Vol. 297, No. 2, 2018

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Editorial Board
Subscriptions
Officers
Special Issues
Submission Guidelines
Submission Form
Contacts
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Author Index
To Appear
 
Other MSP Journals
Duality for differential operators of Lie–Rinehart algebras

Thierry Lambre and Patrick Le Meur

Vol. 297 (2018), No. 2, 405–454
Abstract

Let (S,L) be a Lie–Rinehart algebra over a commutative ring R. This article proves that, if S is flat as an R-module and has Van den Bergh duality in dimension n, and if L is finitely generated and projective with constant rank d as an S-module, then the enveloping algebra of (S,L) has Van den Bergh duality in dimension n + d. When, moreover, S is Calabi–Yau and the d-th exterior power of L is free over S, the article proves that the enveloping algebra is skew Calabi–Yau, and it describes a Nakayama automorphism of it. These considerations are specialised to Poisson enveloping algebras. They are also illustrated on Poisson structures over two- and three-dimensional polynomial algebras and on Nambu–Poisson structures on certain two-dimensional hypersurfaces.

Keywords
Lie–Rinehart algebra, enveloping algebra, Calabi–Yau algebra, skew Calabi–Yau algebra, Van den Bergh duality
Mathematical Subject Classification 2010
Primary: 16E35, 16E40, 16S32, 16W25
Secondary: 17B63, 17B66
Milestones
Received: 9 January 2018
Revised: 6 June 2018
Accepted: 17 July 2018
Published: 20 December 2018
Authors
Thierry Lambre
Laboratoire de Mathématiques Blaise Pascal
UMR6620 CNRS
Université Clermont Auvergne
Campus des Cézeaux
3 place Vasarely
63178 Aubière cedex
France
Patrick Le Meur
Laboratoire de Mathématiques Blaise Pascal
UMR 6620 CNRS
Université Clermont Auvergne
Campus des Cézeaux
3 place Vasarely
63178 Aubière cedex
France
Université Paris Diderot
Sorbonne Université, CNRS
Institut de Mathématiques de Jussieu-Paris Rive Gauche
IMJ-PRG, F-75013
Paris
France