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ON LEGENDRE CURVES IN NORMED PLANES

VITOR BALESTRO, HORST MARTINI AND RALPH TEIXEIRA

Legendre curves are smooth plane curves which may have singular points,
but still have a well defined smooth normal (and corresponding tangent) vec-
tor field. Because of the existence of singular points, the usual curvature
concept for regular curves cannot be extended to these curves. However,
Fukunaga and Takahashi defined and studied functions that play the role of
curvature functions of a Legendre curve, and whose ratio extends the curva-
ture notion in the usual sense. In the same direction, our paper is devoted to
the extension of the concept of circular curvature from regular to Legendre
curves, but additionally referring not only to the Euclidean plane. For the
first time we will extend the concept of Legendre curves to normed planes.
Generalizing in such a way the results of the mentioned authors, we define
new functions that play the role of circular curvature of Legendre curves,
and tackle questions concerning existence, uniqueness, and invariance un-
der isometries for them. Using these functions, we study evolutes, involutes,
and pedal curves of Legendre curves for normed planes, and the notion of
contact between such curves is correspondingly extended, too. We also pro-
vide new ways to calculate the Maslov index of a front in terms of our new
curvature functions. It becomes clear that an inner product is not necessary
in developing the theory of Legendre curves. More precisely, only a fixed
norm and the associated orthogonality (of Birkhoff type) are necessary.

1. Introduction

The concept of curvature of regular curves in the Euclidean plane can be extended
to normed planes in several ways (see [Balestro et al. 2018] for an exposition of the
topic, and [Martini and Wu 2014] refers, more generally, to classical curve theory
in such planes). One of the curvature types obtained by these extensions, namely
the circular curvature, can be regarded as the inverse of the radius of a second-order
contact circle at the respective point of the curve. Therefore it turns out that the
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investigation of the differential geometry of these curves from the viewpoint of
singularity theory is also due to this context (see [Izumiya et al. 2016] and [Balestro
et al. 2018, Section 9]). In the Euclidean subcase, the concept of curvature can be
carried over to certain curves containing singular points. This was done in [Fukunaga
and Takahashi 2013], and the aim of the present paper is to investigate this framework
more generally for normed planes, using the concept of circular curvature, and also
extending the usual inner product orthogonality to Birkhoff orthogonality.

Let us say a few words about the motivations for studying Legendre curves in
two-dimensional Banach spaces. Minkowski geometry (i.e., the geometry of finite-
dimensional real Banach spaces; see [Thompson 1996]) is more than 100 years
old and can be seen as a starting field and a “special case” of Banach space theory
(see, e.g., [Johnson and Lindenstrauss 2001; 2003]), meaning the restriction to the
geometric view on the finite-dimensional situation. But it can also be considered as a
“subcase” of Finsler geometry (see [Matsumoto 1986] and [Bao et al. 2000]) meaning
here the local situation in tangent spaces. Regarding methods and tools, Minkowski
geometry is also closely related to classical convexity (excellently presented in
[Schneider 2013]), and additionally many of its outcomes generalize results from
convexity. But the field of relative differential geometry (see the survey [Barthel and
Kern 1994] and, as a nice example for classical results in this direction, [Heil 1970])
is also conceptually related. Thus, there should be lively connections between
Minkowski geometry and the fields of functional analysis, differential geometry,
and classical convexity. The existence of such connections is obvious for functional
analysis and convexity, e.g., by various articles in [Johnson and Lindenstrauss 2001;
2003] and by [Thompson 1996]. But in the case of (even classical) differential
geometry and Minkowski geometry, not many articles exist which combine these
fields. Even now, some classical theory of curves in Minkowski planes is not really
developed (this situation was already discussed in [Martini and Wu 2014]). Thus,
we started to write conceptual papers in this direction, to develop some systematized
tools for investigating curves and surfaces in normed planes and spaces from the
viewpoint of differential geometry (see [Balestro et al. 2018; 2017a; 2017b; 2017c]).
In particular, a comprehensive study of all curvature types of curves in normed
planes is given in [Balestro et al. 2018], and this systematization automatically led to
(curvature concepts for) Legendre curves in Minkowski planes. These curves have
interesting applications, e.g., referring to contact manifolds or to fronts, and we hope
that such related notions can also be successfully extended to Minkowski geometry.
Similar investigations will follow, even generalized for gauges (i.e., generalized
Minkowski spaces whose unit ball is still a convex body, but no longer symmetric
with respect to the origin). For example, results on respective generalizations of types
of multifocal curves (such as multifocal Cassini curves, or multifocal ellipses) with
applications in location science and other fields can be found in [Jahn et al. 2016].
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We start with some basic definitions. A normed (or Minkowski) plane (X, ‖·‖) is
a two-dimensional real vector space X endowed with a norm ‖·‖ : X→R, whose unit
ball is the set B := {x ∈ X : ‖x‖ ≤ 1}, namely a compact convex set centered at the
origin o which is an interior point of B. The boundary S := {x ∈ X : ‖x‖= 1} of B is
called the unit circle, and all homothetic copies of B and S will be called Minkowski
balls and Minkowski circles, respectively. We will always assume that the plane is
smooth, which means that S is a smooth curve, and also strictly convex, meaning that
S does not contain straight line segments. In a normed plane (X, ‖ · ‖) we define an
orthogonality relation by stating that two vectors x, y ∈ X are Birkhoff orthogonal
(denoted by x aB y) whenever ‖x + t y‖ ≥ ‖x‖ for each t ∈ R. Geometrically this
means that if x aB y and x 6= 0, then the Minkowski circle centered at the origin
which passes through x is supported by a line in the direction of y. Useful references
with respect to Minkowski geometry (i.e., the geometry of finite-dimensional real
Banach spaces) are [Thompson 1996; Martini et al. 2001; Martini and Swanepoel
2004]; for orthogonality types in Minkowski spaces we refer to [Alonso et al. 2012].

One should notice that Birkhoff orthogonality is not necessarily a symmetric
relation. Actually, we may endow the plane with a new associated norm which
reverses the orthogonality relation. To do so, we fix a nondegenerate symplectic
bilinear form [ · , · ] : X × X→ R (which is unique up to rescaling) and define the
associated antinorm to be

‖x‖a = sup{|[x, y]| : y ∈ S}, x ∈ X.

It is easily seen that ‖ · ‖a is a norm on X, and that it reverses Birkhoff orthogo-
nality. Moreover, the unit anticircle (i.e., the unit circle of the antinorm) solves
the isoperimetric problem in the original Minkowski plane (see [Busemann 1947]).
The planes where Birkhoff orthogonality is symmetric are called Radon planes,
and their unit circles are called Radon curves. In this case, we clearly have that the
unit circle and the unit anticircle are homothets, and we will always assume that
the fixed symplectic bilinear form is rescaled in such way that they coincide. A
comprehensive exposition on this topic is [Martini and Swanepoel 2006].

A smooth curve γ : J→ X is said to be regular if γ ′(t) 6= 0 for every t ∈ J. If a
curve is not regular, then a point, where the derivative vanishes, is called a singular
point of γ . The length of a curve γ : [a, b] → X is defined as usual in terms of the
norm by

l(γ ) := sup
P

n∑
j=1

‖γ (t j )− γ (t j−1)‖,

where the supremum is taken over all partitions of P ={a= t0, . . . , tn = b} of [a, b].
It is clear that we can define here the standard arc-length parametrization, and that
if s is an arc-length parameter in γ , then ‖γ ′(s)‖ = 1. We now define the circular
curvature for a regular curve γ : [0, l(γ )] → X parametrized by arc-length (for the
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sake of simplicity). To do so, let ϕ(u) : [0, l(S)] → S be a parametrization of the
unit circle by arc-length. Let u(s) : [0, l(γ )] → [0, l(S)] be the function such that
γ̇ (s)= dϕ

du (u(s)). Then the circular curvature of γ at γ (s) is defined as

k(s) := u̇(s).

We define the left normal field of γ to be the unit vector field η : [0, l(γ )] → S
such that η(s) aB γ̇ (s) and [η(s), γ̇ (s)]> 0 for each s ∈ [0, l(γ )]. Writing γ̇ (s)=
dϕ
du (u(s)), we have that the left normal field is given by η(s)= ϕ(u(s)). Therefore,
we have the Frenet-type formula

η̇(s)= u̇(s)
dϕ
du
(u(s))= k(s)γ̇ (s).

The center of curvature of γ at γ (s) is the point c(s) := γ (s)− k(s)−1η(s), and
we call the number ρ(s) := k(s)−1 the curvature radius of γ at γ (s). The circle
centered in c(s) and having radius ρ(s) is the osculating circle of γ at γ (s). It
is easily seen that this circle has second-order contact with γ at γ (s). From the
viewpoint of singularity theory, the distance squared function of γ to a point p ∈ X
is the function Dp(s) := ‖γ (s)− p‖2. We can obtain the centers of curvature of a
given curve as follows.

Proposition 1.1. Let γ : [0, l(γ )]→ X be a smooth and regular curve parametrized
by arc length. Then the function Dp(s) = ‖γ (s) − p‖2 is such that Ḋp(s0) =

D̈p(s0)= 0 if and only if p is the center of curvature of γ at γ (s0).

Proof. See [Balestro et al. 2018, Proposition 9.1]. �

Throughout the text, we will call the circular curvature simply curvature, and
the left normal field will be referred to as the normal field.

2. Curvature of curves with singularities

The main objective of this paper is to extend and study the concept of curvature for
curves in normed planes which have certain types of “well-behaving” singularities.
Roughly speaking, in certain situations a curve can have a singularity, but we are
still able to derive a natural tangent direction corresponding to the respective curve
point. For example, let γ (t) : I → X be a curve, and assume that γ has a (unique,
for the sake of simplicity) isolated singularity at t0 ∈ I (that is, γ ′(t) does not vanish
in a punctured neighborhood of t0). If both limits

lim
t→t±0

γ ′(t)
‖γ ′(t)‖

exist and are equal up to the sign, then we can naturally define a field of tangent
(or normal) directions through the entire γ . This kind of singularity appears, for
example, in evolutes of regular curves (see [Balestro et al. 2018, Section 9]).
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In singularity theory, submanifolds with singularities but well-defined tangent
spaces are usually called frontals (see [Ishikawa 2016]). If the ambient space is
two-dimensional, then these submanifolds are precisely the curves which have well-
defined tangent fields, even if they contain singularities. Such curves were studied
in [Fukunaga and Takahashi 2013; 2014; 2015; 2016]. Heuristically speaking, the
existence of a well-defined tangent field has no relation to the metric of the plane.
Therefore, we can reobtain the definitions posed by the mentioned authors, but now
regarding the usual tools and machinery of planar Minkowski geometry.

We define a Legendre curve to be a smooth map (γ, η) : I → X × S such that
η(t) aB γ

′(t) for every t ∈ I. If a Legendre curve is an immersion (i.e., if the
derivatives of γ and η do not vanish at the same time), then we call it a Legendre
immersion. A curve γ : I → X is said to be a frontal if there exists a smooth map
η : I → S such that (γ, η) is a Legendre curve. Finally, we say that γ is a front if
there exists a smooth map η : I → S such that (γ, η) is a Legendre immersion.

Since we are dealing with smooth and strictly convex normed planes, it follows
that Birkhoff orthogonality is unique on both sides. Define the map b : X \ {o}→ S
(where o again denotes the origin of the plane) which associates to each v ∈ X \ {o}
the unique vector b(v) ∈ S such that v aB b(v) and [v, b(v)] > 0. A Legendre
curve is defined heuristically by guaranteeing the existence of a normal field to γ ,
instead of a tangent field. But now we simply use the map b to define a “tangent
field”. We just have to define, for a Legendre curve (γ, η) : I → X × S, the vector
field ξ(t) := b(η(t)). Of course, ξ(t) points in the direction of γ ′(t). Then there
exists a smooth function α : I → R such that

(2-1) γ ′(t)= α(t)ξ(t), t ∈ I.

Also, since η′(t) supports the unit circle at η(t), it follows that there exists a smooth
function κ : I → R such that

(2-2) η′(t)= κ(t)ξ(t), t ∈ I.

We call the pair (α, κ) the curvature of the Legendre curve (γ, η) with respect
to the parameter t . This terminology makes sense since it is easy to see that the
curvature of a Legendre curve depends on its parametrization. To justify why this
pair of functions represents an analogous concept of curvature for Legendre curves,
we will show that it yields the usual (circular) curvature of a regular curve.

Lemma 2.1. Let γ : I → X be a regular curve in a normed plane. Clearly, if
η : I → S is its normal vector field, then (γ, η) is a Legendre curve. Therefore, its
circular curvature k : I → R is given by

k(t)=
κ(t)
α(t)

,

where κ and α are defined as above.
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Proof. For the Legendre curve (γ, η) we have the equalities (2-1) and (2-2). Notice
that, since γ is regular, the function α does not vanish. Hence we may write

η′(t)=
κ(t)
α(t)

γ ′(t).

On the other hand, let s be an arc-length parameter in γ and, as usual, let ϕ(u)
be an arc-length parametrization of the unit circle. We denote the derivative with
respect to s by a superscribed dot, and write

ṫ(s)γ ′(t)= γ̇ (s)=
dϕ
du
(u(s)),

where u(s) is as in the definition of circular curvature. We have that k(s)= u̇(s)
and η(s)= ϕ(u(s)). Differentiating this last equality, we get

ṫ(s)η′(t)= u̇(s)
dϕ
du
(u(s))= u̇(s)γ̇ (s)= u̇(s)ṫ(s)γ ′(t),

and since ṫ(s) does not vanish, it follows that η′(t)= u̇(s)γ ′(t)= k(t)γ ′(t). This
gives the desired equality. �

Remark 2.2. When working in the Euclidean plane, one gets a second Frenet-type
formula by differentiating the field ξ(t), and the same curvature function κ(t) is
obtained (see [Fukunaga and Takahashi 2013]). This is not the case here. The first
problem that appears is that the derivative of ξ(t) does not necessarily point in the
direction of η(t). We can overcome this problem by restricting ourselves to Radon
planes. However, even in this small class of norms we do not reobtain the same
curvature function. Indeed, since ξ(t)= b(η(t)), we have

ξ ′(t)= Dbη(t)(η′(t))= κ(t)Dbη(t)(ξ(t)),

where Db denotes the usual differential of the map b : X \ {o} → S, which is no
longer a (linear) rotation. It turns out that, since the considered plane is Radon, the
vector Dbη(t)(ξ(t)) is a positive multiple of the vector−η(t), but it is not necessarily
unit. If we define the map ρ : S→ R by ρ(v)= ‖Dbv(b(v))‖, then we may write

(2-3) ξ ′(t)=−κ(t)ρ(η(t))η(t).

The function ρ is constant, however, if and only if the plane is Euclidean (see
[Balestro and Shonoda 2018] for a proof). If we return to the general case, we
clearly have

(2-4) ξ ′(t)=−κ(t)ρ(η(t))b(ξ(t)),

and this equality will be used in Section 5, where the function ρ will appear in the
curvature pair of the evolute of a front.
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We give an example to illustrate the concepts we have just introduced.

Example 2.3. Let ‖·‖ be the usual lp−lq norm in R2, for some 1< p, q <∞ such
that 1/p+1/q = 1 (that is, we endow the first and third quadrants with the lp norm,
and the second and fourth with the lq norm). The parametrized curve γ : R→ R2

given by γ (t)= (t3, t2) has a cusp singularity at t = 0, but it is a Legendre curve.
Indeed, the tangent vector at t = 0 is simply the vector (0, 1). For t > 0, the tangent
vector to γ points in a direction of the first quadrant, and supports the (oriented)
unit circle in the fourth quadrant. Equality (2-1) becomes

γ ′(t)= (3t2, 2t)= [(3t2)p
+ (2t)p

]
1/p
·

(3t2, 2t)
[(3t2)p + (2t)p]1/p ,

from where α(t)= [(3t2)p
+ (2t)p

]
1/p. To obtain (2-2) we start by recalling that

an lp − lq norm is a Radon norm, for which Birkhoff orthogonality is symmetric;
see [Martini and Swanepoel 2006]. Thus, to obtain the direction of η we just
have to differentiate the unit tangent vector (since γ ′ rotates counterclockwise, the
derivative has the same orientation as η). To that end, assume that the first portion
of the unit circle in the first quadrant is parametrized by s 7→ (s1/p, (1− s)1/p),
where s = s(t), and write

3t2

2t
=

s1/p

(1−s)1/p .

We get s(t)= (3t2)p/((3t2)p
+ (2t)p). Then η(t) is the unit vector in the direction

of (s−1/q ,−(1− s)−1/q), that is:

η(t)=
(s−1/q ,−(1− s)−1/q)( 1

s +
1

1−s

)1/q = ((1− s)1/q ,−s1/q),

where we recall that we normalized with respect to the norm lq , since η is a vector
of the fourth quadrant. Finally,

η′(t)=−
s ′(t)

q
((1− s)−1/p, s−1/p)=

−s ′(t)
q(1− s)1/ps1/p (s

1/p, (1− s)1/p),

and since (s1/p, (1− s)1/p) is the unit tangent vector to γ , we get

κ(t)=−
s ′(t)

q(1− s(t))1/ps(t)1/p .

For t < 0 we proceed similarly, and the value of κ(0) can be obtained by taking
limits.

At this point, we have seen that we can extend the definitions, which are common
for the Euclidean subcase, in a way that everything still makes sense and has
analogous behavior. However, a simple question arises: if a certain fixed curve
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in the plane is a Legendre curve (immersion) with respect to a fixed norm, is it
then necessarily a Legendre curve (immersion) with respect to any other (smooth
and strictly convex) norm? The answer is positive, and we can briefly explain the
argument. Let S1 and S2 be unit circles with respect to two different norms, and
denote the respective Birkhoff orthogonality relations by a1

B and a2
B . Consider

the map T : S1→ S2 which associates each v ∈ S1 to the unique T (v) ∈ S2 such
that T (v) a2

B b1(v) and [T (v), b1(v)] > 0, where b1 is the usual map b of the
geometry given by S1. The map T is clearly smooth, and if (γ, η) is a Legendre
curve (immersion) with respect to the norm of S1, then (γ, T (η)) is a Legendre
curve (immersion) with respect to the norm of S2. The details are left to the reader.

3. Existence, uniqueness, and invariance under isometries

This section is concerned with natural questions regarding the generalized objects
that we have defined. We start by asking whether or not there exists a corresponding
Legendre curve whose curvature is given by certain fixed smooth functions κ, α :
I → R. For simplicity, throughout this section we assume that I = [0, c].

Theorem 3.1 (existence theorem). Let (α, κ) : I → R2 be a smooth function. Then
there exists a Legendre curve (γ, η) : I → X × S whose curvature is (α, κ).

Proof. First, define the function u : I → R by

u(t)=
∫ t

0
κ(s) ds, t ∈ I.

Now, define η : I → S by η(t)= ϕ(u(t)), and γ : I → X by

γ (t)=
∫ t

0
α(s)b(η(s)) ds, t ∈ I.

We claim that the pair (γ, η) is a Legendre curve with curvature (α, κ). To verify
this, we differentiate γ to obtain γ ′(t) = α(t)b(η(t)). Notice that η(t) aB γ

′(t).
Therefore, in view of the previous notation, we indeed have ξ(t) = b(η(t)), and
consequently (2-1) holds. Now, differentiating η yields

η′(t)= u′(t)
dϕ
du
(u(t))= κ(t)ξ(t),

since ϕ(u) is an arc-length parametrization of the unit circle. �

Of course, the next natural question is whether or not such a Legendre curve
is uniquely determined if we fix initial conditions γ (0) ∈ X and η(0) ∈ S. We
give now a positive answer to this question using the standard theory of ordinary
differential equations.
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Theorem 3.2 (uniqueness theorem). Let (α, κ) : I → R2 be a smooth function and
fix (p, v) ∈ X × S. Then there exists a unique Legendre curve (γ, η) : I → X × S
whose curvature is (α, κ) and such that γ (0)= p and η(0)= v.

Proof. From the construction in the previous theorem, it is clear that to determine a
vector field η : I → S such that η′(t)= κ(t)b(η(t)) with initial condition η(0)= v
is equivalent to finding a function u : I → R that solves the initial value problem{

u′(t)= κ(t), t ∈ I,
u(0)= u0,

where u0 ∈R is such that v=ϕ(u0). Uniqueness of such a function is guaranteed by
the standard theory of ordinary differential equations (see, for instance, [Coddington
and Levinson 1955]).

Now the tangent vector field γ ′(t)= α(t)ξ(t) is completely determined (where
ξ(t)= b(η(t)), as usual). Since it is clear that smooth curves with the same tangent
vector field must be equal up to translation, the proof is complete. �

As a consequence of the uniqueness theorem, we have a characterization of the
Minkowski circle. See [Fukunaga and Takahashi 2015, Proposition 2.12] for the
Euclidean version of this characterization.

Proposition 3.3. A Legendre curve (γ, η) : I→ X× S is contained in a Minkowski
circle if and only if there exists a constant c ∈ R such that α(t)= cκ(t) for all t ∈ I.

Proof. If γ is contained in a Minkowski circle of radius c, then the circular curvature
equals 1/c (see [Balestro et al. 2018, Theorem 6.1]). Therefore, from Lemma 2.1 it
follows that α(t)= cκ(t) for every t ∈ I. The converse follows immediately from
the uniqueness theorem. �

Let (γ, η) : I → X × S be a Legendre curve with curvature (α, κ), and let
T : X→ X be an isometry of the plane, i.e., a norm-preserving map. An isometry
is called orientation-preserving if the sign of the fixed determinant form remains
invariant under its action. Since Birkhoff orthogonality is defined in terms of
distances, it is clear that (T γ, Tη) is still a Legendre curve, and hence it has a
curvature function (κT , αT ).

Theorem 3.4 (invariance under isometries). The curvature of a Legendre curve is
invariant under an orientation-preserving isometry of the plane.

Proof. Using the same notation as above, we have to prove that κ = κT and α = αT .
Recall that an isometry of a normed plane must be linear up to translation, and then
we may consider it as linear, for the sake of simplicity (see [Balestro et al. 2018]).
Hence, from (2-1) and (2-2) we have the equalities

(T γ )′(t)= T γ ′(t)= α(t)T ξ(t) and (Tη)′(t)= Tη′(t)= κ(t)T ξ(t).



10 VITOR BALESTRO, HORST MARTINI AND RALPH TEIXEIRA

Therefore, in order to prove that κ = κT and α = αT it suffices to show that
T ξ(t)= b(Tη(t)), where we recall that ξ(t)= b(η(t)). But this comes immediately,
since Tη(t) aB T b(η(t)), ‖T b(η(t))‖ = ‖b(η(t))‖ = 1, and T is orientation-
preserving. �

Remark 3.5. Clearly, if the considered isometry is orientation-reversing, then we
have κT =−κ and αT =−α.

4. Ordinary cusps of closed fronts

A singularity t0 ∈ I of a smooth curve γ : I → X is said to be an ordinary cusp
if γ ′′(t0) and γ ′′′(t0) are linearly independent vectors. Our next statement shows
that we can describe an ordinary cusp of a front in terms of the curvature functions
of an associated Legendre immersion.

Lemma 4.1. Let γ : I → X be a front, and let η : I → S be a smooth vector field
such that (γ, η) is a Legendre immersion. A point t0 ∈ I is an ordinary cusp if and
only if α′(t0) 6= 0, where α : I → R is defined as in (2-1).

Proof. This comes from the two-fold straightforward differentiation of (2-1). In a
singular point t0 ∈ I we have

γ ′′(t0)= α′(t0)ξ(t0) and γ ′′′(t0)= 2α′(t0)ξ ′(t0)+α′′(t0)ξ(t0).

Since (γ, η) is an immersion, we have η′(t0) 6= 0. Thus, ξ ′(t0)= Dbη(t0)(η
′(t0)) 6= 0

and ξ(t0) aB ξ
′(t0). The desired result follows. �

It is clear that the definition of an ordinary cusp does not involve any metric or
orthogonality concept fixed in the plane. Indeed, one just needs differentiation of
a curve to define an ordinary cusp. The previous lemma, despite being easy and
intuitive, shows us that, using the curvature defined by the Minkowski metric, one
can characterize an ordinary cusp of a Legendre immersion in the same way as we
would in the standard Euclidean metric.

Continuing in this direction, we proceed to formalize the idea that the orientation
changes when we pass through an ordinary cusp, and we will do this by using only
the machinery defined here. Indeed, since sgn[η(t), γ ′(t)] = sgn(α(t)), it follows
that the orientation of the basis {η(t), γ ′(t)} changes. By the last lemma, the sign
of α changes at a point t0 ∈ I if and only if γ (t0) is an ordinary cusp, and then it
follows that the orientation of the basis {η(t), γ ′(t)} (well-defined in a punctured
neighborhood of t0) changes when, and only when, we pass through an ordinary
cusp. As a consequence we reobtain the following well-known result.

Proposition 4.2. Let γ : S1
→ X be a closed front, where S1 is the usual circle R/Z.

Then γ has an even number of ordinary cusps.
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Figure 1. A front must have an even number of ordinary cusps.

Proof. The intuitive idea here is that we must pass through an even number of
ordinary cusps so that the sign of [η(t), γ ′(t)] is not inverted when we return to the
initial point (see Figure 1). We will formalize this.

Let η : S1
→ S be a normal vector field such that (γ, η) is a Legendre immersion.

We identify S1 with the interval [0, 1] and, up to a translation in the parameter,
assume that γ (0) = γ (1) is a regular point. Let {t1 < t2 < · · · < tm} be the set
of all ordinary cusps of γ , and assume that m is odd. It is clear that the sign of
[η(t), γ ′(t)] is constant in each interval (t j−1, t j ), and also before t1 and after tm .
Since there is no ordinary cusp in the interval (tm, 1+ t1), it also follows that m is
even. Otherwise, the sign of [η(t), γ ′(t)] would be distinct in (tm, 1] and [0, t1). �

Remark 4.3. In view of Lemma 4.1, an ordinary cusp is a zero-crossing of α, and
the converse is also true. Since γ is closed, we have that α is a periodic smooth
function, and then we must have an even number of zero-crossings. This (a little
less geometric) argument also works for proving Proposition 4.2.

Our next task is to obtain the Maslov index (or zigzag number) of a closed front
using the generalized curvature of a Legendre immersion (for the Euclidean case
this was done in [Fukunaga and Takahashi 2013]). By [Saji et al. 2009] we are
inspired to formulate the following

Definition 4.4. Let t0 ∈ I be an ordinary cusp of a front γ : I → X with asso-
ciated normal field η. Then, if [η(t0), η′(t0)] > 0, we say that t0 is a zig, and if
[η(t0), η′(t0)]< 0, we say that t0 is a zag.

Notice that we always have [η(t0), η′(t0)] 6= 0 on an ordinary cusp (γ is a front).
Geometrically, by this definition we can distinguish whether the normal field rotates
counterclockwise or clockwise in the neighborhood of an ordinary cusp, and this is
equivalent to the definition given in [Saji et al. 2009]. As one may expect, whether
an ordinary cusp is a zig or a zag does not depend on the metric (and consequently
not on the orthogonality relation) fixed in the plane.

Proposition 4.5. Let γ : I→ X be a front, and let t0 ∈ I be an ordinary cusp. Then
we have one of the following statements.

(a) For every ε > 0 there exist t1, t2 ∈ (t0 − ε, t0 + ε) such that t1 < t0 < t2 and
[γ ′(t1), γ ′(t2)]< 0, or
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(b) for every ε > 0 there exist t1, t2 ∈ (t0 − ε, t0 + ε) such that t1 < t0 < t2 and
[γ ′(t1), γ ′(t2)]> 0.

In the first case, the cusp is a zig. In the second one, we have a zag.

Proof. Assume that (γ, η) is a Legendre immersion, and let α be as in (2-1). Since t0
is an ordinary cusp, it follows that for small ε > 0 we have that α has constant and
distinct signs in each of the lateral neighborhoods (t0− ε, t0) and (t0, t0+ ε) of t0.
Therefore, for any t1, t2 ∈ (t0−ε, t0+ε) with t1< t0< t2 it holds that α(t1)α(t2)< 0.
Now we write

[γ ′(t1), γ ′(t2)] = α(t1)α(t2)[ξ(t1), ξ(t2)].

Hence, in (t0−ε, t0+ε) the sign of [γ ′(t1), γ ′(t2)] for t1 < t0 < t2 depends only on
the sign of [ξ(t1), ξ(t2)]. On the other hand, since (γ, η) is an immersion, we have
that η′(t0) 6= 0. Then, taking a smaller ε > 0 if necessary, we may assume that η
is injective when restricted to the interval (t0− ε, t0+ ε). Consequently, ξ is also
injective in (t0− ε, t0+ ε), and the sign of [ξ(t1), ξ(t2)] for t1, t2 ∈ (t0− ε, t0+ ε)
with t1 < t2 only depends on how η walks through the unit circle in this interval
(clockwise or counterclockwise). �

A zero-crossing of the curvature function κ of a Legendre immersion is called an
inflection point. One can have a better understanding of the classification of ordinary
cusps by noticing that two consecutive ordinary cusps of a frontal have different types
if and only if there is an odd number of inflection points between them. Indeed, this
follows from the fact that sgn[η(t), η′(t)] = sgn(κ(t)[η(t), b(η(t))]) = sgn(κ(t))
and from the continuity of κ .

Let γ : S1
→ X be a closed front, and let Cγ := {t1, . . . , tm} be the set of its

(ordered) ordinary cusps. Attribute the letter a to a zig, and b to a zag, and form
the word wγ := t1t2 · · · tm . Since m is even, it follows that the identification of wγ
in the free product Z2 ∗Z2 (considering the reduction a2

= b2
= 1) must be of the

form (ab)k or (ba)k. The number k is called the Maslov index (or zigzag number)
of γ , and it will be denoted by z(γ ).

We will follow [Saji et al. 2009] to obtain the Maslov index in terms of the
curvature pair of a Legendre immersion, but now the considered curvature pair is
given by Birkhoff orthogonality instead of Euclidean orthogonality. First, let P1(R)

be the real projective line, and let [x : y], defined as y/x , be coordinates on it. The
curvature pair of a Legendre immersion can then be regarded as the smooth map
kγ : S1

→ P1(R) given by

kγ (t)= [α(t) : κ(t)],

where α and κ are, as usual, given as in (2-1) and (2-2). If we identify canonically
the projective line with the one-dimensional circle (see Figure 2), then we can
naturally define the rotation number of kγ as its absolute number of (complete)
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Figure 2. Identification P1(R) ' S1, with orientation (positive
ratios are on the right-hand side).

turns over the circle, counted with sign depending on the orientation. We say
that a front is generic if all of its singular points are ordinary cusps and all of its
self-intersections are double points, which means that if t0 6= t1 and γ (t0)= γ (t1),
then η(t0) and η(t1) are linearly independent vectors.

Theorem 4.6. Let γ : S1
→ X be a generic closed front. Then the zigzag number

of γ equals the rotation number of kγ .

Proof. Following [Saji et al. 2009], the strategy of the proof is to count the number
of times that kγ passes through the point [0 : 1] (=∞) two consecutive times with
the same orientation. First, notice that kγ (t)= [0 : 1] if and only if t is an ordinary
cusp. Now observe that the sign of κ(t)/α(t) in a punctured neighborhood of a
cusp is the same as the sign of ακ . Therefore, we can decide whether we have
a clockwise or a counterclockwise∞-crossing at a singularity t0 ∈ S1 looking to
the sign of (ακ)′(t0)= α′(t0)κ(t0). Namely, if α′(t0)κ(t0) < 0, the∞-crossing is
counterclockwise, and if α′(t0)κ(t0) > 0, then it is clockwise.

Now let t0, t1∈ S1 be two consecutive singularities. It is clear that α′(t0) and α′(t1)
have opposite signs. Therefore, if we have two consecutive zigs, or two consecutive
zags, then the associated consecutive∞-crossings have the same orientation, and
consequently play no role in the rotation number. On the other hand, a zig followed
by a zag (or vice-versa) yields a complete (positive or negative) turn over P1(R).
This shows what we had to prove. �

Remark 4.7. Since the choice of a normal field to turn a front into a Legendre
immersion is not unique, and the associated curvature pair is not invariant under a
reparametrization of the front, a comment is due. The classification of all ordinary
cusps will change if we replace the field η by −η, and hence the Maslov index
remains the same. Also, it is easily seen that a reparametrization of the front yields
a new curvature pair where both previous curvature functions are multiplied by the
same function. Therefore, the map kγ : S1

→ P1(R) defined previously is invariant
under a reparametrization of the front, and so is its rotation number.
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We shall describe now another way to obtain the Maslov index of a closed front.
In view of Theorem 4.6, what changes is that we count the rotation number of kγ by
regarding zero-crossings instead of∞-crossings. Geometrically, instead of using
types of singular points, we classify inflection points (recall that, for us, an inflection
point is a zero-crossing of the curvature function κ). As the reader will notice, this
approach has the advantage of avoiding the use of reductions in free products.

Let, as usual, (γ, η) : S1
→ X × S be a generic closed front with associated

curvature pair (α, κ). We say that an inflection point t0 ∈ S1 is a flip if t0 is a zero-
crossing from negative to positive of α(t)κ(t), and a flop if t0 is a zero-crossing
from positive to negative of α(t)κ(t). Notice that every inflection point is a flip or
a flop, since α(t0) does not vanish (γ is a front) and t0 is a zero-crossing of κ .

Theorem 4.8. The Maslov index of a generic closed front γ is half the absolute
value of the difference between its number of flips and flops. In other words,

z(γ )= 1
2 |# flip− # flop|,

where # flip and # flop denote the number of inflection points for each respec-
tive type.

Proof. Before proving the theorem, it is interesting to capture the combinatorial
flavor of the problem. Notice first that a flip corresponds to a counterclockwise
zero-crossing of kγ in P1(R), and a flop corresponds to a clockwise zero-crossing.
Between two consecutive singularities, we have two possibilities:

(1) The number of inflection points is even. In this case we have the same number of
flips and flops, since α does not change its sign between two consecutive zeros.

(2) The number of inflection points is odd. In this case we have |# flip−# flop| = 1
between these singularities.

Moreover, successive zero-crossings of κ are always alternate, and then we
have two consecutive flips (or flops) when there is a singular point between two
consecutive inflection points. The reader is invited to draw some concrete examples,
to better capture the ideas. We will give an analytic proof, however. As noticed
in [Fukunaga and Takahashi 2013], the zigzag number is half the absolute value
of the degree of the map kγ : S1

→ P1(R). Since S1 is path connected, we can
calculate the degree of kγ by counting the points of the set k−1

γ ([1 : 0]) where the
derivative is orientation-preserving/reversing. In other words, the degree of kγ is the
difference between the numbers of counterclockwise and clockwise zero-crossings
in P1(R). Since each counterclockwise zero-crossing corresponds to a flip, and
each clockwise zero-crossing corresponds to a flop, we have

z(γ )= 1
2 deg(kγ )= 1

2 |# flip−# flop|,

as we aimed to prove. �
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5. Evolutes and involutes of fronts

Let γ : I→ X be a smooth regular curve whose circular curvature k does not vanish.
Then the evolute of γ is the curve eγ : I → X defined as

eγ (t)= γ (t)− r(t)η(t),

where r(t) := k(t)−1 is the curvature radius of γ at t ∈ I and η(t) is the left normal
vector to γ at t ∈ I (both defined as in our introduction). A parallel of γ is a curve
of the type

(5-1) γd(t)= γ (t)+ dη(t),

for some fixed d ∈ R. As in the Euclidean case, the singular points of the parallels
of γ sweep out the evolute of γ (see [Balestro et al. 2018, Section 9]). Based on
this characterization, we will follow [Fukunaga and Takahashi 2014] to define the
evolute of a front in a Minkowski plane.

First, let (γ, η) : I→ X be a Legendre immersion. Then, using the normal field η
we can define a parallel of the front γ exactly by (5-1).

Lemma 5.1. A parallel of a front γ : I → X is also a front.

Proof. Let (γ, η) be a Legendre immersion. We shall see that (γd , η) is a Legendre
immersion. From (2-1) and (2-2) we have γ ′d(t)=γ

′(t)+dη′(t)= (α(t)+dκ(t))ξ(t).
Therefore, η(t) aB γ

′

d(t) for each t ∈ I. It only remains to prove that (γd , η) is an
immersion. For this, just write down the equations

(5-2) γ ′d(t)= (α(t)+ dκ(t))ξ(t) and η′(t)= κ(t)ξ(t),

and observe that γ ′d and η′ vanish simultaneously if and only if α and κ vanish
simultaneously. But this would contradict the hypothesis that (γ, η) is a Legendre
immersion. �

Example 5.2. Let R2 be endowed with the usual lp norm, where 1 < p < +∞,
and let γ (t) = (t, t2/2) be defined for t > 0. To determine the parallels of γ we
have to determine the normal field η(t). For that, it suffices to find the point where
the tangent direction γ ′(t)= (1, t) supports the unit circle (in the fourth quadrant,
according to the orientation of γ ). We consider the parametrization of the portion
of the unit circle in the fourth quadrant given by s 7→ (s1/p,−(1− s)1/p), and
differentiating we obtain a vector that has to point in the direction of γ ′(t)= (1, t).
Hence

(1− s)1/q

s1/q =
1
t
,

from which we get s = 1/(1+ t−q). Therefore,

η(t)=
(

1
(1+ t−q)1/p ,

−t−q/p

(1+ t−q)1/p

)
.
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Figure 3. Parallels of γ .

The expression for the parallels of γ follows. In Figure 3 we illustrate a parallel with
respect to the lp norm (denoted by γd), and also a parallel in the usual Euclidean
norm (denoted by σd ). Both are constructed with the same value of d > 0.

From now on we will always assume that γ : I → X is a front, and that the pair
(γ, η) is an associated Legendre immersion whose curvature pair (α, κ) is such
that κ does not vanish. Then, we define the evolute of γ to be

(5-3) eγ (t)= γ (t)−
α(t)
κ(t)

η(t), t ∈ I.

Notice that this definition makes sense (as an extension of the usual evolute of
a regular curve) in view of Lemma 2.1. Also, observe that a front and its evolute
intersect in (and only in) singular points of the front. Further, as we have mentioned,
the evolute of a front is the set of singular points of the parallels of this front. We
will now prove this.

Proposition 5.3. The set of points of the evolute of a front γ is precisely the set of
singular points of the parallels of γ .

Proof. For each t ∈ I, the point eγ (t) belongs to the parallel given by d =−α(t)
κ(t) .

Since γ ′d(t) = (α(t)+ dκ(t))ξ(t), it follows that γd is singular at that point. On
the other hand, a singular point of a parallel γd must be given by some t ∈ I such
that d =−α(t)

κ(t) . �

We will verify that the evolute of a front is also a front, whose curvature can be
obtained in terms of (α, κ). To do so, from now on we consider the map b defined
only for unit vectors. We do this because the restriction b|S : S→ S is bijective,
and hence invertible. Let (γ, η) be a Legendre immersion with associated curvature
function given by (α, κ), and let eγ be its evolute. We will write ν(t)=−b−1(η(t)).
Thus, we have the following.
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Theorem 5.4. The pair (eγ , ν) is a Legendre immersion with associated curvature
given by the equalities

e′γ (t)=−
d
dt

(
α(t)
κ(t)

)
η(t) and ν ′(t)= β(t)η(t).

Since η(t) = −b(ν(t)), it follows that the curvature pair of (eγ , ν) is given by( d
dt

(
α
κ

)
,−β

)
. Moreover, the function −β(t) is given by

−β(t)=
κ(t)
ρ(t)

,

where ρ(t) := ρ(ν(t)) is as defined in Remark 2.2.

Proof. The first equation comes easily by differentiating (5-3). For the second, first
notice that since ν is a unit vector field, it follows that ν(t) aB ν

′(t), and there-
fore ν ′(t) is parallel to η(t). Notice that already this characterizes the pair (eγ , ν)
as a Legendre curve. Before showing that this is indeed an immersion, we will
prove the expression for −β. Differentiating ν yields

ν ′(t)=−Db−1
η(t)(η

′(t))=−κ(t)Db−1
η(t)(b(η(t)))=−κ(t)ρ(t)η(t),

for some function ρ. We will prove then that ρ(t) = ρ(ν(t))−1. To do this, let
v = η(t) and write down the equalities

Dbb−1(v)(v)= ρ(b
−1(v))b(v) and Db−1

v (b(v))= ρ(v)v.

Therefore,

ρ(v)v = Db−1
v (b(v))=

1
ρ(b−1(v))

Db−1
v (Dbb−1(v)(v))=

1
ρ(b−1(v))

v,

and since ρ(b−1(v))= ρ(−ν(t))= ρ(ν(t)), the desired result follows. Now, since
by our hypothesis the function κ does not vanish, it follows that (eγ , ν) is, in fact,
a Legendre immersion. �

Remark 5.5. Unlike in the Euclidean subcase, here the function ρ(t) appears. This
function carries, somehow, the “distortion” of the unit circle of the considered norm
with respect to the Euclidean unit circle. Such functions appear even in Radon
planes.

An evolute of a regular curve in the Euclidean plane is the envelope of its normal
lines, and the same holds for the evolute of a regular curve in a Minkowski plane,
when we replace inner product orthogonality by Birkhoff orthogonality (see [Craizer
2014]). From (5-3) and Theorem 5.4 it follows that the tangent line of the evolute eγ
of a Legendre immersion (γ, η) at t ∈ I is precisely the normal line of γ at γ (t).
Therefore, the evolute of a Legendre immersion can be regarded as the envelope of
the normal line field of the immersion.
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The family of normal lines of a Legendre immersion (γ, η) is the zero set of the
function F : I × X→R given by F(t, v)= [γ (t)−v, η(t)]. Indeed, for each fixed
t ∈ I the zero set of Ft(v) := F(t, v) is the normal line of γ at γ (t). Therefore,
we could expect that the points, for which both F and its derivative with respect
to t vanish, describe the evolute of the Legendre immersion (see [Bruce and Giblin
1981]). This is indeed true, as we shall see next.

Proposition 5.6. For the function F : I × X→ R defined above we have

F(t, v)=
∂F
∂t
(t, v)= 0 if and only if v = γ (t)−

α(t)
κ(t)

η(t).

Therefore, the envelope of the normal line field of a Legendre immersion is precisely
its evolute.

Proof. It is clear that F(t, v)= 0 if and only if γ (t)− v = λη(t) for some λ ∈ R.
Differentiating, we have

∂F
∂t
(t, v)=[γ ′(t), η(t)]+[γ (t)−v, η′(t)]=α(t)[ξ(t), η(t)]+κ(t)[γ (t)−v, ξ(t)].

Hence, F(t, v) = ∂F
∂t (t, v) = 0 if and only if (α(t)− λκ(t))[ξ(t), η(t)] = 0 and

γ (t)− v = λη(t). Since [ξ(t), η(t)] does not vanish, the desired result follows. �

The involute of a regular curve γ is a curve whose evolute is γ (see [Balestro
et al. 2018] and [Craizer 2014]). We can easily extend this definition to our new
context, in a manner similar to that for the Euclidean subcase in [Fukunaga and
Takahashi 2016]. An involute of a Legendre immersion (γ, η) : [0, c] → X × S
whose curvature κ does not vanish is a Legendre immersion whose evolute is (γ, η).

Theorem 5.7. Let (γ, η) : [0, c]→ X × S be a Legendre immersion with curvature
pair (α, κ), and assume that κ does not vanish. For any d ∈ R, the map

(σ, ξ) : [0, c] → X × S,

where ξ(t)= b(η(t)), as usual, and

(5-4) σ(t)= γ (0)−
∫ t

0

(∫ s

0
α(τ) dτ

)
ξ ′(s) ds+ dξ(t)

is a Legendre immersion with curvature pair

(5-5)
(
κ(t)ρ(η(t))

(
−d +

∫ t

0
α(τ) dτ

)
,−κ(t)ρ(η(t))

)
: [0, c] → R2,

and with ρ defined as in (2-4). Moreover, (σ, ξ) is an involute of (γ, η).

Proof. First, differentiation of σ yields

σ ′(t)=
(

d −
∫ t

0
α(τ) dτ

)
ξ ′(t)= κ(t)ρ(η(t))

(
−d +

∫ t

0
α(τ) dτ

)
b(ξ(t)),
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where the last equality comes from (2-4). Notice that ξ(t)a σ ′(t) for each t ∈ [0, c],
and hence the pair (σ, ξ) is a Legendre curve. The derivative of the normal field ξ
is given by (2-4), and then the curvature pair of (σ, ξ) is precisely the one given
in (5-5). Since κ(t)ρ(η(t)) does not vanish, it follows that (σ, ξ) is indeed an
immersion.

It remains to show that the evolute of (σ, ξ) is (γ, η). From the definition, the
evolute of σ is the curve

eσ (t)= σ(t)+
(
−d +

∫ t

0
α(τ) dτ

)
ξ(t), t ∈ [0, c].

Note that eσ (0)= γ (0), so it suffices to show that eσ and γ have the same derivative.
A simple calculation gives e′σ (t)= α(t)ξ(t)= γ

′(t), which concludes the proof. �

Observe that a front has a family of involutes (with parameter d ∈ R), which is a
family of parallel curves. In view of Proposition 5.3, a front can be characterized
as the set of singular points of these involutes. This remark is the reason for our
slightly different approach in comparison with [Fukunaga and Takahashi 2016].
Also one would expect that this happens since any of the parallels has the same
normal vector field, and therefore yields the same envelope (which is γ , in view of
Proposition 5.6).

6. Singular points and vertices of Legendre immersions

A point where the derivative of the curvature of a regular curve vanishes is usually
called a vertex. We shall extend this definition to fronts in normed planes, in the
same way as in [Fukunaga and Takahashi 2014] for the Euclidean subcase. Let
(γ, η) : [0, c] → X × S be a Legendre immersion with curvature pair (α, κ), and
assume that κ does not vanish. We say that t0 ∈ [0, c] is a vertex of the front γ (or
of the associated Legendre immersion) if

d
dt

(
α

κ

)
(t0)= 0.

Notice that, as in the regular case, a vertex of a front corresponds to a singular
point of its evolute (and that the converse also holds). A vertex which is a regular
point of γ is said to be a regular vertex. As one would suspect, we can reobtain the
vertex in terms of the function F which describes the normal line field of the front
(see Proposition 5.6).

Lemma 6.1. Let (γ, η) : I→ X×S be a Legendre immersion, and let F : I×X→R

be defined as F(t, v) = [γ (t)− v, η(t)]. Therefore, t0 ∈ I is a vertex of γ if and
only if

∂2 F
∂t2 (eγ (t0), t0)= 0.
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Proof. A simple calculation gives

∂2 F
∂t2 (t, v)= [γ

′′(t), η(t)] + [γ (t)− v, η′′(t)].

Hence, in a point (eγ (t), t) we have

∂2 F
∂t2 (eγ (t), t)=[γ

′′(t),η(t)]+
[
α(t)
κ(t)

η(t),η′′(t)
]
=[η(t),ξ(t)]

(
α(t)
κ(t)

κ ′(t)−α′(t)
)
,

and it is clear that the latter vanishes at t0 ∈ I if and only if d
dt

(
α
κ

)
(t0)= 0. �

The easy observation that the function α/κ must have a local extremum strictly
between two consecutive singular points leads to the following version of the four
vertex theorem.

Proposition 6.2. Either of the following conditions is sufficient for a closed front
γ : S1

→ X to have at least four vertices:

(a) γ has at least four singular points.

(b) γ has at least two singular points which are not ordinary cusps.

Proof. For (a), notice that if γ has at least four singular points, then α/κ has at least
four local extrema, each of them corresponding to a vertex. For (b), just notice that
a singular point which is not an ordinary cusp is, in particular, a vertex. Indeed, the
derivative

d
dt

(
α

κ

)
(t)=

α′(t)κ(t)−α(t)κ ′(t)
κ(t)2

vanishes whenever α(t)= α′(t)= 0 (and this happens in a singular point which is
not an ordinary cusp, see Lemma 4.1). In addition to these vertices, the existence of
two regular vertices (guaranteed by the two singular points) finishes the proof. �

It is easy to see that a singular point of a Legendre curve in a Minkowski plane
is still a singular point if we change the considered norm. Moreover, an ordinary
cusp remains an ordinary cusp. However, a vertex of a Legendre curve may not be
a vertex of it if we change the norm of the plane. Indeed, every point of a circle
is a vertex (the circular curvature is constant); this is no longer the case when we
change the norm.

But somehow we can still relate numbers of singular points to numbers of vertices.
Since there is at least one vertex strictly between two consecutive singular points
of a front, we have that the number of vertices of a closed front is greater than or
equal to its number of singular points. Therefore, if 6(γ ) and V (γ ) denote the set
of singular points and the set of vertices of γ , respectively, and σ is an involute
of γ , then we have

#6(σ)≤ #6(γ )≤ #V (γ ),
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where the first inequality comes from the observation that the vertices of σ corre-
spond to the singular points of γ , since γ is the evolute of σ . This observation is
proved for the Euclidean subcase in [Fukunaga and Takahashi 2016], and what we
wanted to show is that it only depends on the fact that there always exists at least
one vertex between two consecutive singular points of a Legendre curve.

7. Contact between Legendre curves

The concept of contact between regular plane curves intends, intuitively, to describe
how “similar” two curves are in a neighborhood of a point. In [Fukunaga and
Takahashi 2013, Section 3] this notion is extended to Legendre curves as follows:
given k ∈N, two Legendre curves (γ1, η1) : I1→ X × S and (γ2, η2) : J → X × S
are said to have k-th order contact at t = t0, u = u0 if

d j

dt j (γ1, η1)(t0)=
d j

du j (γ2, η2)(u0) for j = 0, . . . , k− 1

and dk

dtk (γ1, η1)(t0) 6=
dk

duk (γ2, η2)(u0).

If only the first condition holds, then we say that the curves have at least k-th order
contact at t = t0 and u = u0. In the mentioned paper, this was defined exactly in
the same way, but considering that the normal vector field of each Legendre curve
is the one given by the Euclidean orthogonality. We shall see that if two Legendre
curves have k-th order contact for a given fixed norm, then they have k-th order
contact for any norm.

Proposition 7.1. Let (γ, η) and (γ , η) be Legendre curves which have k-th order
contact at t = t0 and u = u0. Therefore, changing the norm of the plane, the new
Legendre curves (derived in the same sense as discussed in the last paragraph of
Section 2) still have k-th order contact at t = t0 and u = u0.

Proof. Assume that ‖ · ‖1 and ‖ · ‖2 are smooth and strictly convex norms in the
plane with unit circles S1 and S2, respectively. Denote by h : S1 → S2 the map
introduced in the last paragraph of Section 2, which takes each vector v ∈ S1 to
the vector h(v) ∈ S2 such that S2 is supported at h(v) by the same direction which
supports S1 at v.

Let (γ, η) be a Legendre curve in the norm ‖ · ‖1. Then (γ, h ◦ η) is a Legendre
curve in the norm ‖·‖2. Writing ν= h◦η, the strategy is to prove that, for any m ∈N,
the m-th derivative of ν at t = t0 only depends on h and η( j)(t0) for j = 0, . . . ,m.
For this reason, we note

ν(m)(t0)= Dmh(η(t0),η′(t0),...,η(m−1)(t0))(η
(m)(t0)),

where Dmh(η(t0),η′(t0),...,η(m−1)(t0)) is the usual m-th derivative of the map h, which
is a linear map defined over Tη(m−1)(t0)(· · · (Tη′(t0)(Tη(t0)S1))). Since this derivative
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clearly depends only on h and η( j)(t0) for j = 0, . . . ,m, it follows that ν(m)(t0)
also only depends on it.

Hence, if a change of the norm carries over the normal fields η and η to ν and ν,
respectively, then we have that ν( j)(t0) = ν( j)(u0) for every j = 0, . . . , k if and
only if the same happens for η and η (the “only if” part comes from h being an
immersion for all v ∈ S1). �

It is a well known fact that the contact between two regular curves can be
characterized by means of their curvatures. In [Fukunaga and Takahashi 2013,
Theorem 3.1] this is extended to Legendre curves using the developed curvature
functions. We shall verify that we can obtain an analogous result (in one of the
directions, only) when we are not working in the Euclidean subcase.

Theorem 7.2. Let (γ1, η1) : I1→ X × S and (γ2, η2) : I2→ X × S be Legendre
curves with curvature pairs (α1, κ1) and (α2, κ2), respectively. If these curves have
at least k-th order contact at t = t0 and u = u0, then

d j

dt j (α1, κ1)(t0)=
d j

du j (α2, κ2)(u0), for j = 0, . . . , k− 1.

However, the converse may not be true (even up to isometry) if the norm is not
Euclidean.

Proof. The proof is essentially the same as in the mentioned theorem in [Fukunaga
and Takahashi 2013]. Differentiating (2-1) and (2-2), we have the equalities

γ (k)(t)=
k∑

j=0

(
k
j

)
α( j)(t)ξ (k− j)(t) and η(k)(t)=

k∑
j=0

(
k
j

)
κ( j)(t)ξ (k− j)(t).

If k = 1, then we have α′1(t0)ξ1(t0)= α′2(u0)ξ2(u0) and κ1(t0)ξ1(t0)= κ2(u0)ξ2(u0).
Since η1(t0)=η2(u0), it follows that ξ1(t0)=ξ2(u0), and so we have α1(t0)=α2(u0)

and κ1(t0) = κ2(t0). Regarding higher order contact, one just has to proceed
inductively by using the previous differentiation formulas.

We illustrate the fact that the converse does not necessarily hold if the norm
is not Euclidean with a constructive example. Take two disjoint arcs γ1 and γ2

in the unit circle which do not overlap under an isometry (the existence of such
arcs is guaranteed by [Balestro et al. 2018, Proposition 7.1]). Assume that these
arcs are parametrized by arc-length and choose parameters t0 and u0 such that the
supporting directions to γ1(t0) and γ2(u0) are distinct. These arcs, together with
their respective normal vector fields (η1 and η2, say), are Legendre curves whose
curvatures and derivatives of curvatures coincide. However, there is no isometry
carrying γ1(t0) to γ2(u0) and η1(t0) to η2(u0), and hence these curves do not have
contact of any order up to isometry. �
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8. Pedal curves of frontals

A pedal curve of a regular curve γ is usually defined to be the locus of the orthogonal
projections of a fixed point p to the tangent lines of γ . The existence of a tangent
field allows us to carry over this definition to frontals in a straightforward manner.

Definition 8.1. Let (γ, η) : I→ X× S be a Legendre curve, and let ξ(t)= b(η(t)),
as usual. Fix a point p ∈ X. The pedal curve of the frontal γ with respect to p is the
curve γp : I→ X which associates to each t ∈ I the unique point γp(t) of the line s 7→
γ (t)+ sξ(t) such that γp(t)− p aB ξ(t) (see Figure 4). In other words, γp(t) is the
intersection of the parallel to η(t) drawn through p with the tangent line of γ at γ (t).

It is useful, however, to have a formula for the pedal curve which we can work
with. To this end, fix t ∈ I and let α, β∈R be constants such that γp(t)=γ (t)+αξ(t)
and p− γ (t)= βη(t). From the vectorial sum αξ(t)+βη(t)= p− γ (t) we have

α[ξ(t), η(t)] = [p− γ (t), η(t)].

Since η(t)aB ξ(t) and the basis {η(t), ξ(t)} is positively oriented, the above equality
reads α‖ξ(t)‖a = [γ (t)− p, η(t)]. Hence,

(8-1) γp(t)= γ (t)+ [γ (t)− p, η(t)]ξa(t),

where ξa(t)= ξ(t)/‖ξ(t)‖a is the vector ξ normalized in the antinorm.
Notice that from our geometric definition it follows that a pedal curve of a frontal

with respect to a given point does not depend on the parametrization of the frontal.
We give an illustrated example of a pedal curve of a regular curve.

Example 8.2. Consider the space R2 endowed with the usual lp norm for some
1 < p < +∞, and let q ∈ R be such that 1/p + 1/q = 1. A simple calculation
shows that the right pedal curve of the unit circle with respect to the point (0, 1) is
obtained by joining the curve

σ(t)=
{

(t1/p
− t1/p(1− t)1/q , t + (1− t)1/p), t ∈ [0, 1],

((2− t)1/p
+ (2− t)1/p(t − 1)1/q , 2− t − (t − 1)1/p), t ∈ [1, 2],

with its reflection through the y-axis. Figure 5 illustrates the case p = 3.

Figure 4. Constructing a pedal curve.
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Figure 5. The unit circle of l3 and its pedal curve with respect to
the point (0, 1).

As an interesting property of pedal curves, we will prove that a frontal can be
regarded as the envelope of a certain family of lines defined by (any) one of its
pedal curves.

Proposition 8.3. Let γp be a pedal curve of a frontal γ . Then γ is the envelope of
the family of lines

{lt : s 7→ γp(t)+ sb(γp(t)− p)}t∈I ,

where lt0 is defined by taking limits if p=γp(t0) for some t0∈ I. As in Proposition 5.6,
if F : I × X→ R is given by F(t, v)= [γp(t)− v, b(γp(t)− p)], then

F(t, v)=
∂F
∂t
(t, v)= 0 if and only if v = γ (t).

In particular, any frontal is a pedal curve of some curve in the plane.

Proof. We may assume, without loss of generality, that locally b(γp(t)− p)= ξ(t).
Differentiating F and applying (8-1) yields

∂F
∂t
(t, v)= [γ ′p(t), ξ(t)] + [γp(t)− v, ξ ′(t)]

= [γ (t)− p, η(t)] · [ξ ′a(t), ξ(t)] + [γp(t)− v, ξ ′(t)].

Assume that F(t, v)= ∂F
∂t (t, v)=0. From F(t, v)=0 we have that γp(t)−v=αξ(t)

for some α ∈ R. Due to the other equality and to the above calculation, we get

0= [γ (t)− p, η(t)] · [ξ ′a(t), ξ(t)] +α[ξ(t), ξ
′(t)].

From the definition of ξa(t) it follows that

[ξ ′a(t), ξ(t)] =
[ξ(t), ξ ′(t)]
[ξ(t), η(t)]

,

and substituting this into the previous equality yields immediately the equality
α[ξ(t), η(t)] = [p − γ (t), η(t)]. Therefore, from (8-1) we have v = γ (t). The
converse is straightforward. �
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As usual, we assume that γ : I → X is a frontal with associated normal field η
whose curvature is (α, κ), and we also assume that ξ and ξa are defined as before.
Notice that differentiation of (8-1) yields

γ ′p(t)= γ
′(t)+ [γ ′(t), η(t)]ξa(t)+ [γ (t)− p, η′(t)]ξa(t)+ [γ (t)− p, η(t)]ξ ′a(t)

= [γ (t)− p, η′(t)]ξa(t)+ [γ (t)− p, η(t)]ξ ′a(t),

where the second equality is justified since [γ ′(t), η(t)]ξa(t)=−γ ′(t). From the
definition of ξa and from (2-4), the above equality may be written as

(8-2) γ ′p =
κ

[η, ξ ]

((
[γ − p, ξ ]+ ρ

[γ − p, η] · [η, b(ξ)]
[η, ξ ]

)
ξ − ρ[γ − p, η]b(ξ)

)
,

where we are omitting the variable t for the sake of having a clearer notation. Also
we are denoting ρ = ρ(t)= ρ(η(t)). Notice that if t0 is a point where κ vanishes,
then t0 is a singular point of the pedal curve γp. Also, if p is a point of γ , then it is
also a singular point of γp. Finally, the only remaining possibility of γp having a
singular point would be if

[γ (t)− p, ξ(t)] + ρ(t)
[γ (t)− p, η(t)] · [η(t), b(ξ(t))]

[η(t), ξ(t)]
= 0

and
[γ (t)− p, η(t)] = 0,

but if the second equality holds, and p /∈ γ (I ), then the first equality does not hold.
Indeed, if γ (t)− p 6= 0, then either [γ (t)− p, ξ(t)] 6= 0 or [γ (t)− p, η(t)] 6= 0.
If p is a point of γ , then γp is not necessarily a frontal (a counterexample is given
by Example 8.2, in view of Proposition 4.2). However, based on this observation
we can prove that if p /∈ γ (I ), then γp is a frontal.

Theorem 8.4. Let (γ, η) : I → X × S be a Legendre curve with curvature (α, κ).
If p ∈ X \ γ (I ), then the pedal curve γp is a frontal. Moreover, the singular points
of γp correspond exactly to the points where κ vanishes.

Proof. The equality (8-2) can be written as

γ ′p(t)=
κ(t)

[η(t), ξ(t)]
ζ(t),

where ζ(t) is the nonvanishing vector field

ζ =

(
[γ − p, ξ ] + ρ

[γ − p, η] · [η, b(ξ)]
[η, ξ ]

)
ξ − ρ[γ − p, η]b(ξ).

Here again we omitted, for the sake of simplicity, the parameter. Therefore, abusing
the notation and setting ν(t)= b−1(ζ(t)), we have that (γp, ν) is a Legendre curve
(with tangent field given by ζ/‖ζ‖). Also, since ζ does not vanish, it follows
that t ∈ I is a singular point of the pedal curve γp if and only if κ(t)= 0. �
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