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Let X be a finite-dimensional Banach space. We prove that if K and S
are locally compact Hausdorff spaces and there exists a bijective map
T : C0(K, X)→ C0(S, X) such that

1
M
‖ f − g‖− L ≤ ‖T ( f )− T (g)‖ ≤ M‖ f − g‖+ L,

for every f, g ∈ C0(K, X) then K and S are homeomorphic, whenever
L ≥ 0 and 1 ≤ M2 < S(X), where S(X) denotes the Schäffer constant
of X.

This nonlinear vector-valued extension of the Amir–Cambern theorem
via quasi-isometries T with large M was previously unknown even for the
classical `n

p spaces, 1< p<∞, p 6= 2 and n ≥ 2.

1. Introduction

If K is a locally compact Hausdorff space and X is a Banach space, we denote
by C0(K , X) the Banach space of continuous functions vanishing at infinity on K,
taking values in X, and provided with the usual supremum norm. If X is the scalar
field (R or C) we will denote this space by C0(K ). In the case where K is a compact
Hausdorff space we write C(K , X) instead of C0(K , X).

The well-known Banach–Stone theorem states that if K and S are locally compact
Hausdorff spaces, then the existence of a linear isometry T from C0(K ) onto C0(S)
implies that K and S are homeomorphic [Banach 1932; Behrends 1979; Stone
1937]. Amir [1965] and Cambern [1967] independently generalized this theorem
by proving that if C0(K ) and C0(S) are isomorphic under a linear isomorphism
T satisfying ‖T ‖‖T−1

‖ < 2, then K and S must also be homeomorphic. The
constant 2 is the best possible for the formulation of this result [Cambern 1970;
Cohen 1975].
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Various authors, beginning with Jerison [1950], have considered the problem
of determining geometric properties of X which allow generalizations of these
theorems to the C0(K , X) spaces; see for instance [Cidral et al. 2015].

In the present paper we strengthen the Amir–Cambern theorem by showing
that the conclusion holds if the requirement that T be a linear isomorphism with
‖T ‖‖T−1

‖< 2 is replaced by the requirement that T be a bijective coarse (M, L)-
quasi-isometry on C0(K , X) spaces for finite-dimensional spaces X with L ≥ 0 and
M satisfying 1≤ M2 < S(X), where S(X) is the following parameter introduced
by Schäffer [Gao and Lau 1990; Schäffer 1976] for Banach spaces X :

S(X)= inf
{
max{‖x + y‖, ‖x − y‖} : ‖x‖ = 1 and ‖y‖ = 1

}
.

Recall that a Banach space X is called uniformly nonsquare [James 1964, Defi-
nition 1.1] if there exists 0< δ < 1 such that for any x, y ∈ X, with ‖x‖ = 1 and
‖y‖ = 1, we have

min{‖x + y‖, ‖x − y‖} ≤ 2(1− δ).

Then, X is uniformly nonsquare if and only if S(X) > 1 [Kato et al. 2001, Proposi-
tion 1]. Moreover, S(R) = 2, S(C) =

√
2, and 1 ≤ S(X) ≤

√
2 for every Banach

space with dimension greater than or equal to 2 [Gao and Lau 1990, Theorem 2.5]. If
X is a Hilbert space with dimension at least 2 then S(X)=

√
2, but this equality does

not characterize the Hilbert spaces X; see for instance [Komuro et al. 2016, p.1].
A bijective map T : C0(K , X)→ C0(S, X) is said to be a coarse (M, L)-quasi-

isometry or simply an (M, L)-quasi-isometry if for some constants M ≥ 1 and
L ≥ 0 the inequalities

1
M
‖ f − g‖− L ≤ ‖T ( f )− T (g)‖ ≤ M‖ f − g‖+ L

are satisfied for all f, g ∈C0(K , X). This notion includes some important concepts
used in the nonlinear classification of Banach spaces [Benyamini and Lindenstrauss
2000; Godefroy et al. 2014; Górak 2011; Kalton 2008].

Thus, the main aim of this work is to prove the following nonlinear vector-valued
extension of the Amir–Cambern theorem via quasi-isometries.

Theorem 1.1. Let X be a finite-dimensional Banach space with S(X) > 1. Suppose
that K and S are locally compact Hausdorff spaces and there exists a bijective
(M, L)-quasi-isometry T from functions C0(K , X) onto C0(S, X) satisfying

M2 < S(X),
then K and S are homeomorphic.

The starting point of our research toward proving Theorem 1.1 was the fact that,
for the particular case where X is a finite-dimensional strictly convex space [Clarkson
1936] and M < 1+ ε0 for some ε0 > 0, the theorem was proved by Jarosz [1989,
Theorem 4]. However, even in the case where X =R, the arguments presented in the
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proof of [Jarosz 1989, Theorem 1] require ε0 to be very small, namely ε0 < 10−30.
In addition, if X has dimension at least 2, ε0 depends on the modulus of convexity
of X and nothing is established about it beyond its existence.

This result of Jarosz naturally leads us to the following problem.

Problem 1.2. When can the Amir–Cambern theorem be extended for C0(K , X)
spaces to (M, L)-quasi-isometries with M > 1?

Theorem 1.1 states that every finite-dimensional uniformly nonsquare space and,
in particular, every finite-dimensional strictly convex space provides a positive
solution to the above problem for a range M depending on a geometrical property
of X. Notice also that in the special case where X = `n

p (the real n-dimensional lp

space, 1< p <∞ and n ≥ 2), the following immediate corollary of Theorem 1.1
was only known when p = 2 [Galego and Da Silva 2018, Main Theorem].

Corollary 1.3. Let 1< p<∞ and n≥2. Suppose that K and S are locally compact
Hausdorff spaces and T is a bijective (M, L)-quasi-isometry from C0(K , `n

p) onto
C0(S, `n

p) satisfying
M2 <min{21/p, 21−1/p

},

then K and S are homeomorphic.

Proof. It suffices to recall that by [Gao and Lau 1990, Theorem 3.1], for every
1< p <∞ and n ≥ 2, we know that

S(`n
p)=min{21/p, 21−1/p

}. �

The case X = R of Theorem 1.1 was proved in [Galego and Porto da Silva 2016,
Main Theorem]. On the other hand, Theorem 1.1 does not apply to X = `n

∞
, n ≥ 2,

the real n-dimensional l∞ space, because in this case S(X)= 1 and moreover by a
well-known result of Sundaresan [1973, p.22] there are nonhomeomorphic compact
Hausdorff spaces K and S such that C(K , X) is isometric with C(S, X).

Notice that, in view of Problem 1.2 and in connection with Theorem 1.1, the
following question arises naturally.

Problem 1.4. Suppose that X is a Banach space such that there exists c > 1
satisfying the following property: for any locally compact Hausdorff spaces K
and S and bijective (M, L)-quasi-isometry T from C0(K , X) onto C0(S, X) with

M2 < c,

it follows that K and S are homeomorphic.
Then:

(1) Is it true that S(X) > 1?

(2) Is c ≤ S(X)?

(3) Does it follow that X is a finite-dimensional space?
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2. An inequality involving the Schäffer constant

We begin the proof of Theorem 1.1 by establishing an inequality related to the
Schäffer constant that will be very useful later. The constant

(2-1) J (X)= sup{min{‖x + y‖, ‖x − y‖} : ‖x‖ = 1 and ‖y‖ = 1},

is called the nonsquare or James constant of X.
If X is a real Banach space of finite dimension at least 2, then according to

[Casini 1986, Proposition 2.1] or [Gao and Lau 1990, Theorem 2.5]

(2-2) J (X)S(X)= 2.

This fact also holds if X is a complex Banach space, for if XR is its natural real
Banach space structure, we have that J (X)= J (XR) and S(X)= S(XR). So, from
now on, we shall not distinguish the scalar field of X.

Lemma 2.1. Let X be a Banach space and x, y ∈ X. Then

min{‖x + y‖, ‖x − y‖} ≤ 2
S(X)

max{‖x‖, ‖y‖}.

Proof. First assume that X = R. Then S(X)= 2 and for each pair x, y ∈ R,

min
{
|x + y|, |x − y|

}
=
∣∣|x | − |y|∣∣≤max

{
|x |, |y|

}
,

so we are done.
Suppose now that the dimension of X is at least 2 and fix x, y ∈ X. Since

S(X) ≤ 2, the lemma follows trivially in the case that x = 0 or y = 0. Thus, we
assume that x, y 6= 0 and put x̂ = x/‖x‖, ŷ = y/‖y‖. We may also assume that

(2-3) ‖x‖ =max{‖x‖, ‖y‖} and ‖x̂ + ŷ‖ =min{‖x̂ + ŷ‖, ‖x̂ − ŷ‖}.

Next, by (2-1) and (2-2) we infer that

2
S(X)

= J (X)= sup{min{‖u+ v‖, ‖u− v‖} : ‖u‖ = 1 and ‖v‖ = 1}.

Then, by (2-3) it follows that

‖x̂ + ŷ‖ ≤ 2
S(X)

,

and putting α = ‖y‖/‖x‖ ∈ (0, 1], we note that

‖x + y‖
‖x‖

= ‖x̂ +α ŷ‖ ≤ (1−α)‖x̂‖+α‖x̂ + ŷ‖ ≤ 2
S(X)

,

and we are also done. �
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3. Special sets associated to (M, L)-quasi-isometries

In a recent study of (M, L)-quasi-isometries between the spaces C0(K ) and C0(S)
[Galego and Porto da Silva 2016], subsets 0w(k, v) and 0v(s,w) of S and K , respec-
tively, where k ∈ K, s ∈ S and v and w are suitable elements of R, were introduced.
In this section, we introduce the definitions and a property (Proposition 3.1) of an
analogous class of these sets for v,w ∈ X instead of R.

From now on, as in the hypotheses of Theorem 1.1, we fix a finite-dimensional
Banach space X with S(X) > 1 and a bijective coarse (M, L)-quasi-isometry

T : C0(K , X)→ C0(S, X)

satisfying M2 < S(X) and L ≥ 0. One can easily see that for any α > 0, the map
f 7→ αT ( f/α) is a bijective coarse (M, αL)-quasi-isometry, so it is possible to
change the value of L as we wish. Then, we may suppose that L = 1. Moreover,
notice that the map f 7→ T ( f )− T (0) is a bijective coarse quasi-isometry with
the same constants (M, L) of T, with the additional property that it maps 0 to
0. For that reason we may suppose that T (0) = 0. Finally, notice that the map
T−1 does not necessarily have the same constants (M, L) of T; in fact we can
only guarantee that it is a bijective coarse (M,M L)-quasi-isometry. Thus, we may
actually suppose that L = 1/M, and this will ensure that both the maps T and T−1

are bijective coarse (M, 1)-quasi-isometries.
Let H be a locally compact Hausdorff space, k ∈ H, f ∈ C0(H, X) and v ∈ X.

Following [Galego and Porto da Silva 2016, Definition 2.2] we set

ω(k, f, v)=max{‖ f ‖, ‖ f (k)− v‖}.

Let v,w ∈ X satisfy ‖v‖ ≥ M and ‖w‖ = ‖v‖/M − 1. Following [Galego and
Porto da Silva 2016, Definition 3.1], we set

0w(k, v)=
{
s ∈ S : ‖T f (s)−w‖ ≤ Mω(k, f, v)+ 1, for all f ∈ C0(K , X)

}
.

Similarly, for s ∈ S, w, z ∈ X with ‖w‖ ≥ M and ‖z‖ = ‖w‖/M − 1, we also set

3z(s,w)=
{
k ∈ K : ‖T−1g(k)− z‖ ≤ Mω(s, g,w)+ 1, for all g ∈ C0(S, X)

}
.

Since it is required in the definition of the sets 0w(k, v) and 3z(s,w) that ‖v‖ ≥ M
and ‖w‖ = ‖v‖/M − 1 and, respectively, ‖w‖ ≥ M and ‖z‖ = ‖w‖/M − 1, these
restrictions on the norms of the parameters will be implicit in every usage of these
sets.

It is important to have in mind that, since both T and T−1 are bijective coarse
(M, 1)-quasi-isometries, for any result involving the sets 0w(k, v), a similar result
holds for the sets 3z(s,w). We will use the same result label to refer to either case.

The proof of the following proposition is essentially the same as the proof of
[Galego and Porto da Silva 2016, Proposition 3.2].
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Proposition 3.1. There exists r0 > 0, depending only on M, such that, for all k ∈ K
and v ∈ X with ‖v‖ ≥ r0, there exists w ∈ X such that 0w(k, v) 6=∅.

Proof. Let Vk denote the set of open neighborhoods of k. For each U ∈ Vk we
fix fU ∈ C0(K ) such that the image of fU is contained in [0, 1], fU (k) = 1 and
fU |K\U ≡ 0. We consider the net (v · fU )U∈Vk .

Claim. lim sup ‖ f − v · fU‖ ≤ ω(k, f, v), for all f ∈ C0(K , X).

Given ε > 0, fix Uε ∈ Vk such that

‖ f (u)− f (k)‖< ε, for all u ∈Uε.

Pick U ∈ Vk such that U ⊂Uε, and we shall evaluate ‖ f − v · fU‖. If u ∈U, then

‖ f (u)− v · fU (u)‖ ≤ ‖ f (k)− v · fU (u)‖+ ε.

Notice that v · fU has its image contained in the segment {αv : α ∈ [0, 1]}, and then

‖ f (k)− v · fU (u)‖ ≤max{‖ f (k)‖, ‖ f (k)− v‖}.

Therefore,

(3-1) ‖ f (u)− v · fU (u)‖ ≤max{‖ f (k)‖, ‖ f (k)− v‖}+ ε, for all u ∈U.

On the other hand, if u ∈ K \U, then fU (u)= 0, and consequently,

(3-2) ‖ f (u)− v · fU (u)‖ = ‖ f (u)‖ ≤ ‖ f ‖, for all u ∈ K \U.

By (3-1) and (3-2), we conclude that

‖ f − v · fU‖ ≤max{‖ f ‖, ‖ f (k)− v‖}+ ε,

and the claim is proved.

For each U, we fix sU ∈ S such that

‖T (v · fU )(sU )‖ = ‖T (v · fU )‖.

Since ‖v · fU‖ = ‖v‖ and T (0)= 0, we have that

‖v‖/M − 1≤ ‖T (v · fU )(sU )‖ ≤ M‖v‖+ 1.

Then, the net (T (v· fU )(sU ))U∈Vk ⊂ X is bounded and since X is finite-dimensional,
we may assume that T (v · fU )(sU )→ w0, for some w0 ∈ X. Moreover, we have

(3-3) ‖w0‖ ≥ ‖v‖/M − 1.

The vector w0 will be later used to define w.
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Now, let us see that (sU )U∈Vk admits a convergent subnet. It follows by the
claim that

(3-4) limsup‖T f (sU )−T (v· fU )(sU )‖≤ limsup‖T f−T (v· fU )‖

≤M limsup‖ f−v· fU‖+1

≤Mω(k, f,v)+1, for all f ∈C0(K , X).

Fix f0 ∈ C0(K , X) such that ‖ f0‖ = ‖v‖/2 and f0(k)= v/2. Then ω(k, f0, v)=
‖v‖/2 and, by (3-3) and (3-4), we have

(3-5) lim inf ‖T f0(sU )‖

≥ lim inf ‖T (v · fU )(sU )‖− lim sup ‖T f0(sU )− T (v · fU )(sU )‖

≥ ‖w0‖− (Mω(k, f0, v)+ 1)

≥ ‖v‖/M − 1− (M‖v‖/2+ 1)

= ‖v‖(1/M −M/2)− 2.

Since M2 < S(X) ≤ 2, we have that 1/M − M/2 > 0, and then, there exists r0

depending only on M such that for ‖v‖> r0, we have

lim inf ‖T f0(sU )‖> 0.

Since T f0 vanishes at infinity, it follows that (sU )U∈Vk admits a convergent subnet,
so we may assume that sU → s. By (3-4), we derive that

(3-6) ‖T f (s)−w0‖ ≤ Mω(k, f, v)+ 1, for all f ∈ C0(K , X).

Define w= α0w0, with α0 = (‖v‖/M − 1)/‖w0‖. We have that ‖w‖ = ‖v‖/M − 1
and, by (3-3), α0 ≤ 1.

We will conclude the proof by showing that (3-6) is also satisfied for w instead
of w0. Given f ∈ C0(K , X), notice that

‖T f (s)‖ ≤ ‖T f ‖ ≤ M‖ f ‖+ 1≤ Mω(k, f, v)+ 1,

then, by (3-6),

‖T f (s)−w‖ ≤ α0‖T f (s)−w0‖+ (1−α0)‖T f (s)‖ ≤ Mω(k, f, v)+ 1. �

From now on, we consider r0 given by Proposition 3.1 to be fixed. Since r0

depends only on M, this same constant works for the sets 3v(s,w).

4. The special sets 0w(k, v) when M2 < S(X)

In this section we state a fundamental proposition concerning the special sets
0w(k, v) associated to the (M, 1)-quasi-isometry T that we are considering.

Proposition 4.1. There exists r1 > r0, depending only on M and S(X), such that,
for all k ∈ K, v ∈ X and v′ ∈ X with ‖v‖> r1 and ‖v− v′‖< 1, if s ∈ 0w(k,−v)
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for some w ∈ X and s ′ ∈ 0w′(k, v′) for some w′ ∈ X, then s = s ′.

Proof. Suppose that s 6= s ′. Then, fix g ∈ C0(S, X) such that

(4-1) g(s)=−w, g(s ′)=−w′ and ‖g‖ =max{‖w‖, ‖w′‖}.

By applying the definitions of the sets 0w(k,−v) and 0w′(k, v′), respectively,
to T−1g, we get the inequalities

(4-2) 2‖w‖ = ‖T (T−1g)(s)−w‖ ≤ Mω(k, T−1g,−v)+ 1,

and

(4-3) 2‖w′‖ = ‖T (T−1g)(s ′)−w′‖ ≤ Mω(k, T−1g, v′)+ 1.

Since ‖w‖ = ‖v‖/M − 1, by (4-2) we obtain

(4-4)
2‖v‖

M
≤ Mω(k, T−1g,−v)+ 3,

and since ‖w′‖ = ‖v′‖/M − 1 and ‖v− v′‖< 1, according to (4-3) we have

(4-5)
2‖v‖

M
≤ Mω(k, T−1g, v′)+ 3+ 2

M
,

and again by ‖v− v′‖< 1, we see that

ω(k, T−1g, v′)=max{‖T−1g‖, ‖T−1g(k)− v′‖}

≤max{‖T−1g‖, ‖T−1g(k)− v‖}+ 1

= ω(k, T−1g, v)+ 1.

Therefore, according to (4-5) we deduce that

(4-6)
2‖v‖

M
≤ Mω(k, T−1g, v)+ 3+M + 2

M
.

Thus, putting 1= 3+M + 2/M, it follows from (4-4) and (4-6) that

2‖v‖
M
≤ M min

{
ω(k, T−1g,−v), ω(k, T−1g, v)

}
+1.

That is, 2‖v‖/M is less than or equal to

M min
{
max{‖T−1g‖, ‖T−1g(k)+ v‖},max{‖T−1g‖, ‖T−1g(k)− v‖}

}
+1.

Then, by using the identity of real numbers a, b and c,

min{max{a, b},max{a, c}} =max{a,min{b, c}},

with
a = ‖T−1g‖, b = ‖T−1g(k)+ v‖ and c = ‖T−1g(k)− v‖,
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we have that
2‖v‖

M
≤ M max

{
‖T−1g‖,min{‖T−1g(k)+ v‖, ‖T−1g(k)− v‖}

}
+1.

Moreover, by applying Lemma 2.1 with x = T−1g(k) and y = v we conclude that

(4-7)
2‖v‖

M
≤ M max

{
‖T−1g‖, 2

S(X)
max{‖T−1g(k)‖, ‖v‖}

}
+1.

On the other hand, putting 1′ = 2−M and having in mind (4-1) we also infer that

(4-8) ‖T−1g‖ ≤ M‖g‖+ 1= M max{‖w‖, ‖w′‖}+ 1≤ ‖v‖+1′.

Therefore by (4-7) and (4-8) we conclude that

2‖v‖
M
≤

2M
S(X)

(‖v‖+1′)+1,

that is,

2‖v‖
( 1

M
−

M
S(X)

)
≤

2M1′

S(X)
+1.

Since M2 < S(X), we have that 1/M −M/S(X) > 0. Thus, there exists r1 ≥ r0,
depending only on M and S(X), such that we have a contradiction for v ∈ X with
‖v‖> r1. �

We consider r1 given by Proposition 4.1 to be fixed. Since it depends only
on M and S(X), this same constant works for the sets 3v(s,w). The following
consequence of the previous proposition will allow us to define, in the next section,
a function ϕ : K → S which as we shall see in Section 7 will be a homeomorphism
between K and S.

Corollary 4.2. For all k ∈ K, s, s ′ ∈ S, and v, v′ ∈ X, with ‖v‖> r1, ‖v′‖> r1 and
‖v− v′‖< 1, if s ∈ 0w(k, v) and s ′ ∈ 0w′(k, v′) for some w,w′ ∈ X, then s = s ′.

Proof. Since ‖−v‖ > r1 ≥ r0, by Proposition 3.1 there exists w′′ ∈ X such that
0w′′(k,−v) 6=∅. Take s ′′ ∈ 0w′′(k,−v).

Observe that since s ′′∈0w′′(k,−v) and s ∈0w(k, v), it follows by Proposition 4.1
that s ′′ = s. Moreover, since s ′′ ∈ 0w′′(k,−v) and s ′ ∈ 0w′(k, v′), again by
Proposition 4.1 we infer that s ′′ = s ′. Hence s = s ′. �

5. The functions ϕ : K → S and ψ : S→ K

In this section, we will begin to construct a homeomorphism between K and S via
the following proposition.

Proposition 5.1. For all k ∈ K there exists s ∈ S such that for all v ∈ X with
‖v‖> r1 and w ∈ X , either 0w(k, v)= {s} or 0w(k, v)=∅.
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Proof. Take k ∈ K and put A = {v ∈ X : ‖v‖> r1}. Hence, it suffices to prove that
for any v, v′ ∈ A, if s ∈ 0w(k, v) and s ′ ∈ 0w′(k, v′) for some w,w′ ∈ X, then s = s ′.

Suppose thus that s ∈ 0w(k, v) and s ′ ∈ 0w′(k, v′) for some w,w′ ∈ X. We will
distinguish two cases.

Case 1. X is of dimension at least 2. Therefore A is path-connected. So we may
find points u0, . . . , un in A such that u0 = v′, un = v and ‖u j − u j−1‖< 1 for all
1≤ j ≤ n. Put s0 = s ′ and sn = s. Moreover, according to Proposition 3.1, for each
1≤ j ≤ n− 1, there exists s j ∈ S and wj ∈ X such that s j ∈ 0wj (k, u j ).

For each 1≤ j ≤ n, since ‖u j − u j−1‖< 1, Corollary 4.2 implies that s j = s j−1.
By using this fact repeatedly, we conclude that s ′ = s1 = · · · = sn−1 = s.

Case 2. X = R. In this case, fix w′′ such that 0w′′(k,−v) 6= ∅. Then, using
Proposition 4.1 we have

0w′′(k,−v)= 0w(k, v)= {s}.

Since A = (−∞,−r1)∪ (r1,+∞), there is a path in A connecting v′ to either v
or −v. Then, proceeding as in Case 1 we conclude that s ′ = s. �

Thus, we are able to define the function ϕ : K → S where ϕ(k) is the element s
given by Proposition 5.1. By symmetry, we may also define a function ψ : S→ K
such that ψ(s) is the element k given by the symmetric version of Proposition 5.1.

To show that in fact ϕ and ψ are continuous and ψ−1
= ϕ we will still need to

prove another property of the sets 0w(k, v).

6. Another decisive property of the sets 0w(k, v) when M2 < S(X)

The next proposition will help us prove that functions ϕ and ψ defined in the
previous section are homeomorphisms provided that we change the number r1 in
the statement of Proposition 5.1 by another convenient number greater than it. See
Proposition 7.1.

Proposition 6.1. There exists r2 > r1, depending only on M and S(X), such that,
for all k ∈ K and v ∈ X with ‖v‖ > r2, if s ∈ 0w(k, v) for some w ∈ X and
3z(s,w) 6=∅ for some z ∈ X, then 3z(s,w)= {k}.

Proof. Pick k ′ ∈3z(s,w) and we must show that k ′ = k. Suppose the contrary and
fix f ∈ C0(K , X) such that

(6-1) f (k)= v
2
, f (k ′)=−

‖v‖
2‖z‖

z and ‖ f ‖ =
‖v‖
2
.

Thus,

ω(k, f, v)=
‖v‖
2
.
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Applying the definition of 0w(k, v) to f , we see that

‖T f (s)−w‖ ≤ Mω(k, f, v)+ 1= M
2
‖v‖+ 1.

Moreover, since
‖T f ‖ ≤ M‖ f ‖+ 1= M

2
‖v‖+ 1,

it follows that
ω(s, T f,w)≤ M

2
‖v‖+ 1.

So, by applying the definition of 3z(s,w) to T f , we have

(6-2) ‖ f (k ′)−z‖= ‖T−1(T f )(k ′)−z‖≤ Mω(s, T f,w)+1≤ M2

2
‖v‖+M+1.

On the other hand, since ‖w‖ = ‖v‖/M − 1 and ‖z‖ = ‖w‖/M − 1 we obtain

‖z‖ =
(
‖v‖
M
− 1

) 1
M
− 1=

‖v‖
M2 −

1
M
− 1.

Furthermore, according to (6-1), f (k ′) and z have opposite directions. Then

(6-3) ‖ f (k ′)− z‖ = ‖ f (k ′)‖+‖z‖ =
‖v‖
2
+
‖v‖
M2 −

1
M
− 1.

Therefore, putting 1′′ = M + 2+ 1/M, by (6-2) and (6-3) we conclude that

(6-4)
(1

2
+

1
M2 −

M2

2

)
‖v‖ ≤1′′.

Since M2 < S(X)≤ 2, it can be easily seen that

1
2
+

1
M2 −

M2

2
> 0.

So, there exists r2≥ r1 depending only on M and S(X) such that the inequality (6-4)
fails to be true for v ∈ X with ‖v‖> r2, completing the proof of the proposition. �

As we did to r0 and r1, we may fix r2 given by the Proposition 6.1, and it is clear
that this constant also works for the for the sets 3v(s,w).

7. The topological spaces K and S are homeomorphic

Observe that the statements of Proposition 3.1, Corollary 4.2, Proposition 5.1 and
Proposition 6.1 remain true if we change r0 and r1 to r2. Consider thus ϕ and ψ
defined as at the end of Section 5. To complete the proof of Theorem 1.1, we prove
the following proposition.

Proposition 7.1. The functions ϕ : K → S and ψ : S → K are continuous and
ψ = ϕ−1.
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Proof. First we will show that ψ = ϕ−1. Fix k ∈ K. By the definition of ϕ(k) there
are v,w ∈ X with ‖v‖> (r2+ 1)M such that

ϕ(k) ∈ 0w(k, v).

Thus, ‖w‖>r2 and by Proposition 3.1 there exists z∈ X satisfying3z(ϕ(k),w) 6=∅.
Then, according to Proposition 6.1 we know that

3z(ϕ(k),w)= {k}.

Therefore, it follows by the definition of ψ that ψ(ϕ(k))= k. Hence ψ ◦ϕ = IdK .
Analogously we deduce that ϕ ◦ψ = IdS .

We will now prove that ϕ is continuous. The proof that ψ is continuous is
analogous. Observe that it suffices to prove that for each net (k j ) j∈J of K converging
to k ∈ K, the net (ϕ(k j )) j∈J admits a subnet converging to ϕ(k).

Assume then that (k j ) j∈J is a net of K converging to k. For all j ∈ J take vj

and wj such that ‖vj‖ = c, for some c > r2, and

(7-1) ϕ(k j ) ∈ 0wj (k j , vj ).

Since the nets (vj ) j∈J and (wj ) j∈J are contained in compact sets, we may assume
that there are v,w ∈ X such that vj → v and wj → w.

For each f ∈ C0(K , X) we have

(7-2) ω(k j , f, vj )→ ω(k, f, v),

and according to (7-1),

(7-3) ‖T f (ϕ(k j ))−wj‖ ≤ Mω(k j , f, vj )+ 1, for all j ∈ J.

Fix f1 ∈C0(K , X) satisfying ‖ f1‖=‖v‖/2 and f1(x)= v/2. Then (7-3) implies

‖T f1(ϕ(k j ))‖ ≥ ‖wj‖−‖T f1(ϕ(k j ))−wj‖

≥
c
M
−Mω(k j , f1, vj )− 2,

for every j ∈ J. Notice that ω(k, f1, v)= ‖v‖/2= c/2, so by (7-2) we have

lim inf
j∈J
‖T f1(ϕ(k j ))‖ ≥

( 1
M
−

M
2

)
c− 2,

and since c > r2 ≥ r0 and recalling (3-5), we obtain

lim inf
j∈J
‖T f1(ϕ(k j ))‖> 0.

Since T f1 vanishes at infinity, this implies that (ϕ(k j )) j∈J admits a subnet
converging to some s ∈ S, so we assume that ϕ(k j )→ s. Hence, by (7-2) and (7-3),

‖T f (s)−w‖ ≤ Mω(k, f, v)+ 1, for all f ∈ C0(K , X),

which means that s ∈ 0w(k, v)= {ϕ(k)}. Consequently s = ϕ(k). �



AN AMIR–CAMBERN THEOREM FOR QUASI-ISOMETRIES OF C0(K , X) SPACES 99

Acknowledgement

We would like to thank the referee for carefully reading our manuscript and for
making constructive comments that substantially helped improve the quality of the
paper.

References

[Amir 1965] D. Amir, “On isomorphisms of continuous function spaces”, Israel J. Math. 3 (1965),
205–210. MR Zbl

[Banach 1932] S. Banach, Théorie des opérations linéaires, Monografie matematyczne 1, Polish Sci.,
Warsaw, 1932. Zbl

[Behrends 1979] E. Behrends, M-structure and the Banach–Stone theorem, Lecture Notes in Math.
736, Springer, 1979. MR Zbl

[Benyamini and Lindenstrauss 2000] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear
functional analysis, I, Amer. Math. Soc. Colloquium Publ. 48, Amer. Math. Soc., Providence, RI,
2000. MR Zbl

[Cambern 1967] M. Cambern, “On isomorphisms with small bound”, Proc. Amer. Math. Soc. 18
(1967), 1062–1066. MR Zbl

[Cambern 1970] M. Cambern, “Isomorphisms of C0(Y ) onto C(X)”, Pacific J. Math. 35 (1970),
307–312. MR Zbl

[Casini 1986] E. Casini, “About some parameters of normed linear spaces”, Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Natur. (8) 80:1-2 (1986), 11–15. MR Zbl

[Cidral et al. 2015] F. C. Cidral, E. M. Galego, and M. A. Rincón-Villamizar, “Optimal extensions of
the Banach–Stone theorem”, J. Math. Anal. Appl. 430:1 (2015), 193–204. MR Zbl

[Clarkson 1936] J. A. Clarkson, “Uniformly convex spaces”, Trans. Amer. Math. Soc. 40:3 (1936),
396–414. MR Zbl

[Cohen 1975] H. B. Cohen, “A bound-two isomorphism between C(X) Banach spaces”, Proc. Amer.
Math. Soc. 50 (1975), 215–217. MR Zbl

[Galego and Da Silva 2018] E. M. Galego and A. L. P. Da Silva, “Quasi-isometries of C0(K , E)
spaces which determine K for all Euclidean spaces E .”, Stud. Math. 243:3 (2018), 233–242. Zbl

[Galego and Porto da Silva 2016] E. M. Galego and A. L. Porto da Silva, “An optimal nonlinear
extension of Banach–Stone theorem”, J. Funct. Anal. 271:8 (2016), 2166–2176. MR Zbl

[Gao and Lau 1990] J. Gao and K.-S. Lau, “On the geometry of spheres in normed linear spaces”, J.
Austral. Math. Soc. Ser. A 48:1 (1990), 101–112. MR Zbl

[Godefroy et al. 2014] G. Godefroy, G. Lancien, and V. Zizler, “The non-linear geometry of Banach
spaces after Nigel Kalton”, Rocky Mountain J. Math. 44:5 (2014), 1529–1583. MR Zbl

[Górak 2011] R. Górak, “Coarse version of the Banach–Stone theorem”, J. Math. Anal. Appl. 377:1
(2011), 406–413. MR Zbl

[James 1964] R. C. James, “Uniformly non-square Banach spaces”, Ann. of Math. (2) 80 (1964),
542–550. MR Zbl

[Jarosz 1989] K. Jarosz, “Nonlinear generalizations of the Banach–Stone theorem”, Studia Math.
93:2 (1989), 97–107. MR Zbl

[Jerison 1950] M. Jerison, “The space of bounded maps into a Banach space”, Ann. of Math. (2) 52
(1950), 309–327. MR Zbl

http://dx.doi.org/10.1007/BF03008398
http://msp.org/idx/mr/0200708
http://msp.org/idx/zbl/0141.31301
http://msp.org/idx/zbl/0005.20901
http://dx.doi.org/10.1007/BFb0063153
http://msp.org/idx/mr/547509
http://msp.org/idx/zbl/0436.46013
http://msp.org/idx/mr/1727673
http://msp.org/idx/zbl/0946.46002
http://dx.doi.org/10.2307/2035796
http://msp.org/idx/mr/0217580
http://msp.org/idx/zbl/0165.47402
http://dx.doi.org/10.2140/pjm.1970.35.307
http://msp.org/idx/mr/0433201
http://msp.org/idx/zbl/0188.19101
http://eudml.org/doc/287224
http://msp.org/idx/mr/944367
http://msp.org/idx/zbl/0637.46019
http://dx.doi.org/10.1016/j.jmaa.2015.04.060
http://dx.doi.org/10.1016/j.jmaa.2015.04.060
http://msp.org/idx/mr/3347209
http://msp.org/idx/zbl/1331.46006
http://dx.doi.org/10.2307/1989630
http://msp.org/idx/mr/1501880
http://msp.org/idx/zbl/62.0467.16
http://dx.doi.org/10.2307/2040542
http://msp.org/idx/mr/0380379
http://msp.org/idx/zbl/0317.46025
http://dx.doi.org/10.4064/sm8747-8-2017
http://dx.doi.org/10.4064/sm8747-8-2017
http://msp.org/idx/zbl/06921768
http://dx.doi.org/10.1016/j.jfa.2016.07.008
http://dx.doi.org/10.1016/j.jfa.2016.07.008
http://msp.org/idx/mr/3539349
http://msp.org/idx/zbl/1353.46007
http://dx.doi.org/10.1017/S1446788700035230
http://msp.org/idx/mr/1026841
http://msp.org/idx/zbl/0687.46012
http://dx.doi.org/10.1216/RMJ-2014-44-5-1529
http://dx.doi.org/10.1216/RMJ-2014-44-5-1529
http://msp.org/idx/mr/3295641
http://msp.org/idx/zbl/1317.46016
http://dx.doi.org/10.1016/j.jmaa.2010.11.012
http://msp.org/idx/mr/2754839
http://msp.org/idx/zbl/1214.46012
http://dx.doi.org/10.2307/1970663
http://msp.org/idx/mr/0173932
http://msp.org/idx/zbl/0132.08902
http://dx.doi.org/10.4064/sm-93-2-97-107
http://msp.org/idx/mr/1002914
http://msp.org/idx/zbl/0695.46010
http://dx.doi.org/10.2307/1969472
http://msp.org/idx/mr/0036942
http://msp.org/idx/zbl/0038.27301


100 ELÓI MEDINA GALEGO AND ANDRÉ LUIS PORTO DA SILVA

[Kalton 2008] N. J. Kalton, “The nonlinear geometry of Banach spaces”, Rev. Mat. Complut. 21:1
(2008), 7–60. MR Zbl

[Kato et al. 2001] M. Kato, L. Maligranda, and Y. Takahashi, “On James and Jordan–von Neumann
constants and the normal structure coefficient of Banach spaces”, Studia Math. 144:3 (2001), 275–
295. MR Zbl

[Komuro et al. 2016] N. Komuro, K.-S. Saito, and R. Tanaka, “On the class of Banach spaces with
James constant

√
2”, Math. Nachr. 289:8-9 (2016), 1005–1020. MR Zbl

[Schäffer 1976] J. J. Schäffer, Geometry of spheres in normed spaces, Lect. Notes Pure Appl. Math.
20, Dekker, New York, 1976. MR Zbl

[Stone 1937] M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Trans.
Amer. Math. Soc. 41:3 (1937), 375–481. MR Zbl

[Sundaresan 1973] K. Sundaresan, “Spaces of continuous functions into a Banach space”, Studia
Math. 48 (1973), 15–22. MR Zbl

Received January 6, 2018. Revised April 12, 2018.

ELÓI MEDINA GALEGO

DEPARTMENT OF MATHEMATICS, IME
UNIVERSITY OF SÃO PAULO

S AO PAULO

BRAZIL

eloi@ime.usp.br
Current address:
DEPARTMENT OF MATHEMATICS, IME
UNIVERSITY OF SÃO PAULO

RUA DO MATÃO 1010
05508-090 SÃO PAULO-
BRAZIL

ANDRÉ LUIS PORTO DA SILVA

DEPARTMENT OF MATHEMATICS, IME
UNIVERSITY OF SÃO PAULO

SÃO PAULO

BRAZIL

porto@ime.usp.br

http://dx.doi.org/10.5209/rev_REMA.2008.v21.n1.16426
http://msp.org/idx/mr/2408035
http://msp.org/idx/zbl/1156.46003
http://dx.doi.org/10.4064/sm144-3-5
http://dx.doi.org/10.4064/sm144-3-5
http://msp.org/idx/mr/1829721
http://msp.org/idx/zbl/0997.46009
http://dx.doi.org/10.1002/mana.201500238
http://dx.doi.org/10.1002/mana.201500238
http://msp.org/idx/mr/3512046
http://msp.org/idx/zbl/1354.46019
http://msp.org/idx/mr/0467256
http://msp.org/idx/zbl/0344.46038
http://dx.doi.org/10.2307/1989788
http://msp.org/idx/mr/1501905
http://msp.org/idx/zbl/0017.13502
http://dx.doi.org/10.4064/sm-48-1-15-22
http://msp.org/idx/mr/0331042
http://msp.org/idx/zbl/0262.46025
mailto:eloi@ime.usp.br
mailto:porto@ime.usp.br


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2018 is US $475/year for the electronic version, and $640/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 297 No. 1 November 2018

1On Legendre curves in normed planes
VITOR BALESTRO, HORST MARTINI and RALPH TEIXEIRA

29Remarks on critical metrics of the scalar curvature and volume functionals
on compact manifolds with boundary

HALYSON BALTAZAR and ERNANI RIBEIRO, JR.

47Cherlin’s conjecture for sporadic simple groups
FRANCESCA DALLA VOLTA, NICK GILL and PABLO SPIGA

67A characterization of round spheres in space forms
FRANCISCO FONTENELE and ROBERTO ALONSO NÚÑEZ

79A non-strictly pseudoconvex domain for which the squeezing function tends
to 1 towards the boundary

JOHN ERIK FORNÆSS and ERLEND FORNÆSS WOLD

87An Amir–Cambern theorem for quasi-isometries of C0(K , X) spaces
ELÓI MEDINA GALEGO and ANDRÉ LUIS PORTO DA SILVA

101Weak amenability of Lie groups made discrete
SØREN KNUDBY

117A restriction on the Alexander polynomials of L-space knots
DAVID KRCATOVICH

131Stability of capillary hypersurfaces in a Euclidean ball
HAIZHONG LI and CHANGWEI XIONG

147Non-minimality of certain irregular coherent preminimal affinizations
ADRIANO MOURA and FERNANDA PEREIRA

195Interior gradient estimates for weak solutions of quasilinear p-Laplacian
type equations

TUOC PHAN

225Local unitary periods and relative discrete series
JERROD MANFORD SMITH

0030-8730(201811)297:1;1-R

Pacific
JournalofM

athem
atics

2018
Vol.297,N

o.1


	1. Introduction
	2. An inequality involving the Schäffer constant
	3. Special sets associated to (M, L)-quasi-isometries
	4. The special sets Gamma_w(k,v) when M^2> S(X)
	5. The functions phi:K to S and psi: S to K
	6. Another decisive property of the sets Gamma_w(k,v) when M^2 < S(X)
	7. The topological spaces K and S are homeomorphic
	Acknowledgement
	References
	
	

