
1 & & 2 t x & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right] .
$$

Hence,

$$
\psi_{c_{1}, c_{2}}(u)=\psi\left(c_{2} 2 t x\right) \neq 1
$$

Much as above, we calculate

$$
\begin{aligned}
& D\left(L_{n^{-1}} \phi\right) \\
& =c_{2} \iint_{G U_{1}} \beta(g) \psi_{c_{1}, c_{2}}^{-1}\left(u_{1}\right) \phi\left(g n k_{x} u_{1}\right) d u_{1} d g \\
& =c_{2} \iint_{G U_{1}} \beta(g) \psi_{c_{1}, c_{2}}^{-1}\left(u_{1}\right) \phi\left(g k_{x}\left[\begin{array}{ccc}
1 & 2 t x & \\
& 1 & \\
& & -2 a c^{-1} t x^{-1} \\
& & \\
& & 1
\end{array}\right] u_{1}\right) d u_{1} d g \\
& =c_{2} \iint_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{1} y\right) \phi\left(g k_{x}\left[\begin{array}{ccc}
1 & 2 t x & \\
& 1 & \\
& & -2 a c^{-1} t x^{-1} \\
& & \\
& & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & & \\
y & 1 & z \\
& & 1 \\
& & 1
\end{array}\right]\right) d y d z d g \\
& =c_{2} \iint_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{1} y\right) \phi\left(\left[\begin{array}{ccc}
1 & & -2 t x y \\
& 1 & -2 t x y \\
& 1 & \\
& & 1
\end{array}\right] k_{x}\left[\begin{array}{ccc}
1 & & \\
y & 1 & z \\
& & 1 \\
& & \\
& & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 t x \\
& 1 & \\
& & 1 \\
& & \\
& & 1
\end{array}\right]\right) d y d z d g
\end{aligned}
$$

$=c_{2} \iint_{G} \int_{F} \beta\left(\left[\begin{array}{ccc}1 & & 2 t x y \\ & 1 & 2 t x y \\ & 1 & \\ & & \\ & & 1\end{array}\right]\right) \psi^{-1}\left(c_{1} y\right) \phi\left(g k_{x}\left[\begin{array}{ccc}1 & & \\ y & 1 & \\ & & \\ & & -y \\ & & \\ & & \end{array}\right]\left[\begin{array}{ccc}1 & 2 t x \\ & 1 & \\ & & 1 \\ & & \\ & & \\ & & \end{array}\right]\right) d y d z d g$
$=c_{2} \iint_{G U_{1}} \beta(g) \psi^{-1}\left(c_{1} y\right) \phi\left(g k_{x} u_{1}\left[\begin{array}{ccc}1 & 2 t x & \\ & 1 & \\ & & 1 \\ & & \\ & & \end{array}\right]\right) d u_{1} d g$
$=D\left(R_{u} \phi\right)$.
Hence, by (116) and (117),

$$
\begin{aligned}
D(\phi) & =D\left(L_{n^{-1}} \phi\right)=D\left(R_{u} \phi\right) \\
& =\psi\left(c_{2} 2 t x\right) D(\phi)
\end{aligned}
$$

It follows that $D(\phi)=0$.
(2.2) Now assume we are in the split case. Let $i \in\{1,2\}$. We will show that a distribution D on $G g_{i} B_{2} N$ with the properties (116) and (117) must be zero. Calculations in coordinates verify that

$$
g_{i}^{-1} G g_{i} \cap B_{2}=\left\{\left[\begin{array}{cccc}
1 & & \tag{122}\\
\frac{y-1}{2 r_{i}} & y & & \\
& & y & \frac{1-y}{2 r_{i}} \\
& & & 1
\end{array}\right]: y \in F^{\times}\right\}
$$

It follows that
(123) $\quad G g_{i} B_{2} N=G g_{i} H_{1} N \sqcup G g_{i} \tilde{g}_{i} N, \quad$ where $\tilde{g}_{i}=\left[\begin{array}{cccc}1 & & & \\ -\frac{1}{2 r_{i}} & 1 & & \\ & & 1 & \frac{1}{2 r_{i}} \\ & & & 1\end{array}\right]$,
and H_{1} is as in (118). We will proceed to show that a distribution D on $G g_{i} B_{2} N$ with the properties (117) and

$$
D\left(R_{u} \phi\right)=\psi\left(c_{2} x\right) D(\phi) \quad \text { for all } u=\left[\begin{array}{llll}
1 & & x & y \tag{124}\\
& 1 & y & z \\
& & 1 & \\
& & & 1
\end{array}\right] \in N
$$

must be zero.
(2.2.1) We will first show that a distribution D on $G g_{i} H_{1} N$ with the properties (117) and (124) vanishes. We have

$$
g_{i}^{-1} G g_{i} \cap H_{1} N=\left\{\left[\begin{array}{cccc}
1 & & -2 r_{i} u & u \tag{125}\\
& 1 & u & v \\
& & 1 & \\
& & & 1
\end{array}\right]: u, v \in F\right\}
$$

Hence

$$
G g_{i} H_{1} N=G g_{i} H_{1} U_{2}, \quad \text { where } U_{2}=\left[\begin{array}{llll}
1 & & * & \tag{126}\\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right] \text {. }
$$

In fact, every element of $G g_{i} H_{1} N$ can be written in the form $g g_{i} k_{x} u$ with uniquely determined $x \in F^{\times}$and $u \in U_{2}$. We consider the continuous map

$$
p: G g_{i} H_{1} N \rightarrow F^{\times} \quad \text { defined by } g g_{i} k_{x} u \longmapsto x .
$$

It is easy to see that every fiber $p^{-1}(x)$ is $G \times N$-invariant. By Bernstein's localization principle, it is enough to show that a distribution D on $p^{-1}(x)$ with the properties (117) and (124) vanishes. We apply Proposition 4.3.2 of [Bump 1997] to

$$
G \times U_{2} \cong G g_{i} k_{x} U_{2}=p^{-1}(x)
$$

It shows that there exists a constant $c_{3} \in \mathbb{C}$ such that

$$
D(\phi)=c_{3} \int_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{2} z\right) \phi\left(g g_{i} k_{x}\left[\begin{array}{ccc}
1 & & \tag{127}\\
& 1 & \\
& & 1 \\
& & \\
& &
\end{array}\right]\right) d z d g
$$

for all $\phi \in \mathcal{S}\left(p^{-1}(x)\right)$. Now, for any $y \in F$,

$$
\begin{aligned}
D(\phi) & =c_{3} \int_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{2} z\right) \phi\left(g g_{i} k_{x}\left[\begin{array}{lll}
1 & z \\
& 1 & \\
& & 1 \\
& & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \\
& \\
& y \\
& \\
& \\
& \\
& \\
\hline
\end{array}\right]\right) d z d g \\
& =c_{3} \int_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{2} z\right) \phi\left(g g_{i}\left[\begin{array}{ccc}
1 & & y \\
& 1 & y \\
& 1 & \\
& & 1
\end{array}\right] k_{x}\left[\begin{array}{cc}
1 & z \\
1 & 1 \\
& 1 \\
& \\
& 1
\end{array}\right]\right) d z d g
\end{aligned}
$$

$$
\begin{aligned}
& =c_{3} \int_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{2} z\right) \phi\left(g g_{i}\left[\begin{array}{ccc}
1 & -2 r_{i} y & y \\
1 & y & \\
& & 1 \\
& & \\
& & 1
\end{array}\right] g_{i}^{-1} g_{i}\left[\begin{array}{ccc}
1 & 2 r_{i} y \\
1 & & \\
& & 1 \\
& & \\
& & \\
& &
\end{array}\right] k_{x}\left[\begin{array}{ccc}
1 & z \\
& 1 & \\
& 1 & \\
& & 1
\end{array}\right]\right) d z d g \\
& =c_{3} \int_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{2} z\right) \phi\left(g g_{i}\left[\begin{array}{ccc}
1 & 2 r_{i} y \\
& 1 & \\
& & \\
& & \\
& & \\
& & 1
\end{array}\right] k_{x}\left[\begin{array}{ccc}
1 & z \\
& 1 & \\
& 1 \\
& & 1
\end{array}\right]\right) d z d g \\
& =c_{3} \int_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{2} z\right) \phi\left(g g_{i} k_{x}\left[\begin{array}{ccc}
1 & z+2 r_{i} x y \\
& 1 & \\
& & 1 \\
& & \\
& & \\
& & \\
&
\end{array}\right]\right) d z d g \\
& =\psi\left(c_{2} 2 r_{i} x y\right) c_{3} \int_{G} \int_{F} \beta(g) \psi^{-1}\left(c_{2} z\right) \phi\left(g g_{i} k_{x}\left[\begin{array}{ccc}
1 & z \\
& 1 & \\
& 1 \\
& & 1
\end{array}\right]\right) d z d g \\
& =\psi\left(c_{2} 2 r_{i} x y\right) D(\phi) .
\end{aligned}
$$

It follows that $D(\phi)=0$.
(2.2.2) Finally, we will show that a distribution D on $G g_{i} \tilde{g}_{i} N$ with the properties (117) and (124) vanishes. We have

$$
\left(g_{i} \tilde{g}_{i}\right)^{-1} G g_{i} \tilde{g}_{i} \cap N=\left\{\left[\begin{array}{cccc}
1 & & u \tag{128}\\
& 1 & & v \\
& & 1 & \\
& & & 1
\end{array}\right]: u, v \in F\right\} .
$$

Hence

$$
G g_{i} \tilde{g}_{i} N=G g_{i} \tilde{g}_{i} U_{3}, \quad \text { where } U_{3}=\left[\begin{array}{cccc}
1 & & & * \tag{129}\\
& 1 & * & \\
& & 1 & \\
& & & 1
\end{array}\right] .
$$

We apply Proposition 4.3.2 of [Bump 1997] to

$$
G \times U_{3} \cong G g_{i} \tilde{g}_{i} U_{3}
$$

It shows that there exists a constant $c_{4} \in \mathbb{C}$ such that

$$
D(\phi)=c_{4} \int_{G} \int_{F} \beta(g) \phi\left(g g_{i} \tilde{g}_{i}\left[\begin{array}{lll}
1 & & \tag{130}\\
& 1 & z \\
& & 1 \\
& & \\
& &
\end{array}\right]\right) d z d g
$$

for any $\phi \in \mathcal{S}\left(G g_{i} \tilde{g}_{i} N\right)$. Then, for any $x \in F$,

$$
\begin{aligned}
\psi\left(c_{2} x\right) D(\phi) & =c_{4} \int_{G} \int_{F} \beta(g) \phi\left(g g_{i} \tilde{g}_{i}\left[\begin{array}{lll}
1 & & \\
& 1 & z \\
& & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & x \\
& & \\
& & \\
& & \\
& & \\
& & 1
\end{array}\right]\right) d z d g \\
& =c_{4} \int_{G} \int_{F} \beta(g) \phi\left(g g_{i} \tilde{g}_{i}\left[\begin{array}{lll}
1 & & x \\
& 1 & \\
& & 1
\end{array}\right]\left(g_{i} \tilde{g}_{i}\right)^{-1} g_{i} \tilde{g}_{i}\left[\begin{array}{lll}
1 & & z \\
& 1 & z \\
& & \\
& & 1
\end{array}\right]\right) d z d g \\
& \\
& \\
& \\
& =c_{4} \int_{G} \int_{F} \beta(g) \phi\left(g g_{i} \tilde{z}_{i}\left[\begin{array}{lll}
1 & & \\
& 1 & z \\
& & \\
& & \\
& &
\end{array}\right]\right) d z d g \\
& =D(\phi) .
\end{aligned}
$$

It follows that $D(\phi)=0$. This concludes the proof.
5.5. Some cases with no exceptional poles. The following is Theorem 4.2 of [Piatetski-Shapiro 1997], with a slightly modified proof to accommodate our more general notion of exceptional pole.

Theorem 5.5.1. Let μ be a character of F^{\times}. Let (π, V) be an irreducible, admissible representation of $\mathrm{GSp}(4, F)$ admitting a (Λ, β)-Bessel model. Assume that s_{0} is an exceptional pole for the datum π, Λ, β, μ, as defined in the previous section. Then there exists a nonzero functional $\ell: V \rightarrow \mathbb{C}$ with the property

$$
\begin{equation*}
\ell(\pi(g) v)=\mu^{-1}(\operatorname{det}(g))|\operatorname{det}(g)|^{-s_{0}-1 / 2} \ell(v) \quad \text { for all } v \in V \text { and } g \in G . \tag{131}
\end{equation*}
$$

Proof. By definition, the function

$$
\begin{equation*}
\frac{Z(s, B, \Phi, \mu)}{L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu)}=\frac{Z(s, B, \Phi, \mu)}{L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu) L\left(s+1 / 2, \Lambda_{\mu}\right)} \tag{132}
\end{equation*}
$$

lies in $\mathbb{C}\left[q^{s}, q^{-s}\right]$, for any choice of $B \in \mathcal{B}(\pi, \Lambda, \beta)$ and $\Phi \in \mathcal{S}(V)$. In particular, we may evaluate at s_{0}. We note that

$$
\begin{equation*}
\left.\frac{Z(s, B, \Phi, \mu)}{L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu)}\right|_{s=s_{0}}=0 \quad \text { if } \Phi \in \mathcal{S}_{0}(V) . \tag{133}
\end{equation*}
$$

This follows from Lemma 5.3.1(i), and the fact that s_{0} is a pole of $L\left(s+1 / 2, \Lambda_{\mu}\right)$. We now define

$$
\begin{equation*}
\ell(B)=\left.\frac{Z\left(s, B, \Phi_{1}, \mu\right)}{L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu)}\right|_{s=s_{0}}, \tag{134}
\end{equation*}
$$

where, as before, Φ_{1} is the characteristic function of $\mathfrak{o}_{L} \oplus \mathfrak{o}_{L}$. Since $Z(s, B, \Phi, \mu)=$ $L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu)$ for some choice of B and Φ, (133) implies that ℓ is a nonzero functional. It follows from (79) that

$$
\begin{align*}
& Z(s, \pi(g) B, g . \Phi, \mu) \tag{135}\\
& \quad=Z(s, B, \Phi, \mu) \mu^{-1}(\operatorname{det}(g))|\operatorname{det}(g)|^{-s-1 / 2} \quad \text { for all } g \in G
\end{align*}
$$

where $(g . \Phi)(x, y)=\Phi((x, y) g)$. Consequently,

$$
\begin{align*}
&\left.\frac{Z\left(s, \pi(g) B, g . \Phi_{1}, \mu\right)}{L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu)}\right|_{s=s_{0}} \tag{136}\\
&=\left.\frac{Z\left(s, B, \Phi_{1}, \mu\right)}{L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu)}\right|_{s=s_{0}} \mu^{-1}(\operatorname{det}(g))|\operatorname{det}(g)|^{-s_{0}-1 / 2}
\end{align*}
$$

Since $g . \Phi-\Phi \in \mathcal{S}_{0}(V)$, property (133) allows us to replace $g . \Phi$ on the left-hand side by Φ. It follows that ℓ has the asserted property (131).

Let $c_{1}, c_{2} \in F^{\times}$. Recall from (115) the definition of the character $\psi_{c_{1}, c_{2}}$ of U. An irreducible, admissible representation (π, V) of $\operatorname{GSp}(4, F)$ is called generic if it admits a nonzero functional $L: V \rightarrow \mathbb{C}$ satisfying

$$
\begin{equation*}
L(\pi(u) v)=\psi_{c_{1}, c_{2}}(u) L(v) \quad \text { for all } v \in V, u \in U . \tag{137}
\end{equation*}
$$

Such an L is called a $\psi_{c_{1}, c_{2}}$-Whittaker functional.
The proof of (ii) of the following result has been sketched in Theorem 4.3 of [Piatetski-Shapiro 1997]; here, we provide the details.

Corollary 5.5.2. There are no exceptional poles for π, Λ, β, μ if one of the following conditions is satisfied.
(i) The character $\Lambda_{\mu}=\Lambda \cdot\left(\mu \circ N_{L / F}\right)$ is ramified.
(ii) π is generic.

Hence, in these cases we have $L_{\Lambda}^{\mathrm{PS}}(s, \pi, \mu)=L_{\mathrm{reg}}^{\mathrm{PS}}(s, \pi, \mu)$, and in particular the Piatetski-Shapiro L-factor is independent of the choice of Bessel model for π.

Proof. (i) This is immediate from Lemma 5.3.2(i).
(ii) Let (π, V) be an irreducible, admissible, generic representation of $\operatorname{GSp}(4, F)$. Let $\left(\pi^{\vee}, V^{\vee}\right)$ be the contragredient representation. Then π^{\vee} is also generic. Let L be a $\psi_{c_{1}, c_{2}}$-Whittaker functional on V^{\vee}.

Assume that π admits an exceptional pole; we will obtain a contradiction. By Theorem 5.5.1, there exists a character β of G and a functional $\ell: V \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\ell(\pi(g) v)=\beta(g) v \tag{138}
\end{equation*}
$$

for all $v \in V$ and $g \in G$. We define a linear map

$$
\begin{equation*}
\Delta: \mathcal{S}(\operatorname{GSp}(4, F)) \rightarrow V^{\vee} \tag{139}
\end{equation*}
$$

by

$$
\begin{equation*}
\Delta(\phi)(v)=\int_{\operatorname{GSp}(4, F)} \phi(g) \ell(\pi(g) v) d g \tag{140}
\end{equation*}
$$

where $\phi \in \mathcal{S}(\operatorname{GSp}(4, F)), v \in V$, and ℓ is a functional as in (131). Since ℓ is nonzero, it is easy to see that Δ is nonzero. One readily verifies that

$$
\begin{equation*}
\Delta\left(R_{h} \phi\right)=\pi^{\vee}(h) \Delta(\phi) \quad \text { for all } h \in \operatorname{GSp}(4, F) \tag{141}
\end{equation*}
$$

In particular, the image of Δ is an invariant subspace of V^{\vee}. Consequently, Δ is surjective. This allows us to define a nonzero distribution $D: \mathcal{S}(\mathrm{GSp}(4, F)) \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
D(\phi)=L(\Delta(\phi)), \quad \phi \in \mathcal{S}(\operatorname{GSp}(4, F)) \tag{142}
\end{equation*}
$$

Since L is a $\psi_{c_{1}, c_{2}}$-Whittaker functional on V^{\vee}, it follows from (141) that

$$
\begin{equation*}
D\left(R_{u} \phi\right)=\psi_{c_{1}, c_{2}}(u) D(\phi) \quad \text { for all } u \in U . \tag{143}
\end{equation*}
$$

For $h \in G$, we have

$$
\begin{aligned}
\Delta\left(L_{h} \phi\right)(v) & =\int_{\operatorname{GSp}(4, F)} \phi\left(h^{-1} g\right) \ell(\pi(g) v) d g \\
& =\int_{\operatorname{GSp}(4, F)} \phi(g) \ell(\pi(h g) v) d g \\
& =\beta(h) \int_{\operatorname{GSp}(4, F)} \phi(g) \ell(\pi(g) v) d g
\end{aligned}
$$

by (138). Hence $\Delta\left(L_{h} \phi\right)=\beta(h) \Delta(\phi)$, and thus

$$
\begin{equation*}
D\left(L_{h} \phi\right)=\beta(h) D(\phi) \quad \text { for all } h \in G . \tag{144}
\end{equation*}
$$

By Lemma 5.4.3, properties (143) and (144) imply that $D=0$, a contradiction.

References

[Aizenbud et al. 2010] A. Aizenbud, D. Gourevitch, S. Rallis, and G. Schiffmann, "Multiplicity one theorems", Ann. of Math. (2) 172:2 (2010), 1407-1434. MR
[Bernstein and Zelevinskii 1976] I. N. Bernstein and A. V. Zelevinskii, "Representations of the group $G L(n, F)$, where F is a local non-Archimedean field", Uspehi Mat. Nauk 31:3 (1976), 5-70. In Russian; translated in Russian Math. Surveys 31:3 (1976), 1-68. MR
[Bump 1997] D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics 55, Cambridge University Press, 1997. MR Zbl
[Danişman 2014] Y. Danișman, "Regular poles for the p-adic group GSp4", Turkish J. Math. 38:4 (2014), 587-613. MR Zbl
[Danișman 2015a] Y. Danișman, "Regular poles for the p-adic group GSp4-II", Turkish J. Math. 39:3 (2015), 369-394. MR Zbl
[Danișman 2015b] Y. Danişman, "Local factors of nongeneric supercuspidal representations of GSp4", Math. Ann. 361:3-4 (2015), 1073-1121. MR Zbl
[Novodvorsky 1979] M. E. Novodvorsky, "Automorphic L-functions for symplectic group GSp(4)", pp. 87-95 in Automorphic forms, representations and L-functions (Corvallis, Ore., (1977)), edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. 33:2, Amer. Math. Soc., Providence, R.I., 1979. MR Zbl
[Piatetski-Shapiro 1997] I. I. Piatetski-Shapiro, "L-functions for GSp4", Pacific J. Math. Special Issue (1997), 259-275. MR
[Roberts and Schmidt 2007] B. Roberts and R. Schmidt, Local newforms for GSp(4), Lecture Notes in Mathematics 1918, Springer, 2007. MR Zbl
[Roberts and Schmidt 2016] B. Roberts and R. Schmidt, "Some results on Bessel functionals for GSp(4)", Doc. Math. 21 (2016), 467-553. MR Zbl
[Saito 1993] H. Saito, "On Tunnell's formula for characters of GL(2)", Compositio Math. 85:1 (1993), 99-108. MR Zbl
[Takloo-Bighash 2000] R. Takloo-Bighash, " L-functions for the p-adic group GSp(4)", Amer. J. Math. 122:6 (2000), 1085-1120. MR
[Tunnell 1983] J. B. Tunnell, "Local ϵ-factors and characters of GL(2)", Amer. J. Math. 105:6 (1983), 1277-1307. MR Zbl
[Waldspurger 1985] J.-L. Waldspurger, "Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie", Compositio Math. 54:2 (1985), 173-242. MR Zbl

Received February 22, 2017. Revised January 25, 2018.

Ralf Schmidt

Department of Mathematics
University of Oklahoma
Norman, OK 73019-3103
United States
rschmidt@math.ou.edu
Long Tran
Department of Mathematics
University of Oklahoma
Norman, OK 73019-3103
United States
ltran@math.ou.edu

TORIC SURFACES OVER AN ARBITRARY FIELD

Fei Xie

Abstract

We study toric varieties over an arbitrary field with an emphasis on toric surfaces in the Merkurjev-Panin motivic category of "K-motives". We explore the decomposition of certain toric varieties as K-motives into products of central simple algebras, the geometric and topological information encoded in these central simple algebras, and the relationship between the decomposition of the K-motives and the semiorthogonal decomposition of the derived categories. We obtain the information mentioned above for toric surfaces by explicitly classifying all minimal smooth projective toric surfaces using toric geometry.

1. Introduction

Throughout, we fix an arbitrary base field k. Let X be a scheme over k and let K / k be a field extension. We say a scheme Y over k is a K / k-form of X if the schemes $X_{K}:=X \otimes_{k} K$ and Y_{K} are isomorphic as schemes over K [Serre 1997, Chapter III §1]. Let k^{s} be the separable closure of k. A k^{s} / k-form is simply called a form or twisted form. The scheme $X_{k^{s}}$ has a natural $\Gamma=\operatorname{Gal}\left(k^{s} / k\right)$-action.

We will focus on the study of toric varieties over k. Let X be a normal geometrically irreducible variety over k and let T be an algebraic torus acting on X over k. The variety X is a toric T-variety if there is an open orbit U such that U is a principal homogeneous space or torsor over T. A toric T-variety is called split if the torus T is split. The case of split toric varieties have been extensively studied, for example in [Danilov 1978; Fulton 1993; Cox et al. 2011]. Since any toric variety X has a torus action over k and is a twisted form of a split toric variety, the study of X is equivalent to the study of the split toric variety $X_{k^{s}}$ with a Γ-action on the fan structure as well as the study of the open orbit U; see Section 3 .

Iskovskih [1979] classified minimal rational surfaces over arbitrary fields. Focusing on the cases of toric surfaces, we give an explicit description of minimal toric surfaces via toric geometry. In addition, the explicit nature of the classification of minimal toric surfaces made it possible for us to fully understand toric surfaces in

[^15]aspects such as affirming Merkurjev and Panin's question (Question 1) in dimension 2, decomposing toric surfaces as K-motives into products of central simple algebras, and providing full exceptional collections for the derived categories of toric surfaces, etc.

Theorem 4.12. The surface X is a minimal smooth projective toric surface if and only if X is (i) a \mathbb{P}^{1}-bundle over a smooth conic curve but not a form of $F_{1}=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P} 1} \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$; (ii) the Severi-Brauer surface; (iii) an involution surface; (iv) the del Pezzo surface of degree 6 with Picard rank 1.

This paper is motivated by ideas in [Merkurjev and Panin 1997], which studies toric varieties over an arbitrary field in the motivic category \mathcal{C} defined in loc. cit., and in particular by the following question:

Question 1. If X is a smooth projective toric variety over k, is $K_{0}\left(X_{k^{s}}\right)$ always a permutation Γ-module?

Definition 1.1. A Γ-module M is a permutation Γ-module if there exists a Γ invariant \mathbb{Z}-basis of M. We call such a basis a permutation Γ-basis or Γ-basis.

The reason that we care about the Γ-action on $K_{0}\left(X_{k^{s}}\right)$ is that it in some way determines X; see Section 6. For example, if X has a rational point and $K_{0}\left(X_{k^{s}}\right)$ is a permutation Γ-module, then X is isomorphic to the étale algebra corresponding to any Γ-basis of $K_{0}\left(X_{k^{s}}\right)$ in the motivic category \mathcal{C} [Merkurjev and Panin 1997, Proposition 4.5]. In general, if $K_{0}\left(X_{k^{s}}\right)$ has a permutation Γ-basis of line bundles over $X_{k^{s}}$, then the variety X decomposes into a finite product of central simple algebras (over separable field extensions of k) in the motivic category \mathcal{C} completely described by this Γ-basis as follows:

Theorem 6.5. Let X be a smooth projective toric T-variety over k that splits over l and $G=\operatorname{Gal}(l / k)$. Assume $K_{0}\left(X_{l}\right)$ has a permutation G-basis P of line bundles on X_{l}. Let $\left\{P_{i}\right\}_{i=1}^{t}$ be G-orbits of P, and let $\pi: X_{l} \rightarrow X$ be the projection. For any $S_{i} \in P_{i}$, set $B_{i}=\operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*}\left(S_{i}\right)\right)$ and $B=\prod_{i=1}^{t} B_{i}$. Then the map $u=\bigoplus_{i=1}^{t} \pi_{*}\left(S_{i}\right)$: $X \rightarrow B$ gives an isomorphism in the motivic category \mathcal{C}.

Using the classification of minimal toric surfaces, we obtain that any smooth projective toric surface satisfies the conditions of the above theorem:

Theorem 5.2. Let X be a smooth projective toric T-surface over k that splits over l and $G=\operatorname{Gal}(l / k)$. Then $K_{0}\left(X_{l}\right)$ has a permutation G-basis of line bundles on X_{l}.

The original motivation for finding the decomposition of a smooth projective variety over k into a product of central simple algebras in \mathcal{C} is to compute higher algebraic K-theory of the variety. Quillen [1973] computed higher algebraic Ktheory for Severi-Brauer varieties; see Example 3.5, and Swan [1985] for quadric
hypersurfaces. Panin [1994] generalized their results by finding the decomposition in \mathcal{C} for twisted flag varieties.

As a matter of fact, these central simple algebras also encode arithmetic/geometric information about the variety, and in nice cases, classify its twisted forms. Blunk [2010] investigated del Pezzo surfaces of degree 6 over k in this direction; see Example 3.6. He showed that a del Pezzo surface of degree 6 is determined by a pair of Azumaya algebras (over étale quadratic and cubic extensions of the base field, respectively) and the surface has a rational point if and only if both Azumaya algebras in the pair are split. We will investigate the same information for all smooth projective toric surfaces over k; see Section 7. For example, we obtain that a \mathbb{P}^{1}-bundle over a smooth conic curve is isomorphic to $k \times Q \times k \times Q$ in \mathcal{C} and the surface is determined by the quaternion algebra Q corresponding to the conic curve. More generally, if the Picard group $\operatorname{Pic}\left(X_{k^{s}}\right)$ of a smooth projective toric variety X is a permutation Γ-module, then the open orbit U is determined by a set of central simple algebras, each corresponding to a Γ-orbit of $\operatorname{Pic}\left(X_{k^{s}}\right)$; see Corollary 7.3. This implies that the toric variety X has a rational point if and only if every central simple algebra in the set is split.

Moreover, since Tabuada [2014, Theorem 6.10] showed that the motivic category \mathcal{C} is a part of the category of noncommutative motives Hmo_{0}, it implies that certain semiorthogonal decompositions of the derived category of a smooth projective variety will give a decomposition of the variety in \mathcal{C} (Theorem 8.4).

We will briefly discuss the possibility of lifting the motivic decomposition of a smooth projective toric variety to the derived category; see Section 8.

By the classification of minimal toric surfaces and known results of semiorthogonal decomposition of rational surfaces, we can confirm the lifting for smooth projective toric surfaces.

Theorem 8.6. Let X be a smooth projective toric surface over k that splits over l and $G=\operatorname{Gal}(l / k)$. Then $K_{0}\left(X_{l}\right)$ has a permutation G-basis P of line bundles over X_{l} such that each G-orbit is an exceptional block. Furthermore, there exists an ordering of the G-orbits $\left\{P_{i}\right\}_{i=1}^{t}$ of P such that $\left\{P_{1}, \ldots, P_{t}\right\}$ gives a full exceptional collection of $D^{b}\left(X_{l}\right)$. Therefore, for any $S_{i} \in P_{i},\left\{\pi_{*} S_{1}, \ldots, \pi_{*} S_{t}\right\}$ is a full exceptional collection of $D^{b}(X)$, where $\pi: X_{l} \rightarrow X$ is the projection.

Organization. The organization of the paper is as follows: Sections 2 and 3 introduce the background on the motivic category \mathcal{C} and toric varieties over k, including some basic facts and examples needed for the paper. For more details about \mathcal{C}, see [Merkurjev and Panin 1997, §1] or [Merkurjev 2005, §3]. Section 4 classifies minimal smooth projective toric surfaces over k via toric geometry. Section 5 verifies that $K_{0}\left(X_{k^{s}}\right)$ has a permutation Γ-basis of line bundles for toric surfaces. In Section 6, we consider smooth projective toric varieties X of all dimensions where
$K_{0}\left(X_{k^{s}}\right)$ has a permutation Γ-basis of line bundles. We decompose such X into a product of central simple algebras in the motivic category by reinterpreting the construction of the separable algebra corresponding to a toric variety investigated in [Merkurjev and Panin 1997]. In Section 7, we apply the construction in §6 to toric surfaces. Moreover, we relate the constructed algebras to the open orbit U via Galois cohomology. For details on Galois cohomology, see [Serre 1997; Knus et al. 1998; Gille and Szamuely 2006]. In Section 8, we discuss the relationship between the semiorthogonal decomposition of the derived category and the motivic decomposition of toric varieties via noncommutative motives and descent theory for derived categories.

Most of the time, instead of working with $X_{k^{s}}$ and Γ-action, we work with X_{l} and $G=\operatorname{Gal}(l / k)$-action where l is the splitting field of the torus T.

Notation. Fix the base field k and a separable closure k^{s} of k. Let $\Gamma=\operatorname{Gal}\left(k^{s} / k\right)$. Let T denote an algebraic torus over k with splitting field l and $G=\operatorname{Gal}(l / k)$ unless otherwise stated. For any object Z (algebraic groups, varieties, algebras, maps) over k and any extension K / k, write $Z \otimes_{k} K$ as Z_{K}.

For a split toric variety Y, we denote Σ the fan structure and Aut ${ }_{\Sigma}$ the group of fan automorphisms. We will freely use the same notation for the ray in the fan, the minimal generator of the ray in the lattice and the Weil divisor corresponding to the ray when the context is clear.

For an algebra A, denote $A^{\text {op }}$ its opposite algebra. Denote S_{n} the permutation group of a set of n elements.

2. The motivic category \mathcal{C}

Definition 2.1. The motivic category $\mathcal{C}=\mathcal{C}_{k}$ over a field k has:

- objects: pairs (X, A) where X is a smooth projective variety over k and A is a finite separable k-algebra,
- morphisms: $\operatorname{Hom}_{\mathcal{C}}((X, A),(Y, B))=K_{0}\left(X \times Y, A^{\mathrm{op}} \otimes_{k} B\right)$.

The Grothendieck group K_{0} of a pair is defined below. A k-algebra A is finite separable if $\operatorname{dim}_{k}(A)$ is finite and for any field extension K of k, the K-algebra A_{K} is semisimple. Equivalently we have:

Definition 2.2. The algebra A is a finite separable k-algebra if it is a finite product of central simple l_{i}-algebras A_{i} where l_{i} is a finite separable field extension of k, i.e, A_{i} is a matrix algebra over a finite dimensional division algebra with center l_{i}.

Let $u:(X, A) \rightarrow(Y, B)$ and $v:(Y, B) \rightarrow(Z, C)$ be morphisms in \mathcal{C}. Since $u \in K_{0}\left(X \times Y, A^{\mathrm{op}} \otimes_{k} B\right) \cong K_{0}\left(Y \times X, B \otimes_{k} A^{\mathrm{op}}\right)$, the map u can also be viewed
as $u^{\mathrm{op}}:\left(Y, B^{\mathrm{op}}\right) \rightarrow\left(X, A^{\mathrm{op}}\right)$. The composition $v \circ u:(X, A) \rightarrow(Z, C)$ is given by

$$
\pi_{*}\left(q^{*} v \otimes_{B} p^{*} u\right)
$$

where $p: X \times Y \times Z \rightarrow X \times Y, q: X \times Y \times Z \rightarrow Y \times Z, \pi: X \times Y \times Z \rightarrow X \times Z$ are projections.

We write X for (X, k) and A for $(\operatorname{Spec} k, A)$. Since the morphisms are defined in K_{0}, the category is also called the category of K-correspondences.

Algebraic K-theory of a pair. The algebraic K-theory of a pair (X, A) is defined in the following way and it generalizes the Quillen K-theory of varieties:

Let $\mathcal{P}(X, A)$ be the exact category of left $\mathcal{O}_{X} \otimes_{k} A$-modules which are locally free \mathcal{O}_{X}-modules of finite rank and morphisms of $\mathcal{O}_{X} \otimes_{k} A$-modules. The group $K_{n}(X, A)$ of the pair (X, A) is defined as $K_{n}^{Q}(\mathcal{P}(X, A))$, the Quillen K-theory of \mathcal{P}. Let $\mathcal{M}(X, A)$ be the exact category of left $\mathcal{O}_{X} \otimes_{k} A$-modules which are coherent \mathcal{O}_{X}-modules and morphisms of $\mathcal{O}_{X} \otimes_{k} A$-modules. The group $K_{n}^{\prime}(X, A)$ of the pair (X, A) is defined as $K_{n}^{Q}(\mathcal{M}(X, A))$. The embedding $\mathcal{P} \subset \mathcal{M}$ induces a map $K_{n}(X, A) \rightarrow K_{n}^{\prime}(X, A)$ and it is an isomorphism if X is regular (resolution theorem). Note that $K_{n}(X, k)$ is the usual $K_{n}(X)$ and $K_{n}(\operatorname{Spec} k, A)=K_{n}(\operatorname{Rep}(A))$ is the K-theory of representations of A.

In fact, K_{n} defines a functor $K_{n}: \mathcal{C} \rightarrow \mathrm{Ab}$ which sends (X, A) to $K_{n}(X, A)$. For $u:(X, A) \rightarrow(Y, B), x \in K_{n}(X, A)$, we can define

$$
K_{n}(u)(x)=q_{*}\left(u \otimes_{A} p^{*} x\right),
$$

where $p: X \times Y \rightarrow X, q: X \times Y \rightarrow Y$ are projections.
Similarly we can define, for any variety V over k, a functor $K_{n}^{V}: \mathcal{C} \rightarrow \mathrm{Ab}$ where on objects $K_{n}^{V}(X, A)=K_{n}^{\prime}(V \times X, A)$.

Example 2.3 [Merkurjev and Panin 1997, Example 1.6(1)]. $\mathrm{M}_{n}(k) \cong k$ in \mathcal{C}.
Example 2.4 [Merkurjev and Panin 1997, Example 1.6(3)], see also [Tabuada 2014, Theorem 9.1]. Let A and B be two central simple k-algebras. Then $A \cong B$ in \mathcal{C} if and only if $[A]=[B] \in \operatorname{Br}(k)$.

Proof. The previous example indicates that Brauer equivalences give isomorphisms in \mathcal{C}. So $[A]=[B] \in \operatorname{Br}(k)$ implies $A \cong B$ in \mathcal{C}.

For the opposite direction, since each central simple k-algebra is Brauer equivalent to a unique division k-algebra, we can assume A, B are division algebras. Let $M: A \rightarrow B$ and $N: B \rightarrow A$ be inverse maps in \mathcal{C}. Since $K_{0}\left(A^{\mathrm{op}} \otimes_{k} B\right) \cong \mathbb{Z} R$ and $K_{0}\left(B^{\mathrm{op}} \otimes_{k} A\right) \cong \mathbb{Z} R^{\mathrm{op}}$ for R the unique simple B - A-bimodule, we have $M=n R$ and $N=m R^{\text {op }}$ for some $m, n \in \mathbb{Z} . N \circ M=N \otimes_{B} M \cong m n R^{\text {op }} \otimes_{B} R \cong A, M \circ N=$ $M \otimes_{A} N \cong m n R \otimes_{A} R^{\mathrm{op}} \cong B$. Since A, B are simple modules, we have $m n=1$ and we can assume $M=R, N=R^{\mathrm{op}}$. As a right A-module and a left B-module
respectively, we have $M_{A} \cong A^{r}$ and ${ }_{B} M \cong B^{s}$. Similarly, ${ }_{A} N \cong A^{p}$ and $N_{B} \cong B^{q}$. The left A-module isomorphism $N \otimes_{B} M \cong N \otimes_{B} B^{s} \cong N^{s} \cong A^{p s} \cong A$ implies that $p=s=1$. Similarly $r=q=1$. In particular, this implies $\operatorname{dim}_{k} A=\operatorname{dim}_{k} B$.

Finally consider the k-algebra homomorphism $f: B \rightarrow \operatorname{End}_{A}\left(M_{A}\right) \cong A$ by sending b to l_{b} left multiplication by b. This is obviously injective, and it is surjective because A, B have the same dimension, so $A \cong B$ as k-algebras.

3. Toric varieties

Let T be an algebraic torus over k.
Definition 3.1. A toric T-variety X over k is a normal geometrically irreducible variety with an action of the torus T and an open orbit U which is a principal homogeneous space over T.

By definition, the torus $T_{k^{s}} \cong \mathbb{G}_{m, k^{s}}^{n}$ splits where $n=\operatorname{dim} X$. The torus T corresponds to a cocycle class $[\rho] \in H^{1}\left(\Gamma, \operatorname{Aut}_{\mathrm{gp}, k^{s}}\left(\mathbb{G}_{m, k^{s}}^{n}\right)\right)=H^{1}(\Gamma, \mathrm{GL}(n, \mathbb{Z}))$ where $\mathrm{Aut}_{\mathrm{gp}, k^{s}}$ denotes the group automorphism over k^{s}. Moreover, the torus T splits over a finite Galois extension l of $k\left(T_{l} \cong \mathbb{G}_{m, l}^{n}\right)$, which is called the splitting field of T.

Explicitly, tori $T_{k^{s}}=T \otimes_{k} k^{s}$ and $\mathbb{G}_{m, k^{s}}^{n}=\mathbb{G}_{m, k} \otimes_{k} k^{s}$ have natural Galois actions with Γ acting on the factor k^{s}. The Galois actions give group automorphisms of $T_{k^{s}}$ and $\mathbb{G}_{m, k^{s}}^{n}$ over k, but not over k^{s} because Γ also acts on the scalars k^{s}. Let $\sigma: \Gamma \rightarrow \operatorname{Aut}_{k}\left(T_{k^{s}}\right)$ and $\tau: \Gamma \rightarrow \operatorname{Aut}_{k}\left(\mathbb{G}_{m, k^{s}}^{n}\right)$ be the respective natural Galois actions. Let $\phi: T_{k^{s}} \rightarrow \mathbb{G}_{m, k^{s}}^{n}$ be an isomorphism. Then we obtain $\rho: \Gamma \rightarrow \operatorname{GL}(n, \mathbb{Z})$ by sending g to $\phi \sigma(g) \phi^{-1} \tau(g)^{-1}$, and we have $\operatorname{ker}(\rho)=\operatorname{Gal}\left(k^{s} / l\right)$ where l is the splitting field.

Conversely, the torus T can be constructed from $\rho: \Gamma \rightarrow \mathrm{GL}(n, \mathbb{Z})$ as follows; see also [Voskresenskii 1982, §1]. The map ρ factors through $\rho^{\prime}: G=\operatorname{Gal}(l / k) \rightarrow$ $\operatorname{GL}(n, \mathbb{Z})$ for a finite Galois extension l of k. Let $\mu: G \rightarrow \operatorname{Aut}_{k}\left(\mathbb{G}_{m, l}^{n}\right)$ be the action on the torus $\mathbb{G}_{m, k}^{n} \otimes_{k} l$ via $\mu(g)=\rho^{\prime}(g) \otimes g, g \in G$. Then $T \cong \mathbb{G}_{m, l}^{n} / \mu(G)$.
Definition 3.2. A toric T-variety X over k is called a toric T-model if $U(k)$ is nonempty.

In this case, the open orbit $U \cong T$ as k-varieties and there is an T-equivariant embedding $T \hookrightarrow X$. If X is smooth over k, then the set $X(k)$ is nonempty if and only if $U(k)$ is [Voskresenskii and Klyachko 1985, §4 Proposition 4].
Definition 3.3. A toric T-variety is split if T splits, and is nonsplit otherwise.
Let $X_{k^{s}}$ (or X_{l}) be the split toric variety with the fan structure Σ. Since the Γ-action on $T_{k^{s}}$ is compatible with the one on $X_{k^{s}}$, the image of ρ is contained in Aut ${ }_{\Sigma}$, namely

$$
\rho(\Gamma)=\operatorname{Gal}(l / k) \subseteq \operatorname{Aut}_{\Sigma} \subset \mathrm{GL}(n, \mathbb{Z})
$$

Let X_{Σ} be the split toric variety over k with the fan structure Σ. If X is a toric T-model, then similarly to the case of the torus T, the variety X can be recovered from ρ and Σ as $\left(X_{\Sigma} \otimes_{k} l\right) / \mu(G)$. In general, for each toric T-variety X, there is a unique (up to T-isomorphism) toric T-model X^{*} such that $X_{k^{s}} \cong\left(X^{*}\right)_{k^{s}}$. We call X^{*} the associated toric T-model of X. More specifically, the toric T-model X^{*} is given by $(X \times U) / T$ where T acts on $X \times U$ diagonally, and the toric T-variety X is given by $\left(X^{*} \times U\right) / T$ where T acts on $X^{*} \times U$ via $t \cdot(x, y)=\left(t x, y t^{-1}\right)$; see [Voskresenskii and Klyachko 1985, §4].

In summary, an algebraic torus T is uniquely determined by a 1-cocycle (class) $\rho: \Gamma \rightarrow \operatorname{GL}(n, \mathbb{Z})$. A toric T-model X is uniquely determined by ρ and fan Σ with the restriction $\rho(\Gamma) \subseteq$ Aut $_{\Sigma}$. A toric T-variety is uniquely determined by its associated T-model X^{*} and a principal homogeneous space $U \in H^{1}(k, T)$.

Lemma 3.4. Let $\phi: X_{\Sigma_{1}} \rightarrow X_{\Sigma_{2}}$ be a toric morphism of split smooth projective toric varieties over k^{s}, and let $\bar{\phi}: N_{1} \rightarrow N_{2}$ be the induced \mathbb{Z}-linear map of lattices that is compatible with fans Σ_{1}, Σ_{2}. Let $\rho_{i}: \Gamma \rightarrow \operatorname{Aut}\left(N_{i}\right)$ be Galois actions on N_{i} that are compatible with the fans $\Sigma_{i}\left(\rho_{i}(\Gamma) \subseteq\right.$ Aut $\left._{\Sigma_{i}}\right)$ such that $\bar{\phi}$ is Γ equivariant with respect to ρ_{1}, ρ_{2}. Let T_{i} be the torus corresponding to ρ_{i}. Then, for any $U_{1} \in H^{1}\left(k, T_{1}\right)$, there exists $U_{2} \in H^{1}\left(k, T_{2}\right)$ such that ϕ descends to a map $X_{1} \rightarrow X_{2}$, where X_{i} is the toric variety corresponding to $\left(\rho_{i}, \Sigma_{i}, U_{i}\right)$ for $i=1,2$.

Proof. Restrict ϕ to tori $\left.\phi\right|_{T_{N_{1}}}: T_{N_{1}} \rightarrow T_{N_{2}}$. Since $\bar{\phi}$ is Γ-equivariant, the maps ϕ and $\left.\phi\right|_{T_{N_{1}}}$ descend to $\varphi: X_{1}^{*} \rightarrow X_{2}^{*}$ where X_{i}^{*} are the toric T_{i}-models corresponding to Σ_{i} and $\psi: T_{1} \rightarrow T_{2}$. The map ψ induces $H^{1}\left(k, T_{1}\right) \rightarrow H^{1}\left(k, T_{2}\right)$ and let U_{2} be the image of U_{1} under this map. Set $X_{i}=\left(X_{i}^{*} \times U_{i}\right) / T_{i}$. Then ϕ descends to a map $X_{1} \rightarrow X_{2}$.

Example 3.5 (Severi-Brauer variety $X\left(X_{k^{s}} \cong \mathbb{P}^{n}\right)$). Let A be a central simple k-algebra of degree $n+1$. Then $X=\mathrm{SB}(A)$ is a toric variety with the torus $T=\mathrm{R}_{E / k}\left(\mathbb{G}_{m, E}\right) / \mathbb{G}_{m, k}$, where E is a maximal étale k-subalgebra of A. The variety X has a rational point if and only if $A=M_{n+1}(k)$ if and only if $X \cong \mathbb{P}^{n}$.

Quillen [1973, §8 Theorem 4.1] showed that $K_{m}(\mathrm{SB}(A)) \cong K_{m}(k) \times \prod K_{m}\left(A^{\otimes i}\right)$ for $m \geqslant 0$ and Panin [1994] showed that $\mathrm{SB}(A) \cong k \times \prod A^{\otimes i}$ in \mathcal{C}, where the products run over $i=1, \ldots, n$.

Example 3.6. Let X be a del Pezzo surface of degree 6 over k (K_{X} is antiample with $K_{X}^{2}=6, X_{k^{s}} \cong \mathrm{Bl}_{p_{1}, p_{2}, p_{3}}\left(\mathbb{P}^{2}\right)$ where p_{1}, p_{2}, p_{3} are not collinear). It is a toric T-variety where the torus T is the connected component of the identity of $\operatorname{Aut}_{k}(X)$.

Blunk [2010] showed that $X \cong k \times P \times Q$ in \mathcal{C} where P is an Azumaya K-algebra of rank $9\left(\operatorname{dim}_{k}(P) / \operatorname{dim}_{k}(K)=9\right)$ and Q is an Azumaya L-algebra of rank 4 where K, L are étale k-algebras of degree 2 and 3 , respectively.

Example 3.7 (Involution surface $\left.X\left(X_{k^{s}} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}\right)\right)$. The surface X corresponds to a central simple k-algebra A of degree 4 together with a quadratic pair (σ, f) on A. For the definition of a quadratic pair, see [Knus et al. 1998, §5B]. The associated even Clifford algebra $C_{0}(A, \sigma, f)$ (defined in their $\S 8 \mathrm{~B}$) is a quaternion algebra over K, which is an étale quadratic extension of k and is called the discriminant extension of X. Write $B=C_{0}(A, \sigma, f)$. Then X is the Weil restriction $\mathrm{R}_{K / k} \mathrm{SB}(B)$; see [Auel and Bernardara 2015, Example 3.3]. Denote by T the torus of $\operatorname{SB}(B)$ in Example 3.5. Then X is a toric variety with the torus $\mathrm{R}_{K / k} T$.

Panin [1994] showed that $X \cong k \times B \times A$ in \mathcal{C}.
$\boldsymbol{K}_{\mathbf{0}}$ of split toric varieties. Let Y be a split smooth proper toric T-variety with fan Σ.

For $\sigma \in \Sigma$, denote \mathcal{O}_{σ} the closure of the T-orbit corresponding to σ and J_{σ} the sheaf of ideals defining \mathcal{O}_{σ}. Write $\sigma(1)$ for the set of rays spanning σ. For $\sigma, \tau \in \Sigma$, if $\sigma(1) \cap \tau(1)=\varnothing$ and $\sigma(1) \cup \tau(1)$ span a cone in Σ, then denote the cone by $\langle\sigma, \tau\rangle$, otherwise set $\langle\sigma, \tau\rangle=0$.

Theorem 3.8 (Klyachko [1992]; Demazure). As an abelian group, $K_{0}(Y)$ is generated by $\mathcal{O}_{\sigma}=1-J_{\sigma}$ with these relations:

$$
\mathcal{O}_{\sigma} \cdot \mathcal{O}_{\tau}= \begin{cases}\mathcal{O}_{\langle\sigma, \tau\rangle} & \text { if }\langle\sigma, \tau\rangle \neq 0 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

(2) $\prod_{e \in \Sigma(1)} J_{e}^{f(e)}=1, \quad f \in \operatorname{Hom}(N, \mathbb{Z})=M$ (the group of characters of T).

Theorem 3.9 (Klyachko). The abelian group $K_{0}(Y)$ is free with rank equal to the number of the maximal cones. In addition, sheaves \mathcal{O}_{y} and $\mathcal{O}_{y^{\prime}}$ coincide in $K_{0}(Y)$ for any rational closed points $y, y^{\prime} \in Y$.

4. Minimal toric surfaces

Let X be a smooth projective toric surface over k. We say X is minimal if any birational morphism $f: X \rightarrow X^{\prime}$ from X to another smooth surface X^{\prime} defined over k is an isomorphism. In this section, we will classify minimal smooth projective toric surfaces.

First we notice that the exceptional locus of any birational morphism from a toric surface is torus invariant. We use the convention that a surface is integral, separated and of finite type.

Lemma 4.1. Let W be a smooth projective toric T-surface over k. Let $h: W \rightarrow Z$ be a birational morphism over k from W to a smooth surface Z over k. Let E be the exceptional divisor of h. Then E is T-invariant. Therefore, the surface Z is a smooth projective toric T-surface and the map h is T-invariant.

Proof. First assume that k is separably closed. Then W is split. Since for a split toric variety the group of T-invariant Cartier divisors CDiv_{T} maps onto the Picard group, the line bundle $\mathcal{O}(E)$ is fixed by the T-action. For any $t \in T$, the divisor $t E$ is linearly equivalent to E (denoted $t E \sim E$).

Now assume the locus E is not T-invariant and let $t_{0} \in T$ be such that $t_{0} E \neq E$. Note that since W is proper and Z is separated, the map h is proper and the surface $Z=h(W)$ is also proper (thus projective). We have $p\left(t_{0} E\right) \sim p(E)=0$. Let $C=p\left(t_{0} E\right)$ which is a curve on Z. Embed Z into some \mathbb{P}^{n} and let H be a hyperplane of \mathbb{P}^{n}. Since C is a curve, we have $C . H>0$. Therefore, C cannot be linearly equivalent to 0 , a contradiction.

For an arbitrary field k, we base change to the separable closure k^{s} and use the same argument.

Lemma 4.2. Let X be a smooth projective toric T-surface over k. Then X is minimal if and only if $X_{k^{s}}$ admits no Γ-invariant set of pairwise disjoint $T_{k^{s}}$-invariant (-1)-curves.

Proof. Since any (-1)-curve is the exceptional locus of some birational morphism, by the previous lemma, it is always torus invariant. The rest follows from [Hassett 2009, Theorem 3.2].

Definition 4.3. Let Y be a split smooth projective toric surface over a field K. If there is a finite group G acting on Y by K-automorphisms, we call Y a G-surface over K. The G-surface Y is called G-minimal over K if Y admits no G-invariant set of pairwise disjoint torus invariant (-1)-curves.

Lemma 4.2 implies that we can redefine minimal toric surfaces as follows:
Definition 4.4. Let X be a smooth projective toric T-surface over k and let $\rho: \Gamma \rightarrow$ $\mathrm{GL}(2, \mathbb{Z})$ be the map corresponding to the torus T. Let $G=\rho(\Gamma)$, which is a finite subgroup of $\operatorname{GL}(2, \mathbb{Z})$ and acts on the split toric surface $X_{k^{s}}$ by fan automorphisms $\left(G \subseteq \operatorname{Aut}_{\Sigma}\left(X_{k^{s}}\right)\right.$). We say the toric surface X is minimal if $X_{k^{s}}$ is G-minimal over k^{s}.

Proposition 4.5. Let X and $G=\rho(\Gamma)$ be the same as above. Then there is a finite chain of blowups of toric T-surfaces

$$
X=X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n}} X_{n}=X^{\prime},
$$

where each X_{i} is a smooth projective toric T-surface, each map f_{i} is the blowup of X_{i} along T-invariant reduced zero-dimensional subscheme (in particular, f_{i} is T-invariant) and X^{\prime} is minimal.

Proof. If X is not minimal, then $X_{k^{s}}$ admits a G-invariant set of pairwise disjoint $T_{k^{s}}$-invariant (-1)-curves. Contracting this G-set of (-1)-curves and descending the contraction map to the base field k, we get a map $f_{1}: X \rightarrow X_{1}$ which is the

cyclic	dihedral	generators
$C_{1}=\langle I\rangle$	$D_{2}=\langle C\rangle$	$A=\left(\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right)$
$C_{2}=\langle-I\rangle$	$D_{2}^{\prime}=\left\langle C^{\prime}\right\rangle$	$B=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$
$C_{3}=\left\langle A^{2}\right\rangle$	$D_{4}^{\prime}=\langle-I, C\rangle$	
	$D_{6}=\left\langle A^{2}, C\right\rangle$	$C=\left(\begin{array}{lr}0 & 1 \\ 1 & 0\end{array}\right)$
$C_{4}=\langle B\rangle$	$D_{6}^{\prime}=\left\langle A^{2},-C\right\rangle$	$D_{8}=\langle B, C\rangle$
$C_{6}=\langle A\rangle$	$D_{12}=\langle A, C\rangle$	$C^{\prime}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$

Table 1. Nonconjugate classes of finite subgroups of $\operatorname{GL}(2, \mathbb{Z})$ and their generators.
blowup of a smooth projective toric T-surface X_{1} along T-invariant reduced zerodimensional subscheme. This process will terminate in finite steps because the number of rays in the fan of $\left(X_{1}\right)_{k^{s}}$ is strictly less than that of $X_{k^{s}}$.

Now, classifying all minimal smooth projective toric surfaces over k is the same as classifying, for each finite subgroup G of $G L(2, \mathbb{Z})$ (up to conjugacy), G-minimal toric surfaces over k^{s}. It is well known that when G is trivial, the minimal (toric) surfaces are \mathbb{P}^{2} and Hirzebruch surfaces $F_{a}=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(a)\right)$ for $a \geqslant 0, a \neq 1$.

There are 13 nonconjugate classes of finite subgroups of GL $(2, \mathbb{Z})$ and they can only be either cyclic or dihedral groups [Newman 1972, Chapter IX, §14]. See Table 1.

Definition 4.6. Let Y be a split smooth projective toric surface with fan structure Σ. Counterclockwise label the rays of Σ as y_{1}, \ldots, y_{n} and denote by D_{i} the divisor corresponding to y_{i}. We can assign a sequence $a=\left(a_{1}, \ldots, a_{n}\right)$ to Y, where $a_{i}=D_{i}^{2}$. We refer to this sequence as the self-intersection sequence of Y.

The group of fan automorphisms $\operatorname{Aut}_{\Sigma}(Y)$ acts on \mathbb{Z}^{2}, permuting rays y_{i} of the fan Σ. First observe that as automorphisms of Y, the group $\operatorname{Aut}_{\Sigma}(Y)$ preserves the self-intersection number of any divisor and thus permutes (torus invariant) (-1)-curves on Y. Now, let us consider the case where $\operatorname{Aut}_{\Sigma}(Y) \cap \operatorname{SL}(2, \mathbb{Z})=C_{t}$ is nontrivial and look at the action of C_{t} on the rays. As indicated in Table 1, the cyclic group C_{t} is generated by powers of A or B where B is the rotation by $\pi / 4$ and A is conjugate in $\operatorname{GL}(2, \mathbb{R})$ to the rotation by $\pi / 3$. In particular, the action of C_{t} on the fan Σ is free, which implies $t \mid n$.

Lemma 4.7. Let $\operatorname{Aut}_{\Sigma}(Y) \cap \operatorname{SL}(2, \mathbb{Z})=C_{t}$ be nontrivial (i.e., $t=2,3,4,6$). If the number of rays of the fan $>\max \{4, t\}$, then Y is not C_{t}-minimal, that is, there exists
a C_{t}-invariant set of pairwise disjoint (-1)-curves on Y. Therefore, C_{t}-minimal surfaces have the number of rays $\leqslant \max \{4, t\}$.
Proof. Denote counterclockwise y_{1}, \ldots, y_{n} as rays of Σ and let $a=\left(a_{1}, \ldots, a_{n}\right)$ be its self-intersection sequence. If $n>4, Y$ is not \mathbb{P}^{2} or F_{a}, then there exists i such that $a_{i}=-1$. Let σ be a generator of C_{t} and as discussed above, σ rotates the rays. If $n>t$, then the ray $\sigma\left(y_{i}\right)$ is not adjacent to y_{i} (i.e., corresponding divisors are disjoint) and thus $\left\{y_{i}, \sigma\left(y_{i}\right), \ldots, \sigma^{t-1}\left(y_{i}\right)\right\}$ form a C_{t}-invariant set of pairwise disjoint (-1)-curves.
Lemma 4.8. D_{2} fixes rays generated by $\pm(1,1)$ or maximal cones generated by $(1,0)$ and $(0,1)$ or by $(-1,0)$ and $(0,-1) ; D_{2}^{\prime}$ fixes rays generated by $\pm(1,0)$.

Using toric geometry, Oda showed [1978, Theorem 8.2] that a split smooth projective toric surface is a succession of blowups of \mathbb{P}^{2} or F_{a}. The proof of the theorem is essentially the following lemma:

Lemma 4.9. Let Y be a split smooth projective toric surface with the fan Σ. Let x, y be two rays in Σ where their minimal generators form a basis of \mathbb{Z}^{2}. If x, y are not adjacent in the fan, then there is a ray $z \in \Sigma$ between x, y corresponding to $a(-1)$-curve.

Now we are ready to classify G-minimal toric surfaces for G a finite subgroup of $\operatorname{GL}(2, \mathbb{Z})$.
Proposition 4.10. Let Y be a split smooth projective toric surface and let G be a finite subgroup of $\mathrm{GL}(2, \mathbb{Z})$ acting on Y by fan automorphisms; that is, $G \subseteq \operatorname{Aut}_{\Sigma}(Y)$. Then the surface Y is G-minimal if and only if Y belongs to one of the following:

- $G=D_{2}: Y=\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}, F_{2 a+1}, a \geqslant 1 ;$
- $G=D_{2}^{\prime}: Y=F_{2 a}, a \geqslant 0$;
- $G=C_{2}, C_{4}, D_{4}, D_{4}^{\prime}, D_{8}: Y=\mathbb{P}^{1} \times \mathbb{P}^{1}$;
- $G=C_{3}, D_{6}: Y=\mathbb{P}^{2}$;
- $G=C_{6}, D_{6}^{\prime}, D_{12}: Y=S$,
where $F_{a}=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(a)\right)$ is the Hirzebruch surface and S is the blowup $\mathrm{Bl}_{p_{1}, p_{2}, p_{3}}\left(\mathbb{P}^{2}\right)$ of \mathbb{P}^{2} along three torus invariant points.
Proof. Assume the split toric surface Y is G-minimal. Let Σ be the fan structure of Y and let n be the number of rays of Σ. It is clear that for any subgroup H of G together with the restricted H-action on Y, the surface Y is either H-minimal or the (successive) blowups of H-minimal toric surfaces.
$G=D_{2}$: (I) If D_{2} fixes at least one maximal cone, then Σ contains (I.1) rays $(1,0)$, $(0,1),(-1,-1)$ where D_{2} fixes the maximal cone generated by $(1,0),(0,1)$ or (I.2) rays $(1,0),(0,1),(-1,0),(0,-1)$ where D_{2} fixes the maximal cones generated by
$(1,0),(0,1)$ and by $(-1,0),(0,-1)$. (II) Otherwise Σ contains rays $\pm(1,1)$, and the rays counterclockwise before and after $(1,1)$ must be $(a+1, a)$ and $(a, a+1)$, respectively. By Lemma 4.9 , it is easy to see that if Σ contains more rays in any of the above cases, then Y admits a D_{2}-set of pairwise disjoint (-1)-curves. Thus, Y is isomorphic to (I.1) $\mathbb{P}^{2} ;(\mathrm{I} .2) \mathbb{P}^{1} \times \mathbb{P}^{1}$; (II) $F_{2 a+1}$. Since F_{1} has a D_{2}-invariant (-1)-curve, it is not minimal. So we have $a \geqslant 1$.
$G=D_{2}^{\prime}: \Sigma$ contains rays $\pm(1,0)$, and the rays counterclockwise before and after $(1,0)$ must be $(a,-1)$ and $(a, 1)$, respectively. By Lemma $4.9, \Sigma$ contains no other rays. Thus, Y is isomorphic to $F_{2 a}, a \geqslant 0$.
$G=C_{2}$: Let $x, y \in \Sigma$ be two adjacent rays. Then Σ should have rays $x, y,-x,-y$, where the minimal generators of x, y form a basis of \mathbb{Z}^{2} and by Lemma 4.9, it contains no other rays. Thus, $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.
$G=C_{4}, D_{4}, D_{4}^{\prime}, D_{8}:$ Since C_{2} is a subgroup of $C_{4}, D_{4}, D_{4}^{\prime}, D_{8}$, we have $Y \cong$ $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or its blowups. Since the group of fan automorphisms of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is D_{8} which contains $C_{4}, D_{4}, D_{4}^{\prime}$, the minimal C_{2}-surface $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is already a G-surface for $G=C_{4}, D_{4}, D_{4}^{\prime}, D_{8}$ and must be G-minimal. Thus, $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.

For cases $G=C_{t}, t>2$. Recall that $t \mid n$ and by Lemma 4.7, $n \leqslant \max \{4, t\}$.
$G=C_{3}: 3 \mid n, n \leqslant 4$, so $n=3$ and $Y \cong \mathbb{P}^{2}$.
$G=D_{6}: C_{3} \subset D_{6}$ implies that Y is either \mathbb{P}^{2} or its blowups. Since the group of fan automorphisms is D_{6}, we have $Y \cong \mathbb{P}^{2}$.

For cases $G \supseteq C_{3}$, observe that if Y is not \mathbb{P}^{2}, then it must be the blowup of S where S is the blowup of \mathbb{P}^{2} along three torus invariant points.
$G=C_{6}, D_{6}^{\prime}, D_{12} C_{3} \subset D_{6}^{\prime} \subset D_{12}$ and $C_{3} \subset C_{6} \subset D_{12}$ imply that Y is either \mathbb{P}^{2} or the blowup of \mathbb{P}^{2}. Since the group of fan automorphisms of \mathbb{P}^{2} is D_{6}, Y can not be \mathbb{P}^{2}. Thus, Y is either S or its blowup. We have $Y \cong S$ because the group of fan automorphisms of S is D_{12}.
Lemma 4.11. Let X be a toric surface that is a form of $F_{a}, a \geqslant 1$. Then X is a \mathbb{P}^{1}-bundle over a smooth conic curve. If X has a rational point, then $X \cong F_{a}$.
Proof. Let X correspond to $\left(\rho_{1}, \Sigma_{1}, U_{1}\right)$ and let Σ_{1} be the fan of F_{a} with rays $(1,0),(0,1),(-1, a),(0,-1)$. Let $\bar{\phi}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ be the projection to the first factor, which corresponds to $\phi: F_{a} \rightarrow \mathbb{P}^{1}$. Let $\rho_{2}=\operatorname{det} \circ \rho_{1}: \Gamma \rightarrow \operatorname{GL}(1, \mathbb{Z})$. Either ρ_{1} is trivial or ρ_{1} permutes the rays $(1,0),(-1, a)$. Then $\bar{\phi}$ is Galois equivariant with respect to ρ_{1} and ρ_{2}. By Lemma 3.4, the map ϕ descends to $\varphi: X \rightarrow C$. As a form of \mathbb{P}^{1}, C is a smooth plane conic curve ([Gille and Szamuely 2006, Corollary 5.4.8] for characteristic not 2 and [Elman et al. 2008, $\S 45 \mathrm{~A}$] for any characteristic).

Let D be the divisor corresponding to the ray $(0,-1)$. Then D is a Galois invariant section of the bundle $\phi: F_{a} \rightarrow \mathbb{P}^{1}$. Thus, D descends to a section D^{\prime} of $\varphi: X \rightarrow C$. Moreover, $F_{a} \cong \mathbb{P}\left(\phi_{*} \mathcal{O}_{F_{a}}(D)\right)$ descends to $X \cong \mathbb{P}\left(\varphi_{*} \mathcal{O}_{X}\left(D^{\prime}\right)\right)$. Thus,
X is a \mathbb{P}^{1}-bundle over C. If X has a rational point, so does C. Therefore, $C \cong \mathbb{P}^{1}$ and $X \cong F_{a}$.

By Proposition 4.10, a minimal smooth projective toric surface X is a form of (i) $F_{a}, a \geqslant 2$; (ii) \mathbb{P}^{2}; (iii) $\mathbb{P}^{1} \times \mathbb{P}^{1}$; (iv) $\mathrm{Bl}_{p_{1}, p_{2}, p_{3}}\left(\mathbb{P}^{2}\right)$ where p_{1}, p_{2}, p_{3} are not collinear. Furthermore, we have

Theorem 4.12. The surface X is a minimal smooth projective toric surface if and only if X is (i) a \mathbb{P}^{1}-bundle over a smooth conic curve but not a form of $F_{1}=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)\right)$; (ii) the Severi-Brauer surface; (iii) an involution surface; (iv) the del Pezzo surface of degree 6 with Picard rank 1.

Proof. It follows from Lemma 4.11, Examples 3.5, 3.6, 3.7 and the fact that a minimal del Pezzo surface of degree not equal to 8 has Picard rank 1 [ColliotThélène et al. 2008, Theorem 2.4].

5. K_{0} of toric surfaces

In this section, we will show that $K_{0}\left(X_{k^{s}}\right)$ is a permutation Γ-module for X a smooth projective toric surface over k. First recall how K_{0} behaves under blowups:

Theorem 5.1 [SGA 6 1971, VII 3.7]. Let X be a noetherian scheme and $i: Y \rightarrow X$ a regular closed immersion of pure codimension d. Let $p: X^{\prime} \rightarrow X$ be the blow up of X along Y and $Y^{\prime}=p^{-1} Y$. There is a split short exact sequence

$$
0 \rightarrow K_{0}(Y) \xrightarrow{u} K_{0}\left(Y^{\prime}\right) \oplus K_{0}(X) \xrightarrow{v} K_{0}\left(X^{\prime}\right) \rightarrow 0,
$$

and the splitting w for u is given by $w\left(y^{\prime}, x\right)=\left.p\right|_{Y^{\prime} *}\left(y^{\prime}\right), y^{\prime} \in K\left(Y^{\prime}\right), x \in K(X)$.
This gives us an isomorphism $K_{0}\left(X^{\prime}\right) \cong \operatorname{ker}(w) \cong K_{0}(X) \oplus \bigoplus^{d-1} K_{0}(Y)$ which fits into the split short exact sequence

$$
0 \rightarrow K_{0}(X) \xrightarrow{p^{*}} K_{0}\left(X^{\prime}\right) \rightarrow \bigoplus^{d-1} K_{0}(Y) \rightarrow 0 .
$$

Now let X be a smooth projective toric T-surface over k that splits over l. Let Y be a T-invariant reduced zero-dimensional subscheme of X. Then Y_{l} is a disjoint union of T_{l}-invariant points permuted by $G=\operatorname{Gal}(l / k)$. Set $X^{\prime}=\mathrm{Bl}_{Y} X$. We have

$$
0 \rightarrow K_{0}\left(X_{l}\right) \xrightarrow{p^{*}} K_{0}\left(X_{l}^{\prime}\right) \rightarrow K_{0}\left(Y_{l}\right)=\bigoplus \mathbb{Z} \rightarrow 0,
$$

where p^{*} is a G-homomorphism. Each \mathbb{Z} is generated by $\mathcal{O}_{E_{i}}(-1)$ where E_{i} are the exceptional divisors corresponding to the points in Y_{l} and G permutes E_{i} the same way as G permutes the points in Y_{l}.

Note that $\mathcal{O}_{E_{i}}(-1)=\mathcal{O}_{X_{l}^{\prime}}\left(E_{i}\right)-\mathcal{O}_{X_{l}^{\prime}}$ in K_{0}. If we know $K_{0}\left(X_{l}\right)$ has a permutation G-basis γ, then $K\left(X_{l}^{\prime}\right)$ has a permutation G-basis consisting of $p^{*} \gamma$ (total transforms of γ) and the $\mathcal{O}\left(E_{i}\right)$.

Theorem 5.2. Let X be a smooth projective toric T-surface over k that splits over l and $G=\operatorname{Gal}(l / k)$. Then $K_{0}\left(X_{l}\right)$ has a permutation G-basis of line bundles on X_{l}.
Proof. By previous discussion and the fact that $G \subseteq$ Aut $_{\Sigma}$, it suffices to prove that $K_{0}\left(X_{l}\right)$ has a permutation Aut ${ }_{\Sigma}$-basis of line bundles for X minimal. By Theorem 4.12, we only need to consider the following cases for X_{l} :
(i) $F_{a}, a \geqslant 2, \mathrm{Aut}_{\Sigma}=S_{2}$.
(ii) $\mathbb{P}^{2}, \mathrm{Aut}_{\Sigma}=D_{6}$.
(iii) $\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathrm{Aut}_{\Sigma}=D_{8}$.
(iv) del Pezzo surface of degree 6, Aut $_{\Sigma}=D_{12}$.

We will use equation (2) in Theorem 3.8 with $f=(1,0)$ and $(0,1)$ in producing relations and finding a permutation basis. We will write x_{i} for rays in the fan and $J_{i}=\mathcal{O}\left(-D_{i}\right)$ where D_{i} are the divisors corresponding to x_{i}.
(i) Rays $x_{1}=(1,0), x_{2}=(0,1), x_{3}=(-1, a), x_{4}=(0,-1)$: Then S_{2} fixes x_{2}, x_{4} and permutes x_{1}, x_{3}. Relations are:

$$
J_{3}=J_{1}, \quad J_{4}=J_{2} J_{3}^{a}=J_{1}^{a} J_{2} .
$$

Let x be a rational point of X_{l}. Then the sheaf \mathcal{O}_{x} equals $\left(1-J_{1}\right)\left(1-J_{2}\right)$ in K_{0}. For any $m \in \mathbb{Z}$, consider the exact sequence

$$
0 \rightarrow \mathcal{O}\left(-(m+1) D_{1}-D_{2}\right) \rightarrow \mathcal{O}\left(-m D_{1}-D_{2}\right) \rightarrow \mathcal{O}_{D_{1}}\left(-m D_{1}-D_{2}\right) \rightarrow 0 .
$$

Since $D_{1} \cong \mathbb{P}^{1}$ and $\operatorname{deg}\left[\mathcal{O}_{D_{1}}\left(-m D_{1}-D_{2}\right)\right]=D_{1} \cdot\left(-m D_{1}-D_{2}\right)=-1$, we have

$$
\mathcal{O}_{D_{1}}\left(-m D_{1}-D_{2}\right)=\mathcal{O}_{D_{1}}(-1)=\mathcal{O}_{D_{1}}-\mathcal{O}_{x} \quad \text { in } K_{0} .
$$

Hence $J_{1}^{m+1} J_{2}=J_{1}^{m} J_{2}+J_{1} J_{2}-J_{2}$ in K_{0}. This implies $J_{4}=J_{1}^{a} J_{2}$ belongs to the abelian group generated by $1, J_{1}, J_{2}, J_{1} J_{2}$. By Theorem 3.8, we have K_{0} as an abelian group is generated by $1, J_{1}, J_{2}, J_{1} J_{2}$. They form a basis of K_{0} because the rank of K_{0} (= the number of maximal cones in the fan) is 4 . Thus, K_{0} has a permutation basis $1, J_{1}, J_{2}, J_{1} J_{2}$. (Alternatively, this basis can easily be obtained from the projective bundle theorem [Quillen 1973, $\S 8$, Theorem 2.1] because F_{a} is a \mathbb{P}^{1}-bundle over \mathbb{P}^{1}.)
(ii) Rays $x_{1}=(1,0), x_{2}=(0,1), x_{3}=(-1,-1)$: Then D_{6} rotates x_{i} and reflects along lines in x_{1}, x_{2}, x_{3}. Relations are $J_{1}=J_{2}=J_{3}$. A permutation basis is $1, J_{1}, J_{1}^{2}$.
(iii) Rays $x_{1}=(1,0), x_{2}=(0,1), x_{3}=(-1,0), x_{4}=(0,-1)$: Then D_{8} rotates x_{i} and reflects along lines in $x_{1}, x_{2},(1,1),(-1,1)$. Relations are:

$$
J_{3}=J_{1}, \quad J_{4}=J_{2} .
$$

A permutation basis is $1, J_{1}, J_{2}, J_{1} J_{2}$.
(iv) Rays $x_{1}=(1,0), x_{2}=(0,1), x_{3}=(-1,-1), y_{1}=(-1,0), y_{2}=(0,-1)$, $y_{3}=(1,1)$: Then $D_{12} \cong S_{2} \times S_{3}\left(S_{2}, S_{3}\right.$ permutation groups), $S_{2}=\langle-1\rangle$ switches between x_{i} and y_{i}, and S_{3} permutes the pair of rays $\left(x_{i}, y_{i}\right)$. Let D_{i}^{\prime} be the divisors corresponding to the rays y_{i} and let $J_{i}^{\prime}=\mathcal{O}\left(-D_{i}^{\prime}\right)$. Relations are

$$
\frac{J_{1}}{J_{1}^{\prime}}=\frac{J_{2}}{J_{2}^{\prime}}=\frac{J_{3}}{J_{3}^{\prime}} .
$$

As proved in [Blunk 2010, Theorem 4.2], we have a permutation basis $1, R_{1}, R_{2}$, R_{3}, Q_{1}, Q_{2} where

$$
R_{1}=J_{1} J_{2}^{\prime}, \quad R_{2}=J_{2} J_{3}^{\prime}, \quad R_{3}=J_{3} J_{1}^{\prime}, \quad Q_{1}=J_{1} J_{2} J_{3}^{\prime}, \quad Q_{2}=J_{1}^{\prime} J_{2}^{\prime} J_{3}
$$

Remark 5.3. The difficulties in generalizing Theorem 5.2 to higher dimensions (at least using the approach of this paper) are:
(1) The classification of nonconjugacy classes of finite subgroups of $\operatorname{GL}(n, \mathbb{Z})$ is difficult and not complete. It often only provides algorithms and requires the help of a computer even for small n. Also, the number of those finite subgroups grows very fast relative to n. For example, there are total of 73 for $\mathrm{GL}(3, \mathbb{Z})$ and 710 for $\mathrm{GL}(4, \mathbb{Z})$.
(2) The K-group $K_{0}\left(X_{l}\right)$ in question may not stay a permutation module after blowups if X is not a surface.

6. Construction of separable algebras

Let X be a smooth projective toric T-variety over k that splits over l, and let X^{*} be its associated toric model; see Section 3. [Merkurjev and Panin 1997, Theorem 5.7] states that there is a split monomorphism $u: X^{*} \rightarrow A$ in the motivic category \mathcal{C} from X^{*} to an étale k-algebra A and u is represented by an element Q in $\operatorname{Pic}\left(X^{*} \otimes_{k} A\right)$. Using the invertible sheaf Q, a map $u^{\prime}: X \rightarrow B$ can be constructed out of u. Theorem 7.6 of the same work states that u^{\prime} is also a split monomorphism in \mathcal{C}. In this section, we will recall the construction of u^{\prime} and consider the case when u is an isomorphism.

Write $X_{A}=X \otimes_{k} A$ and we have $f: X_{l} \rightarrow X_{l}^{*}$, a T_{l}-isomorphism. Consider the diagram:

Let $P^{\prime}=f^{*}\left(\pi_{X_{A}^{*}}^{*}(Q)\right)$. Then $B=\operatorname{End}_{X_{A}}\left(\pi_{X_{A}}\left(P^{\prime}\right)\right) \in \operatorname{Br}(A)$ and $u^{\prime}: X \rightarrow B$ is represented by $\pi_{X_{A} *}\left(P^{\prime}\right)$, namely $u^{\prime}=\phi_{*}\left(P^{\prime}\right) \in K_{0}(X, B)$, where ϕ is the projection $X_{A \otimes_{k} l} \rightarrow X$.

The following criterion, which is [Merkurjev and Panin 1997, Proposition 4.5], checks when a toric model is isomorphic to an étale algebra in \mathcal{C} :

Proposition 6.1. Let X^{*} be a smooth projective toric model over k that splits over l and $G=\operatorname{Gal}(l / k)$. If $K_{0}\left(X_{l}^{*}\right)$ is a permutation G-module, then $X^{*} \cong \operatorname{Hom}_{G}(P, l)$ in the motivic category \mathcal{C} for any permutation G-basis P of $K_{0}\left(X_{l}^{*}\right)$.
Remark 6.2. In particular, this implies that for any split smooth projective toric variety Y over $k, Y \cong k^{n}$ in \mathcal{C} where n equals to the rank of $K_{0}(Y)$ (also equals to the number of maximal cones of the fan). Note that a smooth projective toric variety Y over k where the fan of Y_{l} has no symmetry (i.e., $\operatorname{Aut}_{\Sigma}\left(Y_{l}\right)$ is trivial) is automatically split.

Lemma 6.3. Let X^{*}, G be the same as before. Then there is an isomorphism $u: X^{*} \rightarrow A$ in \mathcal{C} where A is an étale k-algebra and u is represented by an element $Q \in \operatorname{Pic}\left(X_{A}^{*}\right)$ if and only if $K_{0}\left(X_{l}^{*}\right)$ has a permutation G-basis of line bundles on X_{l}^{*}.
Proof. \Rightarrow : Decompose A as $\prod_{i=1}^{t} k_{i}$, where k_{i} are finite separable field extensions of k. We have $X_{A}^{*}=\coprod_{i=1}^{t} X_{k_{i}}^{*}$ the disjoint union of $X_{k_{i}}^{*}$ and $Q=\coprod_{i=1}^{t} Q_{i}$, where Q_{i} are line bundles on $X_{k_{i}}^{*}$. Let $q_{i}: X_{k_{i}}^{*} \rightarrow X^{*}$ be the projections. Then $u=\bigoplus_{i=1}^{t} q_{i *} Q_{i}$. Let $p_{i}: X_{k^{s}}^{*} \rightarrow X_{k_{i}}^{*}$ be the projections and $G_{i}=\operatorname{Gal}\left(k_{i} / k\right)$. Then

$$
u_{k_{s}}=\bigoplus_{i=1}^{t} p_{i}^{*} q_{i}^{*} q_{i *}\left(Q_{i}\right)=\bigoplus_{i=1}^{t} \bigoplus_{g \in G_{i}} p_{i}^{*}\left(g Q_{i}\right)
$$

and $A_{k^{s}} \cong\left(k^{s}\right)^{n}$ where $n=\sum_{i=1}^{t}\left|G_{i}\right|$. View u as $u^{\mathrm{op}}: A^{\mathrm{op}}=A \rightarrow X^{*}$. Then the map $u_{k^{s}}^{\text {op }}$ induces an isomorphism $K_{0}\left(\left(k^{s}\right)^{n}\right) \rightarrow K_{0}\left(X_{k^{s}}^{*}\right)$, where the canonical basis of the former is sent to $\left\{p_{i}^{*}\left(g Q_{i}\right) \mid g \in G_{i}, 1 \leqslant i \leqslant t\right\}$ and this set gives a permutation Γ-basis of $K_{0}\left(X_{k^{s}}^{*}\right)$ consisting of line bundles. As $\operatorname{Gal}\left(k^{s} / l\right)$ acts trivially on $K_{0}\left(X_{k^{s}}^{*}\right)$, this basis descends to X_{l}^{*}.
\Leftarrow : Assume P is a permutation G-basis of $K_{0}\left(X_{l}^{*}\right)$ consisting of line bundles on X_{l}^{*} and P divides into $t G$-orbits. Let $\left\{S_{i}\right\}_{i=1}^{t}$ be the set of representatives of G-orbits, and let $\operatorname{Gal}\left(l / k_{i}\right)$ be the stabilizer of S_{i}. Set $A=\operatorname{Hom}_{G}(P, l)$. Then $A \cong \prod_{i=1}^{t} k_{i}$. Since X^{*} has a rational point, by [Colliot-Thélène et al. 2008, Proposition 5.1], we have $S_{i} \in \operatorname{Pic}\left(X_{l}^{*}\right)^{\operatorname{Gal}\left(l / k_{i}\right)} \cong \operatorname{Pic}\left(X_{k_{i}}^{*}\right)$, namely $S_{i} \cong p_{i}^{*}\left(Q_{i}\right)$ for some $Q_{i} \in \operatorname{Pic}\left(X_{k_{i}}^{*}\right)$, where $p_{i}: X_{l}^{*} \rightarrow X_{k_{i}}^{*}$ are the projections. There is a morphism $u: X^{*} \rightarrow A$ which is represented by $\coprod_{i=1}^{t} Q_{i} \in \operatorname{Pic}\left(X_{A}^{*}\right)$, and by construction, the map u_{l} induces an isomorphism $K_{0}\left(X_{l}^{*}\right) \cong K_{0}\left(A_{l}\right)$. Using the following lemma, we have u is an isomorphism.
Lemma 6.4. Let X^{*} be the same as before and A an étale k-algebra. If $u: X^{*} \rightarrow A$ is a morphism in \mathcal{C} such that $K_{0}\left(u_{k^{s}}\right): K_{0}\left(X_{k^{s}}^{*}\right) \rightarrow K_{0}\left(A_{k^{s}}\right)$ is an isomorphism, then so is u.

Proof. There is a commutative diagram:

The right vertical map is an isomorphism because A is étale and so is $K_{0}\left(u_{k^{s}}\right)$ by assumption. The left vertical map is an isomorphism by [Merkurjev and Panin 1997, Corollary 5.8]. Thus, $K_{0}(u)$ is also an isomorphism.

Write $w=u^{\mathrm{op}}: A \rightarrow X^{*}$. Then by the splitting principle (their Proposition 6.1) and its proof, $K_{0}^{X^{*}}(w): K_{0}\left(X^{*}, A\right) \rightarrow K_{0}\left(X^{*} \times X^{*}\right)$ is surjective. Thus, there exists $v \in K_{0}\left(X^{*}, A\right): X^{*} \rightarrow A$ such that $w \circ v=K_{0}^{X^{*}}(w)(v)=1_{X^{*}}$, and thus $K_{0}(w \circ v)=K_{0}(w) K_{0}(v)=1_{K_{0}\left(X^{*}\right)}$. Since $K_{0}(w)=\phi$ is an isomorphism, we have $K_{0}(v)=\phi^{-1}$ and $K_{0}(v \circ w)=K_{0}(v) K_{0}(w)=1_{K_{0}(A)}$. This implies $v \circ w=1_{A}$ and thus v is a two sided inverse of w in \mathcal{C}.

The proof of $(3) \Longleftrightarrow(4)$ in their Proposition 7.9 shows that the T_{l}-isomorphism $f: X_{l} \rightarrow X_{l}^{*}$ induces a $G=\operatorname{Gal}(l / k)$-module isomorphism $f^{*}: K_{0}\left(X_{l}^{*}\right) \rightarrow K_{0}\left(X_{l}\right)$. Thus, $K_{0}\left(X_{l}^{*}\right)$ has a permutation G-basis of line bundles on X_{l}^{*} if and only if $K_{0}\left(X_{l}\right)$ has such a basis. Note that the proof $(1) \Rightarrow(2)$ (an isomorphism $u: X^{*} \rightarrow A$ gives an isomorphism $u^{\prime}: X \rightarrow B$), which uses the construction (3) recalled at the beginning of the section, works only when u is represented by an element $Q \in \operatorname{Pic}\left(X_{A}^{*}\right)$. Thus, we have the following instead:

Theorem 6.5. Let X be a smooth projective toric T-variety over k that splits over l and $G=\operatorname{Gal}(l / k)$. Assume $K_{0}\left(X_{l}\right)$ has a permutation G-basis P of line bundles on X_{l}. Let $\left\{P_{i}\right\}_{i=1}^{t}$ be G-orbits of P, and let $\pi: X_{l} \rightarrow X$ be the projection. For any $S_{i} \in P_{i}$, set $B_{i}=\operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*}\left(S_{i}\right)\right)$ and $B=\prod_{i=1}^{t} B_{i}$. Then the map $u=\bigoplus_{i=1}^{t} \pi_{*}\left(S_{i}\right)$: $X \rightarrow B$ gives an isomorphism in the motivic category \mathcal{C}.

Proof. By Lemma 6.3, we have an isomorphism $u: X^{*} \rightarrow A$ represented by $Q \in \operatorname{Pic}\left(X_{A}^{*}\right)$. Here $A \cong \prod_{i=1}^{t} k_{i}$ where $\operatorname{Gal}\left(l / k_{i}\right)$ are the stabilizers of S_{i} under the G-action. Then Q is the disjoint union $\coprod_{i=1}^{t} Q_{i}$ where the $Q_{i} \in \operatorname{Pic}\left(X_{k_{i}}^{*}\right)$ descend from $\left(f^{*}\right)^{-1}\left(S_{i}\right) \in \operatorname{Pic}\left(X_{l}^{*}\right)^{\operatorname{Gal}\left(l / k_{i}\right)}$. Now we run the construction (3) for Q_{i} :

Let $p: X_{l} \rightarrow X_{k_{i}}$ and $q: X_{k_{i}} \rightarrow X$ be the projections. Then $\pi_{X *} f_{i}^{*} \pi_{X^{*}}^{*}\left(Q_{i}\right) \cong$ $p_{*}\left(S_{i}\right) \otimes_{k} k_{i}$ where its $\mathcal{O}_{X_{k_{i}}}$-module structure comes from the one on $p_{*}\left(S_{i}\right)$. Thus,
$\operatorname{End}_{\mathcal{O}_{X_{k}}}\left(\pi_{X *} f_{i}^{*} \pi_{X^{*}}^{*}\left(Q_{i}\right)\right) \cong \operatorname{End}_{\mathcal{O}_{X_{k_{i}}}}\left(p_{*}\left(S_{i}\right)\right) \otimes_{k} \operatorname{End}_{k}\left(k_{i}\right)$ is Brauer equivalent to $B_{i}^{\prime}=\operatorname{End}_{\mathcal{O}_{X_{k_{i}}}}\left(p_{*} S_{i}\right)$. It remains to prove that $B_{i} \cong B_{i}^{\prime}$. There is a G-isomorphism:

$$
\begin{aligned}
B_{i} \otimes_{k} l \cong \operatorname{End}_{\mathcal{O}_{X_{l}}}\left(\pi^{*} \pi_{*}\left(S_{i}\right)\right) & \cong \operatorname{End}_{\mathcal{O}_{X_{l}}}\left(p^{*} q^{*} q_{*} p_{*}\left(S_{i}\right)\right) \\
& \cong \operatorname{End}_{\mathcal{O}_{X_{l}}}\left(p^{*} p_{*}\left(S_{i}\right) \otimes_{k} k_{i}\right) \\
& \cong \operatorname{End}_{\mathcal{O}_{X_{l}}}\left(p^{*} p_{*}\left(S_{i}\right)\right) \otimes_{k} k_{i} \\
& \cong\left(B_{i}^{\prime} \otimes_{k_{i}} l\right) \otimes_{k} k_{i} \cong B_{i}^{\prime} \otimes_{k} l .
\end{aligned}
$$

The fourth isomorphism follows from Lemma 6.6. Taking G-invariants on both sides, we have $B_{i} \cong B_{i}^{\prime}$.
Lemma 6.6. Let X be a proper variety over k and assume that there is a finite group G acting on Cartier divisors $\operatorname{CDiv}(X)$. Let $D \in \operatorname{CDiv}(X)$ and $g \in G$ such that D and $g D$ are not linearly equivalent. Then $\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}(D), \mathcal{O}_{X}(g D)\right)=0$.
Proof. Assume that $\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}(D), \mathcal{O}_{X}(g D)\right) \neq 0$, which is equivalent to assuming $\mathcal{O}_{X}(g D-D)$ has a nonzero global section s. Since G is a finite group, $g^{n}=1$ for some n. Thus, the invertible sheaf $\mathcal{O}_{X}(D-g D)=\left(g^{n-1} \otimes \cdots \otimes g \otimes 1\right) \mathcal{O}_{X}(g D-D)$ has a nonzero global section $t=g^{n-1} s \otimes \cdots \otimes s$. We view s and t as maps $s: \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}(g D)$ and $t: \mathcal{O}_{X}(g D) \rightarrow \mathcal{O}_{X}(D)$. Since $s t, t s \in \Gamma\left(X, O_{X}\right)=k$ are nonzero, we have $\mathcal{O}(g D-D) \cong \mathcal{O}_{X}$, a contradiction.
Remark 6.7. There is a more "economical" description of the algebra isomorphic to X in \mathcal{C} :

Write $S_{i}=\mathcal{O}\left(-D_{i}\right)$, where the D_{i} are torus invariant. Let $\operatorname{Gal}\left(l / l_{i}\right)$ be the stabilizer of D_{i} under the G-action and let $\pi_{i}: X_{l_{i}} \rightarrow X$ be the projection. Then divisors D_{i} and thus invertible sheaves S_{i} descend to $X_{l_{i}}$, and we use the same notation. Then $X \cong \prod_{i=1}^{t} \operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{i *}\left(S_{i}\right)\right)$. In effect, it replaces all $\mathrm{M}_{n}(k)$ in B constructed in the theorem by k which is an isomorphism in \mathcal{C}.
Remark 6.8. A question remains: If $K_{0}\left(X_{l}\right)$ is a permutation G-module, can we always find a permutation G-basis of line bundles?

Recall that for $n \geqslant 0, K_{n}$ defines a functor $K_{n}: \mathcal{C} \rightarrow \mathrm{Ab}$. Hence we have

Corollary 6.9.

$$
K_{n}(X) \cong \prod_{i=1}^{t} K_{n}\left(B_{i}\right) .
$$

7. Separable algebras for toric surfaces

Separable algebras for minimal toric surfaces. Recall the families of minimal toric surfaces described in Theorem 5.2: Let X be a minimal smooth projective toric T-surface over k that splits over l, and let X^{*} be its associated toric model. Let $\pi: X_{l} \rightarrow X$ be the projection. All isomorphisms below are taken in the motivic category \mathcal{C}.
(i) If $X_{l} \cong F_{a}, a \cong 2$, then $X^{*} \cong k^{4}$ and $X \cong k \times Q \times k \times Q$, where $Q \cong \operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*} J_{1}\right)$ is a quaternion k-algebra.
(ii) More generally, let $X=\mathrm{SB}(A)$ be a Severi-Brauer variety of dimension n and $J=\mathcal{O}_{X_{l}}(-1)$. Then $X^{*} \cong k^{n+1}$ and $X \cong k \times \prod_{i=1}^{n} A^{\otimes i}$, where $A^{\otimes i} \cong$ End $_{\mathcal{O}_{X}}\left(\pi_{*} J^{i}\right)$; see Example 3.5.
(iii) If $X_{l} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, then $X^{*} \cong k \times K \times k$ where K is a quadratic étale algebra and the discriminant extension of X, and $X \cong k \times B \times A$, where $B \cong \operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*} J_{1}\right)$ is an Azumaya K-algebra of rank 4 and $A \cong \operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*}\left(J_{1} J_{2}\right)\right)$ is a central simple k-algebra of degree 4; see Example 3.7.
(iv) See Example 3.6, where $X^{*} \cong k \times K \times L$ and $P \cong \operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*} R_{1}\right)$ and $Q \cong$ $\operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*} Q_{1}\right)$.

Now let X be a smooth projective toric T-variety over k that splits over l and $G=\operatorname{Gal}(l / k)$. Recall that X is uniquely determined by the associated toric model X^{*}, which corresponds to $\rho: \Gamma \rightarrow \operatorname{GL}(n, \mathbb{Z})$, the fan Σ such that $\rho(\Gamma) \subseteq$ Aut $_{\Sigma}$, and a principal homogeneous space $U \in H^{1}(k, T)$. Every variety within a family above has the same fan. Let $\rho^{\prime}: G \hookrightarrow \operatorname{Aut}_{\Sigma}\left(X_{l}\right)$ be the inclusion induced by ρ. We want to see how the separable algebras described above relate to ρ^{\prime} and U.

Let $\operatorname{dim} X=n$ and let N be the number of rays in the fan Σ. Then the Picard rank of X_{l} is $m=N-n$. Write M for the group of characters of T_{l} and $\mathrm{CDiv}_{T_{l}}$ for T_{l}-invariant Cartier divisors. There is a natural action of $\operatorname{Aut}_{\Sigma}\left(X_{l}\right)$ on M and $\operatorname{CDiv}_{T_{l}}\left(X_{l}\right)$, and an induced action on $\operatorname{Pic}\left(X_{l}\right)$ via the canonical morphism $\operatorname{CDiv}_{T_{l}}\left(X_{l}\right) \rightarrow \operatorname{Pic}\left(X_{l}\right), D \mapsto \mathcal{O}_{X_{l}}(D)$.

We have a short exact sequence of $\operatorname{Aut}_{\Sigma}\left(X_{l}\right)$-modules and therefore of G-modules via ρ^{\prime} :

$$
\begin{equation*}
0 \rightarrow M \rightarrow \operatorname{CDiv}_{T_{l}}\left(X_{l}\right) \rightarrow \operatorname{Pic}\left(X_{l}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

or simply $0 \rightarrow \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{m} \rightarrow 0$. It corresponds to the short exact sequence of tori over l :

$$
1 \rightarrow \mathbb{G}_{m, l}^{m} \rightarrow \mathbb{G}_{m, l}^{N} \rightarrow \mathbb{G}_{m, l}^{n} \rightarrow 1
$$

and the sequence descends to

$$
\begin{equation*}
1 \rightarrow S \rightarrow V \rightarrow T \rightarrow 1 \tag{5}
\end{equation*}
$$

Let $i: \operatorname{Aut}_{\Sigma}\left(X_{l}\right) \hookrightarrow S_{N}$, where S_{N} is the group of permutations of the canonical \mathbb{Z}-basis of the lattice \mathbb{Z}^{N} and it induces $i_{*}: H^{1}\left(G\right.$, Aut $\left._{\Sigma}\right) \rightarrow H^{1}\left(G, S_{N}\right)$. Let $[\alpha]=i_{*}\left[\rho^{\prime}\right]$ and let E be the corresponding étale k-algebra of degree N. Then $V=\mathrm{R}_{E / k}\left(\mathbb{G}_{m, E}\right)$. Let $j: \operatorname{Aut}_{\Sigma}\left(X_{l}\right) \rightarrow \mathrm{GL}(m, \mathbb{Z})$ be the map induced by the action of $\operatorname{Aut}_{\Sigma}\left(X_{l}\right)$ on $\operatorname{Pic}\left(X_{l}\right)$ which induces $j_{*}: H^{1}\left(G, \operatorname{Aut}_{\Sigma}\right) \rightarrow H^{1}(G, \operatorname{GL}(m, \mathbb{Z}))$. Let $[\beta]=j_{*}\left[\rho^{\prime}\right]$. Then S is the torus corresponding to $[\beta]$.

The short exact sequence of tori over k gives

$$
0 \rightarrow H^{1}(G, T) \xrightarrow{\delta} H^{2}(G, S) \rightarrow \operatorname{Br}(E) .
$$

Here, by Hilbert's Theorem 90,

$$
H^{1}(G, V)=H^{1}\left(G, \mathrm{R}_{E / k}\left(\mathbb{G}_{m, E}\right)(l)\right)=\prod H^{1}\left(\operatorname{Gal}\left(E_{t} / k\right), E_{t}^{\times}\right)=0,
$$

where $E=\prod E_{t}$ and the E_{t} are finite separable field extensions of k.
Let $S^{*}=\operatorname{Hom}\left(S_{l}, G_{m, l}\right)$ be the group of characters over l. Then sequence (4) can be rewritten as

$$
0 \rightarrow T^{*} \rightarrow V^{*} \rightarrow S^{*} \rightarrow 0,
$$

which induces $H^{0}\left(G, S^{*}\right) \xrightarrow{\partial} H^{1}\left(G, T^{*}\right)$. Geometrically, ∂ is the map $\operatorname{Pic}\left(X^{*}\right) \rightarrow$ $\operatorname{Pic}(T)$ which sends $Q \in \operatorname{Pic}\left(X^{*}\right)$ to its restriction $\left.Q\right|_{T}$ on T.

There is a G-equivariant bilinear map $S(l) \otimes S^{*} \rightarrow l^{\times}$which sends $x \otimes \chi$ to $\chi(x)$, and it induces a pairing of Galois cohomology groups $\cup: H^{2}(G, S) \otimes H^{0}\left(G, S^{*}\right) \rightarrow$ $\operatorname{Br}(k)$. Similarly, we have $\cup: H^{1}(G, T) \otimes H^{1}\left(G, T^{*}\right) \rightarrow \operatorname{Br}(k)$.

Lemma 7.1. The following diagram is commutative:

Proof. Let $a \in H^{1}(G, T), \varphi \in H^{0}\left(G, S^{*}\right)$. For each $a_{g} \in T(l), g \in G$, pick $b_{g} \in V(l)$ that maps to a_{g}. Then $(\delta a)_{g, h}=b_{g h}^{-1} b_{g}{ }^{g} b_{h}, g, h \in G$. Pick $\phi \in V^{*}$ that maps to φ. Then $(\partial \varphi)_{g}=\phi^{-1 g} \phi$. Let $\alpha=a \cup(\partial \varphi)$ and $\beta=(\delta a) \cup \varphi$. Then

$$
\alpha_{g, h}={ }^{g}(\partial \varphi)_{h}\left(a_{g}\right)={ }^{g}\left(\phi^{-1 h} \phi\right)\left(b_{g}\right)=\left(^{g} \phi^{-1}\right)\left(b_{g}\right) \cdot\left({ }^{g h} \phi\right)\left(b_{g}\right)
$$

and

$$
\beta_{g, h}=\left({ }^{g h} \varphi\right)\left((\delta a)_{g, h}\right)=\left({ }^{g h} \phi\right)\left(b_{g h}^{-1}\right) \cdot\left({ }^{g h} \phi\right)\left(b_{g}\right) \cdot\left({ }^{g h} \phi\right)\left({ }^{g} b_{h}\right) .
$$

Set $\theta_{g}=\left({ }^{g} \phi\right)\left(b_{g}\right)$. Then $\beta_{g, h}=\theta_{g h}^{-1} \theta_{g}{ }^{g} \theta_{h} \alpha_{g, h}$. Thus, α and β give the same cycle class in $\operatorname{Br}(k)$.

Let $P \in \operatorname{Pic}\left(X_{l}\right)$ be a line bundle on X_{l} with stabilizer group $\operatorname{Gal}(l / \kappa)$ under the G-action. Since $P \in \operatorname{Pic}\left(X_{l}\right)^{\operatorname{Gal}(l / \kappa)} \cong\left(S^{*}\right)^{\mathrm{Gal}(l / \kappa)}$, the line bundle P corresponds to a character $\chi: S_{\kappa} \rightarrow \mathbb{G}_{m, \kappa}$ over κ, or equivalently $\chi^{\prime}: S \rightarrow \mathrm{R}_{\kappa / k}\left(\mathbb{G}_{m, \kappa}\right)$. Let $\pi: X_{l} \rightarrow X$ be the projection.

Proposition 7.2. Let $\delta_{P}: H^{1}(G, T) \xrightarrow{\delta} H^{2}(G, S) \xrightarrow{\chi^{\prime}} \operatorname{Br}(\kappa)$ be the composition map. Then $\delta_{P}[U]=\left[\operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*} P\right)\right] \in \operatorname{Br}(\kappa)$.

Proof. First we prove the case when $\kappa=k$. In this case, the line bundle $P \in$ $\operatorname{Pic}\left(X_{l}\right)^{G} \cong \operatorname{Pic}\left(X^{*}\right)$. Thus, there is $Q \in \operatorname{Pic}\left(X^{*}\right)$ such that $P \cong f^{*} \pi_{X^{*}}^{*} Q$, where $\pi_{X^{*}}: X_{l}^{*} \rightarrow X^{*}$ is the projection and $f: X_{l} \rightarrow X_{l}^{*}$ is the T_{l}-isomorphism. [Merkurjev and Panin 1997, Lemma 7.3] shows that $[U] \cup\left[\left.Q\right|_{T}\right]=\left[\operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*} P\right)\right] \in \operatorname{Br}(k)$. On the other hand, $\delta_{P}([U])=\delta[U] \cup\left[\chi^{\prime}\right]=\delta[U] \cup[Q]$. By Lemma 7.1, $\delta_{P}([U])=$ $[U] \cup[\partial Q]=[U] \cup\left[\left.Q\right|_{T}\right]$.

In general, let $H=\operatorname{Gal}(l / \kappa)$ and consider the restriction map Res : $H^{1}(G, T) \rightarrow$ $H^{1}\left(H, T_{\kappa}\right)$ which sends $[U]$ to $\left[U_{\kappa}\right]$. There is a commutative diagram:

Thus, $\delta_{P}[U]=\left[\operatorname{End}_{\mathcal{O}_{X_{\kappa}}}\left(\pi_{\kappa *} P\right)\right]$, where $\pi_{\kappa}: X_{l} \rightarrow X_{\kappa}$ is the projection. By the proof of Lemma 6.3, $\operatorname{End}_{\mathcal{O}_{X_{\kappa}}}\left(\pi_{\kappa *} P\right) \cong \operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*} P\right)$.

Corollary 7.3. Let X be a smooth projective toric variety over k that splits over l and $G=\operatorname{Gal}(l / k)$. Assume $\operatorname{Pic}\left(X_{l}\right)$ is a permutation G-module, i.e., the torus S is quasitrivial and thus has the form $\prod_{i=1}^{t} \mathrm{R}_{k_{i} / k} \mathbb{G}_{m, k_{i}}$, where k_{i} are finite separable field extensions of k. Then the principal homogeneous space U is uniquely determined by $\left(B_{i} \in \operatorname{Br}\left(k_{i}\right)\right)_{1 \leqslant i \leqslant t}$, where B_{i} split over E. Let $\left\{S_{i}\right\}_{i=1}^{t}$ be the set of representatives for G-orbits of $\operatorname{Pic}\left(X_{l}\right)$. Then B_{i} comes from $\operatorname{End}_{\mathcal{O}_{X}}\left(\pi_{*} S_{i}\right)$.

Proof. The result follows from Proposition 7.2 and the exact sequence

$$
0 \rightarrow H^{1}(k, T) \rightarrow \prod_{i=1}^{t} \operatorname{Br}\left(k_{i}\right) \rightarrow \operatorname{Br}(E)
$$

Remark 7.4. Families (i), (ii) and (iii) and their blowups have permutation Picard groups.
(ii): Let $X=\mathrm{SB}(A)$ be a Severi-Brauer variety of dimension n, $\operatorname{Aut}_{\Sigma}\left(X_{l}\right)=S_{n+1}$. We have

$$
1 \rightarrow \mathbb{G}_{m, k} \rightarrow \mathrm{R}_{E / k}\left(\mathbb{G}_{m, E}\right) \rightarrow T \rightarrow 1
$$

which induces

$$
0 \rightarrow H^{1}(G, T) \xrightarrow{\delta} \operatorname{Br}(k) \rightarrow \operatorname{Br}(E) .
$$

Then $\delta(U)=[A]$ and A splits over E; see [Merkurjev and Panin 1997, Example 8.5]. (i): Let $X_{l}=F_{a}, a \geqslant 2$, Aut $_{\Sigma}=S_{2}$, and E factors as $k \times F \times k$, where F is the quadratic étale k-algebra corresponding to $\left[\rho^{\prime}\right] \in H^{1}\left(G, S_{2}\right)$. We have

$$
1 \rightarrow \mathbb{G}_{m, k} \rightarrow \mathbb{G}_{m, k} \times \mathrm{R}_{F / k}\left(\mathbb{G}_{m, F}\right) \rightarrow T \rightarrow 1
$$

where $\mathbb{G}_{m, k} \rightarrow \mathbb{G}_{m, k}$ is the a-th power homomorphism. It induces

$$
0 \rightarrow H^{1}(G, T) \xrightarrow{\delta} \operatorname{Br}(k) \rightarrow \operatorname{Br}(k) \times \operatorname{Br}(F),
$$

where $[U] \mapsto[Q] \mapsto\left(\left[Q^{\otimes a}\right],\left[Q_{F}\right]\right)$. By Lemma 4.11, the toric surface X is a \mathbb{P}^{1} bundle over some conic curve C. We have the torus of C is $T^{\prime}=\mathrm{R}_{F / k}\left(\mathbb{G}_{m, F}\right) / \mathbb{G}_{m, k}$. There is a commutative diagram with exact rows:

Hence, the image of [U] under $\delta \circ h_{*}: H^{1}(G, T) \rightarrow H^{1}\left(G, T^{\prime}\right) \rightarrow \operatorname{Br}(k)$ is [$\left.Q\right]$, and thus $C=\mathrm{SB}(Q)$. Since a quaternion algebra has a period at most 2 in the Brauer group, if a is odd, then $\left[Q^{\otimes a}\right] \in \operatorname{Br}(k)$ being trivial implies that $Q=\mathrm{M}_{2}(k)$. Thus we have:

Proposition 7.5. Let X be a toric surface that is a form of $F_{2 a+1}$. Then $X \cong F_{2 a+1}$.
Remark 7.6. Iskovskih showed that any form of $F_{2 a+1}$ is trivial [Iskovskih 1979, Theorem 3(2)]. The above proposition reproves this result in the case of toric surfaces.
(iii): Let $X_{l}=\mathbb{P}^{1} \times \mathbb{P}^{1}$, Aut ${ }_{\Sigma}=D_{8}$. In this case, the map $\beta: G \rightarrow \mathrm{GL}(2, \mathbb{Z})$ factors through $\gamma: G \rightarrow S_{2}$, where S_{2} permutes $\mathcal{O}(1,0)$ and $\mathcal{O}(0,1)$. Then the quadratic étale algebra K corresponds to γ. We have

$$
1 \rightarrow \mathrm{R}_{K / k}\left(\mathbb{G}_{m, K}\right) \rightarrow \mathrm{R}_{E / k}\left(\mathbb{G}_{m, E}\right) \rightarrow T \rightarrow 1,
$$

which induces

$$
0 \rightarrow H^{1}(G, T) \xrightarrow{\delta} \operatorname{Br}(K) \rightarrow \operatorname{Br}(E) .
$$

Then $\delta(U)=[B]$ and B splits over E. Let $\mathrm{N}_{K / k}: \mathrm{R}_{K / k}\left(\mathbb{G}_{m, K}\right) \rightarrow \mathbb{G}_{m, k}$ be the norm map which induces $\operatorname{cor}_{K / k}: \operatorname{Br}(K) \rightarrow \operatorname{Br}(k)$. Then $[A]=\operatorname{cor}_{K / k}[B]$.

Separable algebras for toric surfaces. Let X be a smooth projective toric T surface over k that splits over l and $G=\operatorname{Gal}(l / k)$. Recall that we have a finite chain of blowups of toric T-surfaces

$$
X=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n}=X^{\prime}
$$

where X^{\prime} is minimal. For $1 \leqslant i \leqslant n$, let f_{i} map $\left(X_{i-1}\right)_{l} \rightarrow\left(X_{i}\right)_{l}$, which are the blowups of G-sets of disjoint T_{l}-invariant points. Let E_{i} be the G-sets of the exceptional divisors of f_{i} and $X^{\prime} \cong B$ in \mathcal{C}.

Proposition 7.7.

$$
X \cong B \times \prod_{i=1}^{n} \operatorname{Hom}_{G}\left(E_{i}, l\right) \quad \text { in } \mathcal{C} .
$$

Proof. We only need to consider the simple case: Let $f: Y \rightarrow Z$ be a blowup of toric T-surfaces and let $E=\left\{P_{j}\right\}$ be the G-set of line bundles associated to the exceptional divisors of $g=f_{l}$. We assume further that the G-action on E is transitive.

Let $p: Y_{l} \rightarrow Y$ and $q: Z_{l} \rightarrow Z$ be the projections. Then we have a commutative diagram:

Recall that if $K_{0}\left(Z_{l}\right)$ has a G-basis γ, then $g^{*}(\gamma) \cup E$ is a G-basis of $K_{0}\left(Y_{l}\right)$. Since Z is a toric surface, we can assume γ consists of line bundles over Z_{l}. Let $P \in \gamma$. Then

$$
\operatorname{End}_{\mathcal{O}_{Y}}\left(p_{*} g^{*} P\right) \cong \operatorname{End}_{\mathcal{O}_{Y}}\left(f^{*} q_{*} P\right) \cong \operatorname{Hom}_{\mathcal{O}_{Z}}\left(q_{*} P, f_{*} f^{*}\left(q_{*} P\right)\right) \cong \operatorname{End}_{\mathcal{O}_{Z}}\left(q_{*} P\right)
$$

where $f_{*} f^{*}$ is identity because f is flat proper and $f_{*} \mathcal{O}_{Y}=\mathcal{O}_{Z}$.
As for the G-orbit E, we have $\bigoplus_{j} P_{j}=p^{*} Q$ for some locally free sheaf Q on Y. By Lemma 6.6 and the assumption that G acts transitively on E, we have $\operatorname{End}_{\mathcal{O}_{Y}}(Q) \cong \operatorname{Hom}_{G}(E, l)$. It is Brauer equivalent to $\operatorname{End}_{\mathcal{O}_{Y}}\left(p_{*} P_{j}\right)$ for any $P_{j} \in E$. Thus the result follows from Theorem 6.5.

8. Derived categories of toric surfaces

Let X be a smooth projective variety over k and let $D^{b}(X)$ be the bounded derived category of coherent sheaves on X. We will define exceptional objects and collections in a generalized way.

Definition 8.1. Let A be a finite simple k-algebra. An object V in $D=D^{b}(X)$ is called A-exceptional if $\operatorname{Hom}_{D}(V, V)=A$ and $\operatorname{Ext}_{D}^{i}(V, V)=0$ for $i \neq 0$.

Definition 8.2. A set of objects $\left\{V_{1}, \ldots, V_{n}\right\}$ in $D=D^{b}(X)$ is called an exceptional collection if for each $1 \leqslant i \leqslant n$, the object V_{i} is A_{i}-exceptional for some finite simple k-algebra A_{i}, and $\operatorname{Ext}_{D}^{r}\left(V_{i}, V_{j}\right)=0$ for any integer r and $i>j$. The collection is full if the thick triangulated subcategory $\left\langle V_{1}, \ldots, V_{n}\right\rangle$ generated by the V_{i} is equivalent to $D^{b}(X)$.

Definition 8.3. A set of objects $\left\{V_{1}, \ldots, V_{n}\right\}$ in $D \in D^{b}(X)$ is called an exceptional block if it is an exceptional collection and $\operatorname{Ext}_{D}^{r}\left(V_{i}, V_{j}\right)=0$ for any integer r and $i \neq j$. Note that the ordering of the V_{i} in this case does not matter.

Assume $\left\{V_{1}, \ldots, V_{n}\right\}$ is a full exceptional collection as above. Since $\left\langle V_{i}\right\rangle$ is equivalent to $D^{b}\left(A_{i}\right)$, the bounded derived category of right A_{i}-modules, we have semiorthogonal decompositions $D^{b}(X)=\left\langle V_{1}, \ldots, V_{n}\right\rangle=\left\langle D^{b}\left(A_{1}\right), \ldots, D^{b}\left(A_{n}\right)\right\rangle$.

The semiorthogonal decomposition of $D^{b}(X)$ can be lifted to the world of dg categories. For details about dg categories, see [Keller 2006]. There is a dg enhancement of $D^{b}(X)$, denoted as $D_{d g}^{b}(X)$ where $D_{d g}^{b}(X)$ is the dg category with same objects as $D^{b}(X)$ and whose morphisms have a $\operatorname{dg} k$-module structure such that $H^{0}\left(\operatorname{Hom}_{D_{d g}^{b}(X)}(x, y)\right)=\operatorname{Hom}_{D^{b}(X)}(x, y)$. Let $\operatorname{perf}_{d g}(X)$ be the dg subcategory of perfect complexes. Since X is smooth projective, $\operatorname{perf}_{d g}(X)$ is quasiequivalent to $D_{d g}^{b}(X)$. For an A-exceptional object V, the pretriangulated dg subcategory $\langle V\rangle_{d g}$ generated by V is quasiequivalent to $D_{d g}^{b}(A)$. Therefore, there is a dg enhancement of the semiorthogonal decomposition $D_{d g}^{b}(X)=\left\langle V_{1}, \ldots, V_{n}\right\rangle_{d g}$, which is quasiequivalent to $\left\langle D_{d g}^{b}\left(A_{1}\right), \ldots, D_{d g}^{b}\left(A_{n}\right)\right\rangle_{d g}$.

Let $d g c a t$ be the category of all small dg categories. There is a universal additive functor $U:$ dgcat $\rightarrow \mathrm{Hmo}_{0}$ where Hmo_{0} is the category of noncommutative motives, see [Tabuada 2015, §2.1-2.4]. We have $U\left(\operatorname{perf}_{d g}(X)\right) \simeq \bigoplus_{i=1}^{n} U\left(D_{d g}^{b}\left(A_{i}\right)\right) \simeq$ $\bigoplus_{i=1}^{n} U\left(A_{i}\right)$. On the other hand, the motivic category \mathcal{C} is a full subcategory of $H m o_{0}$ by sending a pair (X, A) to $\operatorname{perf}_{d g}(X, A)$, the dg category of complexes of right $\mathcal{O}_{X} \otimes_{k} A$-modules which are also perfect complexes of \mathcal{O}_{X}-modules [Tabuada 2014, Theorem 6.10] or [Tabuada 2015, Theorem 4.17]. The above discussion gives the following well-known fact:

Theorem 8.4. Let X be a smooth projective variety over k. If $D^{b}(X)$ has a full exceptional collection of objects $\left\{V_{1}, \ldots, V_{n}\right\}$ where each V_{i} is A_{i}-exceptional, then $X \cong \prod_{i=1}^{n} A_{i}$ in the motivic category \mathcal{C}.

We know for toric varieties satisfying the conditions of Theorem 6.5, they have a complete motivic decomposition into central simple algebras. The following lemma gives a criterion when the motivic decomposition can be lifted to the decomposition of the derived category (i.e., the reverse of Theorem 8.4):

Lemma 8.5. Let X be a smooth projective toric variety over k that splits over l and $G=\operatorname{Gal}(l / k)$. Assume $K_{0}\left(X_{l}\right)$ has a permutation G-basis P of line bundles over $X_{l} . \operatorname{Let}\left\{P_{i}\right\}_{i=1}^{t}$ be G-orbits of P and let $\pi: X_{l} \rightarrow X$ be the projection.

Assume each G-orbit P_{i} is an exceptional block. If there is an ordering for G orbits $\left\{P_{i}\right\}_{i=1}^{t}$ such that $\left\{P_{1}, \ldots, P_{t}\right\}$ gives a full exceptional collection of $D^{b}\left(X_{l}\right)$, then for any $S_{i} \in P_{i}$, the set $\left\{\pi_{*} S_{1}, \ldots, \pi_{*} S_{t}\right\}$ is a full exceptional collection of $D^{b}(X)$.

Proof. First we show that $\left\{\pi_{*} S_{1}, \ldots, \pi_{*} S_{t}\right\}$ is an exceptional collection. Since π is flat and finite, both $\pi^{*}: D^{b}(X) \rightarrow D^{b}\left(X_{l}\right)$ and $\pi_{*}: D^{b}\left(X_{l}\right) \rightarrow D^{b}(X)$ are exact functors. The result follows from

$$
\begin{aligned}
\operatorname{Ext}_{D^{b}(X)}^{r}\left(\pi_{*} S_{i}, \pi_{*} S_{j}\right) \otimes_{k} l & \cong \operatorname{Ext}_{D^{b}\left(X_{l}\right)}^{r}\left(\pi^{*} \pi_{*} S_{i}, \pi^{*} \pi_{*} S_{j}\right) \\
& \cong \bigoplus_{g, g^{\prime} \in G} \operatorname{Ext}_{D^{b}\left(X_{l}\right)}^{r}\left(g S_{i}, g^{\prime} S_{j}\right)
\end{aligned}
$$

In particular, $\pi_{*} S_{i}$ is an exceptional object and thus $\left\langle\pi_{*} S_{i}\right\rangle$ is an admissible subcategory of $D^{b}(X)$. Since $\left\langle\pi_{*} S_{i} \otimes_{k} l\right\rangle=\left\langle P_{i}\right\rangle$ and $D^{b}\left(X_{l}\right)=\left\langle P_{1}, \ldots, P_{t}\right\rangle$, by [Auel and Bernardara 2015, Lemma 2.3], we have $D^{b}(X)=\left\langle\pi_{*} S_{1}, \ldots, \pi_{*} S_{t}\right\rangle$.

Using the classification of toric surfaces, we can confirm the lifting for toric surfaces:

Theorem 8.6. Let X be a smooth projective toric surface over k that splits over l and $G=\operatorname{Gal}(l / k)$. Then $K_{0}\left(X_{l}\right)$ has a permutation G-basis P of line bundles over X_{l} such that each G-orbit is an exceptional block. Furthermore, there exists an ordering of the G-orbits $\left\{P_{i}\right\}_{i=1}^{t}$ of P such that $\left\{P_{1}, \ldots, P_{t}\right\}$ gives a full exceptional collection of $D^{b}\left(X_{l}\right)$. Therefore, for any $S_{i} \in P_{i},\left\{\pi_{*} S_{1}, \ldots, \pi_{*} S_{t}\right\}$ is a full exceptional collection of $D^{b}(X)$, where $\pi: X_{l} \rightarrow X$ is the projection.

Proof. First assume that X is minimal. By the classification of minimal toric surfaces (Theorem 4.12), we have X_{l} is (i) $F_{a}, a \geqslant 2$; (ii) \mathbb{P}^{2}; (iii) $\mathbb{P}^{1} \times \mathbb{P}^{1}$; (iv) del Pezzo surface of degree 6 . Using the notation introduced in Theorem 5.2, the derived category $D^{b}\left(X_{l}\right)$ has the following full exceptional collections of line bundles:
(i) $\left\{\mathcal{O}, \mathcal{O}\left(D_{1}\right), \mathcal{O}\left(D_{2}\right), \mathcal{O}\left(D_{1}+D_{2}\right)\right\}$;
(ii) $\left\{\mathcal{O}, \mathcal{O}\left(D_{1}\right), \mathcal{O}\left(2 D_{1}\right)\right\}=\{\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2)\}$;
(iii) $\left\{\mathcal{O}, \mathcal{O}\left(D_{1}\right), \mathcal{O}\left(D_{2}\right), \mathcal{O}\left(D_{1}+D_{2}\right)\right\}=\{\mathcal{O}, \mathcal{O}(1,0), \mathcal{O}(0,1), \mathcal{O}(1,1)\}$;
(iv) $\left\{\mathcal{O}, R_{1}^{\vee}, R_{2}^{\vee}, R_{3}^{\vee}, Q_{1}^{\vee}, Q_{2}^{\vee}\right\}$ where $(-)^{\vee}$ is the dual of the invertible sheaf.

Cases (i)-(iii) follow from the projective bundle theorem [Orlov 1992, Theorem 2.6] and (iv) follows from [Auel and Bernardara 2015, Proposition 9.1] or [Blunk et al. 2011]. Moreover, the collections $\{\mathcal{O}(1,0), \mathcal{O}(0,1)\},\left\{R_{i}^{\vee}\right\}_{i=1}^{3}$ and $\left\{Q_{j}^{\vee}\right\}_{j=1}^{2}$ are exceptional blocks. These sets are the only G-orbits with more than one object. Therefore, each G-orbit is an exceptional block.

Now it suffices to consider the case that $f: X \rightarrow X^{\prime}$ is a simple blowup of a minimal toric surface X^{\prime}, that is, the map $f_{l}: X_{l} \rightarrow X_{l}^{\prime}$ is the blowup of a G-set of disjoint torus invariant points of X_{l}^{\prime} where G acts on the set transitively. Let E_{i} be the exceptional divisors of f_{l}. Let E be the set $\left\{\mathcal{O}_{E_{i}}(-1)\right\}$. By [Orlov 1992, Theorem 4.3], the derived category $D^{b}(X)$ has a full exceptional collection $\left\{E, L^{\bullet} f^{*} D^{b}\left(X^{\prime}\right)\right\}$. Note that the full exceptional collections of minimal toric surfaces provided above all have the structure sheaf \mathcal{O} as the first object. The right mutation of the pair $\left(\mathcal{O}_{E_{i}}(-1), \mathcal{O}\right)$ is $\left(\mathcal{O}, \mathcal{O}\left(E_{i}\right)\right)$ (the extension case in [Karpov and Nogin 1998, Proposition 2.3]). Therefore, the right mutation of $\{E, \mathcal{O}\}$ is $\left\{\mathcal{O}, E^{\prime}\right\}$ where $E^{\prime}=\left\{\mathcal{O}\left(E_{i}\right)\right\}$. The G-orbit E^{\prime} is an exceptional block because the order in the set is exchangeable. Hence, $D^{b}\left(X_{l}\right)$ has a full exceptional collection $\left\{\mathcal{O}, E^{\prime}\right.$, the rest of the line bundles provided above\} (they form a basis of $K_{0}\left(X_{l}\right)$) and each G-orbit is an exceptional block.

Acknowledgements

This paper is a version of my Ph.D. thesis at University of California, Los Angeles. I would like to thank my advisor, Christian Haesemeyer, for proposing this question and for his help, and to thank Alexander Merkurjev for useful conversations. I also want to thank the referees for numerous helpful comments and suggestions. Lastly, I want to thank Patrick McFaddin for pointing out a mistake in an earlier version.

References

[Auel and Bernardara 2015] A. Auel and M. Bernardara, "Semiorthogonal decompositions and birational geometry of del Pezzo surfaces over arbitrary fields", preprint, 2015. To appear in Proc. London Math. Soc. arXiv
[Blunk 2010] M. Blunk, "Del Pezzo surfaces of degree 6 over an arbitrary field", J. Algebra 323:1 (2010), 42-58. MR Zbl
[Blunk et al. 2011] M. Blunk, S. J. Sierra, and S. P. Smith, "A derived equivalence for a degree 6 del Pezzo surface over an arbitrary field", J. K-Theory 8:3 (2011), 481-492. MR Zbl
[Colliot-Thélène et al. 2008] J.-L. Colliot-Thélène, N. Karpenko, and A. Merkurjev, "Rational surfaces and the canonical dimension of PGL ${ }_{6}$ ", St. Petersburg Math. J. 19:5 (2008), 793-804. MR Zbl
[Cox et al. 2011] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics 124, American Mathematical Society, Providence, 2011. MR Zbl
[Danilov 1978] V. I. Danilov, "The geometry of toric varieties", Russian Math. Surveys 33:2(200) (1978), 97-154. MR Zbl
[Elman et al. 2008] R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications 56, American Mathematical Society, Providence, 2008. MR Zbl
[Fulton 1993] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press, Princeton, NJ, 1993. MR Zbl
[Gille and Szamuely 2006] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics 101, Cambridge University Press, 2006. MR Zbl
[Hassett 2009] B. Hassett, "Rational surfaces over nonclosed fields", pp. 155-209 in Arithmetic geometry, Clay Math. Proc. 8, Amer. Math. Soc., Providence, 2009. MR Zbl
[Iskovskih 1979] V. A. Iskovskih, "Minimal models of rational surfaces over arbitrary fields", Izv. Akad. Nauk SSSR Ser. Mat. 43:1 (1979), 19-43, 237. In Russian; translated in Math. USSR-Izvestiya 24:2 (1985), 221-244. MR Zbl
[Karpov and Nogin 1998] B. V. Karpov and D. Y. Nogin, "Three-block exceptional sets on del Pezzo surfaces", Izv. Ross. Akad. Nauk Ser. Mat. 62:3 (1998), 3-38. In Russian; translated in Izv. Math. 62:3 (1998), 429-463. MR Zbl
[Keller 2006] B. Keller, "On differential graded categories", pp. 151-190 in International Congress of Mathematicians (Madrid, 2006), vol. II, edited by M. Sanz-Solé et al., Eur. Math. Soc., Zürich, 2006. MR Zbl
[Klyachko 1992] A. A. Klyachko, "K-theory of demazure models", Amer. Math. Soc. Transl. 154:2 (1992), 37-46. MR Zbl
[Knus et al. 1998] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, American Mathematical Society Colloquium Publications 44, American Mathematical Society, Providence, 1998. MR Zbl
[Merkurjev 2005] A. S. Merkurjev, "Equivariant K-theory", pp. 925-954 in Handbook of K-theory. Vol. 1, 2, edited by E. M. Friedlander and D. R. Grayson, Springer, 2005. MR Zbl
[Merkurjev and Panin 1997] A. S. Merkurjev and I. A. Panin, " K-theory of algebraic tori and toric varieties", K-Theory 12:2 (1997), 101-143. MR Zbl
[Newman 1972] M. Newman, Integral matrices, Pure and Applied Mathematics 45, Academic Press, New York-London, 1972. MR Zbl
[Oda 1978] T. Oda, Lectures on Torus embeddings and applications, Tata Institute of Fundamental Research Lectures on Mathematics and Physics 57, Springer, 1978. MR Zbl
[Orlov 1992] D. O. Orlov, "Projective bundles, monoidal transformations, and derived categories of coherent sheaves", Izv. Ross. Akad. Nauk Ser. Mat. 56:4 (1992), 852-862. In Russian; translated in Russian Acad. Sci. Izv. Math. 41:1 (1993), 133-141. MR Zbl
[Panin 1994] I. A. Panin, "On the algebraic K-theory of twisted flag varieties", K-Theory $\mathbf{8}: 6$ (1994), 541-585. MR Zbl
[Quillen 1973] D. Quillen, "Higher algebraic K-theory, I", pp. 85-147 in Algebraic K-theory, I : Higher K-theories (Seattle, 1972), Lecture Notes in Math. 341, Springer, 1973. MR Zbl
[Serre 1997] J.-P. Serre, Galois cohomology, Springer, 1997. MR Zbl
[SGA 6 1971] A. Grothendieck, P. Berthelot, and L. Illusie, Théorie des intersections et théorème de Riemann-Roch (Séminaire de Géométrie Algébrique du Bois Marie 1966-1967), Lecture Notes in Math. 225, Springer, 1971. MR Zbl
[Swan 1985] R. G. Swan, " K-theory of quadric hypersurfaces", Ann. of Math. (2) 122:1 (1985), 113-153. MR Zbl
[Tabuada 2014] G. Tabuada, "Additive invariants of toric and twisted projective homogeneous varieties via noncommutative motives", J. Algebra 417 (2014), 15-38. MR Zbl
[Tabuada 2015] G. Tabuada, Noncommutative motives, University Lecture Series 63, American Mathematical Society, Providence, 2015. MR Zbl
[Voskresenskii 1982] V. E. Voskresenskii, "Invariant Demazure models", pp. 3-15 in Investigations in number theory, Saratov. Gos. Univ., Saratov, 1982. Russian. MR
[Voskresenskii and Klyachko 1985] V. E. Voskresenskii and A. A. Klyachko, "Toroidal fano varieties and root systems", Math. USSR Izvestiya 24:2 (1985), 221-244. MR Zbl

Received May 5, 2017. Revised November 27, 2017.

Fei Xie
FAKUlTÄT FÜR Mathematik
UNIVERSITÄT BIELEFELD
BIELEFELD
GERMANY
fxie@math.uni-bielefeld.de

CORRECTIONS TO THE ARTICLE THE JOHNSON-MORITA THEORY FOR THE RINGS OF FRICKE CHARACTERS OF FREE GROUPS

TAKAO Satoh

Volume 275:2 (2015), 443-461

There is a gap in the proof of Proposition 3.1, and it seems to be still an open problem to determine whether the map Φ is surjective or not. In order not to cause any effect on our main theorems, we modify our previous arguments in the following way.

- page 453, line 1: We withdraw the statement and the proof of Proposition 3.1.
- page 455, line 13: We amend the exact sequence (6) to

$$
0 \rightarrow \operatorname{Hom}_{\mathbf{Q}}\left(\operatorname{gr}^{1}(J), \operatorname{gr}^{2}(J)\right) \xrightarrow{\iota} \overline{\operatorname{Aut}}\left(J / J^{3}\right) \xrightarrow{\varphi} \operatorname{Im}(\varphi) \rightarrow 1
$$

- page 456, lines 1,5 and 18; page 458, line 6 from the bottom: We amend $\overline{\operatorname{Aut}}\left(J / J^{3}\right)$ to $\operatorname{Im}(\varphi)$.
- page 456, line 2; page 458 at the bottom: We amend the way to choose the elements $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p+q}$ as follows. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ be all elements in $T_{1} \subset J$, and $\gamma_{p+1}, \ldots, \gamma_{p+q}$ all elements in $T_{2} \subset J^{2}$.
- page 457, line 3: We complement the information about the map Aut $F_{n} \rightarrow$ $\operatorname{Aut}\left(J / J^{3}\right)$. The image of this map is contained in $\overline{\operatorname{Aut}}\left(J / J^{3}\right)$.

Acknowledgments

The author would like to thank the referee of our forthcoming paper "On the $\mathrm{SL}(2, \mathbb{C})$-representation rings of free abelian group" for pointing out the gaps in the proof of Proposition 3.1.

[^16]Received December 20, 2017. Revised February 5, 2018.

TAKaO SATOH
Department of Mathematics, Faculty of Science Division II Tokyo University of Science
SHINJUKU-KU
TOKYO
JAPAN
takao@rs.tus.ac.jp

CONTENTS

Volume 296, no. 1 and no. 2
Parsa Bonderson, Eric C. Rowell, Zhenghan Wang and Qing Zhang: Congruence subgroups and super-modular categories 257
Dennis Brokemper: On the Chow ring of the stack of truncated Barsotti-Tate Groups 271
Marion Campisi and Matt Rathbun: Hyperbolic manifolds containing high topological index surfaces 305
Bin Chen, Qun He and Fanqi Zeng: Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow 1
Igor Ciganović: Composition series of a class of induced representations, a case of one half cuspidal reducibility 21
Georgios Daskalopoulos, Chikako Mese and Graeme Wilkin: Higgs bundles over cell complexes and representations of finitely presented groups 31
András Domokos, Matthew Krauel, Vincent Pigno, Corey Shanbrom and Michael VanValkenburgh: Length spectra of sub-Riemannian metrics on compact Lie groups 321
Lucas C. F. Ferreira and Jhean E. Pérez-López: Besov-weak-Herz spaces and global solutions for Navier-Stokes equations 57
Hai-Ping Fu: Four-manifolds with positive Yamabe constant 79
Qun He with Bin Chen and Fanqi Zeng 1
Jun Hu and Xinfeng Liang: On the structure of cyclotomic nilHecke algebras 105
Taekyung Kim and Hwajong Yoo: The action of the Hecke operators on the component groups of modular Jacobian varieties 341
Matthew Krauel with András Domokos, Vincent Pigno, Corey Shanbrom and Michael VanValkenburgh 321
Xinfeng Liang with Jun Hu 105
Bingyuan Liu: Two applications of the Schwarz lemma 141
Li Ma: Liouville theorems, volume growth, and volume comparison for Ricci shrinkers 357
Pedro Macias Marques with Simone Marchesi and Helena Soares 155
Simone Marchesi, Pedro Macias Marques and Helena Soares: Monads on projective varieties 155
Conchita Martínez-Pérez, Francesco Matucci and Brita Nucinkis: Presentations of generalisations of Thompson's group V 371
Francesco Matucci with Conchita Martínez-Pérez and Brita Nucinkis 371
Chikako Mese with Georgios Daskalopoulos and Graeme Wilkin 31
Tsutomu Nakamura and Yuji Yoshino: Localization functors and cosupport in derived categories of commutative Noetherian rings 405
Brita Nucinkis with Conchita Martínez-Pérez and Francesco Matucci 371
Jhean E. Pérez-López with Lucas C. F. Ferreira 57
Vincent Pigno with András Domokos, Matthew Krauel, Corey Shanbrom and Michael VanValkenburgh 321
Matt Rathbun with Marion Campisi 305
Eric C. Rowell with Parsa Bonderson, Zhenghan Wang and Qing Zhang 257
Zhuoping Ruan, Ingo Witt and Huicheng Yin: Minimal regularity solutions of semilinear generalized Tricomi equations 181
Takao Satoh: Erratum for the article The Johnson-Morita theory for the rings of Fricke characters of free groups 509
Ralf Schmidt and Long Tran: Zeta integrals for GSp(4) via Bessel models 437
Corey Shanbrom with András Domokos, Matthew Krauel, Vincent Pigno and Michael VanValkenburgh 321
Helena Soares with Simone Marchesi and Pedro Macias Marques 155
David Taylor, V. S. Varadarajan, Jukka Virtanen and David Weisbart: Temperedness
of measures defined by polynomial equations over local fields 227
Long Tran with Ralf Schmidt 437
Michael VanValkenburgh with András Domokos, Matthew Krauel, Vincent Pigno and Corey Shanbrom 321
V. S. Varadarajan with David Taylor, Jukka Virtanen and David Weisbart 227
Jukka Virtanen with David Taylor, V. S. Varadarajan and David Weisbart 227
Zhenghan Wang with Parsa Bonderson, Eric C. Rowell and Qing Zhang 257
David Weisbart with David Taylor, V. S. Varadarajan and Jukka Virtanen 227
Graeme Wilkin with Georgios Daskalopoulos and Chikako Mese 31
Ingo Witt with Zhuoping Ruan and Huicheng Yin 181
Fei Xie: Toric surfaces over an arbitrary field 481
Huicheng Yin with Zhuoping Ruan and Ingo Witt 181
Hwajong Yoo with Taekyung Kim 341
Yuji Yoshino with Tsutomu Nakamura 405
Fanqi Zeng with Bin Chen and Qun He 1
Qing Zhang with Parsa Bonderson, Eric C. Rowell and Zhenghan Wang 257

Guidelines for Authors

Authors may submit articles at msp.org/pjm/about/journal/submissions.html and choose an editor at that time. Exceptionally, a paper may be submitted in hard copy to one of the editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration for publication elsewhere. Instructions on manuscript preparation are provided below. For further information, visit the web address above or write to pacific@math.berkeley.edu or to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095-1555. Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or less in English must be included. The abstract should be self-contained and not make any reference to the bibliography. Also required are keywords and subject classification for the article, and, for each author, postal address, affiliation (if appropriate) and email address if available. A home-page URL is optional.

Authors are encouraged to use $\mathrm{IATEX}_{\mathrm{E}}$, but papers in other varieties of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, and exceptionally in other formats, are acceptable. At submission time only a PDF file is required; follow the instructions at the web address above. Carefully preserve all relevant files, such as IATEX sources and individual files for each figure; you will be asked to submit them upon acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All references in the bibliography should be cited in the text. Use of $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ is preferred but not required. Any bibliographical citation style may be used but tags will be converted to the house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality. Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output. Figures containing bitmaps should be generated at the highest possible resolution. If there is doubt whether a particular figure is in an acceptable format, the authors should check with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying no more than three lines of vertical space can be kept in the text ("the curve looks like this:"). It is acceptable to submit a manuscript will all figures at the end, if their placement is specified in the text by means of comments such as "Place Figure 1 here". The same considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize line and page breaks in the original manuscript. The manuscript will be reformatted to use the journal's preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author) at a website in PDF format. Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may cause publication to be postponed.

PACIFIC JOURNAL OF MATHEMATICS

Volume 296 No. $2 \quad$ October 2018
Congruence subgroups and super-modular categories 257
Parsa Bonderson, Eric C. Rowell, Zhenghan Wang and Qing Zhang
On the Chow ring of the stack of truncated Barsotti-Tate Groups 271
Dennis Brokemper
Hyperbolic manifolds containing high topological index surfaces 305
Marion Campisi and Matt Rathbun
Length spectra of sub-Riemannian metrics on compact Lie groups 321
András Domokos, Matthew Krauel, Vincent Pigno, Corey Shanbrom and Michael VanValkenburgh
The action of the Hecke operators on the component groups of modular 341
Jacobian varieties
Taekyung Kim and Hwajong Yoo
Liouville theorems, volume growth, and volume comparison for Ricci 357 shrinkers
Li MA
Presentations of generalisations of Thompson's group V 371
Conchita Martínez-Pérez, Francesco Matucci and Brita Nucinkis
Localization functors and cosupport in derived categories of commutative 405
Noetherian rings
Tsutomu Nakamura and Yuji Yoshino
Zeta integrals for GSp(4) via Bessel models 437
Ralf Schmidt and Long Tran
Toric surfaces over an arbitrary field 481
Fei Xie
Erratum for the article The Johnson-Morita theory for the rings of Fricke 509characters of free groups
TAKaO Satoh

[^0]: E. Rowell and Q. Zhang were partially supported by NSF grants DMS-1410144 and DMS-1664359, and Z. Wang by NSF grant DMS-1411212. The authors thank M. Cheng, M. Papanikolas and Z. Šunić for valuable discussions.
 MSC2010: 18D10.
 Keywords: spin mapping class group, super-modular category, fermionic modular category.

[^1]: Part of the author's doctoral work at the University of Paderborn, Germany.
 MSC2010: 14C15.
 Keywords: equivariant Chow groups, Barsotti-Tate groups, displays, G-zips.

[^2]: MSC2010: primary 55P15, 57M20, 57M27; secondary 57M10, 57M15.
 Keywords: topological index, topologically minimal, hyperbolic, bridge position, distance, bridge distance, graph.

[^3]: MSC2010: primary 53C17, 53C22; secondary 22E30, 51N30.
 Keywords: sub-Riemannian geometry, geodesics, root systems, compact Lie groups.

[^4]: ${ }^{3}$ There are some minor errors in the paper, which are corrected by Edixhoven [1991, §4.4.1]

[^5]: ${ }^{4}$ The structure of $\Phi_{q}(N q)$ is already known by [Mazur and Rapoport 1977] when N is square-free and prime to 6 , and by [Edixhoven 1991, §4.4.1] in general.
 ${ }^{5}$ This reminds us of the result by Mazur [1977]: when N is a prime number, the kernel of the Eisenstein prime of $J_{0}(N)$ containing a prime number ℓ is completely reducible when ℓ is odd, and is indecomposable when $\ell=2$.

[^6]: ${ }^{6}$ Every elliptic curve isogenous to a supersingular one is also supersingular

[^7]: ${ }^{7}$ If $\alpha_{p}^{*}(s)=\sum t_{j}$ then $\alpha_{p}^{*}\left(\Psi_{s}\right)=\sum \Psi_{t_{j}}$ and if $\alpha_{p}(t)=s$ then $\alpha_{p, *}\left(\Psi_{t}\right)=e(s) / e(t) \Psi_{s} ;$ and similarly for β_{p}^{*} and $\beta_{p, *}$.

[^8]: ${ }^{8}$ By Proposition 2.6, we know that Frob is an involution of Σ_{6} without fixed points.

[^9]: ${ }^{9}$ By Proposition 2.6, we know that Frob is an involution of Σ_{4} without fixed points.

[^10]: This research is partially supported by the National Natural Science Foundation of China, grant nos. 11771124 and 11271111.
 MSC2010: 53C21, 53C44, 53C25.
 Keywords: Ricci shrinkers, f-harmonic functions, Liouville theorem, volume comparison.

[^11]: This work was partially funded by LMS Scheme 4 grant 41209. The first named author was supported by Gobierno de Aragón, European Regional Development Funds and MTM2015-67781-P (MINECO/FEDER). The second author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA) of the Istituto Nazionale di Alta Matematica (INdAM) and gratefully acknowledges the support of the Fondation Mathématique Jacques Hadamard (ANR-10-CAMP-0151-02 - FMJH - Investissement d'Avenir) and the Fundação para a Ciência e a Tecnologia (FCT projects UID/Multi/04621/2013 (CEMAT-Ciências) and PEst-OE/MAT/UI0143/2014). MSC2010: 20 J 05.
 Keywords: generalized Thompson groups, finite presentations.

[^12]: MSC2010: 13D09, 13D45, 55P60.
 Keywords: colocalizing subcategory, cosupport, local homology.

[^13]: ${ }^{1}$ This result is not needed in this work.

[^14]: MSC2010: 11F70.
 Keywords: L-factors, GSp(4), Bessel models, Jacquet-Waldspurger modules.

[^15]: The author was supported in part by the NSF research grant DMS-\#1 160206.
 MSC2010: primary 14J20, 14L30, 14M25; secondary 11E72, 16E35, 16 H 05.
 Keywords: toric variety, motivic category, separable algebra, exceptional collection.

[^16]: MSC2010: primary 20F28; secondary 20J06.
 Keywords: ring of Fricke characters, automorphism group of free groups, IA-automorphism group, Andreadakis-Johnson filtration, Johnson homomorphisms.

