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YAMABE FLOW WITH PRESCRIBED SCALAR CURVATURE

INAS AMACHA AND RACHID REGBAOUI

We study the Yamabe flow corresponding to the prescribed scalar curvature
problem on compact Riemannian manifolds with negative scalar curvature.
The long time existence and convergence of the flow are proved under appro-
priate conditions on the prescribed scalar curvature function.

1. Introduction

The prescribed scalar curvature problem on a compact Riemannian manifold (M, g0)

of dimension n ≥ 3, consists of finding a conformal metric g to g0 whose scalar
curvature Rg is equal to a given function f ∈ C∞(M). If we set g = u4/(n−2)g0,
where 0< u ∈ C∞(M), then we have

Rg = u−
n+2
n−2 (−cn1u+ R0u),

where 1 is the Laplace operator associated with g0, R0 is the scalar curvature of
g0 and cn = 4 n−1

n−2 .
Then the prescribed scalar curvature problem,

Rg = f,

is equivalent to solving the nonlinear PDE

(1-1) −cn1u+ R0u = f u
n+2
n−2

on the space of smooth positive functions on M. The solvability of this equation
depends on R0 and the prescribed function f . When f is constant, (1-1) becomes
the famous Yamabe equation whose resolution has been a challenging problem in
geometric analysis for a long time. See [Aubin 1976; Hebey and Vaugon 1993;
Lee and Parker 1987; Schoen 1984; 1991] for more details on the Yamabe problem,
and [Ambrosetti and Malchiodi 1999; Bismuth 2000; Escobar and Schoen 1986;
Kazdan and Warner 1975; Rauzy 1995; Vázquez and Véron 1991], concerning the
prescribed scalar curvature problem.

By changing g0 conformally if necessary, we may always assume that R0 satisfies
one of the conditions, R0 > 0 , R0= 0 or R0 < 0 everywhere on M. Equation (1-1)
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has a variational structure since there are different functionals whose Euler–Lagrange
equations are equivalent to (1-1). When R0 < 0, the following functional seems
more appropriate to handle the prescribed scalar curvature problem:

(1-2) E(g)=
∫

M
Rg dVg −

n−2
n

∫
M

f dVg,

where g = u4/(n−2)g0 belongs to the conformal class [g0] of g0, Rg is the scalar
curvature of g and dVg = u2n/(n−2)dVg0 is the volume element of g.

Simple computations ([Besse 1987]) show the L2-gradient of E is n−2
2n (Rg − f )g,

and then, after changing time by a constant scale, the associated negative gradient
flow equation is

(1-3)
{
∂t g =−(Rg − f )g,
g(0)= g0,

where g0
= u4/(n−2)

0 g0 is a given metric in the conformal class of g0.
Since (1-3) preserves the conformal structure of M, then any smooth solution

of (1-3) is of the form g(t)=u(t)4/(n−2)g0, where 0<u(t)∈C∞(M). For simplicity
we have used the notation u(t) := u(t, · ), t ∈ I for any function u defined on I×M,
where I is a subset of R. In terms of u(t), the flow (1-3) may be written in the
equivalent form:

(1-4)
{
∂t uN

=
n+2

4 (cn1u− R0u+ f uN ),

u(0)= u0 ∈ C∞(M), u0 > 0,

where N = n+2
n−2 .

Our aim in this paper is to investigate this gradient flow by proving its longtime
existence and analysing its asymptotic behaviour when t→+∞.

Our first result is the following existence theorem:

Theorem 1.1. Suppose that R0 < 0 and let f ∈ C∞(M). Then for any g0
=

u4/(n−2)
0 g0 with 0<u0 ∈C∞(M), there exists a unique solution g(t)=u(t)4/(n−2)g0

of (1-3) defined on [0,+∞), where 0 < u ∈ C∞([0,+∞)× M). Moreover, the
functional E is decreasing along the solution g(t), that is,

d
dt

E(g(t))≤ 0 for all t ∈ [0,+∞).

We note here that apart from the smoothness of f , no further assumptions on the
function f are needed in Theorem 1.1. However, for the longtime behaviour, it is
necessary to assume additional conditions in order to get the convergence of the
flow. Indeed, if f ≥ 0, by applying the maximum principle to (1-4), we can easily
check that

u(t)≥
(
min

M
u4/(n−2)

0 +min
M
|R0|t

) n−2
4 →+∞ as t→+∞.

So if we want to get the convergence of the flow, it is necessary to assume at least
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that f is negative somewhere on M. We note that this last condition is also necessary
for the resolution of (1-1) since it is well known that if the negative gradient flow
associated with a functional F converges (in some sense), then its limit is a critical
point of F .

Before giving conditions on f ensuring the convergence of the flow, let us fix
some notation: if �⊂ M is an open set, we denote by λ� the first eigenvalue of the
conformal Laplacian L =−cn1+R0 on� with zero Dirichlet boundary conditions,
that is,

λ� = inf
06=u∈H1

0 (�)

∫
M(cn|∇u|2+ R0u2) dVg0∫

M u2 dVg0

.

We then assume the following conditions on f :
There exists an open set �⊂ M such that

(H1) λ� > 0 and f < 0 on M \�

and

(H2) sup
x∈�

f (x)≤ C� inf
x∈M\�

| f (x)|,

where C� is a positive constant depending only on �.
We then have the following result:

Theorem 1.2. Suppose that R0 < 0 and that f ∈ C∞(M) satisfies conditions (H1)
and (H2). Then there exists a function 0 < ū ∈ C∞(M) such that for any smooth
metric g0

= u4/(n−2)
0 g0 with 0 < u0 ≤ ū, the flow g(t) = u(t)4/(n−2)g0 given by

Theorem 1.1 converges in the C∞-topology to a conformal metric g∞ = u4/(n−2)
∞ g0

whose scalar curvature is f , that is, Rg∞ = f .

A particular interesting case is when the function f satisfies f (x) < 0 for almost
all x ∈ M. In this case conditions (H1) and (H2) are automatically satisfied and
then we have the following corollary:

Corollary 1.3. Suppose that R0 < 0 and f ∈ C∞(M) such that f < 0 almost
everywhere on M. Then there exists a function 0 < ū ∈ C∞(M) such that for
any smooth metric g0

= u4/(n−2)
0 g0 with 0< u0 ≤ ū, the flow g(t)= u(t)4/(n−2)g0

given by Theorem 1.1 converges in the C∞-topology to a conformal metric g∞ =
u4/(n−2)
∞ g0 whose scalar curvature is f , that is, Rg∞ = f .

It is natural to ask if conditions (H1) and (H2) in Theorem 1.2 are necessary.
The following theorem gives a partial answer to this question:

Theorem 1.4. Suppose that R0 < 0 and let f ∈ C∞(M) such that condition (H1)
is not satisfied, that is, for any open set � ⊂ M such that f > 0 on M \�, we
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suppose λ� ≤ 0. Then for any 0< u0 ∈ C∞(M), the solution u(t) of (1-4) satisfies,
for some constant C > 0 depending only on u0, g0, f ,

max
x∈M

u(t, x)≥ Ct
n−2
n+2 →+∞ as t→+∞.

We note here that condition (H1) is conformally invariant. Similar conditions to
(H1) and (H2) were found by many authors to solve (1-1) by the direct method of
elliptic PDEs; see [Bismuth 2000; Rauzy 1995; Vázquez and Véron 1991] for more
details. To our knowledge, the only known results on Yamabe type flow on dimen-
sion n ≥ 3 concern the case where f is constant or M = Sn. The Yamabe flow was
first introduced by Hamilton [1988] and has been the subject of several studies; see
[Brendle 2005; 2007; Chow 1992; Schwetlick and Struwe 2003; Ye 1994]. For the
case when f is nonconstant, we mention the work of Struwe [2005] about the Niren-
berg’s problem on the sphere S2, and the results of Chen and Xu [2012] concerning
Sn, n ≥ 3. A general evolution problem related to the prescribed Gauss curvature
on surfaces was studied by Baird, Fardoun and Regbaoui [Baird et al. 2004].

The paper is organized as follows. In Section 2 we prove the global existence of
the flow by establishing local Ck-estimates on the solution u of (1-4). In Section 3,
we study the asymptotic behaviour of the flow when t→+∞. In particular we prove
uniform Ck-estimates on u which are necessary to get the convergence of the flow.

2. Global existence of the flow

In this section we shall establish some estimates on the solution u of (1-4) which will
be an important tool in proving that the flow g(t) is globally defined on [0,+∞).
In this section we suppose that R0 < 0 and f ∈ C∞(M).

As already mentioned in the previous section, (1-3) is equivalent to (1-4), so it
suffices to prove the existence of a solution u(t) of (1-4) defined on [0,+∞) to
obtain a metric g(t) solution of (1-3) defined on [0,+∞). Since (1-4) is a parabolic
equation (on the set of smooth positive functions on [0, T )×M, for any T > 0),
there exists a smooth solution u(t) of (1-4) defined on a maximal interval [0, T ∗)
satisfying u(t) > 0 on [0, T ∗). Thus we have a solution g(t)= u4/(n−2)g0 of (1-3)
defined on a maximal interval [0, T ∗). For simplicity, we shall write u instead
of u(t) and g instead of g(t).

Now, we derive some properties of g which will be important later. One can
check by using (1-4) that the scalar curvature Rg satisfies the equation

(2-1) ∂t Rg = (n− 1)1g(Rg − f )+ Rg(Rg − f ),

where 1g is the Laplacian associated with g(t).
A simple computation using (2-1) gives

(2-2) d
dt

E(g)=−
n− 2

2

∫
M
(Rg − f )2 dVg,
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so the functional E is decreasing along the flow g(t). If we set

E(u) := E(g)= E
(
u

4
n−2 g0

)
=

∫
M

(
cn|∇u|2+ R0u2

−
n−2

n
f u

2n
n−2

)
dVg0,

then (2-2) can be written in terms of u:

(2-3) d
dt

E(u)=− 8
n−2

∫
M
|∂t u|2u

4
n−2 dVg0 ≤ 0.

The following lemma will be very useful to prove integral estimates on the
solution g.

Lemma 2.1. We have for any p > 1,

d
dt

∫
M
|Rg− f |p dVg =−

4(n−1)(p−1)
p

∫
M
|∇g|Rg− f |

p
2 |2g dVg

+

(
p−n

2

)∫
M
(Rg− f )|Rg− f |p dVg+p

∫
M

f |Rg− f |p dVg,

where ∇g is the gradient with respect to the metric g and | · |g is the Riemannian
norm with respect to g.

Proof. We have for any p ≥ 1

d
dt

∫
M
|Rg− f |p dVg = p

∫
M
|Rg− f |p−2(Rg− f )∂t Rg dVg+

1
2

∫
M

Rg trg(∂t g)dVg.

Using (1-3) and (2-1), it follows that

d
dt

∫
M
|Rg − f |p dVg

= (n− 1)p
∫

M
|Rg − f |p−2(Rg − f )1g(Rg − f )

+ p
∫

M
Rg|Rg − f |p −

n
2

∫
M
|Rg − f |p(Rg − f ) dVg

=−
4(n− 1)(p− 1)

p

∫
M
|∇g|Rg − f |

p
2 |

2
g dVg

+

(
p− n

2

) ∫
M
(Rg − f )|Rg − f |p dVg + p

∫
M

f |Rg − f |p dVg. �

In order to prove that the solution g(t) = u(t)4/(n−2)g0 is globally defined on
[0,+∞), we need upper and lower bounds on u(t).

Proposition 2.2. Let g(t) = u(t)4/(n−2)g0 be the solution of (1-3) defined on a
maximal interval [0, T ∗). Then we have for any t ∈ [0, T ∗),

(2-4) min
(
C0,min

M
u0
)
≤ u(t)≤max

(
1,max

M
u0
)
eC1t ,
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where

C0 =
(
min

M
|R0|/max

M
| f |
) n−2

4 , C1 =
n−2

4
(
max

M
|R0| +max

M
| f |
)
.

Proof. The proof uses an elementary maximum principal argument. Indeed, fix
t ∈ [0, T ) and let (t0, x0) ∈ [0, t]×M such that u(t0, x0)=min[0,t]×M u. If t0 = 0,

min
[0,t]×M

u =min
M

u0,

so the first inequality in (2-4) is proved in this case. Now suppose that t0 > 0. We
have then ∂t u(t0, x0) ≤ 0 and 1u(t0, x0) ≥ 0. Thus after substituting in (1-4) we
obtain that

0≥−R0(x0)u(t0, x0)+ f (x0)uN (t0, x0)

which implies
u(t0, x0)≥

(
min

M
|R0|/max

M
| f |
) 1

N−1 ,

where N = n+2
n−2 . This proves the first inequality in (2-4). In order to prove the second

inequality we set v = e−C1t u instead of u, where C1 =
4

n−2(maxM |R0| +maxM | f |).
As above, fix t ∈[0, T ) and let (t0, x0)∈[0, t]×M such that v(t0, x0)=max[0,t]×M v.
If t0 = 0, then max[0,t]×M v =maxM u0, which implies

max
[0,t]×M

u ≤max
M

u0 eC1t ,

so the second inequality in (2-4) is proved in this case. Now suppose that t0 > 0.
We have then ∂tv(t0, x0)≥ 0 and 1v(t0, x0)≤ 0, that is, ∂t u(t0, x0)≥ C1u(t0, x0)

and 1u(t0, x0)≤ 0. We obtain after substituting in (1-4) that

NC1uN (t0, x0)≤
n+2

4
(−R0(x0)u(t0, x0)+ f (x0)uN (t0, x0))

which implies that
(2-5) u(t0, x0)≤ 1

since NC1 =
n+2

4 (maxM |R0| +maxM | f |). It is clear that (2-5) implies that

max
[0,t]×M

u ≤ eC1t .

The proof of Proposition 2.2 is then complete. �

Now we prove integral estimates on Rg which will imply estimates on ∂t u:

Proposition 2.3. Let g(t) be the solution of (1.3) defined on a maximal interval
[0, T ∗). Then we have for any t ∈ [0, T ∗),

(2-6)
∫

M
|Rg(t)− f |p dVg(t) ≤ CeCt

where p = n2

2(n−2) and C is a positive constant depending only on f, g0, u0.
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Proof. In what follows C denotes a positive constant depending on f, g0, u0, whose
value may change from line to line.

We have by Lemma 2.1 for any t ∈ [0, T ∗)

(2-7) d
dt

∫
M
|Rg− f |p dVg =−

4(n−1)(p−1)
p

∫
M

∣∣∇g|Rg− f |
p
2
∣∣2
g dVg

+

(
p−n

2

)∫
M
(Rg− f )|Rg− f |p dVg+ p

∫
M

f |Rg− f |p dVg,

where ∇g is the gradient with respect to the metric g and | · |g is the Riemannian
norm with respect to g. It follows from (2-7) that

(2-8) d
dt

∫
M
|Rg − f |p dVg +

4(n− 1)(p− 1)
p

∫
M

∣∣∇g|Rg − f |
p
2
∣∣2
g dVg

≤

∣∣∣p− n
2

∣∣∣ ∫
M
|Rg − f |p+1 dVg +C

∫
M
|Rg − f |p dVg.

By (2-4) we have

(2-9)
∫

M

∣∣∇g|Rg− f |
p
2
∣∣2
g dVg

=

∫
M

∣∣∇|Rg − f |
p
2
∣∣2u2 dVg0 ≥ C

∫
M

∣∣∇|Rg − f |
p
2
∣∣2 dVg0

and

(2-10)
∫

M
|Rg − f |p dVg =

∫
M
|Rg − f |pu

2n
n−2 dVg0 ≥ C

∫
M
|Rg − f |p dVg0 .

By Sobolev’s inequality we have(∫
M
|Rg − f |

pn
n−2 dVg0

)n−2
n
≤ C

(∫
M

∣∣∇|Rg − f |
p
2
∣∣2 dVg0 +

∫
M
|Rg − f |p dVg0

)
which, using (2-4), gives

(2-11)
(∫

M
|Rg − f |

pn
n−2 dVg

)n−2
n

≤ CeCt
(∫

M

∣∣∇|Rg − f |
p
2
∣∣2 dVg0 +

∫
M
|Rg − f |p dVg0

)
.

It follows from (2-8), (2-9) , (2-10) and (2-11) that

(2-12) d
dt

∫
M
|Rg − f |p dVg +C−1e−Ct

(∫
M
|Rg − f |

pn
n−2 dVg

)n−2
n

≤

(
p− n

2

) ∫
M
|Rg − f |p+1 dVg +C

∫
M
|Rg − f |p dVg.
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By taking p = n
2 in (2-12) we get

d
dt

∫
M
|Rg − f |p dVg ≤ C

∫
M
|Rg − f |p dVg,

which implies that

(2-13)
∫

M
|Rg − f |

n
2 dVg ≤ CeCt .

Now taking again p = n
2 in (2-12) and integrating on [0, t], t ∈ [0, T ∗), by

using (2-13) we obtain

(2-14)
∫ t

0

(∫
M
|Rg(s)− f |

n2

2(n−2) dVg(s)

)n−2
n

ds ≤ CeCt .

We have by Hölder’s inequality and Young’s inequality, for any ε > 0 and p> n
2 ,

(2-15)
∫

M
|Rg − f |p+1 dVg

≤ ε

(∫
M
|Rg − f |

pn
n−2 dVg

)n−2
n
+ ε
−

n
2p−n

(∫
M
|Rg − f |p dVg

)2p−n+2
2p−n

.

If we combine (2-15) with (2-12) and taking ε = (p− n
2 )
−1C−1e−Ct, we get

d
dt

∫
M
|Rg − f |p dVg ≤ CeCt

(∫
M
|Rg − f |p dVg

)2p−n+2
2p−n

+C
∫

M
|Rg − f |p dVg,

that is,

d
dt

log
(∫

M
|Rg − f |p dVg

)
≤ C

(
eCt
(∫

M
|Rg − f |p dVg

) 2
2p−n
+ 1

)
In particular by choosing p = n2

2(n−2) and integrating on [0, t], t ∈ [0, T ∗), we
obtain

log
(∫

M
|Rg(t)− f |

n2
2(n−2) dVg(t)

)
≤ log

(∫
M
|Rg(0)− f |

n2
2(n−2) dVg(0)

)
+CeCt

∫ t

0

(∫
M
|Rg(s)− f |

n2
2(n−2) dVg(s)

) n−2
n

ds+Ct

which by using (2-14) gives

log
(∫

M
|Rg(t)− f |

n2
2(n−2) dVg(t)

)
≤ Cet .

This proves Proposition 2.3. �
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With the estimates of Proposition 2.2 we would like to apply the classical
Schauder estimates for parabolic equations. To this end we need Cα-estimates:

Proposition 2.4. Let g(t) = u(t)4/(n−2)g0 be the solution of (1-3) defined on a
maximal interval [0, T ∗). Then we have for some α ∈ (0, 1) and any T ∈ [0, T ∗)

‖u‖Cα([0,T ]×M) ≤ CeCT,

where C is a positive constant depending only on u0, g0 and f .

Proof. By using Propositions 2.2 and 2.3, the proof is identical to that of Proposi-
tion 2.6 in Brendle [2005]. �

Proof of Theorem 1.1. Let g(t)= u(t)4/(n−2)g0 be the solution of (1-3) defined on a
maximal interval [0, T ∗). Assume by contradiction that T ∗ <+∞. Then by using
Propositions 2.2 and 2.4 we have

‖u‖Cα([0,T ∗)×M) ≤ CeCT ∗ and min
[0,T ∗)×M

u ≥min
(
C0,min

M
u0
)

for some α∈ (0, 1), where C is a positive constant depending u0, f, g0. The classical
theory of linear parabolic equations applied to (1-4) implies that u is bounded in
Ck([0, T ∗)×M) for any k ∈ N, that is,

(2-16) ‖u‖Ck([0,T ∗)×M) ≤ Ck,

where Ck is a positive constant depending only on u0, g0, f and k. It is clear
that (2-16) allows us to extend the solution beyond T ∗ contradicting thus the
maximality of T ∗. We see from (2-2) that the functional E is decreasing along the
flow. The proof of Theorem 1.1 is then complete. �

3. Long Time behaviour of the flow

In this section we study the asymptotic behaviour of the flow g(t) when t→+∞.
First we prove the following proposition which gives a super solution of (1-1) when
conditions (H1) and (H2) are satisfied.

Proposition 3.1. Suppose that there exists an open set �⊂ M such that conditions
(H1) and (H2) are satisfied. Then there exists a conformal metric ḡ = ū4/(n−2)g0,
0< ū ∈ C∞(M), satisfying

(3-1) Rḡ − f ≥ 0

or equivalently

(3-2) −cn1ū+ R0ū− f ūN
≥ 0, N = n+2

n−2
.
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Proof. By hypothesis, there is an open set �⊂ M satisfying (H1) and (H2), that is,

(H1) λ� > 0 and f < 0 on M \�

and

(H2) sup
x∈�

f (x)≤ C� inf
x∈M\�

| f (x)|,

where C� is a positive constant depending only on �.
Let ε > 0 and set

�ε = {x ∈ M : d(x, �) < ε}.

For ε > 0 sufficiently small we have from (H1) that λ�ε > 0, where λ�ε is the
first eigenvalue of the operator −cn1+ R0 on �ε with zero Dirichlet boundary
conditions. Let D ⊂ M be an open set of smooth boundary such that �⊂ D ⊂�ε.
Then we have λD ≥ λ�ε > 0. Let ϕ0 an eigenfunction associated with λD , that is,

−cn1ϕ0+ R0ϕ0 = λDϕ0.

Then we have that ϕ0 ∈ C∞(D) and using the maximum principle of elliptic
equations we have ϕ0 > 0 on D. By normalising if necessary, we may suppose that

(3-3) 0< ϕ0 ≤ 1 on D.

Let χ ∈ C∞0 (D) such that 0 ≤ χ ≤ 1 and χ = 1 on �. We define the function
ū ∈ C∞(M) by setting

ū = δ(χϕ0+ 1−χ),

where δ > 0 will be chosen later. By (3-3) and the definition of χ it is easy to check

m0 := inf
M
(χϕ0+ 1−χ) > 0,

so

(3-4) ū ≥ δm0.

Now let us prove that ū satisfies (3-2). If we set

L(ū)=−cn1ū+ R0ū− f ū
n+2
n−2 ,

then (3-2) is equivalent to L(ū)≥ 0.
A simple computation shows that we have on � (using the fact that χ = 1 on �):

L(ū)= λDδϕ0− f δNϕN
0 = δϕ0(λD − δ

N−1 f ϕN−1
0 )

and by using (3-3) it follows that

(3-5) L(ū)≥ δϕ0
(
λD − δ

N−1 sup
x∈�

f (x)
)
.
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It follows from (3-5) that if we want L(ū)≥ 0 on �, we have to choose δ > 0
satisfying

(3-6) δN−1 sup
x∈�

f (x)≤ λD.

Now we examine the sign of L(ū) on M\�. We have from the definition of ū that

(3-7) L(ū)= δ(−cn1+ R0)(χϕ0+ 1−χ)− f ūN .

By using (3-4) and the fact that f < 0 on M \�, it follows from (3-7) that

L(ū)≥−δm1+ δ
N m N

0 inf
x∈M\�

| f (x)|,

where
m1 = sup

M
|(−cn1+ R0)(χϕ0+ 1−χ)|.

Thus, if we want L(ū)≥ 0 on M \�, we have to assume

−m1+ δ
N−1m N

0 inf
x∈M\�

| f (x)| ≥ 0,

that is,
(3-8) δN−1 inf

x∈M\�
| f (x)| ≥ m1m−N

0 .

It is clear that the existence of δ > 0 satisfying both (3-6) and (3-8) is equivalent
to condition (H2) with C� = λDm N

0 /m1. �

Proposition 3.1 allows us to prove uniform L∞-estimates on the flow.

Proposition 3.2. Let 0 < u0 ∈ C∞(M) such that u0 ≤ ū where ū is given by
Proposition 3.1. Then the solution u of (1-4) satisfies, for any (t, x)∈ [0,+∞)×M ,

(3-9) min
(
C0,min

M
u0
)
≤ u(t, x)≤max

M
ū,

where
C0 =

(
min

M
|R0|/max

M
| f |
) n−2

4 .

Proof. First observe that the first inequality in (3-9) has already been proved in
Proposition 2.2. It remains then to prove the second inequality, that is,

u(t, x)≤max
M

ū.

Let v = ū− u. Since u satisfies (1-4) and ū satisfies (3-2), we have

(3-10) ∂t(ūN
− uN )≥

n+2
4
(cn1v− R0v+ f (ūN

− uN )).

We have ūN
− uN

= av, where

a(t, x)= N
∫ 1

0

(
sū(t, x)+ (1− s)u(t, x)

)N−1 ds,
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so it follows from (3-10) that

(3-11) ∂t(av)≥
n+2

4
(cn1v− R0v+ a f v).

Since v(0, x)= ū(x)− u0(x)≥ 0, by applying the maximum principle to (3-11)
we get v(t, x)≥ 0 for any t ≥ 0, that is,

u(t, x)≤ ū(x). �

Now we prove that the integral estimate (2-6) in Proposition 2.3 can be improved
when t→+∞. More precisely, we have:

Proposition 3.3. Let 0 < u0 ∈ C∞(M) such that u0 ≤ ū where ū is given by
Proposition 3.1. Let g(t) be the solution of (1-3) given by Theorem 1.1 such that
g(0)= u4/(n−2)

0 g0. Then we have, for any p ≥ 1,

(3-12) lim
t→+∞

∫
M
|Rg(t)− f |p dVg(t) = 0.

Proof. In what follows C denotes a positive constant depending only on u0, g0, f, p,
and its value may change from line to line.

We have by (2-2) for any t ≥ 0,

(3-13) n−2
2

∫ t

0

∫
M
|Rg − f |2 dVg = E(g(0))− E(g(t)).

On the other hand, we have

E(g(t))=
∫

M

(
cn|∇u|2+ R0u2

−
n−2

n
f u

2n
n−2

)
dVg0,

and since u is uniformly bounded by Proposition 3.2, we have E(g(t))≥−C . So it
follows from (3-13) that

(3-14)
∫
+∞

0

∫
M
|Rg(t)− f |2 dVg(t) ≤ C.

Since by Proposition 3.2 the volume of g(t) is uniformly bounded, it suffices
to prove (3-12) for a sequence pk → +∞. We shall prove (3-12) by induction
when p = pk , where

pk :=
n
2

( n
n−2

)k
, k ∈ N.

First we prove (3-12) for p0 =
n
2 . As in the proof of Proposition 2.3, if we use

Lemma 2.1 and the fact that u is uniformly bounded by Proposition 3.2, then we
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have for any p > 1:

(3-15) d
dt

∫
M
|Rg − f |p dVg +C−1

(∫
M
|Rg − f |

pn
n−2 dVg

)n−2
n

≤ C
∫

M
|Rg − f |p dVg +

(
p− n

2

) ∫
M
|Rg − f |p+1 dVg.

Set
φp(t)=

∫
M
|Rg − f |p dVg.

If p0 < 2, then by using Hölder’s inequality and the fact that u is uniformly
bounded, we have

(3-16) φp0 ≤ Cφ p0/2
2 .

So it follows from (3-15) by taking p = p0 =
n
2 that

(3-17) d
dt
φ2/p0

p0
≤ Cφ2.

By (3-14) there is a sequence tν → +∞ such that
∫
+∞

tν
φ2(s) ds → 0 and

φ2(tν)→ 0. So by integrating (3-17) on [tν, t] and using (3-16) we get

φ2/p0
p0

(t)≤ φ2/p0
p0

(tν)+C
∫ t

tν
φ2(s) ds ≤ Cφ2(tν)+C

∫ t

tν
φ2(s) ds

Letting t→+∞ and ν→+∞ we obtain φp0(t)→ 0 as t→+∞.
If p0 ≥ 2, by using Hölder’s inequality and Young’s inequality we have, for

any ε > 0,∫
M
|Rg − f |p0 dVg

≤ ε

(∫
M
|Rg − f |p0n/n−2 dVg

)n−2
n
+ ε−n(p0−2)/4

(∫
M
|Rg − f |2 dVg

)p0/2

.

By taking ε = 1
2C−1, where C−1 is the constant appearing in (3-15), we obtain

from (3-15)(where we take p = p0 =
n
2 ),

(3-18) d
dt
φp0 +C−1φ

(n−2)/n
p0n/(n−2) ≤ Cφ p0/2

2 .

But by Hölder’s inequality, since the volume of g is uniformly bounded, we have

φ2 ≤ Cφ2/p0
p0

and φp0 ≤ Cφ(n−2)/n
p0n/(n−2).

Thus it follows from (3-18) that

(3-19) d
dt
φ2/p0

p0
+C−1φ2/p0

p0
≤ Cφ2.
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If we integrate (3-19) on [0, t] and use (3-14) we get∫ t

0
φ2/p0

p0
(s) ds ≤ C,

which implies, since t ≥ 0 is arbitrary,∫
+∞

0
φ2/p0

p0
(s) ds ≤ C.

Thus there exists a sequence tν→+∞ such that φ2/p0
p0 (tν)→ 0 as ν→+∞. If

we integrate again (3-19) on [tν, t], we obtain

φ2/p0
p0

(t)≤ φ2/p0
p0

(tν)+C
∫ t

tν
φ2(s) ds.

By using (3-14), it follow that φ2/p0
p0 (t)→ 0 as t→+∞.

Now suppose by induction that

(3-20) lim
t→+∞

φpk (t)= 0.

First let us prove that

(3-21) lim
t→+∞

∫ t+1

t
φ(n−2)/n

pk+1
(s) ds = 0.

We may suppose k≥1. Indeed, if k=0 (that is, pk = p0=
n
2 ), then (3-21) follows

directly from (3-15) (with p= n
2 ) by integrating on [t, t+1] and using (3-20). Thus

let us prove (3-21) when k ≥ 1.
By using Hölder’s inequality and Young’s inequality we have for any p > n

2
and ε > 0,

(3-22)
∫

M
|Rg − f |p+1 dVg

≤ ε

(∫
M
|Rg − f |

pn
n−2 dVg

)n−2
n

+ ε
−

n
2p−n

(∫
M
|Rg − f |p dVg

)1+ 2
2p−n

By taking p = pk , ε = 1
2C−1, where C is the constant appearing in (3-15), from

(3-15) we obtain

d
dt
φpk +

1
2C−1φ(n−2)/n

pk+1
≤ Cφ1+2/(2pk−n)

pk
+Cφpk .

Then (3-21) follows by integrating on [t, t + 1] and using (3-20).
Now if we apply (3-22) by taking p= pk+1 and ε=C−1/(pk+1−n/2), where C

is the constant appearing in (3-15), we obtain from (3-15) (where we take p= pk+1),

d
dt
φpk+1 ≤ Cφ1+αk

pk+1
+Cφpk+1,
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where αk =
2

2pk+1
− n. The last inequality is equivalent to

(3-23) d
dt

logφpk+1 ≤ C
(
φαk

pk+1
+ 1

)
.

By (3-21) there is a sequence tν → +∞ such that ν ≤ tν ≤ ν + 1 satisfying
φpk+1(tν)→ 0 as ν→+∞. If we integrate (3-23) on [tν, t] where t ∈ [ν, ν + 1],
we obtain

(3-24) log
φpk+1(t)
φpk+1(tν)

≤ C
(∫ ν+1

ν

φαk
pk+1

(s) ds+ 1
)
.

We note here that αk ≤
n−2

n , so by Hölder’s inequality we have∫ ν+1

ν

φαk
pk+1

(s) ds ≤
(∫ ν+1

ν

φ(n−2)/n
pk+1

(s) ds
) nαk

n−2
→ 0 as ν→+∞

by (3-21). Thus it follows from (3-24) that

log
φpk+1(t)
φpk+1(tν)

≤ C,

which implies that φpk+1(t)→ 0 as t→+∞. The proof of Proposition 3.3 is then
complete. �

Now we can prove uniform Cα-estimates on the solution.

Proposition 3.4. Let 0 < u0 ∈ C∞(M) such that u0 ≤ ū where ū is given by
Proposition 3.1. Then the solution u of (1-4) satisfies, for some α ∈ (0, 1),

‖u‖Cα([0,+∞)×M) ≤ C,

where C is a positive constant depending only on u0, g0 and f .

Proof. By using Propositions 3.2 and 3.3, the proof is identical to that of Proposi-
tion 2.6 in Brendle [2005]. �

Now we are in position to prove Theorem 1.2.

Proof of Theorem 1.2. Let g = u4/(n−2)g0 be the solution of (1-3) given by
Theorem 1.1. By Proposition 3.2 we have that u is bounded from below and above
uniformly on [0,+∞). As in the proof of Theorem 1.1, this implies that (1-4) is
uniformly parabolic and by Proposition 3.4 we have a uniform Cα-bound on the
solution u on [0,+∞)×M. We then apply the classical regularity theory of linear
parabolic equations to obtain uniform Ck-bound for any k ∈ N, that is,

(3-25) ‖u(t)‖Ck(M) ≤ Ck,

for some constant Ck independent of t . It follows from (3-25) that there is a sequence
tν →+∞ such that u(tν) converges in Ck(M) for any k ∈ N, to some function
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u∞ ∈ C∞(M). Since u(t) is uniformly bounded from below by Proposition 3.2,
then we have u∞ > 0. By using Proposition 3.3 and passing to the limit when
ν → ∞, we see that Rg∞ = f , where g∞ = u4/(n−2)

∞ g0, that is, f is the scalar
curvature of g∞. By the general result of Simon [1983] on evolution equations, u∞
is the unique limit of u(t) when t→+∞. �

Proof of Corollary 1.3. Since f < 0 almost everywhere on M, then for ε > 0 small
enough, the open set

�ε = {x ∈ M : f (x) >−ε}

has arbitrary small volume. This implies that the first eigenvalueµ�ε of−cn1 on�ε
with zero Dirichlet conditions is arbitrarily large if ε is small enough. But since

λ�ε ≥ µ�ε +min
M

R0,

we have λ�ε > 0 if ε is small enough. Thus the condition (H1) is satisfied with
�=�ε. Condition (H2) is also satisfied since by continuity of f we have f ≤ 0
everywhere on M. �

Proof of Theorem 1.4. Suppose that condition (H1) is not satisfied, that is, for any
open set �⊂ M such that f < 0 on M \�, we suppose λ� ≤ 0. For ε > 0, consider
the following family of open sets:

�ε = {x ∈ M : f (x) >−ε}.

For simplicity of notation we set λε = λ�ε . According to our hypothesis we have

(3-26) λε ≤ 0 for all ε > 0.

By using Sard’s theorem, there exists a sequence εn→ 0 such that εn is a regular
value of f and then �εn has a smooth boundary

∂�εn = {x ∈ M : f (x)=−εn}.

Let ϕn an eigenfunction of−cn1+R0 associated with λεn . As already mentioned
in the proof of Proposition 3.2, we have by the maximum principle that

(3-27) ϕn > 0 on �εn and
∂ϕn

∂ν
≤ 0 on ∂�εn ,

where ν is the outer normal vector to ∂�εn . By normalising if necessary, we may
assume that

(3-28)
∫
�εn

ϕn dVg0 = 1.
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If we multiply (1-4) by ϕn and integrate on �εn , we have

(3-29) d
dt

∫
�εn

uNϕn dVg0

=
n+2

4

∫
�εn

(cn1u− R0u)ϕn dVg0 +
n+2

4

∫
�εn

f uNϕn dVg0 .

An integration by parts gives∫
�εn

(cn1u− R0u)ϕn dVg0 =−λεn

∫
�εn

uϕn dVg0 − cn

∫
∂�εn

∂ϕn

∂ν
u dVg0 .

Since λεn ≤ 0, by using (3-27) and (3-28) we then obtain

(3-30)
∫
�εn

(cn1u− R0u)ϕn dVg0 ≥−λεn inf
M

u− cn inf
M

u
∫
∂�εn

∂ϕn

∂ν
dVg0 .

On the other hand we have

cn

∫
∂�εn

∂ϕn

∂ν
dVg0 = cn

∫
�εn

1ϕn dVg0 =

∫
�εn

(−λεn + R0)ϕn dVg0

and by using (3-28) we get, since R0 < 0,

(3-31) −cn

∫
∂�εn

∂ϕn

∂ν
dVg0 ≥ λεn + inf

M
|R0|.

Combining (3-30) and (3-31) we obtain∫
�εn

(cn1u− R0u)ϕn dVg0 ≥ inf
M
|R0| inf

M
u.

If we substitute in (3-29) we get

(3-32) d
dt

∫
�εn

uNϕn dVg0 ≥
n+2

4
inf
M
|R0| inf

M
u+ n+2

4

∫
�εn

f uNϕn dVg0 .

By Proposition 3.2 we have u ≥ C0, where C0 is a positive constant depending
only on u0, g0 and f . Using the fact that f >−εn on�εn , it follows from (3-32) that

d
dt

∫
�εn

uNϕn dVg0 ≥ C − n+2
4

εn

∫
�εn

uNϕn dVg0,

where C is a positive constant depending only on u0, g0 and f . By integrating this
differential inequality on [0, t], we get∫
�εn

uN (t)ϕn dVg0 ≥

∫
�εn

uN
0 ϕn dVg0 +Ct − n+2

4
εn

∫ t

0

∫
�εn

uN (s)ϕn dVg0 ds,
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which, using (3-28), implies

max
x∈M

uN (t, x)≥ Ct − n+2
4

εn

∫ t

0
max
x∈M

uN (s, x) ds.

Letting n→+∞, we obtain

max
x∈M

uN (t, x)≥ Ct.

The proof of Theorem 1.4 is complete. �
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