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We completely characterize connected Lie groups all of whose countable
subgroups are weakly amenable. We also provide a characterization of
connected semisimple Lie groups that are weakly amenable. Finally, we
show that a connected Lie group is weakly amenable if the group is weakly
amenable as a discrete group.

1. Statement of the results

Weak amenability for locally compact groups was introduced in [Cowling and
Haagerup 1989]. The property has proven useful as a tool in operator algebras
going back to Haagerup’s result on the free groups [1978], results on lattices on
simple Lie groups and their group von Neumann algebras [Cowling and Haagerup
1989; Haagerup 2016], and more recently in several results on Cartan rigidity in
the theory of von Neumann algebras (see, e.g., [Popa and Vaes 2014a; 2014b]).
Due to its many applications in operator algebras, the study of weak amenability,
especially for discrete groups, is important.

A locally compact group G is weakly amenable if the constant function 1 on
G can be approximated uniformly on compact subsets by compactly supported
Herz–Schur multipliers, uniformly bounded in norm (see Section 2 for details).
The optimal uniform norm bound is the Cowling–Haagerup constant (or the weak
amenability constant), denoted here 3(G).

Weak amenability has been quite well studied, especially in the setting of con-
nected Lie groups. The combined results of [Cowling 1983; Cowling and Haagerup
1989; de Cannière and Haagerup 1985; Dorofaeff 1993; 1996; Haagerup 2016;
Hansen 1990] provides a characterization of weak amenability for simple Lie groups,
which we record in Theorem 1.1. For partial results in the nonsimple case, we refer
to [Cowling et al. 2005; Knudby 2016].
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Theorem 1.1. A connected simple Lie group G is weakly amenable if and only if
the real rank of G is zero or one. In that case, the weak amenability constant is

3(G)=



1 when G has real rank zero,
1 when G ≈ SO(1, n), n ≥ 2,
1 when G ≈ SU(1, n), n ≥ 2,
2n− 1 when G ≈ Sp(1, n), n ≥ 2,
21 when G ≈ F4(−20).

(1.2)

Above, G ≈ H means that G is locally isomorphic to H.

In Section 3, we observe how the classification of simple Lie groups that are weakly
amenable can be extended to include all semisimple Lie groups. Since it is not
known in general if weak amenability of connected Lie groups is preserved under
local isomorphism, it is not entirely obvious how to deduce the semisimple case
from the simple case. We prove the following:

Theorem 3.1. Let G be a connected semisimple Lie group. Then G is locally iso-
morphic to a direct product S1×· · ·×Sn of connected simple Lie groups S1, . . . , Sn ,
and G is weakly amenable if and only if each Si is weakly amenable. In fact,

3(G)=
n∏

i=1

3(Si ).

Combining Theorems 3.1 and 1.1 one can then compute the value 3(G) for
any connected semisimple Lie group G. Our proof of Theorem 3.1 relies on an
inequality proved by Cowling for discrete groups; see (2.6). In order to apply
Cowling’s inequality, we pass to lattices by using Haagerup’s result (2.5) that this
does not change the Cowling–Haagerup constant. The same trick is also used in
our proof of Theorem 5.4.

Theorem 3.1 was previously known under the additional assumption that the
semisimple Lie group had finite center or finite fundamental group. Indeed, under
this additional assumption, Theorem 3.1 then follows from Theorem 1.1 and an
application of the well-known permanence properties (2.1) and (2.3) below. The
assumption of finite center or finite fundamental group can be considered as extreme
cases, and Theorem 3.1 then settles the intermediate cases in which the center and
the fundamental group are both infinite.

In a similar spirit, the characterization of weak amenability for connected Lie
groups in general has been done in the cases where the Levi factor has finite center
[Cowling et al. 2005] or the Lie group has trivial fundamental group [Knudby 2016];
the case of a finite fundamental group then follows from (2.1). Some intermediate
cases remain open.
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For a locally compact group G, we let Gd denote the same group G equipped
with the discrete topology. There has previously been some interest in studying the
relationship between properties of G and Gd; see, e.g., [Bédos 1994; Bekka and
Valette 1993; de Cornulier 2006; Knudby and Li 2015]. For instance, it is known
that if Gd is an amenable group, then G is an amenable group. The analogous
question about weak amenability is open:

Question 1 [Knudby and Li 2015]. If Gd is weakly amenable, is G weakly
amenable?

It is a fact that a discrete group is weakly amenable if and only if all of its
countable subgroups are weakly amenable (see Lemma 2.7). It thus makes no
difference if one studies weak amenability of Gd or of all countable subgroups of G.
Note that countable subgroups of G are always viewed with the discrete topology
which might differ from the subspace topology coming from G.

Our main result is the following characterization of connected Lie groups all of
whose countable subgroups are weakly amenable.

Theorem 4.11. Let G be a connected Lie group, and let Gd denote the group G
equipped with the discrete topology. The following are equivalent.

(1) G is locally isomorphic to R×SO(3)a×SL(2,R)b×SL(2,C)c, for a solvable
connected Lie group R and integers a, b, c.

(2) Gd is weakly amenable with constant 1.

(3) Gd is weakly amenable.

(4) Every countable subgroup of G is weakly amenable with constant 1.

(5) Every countable subgroup of G is weakly amenable.

In [Knudby and Li 2015], Theorem 4.11 was proved in the special case where
G is a simple Lie group. In order to remove the assumption of simplicity, one
needs to deal with certain semidirect products, some of which were dealt with
in [Knudby 2016]. In Section 4 we obtain nonweak amenability results for the
remaining semidirect products (see Proposition 4.9) and thus obtain Theorem 4.11.

Our proof of Theorem 4.11 relies in part on the methods of de Cornulier [2006],
where he proved that (1) in Theorem 4.11 is equivalent to:

(6) Gd has the Haagerup property.

It was conjectured by Cowling (see [Cherix et al. 2001, p. 7]) that a locally
compact group G satisfies 3(G)= 1 if and only if G has the Haagerup property.
Although this is now known to be false in this generality (see [Ozawa and Popa
2010, Remark 2.13; de Cornulier et al. 2008, Corollary 2]), Theorem 4.11 together
with de Cornulier’s result [2006, Theorem 1.14] establishes Cowling’s conjecture
for connected Lie groups made discrete.
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As another application of Theorem 4.11, we are able to settle Question 1 in the
case of connected Lie groups. In the last section, we establish the following.

Corollary 5.5. Let G be a connected Lie group. If Gd is weakly amenable, then G
is weakly amenable. In this case, 3(Gd)=3(G)= 1.

We remark that our proof of Corollary 5.5 relies on the classification obtained
in Theorem 4.11. It would be preferable to have a direct proof avoiding the
classification.

2. Preliminaries

2A. Weak amenability. Let G be a locally compact group. A Herz–Schur multi-
plier is a complex function ϕ on G of the form ϕ(y−1x) = 〈P(x), Q(y)〉, where
P, Q : G → H are bounded continuous functions from G to a Hilbert space H
and x, y ∈ G. Note that ϕ is continuous and bounded by ‖P‖∞‖Q‖∞. The Herz–
Schur norm of ϕ is defined as

‖ϕ‖B2 = inf{‖P‖∞‖Q‖∞},

where the infimum is taken over all P, Q as above. With this norm and pointwise
operations, the Herz–Schur multipliers form a unital Banach algebra.

The group G is weakly amenable if there is a net (ϕi ) of compactly supported
Herz–Schur multipliers converging to 1 uniformly on compact subsets of G and
satisfying supi ‖ϕi‖B2 ≤C for some C ≥ 1. The weak amenability constant 3(G) is
the infimum of those C ≥ 1 for which such a net exists, with the understanding that
3(G)=∞ if G is not weakly amenable. There are several equivalent definitions
of weak amenability in the literature; see, e.g., [Cowling and Haagerup 1989,
Proposition 1.1]. Weak amenability of groups should however not be confused with
weak amenability of Banach algebras.

Weak amenability is preserved under several group constructions. We list here the
known results needed later on and refer to [Brown and Ozawa 2008, Section 12.3;
Cowling 1989, Section III; Cowling and Haagerup 1989, Section 1; Haagerup 2016;
Jolissaint 2015] for proofs. When K is a compact normal subgroup of G,

3(G)=3(G/K ).(2.1)

If (Gi )i∈I is a directed collection of open subgroups in G then

3

(⋃
i∈I

Gi

)
= sup

i∈I
3(Gi ).(2.2)

For two locally compact groups G and H,

(2.3) 3(G× H)=3(G)3(H).
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If G has a closed normal subgroup N such that the quotient G/N is amenable then

3(N )=3(G).(2.4)

We remark that (2.4) is stated in [Jolissaint 2015] only for second countable
groups, but it is not difficult to deduce the general statement from this and the
Kakutani–Kodaira theorem [Hewitt and Ross 1979, Theorem 8.7] using (2.1)
and (2.2).

Recall that a lattice 0 in a locally compact group G is a discrete subgroup such
that the homogeneous space G/0 admits a G-invariant probability measure, where
G acts on G/0 by left translation. If 0 is a lattice in a second countable, locally
compact group G, then

(2.5) 3(0)=3(G).

When Z is a central subgroup of a discrete group G then

(2.6) 3(G)≤3(G/Z).

A remark on (2.6) is in order. Much work related to weak amenability for
connected Lie groups would be significantly easier if (2.6) holds true for nondiscrete
groups G as well. For instance, [Hansen 1990] would then have been an immediate
consequence of earlier work such as [Cowling 1983; Cowling and Haagerup 1989],
and our Theorem 3.1 would also be an immediate consequence of earlier work. It
would even be relatively easy to complete the characterization of weak amenability
for connected Lie groups. Needless to say, we have not been able to generalize (2.6)
to the nondiscrete case so far. Sometimes, one can reduce the general case to the
discrete case and then apply (2.6). In the present paper, this is done using lattices
as is most explicitly seen in the proof of Theorem 3.1, but also in Theorem 5.4.

Lemma 2.7. Let G be a discrete group. Then G is weakly amenable if and only if
every countable subgroup of G is weakly amenable.

Proof. Clearly, weak amenability of G implies that every subgroup of G is weakly
amenable. Assume conversely that G is not weakly amenable. We claim that
G contains a countable subgroup which is not weakly amenable. Since G is the
directed union of all its countable subgroups, it follows from (2.2) that there is a
sequence, G1,G2, . . . , of countable subgroups of G such that 3(Gn)≥ n. Let G∞
be the subgroup of G generated by G1,G2, . . . . Then G∞ is a countable subgroup
of G and G∞ is not weakly amenable. This completes the proof. �

2B. Structure of Lie groups. Loosely speaking, two Lie groups are locally isomor-
phic if they admit homeomorphic neighborhoods of the identity on which the group
laws (here only partially defined) are identical. Equivalently, two Lie groups are
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locally isomorphic if and only if their Lie algebras are isomorphic; see [Helgason
1978, Theorem II.1.11].

A connected Lie group G has a simply connected covering G̃ which is a Lie
group locally isomorphic to G in such a way that the covering map is a group
homomorphism. The kernel of the covering homomorphism is a discrete central
subgroup of G̃. Conversely, any connected Lie group locally isomorphic to G is a
quotient of G̃ by a discrete central subgroup. For a discrete subgroup N of the center
Z(G̃) of G̃, then the center of the quotient G̃/N is precisely the quotient of the
center Z(G̃)/N. See, e.g., [Chevalley 1946, Chapter II; Knapp 2002, Section I.11]
for details.

Let G be a connected Lie group with Lie algebra g. Then G admits a Levi
decomposition G = RS. Here, R is the solvable closed connected Lie subgroup of
G associated with the solvable radical of g. The group S is a semisimple connected
Lie subgroup of G associated with a (semisimple) Levi subalgebra s of g. We refer
to Section 3.18 of [Varadarajan 1974] and especially Theorem 3.18.13 therein for
details. The semisimple Lie algebra s splits as a direct sum s = s1⊕ · · · ⊕ sn of
simple Lie algebras (for some n ≥ 0), and if Si denotes the connected Lie subgroup
of G associated with the Lie subalgebra si , then S is locally isomorphic to the direct
product S1× · · ·× Sn .

3. Weak amenability of semisimple Lie groups

The computation below of 3(G) for all semisimple Lie groups G basically relies
on three facts: the existence of lattices in semisimple Lie groups, the permanence
results stated in Section 2, and most importantly that 3(G) is known for all simple
Lie groups.

Theorem 3.1. Let G be a connected semisimple Lie group. Then G is locally iso-
morphic to a direct product S1×· · ·×Sn of connected simple Lie groups S1, . . . , Sn ,
and G is weakly amenable if and only if each Si is weakly amenable. In fact,

3(G)=
n∏

i=1

3(Si ).

Proof. Let Z denote the center of G, G̃ the universal cover of G, and G =G/Z . By
semisimplicity, Z is discrete. The Lie algebra g of G is a direct sum g= s1⊕· · ·⊕sn

of simple Lie algebras. Let S̃i and Si denote the analytic subgroups of G̃ and G
corresponding to si , respectively. Then we have the following direct product
decompositions

G̃ =
n∏

i=1

S̃i and G =
n∏

i=1

Si .

Let 0 be a lattice in G (a lattice exists by [Raghunathan 1972, Theorem 14.1]).
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Consider the covering homomorphisms

G̃→ G and G→ G,

and let 0 be the lift of 0 to G, and let 0̃ be the lift of 0 to G̃. Then 0 ≤ G is a
lattice, and 0̃ ≤ G̃ is a lattice. Using (2.5), (2.3), and (2.6) we obtain

3(G)=3(0)≤3(0)=3(G)=
n∏

i=1

3(Si ),

3(G)=3(0)≥3(0̃)=3(G̃)=
n∏

i=1

3(S̃i ).

By Theorem 1.1, we have 3(Si )=3(S̃i ) for every i , concluding the proof. �

4. Weak amenability of Lie groups made discrete

When G is a Lie group we denote by Gd the group G equipped with the discrete
topology. We recall a result needed in the proof of Theorem 4.11:

Theorem 4.1 [Knudby and Li 2015, Theorem 1.10]. For a connected simple Lie
group S, the following are equivalent.

• S is locally isomorphic to SO(3), SL(2,R), or SL(2,C).

• Sd is weakly amenable.

• Sd is weakly amenable with constant 1.

In order to generalize Theorem 4.1 to nonsimple Lie groups we need to consider
certain semidirect products which we now describe. A main ingredient to prove
nonweak amenability of these semidirect products is this:

Theorem 4.2 [Knudby 2016, Theorem 5]. Let H y N be an action by automor-
phisms of a discrete group H on a discrete group N, and let G = N o H be
the corresponding semidirect product group. Let N0 be a proper subgroup of N.
Suppose

(1) H is not amenable;

(2) N is amenable;

(3) N0 is H-invariant;

(4) for every x ∈ N \ N0, the stabilizer of x in H is amenable.

Then G is not weakly amenable.

The semidirect products of interest also appear in [de Cornulier 2006] to which
we refer the reader for further details.
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The irreducible real representations of SL(2,R) and SU(2) are well known. We
describe them below.

For each natural number n ≥ 1, the group SL(2,R) has a unique irreducible real
representation Vn of dimension n; see [Lang 1975, p. 107]. It may be realized as the
natural action of SL(2,R) on the homogeneous polynomials in two real variables
of degree n− 1.

Similarly, the group SU(2) acts on the homogeneous polynomials in two complex
variables of degree n−1. When n=2m is even, this representation is still irreducible
as a real representation V4m of dimension 4m. When n = 2m + 1 is odd, the
representation is the complexification of an irreducible real representation V2m+1 of
dimension 2m+ 1. The representations V2m+1 and V4m make up all the irreducible
real representations of SU(2). We refer to [Bröcker and tom Dieck 1985; Itzkowitz
et al. 1991] for details.

Let S be SL(2,R) or SU(2), and let s be the Lie algebra of S. If V is a real
irreducible representation of S, then V also carries the derived representation of s.
Let Alts(V ) denote the real vector space of alternating bilinear forms ϕ on V that
are s-invariant, that is, bilinear forms ϕ : V × V → R satisfying

ϕ(x, x)= 0 and ϕ(s.x, y)+ϕ(x, s.y)= 0 for all s ∈ s, x, y ∈ V .

The Lie group H(V ) is defined as V ×Alts(V )∗ with group multiplication given by

(x, z)(x ′, z′)= (x + x ′, z+ z′+ ex,x ′), x, x ′ ∈ V, z, z′ ∈ Alts(V )∗,

where ex,x ′ ∈ Alts(V )∗ is the evaluation functional defined by ex,x ′(ϕ)= ϕ(x, x ′).
The group S acts on H(V ) by s.(x, z)= (s. x, z). When Z ⊆Alts(V )∗ is a subspace,
we obtain a quotient group H(V )/Z , and the action of S on H(V ) descends to an
action on H(V )/Z . In this way we obtain the semidirect product

H(V )/Z o S.

Lemma 4.3. If G is a proper, real algebraic subgroup of SL(2,R) or SU(2), then
Gd is amenable.

Proof. Let S be SL(2,R) or SU(2), and let s be the Lie algebra of S. The group G
has only finitely many components (in the usual Hausdorff topology); see [Whitney
1957, Theorem 3; Platonov and Rapinchuk 1994, Theorem 3.6]. It is therefore
enough to show that the identity component G0 of G is amenable as a discrete
group.

Since G0 is a connected, proper, closed subgroup of S, its Lie algebra g is a
proper Lie subalgebra of s. The dimension of g is therefore at most two, and g must
be a solvable Lie algebra. So G0 is a solvable group. In particular, G0 is amenable
in the discrete topology. �
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In what follows below, we have to exclude the trivial irreducible representation
of S. We thus assume from now on that dim V ≥ 2.

Lemma 4.4. If dim V ≥ 2 and if (x, z) ∈ H(V )/Z and x 6= 0, then the stabilizer
of (x, z) in S is amenable in the discrete topology.

Proof. The stabilizer of (x, z) in S coincides with the stabilizer of x in S. Since
x 6= 0, and S acts irreducibly on V, the stabilizer of x in S is a proper subgroup. It
follows from the explicit description of the action of S on V as the action on the
homogeneous polynomials in two variables that the stabilizer is moreover a real
algebraic subgroup. Hence, Lemma 4.3 shows that the stabilizer is amenable in the
discrete topology. �

Proposition 4.5. If dim V ≥ 2, the group H(V )/Z o S is not weakly amenable in
the discrete topology.

Proof. We intend to apply Theorem 4.2 with H = Sd, N = (H(V )/Z)d and
N0 = (Alts(V )∗/Z)d. Clearly, H is not amenable, N is amenable, and N0 is
invariant under H (in fact, H acts trivially on N0). It remains to check that every
element of N \ N0 has amenable stabilizer. This is Lemma 4.4. �

In the case S = SL(2,R), the group H(V )/Z o S is not simply connected, since
SL(2,R) is not simply connected. Let S̃ = S̃L(2,R) denote the universal covering
group of SL(2,R). The covering homomorphism S̃→ S has kernel isomorphic
to the group of integers Z. The group S̃ acts on H(V )/Z through the action of S.
Since the stabilizer of (x, z) ∈ H(V )/Z in S̃ is an extension by Z of the stabilizer
in S, and since amenability is preserved by extensions, the following is immediate
from Lemma 4.4.

Lemma 4.6. If dim V ≥ 2 and if (x, z) ∈ H(V )/Z and x 6= 0, then the stabilizer
of (x, z) in S̃ is amenable in the discrete topology.

Applying Theorem 4.2 with H = S̃d, N = (H(V )/Z)d and N0= (Alts(V )∗/Z)d,
we obtain the following:

Proposition 4.7. If dim V ≥ 2, the group H(V )/Z o S̃ is not weakly amenable in
the discrete topology.

Proposition 4.8. If dim V ≥ 2 and if G is a connected Lie group locally isomorphic
to H(V )/Z o S, then Gd is not weakly amenable.

Proof. Let G̃ be the universal cover of G. Then G = G̃/D for some discrete central
subgroup D of G̃. By (2.6), it is enough to prove that G̃d is not weakly amenable,
and hence we may (and will) assume that G is simply connected.

If S = SU(2), the group H(V )/Z o S is simply connected, so G̃ = H(V )/Z o S
and we apply Proposition 4.5. If S=SL(2,R) and S̃= S̃L(2,R), then H(V )/Zo S̃
is simply connected, so G̃ = H(V )/Z o S̃ and we apply Proposition 4.7. �
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For now, let S = SL(2,R) and V = Vn . If n = 2m+1 is odd, the space Alts(V )∗

is trivial and
H(V )o S = R2m+1 oSL(2,R).

If n = 2m is even, the space Alts(V )∗ is one-dimensional and H(V ) is the 2m+1-
dimensional real Heisenberg group H2m+1. If Z = Alts(V )∗, then

H(V )o S = H2m+1 oSL(2,R), H(V )/Z o S = R2m oSL(2,R).

When S=SU(2) and V =V2m+1, the space Alts(V )∗ is trivial, and with the notation
of de Cornulier [2006] we have

H(V )o S = DR
2m+1 oSU(2).

When S = SU(2) and V = V4m , the space Alts(V )∗ is three-dimensional. If
Zi ⊆Alts(V )∗ is a subspace of dimension 3−i , then with the notation of de Cornulier
we have

H(V )/Zi o S = HU i
4m oSU(2).

Using the perhaps more illuminating description of the groups H(V )/Z o S just
given, Proposition 4.8 translates as:

Proposition 4.9. Let G be a connected Lie group locally isomorphic to one of the
following groups:

• DR
2n+1 oSU(2) for some i = 0, 1, 2, 3 and some n ≥ 1.

• HU i
4n oSU(2) for some i = 0, 1, 2, 3 and some n ≥ 1.

• Rn oSL(2,R) for some n ≥ 2.

• H2n+1 oSL(2,R) for some n ≥ 1.

Then Gd is not weakly amenable.

Proposition 4.10. Let G be a connected Lie group, and let G = RS be a Levi de-
composition (see Section 2B), where R is the solvable radical and S is a semisimple
Levi factor. If [R, S] 6= 1, then Gd is not weakly amenable.

Proof. This follows basically from structure theory of Lie algebras together with
Proposition 4.9. Indeed, given [R, S] 6= 1 it follows from Propositions 3.4 and
3.8 of [de Cornulier 2006] that G contains a connected Lie subgroup H locally
isomorphic to one of the groups listed in Proposition 4.9. Since Hd is not weakly
amenable, Gd is not weakly amenable. �

Theorem 4.11. Let G be a connected Lie group, and let Gd denote the group G
equipped with the discrete topology. The following are equivalent.

(1) G is locally isomorphic to R×SO(3)a×SL(2,R)b×SL(2,C)c, for a solvable
connected Lie group R and integers a, b, c.
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(2) Gd is weakly amenable with constant 1.

(3) Gd is weakly amenable.

(4) Every countable subgroup of G is weakly amenable with constant 1.

(5) Every countable subgroup of G is weakly amenable.

Proof. Let G = RS be a Levi decomposition of G (see Section 2B).

(1)⇒ (2): If S is a semisimple Levi factor in G, then by assumption S is normal
in G, and the group Gd/Sd is solvable, since it is a quotient of the solvable group Rd .
By (2.4), it is enough to show that Sd is weakly amenable with constant 1.

Using (2.6), we may assume that the center of S is trivial. Then S is a direct
product of factors SO(3), PSL(2,R), and PSL(2,C). An application of (2.3) and
Theorem 4.1 shows that Sd is weakly amenable with constant 1.

(2)⇒ (4): This is clear.

(4)⇒ (5): This is clear.

(5)⇒ (3): This is Lemma 2.7.

(3)⇒ (1): Suppose G does not satisfy (1). If [R, S] 6= 1, then Proposition 4.10
shows that Gd is not weakly amenable. Otherwise [R, S] = 1 and S contains a
simple Lie subgroup not locally isomorphic to SO(3), SL(2,R), or SL(2,C). It
then follows from Theorem 4.1 that Sd is not weakly amenable, and hence Gd is
not weakly amenable either. �

5. Weak amenability of Lie groups with and without topology

As a consequence of Theorem 4.11, we can answer in the affirmative (part of)
Question 1.8 of [Knudby and Li 2015] — the case of connected Lie groups. Indeed,
we show below that, for a connected Lie group G, if Gd is weakly amenable then
G too is weakly amenable. We first establish a few lemmas.

Lemma 5.1. Let m, n be nonnegative integers, and let D ⊆ Rm
×Zn be a discrete

subgroup. There is a discrete subgroup D′ ⊆ Rm
×Zn such that D ⊆ D′ and D′ is

cocompact in Rm
×Zn.

Proof. Our proof is an application of the characterization of compactly generated,
locally compact abelian groups; see [Hewitt and Ross 1979, Theorem 9.8]. As
Rm
× Zn is compactly generated, so is the quotient (Rm

× Zn)/D. Therefore
the quotient is of the form Ra

× Zb
×C , where a and b are integers and C is a

compact abelian group. Clearly, Ra
×Zb
×C has a cocompact discrete subgroup,

Za
×Zb
×{0}, and its preimage in Rm

×Zn is a discrete, cocompact subgroup which
contains D. �
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Our next lemma establishes the existence of lattices in certain Lie groups. There
are well-known results of Malcev about existence of lattices in nilpotent Lie groups
and of Borel about existence of lattices in semisimple Lie groups; see [Raghunathan
1972, Theorems 2.12 and 14.1]. However, we are interested in some intermediate
cases such as the following example, which we have included to give the reader an
intuition about the succeeding proof.

Example 5.2. Fix an irrational number θ . Let H be the universal covering group of
SL(2,R). Its center is infinite cyclic, and we let z denote a generator of the center
of H. Consider the group D = {(−m − nθ, zm, zn) | m, n ∈ Z} which is central
in R× H × H, and let G be the quotient group G = (R× H × H)/D. We will
describe a lattice in G.

The group SL(2,R) admits a lattice F isomorphic to the free group on two
generators. By freeness, F lifts to a subgroup F̃ of H. Then (Z× F̃ × F̃)D is a
lattice in R× H × H, and it obviously contains D, so it factors down to a lattice in
(R× H × H×)/D.

Lemma 5.3. A connected Lie group locally isomorphic to

Rm
×SL(2,R)n,

where m and n are nonnegative integers, contains a lattice.

Proof. We first introduce some notation. For any Lie group L , let Z(L) denote the
center of L . We use 1 to denote the neutral element (or 0 for the group R). Let H
be the universal covering group of SL(2,R). Its center Z(H) is infinite cyclic.

Set G̃ = Rm
× H n. Then G̃ is a simply connected and connected Lie group,

and any connected Lie group G locally isomorphic to Rm
× SL(2,R)n is of the

form G = G̃/D for some discrete central subgroup D of G̃. Let π : G̃→ G be the
quotient homomorphism π(x)= x D.

Suppose D ⊆ D′ for some other discrete central subgroup D′ in G̃ and that
G̃/D′ contains a lattice. Then the preimage under G̃/D→ G̃/D′ of any lattice in
G̃/D′ is a lattice in G̃/D. The center of G̃ is Z(G̃)= Rm

× Z(H)n ' Rm
×Zn, so

by Lemma 5.1 we may without loss of generality suppose that D is discrete and
cocompact in Z(G̃).

The quotient H/Z(H) is PSL(2,R), and it is well known that PSL(2,R) has a
lattice F isomorphic to a free group on two generators; see, e.g., [Bekka et al. 2008,
Example B.2.5(iv)]. By the universal property of free groups, there is a subgroup
F̃ ⊆ H such that the quotient map H→ PSL(2,R) maps F̃ bijectively onto F. The
preimage of F in H is F̃ Z(H), which is a lattice in H. Also, F̃ ∩ Z(H)= {1}.

Consider the subgroup 0 = {0}m × F̃n in G̃. We will show that π(0)= 0D/D
is a lattice in G.
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The group 0D is discrete in G̃: Since it is a countable subgroup, it is enough to
see that 0D is closed in G̃. Now, 0D is clearly closed in 0Z(G̃), which is closed
in G̃ since 0Z(G̃)= Rm

× (F̃ Z(H))n.
The group π(0) is discrete in G: As π is an open map, π(W ) is an open set in

G and π(0)∩π(W )= {1}. Indeed, if w ∈W and γ ∈ 0 satisfy π(w)= π(γ ), then
it follows that w ∈ 0D so w = 1. Thus, π(0) is discrete in G.

The group π(0) has finite covolume in G: Let ψ :G→G/Z(G) be the quotient
homomorphism. As D is discrete and G̃ is connected, Z(G)= Z(G̃)/D. We thus
have isomorphisms

G/Z(G)' G̃/Z(G̃)' PSL(2,R)n,

and under these isomorphisms ψπ(0)= Fn. As F is a lattice in PSL(2,R), there is
a Borel set (even a Borel fundamental domain) �⊆G/Z(G) of finite measure such
that �(ψπ(0))= G/Z(G); see [Bekka et al. 2008, Proposition B.2.4]. By outer
regularity, we may assume that � is, in addition, open (but no longer a fundamental
domain). The inverse image ψ−1(�)⊆ G is then also open and ψ−1(�)π(0)= G.
As ψ−1(�) is open, its characteristic function is lower semicontinuous, and it
follows from Weil’s integration formula for lower semicontinuous functions (see
[Reiter and Stegeman 2000, (3.3.13)]) that the Haar measure of ψ−1(�) is the
Haar measure of � multiplied by the Haar measure of Z(G). As D is cocompact
in Z(G̃), the center Z(G)= Z(G̃)/D is compact. Therefore Z(G) has finite Haar
measure, and in conclusion ψ−1(�) has finite Haar measure.

By [Bekka et al. 2008, Proposition B.2.4] it follows that π(0) is a lattice in G,
and this completes the proof. �

Theorem 5.4. Let G be a connected Lie group locally isomorphic to

G ≈ R×SO(3)a ×SL(2,R)b×SL(2,C)c,

for a solvable connected Lie group R and integers a, b, c. Then G is weakly
amenable with constant 1, i.e., 3(G)= 1.

Proof. The strategy of the proof is to reduce the problem to the case where G is
locally isomorphic to the group appearing in Lemma 5.3. This is done in several
steps. We first show how to get rid of the factors SO(3) and SL(2,C). Then we
show how to reduce the radical to an abelian group.

Let g be the Lie algebra of G. With r the solvable radical in g, we have (recall
so(3)= su(2))

g= r⊕ su(2)a ⊕ sl(2,R)b⊕ sl(2,C)c.

Set s0= su(2)a⊕sl(2,C)c⊆g and let S0 be the connected semisimple Lie subgroup
of G associated with s0. Note that the center Z(S0) of S0 is finite, since the simply
connected group SU(2)a ×SL(2,C)c has finite center.
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Set h= r⊕sl(2,R)b so that g= h⊕s0, and let H be the connected Lie subgroup
of G associated with h. As [h, s0] = 0, the subgroups H and S0 commute, and the
multiplication map ϕ : H × S0→ G is a homomorphism. The image ϕ(H × S0)

is a connected Lie subgroup of G containing both H and S0. It follows that ϕ is
surjective and G ' (H × S0)/ kerϕ.

The kernel kerϕ is precisely

kerϕ = {(h, h−1) | h ∈ H ∩ S0}.

Since H and S0 commute, the group H ∩ S0 is central in S0 and hence finite. Then
kerϕ is also a finite group. By (2.1) and (2.3), we have

3(G)=3(H × S0)=3(H)3(S0).

Note that 3(S0) = 1 by Theorem 3.1, since by Theorem 1.1 both SU(2) and
SL(2,C) are weakly amenable with constant 1 (recall SL(2,C)≈ SO(1, 3)).

We have thus reduced the problem to the case where G= H is locally isomorphic
to R × SL(2,R)b. Let G = RS be a Levi decomposition of G. Then the closure
S of S in G is a closed connected normal subgroup of G whose Lie algebra is a
subalgebra of g, and the quotient G/S is solvable. By (2.4), it suffices to prove
that S is weakly amenable with constant 1. We may thus suppose that S is a dense
connected Lie subgroup of G.

When S is dense, a theorem of Mostow [1950, §6] shows that G is of the form
G = SC where C is a connected Lie subgroup of the center of G and in the closure
of the center of S. It follows that the solvable radical is abelian and G is locally
isomorphic to Rn

×SL(2,R)b for some integer n.
If G is simply connected, then G = Rn

× S̃L(2,R)b, where S̃L(2,R) denotes
the universal covering group of SL(2,R). That 3(G)= 1 follows from [Hansen
1990], using the equality S̃L(2,R)= S̃U(1, 1) and the product formula (2.3); see
also Theorem 1.1.

The general case can then be deduced from the simply connected case as follows.
Let G̃ be the universal covering group of G. By Lemma 5.3, there is a lattice 0 in G.
Let 0̃ be the preimage of 0 in G̃ under the covering homomorphism G̃→ G. Then
0̃ is a lattice in G̃, and 0̃ is a central extension of 0. By (2.5) and (2.6) we have

3(G)=3(0)≤3(0̃)=3(G̃)= 1.

This shows that 3(G)= 1, and the proof is complete. �

Corollary 5.5. Let G be a connected Lie group. If Gd is weakly amenable, then G
is weakly amenable. In this case, 3(Gd)=3(G)= 1.

Proof. This is immediate from Theorems 4.11 and 5.4. �
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