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A NON-STRICTLY PSEUDOCONVEX DOMAIN FOR WHICH
THE SQUEEZING FUNCTION TENDS TO 1

TOWARDS THE BOUNDARY

JOHN ERIK FORNÆSS AND ERLEND FORNÆSS WOLD

In recent work by Zimmer it was proved that if �⊂ Cn is a bounded convex
domain with C∞-smooth boundary, then � is strictly pseudoconvex provided
that the squeezing function approaches 1 as one approaches the boundary.
We show that this result fails if � is only assumed to be C2-smooth.

1. Introduction

We recall the definition of the squeezing function S�(z) on a bounded domain
�⊂ Cn. If z ∈�, and fz :�→ Bn is an embedding with fz(z)= 0, we set

(1-1) S�, fz (z) := sup{r > 0 : Br (0)⊂ fz(�)},

and then

(1-2) S�(z) := sup
fz

{S�, fz (z)}.

A guiding question is the following: which complex analytic properties of � are
encoded by the behaviour of S�? For instance, if S� is bounded away from 0, then�
is necessarily pseudoconvex, and the Kobayashi–, Carathéodory–, Bergman– and
the Kähler–Einstein metrics are complete, and they are pairwise quasi-isometric;
see [Liu, Sun and Yau 2004; Yeung 2009]. Recently, Zimmer [2018b] proved
that if

(1-3) lim
z→b�

S�(z)= 1

for a C∞-smooth, bounded convex domain, then the domain� is necessarily strictly
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pseudoconvex.1 In this short note we will show that this does not hold for C2-smooth
domains.

Theorem 1.1. There exists a bounded convex C2-smooth domain �⊂ Cn which is
not strongly pseudoconvex, but

(1-4) lim
z→b�

S�(z)= 1,

where S�(z) denotes the squeezing function on �.

For further results about the squeezing function the reader may also consult the
references [Diederich, Fornæss and Wold 2016; Deng, Guan and Zhang 2012; 2016;
Fornæss and Rong 2016; Fornæss and Wold 2015; Kim and Zhang 2016; Liu, Sun
and Yau 2004; Yeung 2009; Zimmer 2018b]. In the last section we will post some
open problems.

2. The construction

The construction in Rn and curvature estimates. We start by describing a con-
struction of a convex domain � in Rn with a single non-strictly convex point.
Afterwards we will explain how to make the construction give the conclusion of
Theorem 1.1 for each n = 2m, when we make the identification with Cm.

Let x = (x1, . . . , xn) denote the coordinates on Rn. For any k ∈ N we let Bk

denote the ball

(2-1) Bk := {x ∈ Rn
: x2

1 + · · ·+ x2
n−1+ (xn − k)2 < k2

}.

On some fixed neighbourhood of the origin, each boundary bBk may be written as
a graph of a function

(2-2) xn =ψk(x ′)=ψk(x1, . . . , xn−1)= k−
√

k2−‖x ′‖2= 1
2k
‖x ′‖2+O(‖x‖3).

Fix a smooth cut-off function χ(x ′)= χ(|x ′|) with compact support in {|x ′|< 1}
which is one near the origin. We will create a new limit-graphing function f (x ′)
by subsequently gluing the functions ψk and ψk+1 by setting

(2-3) gk(x ′)= ψk(x ′)+χ
(

x ′

εk

)
(ψk+1(x ′)−ψk(x ′)),

where the sequence εk will converge rapidly to zero, and the boundary of our
domain � will be defined (locally) as the graph 6 of the function f defined as
follows: Start by setting fk := ψk for some k ∈N. Then define fk+1 inductively by

1Added in proof: Zimmer [2018a] has subsequently improved his results to convex domains with
C2,α-boundary.
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setting fk+1 = fk for ‖x ′‖ ≥ εk and then fk+1 = gk for ‖x ′‖< εk . Finally we set
f = limk→∞ fk .

To show that the limit function f is C2-smooth (if the εk’s converge rapidly to 0),
we need to show that the sequence { fk} is a Cauchy sequence with respect to the
C2-norm, i.e., we need to estimate the derivatives

(2-4) σ k
i j (x
′) :=

∂2

∂xi∂x j

(
χ

(
x ′

εk

)
(ψk+1(x ′)−ψk(x ′))

)
.

Note first that

(2-5) ψk+1(x ′)−ψk(x ′)=
−1

2k(k+1)
‖x ′‖2+ O(‖x ′‖3).

We see that

|σ k
i j (x
′)| =

(
1
ε2

k
O(‖x ′‖2)+ 1

εk
O(‖x ′‖)

)
1

2k(k+1)
+

1
ε2

k
O(‖x ′‖3)+ 1

εk
O(‖x ′‖2),

and so for ‖x ′‖< εk we have

(2-6) |σ k
i j (x
′)| ≤ C · 1

2k(k+1)
+ O(εk),

where the constants are independent of any particular choice of εk . So if εk is small
enough we see that |σ k

i j | is of order of magnitude 1/k2, which shows that { fk} will
be a Cauchy sequence.

To ensure that � is convex we will need to estimate the curvature of 6, and
estimates of the curvature of the partial graphs 6k = {x, gk(x)} will be necessary
to prove Theorem 1.1. Informally our goal is to show the following: There exist
N ,m ∈ N, N > m, such that if k ≥ N and if εk is sufficiently small (depending
on k), then 6k curves, at every point and in all directions, more than bBk+m and
less than bBk−m .

We make this more precise. The surface 6k has a defining function ρk(x) =
gk(x ′)− xn . If vp is a tangent vector to 6k at p = (x ′, gk(x)), the curvature of 6k

in the direction of vp is defined as

(2-7) κ6k
p (vp) :=

Hρk(p)(vp)

‖∇ρk(p)‖‖vp‖
2 ,

where ∇ρk is the gradient, and Hρk is the Hessian of ρk (which is equal to the
Hessian of gk). The curvature (2-7) depends only on the direction of vp, and the
curvature of bBk is 1

k at all points and in all directions. The precise statement of
our goal stated above is this:



82 JOHN ERIK FORNÆSS AND ERLEND FORNÆSS WOLD

Lemma 2.1. Let ψk and χ be defined as above for k ∈ N. There exist N ,m ∈ N,
N > m, such that if each εk is sufficiently small (depending on k), and k ≥ N, then

(2-8) 1
k+m

≤ κ6k
p (vp)≤

1
k−m

,

for all vp tangent to 6k .

It is now easy to see that if εk↘ 0 sufficiently fast, then � is convex, and strictly
convex away from the origin. If we let �k denote the domain whose boundary near
the origin is given by the graph of fk , we see that �k is strictly convex, the Hessian
being positive definite everywhere. Moreover, �= ∪k�k , and so � is convex.

Proof of Lemma 2.1. When we estimate the curvature we may assume that the
functions gk are simply

(2-9) gk(x ′)= ψk(x ′)−χ
(

x ′

εk

)(
1

2k(k+1)

)
|x ′|2 =: ψk(x ′)+ σk(x ′),

since the higher order terms missing in this expression of gk can be made insignif-
icant by choosing εk small enough. Because of the |x ′|2 term it is easy to see
that

(2-10) dgk(x ′)= dψk(x ′)+4k(x ′)

and

(2-11) Hgk(x ′)= Hψk(x ′)+ hk(x ′),

where the coefficients in both 4k and hk are of order of magnitude 1/k2 indepen-
dently of k and of the choice of a small εk .

Fix a point x ′ and a vector v ∈ Rn−1 with ‖v‖ = 1. Then a tangent vector vp at
the point (x ′, gk(x ′)) is given by

(2-12) vp = (v, dgk(x ′)(v))= (v, dψk(x ′)(v)+4k(x ′)(v)).

Estimating the curvature we see that

κ6k
p (vp)=

(Hψk(x ′)+hk(x ′))(vp)

‖∇ρk(p)‖‖vp‖
2

=
(Hψk(x ′))((v,dψk(x ′)v)+(0′,4k(x ′)(v)))

‖−en+∇ψk(p)+∇σk(x ′)‖‖(v,dψk(x ′)(v))+(0′,4k(x ′))‖2
+O

( 1
k2

)
=

(Hψk(x ′))((v,dψk(x ′)v))

‖−en+∇ψk(x ′)‖
(
1+O

( 1
k2

))
‖(v,dψk(x ′)(v))‖2

(
1+O

( 1
k2

))2+O
( 1

k2

)

=
(Hψk(x ′))((v,dψk(x ′)v))

‖−en+∇ψk(x ′)‖‖(v,dψk(x ′)(v))‖2
+O

( 1
k2

)
=

1
k
+O

( 1
k2

)
,
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where the term 1
k comes from the fact that the expression above is the formula for

the curvature of a ball of radius k. From this it is straightforward to deduce the
existence of an m such that the lemma holds. �

The squeezing function on �. We will now explain why the squeezing function
goes to 1 uniformly as we approach b� provided that the εk’s decrease sufficiently
fast. Let N ,m be as in Lemma 2.1, and start by setting fk = ψk for some k > N.

Fix some small δk > 0. By Lemma 2.1, if εk is small enough, we can for each
p = (x ′, xn) ∈ b�k , with ‖x ′‖ < δk , find a ball B of radius k +m containing �k

such that p ∈ bB. By the same lemma we can for each such p also find a local piece
of a ball of radius k−m touching p from the inside of �k , and the size of the local
ball is uniform. So using Lemma 3.1 we may find a tk > 0 small enough such that

(2-13) S�k (x
′, xn)≥ 1− m

(k+m)

if xn ≤ tk .
Next, again by Lemma 2.1, we find a δk+1 < δk such that if εk+1 is small enough,

then for each p = (x ′, xn) ∈ b�k+1 with ‖x ′‖< δk+1, we may oscillate with balls
of radius k+ 1−m and k+ 1+m respectively. So there is a tk+1 < tk such that

(2-14) S�k+1(x
′, xn)≥ 1− m

(k+1+m)

if xn ≤ tk+1. Furthermore, by further decreasing εk+1, we can keep the esti-
mate (2-13) with �k replaced by �k+1. The reason is the following. First of
all, by [Fornæss and Wold 2015], there exists a constant Ck such that

(2-15) S�k (z)≥ 1−Ck · dist(z, b�k),

and near any compact K ⊂ b�k away from 0, this estimate is not going to be
disturbed by a small perturbation of b�k near the point 0; the estimate is obtained
by using oscillating balls at points of K whose boundaries will stay bounded away
from 0. Furthermore, on any compact subset of �k we have that S�k+1 → S�k as
εk+1→ 0.

Continuing in this fashion, we obtain a decreasing sequence 0 < t j < t j+1,
j = k, k+ 1, . . . , and an increasing sequence of domains � j , such that for each j
we have

(2-16) S� j (x
′, xn)≥ 1− m

(k+i+m)

for tk+i ≤ xn ≤ tk+i−1, for i ≤ j. The result now follows from Lemma 3.2.
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3. Lemmata

Let 0< s < 1/2, 0< d < r < 1, and set Bs = B(s, 1− s), the ball of radius 1− s
centred at (s, 0′). Furthermore, we set

(3-1) Bs,d = Bs ∩ {(z1, z′) ∈ Bn
:Re(z1) > d}.

Lemma 3.1. If Bs,d ⊂�⊂ Bn, and if r > 1− sd
4 , then S�(r, 0) > 1− s.

Proof. Set µ= 1− s and η = d
2 , and then

(3-2) Bµη =
{
(z1, z′) ∈ Cn

: |z1− (1− η)|2+
η
µ |z
′
|
2 < η2

}
.

Then certainly Re(z1) > d on Bµη , and we also have that Bµη ⊂ Bs . To see the latter,
we translate the two balls sending (1, 0′) to the origin, where they are defined by

(3-3) B̃s = {(z1, z′) : 2µRe(z1)+ |z|2 < 0},

and

(3-4) B̃µη =
{
(z1, z′) : 2ηRe(z1)+ |z1|

2
+
η
µ |z
′
|
2 < 0

}
.

Also,

2ηRe(z1)+ |z1|
2
+
η
µ |z
′
|
2 < 0⇒ 2ηRe(z1)+

η
µ |z1|

2
+
η
µ |z
′
|
2 < 0

⇔ 2µRe(z1)+ |z|2 < 0.

According to Lemma 3.5 in [Fornæss and Wold 2015] we have

(3-5) S�(r, 0)≥
√
µ

√
1− 2(1− r)1

η
=

√
(1− s)

(
1− 4(1−r)

d

)
,

from which the lemma follows easily. �

Lemma 3.2. Let � j ⊂ � j+1 for j ∈ N, set � = ∪ j� j , and assume that � is
bounded. Let z ∈ �, and assume that S� j (z) > 1− δ for all j large enough so
that z ∈� j . Then S�(z)≥ 1− δ.

Proof. Let f j :� j→Bn be an embedding such that f j (z)=0 and B1−δ(0)⊂ f j (� j ).
By passing to a subsequence we may assume that f j → f :�→ Bn uniformly on
compact sets, with f (z)= 0. Setting g j = f −1

j : B1−δ(0)→� we may also assume
that g j → g uniformly on compact sets. Then f |g(B1−δ(0)) = g−1, from which the
result follows. �
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4. Some open problems

Problem 4.1. Does Zimmer’s result hold for pseudoconvex domains of class C∞?

Problem 4.2. How much smoothness is needed for Zimmer’s result hold for pseu-
doconvex domains?

Problem 4.3. Let � ⊂ C2 be a bounded pseudoconvex domain of class C∞. Is
S�(z) bounded away from zero?

In light of the result of [Deng, Guan and Zhang 2016], the answer to the last
question is affirmative for bounded strictly pseudoconvex domains of class C2 in
all dimensions. For strictly convex domains in Cn , this was proved in [Yeung
2009]. Furthermore, it has been shown in [Kim and Zhang 2016] that the same
holds for bounded convex domains without any further regularity assumptions, and
by [Nikolov and Andreev 2017], it even holds for bounded C-convex domains in
general. On the other hand, by [Fornæss and Rong 2016], the answer is negative in
general for n ≥ 3.

Quantifying the asymptotic behaviour of the squeezing function, we showed in
[Fornæss and Wold 2015] that

(i) S�(z)≥ 1−C dist(z, b�), and

(ii) S�(z)≥ 1−C
√

dist(z, b�),

for strongly pseudoconvex domains of class C4 and C3 respectively. In [Diederich,
Fornæss and Wold 2016] we showed that if the squeezing function approaches 1
essentially faster than in (i), then � is biholomorphic to the unit ball.

Problem 4.4. What is the optimal estimate for the squeezing function for strictly
pseudoconvex domains of class Ck with k < 4?

Let φ : B2
→ C2 be defined as

φ(z1, z2) := (z1,−z2 log(z1− 1)).

Then � := φ(B2) is of class C1, and (1, 0) is a non-strictly pseudoconvex bound-
ary point of �. So S� being identically equal to 1 does not even imply strict
pseudoconvexity in the case of C1-smooth boundaries.

Problem 4.5. Let φ :Bn
→� be a biholomorphism, and assume that� is a bounded

C2-smooth domain. Is � strictly pseudoconvex?
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