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IN SPACE FORMS

FRANCISCO FONTENELE AND ROBERTO ALONSO NÚÑEZ

Let Qn+1
c be the complete simply connected (n+ 1)-dimensional space form

of curvature c. We obtain a new characterization of geodesic spheres in
Qn+1

c in terms of the higher order mean curvatures. In particular, we prove
that the geodesic sphere is the only complete bounded immersed hyper-
surface in Qn+1

c , c ≤ 0, with constant mean curvature and constant scalar
curvature. The proof relies on the well known Omori–Yau maximum prin-
ciple, a formula of Walter for the Laplacian of the r-th mean curvature of
a hypersurface in a space form, and a classical inequality of Gårding for
hyperbolic polynomials.

1. Introduction

A question of interest in differential geometry is whether the geodesic sphere is the
only compact oriented hypersurface in the (n+ 1)-dimensional Euclidean space
Rn+1 with constant r -th mean curvature Hr , for some r = 1, . . . , n. Here H1, H2,
and Hn are the mean curvature, the scalar curvature, and the Gauss–Kronecker
curvature, respectively; see the definitions in Section 2. When r = 1 this question
is the well known Hopf conjecture, and when r = 2 it is a problem proposed by
Yau [1982, Problem 31, p. 677].

As proved by Alexandrov [1958] for r = 1, and by Ros [1988; 1987] for any r
(see also [Montiel and Ros 1991] and the appendix by Korevaar in [Ros 1988]),
the above question has an affirmative answer for embedded hypersurfaces. In the
immersed case, the question has a negative answer when r=1 — see the examples of
nonspherical compact hypersurfaces with constant mean curvature in the Euclidean
space constructed by Wente [1986] and Hsiang, Teng and Yu [Hsiang et al. 1983] —
and an affirmative answer when r = n (by a theorem of Hadamard). The problem
is still unsolved for 1 < r < n. For partial answers when r = 2 (Yau’s problem),
see [Cheng 2002; Li 1996; Okayasu 2005].
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Because of the difficulty of the above question, it is natural to attempt to obtain
the rigidity of the sphere in Rn+1 under geometric conditions stronger than requiring
that Hr be constant for some r . In this regard, Gardner [1970] proved that if a
compact oriented hypersurface Mn in Rn+1 has two consecutive mean curvatures
Hr and Hr+1 constant, for some r = 1, . . . , n−1, then it is a geodesic sphere. This
result was extended to compact hypersurfaces in any space form by Bivens [1983].
For improvements on Bivens’ result, see [Koh 1998; Wang 2014].

Cheng and Wan [1994] proved that a complete hypersurface M3 with constant
scalar curvature R and constant mean curvature H 6= 0 in R4 is a generalized
cylinder Sk(a)×R3−k , for some k = 1, 2, 3 and some a > 0; see [Núñez 2017]
for results of this nature in higher dimensions. From this result one obtains the
following improvement, when n = 3 and r = 1, to the theorem of Gardner referred
to above: The geodesic spheres are the only complete bounded hypersurfaces in R4

with constant scalar curvature and constant mean curvature (cf. Corollary 1.2).
Our main result (Theorem 1.1) provides a new characterization of geodesic

spheres in space forms. There are many results of this nature in the literature,
most of which assure that a compact hypersurface that satisfies certain geometric
conditions is a geodesic sphere. What makes the characterization provided by
Theorem 1.1 special is that the geometric conditions in it are imposed on a complete
hypersurface (that is bounded when c ≤ 0, and contained in a spherical cap when
c > 0), and not on a compact one.

In the theorem below and throughout this work, Qn+1
c stands for the (n + 1)-

dimensional complete simply connected space of constant sectional curvature c.

Theorem 1.1. Let Mn be a complete Riemannian manifold with scalar curvature
R bounded from below, and let f : Mn

→Qn+1
c be an isometric immersion. In the

case c ≤ 0, assume that f (Mn) is bounded, and in the case c > 0, that f (Mn) lies
inside a geodesic ball of radius ρ < π/2

√
c. If the mean curvature H is constant

and, for some r = 2, . . . , n, the r-th mean curvature Hr is constant, then f (Mn) is
a geodesic sphere of Qn+1

c .

The following results follow immediately from the above theorem. Notice that
the hypothesis in Theorem 1.1 that the scalar curvature of Mn is bounded from
below is superfluous when r = 2.

Corollary 1.2. Let f : Mn
→ Qn+1

c be an isometric immersion of a complete
Riemannian manifold Mn in Qn+1

c . In the case c≤0, assume that f (Mn) is bounded,
and in the case c > 0, that f (Mn) lies inside a geodesic ball of radius ρ < π/2

√
c.

If the mean curvature H and the scalar curvature R are constant, then f (Mn) is a
geodesic sphere of Qn+1

c .

Corollary 1.3. Let f : Mn
→ Qn+1

c be an isometric immersion of a compact
Riemannian manifold Mn in Qn+1

c . In the case c>0, assume that f (M) is contained
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in an open hemisphere of Sn+1
c . If the mean curvature H is constant and, for some

r = 2, . . . , n, the r-th mean curvature Hr is constant, then f (Mn) is a geodesic
sphere of Qn+1

c .

Remark 1.4. The examples of [Wente 1986; Hsiang et al. 1983] referred to in the
second paragraph of this section show that the hypothesis that Hr is constant for
some r , 2≤ r ≤ n, can not be removed from Theorem 1.1. It is surely a difficult
question to know whether the theorem holds without the assumption that H is
constant (cf. Yau’s problem mentioned in the beginning of this section). We do not
know whether Theorem 1.1 (for r ≥ 3) holds without the hypothesis that the scalar
curvature of M is bounded below.

The proof of Theorem 1.1 relies on the well known Omori–Yau maximum
principle [Cheng and Yau 1975; Omori 1967; Yau 1975], a formula of Walter
[1985] for the Laplacian of the r-th mean curvature of a hypersurface in a space
form, and a classical inequality of Gårding [1959] for hyperbolic polynomials.

2. Preliminaries

Given an isometric immersion f : Mn
→ N n+k of an n-dimensional Riemannian

manifold Mn into an (n+ k)-dimensional Riemannian manifold N n+k , denote by
σ : TM × TM → TM⊥ the (vector valued) second fundamental form of f , and
by Aξ the shape operator of the immersion with respect to a (locally defined) unit
normal vector field ξ . From the Gauss formula one obtains, for all smooth vector
fields X and Y ,

(2-1) 〈Aξ X, Y 〉 = 〈σ(X, Y ), ξ〉.

In the particular case that M and N are orientable and k = 1, one may choose a
global unit normal vector field ξ and so define a (symmetric) 2-tensor field h on M
by h(X, Y )= 〈σ(X, Y ), ξ〉. Then, by (2-1),

h(X, Y )= 〈AX, Y 〉, X, Y ∈ X(M),

where A = Aξ is the shape operator of the immersion with respect to ξ . If we
assume further that N n+1 has constant sectional curvature, it follows from the
symmetry of h and the Codazzi equation that the covariant derivative ∇h of h is
symmetric. From now on we denote by hi j and hi jk the components of h and ∇h,
respectively, in a local orthonormal frame field {e1, . . . , en}, i.e.,

hi j = h(ei , ej ), hi jk =∇h(ei , ej , ek).

Given an isometric immersion f :Mn
→N n+1, denote by λ1, . . . , λn the principal

curvatures of Mn with respect to a global unit normal vector field ξ (i.e., the
eigenvalues of the shape operator A = Aξ ). It is well known that if we label the
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principal curvatures at each point by the condition λ1 ≤ · · · ≤ λn , then the resulting
functions λi : M→ R, i = 1, . . . , n, are continuous.

The r -th mean curvature Hr , 1≤ r ≤ n, of Mn is defined by

(2-2)
(

n
r

)
Hr =

∑
i1<···<ir

λi1 · · · λir .

Notice that H1 is the mean curvature H (= 1
n tr A, where tr A is the trace of A)

and Hn = λ1λ2 · · · λn is the Gauss–Kronecker curvature of the immersion. In the
particular case that N n+1 has constant sectional curvature, the function H2 is up to
a constant the (normalized) scalar curvature R of Mn . In fact, if N n+1 has constant
sectional curvature c and if {e1, . . . , en} is an orthonormal basis for the tangent
space at a given point of Mn such that Aei = λi ei , i = 1, . . . , n, then the sectional
curvature K (ei , ej ) of the plane spanned by ei and ej is given by

K (ei , ej )= c+ λiλj

by the Gauss equation, and so

R = 1(n
2

) ∑
i< j

K (ei , ej )=
1(n
2

) ∑
i< j

(c+ λiλj )= c+ H2.

The squared norm |A|2 of the shape operator A is defined as the trace of A2. It
is easy to see that

|A|2 =
∑

i

λ2
i .

From (2-2) and the last two equalities we obtain the following useful relation
involving the mean curvature H , the norm |A| of the shape operator A, and the
normalized scalar curvature R:

(2-3) n2 H 2
=

( n∑
i=1

λi

)2

=

n∑
i=1

λ2
i +

∑
i 6= j

λiλj = |A|2+ n(n− 1)(R− c).

In terms of the r -th symmetric function σr : R
n
→ R,

(2-4) σr (x1, . . . , xn)=
∑

i1<···<ir

xi1 · · · xir ,

the equality (2-2) can be rewritten as(
n
r

)
Hr = σr ◦

−→

λ,

where
−→

λ= (λ1, . . . , λn) is the principal curvature vector of the immersion. In order
to unify the notation, we define H0 = 1= σ0 and Hr = 0= σr for all r ≥ n+ 1.
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As one might expect, the knowledge of the properties of the symmetric functions
is very important to the study of the higher order mean curvatures of a hypersurface.
In order to state a property of the symmetric functions that is relevant to us, we
summarize below some of the results of the classical article [Gårding 1959] on
hyperbolic polynomials; see also [Caffarelli et al. 1985, p. 268; Fontenele and Silva
2001, p. 217].

Let P :Rn
→R be a homogenous polynomial of degree m and let a= (a1, . . . , an)

be a fixed vector of Rn . We say that P is hyperbolic with respect to the vector a, or
in short, that P is a-hyperbolic, if for every x ∈ Rn the polynomial in s, P(sa+ x),
has m real roots. Denote by 0P the connected component of the set {P 6= 0} that
contains a. Gårding [1959] proved that 0P is an open convex cone, with vertex at
the origin, and that the homogenous polynomial of degree m− 1 defined by

Q(x)= d
ds

∣∣∣
s=0

P(sa+ x)=
n∑

j=1

aj
∂P
∂x j

(x)

is also a-hyperbolic. Moreover, 0P ⊂ 0Q .
As can easily be seen, the n-th symmetric function σn is hyperbolic with respect

to the vector a = (1, . . . , 1). Applying the results of the previous paragraph to σn ,
and observing that

σr (x)=
1

(n−r)!
dn−r

dsn−r

∣∣∣
s=0
σn(sa+ x), r = 1, . . . , n− 1,

one concludes that σr , 1≤ r ≤ n, is hyperbolic with respect to a = (1, . . . , 1), and
that 01 ⊃ 02 ⊃ · · · ⊃ 0n, where 0r := 0σr .

Gårding [1959] established an inequality for hyperbolic polynomials involving
their completely polarized forms. A particular case of this inequality, from which
the general case is derived, says that

1
m

n∑
k=1

yk
∂P
∂xk

(x)≥ P(y)1/m P(x)1−1/m, ∀x, y ∈ 0P .

As observed in [Caffarelli et al. 1985, p. 269], the above inequality is equivalent
to the assertion that P1/m is a concave function on 0P . In particular, we have the
following result, which plays an important role in the proof of Theorem 1.1.

Proposition 2.1. For each r = 1, 2, . . . , n, the function σ 1/r
r is concave on 0r .

3. The Laplacian of the r-th mean curvature

The symmetric functions σr , 1≤ r ≤ n, defined by (2-4), arise naturally from the
identity
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n∏
s=1

(xs + t)=
n∑

r=0

σr (x)tn−r ,

which is valid for all x = (x1, . . . , xn) ∈ Rn and t ∈ R. Differentiating this identity
with respect to x j , one obtains∏

s 6= j

(xs + t)=
n∑

r=0

∂σr
∂x j

(x)tn−r , j = 1, . . . , n.

Differentiating the above equality with respect to xi for i 6= j yields∏
s 6=i, j

(xs + t)=
n∑

r=0

∂2σr
∂xi∂x j

(x)tn−r , i 6= j.

Hence,

(3-1) ∂2σr
∂xi∂x j

(x)=
{
σr−2(x̂i , x̂ j ), i 6= j,
0, i = j,

where σr−2(x̂i , x̂ j )= σr−2(x1, . . . , xi−1, xi+1, . . . , x j−1, x j+1, . . . , xn).
Walter [1985] established a formula for the Laplacian of the r -th mean curvature

of a hypersurface in a space of constant sectional curvature. For the convenience
of the reader, we state that formula below. Recall that the Laplacian 1u of a C2-
function u defined on a Riemannian manifold (M, 〈 · , · 〉) is the trace of the 2-tensor
field Hess u, called the Hessian of u, defined by Hess u(X, Y ) = 〈∇X∇u, Y 〉, for
all X, Y ∈ X(M).

Proposition 3.1. Let Mn be an orientable hypersurface of an orientable Riemann-
ian manifold N n+1

c of constant sectional curvature c. Then for every r = 1, . . . , n
and every p ∈ Mn ,(

n
r

)
1Hr = n

∑
j

∂σr
∂x j

(
−→

λ)Hess H(ej , ej )−
∑
i< j

∂2σr
∂xi∂x j

(
−→

λ)(λi − λj )
2Ki j

+

∑
i, j,k

∂2σr
∂xi∂x j

(
−→

λ)(hi ikh j jk − h2
i jk),

where λ1, . . . , λn are the principal curvatures of Mn at p,
−→

λ = (λ1, . . . , λn),
{e1, . . . , en} is an orthonormal basis of Tp M that diagonalizes the shape operator A,
and Ki j is the sectional curvature of Mn in the plane spanned by {ei , ej }.

4. Complete and bounded hypersurfaces

In the proof of Theorem 1.1, besides Propositions 2.1 and 3.1, we use the following
result.
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Proposition 4.1. Let Mn be a complete Riemannian manifold with sectional curva-
ture K bounded from below and f : Mn

→ Qn+k
c an isometric immersion of Mn

into the (n + k)-dimensional complete simply connected space Qn+k
c of constant

sectional curvature c. In the case c ≤ 0, assume that f (Mn) is bounded, and in the
case c> 0, that f (Mn) lies inside a geodesic ball of radius ρ < π/2

√
c. Then there

exist p ∈M and a unit vector ξ0 ∈ ( f∗Tp M)⊥ such that for any unit vector v ∈ Tp M ,

(4-1) 〈Aξ0v, v〉>

{
0, c ≥ 0,
√
−c, c < 0.

We believe that the above proposition is known, but since we were unable to
find a reference for it in the literature, we prove it below. The main ingredient in
this proof is the following well known maximum principle due to Omori and Yau
[Cheng and Yau 1975; Omori 1967; Yau 1975]; see [Fontenele and Xavier 2011,
Theorem 3.4] for a conceptual refinement of this principle.

Omori–Yau maximum principle. Let Mn be a complete Riemannian manifold
with sectional curvature or Ricci curvature bounded from below, and let f :M→R

be a C2-function bounded from above. Then for every ε > 0, there exists xε ∈ M
such that

f (xε)> sup f−ε, ‖∇ f (xε)‖<ε, Hess f (xε)(v, v)<ε‖v‖2 ∀v∈Txε M−{0}

or
f (xε) > sup f − ε, ‖∇ f (xε)‖< ε, 1 f (xε) < ε,

respectively.

The following lemma, which is also used in the proof of Proposition 4.1, expresses
the gradient and Hessian of the restriction of a function to a submanifold in terms
of the space gradient and Hessian; see [Dajczer 1990, p. 46] for a proof. In its
statement, we use the symbol ∇ for the gradient of any function involved.

Lemma 4.2. Let f : Mn
→ N n+k be an isometric immersion of a Riemannian

manifold Mn into a Riemannian manifold N n+k , and let g : N→R be a function of
class C2. Then for all p ∈ M and v,w ∈ Tp M , one has

f∗(∇(g ◦ f )(p))=
[
∇g( f (p))

]>
,

Hess(g ◦ f )p(v,w)= Hess g f (p)( f∗v, f∗w)+
〈
∇g( f (p)), σp(v,w)

〉
,(4-2)

where σ is the second fundamental form of the immersion, f∗ is the differential of f
and “>” means orthogonal projection onto f∗(Tp M).

Proof of Proposition 4.1. By hypothesis, f (M) is contained in some closed ball
Bρ(qo) of center qo and radius ρ, with ρ < π/2

√
c if c > 0. Let r( · )= d( · , q0)

be the distance function from the point q0 in Qn+k
c and let g = r ◦ f . Since g is
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bounded from above (for f (M)⊂ Bρ(q0)) and the sectional curvatures of M are
bounded from below, the Omori–Yau maximum principle assures us that, for every
ε > 0, there exist xε ∈ M such that

g(xε) > sup g− ε, ‖∇g(xε)‖< ε, Hess gxε(v, v) < ε‖v‖
2, ∀v ∈ Txε M.

From the last two inequalities and Lemma 4.2, we obtain

(4-3) ε > ‖∇g(xε)‖ = ‖∇r( f (xε))>‖

and, for every v ∈ Txε M ,

(4-4) ε‖v‖2 > Hess gxε(v, v)= Hess r f (xε)( f∗v, f∗v)+
〈
σxε(v, v),∇r( f (xε))

〉
,

where the superscript “>” indicates orthogonal projection on f∗(Txε M).
For every v ∈ Txε M , write

(4-5) f∗v = v1+ v2,

where v1 and v2 are the components of f∗v that are parallel and orthogonal, re-
spectively, to ∇r( f (xε)). Recalling that ∇∇r∇r = 0, where ∇ is the Riemannian
connection of Qn+k

c , one has

(4-6) Hess r f (xε)( f∗v, f∗v)= Hess r f (xε)(v1+ v2, v1+ v2)

= Hess r f (xε)(v2, v2).

Note that v2 is tangent to the geodesic sphere S of Qn+k
c centered at q0 that contains

f (xε). Applying (4-2) for the inclusion ι : S→Qn+k
c and g = r , one obtains

(4-7) Hess r f (xε)(v2, v2)= 〈Bv2, v2〉,

where B is the shape operator of S with respect to −∇r . Since the principal
curvatures of a geodesic sphere of radius t in Qn+k

c are constant and given by

(4-8) µc(t)=


√

c cot(
√

c t), c > 0, 0< t < π/
√

c,
1/t, c = 0, t > 0,
√
−c coth(

√
−ct), c < 0, t > 0,

it follows from (4-6) and (4-7) that

(4-9) Hess r f (xε)( f∗v, f∗v)= µc(r( f (xε)))‖v2‖
2.

As ‖∇r‖ ≡ 1, by (4-5) one has v1 = 〈 f∗v,∇r( f (xε))〉∇r( f (xε)). Then, by (4-3),

‖v1‖ =
∣∣〈 f∗v,∇r( f (xε))>

〉∣∣≤ ‖ f∗v‖
∥∥∇r( f (xε))>

∥∥< ε‖v‖.
From (4-5) and the above inequality, we obtain

(4-10) ‖v2‖
2
= ‖ f∗v‖2−‖v1‖

2
= ‖v‖2−‖v1‖

2 > (1− ε2)‖v‖2.
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Hence, by (4-4), (4-9), and (4-10),

ε‖v‖2 > µc(r( f (xε)))(1− ε2)‖v‖2+
〈
σxε(v, v),∇r( f (xε))

〉
.

Since µc is decreasing and r( f (xε))≤ ρ, it follows that

ε‖v‖2 > µc(ρ)(1− ε2)‖v‖2+
〈
σxε(v, v),∇r( f (xε))

〉
= µc(ρ)(1− ε2)‖v‖2+

〈
σxε(v, v),∇r( f (xε))⊥

〉
,

where ∇r( f (xε))⊥ is the component of ∇r( f (xε)) that is orthogonal to f∗(Txε M).
Setting ξε = −∇r( f (xε))⊥/‖∇r( f (xε))⊥‖, it follows from (2-1) and the above
inequality that

(4-11) 〈Aξεv, v〉 = 〈σxε(v, v), ξε〉>
µc(ρ)(1− ε2)− ε

‖∇r( f (xε))⊥‖

for all v ∈ Txε M , ‖v‖ = 1. Since, by (4-3), the term on the right-hand side of (4-11)
tends to µc(ρ) when ε→ 0, and, by (4-8), µc(ρ) > 0 for c ≥ 0 and µc(ρ) >

√
−c

for c < 0, (4-1) is fulfilled choosing p = xε and ξ0 = ξε, where ε is any positive
number sufficiently small. �

5. Proof of Theorem 1.1

Since H is constant and R is bounded from below, from (2-3) one obtains that |A|2

is bounded, and so that the sectional curvatures of Mn are bounded from below.
Then, by Proposition 4.1, there exist a point p ∈M and a unit vector ξ0 ∈ ( f∗Tp M)⊥

such that

(5-1) 〈Aξ0v, v〉> αc‖v‖
2, v ∈ Tp M,

where
αc =

{
0, c ≥ 0,
√
−c, c < 0.

Choosing the unit normal vector field ξ such that ξ(p)= ξ0, by (5-1) the principal
curvatures of M at p satisfy

(5-2) λi (p) > αc ≥ 0, i = 1, . . . , n.

By Proposition 3.1, as H and Hr are constant one has

(5-3)
∑
i< j

∂2σr
∂xi∂x j

(
−→

λ)(λi − λj )
2Ki j =

∑
i, j,k

∂2σr
∂xi∂x j

(
−→

λ)(hi ikh j jk − h2
i jk),

where
−→

λ= (λ1, . . . , λn). From (5-2) one obtains that Hr > 0 and that
−→

λ(p) belongs
to the Gårding’s cone 0r (see Section 2). Then, since M is connected,

−→

λ(q) ∈ 0r , ∀q ∈ M.
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By Proposition 2.1, Wr = σ
1/r
r is a concave function on 0r . Thus,

(5-4)
∑
i, j

yi yj
∂2Wr
∂xi∂x j

(x)≤ 0

for all x ∈ 0r and (y1, . . . , yn) ∈ Rn . A simple computation shows that

∂2Wr
∂xi∂x j

=
1
r
σ (1/r)−2

r

(1−r
r
∂σr
∂xi

∂σr
∂x j
+ σr

∂2σr
∂xi∂x j

)
.

Using the above equality in (5-4), we conclude that

(5-5) σr (x)
∑
i, j

yi y j
∂2σr
∂xi∂x j

(x)≤ r−1
r

∑
i, j

yi y j
∂σr
∂xi

(x)∂σr
∂x j

(x)

=
r−1

r

(∑
j

yj
∂σr
∂x j

(x)
)2

,

for all x ∈ 0r and (y1, . . . , yn) ∈ Rn . Taking x =
−→

λ and yi = hi ik , i = 1, . . . , n, in
(5-5), one obtains

(5-6)
(

n
r

)
Hr

∑
i, j

hi ikh j jk
∂2σr
∂xi∂x j

(
−→

λ)≤
r−1

r

(∑
j

h j jk
∂σr
∂x j

(
−→

λ)

)2

, ∀k.

We claim that in a basis that diagonalizes A,

(5-7)
∑

j

h j jk
∂σr
∂x j

(
−→

λ)=

(
n
r

)
ek(Hr ).

The claim can be proved using the formula
(n

r

)
ek(Hr )= tr(Pr−1∇ek A) [Rosenberg

1993, p. 225], where Pr−1 is the (r−1)-th Newton tensor associated with the shape
operator A of M .

Since Hr is a positive constant, from (5-6) and (5-7) one obtains∑
i, j

hi ikh j jk
∂2σr
∂xi∂x j

(
−→

λ)≤ 0, k = 1, . . . , n.

Using this information in (5-3), we conclude that the inequality∑
i< j

∂2σr
∂xi∂x j

(
−→

λ)(λi − λj )
2Ki j ≤−

∑
i, j,k

h2
i jk

∂2σr
∂xi∂x j

(
−→

λ)

holds at every point of M . Since, by (3-1) and (5-2),

(5-8) ∂2σr
∂xi∂x j

(
−→

λ(p))=
{
σr−2(λ̂i (p), λ̂j (p)) > 0, i 6= j,
0, i = j,
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it follows that

(5-9)
∑
i< j

∂2σr
∂xi∂x j

(
−→

λ(p))(λi (p)− λj (p))2Ki j (p)≤ 0.

Since, by (5-2) and the Gauss equation,

Ki j (p)= c+ λi (p)λj (p) > c+α2
c ≥ 0, i 6= j,

it follows from (5-8) and (5-9) that λ1(p)= · · · = λn(p)= H .
Let U be the set of umbilic points of M . Let B be the set

B = {p ∈U : λi (p) > αc for all i = 1, . . . , n} ⊂U.

By the argument above, B is nonempty and open. Assuming B 6=U , we can find a
point q ∈ ∂B⊂U . By continuity of the principal curvatures, they are all constant and
bigger than αc at q , and hence B =U . Since U is closed, open, and nonempty, M is
totally umbilical. To finish, it is well known that the only complete totally umbilical
hypersurfaces in a space form are the geodesic spheres [Spivak 1975, pp. 75–79].
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