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GALOISIAN METHODS FOR TESTING IRREDUCIBILITY OF
ORDER TWO NONLINEAR DIFFERENTIAL EQUATIONS

GUY CASALE AND JACQUES-ARTHUR WEIL

We provide a criterion to compute the Malgrange pseudogroup, the non-
linear analog of the differential Galois group, for classes of second order
differential equations. Let Gk be the differential Galois groups of their k-th
variational equations along an algebraic solution 0. We show that if the di-
mension of one of the Gk is large enough, then the Malgrange pseudogroup
is known. This in turn proves the irreducibility of the original nonlinear
differential equation. To make the criterion applicable, we give a method to
compute the dimensions of the variational Galois groups Gk via constructive
reduced form theory. As an application, we reprove the irreducibility of the
second and third Painlevé equations for special values of their parameter.
In the appendices, we recast the various notions of variational equations
found in the literature and prove their equivalences.
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Introduction

The Malgrange pseudogroup of a vector field may be seen as a nonlinear analog of
the Galois group of linear differential equations. Our aim in this work is to provide
a criterion to compute Malgrange pseudogroups using an approach initiated by
Casale: we study variational equations along a given algebraic solution curve 0 and
use the fact that their Galois groups lie, in a certain sense, in Mal(X). Our main
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theorem below shows that if the dimension of these Galois groups is large enough,
then Mal(X) is large and known.

In previous works, Casale applied this to integrability. We apply it to a stronger
notion; the irreducibility of nonlinear differential equations.

Irreducibility of differential equations. The first formalized definition of reducibility
appears in the Stockholm lessons of Paul Painlevé [1897]. A complete algebraization
of this definition was given by K. Nishioka [1988] and H. Umemura [1988]. Note
that Nishioka’s concept of decomposable extension may be more general than
reducibility. The first application was the proof of the irreducibility of the first
Painlevé equation [Painlevé 1900; Nishioka 1988; Umemura 1988; 1990]. Umemura
gave a simple criterion to prove irreducibility and the Japanese school applied it to
all Painlevé equations [Noumi and Okamoto 1997; Umemura and Watanabe 1997;
1998; Watanabe 1995; 1998]. These papers deal with reducibility of solutions; in
this paper, we will emphasize the (stronger) notion of reducibility of an equation
(see next section for proper definitions).

Painlevé [1902] suggested that irreducibility of a differential equation can be
proved by the computation of its (hypothetical) “rationality group”, as (incor-
rectly) defined by J. Drach [1898]. Such a group-like object was finally defined in
[Umemura 1996] (where it is a group functor) and in [Malgrange 2001] (where it
is an algebraic pseudogroup); see also [Pommaret 1983].

The Malgrange pseudogroup. Let X denote a vector field on a manifold M. The
smallest algebraic pseudogroup containing the flows of X is the Malgrange pseu-
dogroup, denoted by Mal(X) (see Appendix C2, and references therein for a more
precise definition).

The computation of the Malgrange pseudogroup of a differential equation is a
difficult (and currently wide open) problem. In this paper, we use differential Galois
groups of the variational equations along an algebraic solution of equations of the
form y′′ = f (x, y) to determine their Malgrange pseudogroup.

The study of an equation through its linearization is ancient. Applications to
integrability of differential equations were revived by S. L. Ziglin [1982], followed
by many authors, notably J. J. Morales-Ruiz and J.-P. Ramis [2001a; 2001b] and
then jointly with C. Simó [Morales-Ruiz et al. 2007] using the differential Galois
group of the variational equations along a solution.

Casale [2009] proved that these Galois groups provide a lower bound for the
Malgrange pseudogroup in the following way. This pseudogroup acts on the phase
space and the algebraic solution (along which we linearize) parametrizes a curve C

in this space. Then the group of k-jets of elements fixing a point in C contains the
Galois group of the k-th order variational equation along C .

Using techniques developed in [Morales-Ruiz and Ramis 2001a; 2001b; 2007]
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and the Malgrange pseudogroup following [Casale 2009], we will prove the follow-
ing theorem, which is the main result of this work.

Theorem 1. Let M be a smooth irreducible algebraic 3-fold over C and X be a
rational vector field on M such that there exist a closed rational 1-form α with
α(X)= 1 and a closed rational 2-form γ with ιXγ = 0.

Assume C is an algebraic X-invariant curve with XC 6≡ 0. Assume that the
following two conditions are satisfied:

(i) The differential Galois group of the first variational equation of X along C is
not virtually solvable;

(ii) There exists an integer k such that the dimension of the differential Galois
group of the k-th variational equation is at least 6.

Then, the Malgrange pseudogroup is

Mal(X)= {ϕ | ϕ∗α = α, ϕ∗γ = γ }.

Moreover, if there exist rational coordinates x, y, z on M such that

X = ∂

∂x
+ z ∂

∂y
+ f (x, y, z) ∂

∂z

then the equation y′′ = f (x, y, y′) is irreducible.

The proof will be given in Appendix C, essentially because it requires a number
of definitions and clarifications which we give there.

Another way to express the conclusion of the theorem is that the singular holo-
morphic foliation FX of M defined by trajectories of X has no transversal rational
geometric structure except the transversal rational volume form given by γ .

This theorem can be applied to compute the Malgrange pseudogroup of equations
of the form y′′ = f (x, y). Solutions x 7→ (x, y(x), y′(x)) of such an equation are
trajectories of the vector field ∂

∂x + z ∂
∂y + f (x, y) ∂

∂z on the phase space. The forms
α = dx and γ = ιX (dx ∧ dy ∧ dz) are closed and α(X) = 1, ιXγ = 0. To apply
the theorem, a particular solution is needed.

Irreducibility and Malgrange pseudogroup. After Umemura, the Japanese school
proved irreducibility of solutions of Painlevé equations using the so-called J condi-
tion.

Theorem [Umemura 1990]. If E ∈ C[x, y, y′, y′′] is a second order differential
equation and ϕ is a nonalgebraic reducible solution then there exists a differential
field extension C(x)⊂ L and a first order differential equation F ∈ L[y, y′] such
that F(ϕ, ϕ′)= 0.

Casale improved this condition under some assumptions:
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Theorem [Casale 2009]. If E ∈ C[x, y, y′, y′′] is a second order differential equa-
tion and ϕ is a nonalgebraic reducible solution and the Malgrange pseudogroup of
E is big enough then there exists a first order differential equation F ∈ C[x, y, y′]
such that F(ϕ, ϕ′)= 0.

This theorem can be rephrased as follows:

If the Malgrange pseudogroup of an equation is big enough then a re-
ducible solution cannot be a general solution.

This leads us to define reducibility of an equation as the existence of a reducible
general solution. A link with the Malgrange pseudogroup is given by the following.

Theorem 2 [Casale 2009]. Let M be a smooth irreducible algebraic 3-fold over C

and X be a rational vector field on M such that there exist a closed rational 1-form α
with α(X)= 1 and a closed rational 2-form γ with ιXγ = 0.

If the Malgrange pseudogroup is

Mal(X)= {ϕ | ϕ∗α = α, ϕ∗γ = γ }

and there exist rational coordinates x, y, z on M such that

X =
∂

∂x
+ z

∂

∂y
+ f (x, y, z)

∂

∂z
,

then the equation y′′ = f (x, y, y′) is irreducible.

Casale [2008] applied this philosophy to reprove the irreducibility of the first
Painlevé equation. S. Cantat and F. Loray [2009] used this to reprove the irreducibil-
ity of the sixth Painlevé equation.

The strongest notion of solvability used in differential equations is Liouville
integrability of Hamiltonian systems (and derived notions such as Bogoyavlenskij
integrability [1998]). In this case, Mal(X) is commutative. In the case when the
system is integrable by quadratures, Mal(X) is solvable. In the reducible case, the
consequence on Mal(X) is more technical (see Appendix C and the proof of the
main theorem in [Casale 2009]).

Applications. The second Painlevé equation with parameter a is

(PII(a)) y′′ = xy+ 2y3
+ a.

There is a Bäcklund transformation ([Noumi and Okamoto 1997]) linking (PII(a))
and (PII(a + 1)). Hence, determining the Malgrange pseudogroup for (PII(a))
determines it for all (PII(a+ n)), n ∈ Z.

M. Noumi and K. Okamoto [1997] proved that, apart from the rational solutions
when α ∈ Z and hypergeometric solutions when α ∈ 1/2+Z, the solutions of this
equation are irreducible in the sense of Nishioka and Umemura.
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Painlevé equations can be presented as Hamiltonian systems with two degrees
of freedom. Morales-Ruiz applied Morales–Ramis theory to the Hamiltonian form
of (PII(n)) in order to prove its non-Liouville-integrability. His work has been
continued in [Stoyanova and Christov 2007; Horozov and Stoyanova 2007; Żołądek
and Filipuk 2015]. These computations can be reinterpreted following [Casale 2009]:
the nonsolvability of the Galois group of the first variational equation implies the
nonsolvability of the Malgrange pseudogroup, and hence the nonintegrability by
quadratures of (PII(n)).

For an ordinary differential equation, reducibility is much more general than
integrability by quadratures and the corresponding property of its Malgrange pseu-
dogroup is less easy to formulate precisely. The seminal work of Morales-Ruiz
has to be continued further and Galois groups of higher order variational equations
must be computed.

The approach presented here uses the Malgrange pseudogroup of the rational
vector field X on M = C3 given by

X2 =
∂

∂x
+ z

∂

∂y
+ (xy+ 2y3)

∂

∂z
,

whose trajectories are parametrized by solutions of (PII(n)). Using the notation of
the theorem, α = dx , γ = ιX (dx ∧ dy ∧ dz) and C = {y = z = 0}, we prove that

Mal(X)= {ϕ | ϕ∗α = α, ϕ∗γ = γ }.

This equality implies the irreducibility of (PII(n)). Note that this property of the
Malgrange pseudogroup is stronger than irreducibility in the sense of Nishioka
and Umemura. However, it is not a purely algebraic property: it is formulated for
the differential field C(x) and seems to be specific to differential fields which are
finitely generated over the constants, whereas the definition of irreducibility can be
stated over any differential field.

The application of our theorem to prove the irreducibility of the second Painlevé
equation requires two steps.

First, one needs to check whether the Galois group of the first variational equation
is solvable after an algebraic extension (or virtually solvable). This differential
equation reduces to the Airy equation y′′ = xy and it is easy, for example by using
the Kovacic algorithm [1986], to show that its differential Galois group is SL(2,C).

Then, to check the dimension condition seems more hazardous at first sight. We
would need to compute Galois groups of higher order variational equations until
we found a Galois group of dimension at least 6. Until now, no bound is known on
the order of the required variational equation that one would have to study to prove
this. Moreover, the size of the (linearized) variational equations grows quickly and,
even though there are theoretical methods to compute differential Galois groups
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in [Hrushovski 2002], the computation of differential Galois groups of such big
systems is still unfeasible in general.

In our case, the situation is better because the methods of P. H. Berman and
M. F. Singer [Berman and Singer 1999; Berman 2002] could allow us to determine
the differential Galois group. We choose another approach, following the works of
A. Aparicio, E. Compoint, T. Dreyfus and J.-A. Weil on reduced forms of linear
differential systems (see [Aparicio and Weil 2012; Aparicio et al. 2013]), notably
[Aparicio and Weil 2011; Aparicio et al. 2016] where new effective techniques allow
the computation of the Lie algebra of the differential Galois group of a variational
equation of order k when the variational equation of order k − 1 has an abelian
differential Galois group. We show how to extend their method to our situation.

These computations can be reused to compute the Malgrange pseudogroup and
prove irreducibility of a larger class of differential equations: y′′ = xy+ yn P(x, y).
We will then show how this technique can be used to compute the Malgrange
pseudogroup of a family of Painlevé III equations and prove their irreducibility.

Organization of the paper. Section 1 contains the definitions of reducibility, varia-
tional equations and their differential Galois groups in order to state the main
theorem. The proof of the main theorem is postponed until Appendix C. In
Section 2, we elaborate a simple irreducibility criterion for equations of the form
y′′ = xy+ yn P(x, y) and give two irreducibility proofs for a Painlevé II equation.
In Section 3, we apply a similar scheme to prove the irreducibility of a Painlevé III
equation from statistical physics.

In the appendices, we detail the constructions needed to prove the main theorem.
In Appendix A, we recast the Galois groups in the context of G-principal connections.
In Appendix B, we describe and compare various notions of variational equations
(arc space and frame bundle viewpoints), as the literature is occasionally hazy on
this point. In Appendix C, we give the definition of the Malgrange pseudogroup
of a vector field and give some of its properties regarding the reducibility and the
variational equations. Together with the Cartan classification of pseudogroups in
dimension 2 (in a neighborhood of a generic point), this allows us to finally prove
Theorem 1.

1. Definitions

1.1. Irreducibility. In the 21st of his Stockholm lessons, Painlevé [1897] defined
different classes of transcendental functions and gave the definition of second
order differential equations reducible to first order differential equations. Then he
proved that the so-called Picard–Painlevé equation, a special case of Painlevé’s
sixth equation discovered by E. Picard, is irreducible. This proof relies on the fact
that this equation has no moving singularities and that its flow gives bimeromorphic
transformations of the plane C2. In this situation, reducible equations have a flow
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sending a foliation by algebraic curves onto another algebraic one. This is not the
case for the Picard–Painlevé equation.

Later, Painlevé claimed without proof that the computation of Drach’s rationality
group [Drach 1898] would prove the irreducibility of an equation. He tried to
compute it for the first Painlevé equation in [Painlevé 1902].

Definition 3 [Painlevé 1897; Nishioka 1988; Umemura 1988]. Let (K , δ) be an
ordinary differential field, y be a differential indeterminate and

(E) : δ2 y = F(y, δy) ∈ K (y, δy)

be a second order differential equation defined on K. A solution of the equation (E)
is called a reducible solution if it lies in a differential extension L of K built in the
following way:

K = K0 ⊂ K1 ⊂ · · · ⊂ Km = L

with one of the following elementary extensions for any i . Either

• Ki ⊂ Ki+1 is an algebraic extension, or

• Ki ⊂ Ki+1 is a linear extension, i.e., Ki+1 = Ki ( f p
j ; 1 ≤ p, j ≤ n) with

δ f p
j =

∑
k Ak

j f p
k , Ak

j ∈ Ki , or

• Ki ⊂ Ki+1 is an abelian extension, i.e., Ki+1= Ki (ϕ j (a1, . . . , an); 1≤ j ≤ n)
with ϕ’s a basis of periodic functions on Cn given by the field of rational
functions on an abelian variety over C and a’s in Ki , or

• Ki ⊂Ki+1 has transcendence degree 1, i.e., Ki+1=Ki (z, δz)with P(z, δz)=0,
P ∈ Ki [X, Y ] − {0}.

Note that Nishioka’s definition of decomposable extension seems more general
than reducibility. We do not know any example of a decomposable irreducible
extension nor any proof of the equivalence of the two notions. In the articles of
Umemura, the notion of reducibility appears together with the notion of classical
functions. The latter is similar except that the last kind of elementary extension is
not allowed.

This definition may not be the most relevant to understand the geometry of the
differential equation: a second order differential equation may have two functionally
independent first integrals in a Picard–Vessiot extension of C(x, y, z) without being
reducible. This is the case for the Picard–Painlevé equation as it is explained in the
21st lesson of Painlevé [1897]; see also [Casale 2007] and [Watanabe 1998].

The above definition is a property of individual solutions; however, the equation
may have an exceptional solution which is reducible whereas the others are not. For
example, any equation δ2 y= yF(y, δy)+δyG(y, δy)∈ K [y, δy] admits y= 0 as a
solution. Therefore we will introduce a notion of reducibility of the equation which
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translates, in algebraic terms, the idea that the general solution of the equation is
reducible.

Definition 4. Let (K , δ) be an ordinary differential field and

(E) : δ2 y = F(y, δy) ∈ K (y, δy)

be a second order differential equation defined on K. The equation (E) is called a
reducible differential equation over K if there exists a reducible solution f such
that the transcendence degree of K ( f, δ f )/K equals 2 (i.e., the general solution of
the equation is reducible).

Example 1. Consider the equation δ2 y = 0. We want to show that it is reducible
over

(
C(x), δ = ∂/∂x

)
. Its general solution is f = ax + b for arbitrary (i.e.,

transcendental) constants a and b. Here, K = C(x) and K ( f, δ f ) = C(a, b)(x)
(with a and b transcendental over C) so that the transcendence degree of K ( f, δ f )/K
does indeed equal 2. This is why, in the second condition for reducibility of solutions
(in Definition 3 above), we allow linear extensions with possibly new constants
(and not only Picard–Vessiot extensions).

Remark 5. Solutions of a reducible second order differential equation are reducible.
Reducibility of the equation means that one can choose a geometric model (M, X)
for the differential field Km and a dominant rational map π from M to A2

K such that
the rational vector field X is π -projectable on ∂ + y′ ∂

∂y + F(y, y′) ∂
∂y′ . A solution is

an integral curve of this vector field. Now the image of a rational map is constructible
so that either the solution is algebraic or it is in the image of π . In each case, the
solution is reducible.

Using the Malgrange pseudogroup of a vector field and É. Cartan’s classification
of pseudogroups, Casale proved the following theorem.

Theorem 6 [Casale 2008, Annexe A]. Let X be a rational vector field on M, a
smooth irreducible algebraic 3-fold. Assume there exist a rational closed 1-form α

such that α(X)= 1 and a rational closed 2-form γ such that ιXγ = 0. Then one of
the following holds.

• There exists a 1-form ω with coefficients in the algebraic closure C(M)
alg

such that ω(X) = 0 and for any local determination of algebraic functions
ω∧ dω = 0.

• There exist θ1 and θ2, two rational 1-forms vanishing on X , and a traceless
2× 2 matrix (θ j

i ) of rational 1-forms such that θi (X)= 0, dθi =
∑

k θ
k
i ∧ θk

and dθ j
i =

∑
k θ

j
k ∧ θ

k
i , for all (i, j) ∈ {1, 2}2.

• The Malgrange pseudogroup is Mal(X)= {ϕ | ϕ∗α = α, ϕ∗(γ )= γ }.
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The systems of PDE given in the first two items of the statement are the analog
of the resolvent equations in classical Galois theory. The existence of a rational
solution to the resolvent equations would imply that the Malgrange pseudogroup is
small. Then in [Casale 2009], the claim of Painlevé is proved.

Theorem 7 [Casale 2009]. Let E be a rational equation of order two,

y′′ = F(x, y) ∈ C(x, y),

and X = ∂/∂x+ z∂/∂y+F(x, y)∂/∂z be the rational vector field on C3 associated
to E. If Mal(X)= {ϕ | ϕ∗dx = dx, ϕ∗(ιX dx ∧ dy ∧ dz)= ιX dx ∧ dy ∧ dz} then
E is irreducible.

1.2. Variational equations. Let X be a vector field on an algebraic manifold M
and C ⊂ M an algebraic X -invariant curve such that XC 6≡ 0. Variational equations
can be written easily in local coordinates. Intrinsic versions will be given in
the appendices. In local coordinates (x1, . . . , xn) on M, the flow equations of
X =

∑
ai (x)∂/∂xi are

d
dt

xi = ai (x), i = 1, . . . , n.

This flow can be used to move germs of analytic curves on M pointwise. Let
ε 7→ x(ε) be such a germ defined on (C, 0). For any ε small enough, one has

d
dt

xi (ε)= ai (x(ε)) i = 1, . . . , n.

Analyticity allow us to expand this equality. Let

x(ε)=
(∑

k

x (k)1
εk

k!
, . . . ,

∑
k

x (k)n
εk

k!

)
,

then

(VEk)



d
dt

x0
i = ai (x0),

d
dt

x (1)i =
∑

j
∂ai

∂x j
(x0)x (1)j ,

d
dt

x (2)i =
∑

j
∂ai

∂x j
(x0)x (2)j +

∑
j,`

∂2ai

∂x j∂x`
(x0)x (1)j x (1)` ,

d
dt

x (3)i =
∑

j
∂ai

∂x j
(x0)x (3)j +

∑
j,` 3 ∂2ai

∂x j∂x`
(x0)x (2)j x (1)` ,

+
∑

j,`,m
∂3ai

∂x j∂x`∂xm
(x0)x (1)j x (1)` x (1)m ,

...

d
dt

x (k)i = Fk(∂
βai (x0), x (`)i | i = 1, . . . , n, |β| ≤ k, `≤ k),
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where the F’s are given by Faa di Bruno formulas (see formula (14) on page 860 in
[Morales-Ruiz et al. 2007]). The k-th order variational equation is the differential sys-
tem on k-th order jets of parametrized curves on M obtained in this way. Because C

is an algebraic X -invariant curve, the space of parametrized curves with x0
∈ C

is an algebraic subvariety invariant by the variational equation. The variational
equation gives a nonlinear connection on the bundle over C of parametrized curves
pointed on C . This restriction is the variational equation along C .

The system (VEk) is a rank nk nonlinear system but it can be linearized. For
instance the third order variational equation is linearized using new unknowns
z`,k, j = x (1)` x (1)k x (1)j , zk, j = x (2)k x (1)j and zk = x (3)k , which amounts to performing
some tensor constructions on lower order linearized variational equations (such as
symmetric powers of the first variational equation); see [Simon 2014; Aparicio and
Weil 2011; Morales-Ruiz et al. 2007]. The linear system obtained is

(LVE3)



d
dt

x0
i = ai (x0),

d
dt

z`,k, j =
∑

b,c,d

(
∂a`
∂xb
+
∂ak

∂xc
+
∂a j

∂xd

)
(x0)zb,c,d ,

d
dt

zk, j =
∑

b,c

(
∂a`
∂xb
+
∂ak

∂xc

)
(x0)zb,c+

∑
c,d

∂2ak

∂xc∂xd
(x0)zc,d, j ,

d
dt

zi =
∑

j
∂ai

∂x j
(x0)z j +

∑
j,` 3 ∂2ai

∂x j∂x`
(x0)z j,`

+
∑

j,`,m
∂3ai

∂x j∂x`∂xm
(x0)z j,`,m .

When X preserves a transversal fibration π :M→ B, the parametrized curves ε→
x(ε) included in fibers of π give a subset of curves invariant by X. The restriction
of the variational equation to this subset is called the π -normal variational equation.
The main case of interest is the normal variational equation of an ODE. Such a
differential equation gives a vector field ∂/∂x1+ · · · where x1 is the independent
coordinate. The normal variational equation (with respect to the projection on the
curve of the independent coordinate) is obtained from the variational equation by
setting x (k)1 = 0 when k ≥ 1.

The k-th order linearized normal variational equation is obtained from the k-th
order linearized variational equation by setting zα = 0 when a coordinate of α ∈Nk

is equal to 1. The induced system will be denoted by NLVEk .

1.3. The Galois group and the main theorem. Following E. Picard and E. Vessiot,
the differential Galois group of a linear differential system d

dt Y = AY with A ∈
GL(n,C(t)) can be defined in the following way.

Select a regular point t0 of the differential system and a fundamental matrix F(t)∈
GL(C{t− t0}) of holomorphic solutions at this point. Then the splitting field, called
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the Picard–Vessiot extension, is L = C(t, F j
i (t) | 1≤ i, j ≤ n) and the differential

Galois group G is the group of C(t)-automorphisms of L commuting with d/dt .
Picard proved that this group G is a linear algebraic subgroup of GL(n,C) and

Vessiot proved the Galois correspondence. In our context, the linearized normal
variational equation is a subsystem of the linearized variational equation so the
Galois correspondence implies that its Galois group is a quotient of the Galois
group of the variational equation.

Introductions to this theory may be found in [Magid 1994] or the reference book
[van der Put and Singer 2003]. Other variations on that theme can be found, for
example, in [Katz 1990; Kolchin 1973; Bertrand 1996]. We propose an overview
of the theory from the “principal bundle” point of view in the appendices.

The statement of our main theorem involves the Malgrange pseudogroup of a
vector field. We recall its definition in Appendix C2.

Theorem 1. Let M be a smooth irreducible algebraic 3-fold over C and X be a
rational vector field on M such that there exist a closed rational 1-form α with
α(X)= 1 and a closed rational 2-form γ with ιXγ = 0.

Assume C is an algebraic X-invariant curve with XC 6≡ 0. Assume that the
following two conditions are satisfied:

(i) The differential Galois group of the first variational equation of X along C is
not virtually solvable;

(ii) There exists an integer k such that the dimension of the differential Galois
group of the k-th variational equation is at least 6.

Then, the Malgrange pseudogroup is

Mal(X)= {ϕ | ϕ∗α = α, ϕ∗γ = γ }.

Moreover, if there exist rational coordinates x, y, z on M such that

X = ∂

∂x
+ z ∂

∂y
+ f (x, y, z) ∂

∂z

then the equation y′′ = f (x, y, y′) is irreducible.

In the application, we will compute the Galois group of the normal variational
equation. As this group is a quotient of the group used in the theorem, one can
replace (VE1) by (NVE1) and (LVEk) by (NLVEk)without changing the conclusion
of the theorem. We postpone the proof of the theorem to the appendices because it
requires additional technology which is recalled there. In the next two sections, we
show applications of this theorem to the irreducibility of second order equations
such as the Painlevé equations (PII) and (PIII).
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2. Irreducibility of d2 y/dx2 = f (x, y) and the Painlevé II equation

We will compute the differential Galois group of some normal variational equation
along the solution y = 0 of differential equations of the form

d2 y
dx2 = xy+ yn P(x, y) with P ∈ C(x, y) without poles along y = 0 and n ≥ 2.

The vector field of our equation is

X = ∂

∂x
+ z ∂

∂y
+ (xy+ yn P(x, y)) ∂

∂z
.

This equation has a solution y = z = 0. The first normal variational equation along
this curve is

∂

∂x
+ z(1)

∂

∂y(1)
+ xy(1)

∂

∂z(1)

Using a parametrization x = t of this curve, we get a linear system,

d
dt

Y = AY, with A =
(

0 1
t 0

)
.

It is easily seen, from the form of the equation, that the variational equations of
order less than n bring no new information, because of the term in yn. Letting

y =
n∑

i=1

y(i)εi/(i !) and p(x)= n!P(x, 0),

we have

xy + yn P(x, y)=
n−1∑
i=1

xy(i)εi
+ (xy(n)+ (y(1))n p(x))εn

+ o(εn)

and the n-th order normal variational equation along the solution y = z = 0 is

∂

∂x
+

( n−1∑
k=1

z(k)
∂

∂y(k)
+ xy(k)

∂

∂z(k)

)
+ z(n)

∂

∂y(n)
+ (xy(n)+ p(x)(y(1))n)

∂

∂z(n)
.

The linearized normal variational system can be reduced to

(NVEn)
d
dt



...

...(n
k

)
(y(1))n−k(z(1))k

...

y(n)

z(n)


=



...

symn
(

0 1
t 0

)
0
...

0 · · · 0 0 1
p(t) · · · 0 t 0





...

...(n
k

)
(y(1))n−k(z(1))k

...

y(n)

z(n)


.
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Example 2. For example, in the case of the second Painlevé equation with a = 0
or (PII), we have n = 3 and the linearized variational system is

(PNVE3)
d
dt

Y =A · Y, with A=



0 1 0 0 0 0
3t 0 2 0 0 0
0 2t 0 3 0 0
0 0 t 0 0 0

0 0 0 0 0 1
12 0 0 0 t 0


.

2.1. Reduced forms and a first irreducibility proof of (PII). We introduce mate-
rial from [Aparicio et al. 2013; Aparicio and Weil 2012] concerning the Kolchin–
Kovacic reduced forms of linear differential systems.

Consider a differential system [A] : Y ′ = AY with A ∈Mat(n, k). Let G denote
its differential Galois group and g its Lie algebra. Given a matrix P ∈ GL(n, k),
the change of variable Y = P.Z transforms [A] into a system Z ′ = B.Z , where

B = P AP−1
− P ′P−1.

The standard notation is B = P[A]. The systems [A] and [P[A]] are called equiva-
lent over k. The Galois group may change but its Lie algebra g is preserved under
this transformation.

We say that [A] is in reduced form if A ∈ g(k). When this is not the case, we say
that a matrix B ∈Mat(n, k) is a reduced form of [A] if there exists P ∈ GL(n, k)
such that B = P[A] and B ∈ g(k). Our technique to find g, for the variational
equations, will be to transform them into reduced form.

Example 3. The first variational equation of Painlevé II has matrix

A1 =

(
0 1
t 0

)
.

This corresponds to the Airy equation and its Galois group is known to be SL(2,C).
Obviously, A1 ∈ sl(2,C(t)) so the first variational equation is in reduced form.

Let a1(x), . . . , ar (x) ∈ k be a basis of the C-vector space generated by the
coefficients of A. We may decompose A as A =

∑r
i=1 ai (x)Mi , where the Mi

are constant matrices. The Lie algebra associated to A, denoted Lie(A), is the
algebraic Lie algebra generated by the Mi : it is the smallest Lie algebra which
contains the Mi and is also the Lie algebra of some (connected) linear algebraic
group H; see [Aparicio et al. 2013].
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Example 4. We compute the Lie algebra Lie(A) associated to A in the system
(PNVE3). Let

X :=



0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 0 0

0 0 0 0 0 1
0 0 0 0 0 0


=


symn

(
0 1
0 0

)
0

0
0 1
0 0

,

Y :=



0 0 0 0 0 0
3 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0

0 0 0 0 0 0
0 0 0 0 1 0


=


symn

(
0 0
1 0

)
0

0
0 0
1 0

,

and

H := [X, Y ] =



3 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −3 0 0

0 0 0 0 1 0
0 0 0 0 0 −1


this is the standard sl2 triplet with [H, X ] = 2X, [H, Y ] =−2Y ), and we introduce
the off-diagonal matrices

Ei =


. . .

...

0 0
. . .

...

Bi 0

,
where

B0 =

(
0 0 0 0
1 0 0 0

)
, B1 =

(
+1 0 0 0
0 −1 0 0

)
, B2 =

(
0 −1 0 0
0 0 1 0

)
,

B3 =

(
0 0 +1 0
0 0 0 −1

)
, B4 =

(
0 0 0 −1
0 0 0 0

)
.

We have [X, Ei ]=(i + 1)Ei+1, [Y, Ei ]=(5− i)Ei−1, [H, Ei ]=(−4+ 2i)Ei and
[Ei , E j ]=0 (with E−1 = E5 = 0). We now show that Lie(A) is generated (as a
Lie algebra) by X, Y and E1. Indeed, Lie(A) is generated (as a Lie algebra) by
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M1 := X + E1 and M2 := Y ; thus [M1,M2] = H and [M1, H ] = −2X − 4E1 so
[M1, H ] + 2M1 =−2E1 and so E1 ∈ Lie(A).

The above calculations then show that Lie(A) has dimension 8 and that it has
{X, Y, H, E0, . . . , E4} as a basis. We admit, as is proved later, that this Lie algebra
is actually an algebraic Lie algebra: there exists an algebraic group H whose Lie
algebra h is equal to Lie(A).

A theorem of Kolchin ([van der Put and Singer 2003, Proposition 1.31]), shows
that g⊆ Lie(A) (and that G ⊆ H ). A reduced form is obtained when we achieve
equality in that inclusion. Moreover, when G is connected (which will be the case in
this paper), the reduction theorem of Kolchin and Kovacic ([van der Put and Singer
2003, Corollaire 1.32]), shows that a reduced form exists and that the reduction
matrix P may be chosen in H(k).

Let us now continue the above examples with the third variational equation
of Painlevé II. Denote by hdiag the Lie algebra generated by the block-diagonal
elements X, Y, H. Similarly, let hsub be the Lie algebra generated by the off-
diagonal matrices Ei (closed under conjugation by hdiag). Of course, hdiag is sl2 in
its representation on a direct sum Symn(C2)⊕C2.

We see that h= hdiag⊕ hsub. It is easily seen that hdiag is a Lie subalgebra of h
and that hsub is an ideal in h.

We have seen that g⊂ Lie(A). Furthermore, hdiag ⊂ g (because VE1 has Galois
group SL2(C)). It follows that g = hdiag ⊕ g̃, where g̃ ⊂ hsub is an ideal in g; in
particular, it is closed under the bracket with elements of hdiag (adjoint action of
hdiag on hsub).

Now the only invariant subsets of hsub under this adjoint action are seen to be {0}
and hsub (this is reproved and generalized in Proposition 9 below and its lemmas).
So the Lie algebra g is either sl2 (of dimension 3) or h (of dimension 8).

As the Galois group of the block-diagonal part is connected, the differential
Galois group G of [A] is connected. Hence we know (by the reduction theorem of
Kolchin and Kovacic cited above) that there exists a reduction matrix P ∈ H(k).
Furthermore, as the block-diagonal part of A is already in reduced form, the block-
diagonal part of the reduction matrix P may be chosen to be the identity. So there
exists a reduction matrix of the form

P = Id+
5∑

i=1

fi (t)Ei , with fi (t) ∈ C(t).

A simple calculation shows that PAP−1
=A+

∑5
i=1 fi (t)[Ei , X + tY ] and so

P[A] = X + tY + E1+

5∑
i=1

fi (t)[Ei , X + tY ] −
5∑

i=1

f ′i (t)Ei .
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We see that the case g = sl2 happens if and only if we can find fi ∈ C(t) such
that

∑5
i=1 f ′i (t)Ei =

∑5
i=1 fi (t)[X + tY, Ei ]+ E1. Let 9 denote the matrix of the

adjoint action [X + tY, •] of X + tY on hsub. We see that g= sl2 if and only if we
can find an F ∈ C(t)5 solution of the differential system

F ′ =9 · F +


1
0
...

0

 .
We now gather the properties of (PII) elaborated in this sequence of examples.

Proposition 8. The Painlevé II equation is irreducible when the parameter a = 0.

Proof. Using the Barkatou algorithm and its Maple implementation [Barkatou 1999;
Barkatou et al. 2012], one easily sees that the above differential system does not
have a rational solution. If follows that, using the notations of the above examples,
we have g= h of dimension 8. So, for (PII), we have: the Galois group of the first
variational equation is SL(2,C) which is not virtually solvable; the Galois group of
the third variational equation has dimension 8> 5. Theorem 1 thus shows that the
Painlevé II equation is irreducible. �

2.2. The Galois group of the n-th variational equation. We will now generalize
this process to all equations of the form d2 y

dx2 = xy+ yn P(x, y). We will elabo-
rate a much easier irreducibility criterion, which will allow to reprove the above
proposition without having to trust a computer.

The aim of this subsection is to prove the following:

Proposition 9. The Galois group of the n-th variational equation (LNVEn) is
either SL2(C) or its dimension is n + 5 and then the differential equation y′′ =
xy+ yn P(x, y) is irreducible.

2.2.1. Adjoint action.

Lemma 10. Let A be a 2× 2 matrix of rational function of the variable t such
that the Galois group G1 of the differential system dY

dt = AY has Lie algebra sl2.
Consider a system

d
dt

(
Z
Y

)
=

(
symn A 0

B A

)(
Z
Y

)
with differential Galois group G. Then G has dimension 3 or n + 3 or n + 5 or
2n+ 5.
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Proof. Let g be the Lie algebra of G. It has a block lower triangular form shaped
by the form of the system, i.e., g⊂ h⊂ gln+3 where

h=

{(
symna 0

b a

)
, a ∈ sl2, b ∈ (C2)∨⊗Symn(C2)

}
.

The south-east block A defines a subsystem, thus G contains a subgroup isomorphic
to SL2. The north-west block defines a quotient system so there is a surjective group
morphism from G onto SL2. The kernel of this map is a commutative ideal (the off-
diagonal matrices Ei , in our examples) and inherits the structure of an sl2-module
for the inclusion of sl2 in h via g. As a representation, g∩ ((C2)∨⊗ Symn(C2)) is
a subspace of (C2)∨⊗ Symn(C2). This representation is nothing but the adjoint
representation. The decomposition in irreducible representations is

(C2)∨⊗Symn(C2)= Symn−1(C2)⊕Symn+1(C2)

(see [Fulton and Harris 1991, Example 11.11]). So the Lie algebra g is either sl2,
or sl2 oSymn−1(C2), or sl2 oSymn+1(C2) or sl2 o (Symn−1(C2)⊕Symn−1(C2)).
Its dimension is then 3 or n+ 3 or n+ 5 or 2n+ 5. �

2.2.2. Vector field interpretation. To simplify our computations, we will use the
following identification. The Lie algebra sl2 may be viewed as a Lie algebra of
linear vector fields on C2, namely,

CX +CH +CY

with X = x∂/∂y, H = x ∂/∂x − y∂/∂y and Y = y∂/∂x . These are the same
standard X, Y and H as the matrices of Example 4.

The dual representation C2
⊗Symn((C2)∨) is the space of vector fields on C2

whose coefficients are homogeneous polynomials of degree n. The decompo-
sition in irreducible representation is the decomposition of any vector field in
C2
⊗Symn((C2)∨) as

A ∂

∂x
+ B ∂

∂y
= G(x, y)

(
x ∂
∂x
+ y ∂

∂y

)
+
∂K
∂y

∂

∂x
−
∂K
∂x

∂

∂y

with G ∈ Symn−1((C2)∨) and K ∈ Symn+1((C2)∨).1

The symplectic gradient of a polynomial K will be denoted by

J∇K := ∂K
∂y

∂

∂x
−
∂K
∂x

∂

∂y
.

If we define

Ki :=

((n+1
i

))
xn+1−i yi and Ei :=

1
n+ 1

J∇(Ki ),

1Using G = 1
n+1

(
∂A
∂x +

∂B
∂y
)

and K = 1
n+1 (y A− x B).
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then calculation shows that, as in the previous section,

[X, Ei ]=(i+1)Ei+1, [Y, Ei ]=(n+2−i)Ei−1 and [H, Ei ]=(2i−n−1)Ei .

Lemma 11. Let h := Lie(A) be the Lie algebra associated to the matrix A of
(LNVEn). Let G denote the differential Galois group of (LNVEn) and g be its Lie
algebra. With the standard notation of Example 4, we have:

(1) h is generated, as a Lie algebra, by X, Y and E0 and h= sl2 oSymn+1(C2).

(2) Either g= sl(2) (of dimension 3) or g= h (of dimension n+ 5).

Proof. With the matrices of Example 4, we have A= X+tY+ p(t)E0. As [X, Ei ]=

(n+1− i)Ei+1, the Lie algebra generated by X, Y and E0 has dimension n+5 and
may be identified with sl2oSymn+1(C2). Moreover, a Lie algebra containing X, Y
and any of the Ei contains sl2 oSymn+1(C2) (because [Y, Ei ] = (n+ 2− i)Ei−1).

If 1, t and p(t) are linearly independent over C then Lie(A) is the algebraic
envelope of the Lie algebra generated by X, Y and E0; because the latter is
algebraic (it is sl2 o Symn+1(C2)), we have Lie(A) = sl2 o Symn+1(C2). Now,
we have seen that g is either sl2, or sl2 o Symn−1(C2), or sl2 o Symn+1(C2) or
sl2 o (Symn−1(C2)⊕Symn−1(C2)). Among these, only sl2 and sl2 oSymn+1(C2)

are in Lie(A), which proves the lemma in that case.
We are left with the case p(t) = a + bt with (a, b) ∈ C2. Then Lie(A) is the

algebraic envelope of the Lie algebra generated by M1 := X + aE0 and M2 :=

Y + bE0. If b = 0, then [M1,M2] = H and [M1, H ] = 2X + a(n + 1)E0 so
[M1, H ] − 2M1 = a(n− 1)E0. So Lie(A) contains E0 and we are done. If b 6= 0
then let M3 := [M1,M2] = H + (n+ 1)2bE1; then [M3, Y ] = −2Y − (n+ 1)bE0

so 2M2− [M3, Y ] is a multiple of E0 and the result is again true. �

Proof of Proposition 9. This follows from the above two lemmas and Theorem 1. �

2.3. Irreducibility criteria. Thanks to Proposition 9, to show the irreducibility of
y′′ = xy + yn P(x, y)/(Q(x, y)), it is enough to show that (LNVE)n has a Lie
algebra not isomorphic to sl(2). Using the Kolchin–Kovacic reduction theory, we
achieve this by proving (as in our first proof of irreducibility of Painlevé II) that
there is no reduction matrix that transforms our system to one with Lie algebra sl(2).
This gives us the following simple irreducibility criterion.

Theorem 12. We consider the equation (E) : y′′ = xy+ yn P(x, y). Let p(t) :=
n!P(t, 0). Let Ln+1 := symn+1(∂2

t − t) denote the (n+1)-th symmetric power of
the Airy equation. Assume the equation Ln+1( f )= p(t) does not admit a rational
solution. Then, if X is the vector fields ∂/∂x + z∂/∂y + (xy + yn P(x, y))∂/∂z,
α = dx and γ ιX dx ∧ dy ∧ dz, we have

Mal(X)= {ϕ | ϕ∗α = α, ϕ∗γ = γ }.
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Corollary 13. Under the assumption of Theorem 12, the equation (E) is irre-
ducible.

Lemma 14. Let A1 =
(0

t
1
0

)
denote the companion matrix of the Airy equation. Let

A∨1 := −AT
1 denote the matrix of the dual system. In a convenient basis, the matrix

9 of the adjoint action [Adiag, •] of Adiag on hsub is 9 = symn+1(A1)
∨.

Proof. We have

symn+1(A)∨ =



0 −(n+ 1)t
. . .

−1
. . . −nt 0

. . . −2
. . .

. . .
. . .

0
. . .

. . . −t
. . . −n 0


.

We choose the following basis of hsub, using again the vector field representation.
Start from the same matrix F0 := E0 and set Fi+1 := −

1
i+1 [X, Fi ]. Then, one can

check that [Y, Fi ] = −(n+ 2− i)Fi−1. So the matrix 9 of the map [X + tY, •] on
the basis (Fi ) is naturally symn+1(A)∨. �

Proof of Theorem 12. Let us go backwards: assume that the equation y′′ = xy+
yn P(x, y) is reducible. Then we must have g3 = sl2 (otherwise, the dimension
of the Lie Algebra g3 would be n+ 5, thus exceeding the bound of Theorem 1).
Reducing to sl2 implies that we can find a rational solution to Y ′ =9Y + Eb, where
Eb = (p(t), 0, . . . , 0)T. Transforming the latter to an operator, via the cyclic vector
(0, . . . , 0, 1) reduces the system to the equation symn+1(∂2

t − t)∨= p(t). But ∂2
− t

is selfadjoint, hence the result. �

The proof of the corollary is a direct result of Theorem 2.

Corollary 15. The equation (PII) : y′′ = xy+ 2y3 is irreducible.

Proof. In this case, n = 3 and L4 = ∂
5
−20t∂3

−30∂2
+64t2∂+64t . A solution of

L4(y)= 12 would be a polynomial (because L4 has no finite singularity); now the
image of a polynomial of degree N by L4 is a polynomial of degree N + 1 so 12
cannot be in the image of L4. As equation L4(y) = 12 has no rational solution,
Theorem 12 shows that (PII) is irreducible. �

Corollary 16. Assume that p(t) has a pole of order k, 1 ≤ k ≤ n + 2. Then the
equation y′′ = xy+ yn P(x, y) is irreducible.

Proof. As Airy has no finite singularity, neither does Ln+1. Thus, if a function
f ∈ C(t) has a pole of order d > 0, then L( f ) has this pole of order d + n+ 2. So
if p(t) is in the image of f by L then all its poles have order at least n+ 3. �
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3. Irreducibility of Painlevé III equations

The third Painlevé equation is

(PIII)
d2 y
dx2 =

1
y

(
dy
dx

)2

−
1
x

dy
dx
+

1
x
(αy2
+β)+ γ y3

+ δ
1
y

with (α, β, γ, δ) ∈ C4. For special values (α, β, γ, δ)= (2µ− 1,−2µ+ 1, 1,−1),
µ ∈C, this equation has a solution: y = 1. For µ= 1

2 , this equation is related to the
2D Ising model in statistical physics; see [McCoy et al. 1977; Tracy and Widom
2011]. We will show that the latter equation is irreducible (in fact, we prove its
irreducibility for µ 6∈ Z).

This equation has a time-dependent Hamiltonian form (see, e.g., [Clarkson 2006;
2010]). Letting

x H(x, y, z)= 2y2z2
− (xy2

− 2µy− x)z−µxy,

we may consider the time-dependent Hamiltonian system{dy
dx
=
∂H
∂z
,

dz
dx
=−

∂H
∂y

}
.

Eliminating z between these equations shows that y satisfies (PIII). It also means
that solutions of PIII parametrize curves

x 7→
(

x, y(x),
xy′(x)+ xy(x)2− 2µy(x)− x

4y(x)2

)
which are integral curves of the vector field X = ∂/∂x+∂H/∂z ∂/∂y−∂H/∂y ∂/∂z.

Proposition 17. Let (α, β, γ, δ) := (2µ− 1,−2µ+ 1, 1,−1), where µ 6∈ Z. The
third Painlevé equation (PIII) with parameters (α, β, γ, δ) is irreducible.

Before we prove the theorem, we remark that it includes the case µ= 1/2: the
third Painlevé equation (PIII), as it appears in the study of the 2D Ising model in
statistical physics in [McCoy et al. 1977; Tracy and Widom 2011], is irreducible.

Proof. This vector field X satisfies the hypothesis of our theorem with the forms
α = dx , γ = dy ∧ dz+ d H ∧ dx and the algebraic invariant curve (0) given by
y = 1, z =−µ2 .

The first variational equation along 0 has matrix

A1 =

 −2− 2 µ
x

4
x

−µ−
µ2

x
2+ 2 µ

x

 .
Conjugation by

Q1 :=

(
−2µ 1
−µ2 0

)
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puts it in Jordan normal formal at 0, giving us

Ã1 := Q−1
1 .A1.Q1 =

 0 1
µ
+

1
x

4µ 0

= 1
x

(
0 1
0 0

)
+

 0 1
µ

4µ 0

.
We have Trace( Ã1)= 0 so Gal(V E1)⊂ SL(2,C). This first variational equation is
equivalent to the differential operator

L2 :=

( d
dx

)2
− 4− 4

µ

x
.

This L2 is reducible for integer µ (it then has an exponential solution e±2x Pµ(x),
where Pµ is a polynomial of degree |µ|) and it is irreducible otherwise. Moreover,
it admits a log in its local solution at 0, as shown by the Jordan form structure of
the local matrix at 0. So, for µ 6∈ Z, the criterion of Boucher and Weil [2003] shows
Gal(V E1)= SL(2,C) and that the first variational equation is in reduced form.

Let A2 be the matrix of the second variational equation. As A1 is in reduced
form, we let

Q2 :=

(
Sym2(Q1) 03×2

02×3 Q1

)
and Ã2 := Q−1

2 · A2 · Q2. We obtain Ã2 = C∞+ 1
x C0, where Ci are constant

matrices. Indeed, setting M1 := C0 and M2 := C∞− 1
µ

C0, we have

M1 =



0 1 0 0 0

0 0 2 0 0

0 0 0 0 0

−4µ2 2µ 0 0 1

0 4µ2
−2µ 0 0

 and M2 =



0 0 0 0 0

8µ 0 0 0 0

0 4µ 0 0 0

0 −1 0 0 0

−12µ2 0 1 4µ 0

 .

Now, letting M3 :=
1

8µ [M1,M2], a simple calculation shows [M1,M3] =−M1 and
[M2,M3] = M2. It follows that the Lie algebra Lie( Ã2) is equal to SL(2,C) (in a
5-dimensional representation). It follows that Gal(V E2)⊆ SL(2,C). However, we
know that SL(2,C)⊆ Gal(V E2) (because Gal(V E1)= SL(2,C)) so Gal(V E2)=

SL(2,C) and Ã2 is in reduced form.
We thus need to go to the third variational equation. Its matrix has the form

A3 =


sym3(A1)

B(3)2 sym2(A1)

B(3)3 B(2)2 A1

, where A2 =

(
sym2(A1)

B(2)2 A1

)

and B(3)2 comes from B(2)2 so the really new part is the south-west block B(3)3 .
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The situation is strikingly similar to the (PII) case from the previous section. Let

N1 =

 07×7 07×2

0 0 0 0

1 0 0 0
02×2

, N2 =

 07×7 07×2

1 0 0 0
0 −1 0 0

02×2

,

N3 =

 07×7 07×2

0 1 0 0
0 0 −1 0

02×2

, N4=

 07×7 07×2

0 0 1 0
0 0 0 −1

02×2

,
N5 =

 07×7 07×2

0 0 0 1
0 0 0 0

02×2

.
As in the study of the variational equation, we form a block-diagonal partial reduc-
tion matrix Q3 with blocks sym3(Q1), sym2(Q1), Q1 and let Ã3 = Q(−1)

3 · A3 · Q3.
Again, we obtain Ã3 = C∞+ 1

x C0, where Ci are constant matrices. We set M1 :=C0

and M2 :=
1

4µC∞− 1
µ

C0 and M3 := [M1,M2]. Then, direct inspection shows that
Lie( Ã3) is equal to vectC(M1,M2,M3, N1, . . . , N5) and has dimension 8. Using
the results of the previous section, it follows that we have either g3 = sl(2) of
dimension 3 or g3 = Lie( Ã3) of dimension 8.

The adjoint maps AdMi := [Mi , •] acting on vectC(N1, . . . , N5) have respective
matrices

91 =



0 0 0 0 0

1 0 0 0 0

0 −2 0 0 0

0 0 −3 0 0

0 0 0 −4 0

 and 92 =



0 4 0 0 0

0 0 −3 0 0

0 0 0 −2 0

0 0 0 0 −1

0 0 0 0 0


and 93 = [91, 92] (this follows from the Jacobi identities on Lie brackets). The
matrix of the adjoint action of Ã3 on vectk(N1, . . . , N5) is9 :=

( 1
µ
+

1
x

)
91+4µ92.

In order to have g3 = sl(2), we would need to find a find a gauge trans-
formation matrix P = Id9×9+

∑5
i=1 fi Ni (with fi ∈ k) such that Lie(P[ Ã3]) =

vectC(M1,M2,M3). Let Eb = (b1, . . . , b5)
T be defined by B̃(3)3 =

∑5
i=1bi Ni , namely

Eb =
(
−32

µ4

x
, −8

µ3

x
, 4/3

µ2

x
, 0, 0

)T

.

Then, letting EF = ( f1, . . . , f5)
T, the method developed for (PII) in the previous

section shows Lie(P[ Ã3]) = vectC(M1,M2,M3) if and only if the 5× 5 system
EF ′ =9 · EF + Eb has an algebraic solution.
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It is easily seen that the latter is impossible. For example, the above system
converts to L( f1)= g where

g = 8192 µ
4

x
+ 5120 (4µ+1)µ4

x2

+ 512 (24µ2
+16µ−7)µ4

x3 − 256 (31µ+3)µ4

x4 + 768 µ
4

x5

and L = sym4(L2) where L2 =
( d

dx

)2
− 4− 4 µ

x . When µ 6∈ Z (as assumed here),
the differential Galois group of L2 (and hence of L) is SL(2,C)). So the equation
L( f1)= g has an algebraic solution if and only if it has a rational solution. Let us
prove that the latter is impossible.

The exponents of L at zero are positive integers; it follows that, if f1 had a pole
of order n ≥ 1 at zero, L( f1) would have a pole of order n+ 5 ≥ 6 at zero. As g
only has a pole of order 5 at zero, f1 must be a polynomial. But then L( f1) would
have a pole of order at most 4 at zero, contradicting the relation L( f1)= g.

Reasoning as in Section 2, it follows that the Lie algebra of the Galois group of
the third variational equation is g3 = Lie( Ã3) vectC(M1,M2,M3, N1, . . . , N5) and
has dimension 8. Our Theorem 1 thus implies that (PIII) is irreducible for these
values of its parameters. �

Appendix A: Review on principal connections

The G-principal connections are the version of linear differential systems in fun-
damental form for an algebraic group G that may not be a linear group or not
be canonically embedded in a GLn . They are a geometric version of Kolchin’s
strongly normal extensions [1973]. The differential systems in vector form appear
as a quotient of this fundamental (or principal) form.

A1. G-principal partial connection. Consider an algebraic group G and a smooth
algebraic manifold M. A principal G-bundle is a bundle P π

→ M over M such
that G acts on P and the map P ×G→ P×M P given by (p, g) 7→ (p, pg) is an
isomorphism.

Let F be an algebraic singular foliation on M. A connection along F (or a
partial connection) on a bundle P π

→M is a lift of vector field tangent to F on P.
If 0→ T (P/M)→ T P π∗

−→ T M×M P→ 0 is the tangential exact sequence then
a connection along F is a splitting above F given by ∇ : T F×M P→ T P. Such
a partial connection is called a rational partial connection when the splitting is
rational.

We are interested in the case where F is defined by a rational vector field X
on M. In this situation, it is enough to lift X to P by a rational vector field ∇X such
that π∗∇X = X. Then ∇ is defined on a vector collinear to X by linearity.



322 GUY CASALE AND JACQUES-ARTHUR WEIL

A G-principal connection along F is a G-equivariant splitting∇:TF×M P→TP
such that ∇(X)(pg) = g∗∇(X)(p) where g∗ : T P → T P is the map induced by
the action of g on P.

If G ⊂ H is an inclusion of algebraic groups and P is a G-principal bundle then
one defines an H -principal bundle H P = (H × P)/G where (h, p)g = (hg, pg).
A partial G-connection ∇ : T F×M P→ T P can be composed with the inclusion
H×T P⊂T (H×P) and we obtain a map T F×M(H×P)→T (H×P). This map
is G-equivariant. By taking quotients, we get the induced H -principal connection
along F , given by H∇ : T F×M(H P)→ T (H P). It is the extension of ∇ to H.
In particular, if G is a linear group then the extension of a partial G-principal
connection to GL(n,C) is a usual linear connection in fundamental form with
respect to variables tangent to F .

A2. G-connections and their Galois groups. In this paper, a G-bundle E→M is
given by: the typical fiber E∗ (an affine variety with an action of G), a G-principal
bundle P→ M and a quotient E = (P × E∗)/G for the diagonal action of G. A
principal connection along F on P will induce a connection along F on E . Such
a connection is called a partial G-connection on E .

A connection ∇ on a bundle E→M may be viewed as a G-connection for many
different groups (and maybe for no group). If we know that such a group G exists,
we denote by G E the principal bundle and G∇ the G-principal connection. The
Galois group of the G-connection will be a good candidate for such a group.

If C(M)F = C, i.e., when the foliation has no rational first integrals, then there
exists a smallest algebraic group Gal∇ ⊂ G such that ∇ is birational to a Gal∇-
connection. This group is well defined up to conjugation in G and is called the
Galois group of ∇. Its existence is proved following the classical Picard–Vessiot
theory in the following way. A Gal∇-principal bundle is obtained as a minimal G∇-
invariant algebraic subvariety Q ⊂ G E dominating M and Gal∇ is the stabilizer
of Q in G. It is easy to prove that this group is a well-defined subgroup of G up to
conjugacy.

When a connection ∇ is given, it is not easy to find a group G which would
endow ∇ with a structure of G-connection. If such groups exist, we have to prove
that our result does not depend on the choice of one of these groups. In the case of
linear connections, there is a canonical choice (up to the choice of a point on M).

Given a vector bundle E , we say that∇ is a linear connection when, for any X ∈F,
∇(X) preserves the module E of functions on E which are linear on the fibers.
Then there is a canonical way to obtain a principal connection. Following Picard
and Vessiot, if Em is the fiber of E at m ∈ M then the tensor product E⊗ E∗m of our
vector bundle with the dual of the trivial vector bundle M × Em is endowed with

• a connection given by the connection on the first factor,
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• an action of GL(E∗) on the second factor, thus preserving the connection,

• a canonical point id ∈ Em ⊗ E∗m in the fiber at m.

Then the space max(E ⊗ E∗m) of tensors of maximal rank is a GL(Em)-principal
bundle endowed with a principal partial connection. From the action of GL(Em)

on Em , we see that linear connections are GL-connections.
The Galois group obtained from a linear connection using this principal bundle

and the minimal invariant subvariety Q containing id is called Galm ∇.

A3. Principal bundle and groupoids. Given P π
→M, a G-principal bundle over M,

one obtains a groupoid G by taking the quotient G := (P × P)/G of the cartesian
product by the diagonal action of G (see [Mackenzie 1987] for more details; the
main example is described in Appendices B2 and C2). The identity is the subvariety
quotient of the diagonal in P × P. From a G-principal connection ∇ on P, one
derives a connection ∇ ⊕ ∇ on the product P × P defined in an obvious way
from the decomposition T (M×M)×M×M(P×P)= T M×M P⊕P T M×M P. This
connection is the so-called flows matrix equation.

Let G ⊂ H be an inclusion of algebraic groups and H P→ M and H∇ be an
extension of the principal connection to H. One gets a groupoid inclusion G→H
such that (H∇ ⊕ H∇)|G =∇ ⊕∇.

Remark 18. The following claims are not used in this paper. They may help the
reader to understand the links between the various definitions of differential Galois
groups appearing in the literature [Bertrand 1996; Katz 1990; Pillay 2004; Cartier
2009].

• The smallest algebraic subvariety of G which contains the identity and is
∇ ⊕∇-invariant is the Galois groupoid of ∇.

• Its restriction above {x}×M ⊂M×M is the Picard–Vessiot extension pointed
at x ∈ M.

• Its restriction over the diagonal M ⊂ M ×M is a DM -group bundle called the
intrinsic Galois group of ∇ in the sense of Pillay [2004].

Appendix B: Variational equations

Various types of variational equations appear in the literature. Morales-Ruiz, Ramis
and Simó discuss three of them in [Morales-Ruiz et al. 2007]. More precisely, there
are various ways to obtain a linear system from the variational equation seen as an
equation on germs of curves. In this paper, for the theoretical result, we consider the
frame variational equation (see below) as the principal connection coming from the
variational equation. However, for practical calculations, one generally linearizes
the variational equation.
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In this appendix, we give the definitions and the proofs needed to compare these
different approaches. Some of these results can be found in [Morales-Ruiz et al.
2007, Propositions 8 to 12].

B1. Arc bundles and the variational equation. This variational equation does not
appear in [Morales-Ruiz et al. 2007]. It has been used by several authors as a
perturbative variational equation; see [Boucher and Weil 2003] for references.

The set of all parametrized curves on M is denoted by CM = {c : (̂C, 0)→ M}.
It has a natural structure of proalgebraic variety. Let C[M] be the coordinate ring
of M and C[δ] be the C-vector space of linear ordinary differential operators with
constant coefficients. The coordinate ring of CM is Sym(C[M]⊗C[δ])/L , where

• the tensor product is a tensor product of C-vector spaces,

• Sym(V ) is the C-algebra generated by the vector space V,

• Sym(C[M] ⊗ C[δ]) has a structure of a δ-differential algebra via the right
composition of differential operators,

• the Leibniz ideal L is the δ-ideal generated by f g⊗1− ( f ⊗1)(g⊗1) for all
( f, g) ∈ C[M]2.

Local coordinates (x1, . . . , xn) on M induce local coordinates on CM via the
Taylor expansion of curves c at 0:

c(ε)=
(∑

c(k)1
εk

k!
, . . . ,

∑
c(k)n

εk

k!

)
.

Let x (k)i :CM→C be defined by x (k)i (c)= c(k)i . This function is the element xi⊗δ
k

in C[CM] and we have the following facts.

(1) C[CM] is the δ-algebra generated by C[M]. The action of δ :C[CM]→C[CM]
can be written in local coordinates and gives the total derivative operator∑

i,k x (k+1)
i ∂/∂x (k)i .

(2) Morphisms and derivations of C[M] act on C[CM] as morphisms and deriva-
tions, respectively, via the first factor (it can be easily checked that the Leibniz
ideal is preserved).

(3) The vector space C[δ] is filtered by the spaces C[δ]≤k of operators of order
less than k. This gives a filtration of C[CM] by C-algebras of finite type.

(4) These algebras are coordinate rings of the space of k-jets of parametrized
curves Ck M = { jkc | c ∈ CM}.

(5) The action of δ has degree +1 with respect to the filtration.

(6) Prolongations of morphisms and derivations of C[M] on C[CM] have degree 0.
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Set theoretically, the prolongations are obtained in the following way. Any
holomorphic map ϕ : U → V between open subsets of M can be prolonged on
open sets CkU of Ck M of curves through points in U by Ckϕ : CkU → Ck V ;
jkc 7→ jk(ϕ ◦ c). One easily checks that Ck(ϕ1 ◦ϕ2)= Ckϕ1 ◦Ckϕ2. This equality
can be used to prolong holomorphic vector fields defined on open subsets U ⊂M by
the infinitesimal generator of the local 1-parameter group obtained by prolongation
of the flow of X , i.e., Ck(exp(t X))= exp(tCk X).

When X is a rational vector field on M, its prolongation Ck X on Ck M is also
rational. Let X =

∑
ai (x)∂/∂xi be a vector field on M in local coordinates. One

gets Ck X =
∑

i,`≤k δ
`(ai )∂/∂x`i .

If F is the foliation by integral curves of X on M then Ck X defines a rational
connection along F on Ck M : for a vector V tangent to F at x ∈ M with X (x) 6= 0
or∞, one defines ∇V ( jkc)= V/(X (x))Rk X ( jkc). It is the k-th order variational
connection /equation of X.

Usually, the variational equation is studied along a given integral curve of X :
if C is an invariant curve and if Ck MC is the subspace of Ck M of curves through
points in C , the vector field Ck X preserves Ck MC . Its restriction to Ck MC is called
the k-th order variational connection /equation along C .

B2. Frame bundles and the frame variational equation. This variational equation
is the one used in the theoretical part of [Morales-Ruiz et al. 2007, Section 3.4] as
well as in [Casale 2009].

The set of all formal frames on M is denoted by

RM = {r : (̂Cn, 0)→ M | det(Jac(r)) 6= 0}.

Like the arc spaces, this set has a natural structure of proalgebraic variety. Let
C[∂1, . . . ,∂n] be the C-vector space of linear partial differential operators with
constant coefficients. The coordinate ring of RM is

(Sym(C[M]⊗C[∂1, . . . , ∂n])/L)[1/ Jac],

where

• the tensor product is a tensor product of C-vector spaces;

• Sym(V ) is the C-algebra generated by the vector space V ;

• Sym(C[M] ⊗ C[∂1, . . . , ∂n]) has a structure of a C[∂1, . . . , ∂n]-differential
algebra via the right composition of differential operators;

• the Leibniz ideal L is the C[∂1, . . . , ∂n]-ideal generated by

f g⊗ 1− ( f ⊗ 1)(g⊗ 1)

for all ( f, g) ∈ C[M]2;



326 GUY CASALE AND JACQUES-ARTHUR WEIL

• the quotient is then localized by Jac, the sheaf of ideals (not differential!),
generated by det([xi ⊗ ∂ j ]i, j ) for a transcendental basis (x1, . . . , xn) of C(M)
on a Zariski open subset of M where such a basis is defined.

Local coordinates (x1, . . . , xn) on M induce local coordinates on RM via the Taylor
expansion of maps r at 0:

r(ε1 . . . , εn)=

(∑
rα1
εα

α!
, . . . ,

∑
rαn
εα

α!

)
.

Let xαi : RM→ C be defined by xαi (r)= rαi . This function is the element xi ⊗ ∂
α

in C[RM].

(1) The action of ∂ j : C[RM] → C[RM] can be written in local coordinates and
gives the total derivative operator

∑
i,α xα+1 j

i ∂/(∂xαi ).

(2) We leave to the reader the translation of the properties from Appendix B1 in
this multivariate situation.

All the remarks we have made about arc spaces extend mutatis mutandis to the
frame bundle. There is one important difference: RM is a principal bundle over M.
Let us describe this structure here.

The proalgebraic group

0 = {γ : (̂Cn, 0)−→∼ (̂Cn, 0),where γ is formal invertible}

is the projective limit of groups

0k = { jkγ | γ : (Cn, 0)−→∼ (Cn, 0),where γ is holomorphic invertible}.

It acts on RM and the map RM×0→ RM×M RM sending (r, γ ) to (r, r ◦γ ) is an
isomorphism. The action of γ ∈0 on RM is denoted by Sγ : RM→ RM as it acts
as a change of source coordinates of frames. At the coordinate ring level, this action
is given by the action of formal change of coordinates on C[∂1, . . . , ∂n] followed
by the evaluation at 0 in order to get an operator with constant coefficients. This
action has degree 0 with respect to the filtration induced by the order of differential
operators. For any k, this means that the bundle of order k frames Rk M is a principal
bundle over M for the group 0k .

When X is a rational vector field on M, its prolongation Rk X on Rk M is also
rational. Let X =

∑
ai (x)∂/∂xi be a vector field on M in local coordinates. One

gets Rk X =
∑

i,|α|≤k ∂
α(ai )∂/∂xαi .

If F is the foliation by integral curves of X on M then Rk X defines a rational
connection along F on Rk M. Moreover the prolongation is defined by an action of
the first factor on a tensor product whereas 0k acts on the other factor. These two
actions commute, meaning that Rk X is a 0k-principal connection along F . It is
the k-th order frame variational connection /equation of X.



GALOISIAN METHODS FOR THE IRREDUCIBILITY OF ODE 327

As for variational equations, one can restrict this connection above an integral
curve C of X : one gets the k-th order frame variational connection/equation
along C . This connection is a principal connection of a bundle on C . After choosing
a point m ∈ C where X is defined, we obtain a Galois group Galm(Rk X |C )⊂ 0k .

From a frame r : (̂Cn, 0)→ M, one derives many parametrized curves such that
CM is a 0-bundle. More precisely: if Vk denotes the vector space of k-jets of
maps (̂C, 0)→ (̂Cn, 0) then Ck M = (Rk M × Vk)/0. The k-th order variational
connection is a 0k-connection.

B3. The linearized variational equations. The variational equations are usually
given in the linearized form described in Section 1.2. In [Morales-Ruiz et al.
2007], another linear variational equation is introduced, using a faithful linear
representation of 0. Let us recall these constructions and their relations with the
frame variational equations above.

B3.1 The Morales–Ramis–Simó linearization. The theoretically easier linearization
of variational equation is done through linearization of frame variational equations.
This is the approach followed by Morales-Ruiz, Ramis and Simó. It is based on
the fact that 0k is a linear group. Let Vk be the set of k-th order jets of map form
(Cn, 0)→ (Cn, 0) without invertibility condition. Using coordinates on (Cn, 0) one
can check that Vk is a vector space (the addition depends on the choice of coordinates)
and, using Faa di Bruno formulas, one can check that ( jks, jkγ ) 7→ jk(s ◦γ ) defines
a faithful representation of 0k on Vk . Then, from this inclusion 0k ⊂ GL(Vk), one
gets an extension of the principal variational equation to the jet-linearized principal
variational connection.

B3.2 The geometric explanation of the linearization. The second linearization
(see Section 1) is done in the following way. The coordinate ring of the arc
space has a natural degree from the filtration. It is defined on generators of the
algebra by d◦( f ⊗ δi )= i . The Leibniz rule implies that the Leibniz ideal L (see
Appendix B2) is generated by homogeneous elements and then the degree is well
defined on C[CM].

This degree gives a decomposition C[CM] =⊕kEk in subspaces of homogeneous
functions of degree k called jet differentials of degree k [Green and Griffiths 1980].
It is a straightforward to verify the following properties:

• Ek is a locally free C[M]-module of finite rank.

• If ϕ : U → V is a biholomorphism on open sets of M then Cϕ, sending
OV⊗C[M]C[CM] to OU⊗C[M]C[CM] preserves OM ⊗ Ek .

• If X is an holomorphic vector field on a open set U of M then Ek is C X -
invariant.
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Now X is a rational vector field on M and Ek is the dual vector bundle of Ek . From
these properties, we find that Ek , endowed with the action of X through C X, is a
linear F -connection. It is the degree-linearized k-th order variational equation.

The choice of an invariant curve C and a point c ∈ C , such that Xc is defined and
not zero, will give the Galois group of the degree-linearized variational equation
along C at c denoted by Galc(LVkC ) (even though it depends on X ).

The right composition with ∂ gives an inclusion Ek→ Ek+1 and thus a projection
Galc(LVk+1C ) onto Galc(LVkC ). The inductive limit of differential systems is
denoted by LVC , it is the degree-linearized variational equation. The projective
limit of groups is denoted by Galc(LV C ).

Proposition 19. The Galois group of the degree-linearized variational equation is
isomorphic to the Galois group of the frame variational equation.

The proof will be given in Appendix C.

B4. The covariational equations. This variational equation is the one used in
[Morales-Ruiz et al. 2007, p. 861] to linearize the variational equation.

The set of all formal functions on M is denoted by

F M = { f : ̂(M,m)→ (̂C, 0)}.

Its structural ring is C[F M] = Sym(D≥1
M ), the C[M]-algebra generated by the mod-

ule of differential operators on M generated as an operator algebra by derivations.
From this definition, F M is the vector bundle over M dual of D≥1

M . It is a projective
limit of Fk M , the bundle of k-jets of functions (the dual of operators of order less
than k).

A vector field X on M acts on D≥1
M by the commutator P 7→ [X, P] and this

action preserves the order. This gives a linear F -connection on each Fk M. This is
the linearized variational equation of [Morales-Ruiz et al. 2007]. In this paper, it is
called the covariational equation. The following comparison result is proved in
Appendix C1 below:

Proposition 20. The covariational equation of order k and the variational equation
of order k have the same Galois group.

B5. Normal variational and normal covariational equations. When the vector
field X preserves a foliation G on M then its prolongation Ck X on the space
Ck M of k-jets of parametrized curves on M preserves the subspace CkG of curves
contained in leaves of G . The subspace CkG is an algebraic subvariety of Ck M and
the restriction of Ck X on CkG is the k-th order variational equation tangent to G.
When G is generically transversal to the trajectories of X, this equation is called the
k-th order normal variational equation. We don’t know how this equation depends
on the choice of such a foliation G. However, in our situation of a vector field given
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by a differential equation, there is a canonical transversal foliation given by the
levels of the independent variable.

Let B be the curve with local coordinate x and π : M 99K B be the phase space
of a differential equation with independent variable x . The foliation G is given by
the level subsets of π . Using local coordinates x1, . . . , xn on M such that x1 = x ,
the subvariety CkG ⊂ Ck M is described by the equations x`1 = 0, 1 ≤ ` ≤ k. The
variational equation in local coordinates is the system (VEk) page 307. By setting
x`1 = 0, 1≤ `≤ k into this system, one gets the differential system for the normal
variational equation.

The linearization of the normal variational equation is done by the linearization
of the variational equation. Let I ⊂ C[Ck M] be the ideal defining the subvariety
CkG . Then Ek ∩ I ⊂ Ek ⊂ C[Ck M] are finite rank linear spaces invariant under the
action of Ck X. The induced action on the quotient Ek/(Ek ∩ I ) is the linearized k-th
order normal variational equation.

The normal covariational equation is more intrinsic. Let F X
k M ⊂ Fk M be the

space of k-jets of first integrals f of X,

f : (̂M, x)→ (̂C, 0),

such that X. f = 0. It is a linear subspace defined by its annihilator

D≥1
M · X ⊂ D≥1

M .

The commutator P→ [X, P] preserves D≥1
M · X. So, it defines a linear connection

on F X
k M : this is the normal covariational equation.

Appendix C: The proofs

We recall the definitions and results of Casale [2009] using the frame bundle RM
of M. It has a central place in the theory. In this appendix, it is used to present the
Malgrange pseudogroup and in the previous one it was used to have the variational
equation in fundamental form.

Because it is a principal bundle, it has an associated groupoid: Aut(M) =
(RM×RM)/0. The 0-orbit of a couple of frames (r, s) is the set of all (r ◦γ, s◦γ )
for γ ∈ 0. It is characterized by the formal map r ◦ s−1

: ̂(M, s(0))→ ̂(M, r(0)).
The quotient Aut(M) is the space of formal selfmaps on M with its natural structure
of groupoid. For an m ∈ M, we define Aut(M)m,M to be the space of maps with
source at m and target anywhere on M. The choice of a frame r : (̂Cn, 0)→ ̂(M,m)
gives an isomorphism between Aut(M)m,M and RM.

C1. Proofs of the comparison propositions.
Proof of Proposition 19. We will first compare these variational equations for a
fixed order, then study their projective limits.
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In order to compare all the variational equations, we will need to look more
carefully at the frame bundle. The proof is then just another way to write the prop-
erties of Ek . Its second property says that we have a group inclusion Autk(M)c,c→
GL(Ek(c)) and a compatible inclusion of principal bundles,

Autk(M)c,C → Ek(C )⊗ (Ek(c))∗.

This inclusion is compatible with the action of the vector field X. This means that
the fundamental form of the k-th order degree-linearized variational equation (i.e.,
Ck X action on max(Ek(C )⊗ (Ek(c))∗)) is an extension of the frame variational
equation. Thus, their Galois groups are the same.

The comparison of limit groups is not direct because the family (GL(Ek(c))k is
not a projective system. The module Ek is filtered by

E0 ◦ δ
k
⊂ E1 ◦ δ

k−1
⊂ · · · ⊂ Ek .

Let Tk ⊂ GL(Ek(c)) denote the subgroup preserving this filtration. Now,

• there is a natural projection Tk→ Tk−1,

• the Galois group of the k-th order degree-linearized variational equation is a
subgroup of Tk , and

• the inclusion Autk(M)c,c→ Tk is compatible with the projections.

This proves the proposition. �

Proof of Proposition 20. There is a direct way to see that the variational equation
and the covariational equation will have the same Galois group. Instead of using
the Picard–Vessiot principal bundle for the covariational equation, one can build a
better principal bundle. Consider the bundle of coframes

R−1 M = { f : ̂(M,m)→ (̂Cn, 0),where f is formal and invertible}

whose coordinate ring is Sym(D≥1
M ⊗Cn)[1/ Jac]. This is a 0-principal bundle. The

action of X by the commutator defines a 0-principal connection. This connection
is called the coframe variational equation. The map R→ R−1 sending a frame r to
its inverse r−1 is an isomorphism of principal bundles (up to changing the side of
the group action) conjugating the frame and the coframe variational equations.

Now let Fk be the vector space of k-jets of formal maps (̂Cn, 0)→ (̂C, 0) and
Ck be the vector space of k-jets of formal maps (̂C, 0)→ (̂Cn, 0); then one has

Fk M = (R−1
k M × Fk)/0k

and Ck M = (Rk M ×Ck)/0k . Moreover these two isomorphisms are compatible
with the various variational equations. So, the Galois group of the covariational
equation equals the one of the variational equation. �
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C2. The Malgrange pseudogroup. The Malgrange pseudogroup of a vector field
X on M is a subgroupoid of Aut(M). We choose here to call it a pseudogroup as its
elements are formal diffeomorphisms between the formal neighborhoods of points
of M satisfying the definition of a pseudogroup; see [Casale 2009].

It is defined by means of differential invariants of X , i.e., rational functions
H ∈ C(RM) such that R X · H = 0. Let Inv(X) ⊂ C(RM) be the subfield of
differential invariants of X. Let W be a model for Inv and π : RM 99K W be the
dominant map from the inclusion Inv⊂C(RM). Let Mal(X) be (RM×W RM)/0⊂
Aut M. To define properly this fiber product, one needs to restrict π : (RM)o→W
on its domain of definition. Then, RM×W RM is defined to be the Zariski closure
of (RM)o×W (RM)o in RM × RM. By construction, any Taylor expansion of the
flow of X belongs to Mal(X).

Malgrange [2001] showed that there exists a Zariski open subset Mo of M
such that the restriction on Mal(X) to Aut(Mo) is a subgroupoid. This result was
extended by Casale [2009] and allows us to view the Malgrange pseudogroup as a
set-theoretical subgroupoid of Aut(M).

From the Cartan classification of pseudogroups [1908], one gets the following the-
orem for rank two differential system; see the appendix of [Casale 2008] for a proof.

Theorem 21 [Cartan 1908; Casale 2008]. Let M be a smooth irreducible algebraic
3-fold over C and X be a rational vector field on M such that there exist a closed
rational 1-form α with α(X)= 1 and a closed rational 2-form γ with ιXγ = 0. One
of the following statements holds.

• On a covering M̃ π
→M of a Zariski open subset of M, there exists a rational

1-form ω such that ω∧ dω = 0 and ω(π∗X)= 0. Then

Mal(X)⊂ {ϕ | ϕ∗α = α, (ϕ̃∗ω)∧ω = 0},

where ϕ̃ stands for any lift of ϕ to M̃. The vector field is said to be transversally
imprimitive.

• There exists a vector of rational 1-forms 2=
(
θ1
θ2

)
such that θ1 ∧ θ2 = γ and a

trace free matrix of 1-forms � such that

d2=�∧2 and d�=−�∧�.

One has Mal(X)⊂{ϕ |ϕ∗α=α, ϕ∗2= D2, and d D=[D, �]}. The vector
field is said to be transversally affine.

• Mal(X)= {ϕ | ϕ∗α = α, ϕ∗γ = γ }.

In order to compute dimensions of Malgrange pseudogroups and of Galois
groups of variational equations, it will be easier to work with the Lie algebra of
the Malgrange pseudogroup. Roughly speaking, mal(X) is the sheaf of Lie algebra
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of vector fields whose flows belongs to Mal(X). The reader is invited to read
[Malgrange 2001] for a formal definition.

C3. Proof of our main theorem.

Proof. The assumptions made on X, α and γ ensure that the first variational
equation is reducible to a block-diagonal matrix with a first block in SL2(C) and a
second equal to the identity matrix.

Using theorems above, the proof of this theorem is reduced to Lemmas 22 and 26.

Lemma 22. If there exists a finite map π : M̃→ M and an integrable 1-form on M̃
vanishing on π∗X then the Lie algebra of the Galois group of the first variational
equation along any solution is solvable.

Proof. This lemma is proved in the spirit of Ziglin and Morales and Ramis (see, for
example, [Audin 2001]).

First we have to descend from the covering to M. Remark that ω is a 1-form
on M whose coefficients are algebraic functions. Letting ωi , i = 1, . . . , `, be the
conjugates of ω, the product ω =

∏
ωi ∈ Sym`�1(M) is a well-defined rational

symmetric form on M. For any holomorphic function f on open subsets of M,
f ω satisfies all hypotheses so that one can assume that the rational symmetric form
ω is holomorphic at the generic point of C .

At generic p ∈ C , the section ω : M 99K Sym`T ∗M vanishes at order k, thus
one can write ω = ωk(p)+ · · · , where ωk(p) is lowest order homogeneous part
of ω. It is a well-defined symmetric form ` on the tangent space Tp M, that is,
ωk(p) : Tp M→ Sym`T ∗(Tp M); note that ωk(p)(λv)(µw) = λkµ`ωk(p)(v) for
any v ∈ T pM and any w ∈ Tv(Tp M). We may say that ω is a symmetric `-form on
the space Tp M, homogeneous of degree k.

Sublemma 23. The vanishing order of ω is constant on a Zariski open subset of C.

Proof. Let p ∈ C be such that X (p) 6= 0. One can choose rectifying coordinates
x1, . . . , xn such that x(p)= 0, X = ∂/∂x1 and

ω =
∑

α∈×Nn−1

|α|=`

wα(x)
n∏

i=2

dxαi
i .

Since LXω∧ω= 0, one has that, for any c ∈C small enough, wα(x1+c, . . . , xn)=

fc(x)wα(x1, . . . , xn) where fc is a holomorphic function depending on c not on α.
Now f0 = 1 thus fc(0) 6= 0 for c small enough and the vanishing order of ω at 0
equals the one at (c, 0, . . . , 0). �

This sublemma enables us to define a rational section

ωk : TC M 99K Sym`V ∗(TC M),

where V ∗(TC M)= T ∗(TC M)/T ∗C.



GALOISIAN METHODS FOR THE IRREDUCIBILITY OF ODE 333

Remember that from X, we get a vector field C1 X on TC M called the first order
variational equation along C.

Sublemma 24. LC1 Xωk ∧ωk = 0.

Proof. Here again, we will prove the sublemma in local analytic coordinates. Let
p ∈ C be such that X (p) 6= 0. One can choose rectifying coordinates x1, . . . , xn

such that x(p)= 0, X = ∂/∂x1 and

ω =
∑

α∈×Nn−1

|α|=`

wα(x)
n∏

i=2

dxαi
i .

For any c ∈C small enough, wα(x1+c, . . . , xn)= fc(x)wα(x1, . . . , xn) so the zero
set of ω in TC M is a subvariety invariant under translations collinear to X. One can
get local equations for this zero set in the form

η =
∑

α∈×Nn−1

|α|=`

nα(x2, . . . , xn)

n∏
i=2

dxαi
i

and there exists a holomorphic h such that ω = hη. Now, by taking the lowest
order homogeneous parts, one gets ωk = hk1ηk2 . Since η is x1-independent so is ηk2 .
In local coordinates induced on TC M, C1 X = ∂/∂x1 so LC1 Xηk2 = 0 and a direct
computation proves that LC1 Xωk ∧ωk = 0. �

Sublemma 25. Gal(C1 X) is virtually solvable.

Proof. The rational form ωk defines in each fiber of TC M a homogeneous `-web.
This fiberwise rational web is C1 X -invariant. This implies that the action of the
Galois group on a fiber Tp M must preserve this web. In other words, the Galois
group at p preserves the set of symmetric forms on Tp M which are rational multiples
of ωk(p).

The form η given in the previous sublemma shows that the web is a pull-back of
a web defined on the normal bundle of C in M. The group Gal(C1 X) is included in
a block diagonal group with a block (1) and a 2× 2 block given by a subgroup of
SL(2,C). As SL(2,C) does not preserve a web on C2, the 2× 2 block is a proper
subgroup of SL(2,C). This proves the sublemma, and thus concludes the proof of
Lemma 22. �

Lemma 26. If X is transversally affine then the Galois group of the formal varia-
tional equation along any solution has dimension smaller than 5.

Proof. We will see that this lemma is a consequence of theorems and lemmas from
[Casale 2009]. From Theorem 2.4 there, the Galois group of the formal variational
equation along C is a subgroup of

Mal(X)p = {ϕ : (M, p)→ (M, p) | ϕ ∈Mal(X)}
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for a generic p ∈ C . Its Lie algebra is included in

mal(X)0p = {Y a vector field on (M, p) | Y (p)= 0, Y ∈mal(X)}.

From Lemma 3.8 of [Casale 2009], the dimension of

mal(X)p = {Y a vector field on (M, p) | Y ∈mal(X)}

for p ∈ C is smaller than the dimension of the same Lie algebra for generic p ∈ M.
Assume X is transversally affine and choose a point p∈M such that the 1-form α

and the forms 20 and 21 from the definition are holomorphic and α∧ θ0
1 ∧ θ

0
2 6= 0.

Then we choose local analytic coordinates such that α= dx1 and
[dx2

dx3

]
= F20 with

d F + F21
= 0. In these coordinates, ϕ ∈Mal satisfies ϕ∗α = α, ϕ∗20

= D20

and d D = [D,21
] if and only if

ϕ(x1, x2, x3)= (x1+ c0, c1x2+ c2x3+ c3, c4x1+ c5x2+ c6)

with c ∈ C7 such that det
[ c1

c4

c2
c5

]
= 1. The infinitesimal version of these calculations

shows that the dimension of mal(X)p is smaller than 6. The Lie algebra mal(X)0p is
strictly smaller than mal(X)p as it does not contain X = ∂/∂x1 so the dimension of
the Galois group of the formal variational equation is smaller than or equal to 5. �

Combining these two lemmas, we see Theorem 1 follows from Theorem 21. �
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