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AND PETER M. R. RASMUSSEN

We answer the question of how large the dimension of a quantum lens space
must be, compared to the primary parameter r , for the isomorphism class to
depend on the secondary parameters. Since classification results in C∗-algebra
theory reduce this question to one concerning a certain kind of SL-equivalence
of integer matrices of a special form, our approach is entirely combinatorial
and based on the counting of certain paths in the graphs shown by Hong and
Szymański to describe the quantum lens spaces.

1. Introduction

In a seminal paper by Hong and Szymański [2003], an important class of quantum
lens spaces C(Lq(r; (m1, . . . ,mn))))was given a description as C∗-algebras arising
from certain graphs — or their adjacency matrices — in the vein of Cuntz and
Krieger [1980]. These graphs can be read off directly from the data (r;(m1, . . . ,mn))

determining the quantum lens space, where r > 2 are integers and mi are units
of Z/rZ. Using this characterisation, it is easy to see that C(Lq(r; (m1, . . . ,mn)))

can only be isomorphic to C(Lq(r ′; (m′1, . . . ,m′n′))) when r = r ′ and n = n′, and
this raises the important question of to what extent the choice of the units can
influence the C∗-algebras.

To answer such questions, one appeals naturally to the classification theory for
C∗-algebras by K -theory, as indeed a large class of Cuntz–Krieger algebras were
classified by Restorff [2006]. Unfortunately, the quantum lens spaces fall outside
this class, and indeed, outside any class considered at the time [Hong and Szymański
2003] was written. Thus, apart from noting that the mi can obviously not influence
the C∗-algebras when n ≤ 3, Hong and Szymański left the question open.

Quantum lens spaces are still a subject of interest, however, see for instance
Arici, Brain, and Landi [Arici et al. 2015] and Brzeziński and Szymański [2018],
and using recent classification results obtained for Cuntz–Krieger algebras with
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uncountably many ideals, Eilers, Restorff, Ruiz, and Sørensen in [Eilers et al. 2018]
managed to reduce this question to elementary matrix algebra and to prove that
when n = 4 there are precisely two different C(Lq(r; (m1, . . . ,mn))) when r is a
multiple of 3, and only one when r is not.

Søren Eilers conducted computer experiments for other r and n which suggested
that the quantum lens spaces are unique when n < s for s the smallest even number
strictly larger than the smallest divisor of r which is not 2, and that at least two
choices of mi give different C∗-algebras when n ≥ s. It is the aim of the paper
at hand to provide the combinatorial insight needed to prove that this in fact is
the case, and to study the number of different C∗-algebras that can be obtained by
varying the mi .

We will not work directly on questions of isomorphism of the C∗-algebras, and
hence, no prior knowledge on C∗-algebras or their classification theory is required.
Instead we study the equivalent notion of SL equivalence of the graphs associated
to the given data. Indeed, a result of [Eilers et al. 2018] states that the following
are equivalent:

• C(Lq(r; (m1, . . . ,mn)))⊗K ' C(Lq(r; (m′1, . . . ,m′n)))⊗K.

• There exist integer matrices U, V both of the form
1 ∗ ∗ · · · ∗

1 ∗
. . .

. . .
...

1 ∗

1


so that U (A(r;(m1,...,mn))− I )= (A(r;(m′1,...,m′n))− I )V .

The exact notation and definitions will be given in Section 2 together with the
rudimentary results needed for our classification. Section 3 handles the most
general case, basically establishing the influence of the odd prime divisors of the
parameter r on the number of C∗-algebras emerging by varying the mi . A lower
bound on the number of such C∗-algebras is found and for 4 - r the exact s such
that the C∗-algebra is unique for n < s is determined. The special case of finding s
when 4 | r is then dealt with in Section 4.

The main result of the paper is Theorem 5.1 which combines the results of
Sections 3 and 4 to find for every r > 2 the s such that the C∗-algebra is unique
for every n < s. The other major achievement is Theorem 3.9 which bounds the
number of different quantum lens spaces arising for some r > 2 and n ∈N. Based on
computer experiments, we conjecture that this bound is in fact an equality when 4 - r
(Conjecture 5.3).
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2. Preliminaries

We dedicate this section to setting the stage. We establish notation, definitions, and
find initial results that will assist in showing the later sections’ classification results.

Number theoretical notation.

Definition 2.1. We let Zn denote the multiplicative group of integers modulo n.
That is Zn = (Z/nZ)∗.

Notation 2.2. We write pk
‖n if pk

| n and pk+1 - n, i.e., k is the greatest power
of p dividing n.

Notation 2.3. To ease notation, we write the reduction of an integer a calculated
modulo r as [a]r , i.e., we always have 0≤ [a]r ≤ r − 1.

The graph. This section will introduce a definition of the graph M(r;(m1,...,mn)),
arising from the quantum lens space C(Lq(r; (m1, . . . ,mn))) as defined in [Hong
and Szymański 2003]. Further, we introduce another graph N(r;(m1,...,mn)), which
is easier to work with in the combinatorial setting, but has similar properties in a
sense that will be made clear.

Definition 2.4. Let r > 2 and m = (m1, . . . ,mn) ∈ (Zr )
n for some n ∈ N. Then

we define a directed graph M(r;m) in the following way:

• For every pair s, t with 1≤ s ≤ n and 0≤ t < r there is a vertex gs,t .

• There is a directed edge from gs1,t1 to gs2,t2 if and only if s1 ≤ s2 and t2 =
[t1+ms1]r .

For every s ∈N we will call the subgraph consisting of the vertices {gs,x | 0≤ x < r}
the s-th subgraph of M(r;m), and we will call a vertex of the form gs,c a c-vertex.

An example of the graph M(5;(1,2,1)) is sketched in Figure 1.
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Figure 1. Example of M(r;m) with n = 3, r = 5 and m = (1, 2, 1).
The bold 3 in a darker circle denotes the vertex g2,3.
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Figure 2. Example of N(r;m) where n = 3, r = 5, and m = (1, 2, 1).

Definition 2.5. Let r > 2 and m = (m1, . . . ,mn) ∈ (Zr )
n for some n ∈ N. Then

we define a directed graph N(r;m) in the following way:

• For every pair s, t with 1≤ s ≤ n and 0≤ t < r there is a vertex cs,t .

• There is a directed edge from cs1,t1 to cs2,t2 in the following two cases:

♦ s1+ 1= s2 and t2 = t1.
♦ s1 = s2 and t2 = [t1+ms1]r .

For every s we will call the subgraph consisting of the vertices {cs,x | 0≤ x < r}
the s-th subgraph of N(r;m), and we will call a vertex of the form cs,t a t-vertex.

Here is the graph we would rather look at. Instead of having edges from a
subgraph to all the subgraphs after it, it only has edges to the one just after it.
This edge will always go from cs,t to cs+1,t . We show an example of the graph
on Figure 2.

Definition 2.6. Let r > 2 and m = (m1, . . . ,mn) ∈ (Zr )
n for some n ∈ N. Then

we let A(r;m) be the matrix such that A(r;m)〈i, j〉 is the number of directed paths
in M(r;m) from the 0-vertex of the i-th subgraph to the 0-vertex of the j -th subgraph
that does not pass through the 0-vertex of any other subgraph. We call a path that
satisfies these criteria legal.

Definition 2.7. Let r > 2 and m = (m1, . . . ,mn) ∈ (Zr )
n for some n ∈ N. Then

we let B(r;m) be the matrix such that B(r;m)〈i, j〉 is the number of directed paths on
N(r;m) from the 0-vertex of the i-th subgraph to the 0-vertex of the j-th subgraph
which do not exclusively visit 0-vertices and which do not visit the 0-vertex of any
other subgraph except if all the following vertices of the path are 0-vertices. We
will call a path that satisfies these criteria legal.

We introduce this new graph definition N(r;m) because it is easier to work with
than M(r;m). Note we always calculate indices in subgraphs modulo r .

Lemma 2.8. Let r > 2 and m ∈ (Zr )
n be given. Then A(r;m) = B(r;m).
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Proof. There is a bijection between the edges of M(r;m) and paths of N(r;m) as
follows. The edge gs1,t1 → gs2,t1+ms1

of M(r;m) corresponds to the path

cs1,t1 → cs1,t1+ms1
→ cs1+1,t1+ms1

→ · · · → cs2,t1+ms1

on N(r;m).That this is a bijection follows immediately from the fact that the edge
and path are both uniquely determined by s1, s2, and t1.

Now, we need to establish a bijection between the legal paths on M(r;m) and the
legal paths on N(r;m). This happens naturally by translating any edge in a legal path
on M(r;m) into a subpath of the form above of a legal path on N(m;r). That this map
has an inverse follows easily since any legal path in N(r;m) consists of subpaths of
the above form where a new subpath starts whenever we stay in the same subgraph.
Further, we have that the constraint of Definition 2.6 translates into the constraint of
Definition 2.7: an edge from the t-th subgraph to the 0-vertex of the n-th subgraph
in Definition 2.6 corresponds to going to the 0-vertex in the t-th subgraph and then
visiting 0-vertices exclusively until reaching the 0-vertex of the n-th subgraph in
Definition 2.7. �

Equivalence classes. The overall aim of the article is to classify the quantum lens
spaces, which is a problem that Theorem 7.1 of Section 7.2 of [Eilers et al. 2018]
reduces to a question of SL equivalence, hence elementary matrix algebra.

Theorem 2.9 (Eilers, Restorff, Ruiz, and Sørensen). Let r > 2 and m,m′ ∈ (Zr )
n

be given. The following are equivalent:

• C(Lq(r; (m1, . . . ,mn)))⊗K ' C(Lq(r; (m′1, . . . ,m′n)))⊗K.

• There exist matrices U, V both of the form
1 ∗ ∗ · · · ∗

1 ∗
. . .

. . .
...

1 ∗

1


so that U (A(r;(m1,...,mn))− I )= (A(r;(m′1,...,m′n))− I )V.

Thus, determining whether two quantum lens spaces, C(Lq(r; (m′1, . . . ,m′n)))
and C(Lq(r; (m1, . . . ,mn))), are isomorphic comes down to whether or not the
matrices A(r;m) and A(r;m′) (or B(r;m) and B(r;m′) by Lemma 2.8) are equivalent with
respect to the equivalence relation, ∼, defined below.

Definition 2.10. We will say that two matrices C and D are upper triangular
equivalent, written C ∼= D, if there exist upper triangular matrices, X, Y, with 1 in
every entry of the diagonal such that XC = DY.
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Equivalently, the matrices C and D are upper triangular equivalent, if there is a
series of pivots transforming C into D with the restrictions that

(1) a multiple of row k can only be added to row l if k > l,

(2) a multiple of column k can only be added to column l if k < l.

Note that this is clearly an equivalence relation since such upper triangular matrices
are invertible.

Definition 2.11. We say that two matrices, A and C , are equivalent, if

A− I ∼= C − I.

In that case we write A ∼ C .

In particular, we are interested in efficiently deciding the number of equivalence
classes given n and r > 2 and deciding whether or not two graphs belong to the
same equivalence class.

Definition 2.12. Let r > 2 and n ∈ N be given. Then we define

Sr,n = {A(r;m) | m ∈ (Zr )
n
} = {B(r;m) | m ∈ (Zr )

n
}

as the set of all matrices produced by vectors of length n with parameter r .

Definition 2.13. Let r > 2 and n ∈ N be given. Then ϕr (n) denotes the number of
elements of Sr,n/∼ and ϕ̃(r) denotes the least n such that ϕr (n) > 1.

Thus, our goal in this paper is to find a bound for ϕr given r and to express ϕ̃ in
closed form.

Invariants. In this section we establish some invariants and properties in relation
to changes to the vector m in N(r;m).

Lemma 2.14. The matrix B(r;m) does not depend on the choice of m1 and mn .

Proof. If n=1 this is obvious, so assume n>1. Consider legal paths in N(r;(m1,...,mn))

from the 0-vertex of the first subgraph to the 0-vertex of the j -th subgraph for j > 1.
No matter what m1 is there is exactly one way to reach any of the vertices of the
second subgraph from the 0-vertex of the first subgraph. Thus, the number of such
directed paths is independent of m1 and the first part follows.

Now, consider the last subgraph. Once it is reached, there is exactly one way to
reach the 0-vertex, once it is reached, so this does not depend on mn . �

Lemma 2.15. Let r > 2, m ∈ (Zr )
n, and b ∈ Zr . Then B(r;m) = B(r;b·m).

Proof. We will show that there is a bijection between the legal paths of B(r;m) and
B(r;b·m) as follows. Let γ be a legal path

cs1,0 = cs1,t1 → cs2,t2 → · · · → csq ,tq = csq ,0



COMBINATORIAL CLASSIFICATION OF QUANTUM LENS SPACES 345

on N(r;m). Our bijection sends the legal γ to the path ω on N(r;(b·m)) given by

cs1,0 = cs1,[b·t1]r → cs2,[b·t2]r → · · · → csq ,[b·tq ]r = csq ,0.

That the map is injective follows since multiplication by b ∈ Zr is an injection
Zr → Zr . Further, it is easy to see that all legal paths on N(r;m) will be mapped to
legal paths on N(r;(b·m)) since multiplication by b does not change the positions of
the 0-vertices in a path. Thus, there is an injection from the legal paths on N(r;m) to
the legal paths on N(r;(b·m)) and by the same argument there must be an injection
from the legal paths on N(r;(b·m)) to the legal paths on N(r;m). It follows that said
map is a bijection and we are done. �

Corollary 2.16. Let m = (m1,m2, . . . ,mn−1,mn) ∈ (Zr )
n. Then there exists an

m′ ∈ (Zr )
n with 1 in the first, last and k-th index, i.e.,

m′ = (1,m′2, . . . ,m′k−1, 1,m′k+1, . . . ,m′n−1, 1),

such that B(r;m) = B(r;m′).

Proof. Take b to be the inverse in Zr of mk in Lemma 2.15. Then

B(r;m) = B(r;m−1
k ·m)
= B(r;m′),

where the last equality follows from Lemma 2.14. �

Entry specific properties and formulae. To proceed with any further results we
need some combinatorial formulae and properties to be in place.

Theorem 2.17. Let 1= (1, . . . , 1). Then B(r;1)〈i, j〉 =
(r−1+( j−i)

j−i

)
.

Proof. Since every directed edge in N(r;1) either goes from cs,t to cs+1,t or from cs,t

to cs,t+1, we can characterise any directed path from the 0-vertex of the i-th subgraph
to the 0-vertex of the j-th subgraph satisfying Definition 2.7 by a j − i + 1-tuple
(a0, . . . , a j−i ), such that as is the number of edges of the form cs,t → cs,t+1

that occur in the path. A necessary and sufficient condition for such a tuple to
characterise a directed path of the desired form is that

∑ j−i
l=0 al = r , as ≥ 0 for

all s > 0, and a0 > 0.
Thus, B(r;1)〈i, j〉 is equal to the number of ways that r can be written as the sum

of j − i + 1 nonnegative integers, where the first one has to be at least 1. This is
equivalent to the number of ways to write r −1 as the sum of j− i+1 nonnegative
integers. The latter being a known combinatorial problem, we get

B(r;1)〈i, j〉 =
(

r − 1+ ( j − i)
j − i

)
. �

Corollary 2.18. Let r>2 and m∈ (Zr )
n. Then B(r;m)〈i, i〉=1, B(r;m)=〈i, i+1〉=r ,

and B(r;m)〈i, i + 2〉 = r(r+1)
2 for all i .
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Proof. When we consider only B(r;m)〈i, i〉, B(r;m)〈i, i + 2〉, and B(r;m)〈i, i + 2〉,
their values depend solely on the vector (mi ,mi+1,mi+2), so we can assume by
Corollary 2.16 that

mi = mi+1 = mi+2 = 1.

The conclusion then follows trivially from Theorem 2.17 �

From the corollary we immediately obtain the following result, which also
appeared in [Eilers et al. 2018] and we will note for future use:

Corollary 2.19. Let r > 2. Then ϕ̃(r)≥ 4.

Proof. By Corollary 2.18 we have that for n ≤ 3 the matrices B(m;r) do not depend
on m. Thus, they are all equal when m varies and we can only have one equivalence
class. �

In fact, Eilers et al. [2018] established that ϕ̃(r)= 4 if and only if 3 | r . As stated
earlier, we shall see a general closed expression for ϕ̃ in a later section.

Equivalence of matrices. To show equivalence of matrices we need to do some
manipulations with matrices that might be a bit technical. So the following lemma
simply establishes the equivalence of two matrices where every entry except for the
diagonal is divisible by either r or r

2 when r is even.

Lemma 2.20. Let r > 2 be given such that r = 2t s for some t ∈ {0, 1} and odd
s ∈ N. Suppose that the two n × n upper triangular integer matrices A, B have
1’s in their diagonal, r on the diagonal from 〈1, 2〉 to 〈n− 1, n〉, and r(r+1)

2 on the
diagonal from 〈1, 3〉 to 〈n− 2, n〉. Further, suppose s divides every entry of A− I
and B− I. Then A ∼ B.

Proof. We need to show that we can transform the matrix A− I into B − I by
integer row and column operations. If r is odd, every entry of A− I and B− I is
divisible by r by assumption, and the matrices are of the form

r


0 1
0 0 1
...
...

. . .

0 0 · · · 0 1
0 0 · · · 0 0


with integer entries in the upper right corner. All such matrices can easily be
transformed into an upper triangular matrix with zeros everywhere except for the
diagonal from 〈1, 2〉 to 〈n− 1, n〉 by row and column operations, so since ∼ is an
equivalence relation, we get A ∼ B.
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Now, assume that 2 | r , but 4 - r . Then the matrices A−I and B−I are of the form

A− I = r
2


0 2 r+1
0 0 2 r+1
...
...

. . .
. . .

0 0 · · · 0 2 r+1
0 0 · · · 0 0 2
0 0 · · · 0 0 0


with integer entries in the upper-right corner. We show that such a matrix can be
transformed by row and column operations into the matrix

C − I := r
2



0 2 r+1 0 · · · · · · 0
0 0 2 r+1 0 · · · 0
...
...

. . .
. . .

. . .
...

0 0 · · · 0 2 r+1 0
0 0 · · · 0 0 2 r+1
0 0 · · · 0 0 0 2
0 0 · · · 0 0 0 0


,

which by transitivity shows A ∼ B.
We proceed by induction on n. For n = 1, 2, 3 all matrices on the described form

will be identical and thus equivalent to C .
Now, assume that for k < n every matrix on the described form is equivalent

to C , and consider the n× n matrix A on that form. By the induction hypothesis
and considering A as an n− 1× n− 1 matrix with an added row and column, we
can reduce A by row and column operations to a matrix with diagonals like C − I
and zeroes everywhere else except for in the rightmost column.

Using column operations we can now make every entry of that rightmost column
(except for the r−1-entry) even without changing the rest of the matrix. If an
entry of the column is odd, we can just subtract r − 1 from it by subtracting the
appropriate column.

Having made all those entries even they can all be eliminated by subtracting
the 2 in the (n−1)-st row an appropriate amount of times. Then the matrix C − I
is achieved, which concludes the proof. �

Another useful result on when matrices are not equivalent is the following:

Lemma 2.21. Let A and B be n × n upper-rectangular matrices with 1 in their
diagonal. If every entry of A− I and B− I except for the entry 〈1, n〉 is divisible
by k ∈ N and (A− I )〈1, n〉 6≡ (B− I )〈1, n〉 (mod k), then A 6∼ B.

Proof. Since every entry of A− I and B− I except the upper right is divisible by
k, the upper right entry is invariant modulo k under row and column operations. �
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3. The general case

In general it is very difficult to find an explicit formula for B(r;m)〈i, j〉 given
arbitrary r and m. However, for the purpose of bounding ϕr (n) from below and
deciding ϕ̃(r) in the case where 4 - r , it turns out to be sufficient to be able to
compute B(r;m)〈i, j〉 modulo r .

Thus, this section aims to develop techniques for assessing B(r;m)〈i, j〉 modulo r .
The main technical result is Theorem 3.2 from which the exact value of ϕ̃(r) follows
for 4 - r and a lower bound on ϕr (n), which appears to be an equality when 4 - r
(see Conjecture 5.3). Throughout the section, we will define 00

= 1 and 0! = 1 for
the sake of simplicity.

We start with the following lemma, which formally captures the technique which
will be used multiple times in the proof of Theorem 3.2:

Lemma 3.1. Suppose D is a finite set, p is a prime, s, b : D→ Z are functions,
k, j ∈N, and a :N0×N0→ Z satisfies gcd(a(m,m), p)= 1 for all m ≤ j. Define
the function

w(l)=
∑
d∈D

s(d)
l∑

t=0

a(t, l)b(d)t

and assume that pk
|w(l) for 0≤ l < j. Then

w( j)≡
∑
d∈D

a( j, j)s(d)b(d) j (mod pk).

Proof. First, we show by strong induction over t that pk
|
∑

d∈D s(d)b(d)t for
all t < j. For t = 0 we have pk

|
∑

d∈D s(d)a(0, 0) and since gcd(pk, a(0, 0))= 1
we get pk

|
∑

d∈D s(d). Now, assume that pk
|
∑

d∈D s(d)b(d)t for all t satisfying
0≤ t < m for some m < j. Then,

0≡ w(m)=
∑
d∈D

s(d)
m∑

t=0

a(t,m)b(d)t ≡
∑
d∈D

a(m,m)s(d)b(d)m (mod pk),

so pk
|
∑

d∈D s(d)b(d)m as gcd(a(m,m), pk)= 1.
Second, the fact that pk

|
∑

d∈D s(d)b(d)t for all t < j yields

w( j)=
∑
d∈D

s(d)
j∑

t=0

a(t, j)b(d)t ≡
∑
d∈D

a( j, j)s(d)b(d) j (mod pk). �

Having proved the lemma we now turn to the main technical theorem of the
section from which the remaining results follow naturally.

Theorem 3.2. Let p be an odd prime, r > 2 and n ≤ p + 1 be given, and m =
(m1, . . . ,mn). Suppose that pk

| r and pk
|B(r;s)〈1, a〉 for every s̄ ∈ (Zr )

p+1 and
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every a < n. Then

B(r;m)〈1, n〉 ≡
(

r+n−2
n−1

) n−1∏
k=2

m−1
k (mod pk).

Proof. For every vector m we can reduce the problem to considering a vector m′

which satisfies m′1 = m′2 = m′n = 1 as follows. First, recall that no matter what
vector we consider, we can always assume without loss of generality that its first
and last entry is 1 since it does not affect any of the sides of the above expression
by Lemma 2.14. Second, as in the proof of Corollary 2.16 we can multiply m by a
m−1

2 to get m′ = m−1
2 ·m, which means that m′2 = 1. Then the left hand side will

not change since B(r;m)〈1, n〉 = B(r;m′)〈1, n〉 by Lemma 2.15 and the right hand
side will satisfy(

r+n−2
n−1

) n−1∏
k=2

m−1
k ≡

(
r+n−2

n−1

) n−1∏
k=2

bm−1
k (mod pk)

since for n < p+ 1, pk
|
(r+n−2

n−1

)
, and for n = p+ 1, bn−2

≡ 1 (mod p) and
pk−1
|
(r+n−2

n−1

)
. Now, assuming m′1 = m′n = 1 yields the above. Thus, for the

remaining proof we will assume that m1 = m2 = mn = 1.
Now, let n j denote the vector (m1, . . . ,mn− j , 1 j ), where 1 j is the vector of 1’s

of length j , and note that with the above assumption, n1 = m and nn−2 = 1. Our
approach will be to show that for all 1≤ j < n− 1 we have

(1) B(r;n j )〈1, n〉 ≡ m−1
n− j g j (m1, . . . ,mn− j−1) (mod pk)

for some integer function g j : (Zr )
n− j−1

→ Z which is independent of mn− j and
where m−1

n− j is the inverse of mn− j modulo pk. Noting that (1) yields B(r;n j+1)〈1, n〉≡
g( j,m1, . . . ,mn− j−1) (mod pk), we get

B(r;n j )〈1, n〉 ≡ B(r;n j+1)〈1, n〉m−1
n− j (mod pk),

and applying this together with Theorem 2.17 and m2 = 1 gives us

B(r;m)〈1, n〉 = B(r;n1)〈1, n〉 ≡ B(r;n2)〈1, n〉m−1
n−1

...

≡ B(r;nn−2)〈1, n〉
n−1∏
k=3

m−1
k = B(r;1)〈1, n〉

n−1∏
k=3

m−1
k

=

(
r + n− 2

n− 1

) n−1∏
k=2

m−1
k (mod pk).

Thus, all we need to do is prove that we can indeed write an expression for
B(r;n j )〈1, n〉 of the form (1).
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To do so, fix a j with 1≤ j < n−1 and consider the graph N(r;n j ). We may write

(2) B(r;n j )〈1, n〉 =
r−1∑
q=0

L j (q)S j (q),

where S j (q) denotes the number of paths on N(r;n j ) from c1,0 to cn− j,q that are
subpaths of a legal path from c1,0 to cn,0 and that do not traverse any edges in the
(n− j)-th subgraph, and similarly L j (q) is the number of paths on N(r;n j ) from
cn− j,q to cn,0 that are subpaths of a legal path from c1,0 to cn,0.

We start our analysis by finding a formula for L j (q). First, we consider the
(n− j+1)-th subgraph of N(r;n j ) and count the number of paths from cn− j+1,i to cn,0

on N(r;n j ) that are subpaths of a legal path from c1,0 to cn,0 for each 0≤ i < r . As in
the proof of Theorem 2.17 one can see choosing such a path as choosing a partition
of [r − i]r into a sum of j − 1 nonnegative integers since mn− j+1 = mn− j+2 =

· · · = mn = 1. Thus, the number of such paths equals
(
[r−i]r+ j−1

j−1

)
.

Second, there are three cases to consider. When i, q > 0 there is exactly one path
from cn− j,q to cn− j+1,i not traversing any edges in the (n− j+1)-th subgraph that
is a subpath of a legal path from c1,0 to cn,0 if and only if [m−1

n− j q]r ≤ [m
−1
n− j i]r .

Otherwise there are none. This is clear since such a path would be of the form

cn− j,q → cn− j,[q+mn− j ]r → · · · → cn− j,i → cn− j+1,i

and zero is not a member of {q, q+mn− j , . . . , i} if and only if [m−1
n− j q]r ≤[m

−1
n− j i]r .

For i = 0 there is exactly one such subpath for every q and for q = 0 there is exactly
one such subpath if and only if i = 0. Thus, for q > 0,

L j (q)=
r−1∑
i=0

(1
{[m−1

n− j q]r≤[m
−1
n− j i]r }

+ 1{i=0})

(
[r − i]r + j − 1

j − 1

)

=

r∑
i=[m−1

n− j q]r

(
[r − imn− j ]r + j − 1

j − 1

)
,

where 1boolean is an indicator function assuming the value 1 if true and 0 otherwise,
and where we changed i = 0 terms into i = r terms. Introducing the new variable
σ = r − i we rewrite the sum as

(3) L j (q)=

[−m−1
n− j q]r∑
σ=0

(
[σmn− j ]r + j − 1

j − 1

)
.

Since evidently L j (0) = 1, this formula holds even for q = 0 and thus for all
0≤ q < r .



COMBINATORIAL CLASSIFICATION OF QUANTUM LENS SPACES 351

For j = 1, (3) yields L j (q)= [−m−1
n−1q]r and inserting this into (2) yields

B(r;n1) =

r−1∑
q=0

[−m−1
n−1q]r S j (q)≡−m−1

n−1

r−1∑
q=0

S j (q)q (mod pk).

Since S j (q)q only depends on m1,m2, . . . ,mn−2, it follows that we can write
B(r;n1) in the form (1).

So let us consider the case when j > 1. Inserting the expression (3) into (2) and
substituting d = r − q and noting that the d = 0 is equal to the d = r term yields

( j − 1)!B(r;m)〈1, n〉 =
r−1∑
d=0

[m−1
n− j d]r∑
σ=0

S j ([r − d]r )
j−1∏
i=1

([σmn− j ]r + i).

Expanding the product and introducing s(d)= S j ([r − d]r ) we get the sum

( j − 1)!B(r;n j )〈1, n〉 =
r−1∑
d=0

[m−1
n− j d]r∑
σ=0

j−1∑
t=0

a(t, j − 1)([σmn− j ]r )
t s(d)

for an integer function a : N0 ×N0→ Z, where a( j − 1, j − 1) = 1. Now, note
that by the same reasoning we must also have for every 0≤ l < j − 1 that

w(l) := l!B(r;n j )〈1, n− j + l + 1〉

=

r−1∑
d=0

[m−1
n− j d]r∑
σ=0

s(d)
l∑

t=0

a(t, l)([σmn− j ]r )
t,

where a(l, l) = 1. By assumption, pk divides B(r;n j )〈1, n − j + l + 1〉 for every
l < j − 1. Hence, pk

|w(l) for 0 ≤ l < j − 1. Applying Lemma 3.1 with the
functions s, a, b(σ ) := [σmn− j ]r , prime p, and exponent t , we get

(4) ( j − 1)!B(r;n j )〈1, n〉 = w( j − 1)

≡

r−1∑
d=0

[m−1
n− j d]r∑
σ=0

a( j − 1, j − 1)s(d)([σmn− j ]r )
j−1

≡ m j−1
n− j

r−1∑
d=0

[m−1
n− j d]r∑
σ=0

s(d)σ j−1 (mod pk).

By Faulhaber’s formula ([Graham et al. 1989, Chapter 6.5]) in the convention
B1 =

1
2 , we can write

[m−1
n− j d]r∑
σ=0

σ j−1
=

1
j

j−1∑
t=0

(
j

j − t − 1

)
B j−t−1([m−1

n− j d]r )
t+1,
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where Bn is the n-th Bernoulli number. Inserting this into (4), noting that pk
| r

and multiplying both sides by j, we find that

j !B(r;n j )〈1, n〉 ≡ m j−2
n− j

r−1∑
d=0

s(d)d
j−1∑
t=0

(
j

j − t − 1

)
B j−t−1(m−1

n− j d)
t (mod pk).

As it is a well-known fact that j !Bl , l < j, is an integer, we multiply by j !(m j−2
n− j )

−1

to ensure that each factor of each term is an integer

(m j−2
n− j )

−1 j !2B(r;n j )〈1,n〉≡
r−1∑
d=0

s(d)d
j−1∑
t=0

(
j

j−t−1

)
j !B j−t−1(m−1

n− j d)
t (mod pk).

To apply Lemma 3.1 again we write

s̃(d) := s(d)d,

ã(t, l) :=
(

l + 1
l − t

)
(l + 1)!Bl−t ,

b̃(d) := [m−1
n− j d]r ,

and considering the vectors vl+1 = (m1,m2, . . . ,mn− j , 1l+1) one finds:

w̃(l) :=
r−1∑
d=0

s̃(d)
l∑

t=0

ã(t, l)b̃(d)t

≡ (ml−1
n− j )

−1(l + 1)!2 B(r;vl+1)〈1, n− j + l + 1〉 (mod pk).

≡ (ml−1
n− j )

−1(l + 1)!2 B(r;n j )〈1, n− j + l + 1〉 (mod pk).

Now,

ã(l, l)=
(

l + 1
0

)
(l + 1)!B0 = (l + 1)!

so for 0≤ l< j−1< n−1≤ p we have gcd(ã(l, l), p)= 1. Further, by assumption,
pk
|B(r;n j )〈1, n− j + l+ 1〉 for 0≤ l < j − 1, so pk

| w̃(l) for 0≤ l < j − 1. Thus,
Lemma 3.1 yields

(m j−2
n− j )

−1 j !2 B(r;n j )〈1, n〉 = w̃( j − 1)

≡

r−1∑
q=0

s(d)dã( j − 1, j − 1)(m−1
n− j d)

j−1

≡ m1− j
n− j

r−1∑
q=0

j !s(d)d j (mod pk).
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This means that

B(r;n j )〈1, n〉 ≡ m−1
n− j

r−1∑
q=0

j !−1s(d)d j (mod pk),

where we note that j !−1 is well defined because j < n− 1≤ p so gcd( j !, p)= 1.
Since s(d) only depends on m1, . . . ,mn− j−1, it is clear that we can find g j satis-
fying (1) and we are done. �

Having proved the above theorem we can apply it to find ϕ̃(r) whenever 4 - r .
We first use the theorem to prove the following lemma, which will give the first
half of the proof.

Lemma 3.3. Let r > 2, p be an odd prime, and pk
‖r for some k ∈ N. For every

vector m with entries in Zr and every pair a, b satisfying 0< b− a < p, we have

pk
|B(r;m)〈a, b〉.

Proof. We proceed by induction on the difference n = b− a. When n = 1 we have
pk
|B(r;m)〈a, b〉 = r . Now, suppose that pk

|B(r;m)〈a′, b′〉 for every a′, b′ satisfying
0< b′− a′ < n for some n with 1< n < p and let b− a = n. Then we can apply
Theorem 3.2 with the indices 〈1, n〉 shifted to 〈a, b〉 to get

B(r;m)〈a, b〉 ≡
(

r − 1+ (b− a)
b− a

) b−1∏
k=a+1

m−1
k

≡
r · · · (r − 1+ (b− a))

(b− a)!

b−1∏
k=a+1

m−1
k

≡ 0 (mod pk),

where the last equivalence follows since pk divides

r · · · (r − 1+ (b− a))
(b− a)!

because b− a < p and r divides the numerator. �

Now, using the previous lemma and Theorem 3.2 we obtain an upper bound on ϕ̃
simply by pointing to two graphs that are not equivalent. In Theorem 3.9 below we
will establish a lower bound for the number of equivalence classes from which the
result will follow. But for clarity we now give a short independent proof.

Theorem 3.4. Let r > 2 be given and let p be the smallest odd prime dividing r.
Then ϕ̃(r)≤ p+ 1.

Proof. Let k be such that pk
‖r , set

ā = (1p+1) and b̄ = (1,−1, 1p−1),
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and consider the matrices A = B(r;a), B = B(r;b). Then by Lemma 3.3 we have
pk
| A〈a, b〉 and pk

| B〈a, b〉 for a < b and 〈a, b〉 6= 〈1, p+1〉. Using Theorem 3.2
twice and noting that (r + 1) · · · (r + p− 1)≡ (p− 1)! (mod pk), we get

A〈1, p+ 1〉 =
(

r + p− 1
p

) p∏
k=2

a−1
k

=
r
p
(mod pk),

and

B〈1, p+ 1〉 ≡
(

r + p− 1
p

) p∏
k=2

b−1
k

≡−
r
p
(mod pk),

since b2 = −1. It follows that pk divides every entry of A− I and B − I except
for the entry 〈1, p+ 1〉. Applying Lemma 2.21 we get B(r;a) 6∼ B(r;b) implying
ϕr (p+ 1) > 1 and the conclusion follows. �

Now, using Theorem 3.4, we determine ϕ̃(r) whenever 4 - r .

Theorem 3.5. Let r > 2 be given such that 4 - r and let p be the smallest odd prime
dividing r. Then ϕ̃(r)= p+ 1.

Proof. It follows from Lemmas 2.20 and 3.3 that for every n≤ p and every m∈ (Zr )
n

we have B(r;m) ∼ B(r;1), so ϕr (n)= 1 for n ≤ p. Thus, ϕ(r) > p. The conclusion
now follows from Theorem 3.4. �

The remainder of this section deals with the number of equivalence classes, ϕr (n).

Notation 3.6. Let A = (ai j ) be a matrix. Then we denote by A[c, d] the partial
square matrix acc · · · acd

...
...

adc · · · add

 .
Lemma 3.7. Let A, B be upper triangular matrices with A∼ B. Then A[b, b+c]∼
B[b, b+ c] for b, c ∈ N whenever the partial matrices are well defined.

Proof. By definition, we have A ∼ B if and only if A − I can be transformed
into B − I by pivots where a row can only be added to a row above it and a
column can only be added to a column on its right. Noting that any such series of
pivots on A will act on the submatrix (A− I )[b, b+ c] as though they were simply
pivots carried out on (A− I )[b, b+ c] as an independent matrix, it follows that
(A− I )[b, b+ c] = A[b, b+ c] − I can be transformed into B[b, b+ c] − I with
pivots as described in our definition and the result follows. �
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We introduce a necessary condition for two vectors m and n to have graphs with
equivalent matrices.

Theorem 3.8. Let r > 2 have prime factorisation r = 2 j pα1
1 · · · p

αk
k , j ∈ N0, for

distinct odd primes pi . Further, let m,m′ ∈ (Zr )
n be given such that B(r;m)∼B(r;m′).

Then for every i with 1≤ i ≤ k and every t with 1≤ t ≤ n− pi we have

t+pi−1∏
l=t+1

ml ≡

t+pi−1∏
l=t+1

m′l (mod pi ).

Proof. Assume for contradiction that for some i, t we have

t+pi−1∏
l=t+1

ml 6≡

t+pi−1∏
l=t+1

m′l (mod pi )

and consider the matrices

A = B(r;m)[t, t + pi ][t, t + pi ] and B = B(r;m′)[t, t + pi ][t, t + pi ].

By Lemma 3.7 we must have A ∼ B and by Lemma 3.3, pαi
i divides every en-

try of A − I and B − I except the entry 〈1, pi 〉. For the entry 〈1, pi 〉 note that
pαi−1
‖
(r+pi−1

pi

)
and that given integers a, b, c such that a 6≡ b (mod p) and pα−1

‖c
for a prime p, then ac 6≡ bc (mod pα). Combining these two observations yields

A〈1, pi 〉 ≡

(r+ pi−1
pi

) t+pi−1∏
l=t+1

m−1
l

6≡

(r+ pi−1
pi

) t+pi−1∏
l=t+1

m′−1
l

≡ B〈1, pi 〉 (mod pαi
i ).

Thus, by Lemma 2.21 we have A 6∼ B, which is a contradiction. �

This necessary condition on equivalence translates directly into a lower bound
on the number of equivalence classes, ϕr (n).

Theorem 3.9. Let r > 2 have prime factorisation r = 2 j pα1
1 · · · p

αk
k , j ∈ N0, for

odd distinct primes pi . Then

ϕr (n)≥
k∏

i=1

d(pi − 1)n−pi e.
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Proof. For every 1≤ i ≤ k we define a function Ti : (Z pi )
n
→ (Z pi )

n−pi given by

Ti (m)=
([ t+pi−1∏

l=t+1

ml

]
pi

)n−pi

t=1
.

In the case n ≤ pi , Ti is simply the function Ti : (Z pi )
n
→ {1}. To show that each

Ti is surjective, let m′ ∈ (Z pi )
n−pi be a vector and define m ∈ (Z pi )

n as follows:

ml =


1, l < pi

m′l−pi+1

[ l−1∏
q=l−pi+2

m−1
q

]
pi

, l ≥ pi .

Since the t-th entry of Ti (m) is given by[ t+pi−1∏
l=t+1

ml

]
pi

=

[
mt+pi−1

t+pi−2∏
l=t+1

ml

]
pi

= m′t ,

it follows that m′ ∈ Ti ((Z pi )
n) and thus, Ti is surjective.

Now, define the map T : (Zr )
n
→ (Z p1)

n−p1 × · · · × (Z pk )
n−pk by T (m) =

(T1(m), T2(m), . . . , Tk(m)) in the natural way. Since each Ti is surjective on
(Z pi )

n
→ (Z pi )

n−pi it follows by the Chinese remainder theorem that T is also
surjective. Now, for any two vectors m, n ∈ (Zr )

n such that B(r;m) ∼ B(r;n) we must
have T (m) = T (n) by Theorem 3.8. Thus, T is an invariant of the equivalence
relation ∼, it is surjective, and its codomain has

∏k
i=1d(pi − 1)n−pi e elements and

it follows that, indeed,

ϕr (n)≥
k∏

i=1

d(pi − 1)n−pi e. �

By Theorem 3.9, we now have a lower bound on the number of equivalence
classes, but we conjecture that the condition in Theorem 3.8 is actually sufficient
whenever 4 - r . This would then result in equality in Theorem 3.9; see Conjec-
tures 5.3 and 5.2. Note further that using the inequality we can obtain Theorems 3.4
and 3.5 since when n = p+ 1, where p is the least odd prime dividing r , we will
get at least (p− 1) classes.

4. The case of multiples of 4

Until now we have not determined ϕ̃(r) in the special case where 4 divides r . This
section will show that for 4 | r we have ϕ̃(r)≤ 6 with equality if and only if 3 - r . To
this end, we start with a few lemmas regarding specific entries of B(r;m). Throughout
the section we will change our notation slightly to make our calculations more
natural, identifying the r -th vertex of any subgraph of N(r;m) with the 0-th.
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Lemma 4.1. Let r > 2 be given with 2t
| r, t > 1, and let m ∈ (Zr )

4. Then

2t
|B(r;m)〈1, 4〉.

Proof. By Corollary 2.16 we can assume without loss of generality that m =
(1,m2, 1, 1) for some m2 ∈ Zr . We calculate B(r;m)〈1, 4〉 by counting the number
of legal paths from c1,0 to c4,0. We will sum over the last vertex q, 1≤ q ≤ r , of
the second subgraph that each path visits. Denote by S2(q) the number of paths
from c1,0 to c2,q that are subpaths of a legal path from c1,0 to c4,0 and similarly,
let L2(q) denote the number of paths from c2,q to c4,0 that do not traverse any edges
of the second subgraphs and that are subpaths of a legal path from c1,0 to c4,0.Then

B(r;m)〈1, 4〉 =
r∑

q=1

S2(q)L2(q).

First, it is not hard to see that L2(q) = r − q + 1 as m3 = 1. Second, if we write
q = [tm2]r , 1≤ t ≤ r we can see that for every subpath φ counted by S2(q) there
must be a first vertex c2,v of the second subgraph that it visits. We must have
v ∈ {[wm2]r | 1≤ w ≤ t} for else φ could never legally visit c2,q . Further, there is
exactly one subpath φ going through c2,v as specified, the path

c1,0→ c1,1→ · · · → c1,v→ c2,v→ c2,[v+m2]r → c2,t .

It follows that

S2(q)=
∣∣{[wm2]r | 1≤ w ≤ t}

∣∣= t ≡ qm−1
2 (mod r),

so we can calculate

B(r;m)〈1, 4〉 ≡
r∑

q=1

qm−1
2 (r − q + 1)≡ m−1

2

r∑
q=1

q(r − q + 1) (mod r).

By noting that B(r;1)〈1, 4〉 ≡
∑r

q=1 q(r − q + 1) (mod r), it follows that

B(r;m)〈1, 4〉 ≡ m−1
2 B(r;1)〈1, 4〉 ≡ m−1

2

(
r+2

3

)
≡ 0 (mod 2t)

by use of Theorem 2.17. �

Lemma 4.2. Let r > 2 be given and assume that 2t
‖r for a t > 1 and let m ∈ (Zr )

5.
Then

2t−2
‖B(r;m)〈1, 5〉.

Proof. By Corollary 2.16 we can assume without loss of generality that m =
(1,m2, 1,m4, 1). We calculate B(r;m)〈1, 4〉 by counting the number of legal paths
from c1,0 to c5,0. We will sum over the last vertex q, 1 ≤ q ≤ r , of the second
subgraph that each path visits. Denote by S2(q) be the number of paths from c1,0
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to c2,q that are subpaths of a legal path from c1,0 to c5,0 and similarly, let L2(q)
denote the number of paths from c2,q to c5,0 that do not traverse any edges of the
second subgraph and are subpaths of a legal path from c1,0 to c5,0. Then,

B(r;m)〈1, 5〉 =
r∑

q=1

S2(q)L2(q).

As in the proof of Lemma 4.1, S2(q)≡ qm−1
2 (mod r). It follows that

(5) B(r;m)〈1, 5〉 ≡
r∑

q=1

qm−1
2 L2(q)≡ m−1

2 B(r;(1,1,1,m4,1))〈1, 5〉 (mod r).

We proceed to calculate B(r;(1,1,1,m4,1))〈1, 5〉 by almost the same approach as before.
Write

B(r;(1,1,1,m4,1))〈1, 5〉 =
r∑

q=1

S3(q)L4(q),

where S3(q) is the number of paths on N(r;((1,1,1,m4,1))) from c1,0 to c3,q that are
subpaths of a legal path from c1,0 to c5,0. Further, L4(q) is the number of paths
from c3,q to c5,0 that do not traverse any edge of the third subgraph and are subpaths
of a legal path from c1,0 to c5,0. Let φ be a path counted by L3(q) and let c4,v

be the last vertex of the fourth subgraph that φ visits. By L3(q, v) we count the
number of such φ. Then,

B(r;(1,1,1,m4,1))〈1, 5〉 =
r∑

q=1

S3(q)
r∑
v=1

L3(q, v)=
r∑
v=1

r∑
q=1

S3(q)L3(q, v)

=

r∑
q=1

S3(q)L3(q, r)+
r−1∑
v=1

r∑
q=1

S3(q)L3(q, v).

Since
∑r

q=1 S3(q)L3(q, r) simply counts the number of legal paths from c1,0 to
c4,r = c4,0 that are subpaths of a legal path from c1,0 to c5,0, we have

r∑
q=1

S3(q)L3(q, r)= B(r;(1,1,1,m4,1))〈1, 4〉 =
(

r+2
3

)
≡ 0 (mod 2t)

by Theorem 2.17 and Lemma 2.14. Considering the case 1 ≤ v < r yields that
L3(q, v) = 0 if [qm−1

4 ]r > [vm−1
4 ]r since there is no legal path from c4,q to c4,v

because such a path would visit c4,0 and v 6= 0. Further, if [qm−1
4 ]r ≤ [vm−1

4 ]r we
have L3(q, v)= 1 since only the path

c3,q → c4,q → c4,q+m4 → · · · → c4,v→ c5,v→ · · · → c5,0
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satisfies the criteria. It follows that

B(r;(1,1,1,m4,1))〈1, 5〉 ≡
r−1∑
v=1

r∑
q=1

S3(q)L3(q, v)

≡

r∑
q=1

∑
1≤v<r

[qm−1
4 ]r≤[vm−1

4 ]r

S3(q)

=

r∑
q=1

[r − qm−1
4 ]r S3(q) (mod 2t),

where the last equality follows since multiplying by m−1
4 modulo r induces a

bijection on the set {1, . . . , r − 1}, yielding∣∣{v | 1≤ v < r ∧ [qm−1
4 ]r ≤ [vm−1

4 ]r }
∣∣= [r − qm−1

4 ]r .

So we get

B(r;(1,1,1,m4,1))〈1, 5〉 ≡
r∑

q=1

[r − qm−1
4 ]r S3(q)

≡ m−1
4

r∑
q=1

−q S3(q)

≡ m−1
4 B(r;1)〈1, 5〉 (mod 2t).

Inserting this into (5) then finally yields

B(r;m)〈1, 5〉 ≡ m−1
2 B(r;(1,1,1,m4,1))〈1, 5〉

≡ m−1
2 m−1

4 B(r;1)〈1, 5〉

≡ m−1
2 m−1

4

(
r+3

4

)
≡ s2t−2 (mod 2t)

for some odd integer s since 2t−2
‖
(r+3

4

)
as 4 | r . �

Lemma 4.3. Let r > 2 be given. Then

B(r;(1,1,−1,1,1,1))〈1, 6〉 = 11
20r + 3

8r2
−

1
8r3
+

1
8r4
+

3
40r5

Proof. In the graph N(r;(1,1,−1,1,1,1)), again let S3(q) be the number of paths from
vertex c1,0 to c3,q that are subpaths of a legal path from c1,0 to c6,0 such that c3,q is
the last vertex visited in the third subgraph and let L3(q) be the number of paths
from c3,q to c6,0 that does not traverse any edges of the third subgraph and are
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subpaths of a legal path from c1,0 to c6,0. We will find a closed form for each
function.

First, let 0< q < r . Counting the paths of S3(q), we notice that there is exactly
one path from c1,0 to c3,q for every path from c1,0 to c2,i for p > i ≥ q . This is the
path

c1,0→ · · · c2,i → c3,i → c3,i−1→ · · · → c3,q .

Since m1 = m2 = 1 in this case, the number of paths from c1,0 to c2,i that are part
of a legal path from c1,0 to c6,0 is i . Thus,

S3(q)=
r−1∑
i=q

i =
(r − q)(r + q − 1)

2
, 0< q < r.

The function L3(q) is only counting paths that are traversing subgraphs with
parameter mi = 1. We see by Corollary 2.18 that

L3(q)= B(r−q+1;1)〈1, 3〉 =
(r − q + 1)(r − q + 2)

2
.

Second, for q = 0 we have S3(0)= r(r+1)
2 by Corollary 2.18 since this is simply

B(r;(1,1,−1,1,1))〈1, 3〉. Further, there is only one legal subpath from c4,0 to c6,0 of a
legal path from c1,0 to c6,0 so L3(0)= 1.

Thus, we have

B(r;(1,1,−1,1,1))〈1, 6〉 =
r−1∑
q=0

S3(q)L3(q)

=
r(r + 1)

2
+

r−1∑
q=1

(r − q)(r − q + 1)(r − q + 2)(r + q − 1)
4

=
11
20r + 3

8r2
−

1
8r3
+

1
8r4
+

3
40r5,

where the last equality follows by writing out the expression and applying Faul-
haber’s formula ([Graham et al. 1989, Chapter 6.5]). �

Theorem 4.4. Let r > 2 be given such that 4 | r . Then ϕ̃(r)≤ 6 with equality if and
only if 3 - r .

Proof. If 3 | r , we have ϕ̃(r)≤ 4 by Theorem 3.4, so we will now only consider the
case when 3 - r .

First, we show that ϕ̃(r) > 5. Let m,m′ ∈ (Zr )
5 be given and let X = A(r;m) and

Y = A(r;m′). We will demonstrate that X ∼ Y , proving that ϕr (5)= 1. Since 3 - r
it follows from Lemma 3.3 that if r = s2t , 2 - s, then s will divide every entry
of B(r;m) and B(r;m′) except for the diagonal. Thus, by Lemmas 4.1 and 4.2 the
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matrices are of the form

X − I =


0 r 1

2r(r+1) x1r 1
4 x2r

0 0 r 1
2r(r+1) x3r

0 0 0 r 1
2r(r+1)

0 0 0 0 r
0 0 0 0 0

 ,

Y − I =


0 r 1

2r(r+1) y1r 1
4 y2r

0 0 r 1
2r(r+1) y3r

0 0 0 r 1
2r(r+1)

0 0 0 0 r
0 0 0 0 0

 ,

for integers x1, x2, x3, y1, y2, y3, where 2 - x2, y2. Now, reducing according to
Definition 2.11 in a number of steps, we get

X − I
1
∼=


0 r 1

2r 0 1
4 x2r

0 0 r 1
2r(r+1) 0

0 0 0 r 1
2r

0 0 0 0 r
0 0 0 0 0



2
∼=


0 r 1

2r 0 1
4 y2r

0 0 r 1
2r(r+1) 0

0 0 0 r 1
2r

0 0 0 0 r
0 0 0 0 0


3
∼= Y − I.

Step 1 reduces the entries of the first row and last column of X − I modulo r by
subtracting the fourth row and second column from the others. Step 2 adds the
third column to the last column 1

2(y2− x2) times and then subtracts the fourth row
from the second 1

2(y2− x2) times. Step 3 is simply the reverse of Step 1 except
with Y − I instead of X − I. It follows that X ∼ Y.

Second, we show that ϕ̃(r)≤ 6, which completes the proof. Suppose that 5 | r .
Then it follows by Theorem 3.4 that ϕ̃(r) ≤ 6. So assume that 3, 5 - r . Now,
since 4 | r , Theorem 2.17 yields

r |B(r;1)〈1, 6〉 =
(

r + 4
5

)
.

Using Lemmas 4.1, 4.2, and 4.3 and noting that since 4 | r we have

11
20r + 3

8r2
−

1
8r3
+

1
8r4
+

3
40r5
≡±

1
4r (mod r)
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we get by Lemma 4.3 that

B(r;(1,1,−1,1,1,1))−I
1
∼=



0 r 1
2r 0 1

4 x1r ±
1
4r

0 0 r 1
2r(r+1) x2r 1

4 x3r

0 0 0 r 1
2r(r+1) 0

0 0 0 0 r 1
2r

0 0 0 0 0 r

0 0 0 0 0 0



2
∼=



0 r 1
2r 0 1

4 x1r 1
4r

0 0 r 1
2r x2r 1

4 x3r

0 0 0 r 1
2r 0

0 0 0 0 r 1
2r

0 0 0 0 0 r

0 0 0 0 0 0


3
∼=



0 r 1
2r 0 1

4r 1
4r

0 0 r 1
2r 0 1

4r

0 0 0 r 1
2r 0

0 0 0 0 r 1
2r

0 0 0 0 0 r

0 0 0 0 0 0


.

and

B(r;(1,1,1,1,1,1))−I
1
∼=


0 r 1

2r 0 1
4 y1r 0

0 0 r 1
2r(r+1) y2r 1

4 y3r
0 0 0 r 1

2r(r+1) 0
0 0 0 0 r 1

2r
0 0 0 0 0 r
0 0 0 0 0 0



2
∼=


0 r 1

2r 0 1
4 y1r 0

0 0 r 1
2r y2r 1

4 y3r
0 0 0 r 1

2r 0
0 0 0 0 r 1

2r
0 0 0 0 0 r
0 0 0 0 0 0


3
∼=


0 r 1

2r 0 1
4r 0

0 0 r 1
2r 0 1

4r
0 0 0 r 1

2r 0
0 0 0 0 r 1

2r
0 0 0 0 0 r
0 0 0 0 0 0

 .

for odd x1, x2, x3, y1, y2, y3 by the following steps. Step 1 reduces the first row and
last column modulo r by subtracting the second column and fifth row repeatedly
from the other columns and rows. Step 2 subtracts the third column (fourth row) r

2
times from the fourth column (third row) and adds the second column (fifth row) r

4
times to the fourth column (third row). Step 3 reduces the entries 〈1, 5〉, 〈2, 5〉, and
〈2, 6〉 modulo r

2 by subtracting the fourth column and third row repeatedly from the
fifth and sixth column and first and second row repeatedly. Note that the changes
to entries 〈4, 1〉, 〈4, 2〉, 〈5, 3〉, and 〈6, 3〉 can be inverted by adding the second and
third column to the fourth column and by adding the fourth and fifth row to the
third row.
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Now, dividing every entry by r
4 , it follows that we have B(r;1) ∼ B(r;(1,1,−1,1,1,1)

if and only if 
0 4 2 0 1 ±1
0 0 4 2 0 1
0 0 0 4 2 0
0 0 0 0 4 2
0 0 0 0 0 4
0 0 0 0 0 0


∼=


0 4 2 0 1 0
0 0 4 2 0 1
0 0 0 4 2 0
0 0 0 0 4 2
0 0 0 0 0 4
0 0 0 0 0 0

 .

However, this can be checked to not be the case simply by solving the system of
linear equations induced by Definition 2.11 and finding that there are no solutions.
Our conclusion follows. �

5. Concluding remarks

Combining the results of the previous sections, we arrive at our main result, which
answers the question of for which parameters n and r there only is a single, unique
quantum lens space.

Theorem 5.1. Let r > 2 and let p be the smallest odd prime dividing r. Then

ϕ̃(r)=

{
p+ 1, 4 - r

min{6, p+ 1}, 4 | r.

Proof. For 4 - r this follows directly from Theorem 3.5. Thus, let 4 | r . By
Corollary 2.19, ϕ̃(r) ≥ 4, and it follows that if p = 3 we have ϕ̃(r) = 4 by
Theorem 3.4 and if p 6= 3 we have ϕ̃(r)= 6 by Theorem 4.4. �

We recall that ϕ̃(r) is the minimum n for which there exists an m such that
C(Lq(r, 1))⊗K 6' C(Lq(r,m))⊗K so that our result explains exactly how to find
the smallest dimension where the m-vector influences the stable isomorphism class
of the quantum lens space for any fixed r . In fact, using Proposition 14.5 in [Eilers
et al. 2016] we get that ϕ̃(r) is the minimum n for which there is an m such that
C(Lq(r, 1)) 6' C(Lq(r,m)).

Further, for the case when the quantum lens space is not uniquely given, we
studied the number of equivalence classes arising by varying the parameter m∈ (Zr )

n.
In Theorem 3.8, a lower bound on the number of such equivalence classes was
found by giving a necessary condition for two quantum lens spaces to be isomorphic.
However, computer experiments suggest that this necessary condition is in fact even
sufficient when 4 - r . We thus conjecture the following which we have confirmed
by computer experiments for r ∈ {3, 5, 6, 9} and n ≤ 8, and for r ∈ {10, 15, 21}
and n ≤ 7.
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Conjecture 5.2. Let r = 2t
· pα1

1 · · · p
αk
k , t ∈ {0, 1}. Further, let m,m′ ∈ (Zr )

n be
given. Then B(r;m) ∼ B(r;m′) if and only if for every 1≤ i ≤ k and 1≤ t ≤ n− pi ,

t+pi−1∏
l=t+1

ml ≡

t+pi−1∏
l=t+1

m′l (mod pi ).

This conjecture is true if and only if we have equality in Theorem 3.9 when 4 - r ,
so an equivalent conjecture is the following.

Conjecture 5.3. Let r >2 have the prime factorisation r =2t
· pα1

1 · · · p
αk
k , t ∈{0, 1}.

Then

ϕr (n)=
k∏

i=1

d(pi − 1)n−pi e.

Proving these conjectures seems hard to do using the methods of this paper,
however, since determining equivalence of matrices once they become sufficiently
large is a complex task unless one can find better invariants to rely on. Worth noting
is that proving Conjectures 5.2 and 5.3 would yield the following satisfactory result,
which resounds well with the overall findings of this paper.

Conjecture 5.4. The equivalence classes of Sr,n/∼ all have the same number of
members.
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