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A generalized Fock-Bargmann-Hartogs domain D;,"? (i) is defined as a
domain fibered over C" with the fiber over z € C" being a generalized com-
plex ellipsoid X, (m, p). In general, a generalized Fock—-Bargmann-Hartogs
domain is an unbounded nonhyperbolic domain without smooth boundary.
The main contribution of this paper is as follows. By using the explicit
formula of Bergman kernels of the generalized Fock—-Bargmann-Hartogs
domains, we obtain the rigidity results of proper holomorphic mappings be-
tween two equidimensional generalized Fock-Bargmann-Hartogs domains.
We therefore exhibit an example of unbounded weakly pseudoconvex do-
mains on which the rigidity results of proper holomorphic mappings can be
built.

1. Introduction

A holomorphic map F : 2; — €2, between two domains 21, €2, in C” is said to be
proper if F~!(K) is compact in 2| for every compact subset K C €2,. In particular,
an automorphism F : 2 — €2 of a domain €2 in C" is a proper holomorphic mapping
of Q into Q2. There are many works about proper holomorphic mappings between
various bounded domains with some requirements of the boundary, e.g., [Bedford
and Bell 1982; Diederich and Fornass 1982; Dini and Selvaggi Primicerio 1997; Tu
and Wang 2015]. However, very little seems to be known about proper holomorphic
mapping between the unbounded weakly pseudoconvex domains. There are also
some works about automorphism groups of hyperbolic domains, e.g., [Isaev 2007;
Isaev and Krantz 2001; Kim and Verdiani 2004]. In this paper, we mainly focus
our attention on some unbounded nonhyperbolic weakly pseudoconvex domains.
The Fock-Bargmann—Hartogs domain D, ,, (w) is defined by

2
Dy () = {(z, w) e C" x C" : |w||* < e M=l } for u > 0,
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where || - || is the standard Hermitian norm. The Fock—Bargmann—Hartogs domains
D, () are strongly pseudoconvex domains in C"* with smooth real-analytic
boundary. We note that each D, , () contains {(z,0) € C" x C"} = C". Thus
each D, , (u) is not hyperbolic in the sense of Kobayashi and D, ,, (1) can not be
biholomorphic to any bounded domain in C"**™, Therefore, each Fock—-Bargmann—
Hartogs domain D, ,, (1) is an unbounded nonhyperbolic domain in C"*"™.

Yamamori [2013] gave an explicit formula for the Bergman kernels of the Fock—
Bargmann—Hartogs domains in terms of the polylogarithm functions. By checking
that the Bergman kernel ensures the revised Cartan’s theorem, Kim, Ninh and
Yamamori [Kim et al. 2014] determined the automorphism group of the Fock—
Bargmann—Hartogs domains as follows.

Theorem 1.1 [Kim et al. 2014]. The automorphism group Aut(D,, ,, (1)) is exactly
the group generated by all automorphisms of Dy, ,, (1) as follows:

v (z,w)— (Uz, w), U elU(n),

oy (z, w) = (z, U'w), U' eU(m),

@y (z, w) = (24, e_“<z’”>_(“/2)||”||2w), veC',

where U(k) is the unitary group of degree k and ( -, - ) is the standard Hermitian
inner product on C".

Recently, [Tu and Wang 2014] has established the rigidity of the proper holomor-
phic mappings between two equidimensional Fock—Bargmann—Hartogs domains.

Theorem 1.2 [Tu and Wang 2014]. If D, ,(1t) and D,y .y (') are two equidimen-
sional Fock—Bargmann—Hartogs domains withm > 2 and f is a proper holomorphic
mapping of Dy (1) into Dy (1), then f is a biholomorphism between Dy, , (10)
and Dn’,m’(/”/)-

A generalized complex ellipsoid (also called generalized pseudoellipsoid) is a
domain of the form

Sn; p) = {(;1,...,;;) €T x o x O Y el < 1},
k=1

where n = (ny,...,n,) e N and p = (py, ..., pr) € (R;)". In the special case
where all the p; = 1, the generalized complex ellipsoid X (n; p) reduces to the unit
ball in C"' " Also, it is known that a generalized complex ellipsoid X (n; p)
is homogeneous if and only if py =1 for all 1 <k <r [Kodama 2014]. In general,
a generalized complex ellipsoid is not strongly pseudoconvex and its boundary is
not smooth. The automorphism group Aut(X(n; p)) of X (n; p) has been studied
by Dini and Selvaggi Primicerio [1997], Kodama [2014] and Kodama, Krantz and
Ma [Kodama et al. 1992].
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Kodama [2014] obtained the result as follows.

Theorem 1.3 [Kodama 2014]. (i) If 1 does not appear in py, ..., p,, then any
automorphism ¢ € Aut(X(n; p)) is of the form

(1-1) 01, 8) =1y - VrCo))s

where o € S, is a permutation of the r numbers {1, ..., r} such that ns ;) = n;,
Doy =Dpi for1 <i <randy, ...,y areunitary transformations of C"', ..., C",
respectively.

@1) If 1 appears in py, ..., pr, we can assume, without loss of generality, that
pi=1,pr2#1,..., pr #1. Then Aut(X(n; p)) is generated by elements of the
form (1-1) and automorphisms of the form

(1) @a(er. &2, &) = (Ta@D) 2(Wa @) P2, G (Wa () 2P),

where T, is an automorphism of the ball B"' in C"" which sends a point a € B™ to

the origin and
1—lal®

(1= (g1, a)*

In this paper, we define the generalized Fock—Bargmann—Hartogs domains
n’p
Dyi™ () as

%((1) =

0

Dyl (u) = {(z, Wy, -, W) €CT X C" x - x C"

14
. _ 2
2w PP < eI } (1> 0),

j=1

where p=(p1, ..., p) e R, n=(n1,...,n0) and w(jy = (wj1, ..., wjy;) €C",
in which n; is a positive integer for 1 < j < £. Here and henceforth, with no loss
of generality, we always assume that p; #1 (2 <i < ¥) for D,',’(’)p (w).

Obviously, each generalized Fock-Bargmann—Hartogs domain D;;” (11) is an
unbounded nonhyperbolic domain. In general, a generalized Fock—Bargmann—
Hartogs domain is not a strongly pseudoconvex domain and its boundary is not
smooth.

In this paper, we prove the following results.

Theorem 1.4. Suppose D,','(;p (u) and D,',','(;q (v) are two equidimensional generalized
Fock—Bargmann—Hartogs domains. Let

fDyP () — Dyod (v)

be a biholomorphic mapping. Then there exists ¢ € Aut(Dﬁ;q (v)) such that
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A
Iy

(1-3) $o f(z,w) = (2, W) - W) 2 ,

Iy
where o € S is a permutation such that nejy = mj, pejy = q; (1 < j < 0),
JV/ LA eUm) (n:=ng=mg),and T'; eU(m;) (1 <i <¥).

Corollary 1.5. Let f : D,':(’)p (n) — D,':(;p(,u) be a biholomorphic mapping with
f(0) =0. Then we have
A

I'y
fzZ,w) = (2, W) - -+ W (e)) b ,

Iy

where o € Sy is a permutation such that nsjy = nj, pejy = p; (1 < j <40,
AelUmg)andl; eUU(n;) (1 <i <¥).

As a consequence, it is easy for us to prove the following results.

Theorem 1.6. The automorphism group Aut(DZ’)p (n)) is generated by the follow-
ing mappings:

©a(Z, WAy, ..., Wey) B> (ZA, Wy, .o, Wee);
©p:(Z, Wy, - .., W) = (2, Wey, - Wee)y)D),
_ _ 2 _ _ 2
Pai(z, w) > (Z +a, wa)(e 2u<z,a>—pulall )1/2171’ L we (e 2ulz,a)—plall )1/217()’

where a € C", A eU(no), o € Sy is a permutation such that n(jy =nj, po(j) = Pj

(I<j=<0,and
I

I

Iy
inwhichTU; eUU(n;) (1 <i <0).
Now, for p and g, we introduce the notation
ez{ > D1 ) 8={ » 41
0, pi1#1, 0, q1#1

Theorem 1.7. Suppose D,'l'(;p (w) and D,',','(;q (v) are two equidimensional generalized
Fock—Bargmann—Hartogs domains with min{n ., na, ..., ng, ny+---+ne} > 2
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and min{m i, mo, ---,me,my + - -- +my} > 2. Then any proper holomorphic
mapping between D,'z'(;p (u) and D,',',l(;q(v) must be a biholomorphism.

Remark 1.1. The conditions min{n.¢, ns, ..., ng} > 2 cannot be removed. For
example, n; =1 (i.e, w() € C), p; # 1, and

2
Fz, w): (z, wqy, ..., wey)) = (& Wiy, W5 -5 Weey)-

Then F is a proper holomorphic mapping between D;;” (1) and Dy;? (1), where
q=(p1/2, p2, ..., pe). F is not a biholomorphism.

Corollary 1.8. Suppose D:,'(;p (n) is a generalized Fock—Bargmann—Hartogs do-
main with
min{nye, no, ..., 0p, 0+ +ng} > 2.

Then any proper holomorphic self-mapping of D,':(’)p () must be an automorphism.

Remark 1.2. The conditions n; + - - - +n, > 2 cannot be removed. For instance,
with no loss of generality, we can assume n; =1 and n; =0 (2 <i <¥). Then

F:(z,wa) —> («/Ez, w(Zl))

is a proper holomorphic self-mapping of Dj;” () which is not an automorphism.

The paper is organized as follows. In Section 2, using the explicit formula for the
Bergman kernels of the generalized Fock—Bargmann—Hartogs domains, we prove
that a proper holomorphic mapping between two equidimensional generalized Fock—
Bargmann—Hartogs domains extends holomorphically to their closures, and check
that Cartan’s theorem holds also for the generalized Fock—Bargmann—Hartogs
domains. In Section 3, we exploit the boundary structure of generalized Fock—
Bargmann—Hartogs domains to prove our results in this paper.

2. Preliminaries

The Bergman kernel of the domain Dy” (1). For a domain  in C", let A%(Q)
be the Hilbert space of square integrable holomorphic functions on 2 with the inner
product

(f. ) = fQ FREDAVE) (f.g € OQ),

where dV is the Euclidean volume form. The Bergman kernel K (z, w) of A%(Q)
is defined as the reproducing kernel of the Hilbert space A%(S2), that is, for all
f € A%(Q2) we have

f(z):/gf(w)K(z,w)dV(w) (z € Q).
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For a positive continuous function p on 2, let A>($2, p) be the weighted Hilbert
space of square integrable holomorphic functions with respect to the weight function
p with the inner product

UﬂﬁiLﬂAQEMQMKO (f. g € O(Q).

Similarly, the weighted Bergman kernel K 42(q ) of A%(Q, p) is defined as the
reproducing kernel of the Hilbert space A%($2, p). For a positive integer m, define
the Hartogs domain €2,, , over €2 by

Q. p =1z, w) € 2xC": |w|? < p(2)}.

Ligocka [1985; 1989] showed that the Bergman kernel of €2, , can be expressed
as infinite sum in terms of the weighted Bergman kernel of A(<2, pk Yk=1,2,...)
as follows.

Theorem 2.1 [Ligocka 1989]. Let K,, be the Bergman kernel of Q. , and let
K p2(q, pr) be the weighted Bergman kernel of AX(Q, p*) (k=1,2,...). Then

m! — (m+ 1), k
Kn((@w), (1,9)) = —0 3 = Ka,prom @ D (w, 5),
k=0 ’

where (a); denotes the Pochhammer symbol (a); =a(a+1)---(a+k—1).

The Fock—Bargmann space is the weighted Hilbert space A%(C", e‘“”z”z) on
C" with the Gaussian weight function eI’ (n > 0). The reproducing kernel of
A2(C", e=I71%), called the Fock-Bargmann kernel, is " e# () /7 see [Bargmann
1967]. Thus, the Fock—Bargmann—Hartogs domain

Dy ={(z,w) €C" x C": [lw]? < e #II°} (1> 0)

and the Fock—Bargmann space A?(C", e~ *I? ”2) are closely related. Using the above
Theorem 2.1 and the expression of the Fock—Bargmann kernel, Yamamori [2013]
gave the Bergman kernel of the Fock—-Bargmann-Hartogs domain D, ,, as follows.

Theorem 2.2 [Yamamori 2013]. The Bergman kernel of the Fock—Bargmann—
Hartogs domain D,, ,, is given by

o0

mip" Z (m+ D (k+m)" et (z.0)

n—m-i—n = k!

k

Kp,,(z, w), (t,5)) = (w, s)",

where (a)y denotes the Pochhammer symbol (a)y =a(a+1)---(a+k —1).

Following the idea of Theorem 2.1, we compute the Bergman kernel for the
generalized Fock-Bargmann—-Hartogs domain Dy;” (). In order to compute the
Bergman kernel, we first introduce some notation.
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Let
o= (O{(]), ey O{(g)) € (R+)n1 XX ([R_,.)ne,
where o) = (o1, ..., ®ip;) € (Rp)" for 1 <i < {. For o € (Ry)", we define

n
[TT ()
=1

Bla) = ———;
I (le])

see [D’Angelo 1994]. Here I is the usual Euler Gamma function.

Lemma 2.3 [D’ Angelo 1994, Lemma 1]. Suppose o € (R1)". Then we have

/ 221 gy (r) = ,3(06)’
n 2"

+

where dV is the Euclidean n-dimensional volume form, do is the Euclidean (n — 1)-
dimensional volume form, and the subscript “+” denotes that all the variables are
positive, that is, B} = B" N (R,)" and Sf’:l = S""'N(RL)", in which B" is the
unit ball in R" and S"~" is the unit sphere in R".

Theorem 2.4. Suppose a = (a1, ..., ) € (R x -+ x (Rp)", with each
agy = (i1, ..., tiy) € (RY" (1 <i <{£). Then we have the formula

2-1) / w*w* dV (w)
jillwey 177 <t

L n; l
[T I1T(ij+ D IT (el +ni)/ pi)

i=1 j:l i=1

¢ [
H Di
i=1

— (n)n1+~-~+ne

4
ey |+ 1T (X (| +n0)/pi) +1)
1 i=1

o 1 il [+n)/ pi

Proof. For the integral

2-2) / W AV (w),
oillwe I <t

by applying the polar coordinates w = se’® (namely, w; i =S jeieff, 1 <j<n,
1<i<d{,s= (S(l), e, S([))), we have

(2-2)= <2n>"'+"'+"“/ 5

200+1
2y K dv (s).
j=t syl ™ <t ()

Sj,‘>0, 1§i§nj, lfjff
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Using the spherical coordinates in the variables 51y, 5(2), . . ., S¢), We get

20+1
f il I <t s av(s)

5ji>0,1<i<n;, 1<j<¢t

2\0{(1)|+2n1 1 2|O{(z)\+2n571
/ i _ Py dprdps - --dpe
Zz 10
pi >0, l<1<£

20l(l +1 20{([)4»1
/n1 : / wiy e wy | do(way) - do ().

Let pi” =r;, 1 <i < £. Then we have dp; = p; "/pidr; = /"7 p; dr;.
Therefore, Lemma 2.3 and the above formulas yield

I plagy+1)  plag+1)
¢ ni—1 ne—1

l_[ Di
i=1

2|oe(ry|+2n —1 2|aey|+2n —1
% /ZZ . rl( ley|+2n1)/ p1 ré loecey [42m¢) / e dry - -drg.
| ril7<t

ri>0,1<i<¢t

(2_2) — (Zn)nl"r“'-‘rng

Let r = (r1,72,...,r¢) € (Ry) and k := t~'/?r. Then dr = t"/?dk. After a
straightforward computation, we obtain that

(2-2) = (zn)n1+~~-+nz 1 Bloay + l) ,B(Ol(g) +1) ZZ _ (e[ 4+m)/ pi

Vi ni—1 mng— 1
[P

i=1

X/ gl o=t pOlaolmlmt g gy
B

+

Applying Lemma 2.3 to the above formula, we get

(2-3) (2-2) = (@)" T By + 1) - Blaw + 1>L°§) - Xinileoktn)/p

la'| TT pi
i=1
V4 n; V4
. H HF(Olij-i-l) 1_[ L ((la@y | +ni)/pi)
P T—— i=lj=1 =
= (7)™ ‘= 7
MpiIIr <|a<,>|+n>r(2<|a<,>|+n>/pl+1)

X t21:1(|0‘(:)|+n’)/17i,
where o = ((Joeiy| +11)/p1s - - -, (o | +10)/pe) € Ry)E O

Now we consider the Hilbert space AZ(D,'Z'(;I’ (w)) of square-integrable holomor-
phic functions on DZ(’JP (w).
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Lemma 2.5. Let f € A2(Dy;P (). Then

faw) =Y fu@w®,

where the series is uniformly convergent on compact subsets of the domain DZ(;p (n),
Jfa(2) € AZ(C”O,e_“M'Z”z) for any o = (aqy, ..., @) € N x ... x N" with
agy = (i1, ..., i) €N (1 <i <€) and Ly = Zf=1(|a(i)| +n;)/ pi, in which
A%(C", e"”‘“”Z”z) denotes the space of square-integrable holomorphic functions on
C" with respect to the measure e~ Hhallzl? dvs,.

Proof. Since D,',’(’)p (w) is a complete Reinhardt domain, each holomorphic function
on Dy;P (1) is the sum of a locally uniformly convergent power series. Thus, for
f € A2(Dy;P (1)), we have

fw) =) fu@w,

where the series is uniformly convergent on compact subsets of Dp”(w). We
choose a sequence of compact subsets Dy (1 <k < 00)

Dy = {(Z,w(l),...,w(g))GCnOXCnl x - x CH:

£
}:anWWSewHV—%}mBme
j=1

where B(0, k) is the ball in C"0t"1+ 1t of the radius k. Obviously, Dy € Dy
and U,fil D, = D,','(;p (w). Since Dy is a circular domain,

fe@u® L fg(wf  (a #P)

in the Hilbert space A%(Dy). Hence we have

o
2 § : 2
||f||L2(Dk) = ”f()l(z)wa”LZ(Dk)-

|a|=0

Since f(z, w) € A2(Dy;P (1)), we have
o2 2 2
”fOl(Z)w ”LZ(Dk) S ||f||L2(Dk) S ”f”LZ(DgOF(M))
Then f,(z)w® € AZ(DZ(;I’(M)). Therefore,
f | fo (D) Pw*w® dV < oo
Dyi? ()

=>/ |fa(Z)|2dV(Z)/ w*w® dV (w) < 0.
cro Y w1777 <emnlzI?
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By (2-1), it follows that

| fa ()20 gy (7) < co.
c"o

Consequently, f,(z) € A2(C0, e=#I2I*) where Ay = Y (lay | +1n0)/pi. O

Lemma 2.5 implies that {f(z) w® : f(z) € A2(CM, e‘“ka”z”z)} forms a linearly
dense subset of AZ(D,';(;I’ (). Now we can express the Bergman kernel of D:,'(’)p (w).

Theorem 2.6. The Bergman kernel of Dy,” (1) can be expressed by the form

oo )\-nO/“LnO N ) _
(2-4) KD;,’(’)I’(,L)[(Z, w), (s,1)] = Z C“(;-—noe ah(z.s) e pe
|ee|=0

where o = (a(1), - - ., o)) € N x -+ X Ny = (i1, - - -, Qi) €N T <0 <€,
and

l 4 ¢

[T pi TTT |+ m) T (3 ey + o) /i + 1) ,

=1 =l = Z Ol(z)l +n1

o= [ [/

(@rym++ne TT T] Daij 4+ 1) TT T (g —Hli)/Pz =1
i=1

i=1j=1

Proof. Since D,'l’(;p (w) is a complete Reinhardt domain, it follows that

o0
Kpprol@ w), (.01 =) cpgp(z, 9wil,
|B1=0

where the sum is locally uniformly convergent, by the invariance of the Bergman
kernel K pn.r(,, on Dy;” (i) under the unitary subgroup action

=16 =16
(215 s Zng+in) = (e 'Z1,...,€e "0+‘"'Zn0+|n|) 01, ..., Ongtin) € R).

For any o = (o1, ..., aqp)) € NI x - -« x N with o) = (@1, .. ., 0ip;) € N
(1 <i<40),andany f(z) € AX(C", e #II) for hy = Y (o] +13)/ pi, We
have f(z)w® € A%(Dy;? (1)). Thus

Fw® = / » )f(s)t“KD;g(muz, w), (s, )] dV
nb 2

/ f(s)zcﬂgﬁ(z s)w? dV(s)[ 1*t# av (r)
(0]

2
, eyl 2j c—rlisl

— £(9)ga(z, s)[e—ul\su ]Zi:](la(z)l""ﬂi)/pi dvV(s) (by (2-1)).
cro

By [Bargmann 1967], we get that the Bergman kernel of A%(C", e“’“)‘u”z”z) can
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be described by the form

A0 10
(2-5) Ko(z, w) = iekau(z,w).

o

Thus we obtain
)‘Zol“bno elehtiz:s)
"o '

8a(z,8) =
This completes the proof. (]

The transformation rule for Bergman kernels under proper holomorphic mapping
(e.g., Theorem 1 in [Bell 1982]) is also valid for unbounded domains (e.g., see
Corollary 1 in [Trybuta 2013]). Note that the coordinate functions play a key role in
the approach of [Bell 1982] to extend proper holomorphic mapping, but, in general,
are no longer square integrable on unbounded domains. In order to overcome this
difficulty, by combining the transformation rule for Bergman kernels under proper
holomorphic mapping in [Bell 1982] and our explicit form (2-4) of the Bergman
kernel function for Dy;” (1), we prove that a proper holomorphic mapping be-
tween two equidimensional generalized Fock—Bargmann—Hartogs domains extends
holomorphically to their closures as follows.

Lemma 2.7. Suppose that f : D;,l(;p (u) — D,,":(;q(v) is a proper holomorphic map-
ping between two equidimensional generalized Fock—Bargmann—Hartogs domains.
Then f extends holomorphically to a neighborhood of the closure of D,'f(’,p ().

In fact, using the explicit form (2-4) of the Bergman kernel function for D,','(;p (),
we immediately have Lemma 2.7 by a slight modification of the proof of Theorem 2.5
in [Tu and Wang 2014].

Cartan’s theorem on DZ(;I' (). Suppose D is a domain in CV and let Kp(z, w)
be its Bergman kernel. From [Ishi and Kai 2010], we know that if the conditions
(@) Kp(0,0) >0,

(b) Tp(0, 0) is positive definite,

are satisfied, where Tp is an N x N matrix

9?log Kp(z, w)/dz10w; -+ 0%log Kp(z, w)/dz 0wy

Tp(z, w):= : :
8% log Kp(z, w)/dzydw; --- 982log Kp(z, w)/dzndwy

Then Cartan’s theorem can also be applied to the case of unbounded circular

domains. The above conditions are obviously satisfied by the bounded domain.
Kim, Ninh and Yamamori [Kim et al. 2014] proved the following result.

Lemma 2.8 [Kim et al. 2014, Theorem 4]. Suppose that D is a circular domain
and its Bergman kernel satisfies the above conditions (a) and (b). If ¢ € Aut(D)
preserves the origin, then ¢ is a linear mapping.
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Ishi and Kai [2010] proved the following generalization of Lemma 2.8.

Lemma 2.9 [Ishi and Kai 2010, Proposition 2.1]. Let Dy be a circular domain
(not necessarily bounded) in CN with 0 € Dy (k =1, 2), and let ¢:D| — Dy bea
biholomorphism with ¢(0) = 0. If Kp, (0, 0) > 0 and Tp, (0, 0) is positive definite
(k =1, 2), then ¢ is linear.

Therefore, by using the expressions of Bergman kernels of generalized Fock—
Bargmann—-Hartogs domains, we have the following result.

Theorem 2.10. Suppose that ¢ : Dp)” () — D! (v) be a biholomorphic map-
ping between two equidimensional generalized Fock—Bargmann—Hartogs domains
with ¢(0) = 0. Then ¢ is linear.

Proof. By using the expressions (2-4) of Bergman kernels of generalized Fock—
Bargmann—Hartogs domains and a straightforward computation, we show that the
Bergman kernel of every generalized Fock—Bargmann—Hartogs domain satisfies
the above conditions (a) and (b). So we get Theorem 2.10 by Lemma 2.9. [l
3. Proof of the main theorem
To begin, we exploit the boundary structure of Dj;;? (1), which is comprised of
bDyP () = boDp:P () Uby DyoP (1) U by Do P (1),

where

bODZ(’)”(,u) = {(z, Wy, -, Wey) €CM x - x C'
: 2p;j —ullzl® 2 i
w127 = e, gy |2 £0, 14+€ < j <€),

j=1

¢
by Dy P () := U {(z, W(lys -« W) €ECMOx oo x C

j=14€ 14 ) B 5
> w127 = e M, ugy |2 =0, p; > 1],
j=1
e
szZ(’)p(,u) = U {(z, Wiy, - - w(z)) eC"x...xC":

2p; —ulizl? 2
> w27 = eI, ug P =0, p; <1},

j=l+e 4
j:

1
Proposition 3.1. (1) The boundary boD,':(;p () is a real analytic hypersurface in
Crotmit-tne gnd Dy P (1) is strongly pseudoconvex at all points of by Dy, P (10).

2) DZ(;I} () is weakly pseudoconvex but not strongly pseudoconvex at any point
of by DZ(;P (n) and is not smooth at any point oszD,','(’)p ().
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Proof. Let

¢

. _ 2

p(z, Wiy, - -, W) 1= lew(j)ﬂzp’ — e I,
j=1

Then p is a real analytic definition function of boDZ(;p (w). Fix a point
(20, W(1Y0, - - - » W(ey0) € bo Dy P ()

_ 1,0
and let T = (¢, nqy, ..., Nw)) € T(

0 w(z)o)(boD,','(;” (n)). Then by definition,
we know that

(3-D win#0 (j=1+e€,....0),
¢
[ _ 2__
(3-2) > pillwao PP Vg0 - nwy + e 10l Z5 - ¢ =0,
k=1 .
2
(3-3) Z lw(oll27 — eIzl =0,
j=1

Thanks to (3-1), (3-2) and (3-3), the Levi form of p at the point (zg, w10, - - ., We)0)
can be computed as follows:

L,(T,T)
no+ny+---+nyg 32,0

= — (20, W(1)0s - - - » W) T; T
2 am, M 00 T Tj

l 4
> pi(pic = Dllwaool > @00 - nao 1>+ pellwaool* P Ingo 1
k=1 k=1

—tllzol? 2 2 — 2= .2
+ e mlizoll lz)1? — e wlizoll 1Z0- ¢ |

¢
2 2pp—2) | 2 P2 2l e .12
ZZPk lweo 2P [wao - nal* + pe 1201 |1? — p?e= 1201 Z5. ¢|

k=1

£
2pe—2 2 pJp— 2
+Zpk||w(k)0|| P2 (lwayo 1w I” — 1w - na 1)
k=1
¢ “1, ¢ ¢
= (lew(k)o||2pk> (Z i’ llweyoll >~ o Tl(k)|2) (Z ||w(k)0||2”k>
k=1 k=1 k=1

1 2

¢

2pe—1) o —
> pellwaoo* PP wgas - na
k=1

L —
- (Z ||w(k)0||2pk)
k=1

2(pr—2 2 2 2 - 2 2
+ ) pellwo P (lwaoll* ma 17 = [0 - nw %) + we #1117
k=1




290 ENCHAO BI AND ZHENHAN TU

14 -1 14 14
2 2 2prk—=2) | 77— 2 2
=(Z||w(k>o|| f’k) [(Z P lwaooll* P2 | wio-nw)| ><Z||w(k)0|| "k)
k=1 k=1 k=1

2
} +ue ol g

¢

2p—1)
> pellwaol P Viwgas - na
k=1 .

2p—2 2 PR p— 2
+Zpk”w(k)0|| P2 (Jweol* I 1> — [wao - nw )
k=1

> pe ol ¢ )2 > 0.
by the Cauchy—Schwarz inequality, for all

1,0 ,
T =G0y 10) € T 0w LoD (1)

Obviously, if ¢ #0, then L,(T, T) > 0.
On the other hand, combining with (3-1), (3-2) and (3-3), we know that the
equality holds if and only if

(3-4) ¢ =0,
(3-5) lwaoll* e I1* = [W@o - ne |* =0,
)4 V4
(3-6) [(Z Pt lwayolI* P2 [Wwe - ey |2) (le W (k)0 ||2pk>
k=1 k=1

14

2(pk—1) ——
> Pellwaool >~ PG - ng
k=1

T

Suppose ¢ =0. Then T' = (¢, n(1y, - - - » N(ey) # 0 implies that there exists 7;,) 7 0.
If L,(T,T)=0 for all
1,0 ’
T#0e T(Zo,w(l)o w(g)g)(bODgop(M))a

.....

then by (3-1), (3-2), (3-3) and (3-6), we have ng) =0 (1 <k < ¥¢). Thisis a
contradiction.

When there exists jo > 1+ € such that |w(,ol> = 0 and p;, > 1, then
(20, W(1)0s - - - W(ey0) € b1 Dy? (). Let To = (0, ..., n(j> 0, ..., 0), Ingpll #O.
Then L,(Ty, Tp) = 0. Hence D,'f(;p (n) is weakly pseudoconvex but not strongly
pseudoconvex on any point of by Dy ” ().

It is obvious that D,':(;p (w) is not smooth at any point of by D,'f(;p (). The proof
is completed. ([

Lemma 3.1 [Tu and Wang 2015]. Let X (n; p) and X (m; q) be two equidimen-
sional generalized pseudoellipsoids,n, m € N¢, p, g € (Ry)* (where py, qi # 1 for
2<k<¥). Leth:X(n; p) - X(m; q) be a biholomorphic linear isomorphism
between ¥ (n; p) and ¥.(m; q). Then there exists a permutation o € S, such that



HOLOMORPHIC MAPPINGS BETWEEN FOCK-BARGMANN-HARTOGS DOMAINS 291

Ng(i) =Mj, Po(i) = q;i and
Ui

U>
h(§1s~~~v§r):(é‘c(l)’---v{a(r)) .. ’

U,

where U; is a unitary transformation of C"' (m; =ngy) for 1 <i <r.

Define
V] ::{(Z,w(l),...,UJ(Z))GCHOXC"I X--'XCHZ:UJ(I)=-"='LU(2)=O},
Vai={(z, way, ..., wey) €CM X C™M x-- x C" rwy =+ = wey =0}

(so Vi =2C" and V, = C™). Then we have the following lemma.

Lemma 3.2. Suppose Dy’ (1) and Dy (v) are two equidimensional generalized
Fock—Bargmann—Hartogs domains, and f : D,'f(;p (w) — Df,,'(;q(v) is a biholomorphic
mapping. Then we have f (V1) C Vp and f|y, : Vi — V3 is biholomorphic, and
consequently, ny = my.

Proof. Let f(z,0) = (f1(2), f2(z)). Then we get

¢
Z ||f2l.”2‘1i < e_V”fl(Z)”zS 1.
i=1
Then we obtain that the bounded entire mapping f; (z) on C" is constant (1 <i <¥¢)
by Liouville’s theorem. Since f(z) is biholomorphic, fi(z) is an unbounded
function. Hence there exist {zz} such that fj(zx) — 00 as k — oo. It implies
f2(z) = 0. This proves f(V;) C V,. Similarly, by making the same argument
for f ~1. we have f (W) cv. Namely, f|y, : V1 — V; is biholomorphic. Hence
ny = my. O

Now we give the proof of Theorem 1.4.

Proof of Theorem 1.4. Let f(0,0) = (a, b) (thus b =0 by Lemma 3.2) and define

2v(z,a)—v|\a\|2)1/2(11 2v(z,u)—u||a||2)1/2(1k)'

d’(z,w(l), ...,w(g)):z(z—a,w(l)(e ...,w(g)(e

Obviously, ¢ € Aut(Dy;;?(v)) and ¢ o £(0,0) = (0,0). Then ¢ o f is linear by
Theorem 2.10. We describe ¢ o f as follows:

B

¢of(z,w)=(z,w)(2 ’

) =(zA+wC,zB+wD).

According to Lemma 3.2, we have f(z,0) = (fi1(z),0). Thus B = 0. Since
g = ¢ o f is biholomorphic, A and D are invertible matrices. We write g(z, w) as
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A 0 --- 0
A0 Cii Dy -+ Dy
gz, w) = (z, w) cD =@ wa,--we) | L ,

Cu Dot -+ Du
which implies that

A~ 0
-1 _
g (z,w)=(z, W)(—D_ICA_I D_1>

A=l 0 .- 0

Eyn Gy - G
= (2, W1y, - - -, W(e)) . )

Egq Ger -+ Gy
Set

L
S(n; p) = {(w(l), W) €CT X x T Y w17 < 1}.
j=1

Then, if £ lweilI?Pi < e~ HIO0I* — 1, we obtain
j=111% )
¢
. _ 2
Z lwayDyj+- -+ w(z)D[J.HZqJ < e VIwCI® 1,
j=l1
and if ¥°6_ w12 < eVI0I? — 1, we have
j=1 )]
¢
) _ _p—lpoa—1yy2
D lwyGrj+ -+ w G777 < e HEPTEATDIE o,
j=1

Therefore, we conclude that the mapping g>(w) : X (n; p) — X (m; q) given by

Dy -+ Dy
gy, -, we) =wD = (wqy, - .., We)) :
Dy -+ Dy
is a biholomorphic linear mapping. By Lemma 3.1, g, can be expressed in the form
Iy

I
g(way, - ., we)) = (Wi (1)) -+ - » Wor(e)) . ,

Iy

where o € S, is a permutation with nyjy =mj, pejy =¢q; (j =1,...,¢) and
I eUd(m;) (1 <i <¢). Hence g can be rewritten as follows:
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A
Coan It

A0
g(z,w)=(z,w)<c D)Z(Z’ Wa()s - - Woey) | Co@1 I

Co)1 Iy

Next we prove that C =0. The linearity of g yields g(bD:,'(’)p () =bDy 1 (v). Let
0,w)=(0,0, ..., w(),0,...,0)€bDy? (1), namely, |[w(;)||>= (e~ #I01")1/ri =1.
As T'j (1 < j <{) are unitary matrices, moreover, assuming o (ip) = j, we have

: ; — ; -
w277 = 1w oy Ty 20 = e~ 1Moo ool = 1,

This implies w(;)C;; = 0 for all ||w(j)||2 =1.S0C;; =0(1 <j <¥). Thus we
have
A
Iy

g(z, W(l)y -+ w(z)) = (z, W (1))« > w(g([))) Iy

Iy

Lastly, we show \/v/u A el (n) (n:=ng=my). For ze C", take (w, . .., w())
such that e 151" = Y°0_ lw(;) 1>/, By g(b D" (1)) = bDyy (v), we have

¢
. _ 2
I T T

j=1
Since I';(j =1, ..., £) are unitary matrices, we get
2 ¢ ¢ 2
e HlzlT — Z ”w(a(j))Hzpo(j) = Z ”w(a(j))rj ”29/' — o VizAlIT
j=1 j=1
Therefore, v||zA||> = u|z]|? (z € C"). Then we get /v/it A € U(n), and the proof
is completed. U

Proof of Corollary 1.5. In fact, the significance of the above ¢ is just to ensure
that ¢ o f(0) = 0. Then the proof of Theorem 1.4 implies that Corollary 1.5 is
obvious. U

Proof of Theorem 1.6. Obviously, ¢4, ¢p and ¢, are biholomorphic self-mappings
of Dy;P (11). On the other hand, for ¢ € Aut(Dy;? (11)), we assume ¢ (0, 0) = (a, b)
(then b = 0 by Lemma 3.2). Hence ¢_, o ¢ preserves the origin. Then by
Corollary 1.5, we obtain ¢_, 090 =@po@4 for some ¢4, ¢p. Hence o =@ 09po@4,
and the proof is complete. (]
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Proof of Theorem 1.7. Let f be a proper holomorphic mapping between two equidi-
mensional generalized Fock—Bargmann—Hartogs domains D,',’(’Jp (n) and D,',','(;q(v).
Then by Lemma 2.7, f extends holomorphically to a neighborhood €2 of the closure
Dp:P () with

fBDyP(w) CbDy(v).
Then by Proposition 3.1 and Lemma 1.3 in [Pinchuk 1975], we have

(3-7) FM O boDyiP () C by Dy (v) Uba Dyt (v),

mo mo

where M :={z € Q : det(df;/0z;) = 0} is the zero locus of the complex Jacobian
of the holomorphic mapping f on 2.
If M NbDyP (1) # 3, then from

min{n4e, na, ..., ng} > 2,

we have M N boD,'f(;p (n) # . Take an irreducible component M’ of M with
M'N bOD,'f(;p(,u) # . Then the intersection Ey; of M’ with boD,':(;p(,u) is a real
analytic submanifold of dimensional 2(ng +n; + - - - +n¢) — 3 on a dense, open
subset of Ey. By (3-7), we have f(E ) C by Dy (v) UbyDyy? (v). Hence

¢
(3-8) fM DR C | Pr(Dpio)),
j=1+8
where Pr; (Dp . () := {(z, w(), -« ., W) € Dy (V) : w1 =0} (1+8 <i <€)
by the uniqueness theorem. Since codim M’ =1,

¢
codim[ U Pr,-(D:,'l’(;q(v))] >min{myys,...,mg,mi+---+my}>2
j=148
and f : D:,’(’)p (n) — D,'Z(;q (v) is proper, this contradicts (3-8). Thus we have
MNbDyP (n) = 2.
Let S:=MnN D:,'(’)p(,u). Then we have

Sc DpP(w), SNbDp?(n) = .

If S # &, then S is a complex analytic set in C"0*"1+ ¢ a]go. For any (z, w) € S,
we have [we,, |27 < 35 [l 1277 < eI < 1. Thus

(3-9) lwen, 1> < 1< 14 l(z, W),

where w = (w’, wgy,). Then S is an algebraic set of C"0T"1+ "+ by §7 4, Theorem 3
of [Chirka 1989].

Suppose S; is an irreducible component of S. Let S| be the closure of S; in
Protmi+-+nc  Then by §7.2, Proposition 2 of [Chirka 1989], S; is a projective
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algebraic set and dim Si=no+n,+---+n;—1. Let [£, z, w] be the homogeneous
coordinate in P01t 1e We embed CMot T e o POttt ag the affine
piece Uy = {[£€, z, w] € Protnit+ne . & £ 0} by (z, w) = [1, z, w]. Then we have

DZ(;”(M)DU0={E z,w]: & #0, Z w177 <e—u|z||2/|>§2}'

2
o |§|=Pi
Let H = {§ =0} c Prot™m++1_ Consider another affine piece

Ui = {[§, z, w] € PPFmT4e s 74 5 0)

with affine coordinate (£, 7,5) = (¢, ta, . .., tng, S(1)» - - - » S0))- Lett' =1, ta, ..., In,).
Since
lw 122 w1227 (211220 s 1P
|&|2Pi |lz1|2Pi |&|2Pi | |2Pi

e HIIP/IER o= CIzI2/1i P PAIER) — pmi(Ulia Pt ling P/ 127
we obtain

(3-10) D, P NUoNU; = {(E, 12y ooy gy S(1ys - - - » S(py) € CMOTMFHRE
¢ NI
3 _”S<J>2” L - e—u|z’||2/|¢|2}.
T
i

Let §'=S,NU; and H; = HNU; = {¢ =0} (note £ =¢/z;). Forevery u € S'N Hj,
there exists a sequence of points {u} C SN ((UpN Uy)\Hy) such that uy — u
(k — 00). The formula (3-10) implies

(3-11) Isciy @OIPPF < [¢ (ug)| 2P HIIP/1E@ol (1 < j < p),

Since u € Hy, that means ¢ (1) = 0 and ¢ (ug) — 0 (k — 00). Therefore we have
s @))I?Pi <0 (1 < j <€) as k — oo. Hence

S'NH C {¢=0:50)="--=s00) =0}.
Then dim(S" N H;) < no — 1. Theorem 6 in §6.2 of [Shafarevich 1974] implies
no—1 Zdim(S/ﬂHl) 2dimS’+dimH1 —ng—ny—---—ny ZdimS'— 1.

This means dim §” < ng, and thus ng+n; +---+ny — 1 =dim §’ < ng. Therefore,
we get n + - - - +ny < 1, contradicting the assumption that

min{niye, no, ..., ng, 01+ +ng} > 2.
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Therefore, S = & and thus f is unbranched. Since the generalized Fock—
Bargmann—Hartogs domain is simply connected, f : D,':(;p (n) — D,','l'(;q (v) is a
biholomorphism. The proof is completed. (]
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