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Using an invariant defined by Rasmussen, we extend an argument given by
Hedden and Watson which further restricts which Alexander polynomials
can be realized by L-space knots.

1. Introduction

In [Ozsváth and Szabó 2008], it is shown how the filtered chain homotopy type
of the knot Floer complex CFK−(K ) can be used to compute the Heegaard Floer
homology of S3

n(K ), the rational homology sphere obtained by performing Dehn
surgery along K ⊂ S3 with slope n. In [Ozsváth and Szabó 2005], this relationship
is used to investigate which knots admit lens space surgeries, using the fact that if
Y is a lens space, Y has the “smallest possible” Heegaard Floer homology:

(1) rank ĤF(Y )= |H1(Y ;Z)|.

More generally, a rational homology sphere which satisfies condition (1) is called
an L-space. So, from a Heegaard–Floer perspective, a natural extension of the
question “which knots admit lens space surgeries?” is “which knots admit L-space
surgeries?”.

Letting A(x) denote the Alexander grading of a homogeneous element x in CFK−,
the following proposition is a straightforward consequence of [Ozsváth and Szabó
2005, Theorem 1.2]; see [Hom 2014, Remark 6.6].

Proposition 1.1. Suppose K ⊂ S3 is a knot on which some positive integral surgery
yields an L-space. Then CFK−(K ) has a basis {x−k, . . . , xk} with the following
properties:

• A(xi )= ni , where n−k < n−k+1 < · · ·< nk−1 < nk .

• ni =−n−i .

• If i ≡ k mod 2, then ∂(xi )= 0.

• If i ≡ k+ 1 mod 2, then ∂(xi )= xi−1+U ni+1−ni xi+1. �
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Notice that xk is in the kernel of ∂ and not in the image. The complex ĈFK(K )
is the quotient complex of CFK−(K ) obtained by setting U = 0 (we refer the reader
to [Ozsváth and Szabó 2004b] for details on knot Floer homology). It is a Heegaard
Floer complex ĈF(S3), with an additional filtration induced by K . After setting
U = 0, we still observe that

(2) xk generates H∗(ĈFK(K ), ∂)∼= ĤF(S3)∼= F.

By convention then, M(xk)=0 (where M is the Maslov grading). Since U decreases
M by 2, and ∂ decreases M by 1, this determines the Maslov grading on all
homogeneous elements of CFK−(K ).

Ozsváth and Szabó [2004b] also showed that the graded Euler characteristic of
ĈFK(K ) is the symmetrized Alexander polynomial of K ,

(3)
∑

i

χ(ĈFK(K , i)) · T i
=1K (T ),

so a corollary to Proposition 1.1 is the following:

Corollary 1.2 [Ozsváth and Szabó 2005, Corollary 1.3]. If K ⊂ S3 is a knot which
admits an L-space surgery, then

(4) 1K (T )=
k∑

i=−k

(−1)k+i T ni

for some sequence of integers n−k < n−k+1 < · · ·< nk−1 < nk satisfying n−i = ni .

Remark 1.3. Although Proposition 1.1 only applies to knots which have positive
L-space surgeries, a knot K has a negative L-space surgery if and only if its mirror
image K has a positive L-space surgery. Corollary 1.2 then follows in this generality
because 1K (T )=1K (T ).

In particular, all of the nonzero coefficients of 1K (T ) are ±1. Note that

(5) nk = g(K )= |τ(K )| = g4(K ),

where g is the Seifert genus, τ is the Ozsváth–Szabó concordance invariant defined
in [Ozsváth and Szabó 2003], and g4 is the smooth four-genus of K . The first
equality follows from the knot Floer homology detection of genus [Ozsváth and
Szabó 2004a], the second follows from (2), and the third follows from the fact
shown in [Ozsváth and Szabó 2003] that, for any knot K ,

|τ(K )| ≤ g4(K )≤ g(K ).

This was the most general restriction on the Alexander polynomials of knots ad-
mitting L-space surgeries in the literature until Hedden and Watson showed the
following proposition.
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Proposition 1.4 [Hedden and Watson 2018, Corollary 9]. If K ⊂ S3 is a knot
which admits an L-space surgery, then1K (T ) is as described in Corollary 1.2, and
further, nk − nk−1 = 1.

Originally stated by Hedden and Watson as a corollary to a more general re-
striction on knot Floer complexes, this particular result was already known by
Rasmussen, as conveyed to the author in a private communication. The proof
hinges on an invariant defined by Rasmussen, and a particular inequality which
it satisfies. Roughly, if large n-surgery is done on an unknot and on a knot K ,
the differences in the d-invariants (defined in (8)) of the resulting manifolds are
bounded above by numbers depending on g4(K ). Proposition 1.4 is then proved
by showing that if a complex has a basis as in Proposition 1.1 and nk − nk−1 > 1,
Rasmussen’s inequality is violated, and therefore this complex cannot be the knot
Floer complex of any knot.

Our aim here is to extend this argument. We will introduce Rasmussen’s invariant
and inequality in Section 2. In Section 3, we will show how to compute the invariant
for L-space knots from their Alexander polynomials (that is, from the sequence of
the ni ). We will then see that Rasmussen’s inequality places further restrictions on
the ni , analogous to the restriction nk − nk−1 = 1. As a result, it will be shown that
certain symmetric Laurent polynomials satisfying Proposition 1.4 cannot be the
Alexander polynomial of any L-space knot.

Theorem 1.5. Suppose K ⊂ S3 is a knot which admits an L-space surgery. Then
its symmetrized Alexander polynomial can be written as

1K (T )=
k∑

i=−k

(−1)k+i T ni ,

for some sequence of integers n−k < n−k+1 < · · · < nk−1 < nk satisfying the
following:

• ni =−n−i ,

• if we let ri = nk+2−2i − nk+1−2i , then r1 = 1, and for any j ≤ k,

(6)
j∑

i=2

ri ≤

k∑
i=k− j+2

ri .

As we will explain in Section 3, the restriction is more easily stated in terms of
a modified version of the Alexander polynomial,

1̃K (T ) :=
1K (T )
1− T−1 .
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It follows from Corollary 1.2 that when K is a knot which admits an L-space
surgery,

1̃K (T )=
∞∑

i=0

T ai

for some sequence of integers satisfying

• a0 = g(K ),

• ai+1 < ai ,

• ai =−i for i ≥ g(K ).

We can then rephrase Theorem 1.5 as follows.

Theorem 1.6 (restatement of Theorem 1.5 in terms of 1̃). Suppose K ⊂ S3 is
a knot which admits an L-space surgery and {ai } is the decreasing sequence of
integers such that

1̃K (T )=
∞∑

i=0

T ai .

Then, for all 0≤ i ≤ g(K ),

(7) ai ≤ g(K )− 2i.

To see the preceding theorems as generalizations of Proposition 1.4, note that in
the language of Theorem 1.5, Proposition 1.4 translates to the statement r1 = 1; in
the language of Theorem 1.6, it translates to a1 ≤ g(K )− 2.

As a concrete example, there does not exist a knot in S3 which admits an L-space
surgery and has Alexander polynomial

−1+ (T 2
+ T−2)− (T 3

+ T−3)+ (T 4
+ T−4).

Correspondingly, there does not exist a knot in S3 with knot Floer complex as
shown in Figure 1. As demonstrated after the proof of Theorem 1.5, this settles
the question of which polynomials belong to knots of genus 4 or less which admit
L-space surgeries.

2. The invariant hm(K )

A useful feature of Heegaard Floer theory is that its groups satisfy surgery exact
triangles; for example, a long exact sequence between Heegaard Floer homology
groups of manifolds which are 0-,∞- and n-framed surgery along the same knot K
[Ozsváth and Szabó 2004c, Section 9]. Rasmussen [2003, Definition 7.1] defines an
invariant hm(K ) as the rank of a particular map in such a sequence (cf. [Frøyshov
2002], where an instanton-Floer invariant h is introduced).
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Figure 1. A bifiltered chain complex which cannot be the knot
Floer complex of any knot in S3.

Recall that if (Y, t) is a spinc rational homology sphere, Ozsváth and Szabó
define the d-invariant of (Y, t) as

(8) d(Y, t)=min{M(x) | x ∈ Im(π∗ : HF∞(Y, t)→ HF+(Y, t))}.

Rasmussen [2004, Section 2.2] shows that, in the case where S3
−n(K ) is an L-

space, the invariant d(S3
−n(K ), sm) is equal to twice hm(K ), up to a shift which is

independent of K . In particular, since hm(unknot)= 0 for all m, we have

(9) hm(K )= 1
2

(
d(S3
−n(K ), sm)− d(S3

−n(unknot), sm)
)
.

The key to obtaining restrictions on L-space knots is the following inequality,
analogous to an inequality in instanton Floer homology proved by Frøyshov [2004].

Proposition 2.1 [Rasmussen 2004, Theorem 2.3]. Let K be a knot in S3 and let
g4(K ) be its slice genus. Then hm(K )= 0 for |m|> g4(K ), while for |m| ≤ g4(K ),

(10) hm(K )≤
⌈1

2(g4(K )− |m|)
⌉
.

Note that for a knot admitting an L-space surgery, due to (5), we can replace
g4(K ) with g(K ) and obtain

(11) hm(K )≤
⌈ 1

2(g(K )− |m|)
⌉
.

While the term L-space knot refers to a knot which admits an L-space surgery,
different conventions are used regarding the restrictions on the slope of the L-space
surgeries. Here it will be convenient to adopt the definition that an L-space knot in
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S3 is one with a positive L-space surgery. This is opposite Rasmussen’s point of
view [2004], but note that K admits a positive L-space surgery if and only if its
mirror image K admits a negative L-space surgery. Accordingly, we follow Hedden
and Watson in defining

(12) hm(K ) := 1
2

(
d(S3

n(unknot), sm)− d(S3
n(K ), sm)

)
and recall their observation that hm(K ) = hm(K ). Finally, we should note that
g(K )= g(K ), so hm satisfies the same inequality which hm does for knots admitting
L-space surgeries: for |m| ≤ g(K ),

(13) hm(K )≤
⌈ 1

2(g(K )− |m|)
⌉
.

3. Values of hm for L-space knots

Next, we recall how to compute d-invariants, and therefore hm , from CFK−. It was
shown independently by Ozsváth and Szabó [2004b] and Rasmussen [2003] that for
large n-surgery (that is, for n ≥ 2g(K )− 1), the Heegaard Floer homology groups
HF−(S3

n(K )) are the homology groups of certain subcomplexes of CFK−(K ), up
to a shift in Maslov grading which is independent of K . In particular, if we let Am

denote the subcomplex consisting of elements with Alexander grading less than or
equal to m, then

HF−(S3
n(K ), sm)∼= H∗(Am),

up to a shift in grading.1 It follows that

d(S3
n(K ), sm)=max{M(x) | x a nontorsion generator of H∗(Am)}+ c,

where c is a constant which depends on n, but not on K . Therefore, the “shifted”
d-invariant

(14) d̃(K ,m) :=max{M(x) | x a nontorsion generator of H∗(Am)}

is well-defined, and satisfies

(15) d(S3
n(unknot), sm)− d(S3

n(K ), sm)= d̃(unknot,m)− d̃(K ,m)

for any sufficiently large n. For the unknot, we have the complex

CFK−(unknot)∼= F[U ],

where the generator has Maslov grading and Alexander grading equal to zero. Since
multiplication by U lowers the Alexander grading by 1 and the Maslov grading
by 2,

d̃(unknot,m)= m− |m|.

1Here we are adopting the convention that CF− and CFK− contain the element 1 in F[U ].
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Therefore, we can rewrite inequality (13) using (15) and the above: if K ⊂ S3 is an
L-space knot, then for |m| ≤ g(K ),

(16)
hm(K )= 1

2(d̃(unknot,m)− d̃(K ,m))≤
⌈ 1

2(g(K )− |m|)
⌉
,

−
1
2 d̃(K ,m)≤

⌈1
2(g(K )−m)

⌉
.

With inequality (16) in hand, it remains to see how the values of d̃ are determined
by the Alexander polynomial of an L-space knot.

Recall that the Alexander polynomial is the graded Euler characteristic of
ĈFK(K ): ∑

i

χ(ĈFK(K , i)) · T i
=1K (T ).

Further, CFK− is generated by the same set as ĈFK, over F[U ] rather than F. Since
U lowers the Alexander grading by 1 and preserves the parity of the Maslov grading,

(17)
∑

i

χ(CFK−(K , i)) · T i
=

∑
i

χ(ĈFK(K , i)) · T i
· (1+ T−1

+ T−2
+ · · · )

=
1K (T )
1− T−1 =: 1̃K (T ).

In other words, 1̃K (T ) is the graded Euler characteristic of CFK−(K ).

Remark 3.1. If K ⊂ S3 is a knot for which 1K (T ) is of the type described in
Corollary 1.2, then

1̃K (T )=
∞∑

i=0

T ai ,

where

• a0 = g(K ),

• ai+1 < ai , and

• ai =−i for all i ≥ g(K ).

In [Krcatovich 2015], a reduced complex CFK− was defined, and it was shown
that for an L-space knot,

(18) CFK−(K )∼= F[U ],

supported in Maslov grading zero [Krcatovich 2015, Corollary 4.2]. Roughly
speaking, the complex CFK− has a filtration induced by U , and a filtration induced
the knot; ignoring the knot filtration, one recovers CF−(S3), whereas ignoring
the U -filtration, one gets a “reduced” knot Floer complex. We refer the reader to
[Krcatovich 2015] for a precise statement, and here simply remark that the structure
of CFK− for an L-space knot, as described in Proposition 1.1, is what makes its
reduced complex have a simple form.
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Since the reduced complex is filtered chain homotopy equivalent to CFK−(K )
(with respect to the knot filtration), they have the same Euler characteristic. In par-
ticular, (18) says that every generator has even Maslov grading, so each contributes
a positive term to the Euler characteristic. In other words, if

1̃K (T )=
∞∑

i=0

T ai ,

then CFK−(K ) has one generator with Alexander grading ai , for each i ≥ 0. Since
multiplication by U is a filtered map (i.e., it never increases the Alexander grading),
then necessarily

M(ai )=−2i.

Figure 2 gives an illustration for the case of the (3, 4)-torus knot,2 where

(19) 1T3,4(T )= 1− (T 2
+ T−2)+ (T 3

+ T−3),

and therefore

(20) 1̃T3,4(T )= T 3
+ 1+ T−1

+ T−3
+ T−4

+ · · · .

Proof of Theorem 1.6. First note that it is sufficient to prove the proposition for
positive surgeries (see Remark 1.3).

So, let K be an L-space knot in S3, so that

1̃K (T )=
∞∑

i=0

T ai .

Then the reduced complex CFK−(K ) consists of a single generator of Alexander
grading ai and Maslov grading −2i , for each i ≥ 0. Since the ai are strictly
decreasing, it follows that d̃ , as defined in (14), is given by

d̃(K ,m)=−2 min{i | ai ≤ m},

and therefore

(21) d̃(K , ai − 1)=−2(i + 1).

Substituting these values into inequality (16), we obtain

(22) i + 1≤
⌈ 1

2(g(K )− (ai − 1))
⌉
,

so
ai ≤ g(K )− 2i. �

2It was shown by Moser [1971] that torus knots admit lens space (hence L-space) surgeries.
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Figure 2. To the left is the knot Floer complex CFK− for the
(3,4)-torus knot, which, by Proposition 1.1, is determined by its
Alexander polynomial. To the right is the reduced complex, which,
for any L-space knot, is isomorphic to F[U ], supported in Maslov
grading zero. Note that the reduced complex on the right has a gen-
erator for each ◦ generator on the left, the bottom-most generator
of each staircase summand.

Proof of Theorem 1.5. Let K be an L-space knot, so that

1K (T )=
k∑

i=−k

(−1)k+i T ni .

We have introduced the variables

Er = (r1, . . . , rk)

as the “gaps” in the Alexander polynomial (the difference in the exponents of
consecutive nonzero terms),

ri = nk+2−2i − nk+1−2i .

While Er records only every second gap, by the symmetry of 1(T ), this determines
the polynomial uniquely. Diagramatically, notice that Er is simply the list of hori-
zontal lengths of a staircase summand of CFK−, in order from left to right. See
Figure 3 for the example of the (4, 5)-torus knot, which has

1T (4,5)(T )=−1+ (T 2
+ T−2)− (T 5

+ T−5)+ (T 6
+ T−6).
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Figure 3. The complex CFK− for the (4, 5)-torus knot, and its
reduced form CFK−. Note that the integers r1, r2 and r3 are the
horizontal lengths of each staircase, from left to right (and by
symmetry, the vertical lengths, from bottom to top). This figure
illustrates how the m j — the Alexander gradings at which the re-
duced complex “jumps” — are determined by the ri , and further,
how the values of d̃(K ,m j ), given in parentheses to the right, are
determined by the ri .

Next we observe how, given Er , to compute both sides of inequality (16) for
any m, with Figure 3 as a guide. We focus on the values labeled m j in Figure 3; in
other words, the values where we have the “jumps” in the reduced complex. More
precisely, if we let

m j = g(K )−
( j∑

i=1

ri +

k∑
i=k− j+2

ri

)
,
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then we have that

d̃(K ,m j )=−2
j∑

i=1

ri .

Substituting these values into inequality (16) when m = m j gives

(23)
j∑

i=1

ri ≤

⌈
g(K )−

(
g(K )−

(∑ j
i=1 ri +

∑k
i=k− j+2 ri

))
2

⌉
.

The case j = 1 gives r1 ≤
⌈ 1

2r1
⌉
, so, since each ri is a positive integer, r1 must

equal 1. Substituting this into (23) gives

1+
j∑

i=2

ri ≤

⌈
1+

∑ j
i=2 ri +

∑k
i=k− j+2 ri

2

⌉
,

j∑
i=2

ri ≤

⌈
−1+

∑ j
i=2 ri +

∑k
i=k− j+2 ri

2

⌉
,

from which it follows that
j∑

i=2

ri ≤

k∑
i=k− j+2

ri .

This is sufficient to prove the claim. We could similarly obtain inequalities by
considering values of m different from the m j , but those would be no stronger, and
therefore provide no more restrictions on Er . �

As an example, consider a knot K with

1K (T )=−1+ (T 2
+ T−2)− (T 3

+ T−3)+ (T 4
+ T−4),

so that
1̃K (T )= T 4

+ T 2
+ T + T−2

+ T−4
+ T−5

+ · · · .

This polynomial satisfies the restriction of Proposition 1.4, but if K were an L-space
knot, we would have g(K )= 4, and a2 = 1. This violates inequality (7), so K (and
its mirror image) cannot admit an L-space surgery. Alternatively, this polynomial
has gaps Er = (1, 2, 1), and since r2 � r3, this violates inequality (6).

In fact, this completely determines which Alexander polynomials are realized
by L-space knots of genus less than or equal to 4. All other polynomials satisfy-
ing Proposition 1.4 are realized by known L-space knots. For knots of genus 5,
Theorem 1.5 eliminates the polynomials corresponding to Er = (1, 2, 1, 1) and
Er = (1, 3, 1), but there are still three more which are not realized by any L-space
knot known to the author (corresponding to (1, 1, 2, 1), (1, 2, 2) and (1, 4)).
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Er L-space knot with corresponding 1(T )

(1) T (2, 3)
(1,1) T (2, 5)
(1,1,1) T (2, 7)
(1,2) T (3, 4), (2, 3)-cable of T (2, 3)
(1,1,1,1) T (2, 9)
(1,1,2) T (3, 5)
(1,2,1) excluded by Theorem 1.5
(1,3) (2, 5)-cable of T (2, 3)

Finally, we should point out the relation between the sequence of the ai for
an L-space knot and the gap function defined by Borodzik and Livingston [2014,
Definition 2.6]; namely,

ai =min
m
{IK (m)= i}− g(K ).

As pointed out to the author by Borodzik, their restrictions given in [Borodzik and
Livingston 2016, Theorem 2.14] can be reinterpreted in terms of the ai . Informally,
if two L-space knots are related by a small number of crossing changes, they have
similar Alexander polynomials. More precisely, if ai and a′i are the exponents of 1̃
for two L-space knots which differ by changing p positive crossings to negative
crossings, then

|ai − a′i | ≤ p for all i.
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