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INTERIOR GRADIENT ESTIMATES FOR WEAK SOLUTIONS
OF QUASILINEAR p-LAPLACIAN TYPE EQUATIONS

TUOC PHAN

We study the interior weighted Sobolev regularity for weak solutions of the
quasilinear equations of the form div A(x, u,∇u)= div F. The vector field
A is allowed to be discontinuous in x, Hölder continuous in u and its growth
in the gradient variable is like the p-Laplace operator with 1< p<∞. We
establish interior weighted W 1,q-regularity estimates for weak solutions to
the equations for every q > p assuming that the weak solutions are in the
local John–Nirenberg BMO space. This paper therefore improves available
results because it replaces the boundedness or continuity assumption on
weak solutions by the borderline BMO one. Our regularity estimates also
recover known results in which A is independent of the variable u. Our reg-
ularity theory complements the classical C1,α-regularity theory developed
by many mathematicians including DiBenedetto and Tolksdorf for this gen-
eral class of quasilinear elliptic equations.

1. Introduction

This paper establishes interior regularity estimates in weighted Sobolev spaces for
weak solutions to the following general quasilinear p-Laplacian type equations:

(1-1) div [A(x, u,∇u)] = div [|F|p−2 F] in B2R,

where B2R is the ball in Rn centered at the origin and with radius 2R for some
R > 0, F is a given measurable vector field function, u is an unknown solution, and

A= A(x, z, ξ) : B2R ×K×Rn
→ Rn

is a given vector field. We assume that A( · , z, ξ) is measurable in B2R for every
(z, ξ) ∈K× (Rn

\ {0}), A(x, · , ξ) Hölder continuous in K for a.e. x ∈ B2R and for
all ξ ∈ Rn

\ {0}, and A(x, z, · ) differentiable in Rn
\ {0} for each z ∈ K and for

a.e. x ∈ B2R . Here, K is an open interval in R, which could be the same as R. We
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assume in addition that there exist constants 3 > 0, α ∈ (0, 1], and 1 < p <∞
such that A satisfies the natural growth conditions

〈∂ξ A(x, z, ξ)η, η〉 ≥3−1
|ξ |p−2

|η|2(1-2)
for a.e. x ∈ B2R, ∀z ∈ K, ∀ξ, η ∈ Rn

\ {0},

|A(x, z, ξ)| + |ξ ||∂ξ A(x, z, ξ)| ≤3|ξ |p−1(1-3)
for a.e. x ∈ B2R, ∀z ∈ K, ∀ξ ∈ Rn

\ {0},

|A(x, z1, ξ)− A(x, z2, ξ)| ≤3|ξ |
p−1
|z1− z2|

α(1-4)
for a.e. x ∈ B2R, ∀z1, z2 ∈ K, ∀ξ ∈ Rn

\ {0}.

Observe that under the conditions (1-2)–(1-4), the class of equations of the form
(1-1) contains the well-known p-Laplace equations.

The focus of this paper is to investigate the regularity in weighted Sobolev
spaces for weak solutions u of (1-1) when the nonlinearity of A depends on u as
its variable. In this perspective, we would like to point out that, on the one hand,
the C1,α-regularity theory for bounded, weak solutions of this class of equations
has been investigated extensively, assuming some regularity of A in both x and
z variables; see [DiBenedetto 1983; Evans 1982; Lewis 1983; Lieberman 1988;
Gilbarg and Trudinger 1983; Ladyzhenskaya and Ural’tseva 1968; Malý and Ziemer
1997; Tolksdorf 1984; Ural’tseva 1968; Uhlenbeck 1977]. On the other hand, when
A is discontinuous in x or F is not sufficiently regular, one does not expect those
mentioned Schauder’s type estimates for weak solutions of (1-1) to hold, and it
is natural to search for Lq-estimates for the gradients instead; see [Gilbarg and
Trudinger 1983; Ladyzhenskaya and Ural’tseva 1968; Maugeri et al. 2000; Krylov
2007; Malý and Ziemer 1997], for example. In this line of research, we note that in
case A= A0 for some A0 which is independent of the variable z ∈K, the equation
(1-1) is reduced to

(1-5) div [A0(x,∇u)] = div [|F|p−2 F] in B2R,

and the W 1,q-regularity estimates of Calderón–Zygmund type for weak solutions
to the class of equations (1-5) has been studied by many authors; for example, see
[Iwaniec 1983; DiBenedetto and Manfredi 1993; Byun and Wang 2012; Byun et al.
2007; Caffarelli and Peral 1998; Di Fazio 1996; Duzaar and Mingione 2010; 2011;
Kinnunen and Zhou 1999; Maugeri et al. 2000; Mengesha and Phuc 2012; Dong and
Kim 2010; Krylov 2007; 2008]. However, if A depends on the z-variable as in (1-1)
and even with F= 0, the W 1,q -regularity estimates become much more challenging,
and not very well understood. This is due to the fact that the Calderón–Zygmund
theory relies heavily on the scaling and dilation invariances of the considered class
of equations; see [Wang 2003] for the geometric intuition of this fact. Since the
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class of equations (1-5) is invariant under the scalings

(1-6) u 7→ u/λ and u(x) 7→ u(r x)
r

for all positive numbers r, λ,

the W 1,q -regularity of Calderón–Zygmund for weak solutions of (1-5) is therefore
naturally expected. Meanwhile, the invariant homogeneity with respect to (1-6)
is no longer available for (1-1). This fact presents a serious obstacle in obtaining
W 1,q-estimates for the weak solutions of (1-1) as they do not generate enough
estimates to carry out the proof by using existing methods.

In the recent work [Hoang et al. 2015; Nguyen and Phan 2016], the W 1,q-
regularity estimates for weak solutions of (1-1) are addressed, and the W 1,q-
regularity estimates are established assuming that the weak solutions are bounded.
To overcome the loss of the homogeneity that we mentioned, we introduced in
[Hoang et al. 2015; Nguyen and Phan 2016] some “double-scaling parameter”
technique. Essentially, we study an enlarged class of “double parameter” equations
of the type (1-1). Then, by a compactness argument, we successfully applied the
perturbation method in [Caffarelli and Peral 1998] to tackle the problem. Careful
analysis is required to ensure that all intermediate steps in the perturbation process
are uniform with respect to the scaling parameters. See also [Byun et al. 2017;
Phan 2017] for further implementation of this idea, and [Dong and Kim 2011] for
some other related results in this line of research. In the papers [Hoang et al. 2015;
Nguyen and Phan 2016; Byun et al. 2017], the a priori boundedness assumption
on the weak solutions is essential to start the investigation of W 1,q -theory. This is
because the approach uses the maximum principle for the unperturbed equations
to implement the perturbation technique of [Caffarelli and Peral 1998]. We also
would like to reference [Bögelein 2014], where the same W 1,p-theory for parabolic
equations of type (1-1) is also achieved for continuous weak solutions.

A natural question arises from the mentioned work: Is it necessary to assume that
solutions are bounded, both for Sobolev regularity theory and Schauder’s regularity?
In this paper, we give an answer to this question in the Sobolev regularity setting.
In particular, we establish the W 1,q -regularity estimates for weak solutions of (1-1)
by assuming that the solutions are in the BMO John–Nirenberg space, i.e., the
borderline case. This is achieved in Theorem 1.1 below. Our paper therefore
generalizes all results in [Bögelein 2014; Byun et al. 2017; Hoang et al. 2015;
Nguyen and Phan 2016]. Moreover, this paper also simplifies many technical issues
in [Hoang et al. 2015; Nguyen and Phan 2016], and gives a generic approach to
unify and treat both classes of equations (1-1) and (1-5) at the same time. Unlike
[Byun et al. 2017; Hoang et al. 2015; Nguyen and Phan 2016], we only use “one
parameter” in the class of our equations. Precisely, we investigate the equation

(1-7) div [A(x, λu,∇u)] = div [|F|p−2
|F] in B2R,
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with the parameter λ≥ 0. The class of equations (1-7) is indeed the smallest one
that is invariant with respect to the scalings and dilation (1-6) and that includes (1-1).
When λ = 0, the equation (1-7) clearly becomes the equation (1-5). This paper
therefore recovers known results such as [Iwaniec 1983; DiBenedetto and Manfredi
1993; Byun and Wang 2012; Byun et al. 2007; Caffarelli and Peral 1998; Di Fazio
1996; Duzaar and Mingione 2010; 2011; Kinnunen and Zhou 1999; Maugeri et al.
2000; Mengesha and Phuc 2012] regarding the interior regularity of weak solutions
of (1-5).

From now on, the notation Aq with q ≥ 1 stands for the class of Muckenhoupt
weights, whose definition is recalled in Definition 2.3. Also, BR(y) is the ball in Rn

with radius R > 0 and centered at y ∈Rn . For simplicity, we also write BR = BR(0).
Moreover, for some locally integrable function f :U → R with some measurable
set U ⊂ Rn and with ρ0 > 0, the BMO seminorm of bounded mean oscillation of
f is defined by

[[ f ]]BMO(U, ρ0) = sup
y∈U, 0<ρ<ρ0

1
|Bρ(y)|

∫
Bρ(y)∩U

| f (x)− f̄Bρ(y)∩U | dx,

where f̄Bρ(y)∩U =
1

|Bρ(y)|

∫
Bρ(y)∩U

f (x) dx .

The main result of this paper is the following interior regularity estimates for
weak solutions of (1-7) in weighted Lebesgue spaces.

Theorem 1.1. Let3> 0,M > 0, p, q > 1, γ ≥ 1, and α ∈ (0, 1]. Then there exists
a sufficiently small constant δ = δ(p, q, n,3,M, γ, α) > 0 such that the following
statement holds true. Assume that A : B2R ×K×Rn

→ Rn is a Carathéodory map
satisfying (1-2)–(1-4) and

(1-8) [[A]]BMO(BR ,R)

:= sup
0<ρ≤R

sup
y∈BR

1
|Bρ(y)|

∫
Bρ(y)

[
sup

z∈K, ξ∈Rn\{0}

|A(x, z, ξ)− ABρ(y)(z, ξ)|
|ξ |p−1

]
dx

≤ δ

for some R> 0 and for some open interval K⊂R. Then for every F ∈ L p(B2R,Rn),
if u is a weak solution of

div [A(x, λu,∇u)] = div [|F|p−2 F] in B2R

with [[λu]]BMO(BR,R) ≤ M for some λ≥ 0, the weighted regularity estimate∫
BR

|∇u|pqω(x) dx ≤ C
[∫

B2R

|F|pqω(x) dx +ω(B2R)

(
1
|B2R|

∫
B2R

|∇u|p dx
)q]
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holds, as long as its right-hand side is finite, where ω ∈ Aq with

[ω]Aq ≤ γ, ABρ(y)(z, ξ) := /

∫
Bρ(y)

A(x, z, ξ) dx,

and C is a constant depending only on q, p, n, 3,α, M,K, R, and γ .

We emphasize that the significant contribution in Theorem 1.1 is that it relaxes
and do not requires the considered weak solutions to be bounded as in [Bögelein
2014; Byun et al. 2017; Hoang et al. 2015; Nguyen and Phan 2016]. This is
completely new even for the case ω = 1, in comparison to the known work that
we already mentioned for both the Schauder and the Sobolev regularity theories
regarding weak solutions of (1-1). Certainly, removing the boundedness assumption
on solutions and replacing it by the condition that weak solutions are in BMO is
valuable in the critical cases in which the L∞-bound for solutions are not available;
see [DiBenedetto and Manfredi 1993], for example. When p = n, our weak
solutions are in W 1,n , and hence they are in BMO by the Sobolev embedding
theorem. Therefore, in this case, our theorem is applicable directly, while results
[Bögelein 2014; Byun et al. 2017; Hoang et al. 2015; Nguyen and Phan 2016]
may not be. Note that M is not required to be small: our [[λu]]BMO(BR,R) is not
necessarily small. When λ = 0, the condition [[λu]]BMO(BR,R) ≤ M is certainly
held for every function u. Therefore, Theorem 1.1 recovers results in [Iwaniec
1983; Byun and Wang 2012; Byun et al. 2007; Caffarelli and Peral 1998; Di Fazio
1996; Duzaar and Mingione 2010; 2011; Kinnunen and Zhou 1999; Mengesha
and Phuc 2012], in which the case that A is independent of z ∈ K is studied. This
paper therefore unifies W 1,q -regularity estimates for both (1-1) and (1-5). We also
would like to note that the fact that A is defined in z ∈K only is important in many
applications. A simple example is K = (0,∞), meaning that (1-2)–(1-4) only hold
for positive solutions u. In the study of cross-diffusion equations in [Hoang et al.
2015], K = (0,M0) for some M0 > 0.

We remark that the smallness condition (1-8) on the mean oscillation of A with
respect to the x-variable is necessary as there is a counterexample provided in
[Meyers 1963] for linear equations. In this regard, we also would like to point out
that in [Dong and Kim 2010], regularity estimates for weak solutions of equations
with measurable coefficients that are small in partial BMO-seminorm are established.

This paper follows the perturbation approach of [Caffarelli and Peral 1998] and
makes use of the Hardy–Littlewood maximal function; see also [Byun and Wang
2012; Byun et al. 2017; Nguyen and Phan 2016; Hoang et al. 2015; Phan 2017;
Wang 2003]. One can also find in [Krylov 2007; 2008; Dong and Kim 2010; 2011]
for a similar perturbation approach which uses the Fefferman–Stein sharp function.
To overcome the loss of boundedness of solutions due to our assumption, instead of
applying the maximum principle during the perturbation process as in prior work,
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we directly derive and delicately use Hölder’s regularity estimates for solutions
of the corresponding homogeneous equations; see the estimates (3-4) and (3-15),
for example. The well-known John–Nirenberg’s theorem and reverse Hölder’s
inequality also play a very important role in our approach.

We now conclude this section by outlining the organization of this paper. Section 2
reviews some definitions and some known results needed in the paper. Intermediate
steps in the approximation estimates required in the proof of Theorem 1.1 are estab-
lished and proved in Section 3. Finally, Section 4 gives the proof of Theorem 1.1.

2. Definitions and preliminaries

Scaling invariances, and definitions of weak solutions. Let λ′ ≥ 0, and let us
consider a function u ∈W 1,p

loc (U ) satisfying

div [A(x, λ′u,∇u)] = div [|F|p−2 F] in U,

in the sense of distribution, for some open bounded set U ⊂ Rn . Then for some
fixed λ > 0, the rescaled function

(2-1) v(x)=
u(x)
λ

for x ∈U

solves the equation

div [ Â(x, λ̂v,∇v)] = div [|F̂|p−2 F̂] in U

in the distributional sense, where λ̂= λλ′ ≥ 0 and Â :U ×K×Rn
→Rn is defined

by

(2-2) Â(x, z, ξ)=
A(x, z, λξ)
λp−1 and F̂(x)=

F(x)
λp−1 .

Remark 2.1. If A : U × K × Rn
→ Rn satisfies the conditions (1-2)–(1-4) on

U ×K×Rn , then the rescaled vector field Â :U ×K×Rn
→ Rn defined in (2-2)

also satisfies the structural conditions (1-2)–(1-4) with the same constants 3, p,
and α. Moreover, [[A]]BMO(U, ρ0) = [[ Â]]BMO(U, ρ0) for any ρ0 > 0.

In this paper, C∞0 (U ) is the set of all smooth compactly supported functions in U ,
L p(U,Rn) with 1 ≤ p <∞ is the Lebesgue space consisting of all measurable
functions f :U→Rn such that | f |p is integrable on U , and W 1,p(U ) is the standard
Sobolev space on U . Moreover, 〈 · , · 〉 is the Euclidean inner product in Rn . Let us
now recall the definitions of weak solutions that we use throughout the paper.

Definition 2.2. Let K ⊂ R be an interval, and let 3 > 0, p > 1, α ∈ (0, 1]. Also,
let U ⊂ Rn be an open bounded set in Rn with sufficiently smooth boundary ∂U ,
and let A :U ×K×Rn

→ Rn satisfy conditions (1-2)–(1-4) on U ×K×Rn .
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(i) For every F ∈ L p(U ;Rn) and λ≥ 0, a function u ∈W 1,p
loc (U ) is called a weak

solution of

div [A(x, λu,∇u)] = div [|F|p−2 F] in U

if λu(x) ∈ K for a.e. x ∈U , and∫
U
〈A(x, λu,∇u),∇ϕ〉 dx =

∫
U
〈|F|p−2 F,∇ϕ〉 dx ∀ϕ ∈ C∞0 (U ).

(ii) For every F ∈ L p(U ;Rn), g ∈W 1,p(U ), and λ≥ 0, a function u ∈W 1,p(U )
is a weak solution of{

div [A(x, λu,∇u)] = div [|F|p−2 F] in U,
u = g on ∂U,

if λu(x) ∈ K for a.e. x ∈U , u− g ∈W 1,p
0 (U ), and∫

U
〈A(x, λu,∇u),∇ϕ〉 dx =

∫
U
〈F,∇ϕ〉 dx ∀ϕ ∈ C∞0 (U ).

Muckenhoupt weights, weighted inequalities, and the crawling ink-spots lemma.
This section recalls several analysis results and definitions that are needed in the
paper. Firstly, we recall the definition of the Ap-Muckenhoupt class of weights
introduced in [Muckenhoupt 1972].

Definition 2.3. Let 1 ≤ p <∞. A nonnegative and locally integrable function
ω : Rn

→ [0,∞) is said to be in the class Ap of Muckenhoupt weights if

[ω]Ap := sup
balls B⊂Rn

(

/

∫
B
ω(x) dx

)(

/

∫
B
ω(x)1/(1−p) dx

)p−1

<∞ if p > 1,

[ω]A1 := sup
balls B⊂Rn

(

/

∫
B
ω(x) dx

)
‖ω−1
‖L∞(B) <∞ if p = 1.

It turns out that the class of Ap-Muckenhoupt weights satisfies the reverse
Hölder’s inequality and the doubling properties. In particular, a measure of any
Ap-weight is comparable with the Lebesgue measure in some sense. This is in fact
a well-known result due to R. Coifman and C. Fefferman, and it is an important
ingredient in the paper.

Lemma 2.4 [Coifman and Fefferman 1974]. For 1< p <∞, the following state-
ments hold true:

(i) If µ ∈ Ap, then for every ball B ⊂ Rn and every measurable set E ⊂ B,

µ(B)≤ [µ]Ap

(
|B|
|E |

)p

µ(E).
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(ii) If µ ∈ Ap with [µ]Ap ≤ γ for some given γ ≥ 1, then there are C = C(γ, n)
and β = β(γ, n) > 0 such that

µ(E)≤ C
(
|E |
|B|

)β
µ(B)

for every ball B ⊂ Rn and every measurable set E ⊂ B.

Observe that in the above statement and in this paper, the notation

|U | =
∫

U
dx, µ(U )=

∫
U
µ(x) dx,

for every measurable set U ⊂ Rn is used.

Secondly, we state a standard result in measure theory.

Lemma 2.5. Assume that g ≥ 0 is a measurable function in a bounded subset
U ⊂ Rn . Let θ > 0 and N > 1 be given constants. If µ is a weight function in Rn ,
then for any 1≤ p <∞,

g ∈ L p(U, µ)⇔ S :=
∑
j≥1

N pjµ({x ∈U : g(x) > θN j
}) <∞.

Moreover, there exists a constant C > 0 depending only on θ , N , and p such that

C−1S ≤ ‖g‖p
L p(U,µ) ≤ C(µ(U )+ S),

where L p(U, µ) is the weighted Lebesgue space with norm

‖g‖L p(U,µ) =

(∫
U
|g(x)|pµ(x) dx

)1/p

.

Thirdly, we discuss the Hardy–Littlewood maximal operator and its boundedness
in weighted spaces. For a given locally integrable function f : Rn

→ R, the
Hardy–Littlewood maximal function is defined as

(2-3) M f (x)= sup
ρ>0

/

∫
Bρ(x)
| f (y)| dy for x ∈ Rn.

For a function f that is defined on a bounded domain U , we write

MU f (x)=M( fχU )(x),

where χU is the characteristic function of the set U . The following boundedness of
the Hardy–Littlewood maximal operator M : Lq(Rn, ω)→ Lq(Rn, ω) is classical.

Lemma 2.6. Let γ ≥ 1 and ω ∈ Aq with [ω]Aq ≤ γ .

(i) Strong (q, q): Let 1 < q <∞. Then there exists a constant C = C(γ, q, n)
such that

‖M‖Lq (Rn, ω)→Lq (Rn, ω) ≤ C.
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(ii) Weak (1, 1): There exists a constant C = C(n) such that for any λ > 0, we
have ∣∣{x ∈ Rn

:M( f ) > λ}
∣∣≤ C

λ

∫
Rn
| f | dx .

Finally, we recall the following important lemma. This lemma is usually referred
to as the “crawling ink-spots” lemma, and is originally due to N. V. Krylov and
M. V. Safonov [Krylov and Safonov 1979; Safonov 1980].

Lemma 2.7 (crawling ink-spots). Suppose that ω ∈ Aq with [ω]Aq ≤ γ for some
1< q <∞ and some γ ≥ 1. Suppose also that R > 0 and that C, D are measurable
sets satisfying C ⊂ D ⊂ BR . Assume that there are ρ0 ∈ (0, R/2) and 0 < ε < 1
such that

(i) ω(C) < εω(Bρ0(y)) for almost every y ∈ BR , and

(ii) for all x ∈ BR and ρ ∈ (0, ρ0), if ω(C ∩ Bρ(x))≥ εω(Bρ(x)), then

Bρ(x)∩ BR ⊂ D.
Then

ω(C)≤ ε1ω(D) for ε1 = ε20nqγ 2.

Hölder regularity and self-improving regularity. We recall some classical regu-
larity results. The first is about the interior Hölder regularity for weak solutions of
homogeneous p-Laplacian type equations (1-5). This result is indeed a consequence
of the well-known De Giorgi–Nash–Moser theory; see [Giusti 2003, Theorem 7.6;
Ladyzhenskaya and Ural’tseva 1968, Theorem 1.1, p. 251].

Lemma 2.8. Let 3> 0, p> 1, and let A0 : Br ×Rn
→Rn be a Carathéodory map

and satisfy (1-2)–(1-3) on Br ×Rn with some r > 0. If v ∈ W 1,p(Br ) is a weak
solution of the equation

div [A0(x,∇v)] = 0 in Br ,

then there is C0 > 0 depending only on 3, n, p such that

‖v‖L∞(B5r/6) ≤ C0

(

/

∫
Br

|v|p dx
)1/p

.

Moreover, there is a constant β ∈ (0, 1) depending only on3, n, p, and ‖v‖L∞(B5r/6)

such that

|v(x)− v(y)| ≤ C0‖v‖L∞(B5r/6)

(
|x − y|

r

)β
∀x, y ∈ B2r/3.

We now recall a classical result on self-improving regularity estimates for weak
solutions of p-Laplacian type equations. The following result is due to N. Meyers
and A. Elcrat [1975, Theorem 1]; see also [DiBenedetto and Manfredi 1993] and,
for the parabolic version, [Kinnunen and Lewis 2000].



204 TUOC PHAN

Lemma 2.9. Let3>0, p>1. Then there exists p0= p0(3, n, p)> p such that the
following statement holds true. Suppose that A0 : B2r×Rn

→Rn is a Carathéodory
map satisfying (1-2)–(1-3) on B2r×Rn with some r > 0. If v ∈W 1,p(B2r ) is a weak
solution of the equation

div [A0(x,∇v)] = 0 in B2r ,

then for every p1 ∈ [p, p0], there exists a constant C = C(3, p1, p, n) > 0 such
that ( 1

|Br |

∫
Br

|∇v|p1 dx
)1/p1
≤ C

( 1
|B2r |

∫
B2r

|∇v|p dx
)1/p

.

Some simple energy estimates. In this section we derive some elementary estimates
which will be used frequently in the paper.

Lemma 2.10. Let 3> 0, p > 1, and let U ⊂ Rn be a bounded open set and K an
interval in R. Assume that A :U×K×Rn

→Rn satisfies (1-2)–(1-3) on U×K×Rn .
Then for any functions u, v ∈ W 1,p(U ) and any nonnegative function φ ∈ C(U ),
the following hold:

(i) If 1< p < 2, then for every τ > 0,∫
U
|∇u−∇v|pφ dx ≤ τ

∫
U
|∇u|pφ dx

+C(3, p)τ (p−2)/p
∫

U
〈A(x, u,∇u)− A(x, u,∇v),∇u−∇v〉φ dx .

(ii) If p ≥ 2, then∫
U
|∇u−∇v|pφ dx ≤ C(3, p)

∫
U
〈A(x, u,∇u)− A(x, u,∇v),∇u−∇v〉φ dx .

Proof. This lemma is well-known; see [Tolksdorf 1984, Lemma 1; Nguyen and Phan
2016, Lemma 3.1]. However, because it is important and also for completeness, we
provide the proof. We first claim that from (1-2), the monotonicity property

(2-4) 〈A(x, z, ξ)− A(x, z, η), ξ − η〉

≥

{
γ0|ξ − η|

p if p ≥ 2,
γ0(|ξ | + |ξ − η|)

p−2
|ξ − η|2 if 1< p < 2

of A holds true for all (x, z)∈U×K and all ξ, η∈Rn
\{0}, where γ0=γ0(3, p)>0

is a constant. To prove the claim, observe that for each (x, z) ∈ U ×K and each
ξ, η ∈ Rn

\ {0}, we can write

(2-5) 〈A(x, z, ξ)− A(x, z, η), ξ − η〉

=

∫ 1

0

〈
Aξ (x, z, ξ + t (η− ξ))(ξ − η), ξ − η

〉
dt,
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where Aξ (x, z, · ) is the matrix of partial derivatives of A with respect to the third
component variable in Rn

\ {0} of A. It follows from (1-2) that

(2-6)
〈
Aξ (x, z, ξ + t (η− ξ))(ξ − η), ξ − η

〉
≥3−1

|ξ + t (η− ξ)|p−2
|ξ − η|2.

Then, if p ∈ (1, 2), we see that |ξ + t (η− ξ)| ≤ |ξ | + |ξ − η|, and therefore,

〈A(x, z, ξ)− A(x, z, η), ξ − η〉 ≥3−1(|ξ | + |ξ − η|)p−2
|ξ − η|2.

Hence, the second estimate in (2-4) is proved. On the other hand, when p ≥ 2, by
(2-5)–(2-6), we see that

〈A(x, z, ξ)− A(x, z, η), ξ − η〉 ≥3−1
|ξ − η|2

∫ 1/4

0
|ξ + t (η− ξ)|p−2 dt.

We may now assume without loss of generality that |ξ − η| , 0 and |η| ≤ |ξ |. Let
us define t0 = |ξ |/|ξ − η|. Note that if |ξ − η| ≤ 2|ξ |, then t0 ≥ 1

2 and

|ξ + t (η− ξ)| ≥
∣∣|ξ | − t |ξ − η|

∣∣= |t − t0||ξ − η| ≥ 1
4 |ξ − η| ∀t ∈

(
0, 1

4

)
.

Otherwise, we have |η| ≤ |ξ | ≤ 1
2 |ξ − η|, and then

|ξ + t (η− ξ)| = |(1− t)(ξ − η)+ η|

≥ (1− t)|ξ − η| − |η|

≥
3
4 |ξ − η| −

1
2 |ξ − η| =

1
4 |ξ − η| ∀t ∈

(
0, 1

4

)
.

Hence, in conclusion, we have |ξ + t (η− ξ)| ≥ 1
4 |ξ − η| for all t ∈

(
0, 1

4

)
, and

therefore,

〈A(x, z, ξ)− A(x, z, η), ξ − η〉 ≥
1

4p−13
|ξ − η|p.

This proves the first estimate in (2-4) when p ≥ 2, completing the proof of (2-4).
Finally, observe that from (2-4), (ii) becomes trivial. Therefore, it remains to

prove (i) with 1< p < 2. In this case, for each ξ, η ∈ Rn
\ {0} and each τ ∈ (0, 1),

we can use Young’s inequality to obtain

|ξ − η|p = (|ξ | + |ξ − η|)p(2−p)/2(|ξ | + |ξ − η|)p(p−2)/2
|ξ − η|p

≤
τ

3−p (|ξ | + |ξ − η|)
p
+C pτ

(p−2)/p(|ξ | + |ξ − η|)p−2
|ξ − η|2.

From this and (2-4), we infer that

|ξ − η|p ≤ τ |ξ |p +C pτ
(p−2)/p(|ξ | + |ξ − η|)p−2

|ξ − η|2

≤ τ |ξ |p +C(3, p)τ (p−2)/p
〈A(x, z, ξ)− A(x, z, η), ξ − η〉.

Then (i) follows and the proof of Lemma 2.10 is complete. �
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Lemma 2.11 (Caccioppoli type estimates). Let 3 > 0, p > 1 be fixed. Then for
every r >0 and every A0 : Br×Rn satisfying (1-2)–(1-3) on Br×Rn , if v∈W 1,p(Br )

is a weak solution of
div [A0(x,∇v)] = 0 in Br

then it holds that∫
Br

|∇v|pφ(x)p dx ≤ C(3, p)
∫

Br

|v− k|p|∇φ(x)|p dx

for all φ ∈ C1
0(Br ), φ ≥ 0, and for all k ∈ R.

Proof. Since (v − k)φ ∈ W 1,p
0 (Br ), we can use it as a test function. From this,

together with Hölder’s inequality and Young’s inequality, we can infer that∫
Br (x0)

〈A0(x,∇v)− A0(x, 0),∇v〉φ p dx

=−p
∫

Br (x0)

〈A0(x,∇v),∇φ〉(v− k)φ p−1 dx

≤ C(3, p)
∫

Br (x0)

|∇v|p−1φ p−1
|∇φ||v− k| dx

≤
1
4

∫
Br (x0)

|∇v|pφ p(x) dx +C(3, p)
∫

Br (x0)

|v− k|p|∇φ|p dx .

Now, by Lemma 2.10, it follows that∫
Br (x0)

|∇v|pφ p dx ≤ 1
4

∫
Br (x0)

|∇v|pφ p dx

+C(3, p)
∫

Br (x0)

〈A0(x,∇v)− A0(x, 0),∇vφ p
〉 dx

≤
1
2

∫
Br (x0)

|∇v|pφ p dx +C(3, p)
∫

Br (x0)

|v− k|p|∇φ|p dx .

Therefore,∫
Br (x0)

|∇v|pφ(x)p dx ≤ C(3, p)
∫

Br (x0)

|v− k|p|∇φ(x)|p dx,

as desired. �

A known approximation estimate. We recall a known approximation estimate
established in [Byun and Wang 2012; Byun et al. 2007] and many other papers
for the solutions of equations of the type (1-5) in which the vector field A0 is
independent of the variable z ∈ K. This approximation estimate will be used in an
intermediate step for the proof of Theorem 1.1.
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Lemma 2.12. Let 3> 0, p > 1 be fixed. Then for every ε ∈ (0, 1), there exists a
sufficiently small number δ0 = δ0(ε,3, n, p) ∈ (0, ε) such that the following holds.
Assume that A0 : B2R ×Rn

→ Rn is such that (1-2)–(1-3) hold, and

sup
ξ∈Rn

ξ,0

sup
x∈B2R

0<ρ<R

1
|Bρ(x)|

∫
Bρ(x)

|A0(y, ξ)− A0,Bρ(x)|

|ξ |p−1 dy ≤ δ0.

Then for every x0 ∈ BR and r ∈ (0, R/2), and for G ∈ L p(B2R,Rn), if w is a weak
solution in W 1,p(B2r (x0)) of

div [A0(x,∇w)] = div [|G|p−2G] in B2r (x0)

satisfying
1

|B2r (x0)|

∫
B2r (x0)

|∇w|p dx ≤ 1,

and if
1

|B2r (x0)|

∫
B2r (x0)

|G|p dx ≤ δ p
0 ,

then there is h ∈W 1,p(B7r/4(x0)) such that

1
|B7r/4(x0)|

∫
B7r/4(x0)

|∇w−∇h|p dx ≤ ε p, ‖∇h‖L∞(B3r/2(x0)) ≤ C(3, n, p).

3. Interior approximation estimates

In this section, let A : B2R ×K×Rn
→ Rn satisfy (1-2)–(1-4) on B2R ×K×Rn

for some R > 0 and some open interval K ⊂ R. We study the weak solutions
u ∈W 1,p(B2R) of the scaling parameter equation

(3-1) div [A(x, λu,∇u)] = div [|F|p−2 F] in B2R,

with the parameter λ≥ 0. Our goal in this section is to provide necessary estimates
for proving Theorem 1.1. Our approach is based on the perturbation technique
introduced in [Caffarelli and Peral 1998] together with the “scaling parameter”
technique introduced in [Hoang et al. 2015; Nguyen and Phan 2016]. The approach
is also influenced by recent developments [Bögelein 2014; Byun and Wang 2012;
Byun et al. 2007; 2017; Phan 2017]. In our first step, we fix u in A and then
approximate the solution u of (3-1) by a solution of the corresponding homogeneous
equations with the fixed u coefficient, as in [Bögelein 2014; Byun et al. 2017].

Lemma 3.1. Let 3,M > 0, p > 1 be fixed and κ ∈ (0, 1]. Then, for every small
ε ∈ (0, 1), there exists a sufficiently small number δ1 = δ1(ε,3, n, p, κ) ∈ (0, ε)
such that the following holds. Assume that A : B2R × K × Rn

→ Rn satisfies
(1-2)–(1-4) with some K ⊂ R and some R > 0, and that F ∈ L p(B2R,Rn) satisfies



208 TUOC PHAN

/

∫
Br (x0)

|F|p dx ≤ δ p
1

for some x0 ∈ BR and r ∈ (0, R). Suppose also that u ∈ W 1,p(B2R) is a weak
solution of (3-1) satisfying

/

∫
Br (x0)

|∇u|p dx ≤ 1 and λ

(

/

∫
Br (x0)

|u− ū Br (x0)|
p
)1/p

≤ M

for some λ≥ 0. Then

(3-2) /

∫
Br (x0)

|∇u−∇v|p dx ≤ ε pκn,

where v ∈W 1,p(Br ) is the weak solution of

(3-3)
{

div [A(x, λu,∇v)] = 0 in Br (x0),

v = u− ū Br (x0) on ∂Br (x0).

Moreover, it also holds that

(3-4) λ

(
/

∫
Br (x0)

|v|p dx
)1/p

≤ C(n, p)[M + λrεκn/p
].

Proof. Note that for Ã0(x, ξ) := A(x, λu(x), ξ), we see that Ã0 is independent of
the variable z ∈K, and it satisfies the assumptions (1-2)–(1-3). The equation (3-3)
is written as

(3-5)
{

div [ Ã0(x,∇v)] = 0 in Br (x0),

v = u− ū Br (x0) on ∂Br (x0),

and we note that the existence of the weak solution v of (3-5) follows from the
standard theory in calculus of variation. Therefore, it remains to prove the estimates
(3-2) and (3-4). Since v− [u− ū Br (x0)] ∈W 1,p

0 (Br (x0)), we can take it as a test
function for (3-3); we obtain∫

Br (x0)

〈A(x, λu,∇v),∇u−∇v〉 dx = 0.

Similarly, we can use v−[u− ū Br (x0)] as a test function for the equation for (3-1)
to see that∫

Br (x0)

〈A(x, λu,∇u),∇u−∇v〉 dx =
∫

Br (x0)

〈|F|p−2 F,∇u−∇v〉 dx .

It then follows from these two identities that

(3-6)
∫

Br (x0)

〈
A(x, λu,∇u)− A(x, λu,∇v),∇v−∇u

〉
dx

=

∫
Br (x0)

〈|F|p−2 F,∇u−∇v〉 dx .
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We only consider the case 1< p< 2, because the case p≥ 2 is similar, and simpler.
It follows from Lemma 2.10(i), Remark 2.1, and (3-6) that for each τ ∈ (0, 1),∫

Br (x0)

|∇u−∇v|p dx

≤ τ

∫
Br (x0)

|∇u|p dx

+C(3, τ, p)
∫

Br (x0)

〈
A(x, λu,∇u)− A(x, λu,∇v),∇v−∇u

〉
dx

≤ τ

∫
Br (x0)

|∇u|p dx +C(3, τ, p)
∫

Br (x0)

∣∣〈|F|p−2 F,∇u−∇v〉
∣∣ dx

≤ τ

∫
Br (x0)

|∇u|p dx + 1
2

∫
Br (x0)

|∇u−∇v|p dx +C(3, τ, p)
∫

Br (x0)

|F|p dx,

where in the last step, we have used Hölder’s inequality and Young’s inequality.
Hence, by canceling similar terms, we obtain

/

∫
Br (x0)

|∇u−∇v|p dx ≤ 2τ /
∫

Br (x0)

|∇u|p dx +C(3, τ, p) /

∫
Br (x0)

|F|p dx .

Now, choosing τ = ε pκn/4 and δ1 = δ1(ε,3, n, p, κ) ∈ (0, ε) sufficiently small so
that C(3, τ, p)δ p < ε pκn/2, the estimate (3-2) follows. It remains to prove (3-4).
By Poincaré’s inequality, we see that(

/

∫
Br (x0)

|v|p dx
)1/p

≤ C(p)
[(

/

∫
Br (x0)

∣∣v− [u− ū Br (x0)]
∣∣p dx

)1/p

+

(

/

∫
Br (x0)

|u− ū Br (x0)|
p dx

)1/p]
≤ C(n, p)

[
r
(

/

∫
Br (x0)

|∇v−∇u|p dx
)1/p

+

(

/

∫
Br (x0)

|u− ū Br (x0)|
p dx

)1/p]
.

From this and since κ ∈ (0, 1), it follows that

λ

(

/

∫
Br (x0)

|v|p dx
)1/p

≤ C(n, p)[M + rλεκn/p
],

as desired. �

Next, we approximate the solution u by the solution w of the following equa-
tion, whose principal part is a vector field that is independent of w and has small
oscillation with respect to the x-variable:

(3-7)
{

div [A(x, λū Bκr (x0),∇w)] = 0 in Bκr (x0),

w = v on ∂Bκr (x0),

where v is the weak solution of (3-3) and κ ∈
(
0, 1

3

)
is sufficiently small to be

determined. Our next result is in the same fashion as Lemma 3.1.
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Lemma 3.2. Let 3,M > 0, p > 1, and α ∈ (0, 1] be fixed, and let ε ∈ (0, 1).
There exist positive, sufficiently small numbers κ = κ(ε,3,M, p, n, α) ∈

(
0, 1

3

)
and δ2 = δ2(ε,3,M, n, α, p) ∈ (0, ε) such that the following holds. Assume that
A : B2R ×K × Rn

→ Rn satisfies (1-2)–(1-4) with some R > 0 and some open
interval K ⊂ R, and assume that F ∈ L p(B2R,Rn) and

/

∫
Br (x0)

|F|p dx ≤ δ p
2

for some x0 ∈ BR and r ∈ (0, R/2). Then, for every λ > 0, if u ∈ W 1,p(B2R) is a
weak solution of (3-1) satisfying

/

∫
B2κr (x0)

|∇u|p dx ≤ 1, /

∫
Br (x0)

|∇u|p dx ≤ 1, and [[λu]]BMO(BR,R) ≤ M,

then it holds that

(3-8)
(

/

∫
Bκr (x0)

|∇u−∇w|p dx
)1/p

≤ ε and
(

/

∫
Bκr

|∇w|p dx
)1/p

≤ C0(n, p),

where w is the weak solution of (3-7).

Proof. For a given sufficiently small ε > 0, let ε′ ∈ (0, ε/2) and κ ∈
(
0, 1

3

)
, both

sufficiently small and depending on ε,3,M, n, α, p, which will be determined.
Then, let δ2 = δ1(ε

′,3, n, p, κ) > 0, where δ1 is defined as in Lemma 3.1. Let v
be the solution of (3-3). By using Lemma 3.1, we see that

(3-9)

/

∫
Br (x0)

|∇u−∇v|p dx≤ (ε′)pκn,

λ

(

/

∫
Br (x0)

|v|p dx
)1/p

≤ C(n, p)[rε′λκn/p
+M].

Observe also that the first inequality in (3-9), the assumption in the lemma, and the
fact that both ε and κ are small imply that

(3-10)
(

/

∫
B2κr (x0)

|∇v|p dx
)1/p

≤

(

/

∫
B2κr (x0)

|∇u−∇v|p dx
)1/p

+

(

/

∫
B2κr (x0)

|∇u|p dx
)1/p

≤

(
1

2nκn

/

∫
Br (x0)

|∇u−∇v|p dx
)1/p

+

(

/

∫
B2κr (x0)

|∇u|p dx
)1/p

≤
ε′

2n/p + 1≤ 2.

On the other hand, from the Caccioppoli type estimate in Lemma 2.11, (3-9), and
κ ∈

(
0, 1

3

)
, we also see that
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(3-11)
(

1
|B2κr (x0)|

∫
B2κr (x0)

|∇v|p dx
)1/p

≤
C(3, n, p)
(1−2κ)rκn/p

(
1

|Br (x0)|

∫
Br (x0)

|v|p dx
)1/p

≤ C(3, n, p)
[
ε′+M(λκn/pr)−1].

Now, let w be the weak solution of (3-7). As in the proof of Lemma 3.1, the
existence of w is assured. Therefore, it remains to prove the estimate (3-8). Taking
w− v ∈W 1,p

0 (Bκr (x0)) as a test function for (3-7) and (3-3), we obtain

(3-12)
∫

Bκr (x0)

〈A(x, λu,∇v),∇w−∇v〉 dx

=

∫
Bκr (x0)

〈A(x, λū Bκr (x0),∇w),∇w−∇v〉 dx = 0.

Again, we only need to consider the case 1< p< 2, as p ≥ 2 can be done similarly
using (ii) of Lemma 2.10. From now on, for simplicity, we write û = u− ū Bκr (x0).
We can use Lemma 2.10(i), the condition (1-4), and (3-12) to obtain, with some
τ > 0 sufficiently small to be determined,∫

Bκr (x0)

|∇v−∇w|p dx

≤ τ

∫
Bκr (x0)

|∇v|p dx +
(

C(3, p)τ (p−2)/p

×

∫
Bκr (x0)

〈
A(x, λū Bκr (x0),∇v)− A(x, λū Bκr (x0),∇w),∇v−∇w

〉
dx
)

≤ τ

∫
Bκr (x0)

|∇v|p dx +
(

C(3, p)τ (p−2)/p

×

∫
Bκr (x0)

〈
A(x, λū Bκr (x0),∇v)− A(x, λu,∇v),∇v−∇w

〉
dx
)

≤ τ

∫
Bκr (x0)

|∇v|p dx +C(3, p)τ (p−2)/p
∫

Bκr (x0)

|λû|α|∇v|p−1
|∇v−∇w| dx

≤
1
2

∫
Bκr (x0)

|∇v−∇w|p dx + τ
∫

Bκr (x0)

|∇v|p dx

+C(3, p)τ (p−2)/(p−1)
∫

Bκr (x0)

|λû|αp/(p−1)
|∇v|p dx,

where in the last step, we have used the Hölder’s inequality and Young’s inequality.
Hence, by canceling similar terms, we obtain

1
|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx

≤
2τ

|Bκr (x0)|

∫
Bκr (x0)

|∇v|p dx +
C(3, p)τ (p−2)/(p−1)

|Bκr (x0)|

∫
Bκr (x0)

|λû|αp/(p−1)
|∇v|p dx .
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For q1 greater than but sufficiently close to p and depending only on 3, p, we write

q1 =
αpp1

(p− 1)(p1− p)
> p.

Using Hölder’s inequality, the self-improving regularity estimate (i.e., Lemma 2.9),
and (3-10), we then obtain

1
|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx

≤
2τ

|Bκr (x0)|

∫
Bκr (x0)

|∇v|p dx +
[
C(3, p)τ (p−2)/(p−1)

×

(
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|q1

)(p1−p)/p1
(

1
|Bκr (x0)|

∫
Bκr (x0)

|∇v|p1 dx
)p/p1

]
≤ C(3, n, p)

[
2τ + τ (p−2)/(p−1)

(
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|q1 dx
)(p1−p)/p1

]
×

(
1

|B2κr (x0)|

∫
B2κr (x0)

|∇v|p dx
)
.

Now, from the well-known John–Nirenberg theorem, we further write

1
|Bκr (x0)|

∫
Bκr (x0)

|λû|q1 dx

=
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|p/2|λû|q1−p/2 dx

≤

(
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|p dx
)1/2( 1

|Bκr (x0)|

∫
Bκr (x0)

|λû|2q1−p dx
)1/2

≤ C(n, α, p)[[λu]]q1−p/2
BMO(BR ,R)

(
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|p dx
)1/2

= C(n,M, α, p)
(

1
|Bκr (x0)|

∫
Bκr (x0)

|λû|p dx
)1/2

.

Therefore,

(3-13)
1

|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx

≤ C(3,n,α, p)
[
2τ+τ (p−2)/(p−1)

(
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|p dx
)(p1−p)/2p1

]
×

(
1

|B2κr (x0)|

∫
B2κr (x0)

|∇v|p dx
)
.
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From (3-11) and [[λu]]BMO(B2R,R) ≤ M , we can take τ = 1
2 in (3-13) to obtain in

particular(
1

|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx
)1/p

≤ C(3,M, n, α, p)
(

1
|B2κr (x0)|

∫
B2κr (x0)

|∇v|p dx
)1/p

≤ C1(3,M, n, p)
[
ε′+M(rκn/pλ)−1].

Hence, if εκn/pλr
4MC1(3,M, n, p)

≥ 1, we choose ε′ sufficiently small so that

C1(3, n, p)ε′ < ε

4
.

Then (
1

|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx
)1/p

≤
ε

2
.

From this, the first estimate in (3-9), and the triangle inequality, the first estimate
of (3-8) follows. Therefore, it remains to consider the case

(3-14) λκn/prε ≤ 4MC1(3,M, n, p).

In this case, we first note that from our choice that ε′ ≤ ε, we particularly have

λκn/pε′r ≤ C(3,M, n, p).

Then, it follows from the second estimate in (3-9) that

λ

(
1

|Br (x0)|

∫
Br (x0)

|v|p dx
)1/p

≤ C(3,M, n, p).

On the other hand, from (3-3), and the scaling invariances discussed at the beginning
of Section 2, we observe that ṽ(x)= λv(x − x0) is a weak solution of

div [ Â0(x,∇ṽ)] = 0 in Br ,

where Â0(x, ξ)= λp−1 A(x − x0, λu(x − x0), λ
−1ξ) for all x ∈ Br , ξ ∈ Rn . From

this and Remark 2.1, we can apply Hölder’s regularity theory in Lemma 2.8 for the
solution ṽ to find that there is β ∈ (0, 1) depending only on 3,M, n, p such that

(3-15)
λ‖v‖L∞(B5r/6(x0)) ≤ C(3,M, n, p),

λ|v(x)− v(y)| ≤ C(3,M, p, n)κβ ∀x, y ∈ Bκr (x0).
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The estimate (3-15), (3-10), and (3-13) imply that

(3-16)
1

|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx

≤ C(3,M,n,α, p)

×

[
2τ+ τ (p−2)/(p−1)

(
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|p dx
)(p1−p)/2p1

]
.

On the other hand, for v′ = v+ ū Bκr , we can write

1
|Bκr (x0)|

∫
Bκr(x0)

|λû|p dx

≤C(p)
[

1
|Bκr (x0)|

∫
Bκr (x0)

|λ(u−v′)|p dx+
1

|Bκr (x0)|

∫
Bκr (x0)

|λ(v′−v̄′Bκr (x0))|
p dx

+
1

|Bκr (x0)|

∫
Bκr (x0)

|λ(ū Bκr (x0)− v̄
′
Bκr (x0))|

p dx
]

≤ C(n, p)
[

1
κn|Br (x0)|

∫
Br (x0)

|λ(u− v′)|p dx

+
1

|Bκr (x0)|

∫
Bκr (x0)

|λ(v− v̄Bκr (x0))|
p dx

]
.

Since u− v′ ∈W 1,2
0 (Br (x0)), we can use Poincaré’s inequality for the first term in

the right-hand side of the last estimate to obtain(
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|p dx
)1/p

≤ C(3, n, p)
[
λr
κn/p

(
1

|Br (x0)|

∫
Br (x0)

|∇u−∇v|p dx
)1/p

+ λ sup
x,y∈Bκr (x0)

|v(x)− v(y)|
]
.

From this estimate, (3-9), and (3-15), we infer that(
1

|Bκr (x0)|

∫
Bκr (x0)

|λû|p dx
)1/p

≤ C(3, p, n)
[
λrε′+ κβ

]
.

From this, we can control the estimate in (3-16) as

1
|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx

≤ C(3,M, n, α, p)
[
2τ + τ (p−2)/(p−1)(λrε′+ κβ)p(p1−p)/2p1

]
.

Then, combining this last estimate with (3-14), we obtain
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1
|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx

≤ C2(3,M, α, p, n)
[
τ + τ (p−2)/(p−1)

(
ε′

εκn/p + κ
β
)p(p1−p)/2p1

]
.

We firstly choose τ > 0 so that

C2(3,M, n, α, p)τ = 1
2

(
ε

2

)p
.

Next, we choose κ sufficiently small depending only on 3, n, α, p, and ε so that

κβ ≤
1
2

[
(ε/2)p

4C2(3,M, p, α, n)τ (p−2)/(p−1)

]2p1/p(p1−p)

,

and finally we choose ε′ ∈ (0, ε/2) sufficiently small so that

ε′ ≤
κn/pε

2

[
(ε/2)p

4C2(3,M, p, α, n)τ (p−2)/(p−1)

]2p1/p(p1−p)

.

From these choices, it follows that(
1

|Bκr (x0)|

∫
Bκr (x0)

|∇v−∇w|p dx
)1/p

≤
ε

2
.

The first estimate (3-8) then holds thanks to this estimate, the first estimate in (3-9),
and the triangle inequality.

Finally, to complete the proof, it remains to verify the second estimate of (3-8).
By using the triangle inequality, the assumption of the lemma, and the fact that
ε ∈ (0, 1), we see that(

/

∫
Bκr (x0)

|∇w|p dx
)1/p

≤

(

/

∫
Bκr (x0)

|∇w−∇u|p dx
)1/p

+

(

/

∫
Bκr (x0)

|∇u|p dx
)1/p

≤ ε+

(
2n /

∫
B2κr (x0)

|∇u|p dx
)1/p

≤ ε+ 2n/p
≤ 1+ 2n/p

= C0(n, p).

The proof is therefore complete. �

Summarizing these efforts, we can state and prove the main result of the section.

Proposition 3.3. Let 3 > 0, p > 1, and α ∈ (0, 1] be fixed. Then, for every
ε ∈ (0, 1), there exist sufficiently small numbers κ = κ(ε,3,M, p, n, α) ∈

(
0, 1

2

]
and δ = δ(ε,3,M, α, n, p) ∈ (0, ε) such that the following holds. Assume that
A : B2R ×K×Rn

→ Rn such that (1-2)–(1-4) and (1-8) hold for some R > 0 and
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some open interval K ⊂ R, and assume that

/

∫
B2r (x0)

|F|p dx ≤ δ p

for some x0 ∈ B R and some r ∈ (0, R/2). Then for every λ≥ 0, if u ∈W 1,p(B2R)

is a weak solution of (3-1) satisfying

/

∫
B4κr (x0)

|∇u|p dx ≤ 1, /

∫
B2r (x0)

|∇u|p dx ≤ 1, and [[λu]]BMO(BR,R) ≤ M,

then there is h ∈W 1,p(B7κr/2(x0)) such that

(3-17) /

∫
B7κr/2(x0)

|∇u−∇h|p dx ≤ ε p, ‖∇h‖L∞(B3κr (x0)) ≤ C(3, n, p).

Proof. For given ε, let

δ =min{δ0(ε/[2C0(n, p)],3, n, p), δ2(ε/2,3,M, α, p)},

where δ0 is defined in Lemma 2.12, δ2 is defined in Lemma 3.2, and C0(n, p) > 1 is
a constant defined in (3-8). We now prove our Lemma 3.2 with this choice of δ, κ .
Note that since both numbers δ0, δ2 are independent of λ, so are δ, κ . If λ = 0,
then our proposition follows directly from Lemma 2.12 with G replaced by F and
for κ = 1

2 . Also, when λ > 0, let κ be a number defined as in Lemma 3.2. Then
our proposition follows directly by applying Lemma 3.2 with r replaced by 2r ,
Lemma 2.12 with G = 0 and r replaced by 2κr , and the triangle inequality. �

4. Level set estimates and proof of Theorem 1.1

Level set estimates. Recall that the Hardy–Littlewood maximal function M( f ) is
defined in (2-3), and MU ( f ) = M( fχU ) for an open set U and its characteristic
function χU . Our first result of this subsection is the following important lemma on
the density of the level sets of a solution u of (3-1).

Lemma 4.1. Let 3,M be positive numbers, p, γ > 1, α ∈ (0, 1], and let ε > 0 be
sufficiently small. Then there exist a sufficiently large number N = N (3, n, p)≥ 1
and two positive sufficiently small numbers κ = κ(ε,3,M, p, n, γ, α) ∈

(
0, 1

2

]
and

δ= δ(ε,3,M, p, n, γ, α)∈ (0, ε) such that the following statement holds. Suppose
that A : B2R ×K×Rn

→ Rn such that (1-2)–(1-4) and (1-8) hold for some R > 0
and some open interval K⊂R. Suppose also that u ∈W 1,p(B2R) is a weak solution
of (3-1) satisfying [[λu]]BMO(BR ,R) ≤ M with some λ≥ 0. If y ∈ BR and ρ ∈ (0, κ0)

such that

Bρ(y)∩
{

BR :MB2R (|∇u|p)≤ 1
}
∩
{

BR :MB2R (|F|
p)≤ δ p} , ∅
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for κ0 =min{1, R}κ/6, then

(4-1) ω
({

x ∈ BR :MB2R (|∇u|p) > N
}
∩ Bρ(y)

)
≤ εω(Bρ(y))

for ω ∈ Aq with [ω]Aq ≤ γ and q > 1.

Proof. The proof is standard using Proposition 3.3. However, as Proposition 3.3
is stated differently compared to the other similar approximation estimates in the
literature, details of the proof of this lemma are required. For a given ε > 0, let
ε′ > 0 be a positive number to be determined depending only on ε, 3, n, p, and γ .
Then let κ = κ(ε′,3,M, p, n, α) and δ = δ(ε′,3,M, p, n, α) be the numbers
defined in Proposition 3.3. We prove the lemma with this choice of δ, κ . By the
assumption, we can find

(4-2) x0 ∈ Bρ(y)∩
{

BR :MB2R (|∇u|p)≤ 1
}
∩
{

BR :MB2R (|F|
p)≤ δ p}.

Let r = κ−1ρ ∈ (0, R/6). Since ρ ∈ (0, κ0) and κ is sufficiently small, we have
B4r (y)⊂ B5r (x0)⊂ B2R . From this and (4-2), it follows that

/

∫
B4r (y)
|∇u|p dx ≤

|B5r (x0)|

|B4r (y)|

/

∫
B5r (x0)

|∇u|p dx ≤
(5

4

)n
,

/
∫

B4r (y)
|F|p dx ≤

|B5r (x0)|

|B4r (y)|

/

∫
B5r (x0)

|F|p dx ≤
(5

4

)n
δ p.

Moreover, we also have B8ρ(y)⊂ B9ρ(x0)⊂ B2R and therefore
/

∫
B8κr (y)

|∇u|p dx = /

∫
B8ρ(y)
|∇u|p dx ≤

|B9ρ(x0)|

|B8ρ(y)|

/

∫
B9ρ(x0)

|∇u|p dx ≤
(9

8

)n
.

Hence, all conditions in Proposition 3.3 are satisfied with some suitable scaling.
From this and our choice of κ, δ, we can apply Proposition 3.3 to find a function
h ∈W 1,p(B7ρ/2(y)) satisfying

/

∫
B7ρ/2(y)

|∇u−∇h|p dx ≤ (ε′)p
(3

2

)n
, ‖∇h‖L∞(B3ρ(y)) ≤ C∗(3, n, p),

where in the above estimates, we have used the fact that κr = ρ. Let us now denote

N =max{2pC p
∗
, 2n
}.

We prove (4-1) with this choice of N . To this end, we firstly prove that

(4-3)
{

x ∈ Bρ(y) :MB7ρ/2(y)(|∇u−∇h|p)(x)≤ C p
∗

}
⊂
{

x ∈ Bρ(y) :MB2R (|∇u|p)(x)≤ N
}
.
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To prove this statement, let x be a point in the set on the left side of (4-3). We
verify that

(4-4) MB2R (|∇u|p)(x)≤ N .

Let ρ ′ > 0 be any number. If ρ ′ < 2ρ, then Bρ′(x)⊂ B3ρ(y)⊂ B2R , and it follows
that(

/

∫
Bρ′ (x)
|∇u(z)|p dz

)1/p

≤

(

/

∫
Bρ′ (x)
|∇u(z)−∇h(z)|p dz

)1/p

+

(
/

∫
Bρ′ (x)
|∇h(z)|p dz

)1/p

≤
(
MB7ρ/2(y)(|∇u−∇h|p)(x)

)1/p
+‖∇h‖L∞(B3ρ(y)) ≤ 2C∗ ≤ N 1/p.

On the other hand, if ρ ′ ≥ 2ρ, we note that Bρ′(x)⊂ B2ρ′(x0), and it follows from
this and (4-2) that

1
|Bρ′(x)|

∫
Bρ′ (x)∩B2R

|∇u(z)|p dz

≤
|B2ρ′(x0)|

|Bρ′(x)|
1

|B2ρ′(x0)|

∫
B2ρ′ (x0)∩B2R

|∇u(z)|p dz ≤ 2n
≤ N .

Hence, (4-4) is verified and therefore (4-3) is proved. Observe that (4-3) is in fact
equivalent to

(4-5)
{

x ∈ Bρ(y) :MB2R (|∇u|p)(x) > N
}

⊂ E :=
{

x ∈ Bρ(y) :MB7ρ/2(y)(|∇u−∇h|p)(x) > C p
∗

}
.

On the other hand, from the weak type (1, 1) estimate of the Hardy–Littlewood
maximal function (see Lemma 2.6), it is true that

|E |
|Bρ(y)|

≤
C(n)
C p
∗

/

∫
B7ρ/2(y)

|∇u−∇h|p dz ≤ C1(3, n, p)(ε′)p.

From this and the doubling property of Aq-weights as in (ii) of Lemma 2.4, it
follows that

ω(E)
ω(Bρ(y))

≤ C(n, γ )
(
|E |
|Bρ(y)|

)β
≤ C ′(3, n, p, γ )(ε′)pβ

for some β = β(γ, n) > 0. Therefore, by choosing ε′ depending on ε,3, n, p, γ
such that

C ′(3, n, p, γ )(ε′)pβ
= ε,

we obtain
ω(E)≤ εω(Bρ(y)).
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From this estimate and the definition of E in (4-5), the estimate (4-1) follows and
the proof is complete. �

The following level set estimate is a direct corollary of Lemma 4.1 and Lemma 2.7,
which is also the main result of this subsection.

Lemma 4.2. Let 3,M be positive numbers, p, γ > 1, α ∈ (0, 1], and let ε > 0 be
sufficiently small. Then there exist a sufficiently large number N = N (3, n, p)≥ 1
and a sufficiently small number δ = δ(ε,3,M, p, n, α) ∈ (0, ε) such that the
following statement holds. Assume that A : B2R × K × Rn

→ Rn is such that
(1-2)–(1-4) and (1-8) hold for some R > 0 and some open interval K ⊂ R. Suppose
also that for any λ≥ 0, if u ∈W 1,p(B2R) is a weak solution of (3-1) satisfying

(4-6)
[[λu]]BMO(BR,R) ≤ M,

ω({BR :MB2R (|∇u|p) > N })≤ εω(Bκ0(y)) ∀ y ∈ B R,

for some ω ∈ Aq with q > 1 and [ω]Aq ≤ γ , then

(4-7) ω
({

BR :MB2R (|∇u|p) > N
})

≤ ε1
[
ω
({

BR :MB2R (|∇u|p) > 1
})
+ω

({
BR :MB2R (|F|

p) > δ p})],
with ε1 as defined in Lemma 2.7 and κ0 as defined in Lemma 4.1.

Proof. Let N , κ0, δ be defined as in Lemma 4.1. We apply Lemma 2.7 with

C =
{

x ∈ BR :MB2R (|∇u|p)(x) > N
}

and

D =
{

x ∈ BR :MB2R (|∇u|p)(x) > 1
}
∪
{

x ∈ BR :MB2R (|F|
p)(x) > δ p}.

Observe that by the second condition in (4-6), (i) of Lemma 2.7 is satisfied. On
the other hand, by Lemma 4.1, (ii) of Lemma 2.7 also holds true. Therefore, both
conditions of Lemma 2.7 are valid, and (4-7) follows directly from Lemma 2.7. �

Proof of the interior W1,q-regularity estimates. From Lemma 4.2 and an iterating
procedure, we obtain the following lemma:

Lemma 4.3. Let 3,M, p, α, ε, N , δ, κ, κ0 and A, R be as in Lemma 4.2. Then,
for any λ≥ 0, if u ∈W 1,p(B2R) is a weak solution of (3-1) satisfying

[[λu]]BMO(BR,R) ≤ M and ω
({

BR :MB2R (|∇u|p) > N
})
≤ εω(Bκ0(y)) ∀y ∈ BR

for some ω ∈ Aq with q > 1 and [ω]Aq ≤ γ , then with ε1 defined as in Lemma 2.7,
and for any k ∈ N, the following estimate holds:

(4-8) ω
({

BR :MB2R (|∇u|p) > N k})
≤ εk

1ω
({

BR :MB2R(|∇u|p)>1
})
+

k∑
i=1

εi
1ω
({

BR :MB2R(|F|
p)>δ pN k−i}).
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Proof. The proof is based on induction on k ∈ N, and an iteration of Lemma 4.2.
See, for example, [Phan 2017, Lemma 4.10]. �

We now can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof now is quite standard. However, we include it
here for completeness, and for the transparency regarding the role of the scaling
parameter λ. Let N = N (3, p, n) be defined as in Lemma 4.3. For q > 1, we
choose ε > 0 sufficiently small and depending only on 3, n, p, q , and γ such that

ε1 N q
=

1
2
,

where ε1 is defined as in Lemma 4.3. With this ε, we can now choose

δ = δ(ε,3,M, p, q,n,α), κ = κ(ε,3,M, p, q,n,γ,α), κ0 =min{1, R}κ/6

as determined by Lemma 4.3. Assume that the assumptions of Theorem 1.1 hold
with this choice of δ. For λ ≥ 0, let us assume that u is a weak solution of (3-1)
satisfying [[λu]]BMO(BR) ≤ M , and let

(4-9) E = E(λ, N )=
{

BR :MB2R (|∇u|p) > N
}
.

We now prove the estimate in Theorem 1.1 with the additional assumption that

(4-10) ω(E)≤ εω(Bκ0(y)) ∀y ∈ BR.

Let us now consider the sum

S =
∞∑

k=1

N qkω
({

BR :MB2R (|∇u|p) > N k}).
From (4-10), we can apply Lemma 4.3 to obtain

S ≤
∞∑

k=1

N kq
k∑

i=1

εi
1ω
({

BR :MB2R (|F|
p) > δ p N k−i})
+

∞∑
k=1

(N qε1)
kω
({

BR :MB2R (|∇u|p) > 1
})
.

By Fubini’s theorem, the above estimate can be rewritten as

(4-11) S ≤
∞∑
j=1

(N qε1)
j
∞∑

k= j

N q(k− j)ω
({

BR :MB2R (|F|
p) > δ p N k− j})

+

∞∑
k=1

(N qε1)
kω
({

BR :MB2R (|∇u|p) > 1
})
.

Observe that
ω
({

BR :MB2R (|∇u|p) > 1
})
≤ ω(BR).
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From this, the choice of ε, Lemma 2.5, and (4-11) it follows that

S ≤ C
[
‖MB2R (|F|

p)‖
q
Lq (BR,ω)

+ω(BR)
]
.

Applying Lemma 2.5 again, we infer that

‖MB2R (|∇u|p)‖qLq (BR,ω)
≤ C

[
‖MB2R (|F|

p)‖
q
Lq (B2R,ω)

+ω(BR)
]
.

Also, by Lebesgue’s differentiation theorem, it is true that

|∇u(x)|p ≤MB2R (|∇u|p)(x) a.e. x ∈ BR.

Hence,
‖∇u‖pq

L pq (BR,ω)
≤ C

[
‖MB2R (|F|

p)‖
q
Lq (BR,ω)

+ω(BR)
]
.

From this and Lemma 2.6, it follows that

(4-12) ‖∇u‖L pq (BR,ω) ≤ C
[
‖F‖L pq (B2R ,ω)+ω(BR)

1/q].
Summarizing the efforts, we conclude that (4-12) holds true as long as u is a weak
solution of (3-1) for λ≥ 0 and (4-10) holds.

It now remains to remove the additional assumption (4-10). To this end, assume
all assumptions in Theorem 1.1 hold, and let u be a weak solution of (3-1) with
some λ ≥ 0. Let µ > 0 sufficiently large to be determined, and let λ′ = λµ ≥ 0,
uµ = u/µ, and Fµ = F/µ. We note that uµ is a weak solution of

(4-13) div [ Â(x, λ′uµ,∇uµ)] = div [|Fµ|p−2 Fµ] in B2R,

where
Â(x, z, ξ)=

A(x, z, µξ)
µp−1 .

Note that by Remark 2.1, Â satisfies (1-2)–(1-4) with the same constants 3, p, α.
Moreover, Â also satisfies (1-8). We then denote

Eµ =
{

BR :MB2R (|∇uµ|p) > N
}

and assume that

(4-14) K0 =

(
1
|B2R|

∫
B2R

|∇u|p dx
)1/p

> 0.

We claim that we can choose µ = CK0 with some sufficiently large constant C
depending only on 3, M , p, q , n, and R/κ0 such that

(4-15) ω(EM)≤ εω(Bκ0(y)) ∀y ∈ BR.

If this holds, we can apply (4-12) for uµ, which is a weak solution of (4-13), to
obtain

‖∇uµ‖L pq (BR ,ω) ≤ C
[
‖Fµ‖L pq (B2R,ω)+ω(BR)

1/q].
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Then, by multiplying this equality with µ, we obtain

‖∇u‖L pq (BR ,ω) ≤ C
[
‖F‖L pq (B2R,ω)+ω(BR)

1/q K0
]
.

The proof of Theorem 1.1 is therefore complete if we can prove (4-15). To this end,
using the doubling property of ω ∈ Aq as in (i) of Lemma 2.4, we have

ω(Eµ)
ω(Bκ0(y))

=
ω(Eµ)
ω(B2R)

ω(B2R)

ω(Bκ0(y))
≤ γ

ω(Eµ)
ω(B2R)

(
2R
κ0

)nq

.

From this, and using (ii) of Lemma 2.4 again, we can find β = β(γ, n) > 0 such
that

(4-16)
ω(Eµ)

ω(Bκ0(y))
≤ C(γ, n)

(
2R
κ0

)nq(
|Eµ|
|B2R|

)β/p

.

Now, by the definition of Eµ and the weak type (1, 1) estimate for the maximal
function, we see that

|Eµ|
|B2R|

=
∣∣{BR :MB2R (|∇u|p) > Nµp}∣∣ / |B2R|

=
C(n, p)

Nµp

1
|B2R|

∫
B2R

|∇u|p dx ≤
C(p, n)K p

0

Nµp ,

where K0 is defined in (4-14). From this estimate and (4-16), it follows that

ω(Eµ)
ω(Bκ0(y))

≤ C∗(3, γ, p, n)
(

2R
κ0

)nq(K0

µ

)β
.

Now we choose µ such that

µ= K0

[
ε−1C∗(3, γ, p, n)

(
2R
κ0

)nq ]1/β

.

Then it follows that

ω(Eµ)≤ εω(Bκ0(y)) ∀y ∈ BR.

This proves (4-15) and completes the proof of Theorem 1.1. �
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