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IN A EUCLIDEAN BALL

HAIZHONG LI AND CHANGWEI XIONG

We study the stability of capillary hypersurfaces in a unit Euclidean ball. It
is proved that if the center of mass of the domain enclosed by the immersed
capillary hypersurface and the wetted part of the sphere is located at the
origin, then the hypersurface is unstable. An immediate result is that all
known examples except the totally geodesic ones and spherical caps are
unstable. We also conjecture a precise delineation of the stable capillary
hypersurfaces in unit Euclidean balls.

1. Introduction

Capillarity is an important physical phenomenon, which occurs when two different
materials contact and do not mix. Given a container B with an incompressible
liquid drop T in it, the interface of the liquid and the air is a capillary surface M .
In absence of gravity, the interface M is of constant mean curvature and the contact
angle of M to the boundary ∂B is constant. One should compare this setting with a
soap bubble, where the surface has no boundary and constant mean curvature, or a
soap film, having fixed boundary and constant mean curvature.

The literature for the study of capillarity is extensive. We refer to the book [Finn
1986], where the treatment of the theory is mainly in the nonparametric case and in
the more general situation of presence of gravity. Also we mention [Finn 1999] for
a more recent survey about this topic.

In this paper we are concerned with the special case that the container B is a unit
Euclidean ball and no gravity is involved. We study the (weak) stability for capillary
hypersurfaces. This problem has been discussed by Ros and Souam [1997], where
they dealt with the surface case and obtained some topological and geometrical
restrictions. For the hypersurface case with free boundary (the contact angle is π/2),
Ros and Vergasta [1995] also proved some interesting results. Also see [Souam
1997] for relevant work in space forms. In addition, we would like to remark
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that the study of compact and constant (higher) mean curvature hypersurfaces in a
Euclidean ball with free boundary is similar to that of closed and constant (higher)
mean curvature hypersurfaces in a sphere in some sense. In that respect we refer
the readers to [Barbosa et al. 1988; Alías et al. 2007; Cheng 2003; 2008].

In this paper we prove the following theorem.

Theorem 1.1. Let x : Mn
→ Rn+1 be an immersed capillary hypersurface in a unit

Euclidean ball Bn+1 and � the wetted part of the boundary of the ball. Denote by
T the domain enclosed by x(M) and �. If the center of mass of T is at the origin,
the capillary hypersurface M is unstable.

Remark 1.2. When n = 2, our Theorem 1.1 was proved by P. I. Marinov in his
Ph.D. thesis [2010]. It is worth pointing out that Marinov’s argument depends
crucially on conformal coordinates, which can not be extended to the higher dimen-
sional case here.

Here since we assume M is immersed, x(M) may have self-intersections. Thus
we should be careful with the choice of T . When M is embedded, T is understood
in the common sense. See Remark 2.1 below for more explanation.

We note the application of Theorem 1.1 to Delaunay hypersurfaces in particu-
lar. Recall that Delaunay hypersurfaces are the hypersurfaces of revolution with
constant mean curvature. By Proposition 4.3 in [Hutchings et al. 2002], Delaunay
hypersurfaces are classified as an unduloid, cylinder, nodoid, sphere, catenoid, or
hyperplane. To guarantee the portion of a Delaunay hypersurface in a Euclidean
ball is also capillary, it should have some symmetry. See Section 2 below for
more details. In that case, we call it a Delaunay capillary hypersurface. From
Theorem 1.1, then, we have the following corollary.

Corollary 1.3. The only stable Delaunay capillary hypersurface Mn in a unit
Euclidean ball Bn+1 is a totally geodesic hypersurface or a spherical cap.

Our approach for proving Theorem 1.1 is as follows. In the higher dimensional
case, we find that we can construct a conformal Killing vector field Y [ξ ] for any
fixed ξ ∈ Sn from the natural conformal transformation family on Bn+1. Using the
normal part 〈Y [ξ ], N 〉 as the test function, we can define a symmetric bilinear form
Q(ξ1, ξ2) by following [Marinov 2010]. By summing Q over (n+ 1) coordinate
directions we find Q has at least one negative eigenvalue. This summation technique
can be compared with J. Simons’ work [1968]. At last, under the hypothesis of
Theorem 1.1 we can derive the instability of the hypersurface. Our argument
indicates that this conformal field is important and we can use it to conclude that
the center of mass of minimal submanifolds with free boundary in a unit Euclidean
ball is at the origin (see Proposition 4.2). We refer the readers to [Fraser and
Schoen 2011; 2016] for the very recent work on the minimal submanifolds with
free boundary.
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Just like in the case n = 2 in [Marinov 2010], as an application of our argument,
we give a new proof of the classical result due to Barbosa and do Carmo [1984]
which states that the only closed stable immersed hypersurface of constant mean
curvature in Rn+1 is the round sphere.

The outline of this paper is as follows. In Section 2, after fixing some notation
and definitions, we prove the stability of hyperplanes and spherical caps. Then
we construct the crucial conformal vector field. We also review some known facts
about the Delaunay hypersurfaces. In Section 3 we give the proof of Theorem 1.1.
In the last section, we discuss some applications of our method.

2. Preliminaries

Notation and definitions. Let x : Mn
→ Rn+1 be an orientable immersed hyper-

surface in the unit Euclidean ball Bn+1
⊂ Rn+1 with x(int M) ⊂ int Bn+1 and

x(∂M) ⊂ ∂Bn+1. Suppose � ⊂ ∂Bn+1 such that ∂� = x(∂M), and denote by
T ⊂ Bn+1 the part of the ball satisfying ∂T = x(M)∪�.

Remark 2.1. If x(M) has self-intersections, T may be viewed as the finite union
of some domains Ti , i = 1, . . . ,m, i.e., T =

⋃m
i=1 Ti . Here the Ti may intersect

with each other. If there is more than one choice for {Ti }
m
i=1, choose one and fix it.

In the proof we will see that only the property ∂T = x(M)∪� is needed. If there
is no confusion, we write M for x(M) and ∂M for x(∂M) for simplicity.

Let N be the unit normal of M pointing inwards to T and N the unit outward
normal of ∂Bn+1. Denote by ν and ν̄ the conormals of ∂M in M and �, respec-
tively. Let D be the connection of Rn+1 and ∇ the connection of M . Then the
second fundamental form of M in Rn+1 is given by σ(X1, X2) = 〈DX1 X2, N 〉
for all X1, X2 ∈ Tp M . When taking an orthonormal basis {ei }

n
i=1 on TM , we

also denote by hi j the components σ(ei , e j ). So the mean curvature H of M is
H = 1

n

∑n
i=1 hi i . And the second fundamental form of ∂B in Rn+1 is given by

5(Y1, Y2) = 〈DY1Y2,−N 〉 for all Y1, Y2 ∈ Tp(∂B). Finally, let θ ∈ (0, π) be the
angle between ν and ν̄. See Figure 1 for an illustration.

Following [Ros and Souam 1997], we discuss the variation of M .

Definition 2.2. An admissible variation of x : Mn
→ Rn+1 is a differentiable

map X : (−ε, ε) × M → Rn+1 such that X t : Mn
→ Rn+1, t ∈ (−ε, ε), given

by X t(p) = X (t, p), p ∈ M , is an immersion satisfying X t(int M) ⊂ int B and
X t(∂M)⊂ ∂B for all t , and X0 = x .

Now for given θ ∈ (0, π), we define an energy functional

(1) E(t)= |M(t)| − cos θ |�(t)|,
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Figure 1. A typical illustration.

where | · | denotes the area function. The volume functional can be defined as

V (t)=
∫
[0,t]×M

X∗ dv,

where dv is the standard volume element of Rn+1. Under these constraints, we
define the following.

Definition 2.3. An immersed hypersurface x : Mn
→ Rn+1 is called capillary if

E ′(0)= 0 for any admissible volume-preserving variation of x .

Note that we have the formulas

E ′(0)=−n
∫

M
H f da+

∫
∂M
〈Y, ν− cos θν̄〉 ds,(2)

V ′(0)=
∫

M
f da,(3)

where Y is the variational vector field Y (p) = (∂X/∂t)(p)|t=0, f is its normal
component f = 〈Y, N 〉, and da and ds are the corresponding area elements.

From these formulas we see that M is capillary if and only if it has constant
mean curvature and makes constant contact angle θ with ∂B. Furthermore, one
can compute the second derivative of E(t) at t = 0 with respect to an admissible
volume-preserving variation to get

(4) E ′′(0)=−
∫

M

(
1 f + (|σ |2+ R̃ic(N )) f

)
f da+

∫
∂M

(
∂ f
∂ν
− q f

)
f ds

(see, e.g., the appendix of [Ros and Souam 1997]), where

f ∈ F :=
{

f ∈ H 1(M) :
∫

M
f da = 0

}
,
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R̃ic(N ) is the Ricci curvature of the ambient space and

(5) q = 1
sin θ

5(ν̄, ν̄)+ cot θσ (ν, ν).

In our setting, R̃ic(N )= 0 and 5(ν̄, ν̄)= 1.

Definition 2.4. A capillary hypersurface M is called (weakly) stable if E ′′(0)≥ 0
for all f ∈ F .

In the sequel, we denote by ∂2 E( f ) the quantity E ′′(0) for a given function f .

Stable examples of capillary hypersurfaces. First we prove the stability of totally
geodesic capillary hypersurfaces and spherical caps. The proof is similar to that of
Proposition 1.1 in [Ros and Souam 1997]. We include it for completeness.

Proposition 2.5. Let Bn+1
⊂ Rn+1 be a unit Euclidean ball. Then totally geodesic

capillary hypersurfaces and spherical caps are stable.

Proof. First assume M is a totally geodesic capillary hypersurface, i.e., an n-
dimensional ball Bn(R) with radius R in Bn+1. Then the contact angle θ satisfies
sin θ = R. By the definition of stability, we have to prove

(6)
∫

M
|∇ f |2 da ≥ 1

R

∫
∂M

f 2 ds ∀ f ∈ F .

Consider now the (n+1)-dimensional ball B ′ of radius R having M as an equatorial
totally geodesic hypersurface. Then by [Bokowski and Sperner 1979], M is area
minimizing for the partitioning problem in B ′. Thus M is stable in B ′, which is
equivalent to the inequality (6).

Next assume M is a spherical cap in Bn+1 with R being the radius of the sphere
containing M and θ the contact angle. Consider the n-dimensional hyperplane P
containing ∂M . Then M is a capillary hypersurface in a halfspace with a contact
angle θ ′. By [Gonzalez et al. 1980], M is stable in the halfspace, which means

(7)
∫

M

(
|∇ f |2− n

R2 f 2
)

da ≥ cot θ ′

R

∫
∂M

f 2 ds ∀ f ∈ F .

Elementary calculation leads to

(8) 1
sin θ
+

cot θ
R
=

cot θ ′

R
.

Now (7) and (8) together yield the stability of M in Bn+1. �

Conformal transformations on the Euclidean ball. Now we construct a conformal
vector field. Fix a vector a ∈ Bn+1. Then

(9) ϕa(x)=
(1− |a|2)x − (1− 2〈a, x〉+ |x |2)a

1− 2〈a, x〉+ |a|2|x |2
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defines a map from Bn+1 to Bn+1 and from Sn to Sn (see, e.g., Section 3.8 in
[Schoen and Yau 1994]), since we have

1− |ϕa(x)|2 =
(1− |a|2)(1− |x |2)

1− 2〈a, x〉+ |a|2|x |2
.

Moreover, ϕa is conformal. In fact, by a direct calculation we can check that

|dϕa|
2
=

(
1− |a|2

1− 2〈a, x〉+ |a|2|x |2

)2

|dx |2.

Note that ϕa(a) = 0, ϕa(0) = −a, ϕa fixes two points ±a/|a| and ϕ0 is an
identity.

Next fix ξ ∈ Sn . Let a = tξ with −1< t < 1. Then

(10) ft(x)= ϕtξ (x)=
(1− t2)x − (1− 2t〈ξ, x〉+ |x |2)tξ

1− 2t〈ξ, x〉+ t2|x |2

is a family of conformal transformations with parameter t . Thus ft determines a
conformal vector field Y [ξ ] as follows:

(11) Y [ξ ] = d
dt

∣∣∣
t=0

ft(x)=−(1+ |x |2)ξ + 2〈ξ, x〉x .

Note that Y [ξ ] is tangential along the sphere Sn , since for all x ∈ Sn ,

〈Y [ξ ], x〉 = −(1+ |x |2)〈ξ, x〉+ 2〈ξ, x〉|x |2 = 0.

Delaunay hypersurfaces in Euclidean space. In this subsection, following [Hutch-
ings et al. 2002], we review some facts about Delaunay hypersurfaces which are
rotational and of constant mean curvature H . These hypersurfaces are the models
we are concerned with in Theorem 1.1.

Let Mn
⊂ Rn+1 be a hypersurface which is invariant under the action of the

orthogonal group O(n) fixing the x1-axis. Assume M is generated by a curve 0
contained in the x1x2-plane. Then it suffices to determine the curve 0.

Parametrize the curve 0 = (x1, x2) by arc-length s. Denote by α the angle
between the tangent to 0 and the positive x1-direction and choose the normal vector
N = (sinα,− cosα). Then (x1, x2

;α) satisfies the system of ordinary differential
equations 

(x1)′ = cosα,
(x2)′ = sinα,
α′ =−nH + (n− 1)cosα

x2 .

The first integral of this system is given by

(x2)n−1 cosα− H(x2)n = F,
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where the constant F is called the force of the curve 0 and it together with H will
determine the curve as follows. (See Proposition 4.3 in [Hutchings et al. 2002].)

Proposition 2.6. The curve 0 and the hypersurface M generated by 0 have the
following several possible types.

(a) If FH > 0 then 0 is a periodic graph over the x1-axis. It generates a periodic
embedded unduloid, or a cylinder.

(b) If FH < 0 then 0 is a locally convex curve and M is a nodoid, which has
self-intersections.

(c) If F = 0 and H 6= 0 then M is a sphere.

(d) If H = 0 and F 6= 0 we obtain a catenary which generates an embedded
catenoid M with F > 0 if the normal points down and F < 0 if the normal
points up.

(e) If H = 0 and F = 0 then 0 is a straight line orthogonal to the x1-axis which
generates a hyperplane.

(f) If M touches the x1-axis, then it must be a sphere or a hyperplane.

(g) The curve 0 is determined, up to translation along the x1-axis, by the pair
(H, F).

From this proposition, it is easy to see if Mn is the portion of an unduloid,
cylinder, nodoid or a catenoid in a unit Euclidean ball Bn+1 with revolution axis
x1, and moreover M is symmetric with respect to the hyperplane {x1

= 0}, then M
is a capillary hypersurface in Bn+1. In that case we call them Delaunay capillary
hypersurfaces in Bn+1. Furthermore, the generalized body T enclosed by M and
the wetted part of the sphere has the center of mass at the origin. So Theorem 1.1
is applicable.

3. Instability of capillary hypersurfaces

With the preparations above, we can define a “test function”

(12) φ[ξ ] = 〈Y [ξ ], N 〉 = 〈−(1+ |x |2)ξ + 2〈ξ, x〉x, N 〉.

We mention that we will also use the following expression of φ[ξ ]:

(13) φ[ξ ] = 〈ξ,−(1+ |x |2)N + 2〈x, N 〉x〉.

Recall the second variational formula

(14) ∂2 E(φ)=−
∫

M
Lφ ·φ da+

∫
∂M
(φν − qφ)φ ds,

where L =1+ |σ |2 and q = csc θ + cot θσ (ν, ν).
Now we can prove the following lemmas.
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Lemma 3.1. The vector ν is a principal direction for σ along ∂M. In particular,
DνN =−σ(ν, ν)ν.

Proof. It suffices to prove that σ(ν, X)= 0 for all X ∈ Tp(∂M). In fact, we have

σ(ν, X)= 〈DXν, N 〉 = 〈DX (cos θν̄+ sin θN ),− sin θν̄+ cos θN 〉

= 〈DX ν̄, N 〉 = −II (ν̄, X)= 0,

where we used the facts that θ is constant, ν̄ and N are unit vectors, and ∂B is
totally umbilical. Thus we complete the proof of Lemma 3.1. �

Lemma 3.2. Along ∂M , we have

(15) φν − qφ = 0.

Proof. First, from (13) and Lemma 3.1 we have

φν =
〈
ξ,−(1+ |x |2)N + 2〈x, N 〉x

〉
ν

=
〈
ξ,−2〈x, ν〉N + (1+ |x |2)σ (ν, ν)ν− 2〈x, σ (ν, ν)ν〉x + 2〈x, N 〉ν

〉
= 2

〈
ξ,−〈x, ν〉N + σ(ν, ν)(ν−〈x, ν〉x)+〈x, N 〉ν

〉
,

where in the third line we used |x | = 1 along ∂M .
Next, noticing that x = N = cos θN + sin θν, we get

φν = 2
〈
ξ,− sin θN + σ(ν, ν)(ν− sin θ(cos θN + sin θν))+ cos θν

〉
= 2

〈
ξ, (σ (ν, ν) cos θ + 1)(cos θν− sin θN )

〉
.

On the other hand,

qφ = (csc θ + cot θσ (ν, ν))
〈
ξ,−(1+ |x |2)N + 2〈x, N 〉x

〉
= (csc θ + cot θσ (ν, ν))2〈ξ,−N + cos θ(cos θN + sin θν)〉

= (1+ cos θσ (ν, ν))2〈ξ,− sin θN + cos θν〉,

where again in the second line we used |x | = 1 along ∂M . Hence, we obtain

φν − qφ = 0. �

The next lemma, which indicates the geometric meaning of Lemma 3.2, may
have its own interest. Thus we also include it here.

Lemma 3.3. Under the flow ft , there holds

(16) d
dt

∣∣∣
t=0
θ(t)= φν − qφ.

In particular, since ft is conformal (angle preserving), φν − qφ = 0.
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Proof. Following [Ros and Souam 1997], we denote by a “prime” the covariant
derivative (D/dt)|t=0. Also by the appendix of [Ros and Souam 1997], we have

ν ′ =
(
∂φ

∂ν
+ σ(Y0, ν)

)
N +φS0(ν)−φσ(ν, ν)ν− S1(Y1)+ cot θ∇̃φ,

ν̄ ′ =−5(Y, ν̄)N − S2(Y1)+ (csc θ)∇̃φ,

where ∇̃ denotes the gradient on ∂M , Y0 (resp. Y1) the tangent part of the variational
vector field Y to M (resp. to ∂M), S0 the shape operator of M in Rn+1 with respect
to N , and S1 (resp. S2) the shape operator of ∂M in M (resp. ∂B) with respect to ν
(resp. ν̄).

Note that cos θ(t)= 〈ν, ν̄〉, which implies

− sin θ d
dt

∣∣∣
t=0
θ(t)= 〈ν ′, ν̄〉+ 〈ν, ν̄ ′〉.

Taking into account that

ν̄ =− sin θN + cos θν, N = cos θN + sin θν,

we have

−sin θ d
dt

∣∣∣
t=0
θ(t)=

〈(
∂φ

∂ν
+σ(Y0,ν)

)
N+φS0(ν)−φσ(ν,ν)ν,− sin θN + cos θν

〉
+〈ν,−5(Y, ν̄)(cos θN + sin θν)〉

= − sin θ
(
∂φ

∂ν
+ σ(Y0, ν)

)
− sin θ5(Y, ν̄),

or

(17) d
dt

∣∣∣
t=0
θ(t)= ∂φ

∂ν
+ σ(Y0, ν)+5(Y, ν̄).

Again from the appendix of [Ros and Souam 1997], there hold

Y0 = Y1− (cot θ)φν, Y = Y1− (csc θ)φν̄, σ (Y1, ν)+5(Y1, ν̄)= 0.

Now plugging these equalities into (17), the lemma follows immediately. �

Lemma 3.4. We have

(18) Lφ =−2n〈ξ, N + H x〉.

Proof. The proof is a direct calculation using the moving frame method. This
method is very powerful in differential geometry. Take an orthonormal basis
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{ei : i = 1, . . . , n} ∪ {en+1 = N }. Then we have the structure equations

dx =
n∑

i=1

ωi ei ,

dei =

n∑
j=1

ωi j e j +

n∑
j=1

hi jω j en+1,

den+1 =−

n∑
i, j=1

hi jωi e j ,

where ωi is the dual form and ωi j the connection form (see, e.g., [Cao and Li 2007]).
Thus, we have

(19) 1φ =1
〈
ξ,−(1+ |x |2)N + 2〈x, N 〉x

〉
=

〈
ξ,−

(
1|x |2 · N + 2

n∑
i=1

(|x |2),i N,i + (1+ |x |2)1N
)

+ 2
(
1〈x, N 〉 · x + 2

n∑
i=1

〈x, N 〉,i x,i +〈x, N 〉1x
)〉
.

Note that

1|x |2 = 2nH〈x, N 〉+ 2n,
n∑

i=1

(|x |2),i N,i =−2
n∑

i, j=1

〈x, ei 〉hi j e j .

Using the Codazzi equation to get
∑n

i=1 hi j,i =
∑n

i=1 hi i, j = nH, j = 0, then we
have

1N =
n∑

i=1

N,i i =−|σ |2 N .

Moreover, we can get

1〈x, N 〉 = 〈1x, N 〉+ 2
n∑

i=1

〈x,i , N,i 〉+ 〈x,1N 〉 = −nH − |σ |2〈x, N 〉,

n∑
i=1

〈x, N 〉,i x,i =
n∑

i, j=1

〈x,−hi j e j 〉ei =

n∑
i, j=1

−hi j 〈x, e j 〉ei .

Now substituting all these terms into (19) gives rise to

1φ = 〈ξ,−2n(N + H x)〉− |σ |2φ.

Therefore,
Lφ =1φ+ |σ |2φ =−2n〈ξ, N + H x〉. �
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Thus, we obtain

∂2 E(φ)=−2n
∫

M
〈ξ, N + H x〉 ·

〈
ξ, (1+ |x |2)N − 2〈x, N 〉x

〉
da.

To analyze ∂2 E(φ), we define a bilinear form

(20) Q(ξ1, ξ2)=−2n
∫

M
〈ξ1, N + H x〉 ·

〈
ξ2, (1+ |x |2)N − 2〈x, N 〉x

〉
da

for all ξ1, ξ2 ∈ Sn (see [Marinov 2010] for the case n = 2). Denote by {∂A}
n+1
A=1 the

standard coordinate vectors in Rn+1. Then we have the following lemma.

Lemma 3.5. Q has the following properties.

(1) Q is symmetric.

(2) tr Q =
∑n+1

A=1 Q(∂A, ∂A)≤ 0 with equality if and only if |x | = const on M.

Proof. (1) First we prove Q is symmetric. Note that in fact Q is defined as

Q(ξ1, ξ2)=−

∫
M

L(φ[ξ1]) ·φ[ξ2] da.

Then Green’s formula implies

Q(ξ1, ξ2)=−

∫
M
φ[ξ1] · L(φ[ξ2]) da+

∫
∂M

(
φ[ξ1](φ[ξ2])ν − (φ[ξ1])νφ[ξ2]

)
ds.

But Lemma 3.2 yields (φ[ξi ])ν = qφ[ξi ], i = 1, 2. So the boundary term vanishes
and then

Q(ξ1, ξ2)= Q(ξ2, ξ1).

(2) Next we calculate tr Q:

tr Q =
n+1∑
A=1

Q(∂A, ∂A)

=−2n
∫

M

n+1∑
A=1

〈∂A, N + Hx〉 ·
〈
∂A, (1+ |x |2)N − 2〈x, N 〉x

〉
da

=−2n
∫

M

〈
N + Hx, (1+ |x |2)N − 2〈x, N 〉x

〉
da

=−2n
∫

M

(
H〈x, N 〉(1− |x |2)+ 1+ |x |2− 2〈x, N 〉2

)
da

≤−2n
∫

M
(H〈x, N 〉+ 1)(1− |x |2) da.
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Also, we have 1|x |2 = 2n(H〈x, N 〉+ 1). Consequently,

tr Q ≤−
∫

M
1|x |2 · (1− |x |2) da

=

∫
M
∇|x |2 · ∇(1− |x |2) da−

∫
∂M

∂|x |2

∂ν
(1− |x |2) ds

=−

∫
M
|∇(|x |2)|2 da

≤ 0,

where we have used |x | = 1 on ∂M to remove the boundary term. And it is easy to
see tr Q = 0 if and only if |x | = const.

This completes the proof of Lemma 3.5. �

Now if |x | = const on M , since M has boundary ∂M ⊂Sn , we must have |x | = 1
on M . So M ⊂ Sn . But that cannot happen because we assume that int M ⊂ int B.
Thus by Lemma 3.5, Q has at least one negative eigenvalue. But on the other hand,

(21) divRn+1 Y [ξ ] =
n+1∑
A=1

〈D∂A Y [ξ ], ∂A〉 = 2(n+ 1)〈ξ, x〉,

which by integration implies∫
M
φ da =

∫
M
〈Y [ξ ], N 〉 da(22)

=−

∫
T

divRn+1 Y [ξ ] dv+
∫
�

〈Y [ξ ], N 〉 da

=−2(n+ 1)
∫

T
〈ξ, x〉 dv.

So generally
∫

M φ da 6= 0. That means φ[ξ ] is not a test function.
However, under the hypothesis of Theorem 1.1 that the center of mass of T is at

the origin, we have
∫

M φ da =−2(n+ 1)
∫

T 〈ξ, x〉 dv = 0 for all ξ ∈ Sn . So if we
choose ξ as an eigenvector corresponding to the negative eigenvalue of Q, we have
∂2 E(φ[ξ ]) = Q(ξ, ξ) < 0, which implies that M is unstable. This completes the
proof of Theorem 1.1.

4. Other applications and a question

In this section we give several applications of the above argument and propose a
conjecture on the topic.

Another criterion for instability. The following proposition is an immediate result.
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Proposition 4.1. If the bilinear form Q has two negative eigenvalues, then M is
unstable.

Proof. Assume Q is diagonalized such that ξ1 and ξ2 are the eigenvectors corre-
sponding to the two negative eigenvalues. Then for real numbers c1 and c2 with
c2

1+ c2
2 6= 0,

(23) Q(c1ξ1+ c2ξ2, c1ξ1+ c2ξ2)= c2
1 Q(ξ1, ξ1)+ c2

2 Q(ξ2, ξ2) < 0.

On the other hand,∫
M
φ[c1ξ1+ c2ξ2] da =−2(n+ 1)

∫
T
〈c1ξ1+ c2ξ2, x〉 dv

=−2(n+ 1)
(

c1

∫
T
〈ξ1, x〉 dv+ c2

∫
T
〈ξ2, x〉 dv

)
.

So we can always choose suitable c1 and c2 with c2
1+ c2

2 6= 0 such that∫
M
φ[c1ξ1+ c2ξ2] da = 0.

Then using φ[c1ξ1+ c2ξ2] as a test function, from (23) we know M is unstable. �

The significance of the above proposition is as follows. For a given concrete
capillary hypersurface M in Bn+1, the bilinear form Q is computable in principle.
Then if Q has two negative eigenvalues, we can assert its instability. Also from this
proposition we know that for hyperplanes and spherical caps Q has exactly one
negative eigenvalue.

The center of mass of minimal submanifolds with free boundary. By free bound-
ary we mean that M intersects ∂Bn+1 orthogonally; that is, ν = x along ∂M . By
analyzing the vector field Y [ξ ], we have the following proposition.

Proposition 4.2. The center of mass of a minimal submanifold Mk with free bound-
ary in a Euclidean ball is at the origin.

Proof. Along Mk choose the orthonormal basis

{ei : i = 1, . . . , k} ∪ {eα : α = k+ 1, . . . , n+ 1}

such that {ei | i = 1, . . . , k} ⊂ TM . Then we have

divM Y [ξ ]T = divM

(
Y [ξ ]−

∑
α

〈Y [ξ ], eα〉eα

)
= 2k〈ξ, x〉+〈Y [ξ ], k EH〉= 2k〈ξ, x〉.

By the divergence theorem, we have

2k
∫

M
〈ξ, x〉 da =

∫
∂M
〈Y [ξ ]T , ν〉 ds =

∫
∂M
〈Y [ξ ], x〉 ds = 0,

where we have used the fact that Y [ξ ] is tangential to ∂Bn+1. �
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This proposition shows that minimal submanifolds with free boundary have some
symmetry. Comparing with it, we mention two other properties of Mk :

(1) The center of mass of the boundary ∂M is at the origin (a simple argument).

(2) The volume of M has a lower bound |Mk
| ≥ |Bk

|, where Bk is a k-dimensional
unit ball [Brendle 2012; Fraser and Schoen 2011; Ros and Vergasta 1995].

Stable immersed closed CMC hypersurfaces in Rn+1. At last we give a new proof
of a theorem by Barbosa and do Carmo by following Marinov’s argument [2010]
in the case n = 2.

Theorem 4.3 [Barbosa and do Carmo 1984; Marinov 2010]. The only stable im-
mersed closed hypersurface of constant mean curvature in Rn+1 is the round sphere.

Proof. By translation, assume the center of mass of a generalized body T enclosed
by M is at the origin. So ∫

M
φ[ξ ] da = 0

for all ξ ∈ Sn . If M is the round sphere, we are done. Otherwise |x | 6= const. So
by Lemma 3.5 the bilinear form Q has a negative eigenvalue. Choosing ξ as an
eigenvector corresponding to the negative eigenvalue, we have

∂2 E(φ[ξ ])=−
∫

M
Lφ[ξ ] ·φ[ξ ] da = Q(ξ, ξ) < 0,

which shows that M is unstable. �

An open question. Since all the examples, i.e., the Delaunay capillary hypersur-
faces, are known to be stable or unstable, we propose a conjecture as follows.

Conjecture 4.4. The only stable capillary hypersurface Mn (n ≥ 3) in a unit
Euclidean ball Bn+1 is a totally geodesic hypersurface or a spherical cap.

There are some remarks on this conjecture.

(1) For n ≥ 2, H = 0 and θ = π/2, M must be totally geodesic [Ros and Vergasta
1995].

(2) For n = 2 and θ = π/2, M is a totally geodesic disk, a spherical cap or a
surface of genus 1 with embedded boundary having at most two connected
components [Ros and Vergasta 1995].

(3) For n = 2 and H = 0, M is a totally geodesic disk or a surface of genus 1 with
at most three connected boundary components [Ros and Souam 1997].
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