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CHERLIN’S CONJECTURE FOR SPORADIC SIMPLE GROUPS

FRANCESCA DALLA VOLTA, NICK GILL AND PABLO SPIGA

We prove Cherlin’s conjecture, concerning binary primitive permutation
groups, for those groups with socle isomorphic to a sporadic simple group.

1. Introduction

In this paper we consider the following conjecture which was given first in [Cherlin
2000]:

Conjecture 1.1. A finite primitive binary permutation group must be one of :

(1) A symmetric group Sym(n) acting naturally on n elements.

(2) A cyclic group of prime order acting regularly on itself.

(3) An affine orthogonal group V · O(V ) with V a vector space over a finite field
equipped with an anisotropic quadratic form acting on itself by translation,
with complement the full orthogonal group O(V ).

Thanks to work of Cherlin himself [2016], and of Wiscons [2016], Conjecture 1.1
has been reduced to a statement about almost simple groups. In particular, to prove
Conjecture 1.1 it would be sufficient to prove the following statement.

Conjecture 1.2. If G is a binary almost simple primitive permutation group on the
set �, then G = Sym(�).

In this paper, we prove this conjecture for almost simple groups with sporadic
socle. Formally, our main result is the following:

Theorem 1.3. Let G be an almost simple primitive permutation group with socle
isomorphic to a sporadic simple group. Then G is not binary.

Note that we include the group 2F4(2)′ in the list of sporadic groups — this group
is sometimes considered “the 27-th sporadic group” — so Theorem 1.3 applies to
this group too.

The terminology of Theorem 1.3 and the preceding conjectures is all fairly
standard in the world of group theory, with the possible exception of the word
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“binary”. Roughly speaking an action is binary if the induced action on `-tuples
can be deduced from the induced action on pairs (for any integer ` > 2); a formal
definition of a “binary permutation group” is given in Section 2.

1A. Context and methods. We will not spend much time here trying to motivate
the study of binary permutation groups. As will be clear on reading the definition of
binary in Section 2, this notion is a particular instance of the more general concept of
“arity” or “relational complexity”. These notions, which we define below in group
theoretic terms, can also be formulated from a model theoretic point of view where
they are best understood as properties of “relational structures”. These connections,
which run very deep, are explored at length in [Cherlin 2000], to which we refer
the interested reader.

Theorem 1.3 settles Conjecture 1.2 for one of the families given by the clas-
sification of finite simple groups. It is the third recent result in this direction:
Conjecture 1.2 has also been settled for groups with alternating socle [Gill and
Spiga 2016], and for groups with socle a rank 1 group of Lie type [Gill et al. 2017].
Work is ongoing for the groups that remain (groups with socle a group of Lie type
of rank at least 2) [Gill et al. ≥ 2018].

Our proof of Theorem 1.3 builds on ideas developed in [Gill and Spiga 2016]
and [Gill et al. 2017], in particular the notion of a “strongly nonbinary action”. In
addition to this known approach, we also make use of a number of new lemmas —
we mention, in particular, Lemma 2.7, which connects the “binariness” of an action
to a bound on the number of orbits in the induced action on `-tuples. These lemmas
are gathered together in Section 2.

In addition to these new lemmas, though, this paper is very focused on adapting
known facts about binary actions to create computational tests that can be applied
using a computer algebra package like GAP or Magma. This process of developing
tests is explained in great detail in Section 3.

In the final two sections we describe the outcome of these computations. In
Section 4 we are able to give a proof of Theorem 1.3 for all of the sporadic groups
barring the Monster. In Section 5 we give a proof of Theorem 1.3 for the Monster.
The sheer size of the Monster means that some of the computational procedures that
we exploit for the other groups are no longer available to us, and so our methods
need to be refined to deal with this special case.

2. Definitions and lemmas

Throughout this section G is a finite group acting (not necessarily faithfully) on a
set � of cardinality t . Given a subset 3 of �, we write

G3 := {g ∈ G | λg
∈3, for all λ ∈3}

for the set-wise stabilizer of 3, G(3) := {g ∈ G | λg
= λ, for all λ ∈ 3} for the
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pointwise stabilizer of 3, and G3 for the permutation group induced on 3 by the
action of G3. In particular, G3 ∼= G3/G(3).

Given a positive integer r , the group G is called r-subtuple complete with respect
to the pair of n-tuples I, J ∈�n, if it contains elements that map every subtuple of
length r in I to the corresponding subtuple in J , i.e.,

for every {k1, k2, . . . , kr } ⊆ {1, . . . , n},
there exists h ∈ G with I h

ki
= Jki , for every i ∈ {1, . . . , r}.

Here Ik denotes the k-th element of tuple I and I g
k denotes the image of Ik under

the action of g. Note that n-subtuple completeness simply requires the existence of
an element of G mapping I to J.

Definition 2.1. The action of G is said to be of arity r if, for all n ∈ N with n ≥ r
and for all n-tuples I, J ∈�n, r-subtuple completeness (with respect to I and J )
implies n-subtuple completeness (with respect to I and J ). Note that in the literature
the concept of “arity” is also known by the name “relational complexity”.

When the action of G has arity 2, we say that the action of G is binary. If G
is given to us as a permutation group, then we say that G is a binary permutation
group.

A pair (I, J ) of n-tuples of � is called a nonbinary witness for the action of
G on � if G is 2-subtuple complete with respect to I and J, but not n-subtuple
complete, that is, I and J are not G-conjugate. To show that the action of G on �
is nonbinary it is sufficient to find a nonbinary witness (I, J ).

We now recall some useful definitions introduced in [Gill et al. 2017]. We say
that the action of G on � is strongly nonbinary if there exists a nonbinary witness
(I, J ) such that

• I and J are t-tuples where |�| = t ;

• the entries of I and J comprise all the elements of �.

We give a standard example, taken from [Gill et al. 2017], showing how strongly
nonbinary actions can arise.

Example 2.2. Let G be a subgroup of Sym(�), let g1, g2, . . . , gr be elements of G,
and let τ, η1, . . . , ηr be elements of Sym(�) with

g1 = τη1, g2 = τη2, . . . , gr = τηr .

Suppose that, for every i ∈ {1, . . . , r}, the support of τ is disjoint from the support
of ηi ; moreover, suppose that, for each ω ∈ �, there exists i ∈ {1, . . . , r} (which
may depend upon ω) with ωηi = ω. Suppose, in addition, τ /∈ G. Now, writing
�= {ω1, . . . , ωt }, observe that

((ω1, ω2, . . . , ωt), (ω
τ
1 , ω

τ
2 , . . . , ω

τ
t ))

is a nonbinary witness. Thus the action of G on � is strongly nonbinary.
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The following lemma, taken from [Gill et al. 2017], shows a crucial property
of the notion of strongly nonbinary action: it allows one to argue “inductively” on
set-stabilizers (see also Lemma 2.8).

Lemma 2.3. Let � be a G-set and let 3⊆�. If G3 is strongly nonbinary, then G
is not binary in its action on �.

Proof. Write 3 := {λ1, . . . , λ`} and assume that G3 is strongly nonbinary. Then
there exists σ ∈ Sym(`) with I := (λ1, λ2, . . . , λ`) and J := (λ1σ , λ2σ , . . . , λ`σ ) a
nonbinary witness for the action of G3 on 3. Now, observe that (I, J ) is also a
nonbinary witness for the action of G on � because any (putative) element g of G
mapping I to J fixes 3 set-wise and hence g ∈ G3. �

Next we need an observation, made first in [Gill et al. 2017], that the existence of
a strongly nonbinary witness is related to the classic concept of 2-closure introduced
by Wielandt [1964]: given a permutation group G on�, the 2-closure of G is the set

G(2)
:= {σ ∈ Sym(�) | for all (ω1, ω2) ∈�×�,

there exists gω1ω2 ∈ G with ωσ1 = ω
gω1ω2
1 , ωσ2 = ω

gω1ω2
2 },

that is, G(2) is the largest subgroup of Sym(�) having the same orbitals as G. The
group G is said to be 2-closed if and only if G = G(2).

Lemma 2.4. Let G be a permutation group on �. Then G is strongly nonbinary if
and only if G is not 2-closed.

Proof. Write � := {ω1, . . . , ωt }. If G is not 2-closed, then there exists σ ∈G(2)
\G.

Set I := (ω1, . . . , ωt) and J := I σ = (ωσ1 , . . . , ω
σ
t ); observe that I and J are

2-subtuple complete (because σ ∈ G(2)) and are not G-conjugate (because σ /∈ G).
Thus (I, J ) is a strongly nonbinary witness. The converse is similar. �

Our next two lemmas make use of Lemma 2.3 and Example 2.2 to yield easy
criteria for showing that a permutation group is not binary.

Lemma 2.5. Let G be a transitive permutation group on �, let α ∈� and let p be
a prime with p dividing both |�| and |Gα| and with p2 not dividing |Gα|. Suppose
that G contains an elementary abelian p-subgroup V = 〈g, h〉 with g ∈ Gα , with h
and gh conjugate to g via G. Then G is not binary.

Proof. Let g ∈ Gα and let h ∈ gG with 〈g, h〉 an elementary abelian p-subgroup of
G of order p2 with gh also conjugate to g via G. In particular, h = gx, for some
x ∈ G. Write α0 := α and αp := α

x.
Since g ∈ Gα0 and h ∈ Gαp commute, αhi

0 is fixed by g and αgi

p is fixed by h, for
every i . Write αi := α

hi

0 and αp+i := α
gi

p , for every i ∈ {0, . . . , p− 1}. Moreover,
g acts as a p-cycle on {αp, . . . , α2p−1} and h acts as a p-cycle on {α0, . . . , αp−1}.

Since gh is conjugate to g via an element of G, there exists y ∈ G with
gh = gy. Write α2p = α

y. Observe that gh fixes (α2p)
g−i
= αhi

2p for every i . Write
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α2p+i := α
gi

2p, for every i ∈ {0, . . . , p− 1}. Thus g and h act as inverse p-cycles
on {α2p, . . . , α3p−1}.

Write 3 := {α0, . . . , α3p−1}. We have

g3 = (αp, . . . , α2p−1)(α3p−1, . . . , α2p),

h3 = (α0, . . . , αp−1)(α2p, . . . , α3p−1),

(gh)3 = (α0, . . . , αp−1)(αp, . . . , α2p−1).

If G3 is strongly nonbinary, then G is not binary by Lemma 2.3. Assume that
G3 is not strongly nonbinary. Then, in view of Example 2.2, there exists f ∈ G
with f 3 = (αp, . . . , α2p−1). This is a contradiction, because by hypothesis |Gα| is
not divisible by p2 but 〈g, f 〉 has order divisible by p2 and fixes α0 = α. �

Lemma 2.6. Let G be a permutation group on � and suppose that g and h are
elements of G of order p where p is a prime such that g, h and gh−1 are all
G-conjugate. Suppose that V = 〈g, h〉 is elementary abelian of order p2. Suppose,
finally, that G does not contain any elements of order p that fix more points of �
than g. If |Fix(V )|< |Fix(g)|, then G is not binary.

We remark that there are well-known formulae that we can use to calculate
Fix(V ) and |Fix(g)| when G is transitive (see for instance [Liebeck and Saxl 1991,
Lemma 2.5]). Suppose that M is the stabilizer of a point in �; then we have

(2-1) |Fix�(g)| =
|�| · |M ∩ gG

|

|gG |
, |Fix�(V )| =

|�| · |{V g
| g ∈ G, V g

≤ M}|
|V G |

.

Proof. We let
3 := Fix(g)∪Fix(h)∪Fix(gh−1).

Observe, first, that3, Fix(g), Fix(h) and Fix(gh−1) are g-invariant and h-invariant.
Observe, second, that

Fix(g)∩Fix(h)= Fix(g)∩Fix(gh−1)= Fix(h)∩Fix(gh−1)= Fix(V ).

Write τ1 for the permutation induced by g on Fix(gh−1), τ2 for the permutation
induced by g on Fix(h), and τ3 for the permutation induced by h on Fix(g) (observe
that τi ’s are non trivial as gh−1, h and g are conjugate). Since |Fix(V )|< |Fix(g)|,
we conclude that τ1, τ2 and τ3 are disjoint nontrivial permutations. What is more, g
induces the permutation τ1τ2 on 3, while h induces the permutation τ1τ3 on 3.

In view of Example 2.2, G3 is strongly nonbinary provided there is no element
f ∈ G3 that induces the permutation τ1. Arguing by contradiction, if such an
element f exists, then f has order divisible by p and f o( f )/p is a p-element fixing
more points than g, which is a contradiction. Thus G3 is strongly nonbinary and G
is not binary by Lemma 2.3. �
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For the rest of this section we assume that G is transitive. Given ` ∈ N \ {0}, we
denote by �(`) the subset of the Cartesian product �` consisting of the `-tuples
(ω1, . . . , ω`) with ωi 6= ω j , for every two distinct elements i, j ∈ {1, . . . , `}. We
denote by r`(G) the number of orbits of G on �(`).

Let π : G→N be the permutation character of G, that is, π(g)= fix�(g) where
fix�(g) is the cardinality of the fixed point set Fix�(g) := {ω ∈� | ωg

= ω} of g.
From the orbit counting lemma, we have

r`(G)=
1
|G|

∑
g∈G

fix�(g)(fix�(g)− 1) · · · (fix�− (`− 1))

= 〈π(π − 1) · · · (π − (`− 1)), 1〉G,

where 1 is the principal character of G and 〈 · , · 〉G is the natural Hermitian product
on the space of C-class functions of G.

Lemma 2.7. If G is transitive and binary, then r`(G) ≤ r2(G)`(`−1)/2 for each
` ∈ N.

Note that this lemma is, in effect, an immediate consequence of the fact that, for
a binary action, the orbits on pairs “determine” orbits on `-tuples. Thus, to uniquely
determine the orbit of a particular `-tuple, it is enough to specify the orbits of all(
`
2

)
pairs making up the `-tuple.

Proof. We write r2 := r2(G) and r` := r`(G) and we assume that r` > r (`−1)`/2
2 for

some ` ∈ N. Clearly, ` > 2.
Let

(ω1,1, . . . , ω1,`), . . . , (ωr`,1, . . . , ωr`,`)

be a family of representatives for the G-orbits on �(`). From the pigeon-hole
principle, at least r`/r2 of these elements have the first two coordinates in the same
G-orbit. Formally, there exists κ ∈ N with κ ≥ r`/r2 and a subset {i1, . . . , iκ} of
{1, . . . , r`} of cardinality κ such that the κ pairs

(ωi1,1, ωi1,2), . . . , (ωiκ ,1, ωiκ ,2)

are in the same G-orbit. By considering all possible pairs of coordinates, this
argument can be easily generalized. Indeed, from the pigeon-hole principle, there
exists κ with κ ≥ r`/r (`−1)`/2

2 > 1 and a subset {i1, . . . , iκ} of {1, . . . , r`} of cardi-
nality κ such that, for each 1≤ u < v ≤ `, the κ pairs

(ωi1,u, ωi1,v), . . . , (ωiκ ,u, ωiκ ,v)

are in the same G-orbit. In other words, the `-tuples

(ωi1,1, . . . , ωi1,`), . . . , (ωiκ ,1, . . . , ωiκ ,`)

are 2-subtuple complete. Since G is binary, these `-tuples must be in the same
G-orbit, contradicting κ > 1. �
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Observe that when r2(G) = 1, that is, G is 2-transitive, Lemma 2.7 yields
r`(G)= 1 for every ` ∈ {2, . . . |�|}. Therefore G = Sym(�) is the only 2-transitive
binary group.

Lemma 2.8. Let G be transitive, let α be a point of � and let3⊆� be a Gα-orbit.
If G is binary, then G3

α is binary. In particular, if g ∈ G and the action of Gα on
the right cosets of Gα ∩Gg

α in Gα is not binary, then G is not binary.

Proof. Assume that G is binary. Let ` ∈ N and let I := (λ1, λ2, . . . , λ`) and
J := (λ′1, λ

′

2, . . . , λ
′

`) be two tuples in 3` that are 2-subtuple complete for the
action of Gα on 3. Clearly, I0 := (α, λ1, λ2, . . . , λ`) and J0 := (α, λ

′

1, λ
′

2, . . . , λ
′

`)

are 2-subtuple complete for the action of G on �. As G is binary, I0 and J0 are in
the same G-orbit; hence I and J are in the same Gα-orbit. From this we deduce
that G3

α is binary.
Suppose now that g ∈G and that the action of Gα on the right cosets of Gα∩Gg

α

in Gα is not binary. Set β := αg and 3 := βGα . Now 3 is a Gα-orbit contained in
� \ {α} and the action of Gα on 3 is permutation isomorphic to the action of Gα

on the right cosets of Gα ∩Gβ = Gα ∩Gg
α in Gα . Therefore, G3

α is not binary and
hence G is not binary. �

3. On computation
In this section we explain how to make use of the lemmas given in the previous
section in a computational setting. The computational problem we are faced with is
as follows: given a transitive action of a group G on a set �, we wish to show that
the action is nonbinary; in some cases we will require more, namely that the action
is strongly nonbinary. If the set � is small enough, then we can often exhibit G as a
permutation group in the computer algebra package Magma and compute explicitly;
when � gets too large, then this may be infeasible and we may know only the
isomorphism type of G and the isomorphism type of a point-stabilizer.

3A. Test 1: using Lemma 2.7. In some cases, Lemma 2.7 is very efficient for
dealing with some primitive actions of almost simple groups G with socle a sporadic
simple group. In particular, whenever the permutation character of G is available in
GAP or in Magma, we can simply check directly the inequality in Lemma 2.7. For
instance, using this method it is easy to verify that each faithful primitive action of
M11 is nonbinary.

For practical purposes, it is worth mentioning that apart from
• the Monster,

• the action of the Baby Monster on the cosets of a maximal subgroup of type
(22
× F4(2)) : 2,

each permutation character of each primitive permutation representation of an almost
simple group with socle a sporadic simple group is available in GAP via the package
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“The GAP Character Table Library”. Therefore, for the proof of Theorem 1.3, we
can quickly and easily use Lemma 2.7 except for the Monster. To give a rough idea
of the time to perform this test, in the Baby Monster (except for the action on the
cosets on a maximal subgroup of type (22

×F4(2)) :2), it takes less than two minutes
to perform this checking. (The permutation character of the Baby Monster G on the
cosets of a maximal subgroup M of type (22

× F4(2)) : 2 is missing from the GAP
library because the conjugacy fusion of some of the elements of M in G remains
a mystery: this information is vital for computing the permutation character.)

For reasons that will be more clear later, for the proof of Theorem 1.3, we
need to prove the nonbinariness of permutation groups G ≤ Sym(�) that are not
necessarily almost simple, let alone having socle a sporadic simple group. When |�|
is relatively small (for practical purposes, here relatively small means at most 109),
we can afford to compute the permutation character and check the inequality in
Lemma 2.7.

3B. Test 2: using Lemma 2.4. By connecting the notion of strong-nonbinariness
to 2-closure, Lemma 2.4 yields an immediate computational dividend: there are
built-in routines in GAP and Magma to compute the 2-closure of a permutation
group.

Thus if � is small enough, say |�| ≤ 106, then we can easily check whether or
not the group G is 2-closed. Thus we can ascertain whether or not G is strongly
nonbinary.

3C. Test 3: a direct analysis. The next test we discuss is feasible once again
provided |�| ≤ 106. It simply tests whether or not 2-subtuple-completeness implies
3-subtuple completeness, and the procedure is as follows:

We fix α ∈ �, we compute the orbits of Gα on � \ {α} and we select a set of
representatives O for these orbits. Then, for each β ∈ O, we compute the orbits
of Gα ∩ Gβ on � \ {α, β} and we select a set of representatives Oβ . Then, for
each γ ∈ Oβ , we compute γ Gα ∩ γ Gβ. Finally, for each γ ′ ∈ γ Gα ∩ γ Gβ, we test
whether the two triples (α, β, γ ) and (α, β, γ ′) are G-conjugate. If the answer
is “no”, then G is not binary because by construction (α, β, γ ) and (α, β, γ ′) are
2-subtuple complete. In particular, in this circumstance, we can break all the “for
loops” and deduce that G is not binary.

If the answer is “yes”, for every β, γ, γ ′, then we cannot deduce that G is binary,
but we can keep track of these cases for a deeper analysis. We observe that, if the
answer is “yes”, for every β, γ, γ ′, then 2-subtuple completeness implies 3-subtuple
completeness.

3D. Test 4: using Lemma 2.8. The next test is particularly useful in cases where�
is very large, since its computational complexity is independent of |�|. Let us
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suppose that G and its subgroup M are stored in a library as abstract groups (or as
matrix groups or as permutation groups). When |G :M | is too large, it is impractical
(and sometimes impossible) to construct G as a permutation group on the coset
space � := G/M with point stabilizer M. However, using Lemma 2.8, we can still
prove that G acting on � is nonbinary: all we need is g ∈ G such that the action
of M on M ∩Mg is nonbinary. Now, for carefully chosen g, |M : M ∩Mg

| might
be much smaller than |G : M | and we can use one of the previous tests to ascertain
whether or not M in its action on M/(M ∩Mg) is binary.

3E. Test 5: a new lemma. Our final test requires an extra lemma which we include
here, rather than in the earlier section, as its computational aspect is somehow
inherent in its very statement.

Lemma 3.1. Let G be a primitive group on a set �, let α be a point of �, let M be
the stabilizer of α in G and let d be an integer with d ≥ 2. Suppose M 6= 1 and, for
each transitive action of M on a set 3 such that

(1) |3|> 1,

(2) every composition factor of M is isomorphic to some section of M3,

(3) either M(3) = 1 or, given λ ∈3, the stabilizer Mλ has a normal subgroup N
with N 6= M(3) and N ∼= M(3), and

(4) M is binary in its action on 3,

we have that d divides |3|. Then either d divides |�| − 1 or G is not binary.

Proof. Suppose that G is binary. Since {β ∈� | βm
= β, for all m ∈ M} is a block

of imprimitivity for G and since G is primitive, we obtain that either M fixes each
point of � or α is the only point fixed by M. The former possibility is excluded
because M 6= 1 by hypothesis. Therefore α is the only point fixed by M. Let
3 ⊆ � \ {α} be an M-orbit. Thus |3| > 1 and (1) holds. Since G is a primitive
group on �, from [Dixon and Mortimer 1996, Theorem 3.2C], we obtain that every
composition factor of M is isomorphic to some section of M3 and hence (2) holds.
From Lemma 2.8, the action of M on3 is binary and hence (4) holds. Let now λ∈3
and consider the orbital graph 0 := (α, λ)G. Observe that 0 is connected because
G is primitive. Let g ∈ G with αg

= λ. Clearly, 3 is the set of out-neighbors of
α in 0 and 3′ :=3g is the set of out-neighbors of αg

= λ in 0. Set N := (Gλ)(3′).
Clearly, (Gα)(3) = M(3) and (Gαg )(3g) = (Gλ)(3′) = N are isomorphic because
they are G-conjugate via the element g. Moreover, M(3)= (Gα)(λGα ) is normalized
by Gα and, similarly, N is normalized by Gλ; therefore they are both normalized by

Gα ∩Gλ = M ∩Gλ = Mλ.

If M(3) and N are equal, an easy connectedness argument yields that M(3) = 1.
Therefore (3) also holds.
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Since the four hypotheses in the statement of this lemma hold for the action of
M = Gα on its Gα-orbit 3, we get d divides |3|. Since this argument does not
depend on the Gα-orbit 3⊆�\{α}, we obtain that �\{α} has cardinality divisible
by d . Thus |�| − 1 is divisible by d . �

When it comes to implementing Lemma 3.1 on a computer, it is important to
observe that we do not need to construct the embedding of M = Gα in G; indeed
we do not need the group G stored in our computer at all. Instead we need only the
index |G : M | = |�| and the abstract group M (given as a group of matrices, or as
a permutation group, or as a finitely presented group).

Given |�| and M, we may choose a prime p (typically p= 2) with p not dividing
|�| − 1 and we construct all the transitive permutation representations of degree
greater than 1 and relatively prime to p of M satisfying (1), (2) and (3). If none of
these permutation representations is binary (and we can use any of Tests 1 to 4 to
test this), we infer that every transitive permutation representation of M of degree
greater than 1 satisfying (1), (2), (3) and (4) has degree divisible by p. Now, from
Lemma 3.1, we get that G in its action on the set M of right cosets of M in G is
not binary because p does not divide |�| − 1.

We give an explicit example to show how easily Lemma 3.1 can be applied. The
Monster G has a maximal subgroup M isomorphic to PGL2(19). The index of M
in G is

118131202455338139749482442245864145761075200000000∼ 1050

and we can easily observe that this number is even. After implementing Lemma 3.1
on a computer, it takes the blink of an eye to prove that each permutation represen-
tation of M of degree at least 1 and odd is nonbinary. Thus G acting on the cosets
of M is nonbinary. Observe that besides |G : M | and the isomorphism class of M,
no information about G is needed.

4. The non-Monster groups

The centerpiece of this section is Table 1; it summarizes the results of applying the
tests described in the previous section to all almost simple groups with a sporadic
socle, barring the Monster.

Table 1 consists of two columns: the first column lists all of the almost simple
groups G with socle a sporadic simple group (recall that we include Tits group
2 F4(2)′ in the list of sporadic groups). In the second column, we list all pairs (M, ◦),
where M is a maximal subgroup of G with the property that the action of G on
the set G/M of right cosets of M in G satisfies Lemma 2.7 (in other words, the
action is not excluded by Test 1, and hence is a potentially binary action). We use
the ATLAS [Conway et al. 1985] notation for the group M.
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Now the symbol ◦ is either∞ or a prime p or “?”. We write ◦ =∞ if we have
proved the nonbinariness of G in its action on G/M using Tests 2 or 3; we write
◦ = p if we have proved the nonbinariness of G in its action on G/M using Test 5
applied to the prime p; and we write ◦ =? if both methods have failed. The symbol
“−” in the second column means that each primitive permutation representation
of G is not binary via Lemma 2.7 (Test 1).

We have made use of the fact that full information on the maximal subgroups for
each group in the first column of Table 1 is available: these are all stored in GAP
or in Magma. To be more precise, in each case, either the maximal subgroup M
is stored providing a generating set (written as words in the standard generators
for G), or when such information is not available (for instance, for some of the
maximal subgroups of Fi23), the group M is explicitly described (for instance, as a
p-local subgroup) and hence also in this case it is possible to construct M with a
computer.

We are now able to prove Theorem 1.3 for all groups bar the Monster.

Proposition 4.1. Let G be an almost simple primitive group with socle a sporadic
simple group. If G is binary, then G is the Monster group.

Proof. In view of Table 1, it suffices to consider the case that G is either Co3, or
Ru, or B: these are the only groups having a “?” symbol in one of their rows. We
first assume that G is either Co3 or Ru; here, in view of Table 1 the group G is
acting on the cosets of M = A4 × S5 when G = Co3, or M = 5 : 4× A5 when
G = Ru. Given a Sylow 2-subgroup P of M, in both cases it is easy to verify with
Magma that there exists g ∈ NG(P) with M ∩Mg

= P. When G = Co3, P is of
type 2× 2× D4 and, when G = Ru, P is of type 4× 2× 2. Another computation
shows that the actions of A4× S5 on the cosets of 2× 2× D4, and of 5 : 4× A4 on
the cosets of 4× 2× 2 are not binary. Therefore, G in its action on the cosets of M
is not binary by Lemma 2.8.

Finally assume that G is the Baby Monster B. In view of Table 1, G is acting on
the cosets of M where M is of one of the following types:

(22
×F4(2)) : 2, 31+8.21+6.U4(2).2, (32

: D8×U4(3).22).2, 32.33.36.(S4×2S4).

Let � be the set of right cosets of M in G and let α ∈� with Gα = M (that is, α
is the coset M). We go through the four remaining cases one at a time.

Case 1: M ∼= (32
: D8×U4(3).22).2. Observe that a Sylow 7-subgroup of G has

order 72
= 49, that G has a unique conjugacy class of elements of order 7, and

that |M | and |G : M | are both divisible by 7. Then Lemma 2.5 implies that G is
not binary.

Case 2: M ∼= 31+8.21+6.U4(2).2. The group G has two conjugacy classes of
elements of order 5, with the ATLAS notation, of type 5A and of type 5B. By
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group outcome of tests
M11 −

M12 −

M12.2 −

M22 −

M22.2 −

M23 −

M24 (L2(7),∞)
J1 (D6× D10,∞), (7 : 6,∞)
J2 (A5,∞)

J2.2 (S5,∞)
J3 −

J3.2 (19 : 18, 3)
J4 (M22 : 2, 2), (111+2

+
: (5× 2S4), 2), (L2(32) : 5, 11), (L2(23) : 2, 2),

(U3(3), 2), (29 : 28, 2), (43 : 14, 7), (37 : 12, 2)
2 F4(2)′ −

2 F4(2) (M, 2) where M has order 156
Suz (A7, 2), (L2(25), 2)

Suz.2 (S7, 7)
McL −

McL.2 −

HS (M22, 2)
HS.2 (M22 : 2, 2)
Co3 (A4× S5, ?)
Co2 (51+2

+
: 4S4, 2)

Co1 (A9× S3, 3), ((A7× L2(7)) : 2, 2), ((D10× (A5× A5).2).2, 2),
(51+2
+
: GL2(5), 2), (53

: (4× A5).2, 2), (52
: 4A4, 2), (72

: (3× 2A4), 2)
He (52

: 4A4, 2)
He.2 −

Fi22 −

Fi22.2 −

Fi23 (L2(23), 2)
Fi′24 ((A5× A9) : 2, 3), (A6× L2(8) : 3, 2), (7 : 6× A7, 7), (U3(3).2, 2)

(U3(3).2, 2), (L2(13).2, 2), (L2(13).2, 2), (29 : 14, 7)
Fi24 (S5× S9, 3), (S6× L2(8) : 3, 2), (7 : 6× S7, 7), (71+2

+
: (6× S3).2, 2), (29 : 28, 7)

Ru (L2(13) : 2, 2), (5 : 4× A5, ?), (A6.22, 2), (51+2
+
: [25
], 2), (3.A6.22, 2)

O’N (A7, 2), (A7, 2)
O’N.2 (31 : 30, 5), (L2(7) : 2, 2), (A6 : 22, 2)

Ly (67 : 22, 11), (37 : 18, 3)
Th (35

: 2S6, 2), (51+2
+
: 4S4, 2), (52

: GL2(5), 2), (72
: (3× 2S4), 2),

(L2(19).2, 2), (L3(3), 2), (M10 = A6.23, 2), (31 : 15, 4), (S5, 5)
HN (31+4

+
: 4A5, 2)

HN.2 −

B ((22
× F4(2)) : 2, ?), (31+8.21+6.U4(2).2, ?), ((32

: D8×U4(3).22).2, ?),
(5 : 4×HS : 2, 2), (32.33.36.(S4× 2S4), ?), (S4×

2 F4(2), 2), (S5× (M22 : 2), 2),
((S6× (L3(4) : 2)).2, 2), (53

: L3(5), 2), (51+4.21+4.A5.4, 2), ((S6× S6).4, 2),
((52
: 4S4)× S5, 2), (L2(49).2, 2), (L2(31), 2), (M11, 2), (L3(3), 2),

(L2(17) : 2, 2), (L2(11) : 2, 2), (47 : 23, 23)

Table 1. Disposing of some of the sporadic simple groups.
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computing the permutation character of G via the package the GAP character table
library, we see that an element of type 5A fixes no point and that an element of
type 5B fixes 25000 points. Observe that |M | is divisible by 5, but not by 52

= 25.
Moreover, using the ATLAS [Conway et al. 1985], we see that G contains an
elementary abelian 5-group V of order 53 generated by three elements of type 5B;
moreover, the normalizer of V is a maximal subgroup of G of type 53

: L3(5).
In particular, each nonidentity 5-element of V is of type 5B, because L3(5) acts
transitively on the nonzero vectors of 53. Since |M | is not divisible by 25, we
conclude that Fix(V ) is empty. Now we apply Lemma 2.6 to L , a subgroup of M
of order 25 such that |Fix(L)|< |Fix(g)|. We conclude that G is not binary.

Case 3: M ∼= 32.33.36.(S4 × 2S4). From the ATLAS [Conway et al. 1985], we
see that M = NG(V ), where V is an elementary abelian 3-subgroup of order 32

with V \ {1} consisting only of elements of type 3B. For the proof of this case, we
refer to [Wilson 1987] and [Wilson 1999]. According to Wilson [1987, Section 3],
there exist three G-conjugacy classes of elementary abelian 3-subgroups of G of
order 32 consisting only of elements of type 3B, denoted in [Wilson 1987] as having
type (a) or (b) or (c). Moreover, from [Wilson 1987, Proposition 3.1], we see that
only for the elementary abelian 3-groups of type (a) the normalizers are maximal
subgroups of G and of shape 32.33.36.(S4 × 2S4). Thus V is of type (a). Let
V1, V2, V3 be representatives for the conjugacy classes of elementary 3-subgroups
of G of order 32 and consisting only of elements of type 3B. We may assume that
V1 = V. From [Wilson 1987] or [Wilson 1999], for W ∈ {V1, V2, V3}, NG(W ) has
shape 32.33.36.(S4×2S4), (32

×31+4).(22
×2A4).2, and (32

×31+4).(2×2S4); in
[Wilson 1987; 1999], these cases are referred to as type (a), type (b) and type (c),
respectively.

Next, we consider a maximal subgroup K of G isomorphic to PSL3(3). From
[Wilson 1999] (pages 9 and 10 and the discussion therein on the interaction between
K and the types (a), (b) and (c)), we infer that K contains a conjugate of V. In
particular, replacing K by a suitable G-conjugate, we may assume that V ≤ K, and
more specifically,

M ∩ K = NK (V ).

Take 3 := αK and observe that 3 is a K -orbit on � and that the stabilizer of the
point α in K is NK (V ). Moreover, since K is maximal in G, we get G3 = K. We
claim that G3

= K3 is strongly nonbinary, from which it follows that G is not
binary by Lemma 2.3. Observe that the action of K on3 is permutation isomorphic
to the action of K on the set of right cosets of NK (V ) in K.

Now, we consider the abstract group K0 = PSL3(3), we consider an elementary
abelian 3-subgroup V0 of order 9 of K0, we compute N0 :=NK0(V0) and we consider
the action of K0 on the set 30 of right cosets of N0 in K0. A straightforward
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computation shows that K0 is not 2-closed in this action, and hence K0 in its action
on 30 is strongly nonbinary by Lemma 2.4.

Case 4: M ∼= (22
× F4(2)) : 2. Here we cannot invoke the GAP character table

library to understand whether F4(2) contains elements of type 5A or 5B, because
the fusion of M in G is (in some cases) still unknown. As we mentioned above,
G has two conjugacy classes of elements of order 5, denoted by 5A and 5B; what
is more the group F4(2) contains a unique conjugacy class of elements of order 5.
Observe that the centralizers in G have elements of type 5A and 5B which have
orders 44352000 and 6000000, respectively. Now, the centralizer in F4(2) of an
element of order 5 has cardinality 3600. Since 3600 does not divide 6000000, we
get that M contains only elements of type 5A; in particular elements of type 5B do
not fix any element of �.

Using (2-1), we conclude that if g is an element of order 5 in M, then

|Fix�(g)| =
|G|
|M |
|M : CM(g)|
|G : CG(g)|

=
|CG(g)|
|CM(g)|

=
44352000

3600× 4× 2
= 1540.

Now let V be a Sylow 5-subgroup of M and observe that V has order 52 and
V \ {1} consists only of elements of type 5A. Referring to [Wilson 1987, Section 6],
we see that G contains only one conjugacy class of elementary abelian groups
of order 25 for which the nontrivial elements are all of type 5A. Thus V is a
representative of this G-conjugacy class. Now, Theorem 6.4 in [Wilson 1987]
yields NG(V )∼= 52

: 4S4× S5. Appealing to (2-1) again, we conclude that

|Fix�(V )| =
|G|
|M |
|M : NM(V )|
|G : NG(V )|

=
|NG(V )|
|NM(V )|

=
28800
19200

= 15.

Now Lemma 2.6 implies that G is not binary. �

5. The Monster

We prove Theorem 1.3 for the Monster. Our proof will break down into several parts,
and to ensure we cover all possibilities we make use of a recent account of the clas-
sification of the maximal subgroups of the sporadic simple groups in [Wilson 2017].

From [Wilson 2017, Section 3.6], we see that the classification of the maximal
subgroups of the Monster G is complete except for a few small open cases. In
particular, if M is a maximal subgroup of G, then either

(a) M is in [Wilson 2017, Section 4], or

(b) M is almost simple with socle isomorphic to L2(8), L2(13), L2(16), U3(4)
or U3(8).

From here on G will always denote the Monster group, and M will be a maximal
subgroup of G. We consider the action of G on cosets of M.
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maximal subgroup prime maximal subgroup prime

2.B 11 (D10×HS).2 7
21+24.Co1 11 (32

: 2× O+8 (3)).S4 7
3.Fi24 11 32+5+10.(M11× 2S4) 11

22.2 E6(2).S3 11 51+6
: 2J2 : 4 7

210+16.O+10(2) 7 (A5× A12) : 2 7
22+11+22.(M24× S3) 7 (A5×U3(8) : 31) : 2 7

31+12.2Suz.2 7 (L3(2)× S4(4) : 2).2 7
25+10+20.(S3× L5(2)) 7 (52

: [24
]×U5(5)).S3 7

23+6+12+18.(L3(2)× 3S6) 7 71+4
: (3× 2S7) 5

38.O−8 (3).23 7 L2(16).2 5

Table 2. Primitive actions of the Monster for Lemma 5.2.

5A. The almost simple subgroups in (b). We begin by applying Test 5 to those
groups in category (b). Provided that such a group M is not isomorphic to L2(16).2,
we find that, by applying Test 5 with the prime 2 or 3, we can immediately show
that G in its action on G/M is not binary.

The group M = L2(16).2 is exceptional here: for each prime p dividing |M |,
there exists a permutation representation of M of degree coprime to p satisfying
the four conditions in Lemma 3.1; hence we cannot apply Test 5. We defer the
treatment of L2(16).2 to Section 5B below.

From here on we will consider those groups in category (a), as well as the
deferred group L2(16).2.

5B. Constructing a strongly nonbinary subset. For our next step, we will apply
Lemma 2.5 to the remaining group, L2(16).2, from category (b) and to the groups
from category (a). We start with a technical lemma; this is then followed by the
statement that we need, Lemma 5.2.

Lemma 5.1. Let G be the Monster, let p ∈ {5, 7, 11} and let x ∈ G with o(x)= p.
Then there exists g ∈ G with 〈x, xg

〉 elementary abelian of order p2 and with xxg

conjugate to x via an element of G.

Proof. When p= 11, there is nothing to prove: G has a unique conjugacy class of el-
ements of order 11 and a Sylow 11-subgroup of G is elementary abelian of order 112.

When p ∈ {5, 7}, it is enough to read [Conway et al. 1985, page 234]: G contains
two conjugacy classes of elements of order p. Moreover, G contains two elementary
abelian p-subgroups V and V ′ both of order p2, with V generated by two elements
of type pA and with V ′ generated by two elements of type pB. Moreover, NG(V )
and NG(V ′) act transitively on the nonidentity elements of V and of V ′, respectively.

This lemma can also be easily deduced from [Wilson 1988]. �
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maximal subgroup prime maximal subgroup prime

(7 : 3×He) : 2 2 (72
: (3× 2A4)× L2(7)).2 2

(A6× A6× A6).(2× S4) 2 (13 : 6× L3(3)).2 2
(52
: [24
]×U3(5)).S3 2 131+2

: (3× 4S4) 2
(L2(11)×M12) : 2 2 L2(71) 2

(A7× (A5× A5) : 22) : 2 1 2 L2(59) 5
54
: (3× 2L2(25)) : 2 2 112

: (5× 2A5) 2
72+1+2

: GL2(7) 2 L2(41) 2
M11× A6.22 2 L2(29) : 2 2

(S5× S5× S5) : S3 3 72
: SL2(7) 2

(L2(11)× L2(11)) : 4 2 L2(19) : 2 2
132
: (2L2(13).4) 2 41 : 40 2

Table 3. Primitive actions of the Monster for Lemma 5.3.

Lemma 5.2. Let G be the Monster and let M be a maximal subgroup of G. If M is
as in the maximal subgroup columns of Table 2, then the action of G on the right
cosets of M in G is not binary.

Note that the final line of the table is the remaining group from category (b),
hence, once this lemma is disposed of, we only deal with groups from category (a).

Proof. If suffices to compare |G : M | with |M | and apply Lemmas 2.5 and 5.1. For
simplicity we highlight in Table 2 the prime p that we use to apply Lemma 2.5. �

5C. Using Test 5. We next apply Test 5 to the remaining maximal subgroups of G.
The statement that we need is the following.

Lemma 5.3. Let G be the Monster and let M be a maximal subgroup of G. If M
is as in maximal subgroup columns of Table 3, then the action of G on the right
cosets of M in G is not binary.

Proof. Table 3 lists precisely those remaining maximal subgroups that can be
excluded using Test 5, together with the prime p that has been used. �

5D. The remainder. By ruling out the groups listed in Tables 2 and 3, we are
left with precisely five subgroups on Wilson’s list [2017]. We now deal with
these one at a time and, in so doing, we complete the proof of Theorem 1.3. The
remaining groups are as follows: S3×Th, 33+2+6+6

: (L3(3)×SD16), (7 :3×He) :2,
53+3.(2×L3(5)), 52+2+4

: (S3×GL2(5)).

1This action turned out to be rather problematic. Each transitive action of odd degree satisfying
the conditions (1), (2), (3) in Lemma 3.1 is not binary. However, for some of these actions to witness
the nonbinariness we had to resort to 4-tuples, which was particularly time consuming.
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Case 1: M ∼= S3×Th. Here we refer to [Wilson 1988, Section 2]. There are three
conjugacy classes of elements of order 3 in the Monster G, of type 3A, 3B and 3C,
and the normalizers of the cyclic subgroups generated by the elements of type 3C
are maximal subgroups of G conjugate to M. Choose x , an element of type 3C with
M=NG(〈x〉). We write M :=H×K, where H ∼= S3 and K ∼=Th. From the first two
lines of the proof of Proposition 2.1 of [Wilson 1988], for every y ∈ K of order 3, xy
is an element of type 3C. From the subgroup structure of the Thompson group Th, the
group K contains an element y of order 3 with NK (〈y〉) of shape (3×G2(3)) : 2 and
maximal in K. Since x and xy are in the same G-conjugacy class, there exists g ∈G
with xg

= xy. Moreover, an easy computation inside the direct product M = H×K
yields that M ∩Mg

= NG(〈x〉)∩NG(〈xy〉) = NM(〈xy〉) ∼= (〈x〉 ×CK (y)) : 2 has
shape (3× 3×G2(3)) : 2. This shows that the action of M on the right cosets of
M ∩Mg is permutation isomorphic to the primitive action of Th on the right cosets
of (3×G2(3)) : 2. In other words, G has a suborbit inducing a primitive action of
the sporadic Thompson group. From Proposition 4.1, this action is not binary, and
hence the action of G on the right cosets of M is not binary by Lemma 2.8.

Case 2: M ∼= 33+2+6+6
: (L3(3)× SD16). Arguing as in the previous case, we note

that M contains only elements of type 13A and no elements of type 13B. Let Q be
a 13-Sylow subgroup of M and let P be a 13-Sylow subgroup of G with Q ≤ P.
Observe that P is an extraspecial group of exponent 13 of order 133 and that Q
has order 13. Replacing P by a suitable G-conjugate we may also assume that
Q 6=Z(P). (Observe that to guarantee that we may actually assume that Q 6=Z(P)
we need to use [Wilson 1988, page 15], which describes how the 13-elements of
type A and B are partitioned in P. Indeed, not all 13-elements of type B are in Z(P)
and hence, if accidentally Q = Z(P), we may replace Q with a suitable conjugate.)

Let α ∈� with Gα = M and set 3 := αP. From the previous paragraph, P acts
faithfully on the set 3 and |3| = 132. Now the permutation group P in its action
on 3 is not 2-closed; indeed the 2-closure of P in its action on 3 is of order 1314,
it is a Sylow 13-subgroup of Sym(3) (this follows from an easy computation or
directly from [Dobson and Witte 2002]). Since P embeds into G3, the 2-closure
of G3 contains the 2-closure of P, but since 1314 does not divide the order of |G|,
G3 is not 2-closed. Lemmas 2.3 and 2.4 imply that the action is not binary.

Case 3: M ∼= (7 : 3× He) : 2. Observe that He has a unique conjugacy class
of elements of order 5 and that its Sylow 5-subgroups are elementary abelian of
order 52. Thus, we let V := 〈g, h〉 be an elementary abelian 5-subgroup of M and
we note that g, h and gh are M-conjugate and hence G-conjugate. The group G has
two conjugacy classes of elements of order 5, denoted 5A and 5B. We claim that
M contains only elements of type 5A. Indeed, a computation inside the Held group
He reveals that CM(g) contains an element of order 7× 3× 5= 105 and hence G
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contains an element x of order 105 with x21
= g being an element of order 5. By

considering the power information on the conjugacy classes of G, we see that g
belongs to the conjugacy class of type 5A. Since all 5-elements are conjugate in M,
we get that M contains only 5-elements of type 5A.

We now calculate the number of fixed points of g and of V on �, making use
of (2-1). Using the information on the conjugacy classes of He and G we deduce

|Fix�(g)|=
|G|
|M |
|M :CM(g)|
|G :CG(g)|

=
|CG(g)|
|CM(g)|

=
1365154560000000

12600
=108345600000.

Next, since V is a Sylow 5-subgroup of M, we deduce that |NM(V )| = 50400 using
the structure of the Held group. Moreover, from [Wilson 1988, Section 9], we get
that the normalizer of an elementary abelian 5-subgroup of the Monster consisting
only of elements of type 5A is maximal in G and is of the form (52

:4·22
×U3(5)) : S3.

In particular, |NG(V )| = 302400000. Thus

|Fix�(V )| =
|G|
|M |
|M : NM(V )|
|G : NG(V )|

=
|NG(V )|
|NM(V )|

=
302400000

50400
= 6000.

Now Lemma 2.6 implies that G is not binary.

Case 4: M ∼= 53+3.(2× L3(5)). Let P be a Sylow 31-subgroup of M and observe
that P is also a Sylow 31-subgroup of G. Recall that G has a maximal subgroup
K :=C×D, where C∼= S3 and D∼=Th (as usual Th denotes the sporadic Thompson
group). Now, by considering the subgroup structure of Th, we see that D contains
a maximal subgroup isomorphic to 25.L5(2) and hence D contains a Frobenius
subgroup F isomorphic to 25

: 31. Replacing F by a suitable conjugate we may
assume that P ≤ F.

Comparing the subgroup structure of M and of F, we deduce M ∩ F = P.
Consider 3 := αF. By construction, as M = Gα, we get |3| = 32 and F acts as a
2-transitive Frobenius group of degree 32 on3. Since the 2-closure of a 2-transitive
group of degree 32 is Sym(32) and since G has no sections isomorphic to Sym(32),
we deduce from Lemma 2.4 that G3 is strongly nonbinary. Therefore G is not
binary by Lemma 2.3.

Case 5: M ∼= 52+2+4
: (S3×GL2(5)). For this last case we invoke again the help

of a computer-aided computation based on Lemma 3.1, but applied in a slightly
different way than what we have described in Test 5. (We thank Tim Dokchitser for
hosting the computations required for dealing with this case.) Observe that |�| − 1
is divisible by 5, but not by 52.

With Magma we construct all the transitive permutation representations on a
set 3 of degree greater than 1 and with |3| not divisible by 52 of M. (Considering
that a Sylow 5-subgroup of M has index 576, this computation does require some
time but it is feasible.) Next, with a case-by-case analysis we see that none of these
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permutation representations satisfies (1), (2), (3) and (4). Therefore, every transitive
permutation representation of M of degree greater than 1 satisfying (1), (2), (3)
and (4) has degree divisible by 25. Now, from Lemma 3.1 applied with d := 25,
we get that G in its action on the set M of right cosets of M in G is not binary
because 25 does not divide |�| − 1.
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