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REMARKS ON CRITICAL METRICS OF
THE SCALAR CURVATURE AND VOLUME FUNCTIONALS

ON COMPACT MANIFOLDS WITH BOUNDARY

HALYSON BALTAZAR AND ERNANI RIBEIRO, JR.

We provide a general Bochner type formula which enables us to prove
some rigidity results for V-static spaces. In particular, we show that
an n-dimensional positive static triple with connected boundary and
positive scalar curvature must be isometric to the standard hemisphere,
provided that the metric has zero radial Weyl curvature and satisfies a
suitable pinching condition. Moreover, we classify V-static spaces with
nonnegative sectional curvature.

1. Introduction

Let (Mn, g) be a connected Riemannian manifold. Following the terminology used
by Miao and Tam [2009] as well as Corvino, Eichmair and Miao [Corvino et al.
2013], we say that g is a V-static metric if there is a smooth function f on Mn and
a constant κ satisfying the V-static equation

(1-1) L∗g( f )=−(1 f )g+Hess f − f Ric= κg,

where L∗g is the formal L2-adjoint of the linearization of the scalar curvature
operator Lg, which plays an important role in problems related to prescribing the
scalar curvature function. Here, Ric, 1 and Hess stand, respectively, for the Ricci
tensor, the Laplacian operator and the Hessian form on Mn. Such a function f is
called V-static potential.

It is well known that V-static metrics are important in understanding the interplay
between volume and scalar curvature. They arise from the modified problem of
finding stationary points for the volume functional on the space of metrics whose
scalar curvature is equal to a given constant (see [Corvino et al. 2013; Miao and
Tam 2009; 2011; Yuan 2016]). In general, the scalar curvature is not sufficient for
controlling the volume. However, Miao and Tam [2012] proved a rigidity result for
the upper hemisphere with respect to nondecreasing scalar curvature and volume.
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Corvino et al. [2013] were able to show that when the metric g does not admit
a nontrivial solution to (1-1), then one can achieve simultaneously a prescribed
perturbation of the scalar curvature that is compactly supported in a bounded domain
� and a prescribed perturbation of the volume by a small deformation of the metric
in �. We highlight that a Riemannian metric g for which there exists a nontrivial
function f satisfying (1-1) must have constant scalar curvature R (see [Corvino
et al. 2013, Proposition 2.1; Miao and Tam 2009, Theorem 7]).

The case where κ 6= 0 in (1-1) and the potential function f vanishes on the
boundary was studied by Miao and Tam [2009]. In this approach, a Miao–Tam
critical metric is a 3-tuple (Mn, g, f ), where (Mn, g) is a compact Riemannian
manifold of dimension at least 3 with a smooth boundary ∂M and f : Mn

→ R is
a smooth function such that f −1(0)= ∂M satisfying the overdetermined-elliptic
system

(1-2) L∗g( f )=−(1 f )g+Hess f − f Ric= g.

Miao and Tam [2009] showed that these critical metrics arise as critical points of the
volume functional on Mn when restricted to the class of metrics g with prescribed
constant scalar curvature such that g|T ∂M = h for a prescribed Riemannian metric h
on the boundary. Some explicit examples of Miao–Tam critical metrics are in the
form of warped products and those examples include the spatial Schwarzschild
metrics and AdS–Schwarzschild metrics restricted to certain domains containing
their horizon and bounded by two spherically symmetric spheres (see Corollaries 3.1
and 3.2 in [Miao and Tam 2011]). For more details see, for instance, [Baltazar and
Ribeiro 2017; Barros et al. 2015; Batista et al. 2017; Corvino et al. 2013; Miao and
Tam 2009; 2011; Yuan 2016].

We also remark that (1-1) can be seen as a generalization of the static equation
L∗g( f ) = 0 (see [Ambrozio 2017; Corvino 2000]), namely, κ = 0 in (1-1). We
remember that a positive static triple is a triple (Mn, g, f ) consisting of a connected
n-dimensional smooth manifold M with boundary ∂M (possibly empty), a complete
Riemannian metric g on M and a nontrivial static potential f ∈ C∞(M) that is
nonnegative, vanishes precisely on ∂M and satisfies the static equation

(1-3) L∗g( f )=−(1 f )g+Hess f − f Ric= 0.

For the sake of completeness, it is very important to recall the following classical
example of a positive static triple with nonempty boundary.

Example 1.1. An example of positive static triple with connected nonempty bound-
ary is given by choosing (Sn

+
(r), g) to be the open upper n-hemisphere Sn

+
(r) of

radius r in Rn+1 endowed with the Euclidean metric g. Hence, ∂M = Sn−1(r) is
the equator and the corresponding height function f on Sn

+
(r) is positive, vanishes

along ∂M = Sn−1(r) and satisfies (1-3).
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It has been conjectured in 1984 that the only static vacuum spacetime with
positive cosmological constant and connected event horizon is the de Sitter space
of radius r . This conjecture is the so-called cosmic no-hair conjecture and it was
formulated by Boucher, Gibbons and Horowitz in [Boucher et al. 1984]. It is
closely related to the Fischer–Marsden conjecture (see [Shen 1997]). It should be
emphasized that there are positive static triples with double boundary, such as the
Nariai space. Hence, connectedness of the boundary is essential for Conjecture 1.2
to be true.

Conjecture 1.2 [Boucher et al. 1984, cosmic no-hair conjecture]. Example 1.1 is
the only possible n-dimensional positive static triple with single-horizon (connected)
and positive scalar curvature.

In the last decades some partial answers to Conjecture 1.2 were achieved. For
instance, if (Mn, g) is Einstein it suffices to apply the Obata type theorem due
to Reilly [1977] (see also [Obata 1962]) to conclude that Conjecture 1.2 is true.
Moreover, Kobayashi [1982] and Lafontaine [1983] proved independently that such
a conjecture is also true under the conformally flat condition.

For what follows, we recall that the Bach tensor on a Riemannian manifold
(Mn, g), n ≥ 4, is defined in terms of the components of the Weyl tensor Wik jl as

(1-4) Bi j =
1

n−3
∇

k
∇

l Wik jl +
1

n−2
Rkl Wi

k
j

l,

while for n = 3 it is given by

(1-5) Bi j =∇
kCki j ,

where Ci jk stands for the Cotton tensor. We say that (Mn, g) is Bach-flat when
Bi j = 0.

Qing and Yuan [2013] obtained a classification result for static spaces under
Bach-flat assumption. In particular, it is not hard to see that the method used by Qing
and Yuan implies that such a conjecture is also true under Bach-flat assumption (see
Theorem 1.3 below). Gibbons, Hartnoll and Pope [Gibbons et al. 2003] constructed
counterexamples to the cosmic no-hair conjecture in the cases 4≤ n ≤ 8. However,
it remains interesting to show under which conditions such a conjecture remains
true. For more details on this subject and further partial answers see, for instance,
[Ambrozio 2017; Boucher et al. 1984; Chruściel 2011; Hijazi et al. 2015; Shen
1997]. Next, let us recall the following useful classification.

Theorem 1.3 [Kobayashi 1982; Lafontaine 1983; Qing and Yuan 2013]. Let
(Mn, g, f ) be an n-dimensional positive static triple with scalar curvature R =
n(n− 1). Suppose that (Mn, g) is Bach-flat, then (Mn, g, f ) is covered by a static
triple equivalent to one of the following static triples:
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(1) The standard hemisphere with canonical metric

(Sn
+
, gSn−1, f = xn+1).

(2) The standard cylinder over Sn−1 with the product metric(
M =

[
0, π√n

]
×Sn−1, g = dt2

+
n−2

n gSn−1, f (t)= sin(
√

nt)
)
.

(3) For some constant m ∈ (0,
√
(n− 2)n−2/nn) we consider the Schwarzschild

space defined by(
M =[r1,r2]×Sn−1, g= 1

1−2mt2−n−t2 dt2
+t2gSn−1, f (t)=

√
1−2mt2−n−t2

)
,

where r1 < r2 are the positive zeroes of f .

Ambrozio [2017] obtained interesting classification results for static three-
dimensional manifolds with positive scalar curvature. To do so, he proved a Bochner
type formula for three-dimensional positive static triples involving the traceless
Ricci tensor and the Cotton tensor. A similar Bochner type formula was obtained by
Batista et al. [2017] for three-dimensional Riemannian manifolds satisfying (1-2).
Those formulae may be used to rule out some possible new examples. In this article,
we extend such Bochner type formulae for a more general class of metrics and
arbitrary dimension n > 2. To be precise, we have established the following result.

Theorem 1.4. Let (Mn, g, f, κ) be a connected, smooth Riemannian manifold and
f is a smooth function on Mn satisfying the V-static (1-1). Then we have

(1-6) 1
2 div( f∇|Ric|2)=

(
n−2
n−1
|Ci jk |

2
+ |∇ Ric|2

)
f + nκ

n−1
|R̊ic|2

+

(
2

n−1
R|R̊ic|2+ 2n

n−2
tr(R̊ic3)

)
f − n−2

n−1
Wi jkl∇l f Ci jk−2 f Wi jkl Rik R jl,

where C stands for the Cotton tensor, W is the Weyl tensor and R̊ic is the traceless
Ricci tensor.

Remembering that three-dimensional Riemannian manifolds have vanishing
Weyl tensor, it is easy to see that Theorem 1.4 is a generalization, for any dimension,
of Theorem 3 in [Batista et al. 2017] as well as Proposition 12 in [Ambrozio 2017].

Before presenting a couple of applications of the above formula it is funda-
mental to remember that a Riemannian manifold (Mn, g) has zero radial Weyl
curvature when

(1-7) W ( · , · , · ,∇ f )= 0,

for a suitable potential function f on Mn. This class of manifolds includes the case
of locally conformally flat manifolds. Moreover, this condition has been used to
classify gradient Ricci solitons as well as quasi-Einstein manifolds (see [Catino
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2012; He et al. 2012; Petersen and Wylie 2010]). Here, we shall use this condition
to obtain the following corollary.

Corollary 1.5. Let (Mn, g, f ) be a compact, oriented, connected Miao–Tam crit-
ical metric with positive scalar curvature and nonnegative potential function f .
Suppose that

• Mn has zero radial Weyl curvature and

• |R̊ic|2 ≤ 1
n(n−1) R2.

Then Mn must be isometric to a geodesic ball in Sn.

It is not difficult to see that the above result generalizes Corollary 1 in [Batista
et al. 2017]. Next, we get the following result for static spaces.

Corollary 1.6. Let (Mn, g, f ) be a compact, oriented, connected positive static
triple with positive scalar curvature. Suppose that

• Mn has zero radial Weyl curvature and

• |R̊ic|2 ≤ 1
n(n−1) R2.

Then one of the following assertions holds:

(1) Mn is equivalent to the standard hemisphere of Sn; or

(2) |R̊ic|2= 1
n(n−1) R2 and (Mn, g, f ) is covered by a static triple that is equivalent

to the standard cylinder.

Remark 1.7. It is worthwhile to remark that Corollary 1.6 can be seen as a partial
answer to Conjecture 1.2.

Remark 1.8. We also point out that four-dimensional V-static spaces with zero
radial Weyl curvature must be locally conformally flat. To prove this claim it suffices
to apply the same arguments used in the initial part of the proof of Theorem 2 in
[Barros et al. 2015].

In order to proceed, we recall that a classical lemma due to Berger guarantees that
any two symmetric tensors T on a Riemannian manifold (Mn, g) with nonnegative
sectional curvature must satisfy

(1-8) (∇i∇j Tik −∇j∇i Tik)T jk ≥ 0.

In fact, we have

(∇i∇j Tik −∇j∇i Tik)T jk =
∑
i< j

Ri j i j (λi − λ j )
2,

where the λi ’s are the eigenvalues of tensor T (see Lemma 4.1 in [Cao 2007]).
Here, we shall use these data jointly with Theorem 1.4 to deduce a rigidity result for
three-dimensional Miao–Tam critical metrics with nonnegative sectional curvature
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(see also Proposition 4.2 in Section 4 for a version in arbitrary dimension). More
precisely, we have established the following result.

Theorem 1.9. Let (M3, g, f ) be a three-dimensional compact, oriented, connected
Miao–Tam critical metric with smooth boundary ∂M and nonnegative sectional
curvature, with f assumed to be nonnegative. Then M3 is isometric to a geodesic
ball in a simply connected space form R3 or S3.

Finally, we get the following result for positive static triples.

Theorem 1.10. Let (Mn, g, f ) be a positive static triple with nonnegative sectional
curvature, zero radial Weyl curvature and scalar curvature R = n(n− 1). Then, up
to a finite quotient, Mn is isometric to either the standard hemisphere Sn

+
or the

standard cylinder over Sn−1 with the product metric described in Theorem 1.3.

2. Preliminaries

In this section we shall present some preliminaries which will be useful for the
establishment of the desired results. Firstly, we remember that a V-static space
is a Riemannian manifold (Mn, g) with a nontrivial solution ( f, κ) satisfying the
overdetermined-elliptic system

−(1 f )g+Hess f − f Ric= κg,

where κ is a constant. As usual, we rewrite in the tensorial language as

(2-1) −(1 f )gi j +∇i∇j f − f Ri j = κgi j .

Tracing (2-1) we deduce that f also satisfies the equation

(2-2) 1 f + R
n−1

f + nκ
n−1
= 0.

Moreover, by using (2-2) it is not difficult to check that

(2-3) f R̊ic= H̊ess f,

where T̊ stands for the traceless part of T.
Before proceeding we recall two special tensors in the study of curvature for a

Riemannian manifold (Mn, g), n ≥ 3. The first one is the Weyl tensor W which is
defined by the decomposition formula

(2-4) Ri jkl =Wi jkl +
1

n−2
(Rik g jl + R jl gik − Ril g jk − R jk gil)

−
R

(n−1)(n−2)
(g jl gik − gil g jk),
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where Ri jkl stands for the Riemann curvature operator Rm, whereas the second
one is the Cotton tensor C given by

(2-5) Ci jk =∇i R jk −∇j Rik −
1

2(n−1)
(∇i Rg jk − j Rgik).

Note that Ci jk is skew-symmetric in the first two indices and trace-free in any two
indices. These two above tensors satisfy

(2-6) Ci jk =−
n−2
n−3
∇l Wi jkl,

provided n ≥ 4.
For our purpose we also remember that as a consequence of the Bianchi identity

(2-7) (div Rm) jkl =∇k R jl −∇l R jk .

Moreover, from commutation formulas (Ricci identities), for any Riemannian
manifold (Mn, g) we have

(2-8) ∇i∇ j Rkl −∇ j∇i Rkl = Ri jks Rsl + Ri jls Rks;

for more details, see [Chow et al. 2007; Viaclovsky 2011].
To conclude this section, we shall present the following lemma for V-static

spaces, which was previously obtained in [Barros et al. 2015] for Miao–Tam critical
metrics.

Lemma 2.1. Let (Mn, g) be a connected, smooth Riemannian manifold and f be
a smooth function on Mn satisfying (1-1). Then we have:

f (∇i R jk −∇j Rik)= Ri jkl∇l f + R
n−1

(∇i f g jk −∇j f gik)− (∇i f R jk −∇j f Rik).

Proof. The proof is standard, and it follows the same steps of Lemma 1 in [Barros
et al. 2015]. For the sake of completeness we shall sketch it here. Firstly, since g is
parallel we may use (2-1) to infer

(2-9) (∇i f )R jk + f∇i R jk =∇i∇j∇k f − (∇i1 f )g jk .

Next, since Mn has constant scalar curvature we have from (2-2) that

∇i1 f =− R
n−1
∇i f,

which substituted into (2-9) gives

(2-10) f∇i R jk =−(∇i f )R jk +∇i∇j∇k f + R
n−1
∇i f g jk .

Finally, we apply the Ricci identity to arrive at

f (∇i R jk−∇j Rik)= Ri jkl∇l f+ R
n−1

(∇i f g jk−∇j f gik)−(∇i f R jk−∇j f Rik). �
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3. A Bochner type formula and applications

In this section we shall provide a general Bochner type formula, which enables us
to prove some rigidity results for V-static spaces. To do so, we shall obtain some
identities involving the Cotton tensor and Weyl tensor on Riemannian manifolds
satisfying the V-static equation. Following the notation employed in [Barros et al.
2015], we can use (2-4) jointly with Lemma 2.1 to obtain

(3-1) f Ci jk = Ti jk +Wi jkl∇l f,

where the auxiliary tensor Ti jk is defined as

(3-2) Ti jk =
n−1
n−2

(Rik∇j f − R jk∇i f )+ 1
n−2

(gik R js∇s f − g jk Ris∇s f )

−
R

n−2
(gik∇j f − g jk∇i f ).

In the sequel, we obtain a divergent formula for any Riemannian manifold
(Mn, g) with constant scalar curvature.

Lemma 3.1. Let (Mn, g) be a connected Riemannian manifold with constant scalar
curvature and f : M→ R be a smooth function defined on M. Then we have

div( f∇|Ric|2)=− f |Ci jk |
2
+ 2 f |∇ Ric|2+〈∇ f,∇|Ric|2〉+ 2n

n−2
f Ri j Rik R jk

−
4n−2

(n−1)(n−2)
f R|R̊ic|2− 2

n(n−2)
f R3

+ 2∇i ( f Ci jk R jk)+ 2Ci jk∇j f Rik − 2 f Wi jkl Rik R jl .

Proof. Firstly, since Mn has constant scalar curvature we immediately get

f |Ci jk |
2
= f |∇i R jk −∇j Rik |

2
= 2 f |∇ Ric|2− 2 f∇i R jk∇j Rik .

On the other hand, easily one verifies that

∇j ( f∇i R jk Rik)=∇j f∇i R jk Rik + f∇j∇i R jk Rik + f∇i R jk∇j Rik .

Hence, it follows that

f |Ci jk |
2
= 2 f |∇ Ric|2− 2∇j ( f∇i R jk Rik)+ 2∇j f∇i R jk Rik + 2 f∇j∇i R jk Rik .

Next, from the commutation formula for second covariant derivative of the Ricci
curvature (see (2-8)) combined with (2-5), we deduce

(3-3) f |Ci jk |
2
= 2 f |∇ Ric|2+ 2∇j f (Ci jk +∇j Rik)Rik

+ 2 f (Ri j Rik R jl − Ri jkl Rik R jl)− 2∇j ( f∇i R jk Rik)

= 2 f |∇ Ric|2+ 2Ci jk∇j f Rik +〈∇ f,∇|Ric|2〉

+ 2 f (Ri j Rik R jk − Ri jkl Rik R jl)− 2∇j ( f∇i R jk Rik).
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Now, substituting (2-4) into (3-3) we achieve

f |Ci jk |
2
= 2 f |∇ Ric|2+ 2Ci jk∇j f Rik +〈∇ f,∇|Ric|2〉+ 2 f Ri j Rik R jk

− 2 f Wi jkl Rik R jl −
2 f

n−2
(2R|Ric|2− 2Ri j Rik R jk)

+
2R f

(n−1)(n−2)
(R2
− |Ric|2)− 2∇j ( f∇i R jk Rik)

= 2 f |∇ Ric|2+ 2Ci jk∇j f Rik +〈∇ f,∇|Ric|2〉+ 2n
n−2

f Ri j Rik R jk

− 2 f Wi jkl Rik R jl −
(4n−2)

(n−1)(n−2)
f R|Ric|2

+
2

(n−1)(n−2)
f R3
− 2∇j ( f∇i R jk Rik),

which can be rewritten as

f |Ci jk |
2
= 2 f |∇ Ric|2+ 2Ci jk∇j f Rik +〈∇ f,∇|Ric|2〉+ 2n

n−2
f Ri j Rik R jk

− 2 f Wi jkl Rik R jl −
(4n−2)

(n−1)(n−2)
f R|R̊ic|2

−
2

n(n−2)
f R3
− 2∇j ( f∇i R jk Rik)

= 2 f |∇ Ric|2+ 2Ci jk∇j f Rik +〈∇ f,∇|Ric|2〉+ 2n
n−2

f Ri j Rik R jk

− 2 f Wi jkl Rik R jl −
(4n−2)

(n−1)(n−2)
f R|R̊ic|2

−
2

n(n−2)
f R3
+ 2∇i ( f Ci jk R jk)− div( f∇|Ric|2),

where we used (2-5) to justify the second equality. So, the proof is completed. �

Proceeding, we shall deduce another divergent formula, which plays a crucial
role in the proof of Theorem 1.4.

Lemma 3.2. Let (Mn, g, f, κ) be a V-static space. Then we have

1
2 div( f∇|Ric|2)

=− f |Ci jk |
2
+ f |∇ Ric|2+〈∇ f,∇|Ric|2〉− nκ

n−1
|R̊ic|2+ 2∇i ( f Ci jk R jk).

Proof. To start with, we use Lemma 2.1 together with (2-5) to infer

∇i (∇j f Rik R jk+Ri jkl∇l f R jk)

= ∇i (∇j f Rik R jk)+∇i

[
f Ci jk R jk−

R
n−1

(∇i f R−∇j f R j i )

+(|Ric|2∇i f−∇j f Rik R jk)
]
.
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Rearranging the terms we immediately deduce

∇i (∇j f Rik R jk + Ri jkl∇l f R jk)

=∇i ( f Ci jk R jk)+∇i

[
−

R2

n−1
∇i f + R

n−1
R j i∇j f + |Ric|2∇i f

]
,

and remembering that (Mn, g) has constant scalar curvature we use the twice-
contracted second Bianchi identity (2 div Ric=∇R = 0) to get

(3-4) ∇i (∇j f Rik R jk+Ri jkl∇l f R jk)

=∇i ( f Ci jk R jk)−
R2

n−1
1 f+ R

n−1
∇i∇j f R j i+|Ric|21 f+〈∇ f,∇|Ric|2〉.

Therefore, substituting (2-1) and (2-2) into (3-4) we obtain

∇i (∇j f Rik R jk + Ri jkl∇l f R jk)

=∇i ( f Ci jk R jk)+〈∇ f,∇|Ric|2〉− R2

n−1
1 f

+
R

n−1
( f Ri j + (1 f + κ)gi j )R j i +1 f |Ric|2

=∇i ( f Ci jk R jk)+〈∇ f,∇|Ric|2〉+ R
n−1

f |Ric|2+ R2κ

n−1
+
−R f −nκ

n−1
|Ric|2.

From this, it follows that

(3-5) ∇i (∇j f Rik R jk + Ri jkl∇l f R jk)

=∇i ( f Ci jk R jk)+〈∇ f,∇|Ric|2〉− nκ
n−1
|R̊ic|2.

At the same time, notice that

∇i (∇j f Rik Rjk + Ri jkl∇l f Rjk)

=∇i∇j f Rik Rjk +∇j f Rik∇i Rjk +∇i Ri jkl∇l f Rjk

+Ri jkl∇i∇l f Rjk + Ri jkl∇l f∇i Rjk .

Hence, it follows from Lemma 2.1 and (2-1) that

∇i (∇j f Rik R jk + Ri jkl∇l f R jk)

= f (Ri j Rik R jk − Ri jkl Rik R jl)+∇j f Rik∇i R jk +Ci jk∇j f Rik

+ f Ci jk∇i R jk + (∇i f R jk −∇j f Rik)∇i R jk

= f (Ri j Rik R jk − Ri jkl Rik R jl)+Ci jk∇j f Rik

+ f Ci jk∇i R jk +
1
2〈∇ f,∇|Ric|2〉.
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Proceeding, we use that the Cotton tensor is skew-symmetric in the first two indices
and (3-3) to infer

(3-6) ∇i (∇j f Rik R jk + Ri jkl∇l f R jk)

= f |Ci jk |
2
− f |∇ Ric|2+∇j ( f∇i R jk Rik)

= f |Ci jk |
2
− f |∇ Ric|2−∇i ( f Ci jk R jk)+

1
2 div( f∇|Ric|2).

Finally, it suffices to compare (3-5) and (3-6) to get the desired result. �

Proof of Theorem 1.4. A simple computation using (3-1) as well as (3-2) allows
us to deduce

f |Ci jk |
2
=

2(n−1)
(n−2)

Rik∇j f Ci jk +Wi jkl∇l f Ci jk,

where we have used that Ci jk is skew-symmetric in the first two indices and trace-
free in any two indices. Whence, substituting this data into Lemma 3.1 we obtain

(3-7) div( f∇|Ric|2)

= 2 f |∇Ric|2+〈∇ f,∇|Ric|2〉+ 2n
(n−2)

f Ri j Rik R jk

−
1

(n−1)
f |Ci jk |

2
−

4n−2
(n−1)(n−2)

f R|R̊ic|2− 2
n(n−2)

f R3

+2∇i ( f Ci jk R jk)−
(n−2)
(n−1)

Wi jkl∇l f Ci jk−2 f Wi jkl Rik R jl .

Now, comparing the expression obtained in (3-7) with Lemma 3.2 we arrive at

(3-8) 1
2 div( f∇|Ric|2)

=

(
n−2
n−1
|Ci jk |

2
+ |∇ Ric|2

)
f + nκ

n−1
|R̊ic|2+ 2n

n−2
f Ri j Rik R jk

−
4n−2

(n−1)(n−2)
f R|R̊ic|2− 2

n(n−2)
f R3

−
n−2
n−1

Wi jkl∇l f Ci jk − 2 f Wi jkl Rik R jl .

On the other hand, recalling that R̊i j = Ri j − R2/ng, it is easy to check that

f Ri j Rik R jk = f R̊i j R̊ jk R̊ik +
3
n f R|R̊ic|2+ f R3

n2
.

This substituted into (3-8) gives

1
2 div( f∇|Ric|2)

=

(
n−2
n−1
|Ci jk |

2
+ |∇ Ric|2

)
f + nκ

n−1
|R̊ic|2+

(
2

n−1
R|R̊ic|2+ 2n

n−2
tr(R̊ic3

)
)

f

−
n−2
n−1

Wi jkl∇l f Ci jk − 2 f Wi jkl Rik R jl,

which finishes the proof of the theorem. �
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Proof of Corollaries 1.5 and 1.6. In order to prove Corollaries 1.5 and 1.6, we
recall that the Cotton tensor and the divergence of the Weyl tensor are related as
follows:

(3-9) Ci jk =−
n−2
n−3
∇l Wi jkl .

Notice also that the zero radial Weyl curvature condition, namely, Wi jkl∇l f = 0,
jointly with (3-9) and (2-1) yields

0=∇i (Wi jkl∇k f R jl)

=∇i Wi jkl∇k f R jl +Wi jkl∇i∇k f R jl

=
n−3
n−2

Ckl j∇k f R jl + f Wi jkl Rik R jl .

By using that the Cotton tensor is skew-symmetric in the two first indices we obtain

f Wi jkl Rik R jl =
n−3

2(n−2)
Ci jk(∇j f Rik −∇i f Rik),

which can be succinctly rewritten as

f Wi jkl Rik R jl =
n−3

2(n−1)
Ci jk Ti jk .

From this, it follows from (3-1) that

(3-10) f Wi jkl Rik R jl =
n−3

2(n−1)
f |Ci jk |

2.

Now, comparing (3-10) with Theorem 1.4 we achieve

1
2

div( f∇|Ric|2)=
(

n−2
n−1
|Ci jk |

2
+ |∇ Ric|2

)
f + nκ

n−1
|R̊ic|2

+

(
2

n−1
R|R̊ic|2+ 2n

n−2
tr(R̊ic

3
)
)

f − n−3
n−1

f |Ci jk |
2,

so that

(3-11) 1
2 div( f∇|Ric|2)=

(
1

n−1
|Ci jk |

2
+ |∇ Ric|2

)
f + nκ

n−1
|R̊ic|2

+

(
2

n−1
R|R̊ic|2+ 2n

n−2
tr(R̊ic3)

)
f.

Before proceeding it is important to remember that the classical Okumura’s
lemma [1974, Lemma 2.1] guarantees

(3-12) tr(R̊ic
3
)≥−

n−2
√

n(n−1)
|R̊ic|3.
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Therefore, upon integrating (3-11) over M we use (3-12) to arrive at

(3-13) 0≥
∫

M

(
1

n−1
|Ci jk |

2
+ |∇ Ric|2

)
f d Mg +

nκ
n−1

∫
M
|R̊ic|2 d Mg

+

∫
M

2n
√

n(n−1)
|R̊ic|2

(
R

√
n(n−1)

− |R̊ic|
)

f d Mg.

We now suppose that κ = 1, that is, (Mn, g) is a Miao–Tam critical metric, and
we may use our assumption with (3-13) to conclude that |R̊ic|2 = 0 and this forces
Mn to be Einstein. So, it suffices to apply Theorem 1.1 in [Miao and Tam 2011] to
conclude that (Mn, g) is isometric to a geodesic ball in Sn and this concludes the
proof of Corollary 1.5.

From now on we assume that κ = 0, that is, (Mn, g) is a static space. In this
case, our assumption substituted into (3-13) guarantees that either |R̊ic|2 = 0 or
|R̊ic|2 = R2/(n(n− 1)). In the first case, we conclude that (Mn, g) is an Einstein
manifold. Then, it suffices to apply Lemma 3 in [Reilly 1977] to conclude that Mn

is isometric to a hemisphere of Sn. In the second one, notice that Mn must have a
vanishing Cotton tensor and parallel Ricci curvature. From this, we can use (1-4)
to infer

(n− 2)Bi j =∇kCki j +Wik jl Rkl =Wik jl Rkl,

and consequently, by using the static equation, we deduce

(n− 2) f Bi j =Wik jl∇k∇l f =∇k(Wi jkl∇l f )−∇k Wik jl∇l f.

Hence, our assumption on Weyl curvature tensor jointly with (3-9) yields

(n− 2) f Bi j =−∇k W jlik∇l f = n−3
n−2

C jli∇l f = 0.

From here it follows that (Mn, g) is Bach-flat. Hence, the result follows from
Corollary 4.4 (see also Theorem 1 in [Ambrozio 2017] for n = 3). This is what we
wanted to prove. �

4. Critical metrics with nonnegative sectional curvature

In the last decades there have been a lot of interesting results concerning the
geometry of manifolds with nonnegative sectional curvature. In this context, as it
was previously mentioned, any two symmetric tensors T on a Riemannian manifold
(Mn, g) with nonnegative sectional curvature must satisfy

(4-1) (∇i∇j Tik −∇j∇i Tik)T jk ≥ 0.

In fact, we have

(∇i∇j Tik −∇j∇i Tik)T jk =
∑
i< j

Ri j i j (λi − λ j )
2,
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where the λi are the eigenvalues of tensor T (see Lemma 4.1 in [Cao 2007]). In
particular, choosing T = Ric we immediately get

(∇i∇j Rik −∇j∇i Rik)R jk ≥ 0.

This combined with (2-8) yields

(4-2) Ri j R jk Rik − Ri jkl R jl Rik ≥ 0.

In the sequel, we shall deduce a useful expression for Ri j R jk Rik − Ri jkl R jl Rik

on any Riemannian manifold.

Lemma 4.1. Let (Mn, g) be a Riemannian manifold. Then we have

Ri j R jk Rik − Ri jkl R jl Rik =
1

n−1
R|R̊ic|2+ n

n−2
tr(R̊ic

3
)−Wi jkl Rik R jl .

Proof. By using the definition of the Riemann tensor (2-4) we obtain

Ri j R jk Rik − Ri jkl R jl Rik

=
n

n−2
Ri j R jk Rik −Wi jkl R jl Rik −

(2n−1)
(n−1)(n−2)

R|Ric|2+ R3

(n−1)(n−2)

so that

(4-3) Ri j R jk Rik − Ri jkl R jl Rik

=
n

n−2
Ri j R jk Rik −Wi jkl R jl Rik −

(2n−1)
(n−1)(n−2)

R|R̊ic|2− 1
n(n−2)

R3.

On the other hand, we already know that

Ri j Rik R jk = R̊i j R̊ jk R̊ik +
3
n R|R̊ic|2+ R3

n2
.

This substituted into (4-3) gives the desired result. �

Since three-dimensional Riemannian manifolds have vanishing Weyl tensor, the
proof of Theorem 1.9 follows as an immediate consequence of the following slightly
stronger result.

Proposition 4.2. Let (Mn, g, f ) be a compact, oriented, connected Miao–Tam
critical metric with smooth boundary ∂M and nonnegative sectional curvature, f ,
which is also assumed to be nonnegative. Suppose that Mn has zero radial Weyl
curvature, then Mn is isometric to a geodesic ball in a simply connected space form
Rn or Sn.

Proof. To begin with, we multiply by f the expression obtained in Lemma 4.1 and
then we use Theorem 1.4 to infer

1
2 div( f∇|Ric|2)=

(
n−2
n−1
|Ci jk |

2
+ |∇ Ric|2

)
f + n

n−1
|R̊ic|2

+ 2(Ri j R jk Rik − Ri jkl R jl Rik) f − n−2
n−1

Wi jkl∇l f Ci jk
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and since Mn has zero radial Weyl curvature we get

1
2 div( f∇|Ric|2)=

(
n−2
n−1
|Ci jk |

2
+ |∇ Ric|2

)
f + n

n−1
|R̊ic|2

+ 2(Ri j R jk Rik − Ri jkl R jl Rik) f.

Finally, upon integrating the above expression over Mn we use (4-2) to conclude
that R̊ic= 0 and then (Mng) is Einstein. Hence, we apply Theorem 1.1 in [Miao
and Tam 2011] to conclude that (Mn, g) is isometric to a geodesic ball in Rn or Sn.
This finishes the proof of the proposition. �

Proceeding, we shall prove Theorem 1.10, which was announced in Section 1.

Theorem 4.3. Let (Mn, g, f ) be a positive static triple with nonnegative sectional
curvature, zero radial Weyl curvature and scalar curvature R = n(n − 1). Then
up to a finite quotient Mn is isometric to either the standard hemisphere Sn

+
or the

standard cylinder over Sn−1 with the product metric described in Theorem 1.3.

Proof. The proof looks like the one from the previous theorem. In fact, substituting
Lemma 4.1 into Theorem 1.4 we arrive at

1
2 div( f∇|Ric|2)=

(
1

n−1
|Ci jk |

2
+ |∇ Ric|2

)
f + 2(Ri j R jk Rik − Ri jkl R jl Rik) f.

We integrate the above expression over Mn and then use (4-2) to conclude that
(Mn, g) must have vanishing Cotton tensor and parallel Ricci curvature. Finally,
it suffices to repeat the same arguments applied in the final steps of the proof of
Corollary 1.6. So, the proof is completed. �

As an immediate consequence of the previous theorem we get the following
result.

Corollary 4.4. Let (M3, g, f ) be a three-dimensional positive static triple with
nonnegative sectional curvature and normalized scalar curvature R = 6. Then, up
to a finite quotient, M3 is isometric to either the standard hemisphere S3

+
or the

standard cylinder over S2 with the product metric described in Theorem 1.3.

We point out that, by a different approach, Ambrozio [2017] was able to show
that a three-dimensional compact positive static triple with scalar curvature 6 and
nonnegative Ricci curvature must be equivalent to the standard hemisphere or be
covered by the standard cylinder.
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