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RANKIN–COHEN BRACKETS AND
IDENTITIES AMONG EIGENFORMS

ARVIND KUMAR AND JABAN MEHER

We investigate the cases for which the Rankin–Cohen brackets of two quasi-
modular eigenforms give rise to eigenforms. More precisely, we characterise
all the cases in a subspace of the space of quasimodular forms for which
Rankin–Cohen brackets of two quasimodular eigenforms are again eigen-
forms. In the process, we obtain some new polynomial identities among
quasimodular eigenforms. To prove the results on quasimodular forms, we
prove several results in the theory of nearly holomorphic modular forms.
These new results in the theory of nearly holomorphic modular forms are
of independent interest.

1. Introduction

For an even positive integer k, let Mk and Sk be the respective spaces of modular
forms and cusp forms of weight k for the full modular group SL2(Z). For an even
positive integer k, the Eisenstein series of weight k is defined by

Ek(z)= 1− 2k
Bk

∞∑
n=1

σk−1(n)e2π inz,

where Bk is the k-th Bernoulli number, σk−1(n)=
∑

d|n dk−1 and z is in the complex
upper-half plane H. We know that for k ≥ 4, Ek ∈ Mk , but E2 is not a modular
form, rather it is a quasimodular form of weight 2 for SL2(Z). There are numerous
identities among modular forms. A direct implication of these identities are nice
relations among Fourier coefficients of various modular forms. For example, it is
well known that E2

4 = E8 and by comparing the Fourier coefficients of both sides
of this identity, we obtain

(1) σ7(n)= σ3(n)+ 120
n−1∑
m=1

σ3(m)σ3(n−m)

for n ≥ 1. Since Ek is an eigenform for any even integer k ≥ 4, the identity
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E2
4 = E8 can be interpreted as an identity where the product of two eigenforms

results in an eigenform. So it is natural to look for other identities which can be
obtained in this way, i.e., those identities in which the product of two eigenforms
is an eigenform. The investigation for such identities in the space of modular forms
for the full modular group SL2(Z) has been done by Duke [1999] and Ghate [2000]
independently. They explicitly provided all of the cases in which the product of two
eigenforms for the full modular group SL2(Z) gives an eigenform. The phenomenon
of the product of two eigenforms giving rise to an eigenform can be generalized in
two different ways. One generalization is, instead of taking two eigenforms, one may
take products of an arbitrary number of eigenforms. Another generalization is by
taking the Rankin–Cohen brackets of two eigenforms. Here we note that the product
of two modular forms is a particular case of a Rankin–Cohen bracket of two modular
forms. Both of these generalizations have been well studied, and we have satisfactory
answers for them. Products of arbitrary numbers of eigenforms giving eigenforms
have been classified by Emmons and Lanphier [2007], and Rankin–Cohen brackets
of eigenforms have been studied by Lanphier and Takloo-Bighash [2004]. In this
paper we study the Rankin–Cohen brackets of quasimodular eigenforms. We note
that quasimodular forms are a generalization of modular forms. The motivation for
studying Rankin–Cohen brackets of quasimodular eigenforms is the well-known
identity E21= D1, where D = 1

2π i
d
dz is the differential operator and

1(z)= e2π i z
∏
n≥1

(1− e2π inz)24
=

∞∑
n=1

τ(n)e2π inz

is the Ramanujan delta function. The identity E21= D1 is an identity between
quasimodular forms for the group SL2(Z) in which the product of two quasimodular
eigenforms gives rise to an eigenform. The phenomenon of the product of two
quasimodular eigenforms giving an eigenform has been studied in [Meher 2012]
and [Das and Meher 2015]. The phenomenon of products of arbitrary numbers of
quasimodular eigenforms giving eigenforms has been studied in [Kumar and Meher
2016]. To state our main result we first recall the notion of Rankin–Cohen brackets
on quasimodular forms.

Rankin–Cohen brackets for quasimodular forms have been defined by Martin
and Royer [2009]. Let f and g be two quasimodular forms of weights k and l and
depths s and t respectively. Then for any integer ν ≥ 0, the ν-th Rankin–Cohen
bracket of f and g is defined by

(2) [ f, g]ν :=
ν∑
α=0

(−1)α
(

k−s+ν−1
ν−α

)(
l−t+ν−1

α

)
Dα f Dν−αg.

Let M̃≤s
k be the space of quasimodular forms of weight k and depth at most s

for the full modular group SL2(Z). Note that the differential operator D maps
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M̃≤s
k into M̃≤s+1

k+2 . It is known from [Martin and Royer 2009] that if f ∈ M̃≤s
k and

g ∈ M̃≤t
l , then [ f, g]ν ∈ M̃≤s+t

k+l+2ν . We now state the main result of this paper:

Theorem 1.1. Let f and g be two quasimodular eigenforms such that the depth
of each of the forms f and g is strictly less than the half of the weight of the form.
Then there are only finitely many triples ( f, g, ν) with the property that f and g are
quasimodular eigenforms and [ f, g]ν is again an eigenform. All the possible cases
(up to some constant multiple) are the following:

• [E4, E4]0 = E8, [E4, E6]0 = E10,

[E4, E10]0 = [E6, E8]0 = E14, [E4, DE4]0 =
1
2 DE8.

• If k, l ∈ {4, 6, 8, 10, 14} and ν ≥ 1 with k+ l + 2ν ∈ {12, 16, 18, 20, 22, 26},
then

[Ek, El]ν = cν(k, l)1k+l+2ν,

where

cν(k, l)=−
2l
Bl

(
ν+l−1
ν

)
+ (−1)ν+1 2k

Bk

(
ν+k−1
ν

)
.

• If k ∈ {4, 6, 8, 10, 14} and ν ≥ 0 with l, k + l + 2ν ∈ {12, 16, 18, 20, 22, 26},
then

[Ek,1l]ν = cν(l)1k+l+2ν,

where
cν(l)=

(
ν+l−1
ν

)
.

• [E4, DE4]1 = 960112, [E4, DE8]1 = [E8, DE4]1 = 1920116,

[E6, DE6]1 =−3024116, [E4, DE6]2 =−5040116,

[E6, DE4]2 = 5040116, [E4, DE4]3 = 4800116,

[E8, DE8]1 = 3840120, [E6, DE6]3 =−28224120,

[E4, DE4]5 = 13440120.

• [E4, D2 E4]1 = 960D112, [E4, DE6]1 =−2016D112,

[E6, DE4]1 = 1440D112, [E4, DE4]2 = 2400D112,

[E6, D2 E6]1 =−3024D116, [E6, DE6]2 =−10584D116,

[E4, D2 E4]3 = 4800D116, [E4, DE4]4 = 8400D116,

[E8, D2 E8]1 = 3840D120 [E8, DE8]2 = 17280D120,

[E6, D2 E6]3 =−28224D120, [E6, DE6]4 =−63504D120,

[E4, D2 E4]5 = 13440D120, [E4, DE4]6 = 20160D120.
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We see from the list of identities in the above theorem that there are some new
identities. These identities give new relations among the Fourier coefficients of
modular forms. From the list we also see that in some cases the Rankin–Cohen
brackets of two quasimodular forms give rise to modular forms. It would be
interesting to further investigate the cases for which Rankin–Cohen brackets of two
quasimodular forms give rise to modular forms.

The idea of the proof of the above theorem is to prove a similar result in the
space of nearly holomorphic modular forms in certain cases and then use the
isomorphism between the space of nearly holomorphic modular forms and the
space of quasimodular forms to prove the result in the space of quasimodular forms.
The advantage of using the space of nearly holomorphic modular forms is the
existence of the Petersson inner product. To prove Theorem 1.1, we define the
Rankin–Cohen brackets on nearly holomorphic modular forms and prove various
results involving certain operators on nearly holomorphic modular forms. Rankin–
Cohen brackets and properties of various operators on nearly holomorphic modular
forms are of independent interest.

The article is organized as follows. In Section 2, we recall some basic results
and prove some new results in the theory of nearly holomorphic modular forms.
In Section 3, we state some basic results in the theory of quasimodular forms. In
Section 4, we define the Rankin–Cohen brackets on nearly holomorphic modular
forms and prove some basic results which will be useful for our purpose. In
Section 5, we prove some results which are generalizations of a result of Shimura
[1976] to the case of Rankin–Cohen brackets of nearly holomorphic modular forms.
These results are the main ingredients in the proof of Theorem 1.1. In Section 6,
we prove Theorem 1.1.

2. Nearly holomorphic modular forms

Notations and basic results.

Definition 2.1. A nearly holomorphic modular form f of weight k and depth≤ p for
SL2(Z) is a polynomial in 1/Im(z) of degree≤ p whose coefficients are holomorphic
functions on H with moderate growth such that

(cz+ d)−k f
(az+b

cz+d

)
= f (z),

for any
(a

c
b
d

)
∈ SL2(Z) and z ∈H, where Im(z) is the imaginary part of z.

We denote by M̂≤p
k the space of all nearly holomorphic modular forms of weight k

and depth ≤ p for SL2(Z). We also denote by M̂k =
⋃

p M̂≤p
k the space of all

nearly holomorphic modular forms of weight k.
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Definition 2.2. The Maass–Shimura operator Rk on f ∈ M̂k is defined by

Rk f (z)= 1
2π i

( k
2iIm(z)

+
∂

∂z

)
f (z).

The operator Rk takes M̂k into M̂k+2. Thus it is also called the Maass-raising
operator. We write Rm

k := Rk+2m−2 ◦ · · · ◦ Rk+2 ◦ Rk with R0
k = id and R1

k = Rk ,
where id is the identity map. We state the following decomposition theorem of the
space of nearly holomorphic modular forms [Shimura 2012, Theorem 5.2].

Theorem 2.3. Let k ≥ 2 be even. If f ∈ M̂≤p
k and p < k/2 then

M̂≤p
k =

p⊕
r=0

Rr
k−2r Mk−2r ,

and if p ≥ k/2 then

M̂≤p
k =

k
2−1⊕
r=0

Rr
k−2r Mk−2r ⊕CR

k
2−1
2 E∗2 ,

where E∗2(z) := E2(z)− 3
π Im(z) is a nearly holomorphic modular form of weight 2

and depth 1 for the group SL2(Z).

Following Shimura [2012, pp. 32], we define the slowly increasing and rapidly
decreasing functions in M̂k . Shimura has defined slowly increasing and rapidly
decreasing functions in a broader space than M̂k . Here we define those for M̂k .

Definition 2.4. Let f ∈ M̂k . Then f is called a

• slowly increasing function if for each α ∈SL2(Q) there exist positive constants
A, B and c depending on f and α such that

|Im(αz)k/2 f (αz)|< Ayc if y = Im(z) > B;

• rapidly decreasing function if for each α∈SL2(Q) and a positive real number c,
there exist positive constants A and B depending on f , α and c such that

|Im(αz)k/2 f (αz)|< Ay−c if y = Im(z) > B.

Remark 2.5. If f ∈Mk , then f is a slowly increasing function. In addition, if f ∈ Sk

then f is a rapidly decreasing function. From the above definitions we observe that
the product of a rapidly decreasing function with any nearly holomorphic modular
form gives a rapidly decreasing function.

We state the following result [Shimura 2012, Lemma 6.10].

Lemma 2.6. If f ∈ Mk , then Rm
k f is a slowly increasing function for any integer

m ≥ 0. Moreover, it is a rapidly decreasing function if f ∈ Sk .
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If f, g ∈ M̂k are such that the product f g is a rapidly decreasing function, then
the Petersson inner product of f and g is defined by

(3) 〈 f, g〉 :=
∫

SL2(Z)\H
f (z)g(z)yk dxdy

y2 ,

where z = x+ iy. The above integral is convergent since f g is a rapidly decreasing
function.

The Maass-lowering operator is the differential operator defined by

L := −y2 ∂

∂z
·

The operator L maps M̂k+2 to M̂k . From the definition of L , it is clear that L
annihilates any holomorphic function. We state the following result [Shimura 2012,
Theorem 6.8] which shows that under certain conditions, the operators L and Rk

are adjoint to each other with respect to the Petersson inner product.

Lemma 2.7. Let f ∈ M̂k and g ∈ M̂k−2 be such that f g, f (Rk−2g) and (L f )g
are rapidly decreasing functions. Then we have

〈 f, Rk−2g〉 = 〈L f, g〉.

In a particular case of the above result, we obtain the following result which
plays a crucial role in the proof of our main result.

Lemma 2.8. Let f ∈ Sk . Then 〈 f, Rk−2g〉 = 0 for every g ∈ M̂k−2 such that both g
and Rk−2g are slowly increasing functions.

Eisenstein series. Let

0∞ =

{
±

(
1 m
0 1

) ∣∣∣ m ∈ Z

}
.

For any integer k ≥ 0, z ∈H and s ∈ C, the Eisenstein series Ek(z, s) is defined by

Ek(z, s)=
∑

γ∈0∞\SL2(Z)

j (γ, z)−k
| j (γ, z)|−2s,

where j (γ, z) = (cz + d) for γ =
(a

c
b
d

)
. The series of Ek(z, s) is absolutely

convergent for Re(2s) > 2− k. It is well known that

(4) Rr
k Ek(z)= (−4πy)−r 0(k+ r)

0(k)
Ek+2r (z,−r),

where y = Im(z).
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Following [Diamantis and O’Sullivan 2010], we also recall the completed nor-
malized nonholomorphic Eisenstein series, defined by

(5) E∗k (z, s)= θk(s)
∑

γ∈0∞\SL2(Z)

(Im(γ z))s
(

j (γ, z)
| j (γ, z)|

)−k

,

where

θk(s)= π−s0(s+ k/2)ζ(2s) and γ z :=
az+ b
cz+ d

for γ =
(

a b
c d

)
.

We observe that

(6) Ek(z, s)=
y−s−k/2

θk(s+ k/2)
E∗k (z, s+ k/2).

Hecke operators. For f ∈ M̂k and any integer n ≥ 1, the action of the n-th Hecke
operator on f is defined by

(7) (Tn f )(z)= nk−1
∑
d|n

d−k
d−1∑
b=0

f
(

nz+ bd
d2

)
.

For each integer n ≥ 1, Tn maps M̂k to M̂k . A nearly holomorphic modular form
is called an eigenform if it is an eigenvector for each Hecke operator Tn (n ≥ 1).
We recall the following commuting relation between Maass–Shimura operators and
Hecke operators [Beyerl et al. 2012, Propositions 2.4 and 2.5].

Proposition 2.9. Let f ∈ M̂k . Then

(Rm
k (Tn f ))(z)= 1

nm (Tn(Rm
k f ))(z)

for any integer m ≥ 0. Moreover, Rm
k f is an eigenvector for Tn if and only if f is.

In this case, if λn is the eigenvalue of Tn corresponding to f then the eigenvalue
of Tn corresponding to Rm

k f is nmλn .

The following result characterizes all nearly holomorphic eigenforms for the full
modular group SL2(Z). The result has been proved in [Kumar and Meher 2016,
Theorem 1.1].

Proposition 2.10. Let f be a nearly holomorphic eigenform of weight k and
depth p for the full modular group SL2(Z). If p < k/2 then f = R p

k−2p f p, where
f p ∈ Mk−2p is an eigenform, and if p = k/2 then f ∈ CRk/2−1

2 E∗2 .

Properties of raising and lowering operators. We first recall the following relation
[Shimura 2012, 6.13c, pp. 34].

(8) L Rk = Rk−2L + k
4
·
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Using the above identity we prove the following lemma.

Lemma 2.11. Let m and r be two positive integers. Then:

• Lr Rk = Rk−2r Lr
+

1
4r(k− r + 1)Lr−1.

• L Rm
k = Rm

k−2L + 1
4 m(k+m− 1)Rm−1

k .

• For m ≤ r we have

Lr Rm
k = Rm

k−2r Lr
+ c1 Rm−1

k−2r+2Lr−1
+ c2 Rm−2

k−2r+4Lr−2
+ · · ·+ cm Lr−m,

where

ci =
1
4i r(r−1) · · ·(r−i+1)(k+i−r)(k+i−r+1) · · ·(k+2i−r−1).

• For any positive integer r and any nonnegative integer m, we have

Lr Rr+m
k = Rr

k+2m−2r Lr Rm
k + c1 Rr−1

k+2m−2r+2Lr−1 Rm
k +

· · ·+ cr−1 Rk+2m−2L Rm
k + cr Rm

k ,

where ci is as defined in the previous identity.

Proof. For r = 1 the first identity is true by (8). Then the first identity can be proved
by using induction on r . Similarly for m = 1, the second identity is true by (8), and
then the second identity can be proved by using induction on m. The third identity
can be proved by using the first identity and induction on m. The fourth identity is
a direct application of the third identity. �

Using the above lemma, we now prove the following result which is of indepen-
dent interest and is also useful for our purposes.

Theorem 2.12. Let f ∈ Sk and g ∈ M̂l . Assume that r and s are positive integers
such that k+ 2r = l + 2s. Then

〈Rr
k f, Rs

l g〉 =
{

cr 〈 f, g〉 if r = s,
0 if r 6= s,

where

cr =
r !
4r k(k+ 1) · · · (k+ r − 1).

Proof. If r = s then k = l and by using Lemma 2.7, we obtain

〈Rr
k f, Rr

k g〉 = 〈 f, Lr
k Rr

k g〉.

Using the fourth identity of Lemma 2.11 in the above expression we obtain

〈Rr
k f, Rr

k g〉

= 〈 f, Rr
k+2m−2r Lr g+ c1 Rr−1

k+2m−2r+2Lr−1g+ · · ·+ cr−1 Rk+2m−2Lg+ cr g〉.
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Now applying Lemma 2.8 to the right-hand side of the above expression, we obtain
the required result in this case. If r 6= s, without loss of any generality we may
assume that r < s. Let r = s+m for some positive integer m. Then again by the
fourth identity of Lemma 2.11 we get

〈Rr
k f, Rs

k g〉 =
〈
f, Rr

l+2m−2r Lr Rm
l g+ c1 Rr−1

l+2m−2r+2Lr−1 Rm
l g+

· · ·+ cr−1 Rl+2m−2L Rm
l g+ cr Rm

l g
〉
.

Applying Lemma 2.8 to the right-hand side of the above expression, we deduce that

〈Rr
k f, Rs

k g〉 = 0. �

Let Ŝk be the subspace of M̂k consisting of rapidly decreasing functions. As an
application of the above theorem, we have the following result.

Corollary 2.13. There exists an orthogonal basis of Ŝk consisting of Hecke eigen-
forms with respect to the Petersson inner product.

Proof. Using the property of rapidly decreasing functions and the decomposition
theorem for the space of nearly holomorphic modular forms, given in Theorem 2.3,
it follows that

Ŝk =

k/2−1⊕
r=0

Rr
k−2r Sk−2r .

Since Sk has an orthogonal basis consisting of Hecke eigenforms with respect to the
Petersson inner product, the result follows from Proposition 2.10 and Theorem 2.12.

�

3. Quasimodular forms

Definition 3.1. A holomorphic function f on H is called a quasimodular form
of weight k and depth p for SL2(Z) if there exist holomorphic functions f0, f1,
f2,. . . , f p on H with moderate growth such that

(cz+ d)−k f
(

az+ b
cz+ d

)
=

p∑
j=0

f j (z)
(

c
cz+ d

) j

for all
(a

c
b
d

)
∈ SL2(Z), and f p is not identically vanishing.

We denote by M̃≤p
k the space of all quasimodular forms of weight k and depth≤ p

for the full modular group SL2(Z). We also denote by M̃k =
⋃

p M̃≤p
k the space of

all quasimodular forms of weight k. Any quasimodular form f of weight k and
depth p for SL2(Z) can be written as

(9) f (z)= g0(z)+ g1(z)E2(z)+ · · ·+ gp(z)E
p
2 (z),
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where gi ∈ Mk−2i for 0 ≤ i ≤ p and gp 6≡ 0. For any integer n ≥ 1, the action of
the Hecke operator Tn on a quasimodular form is the same as the action on a nearly
holomorphic modular form as given in (7). For each integer n ≥ 1, Tn maps M̃k

to itself. A quasimodular form is called an eigenform if it is an eigenvector for
each Hecke operator Tn (n ≥ 1). We state the following result [Das and Meher
2015, Proposition 3.1] which characterises all quasimodular eigenforms for the full
modular group SL2(Z).

Proposition 3.2. Let f be a quasimodular eigenform of weight k and depth p
for SL2(Z). If p < k/2 then f = D p f p, where f p ∈ Mk−2p is an eigenform, and if
p = k/2 then f ∈ CDk/2−1 E2.

We also recall the following results on quasimodular eigenforms [Kumar and
Meher 2016, Lemma 4.3, 4.4].

Lemma 3.3. If f =
∑
∞

n=0 a(n)e2π inz
∈ M̃k is a nonzero eigenform then a(1) 6= 0.

Lemma 3.4. A quasimodular eigenform f ∈ M̃k with nonzero constant Fourier
coefficient is an eigenform if and only if f ∈ CEk .

Let M̂≤p
∗ be the space of all nearly holomorphic modular forms of depth at

most p for the group SL2(Z), and let M̃≤p
∗ be the space of all quasimodular forms

of depth at most p for the group SL2(Z). Then there is an isomorphism between
M̂≤p
∗ and M̃≤p

∗ given in the next theorem [Ouled Azaiez 2008, Theorem 1].

Theorem 3.5. The map

f (z)=
p∑

j=0

f j (z)
Im(z) j 7→ f0(z)

from M̂≤p
∗ to M̃≤p

∗ is an isomorphism.

The map above induces a ring isomorphism between M̂∗ and M̃∗. Also if
f ∈ Mk , then the above isomorphism from M̂∗ and M̃∗ maps Rm

k f to Dm f and
Rm

2 E∗2 to Dm E2 for any integer m ≥ 0. Thus from Propositions 2.10 and 3.2 we
have the following result.

Proposition 3.6. A polynomial relation among eigenforms in M̂∗ gives rise to a
corresponding polynomial relation in M̃∗ and vice versa.

4. Rankin–Cohen brackets and Rankin–Selberg L-functions

Rankin–Cohen brackets. Let F and G be two nearly holomorphic modular forms
of weights k and l, and depths s and t , respectively, for the group SL2(Z). Analogous
to the Rankin–Cohen brackets defined for quasimodular forms in (2), we define the
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Rankin–Cohen brackets for nearly holomorphic modular forms. For any integer
ν ≥ 0, the ν-th Rankin–Cohen bracket of F and G is defined by

(10) [F,G]ν :=
ν∑
α=0

(−1)α
(

k−s+ν−1
ν−α

)(
l−t+ν−1

α

)
(Rαk F)(Rν−αl G).

By abuse of notation, the ν-th Rankin–Cohen bracket of two nearly holomorphic
modular forms is denoted by the same notation as the ν-th Rankin–Cohen bracket
of two quasimodular forms.

Theorem 4.1. Let F and G be as above. Then for any integer ν ≥ 0 we have
[F,G]ν ∈ M̂≤s+t

k+l+2ν .

Proof. From the definition of Rankin–Cohen brackets in (10), it is easy to see
that [F,G]ν ∈ M̂≤s+t+ν

k+l+2ν . Thus it remains to show that the depth of [F,G]ν is in
fact at most s+ t . Let f and g be the respective constant coefficients of F and G
when we write both F and G as polynomials in 1/Im(z). Then we know that f
and g are quasimodular forms of weights k and l and depths s and t , respectively.
From (10) and (2) we see that if we write [F,G]ν as a polynomial in 1/Im(z), then
the constant coefficient of [F,G]ν is [ f, g]ν . But we know that the depth of the
quasimodular form [ f, g]ν is at most s + t . Hence by Theorem 3.5, the depth of
[F,G]ν is at most s+ t . �

Rankin–Selberg L-functions. Let f =
∑
∞

m=0 a(m)e2π imz
∈ Mk . The L-function

attached to f is defined by

L( f, s)=
∞∑

m=1

a(m)
ms .

If f ∈ Sk , then L( f, s) is analytically continued to the whole complex plane and it
satisfies the functional equation

L∗( f, s) := (2π)−s0(s)L( f, s)= (−1)k/2L∗( f, k− s).

If f (z) =
∑
∞

m=0 a(m)e2π imz and g(z) =
∑
∞

m=0 b(m)e2π imz are modular forms
of weights k and l for SL2(Z), respectively, then the Rankin–Selberg L-function
associated with f and g is defined by

L( f × g, s) :=
∞∑

m=1

a(m)b(m)
ms .

We recall a result of Zagier [1977, Proposition 6].

Theorem 4.2. Let k1, k2, k and n be integers satisfying k2 ≥ k1+ 2 > 2 and k =
k1+k2+2n. Let f (z)=

∑
∞

m=1a(m)e2π imz
∈Sk and g(z)=

∑
∞

m=0 b(m)e2π imz
∈Mk1 .
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Then

〈 f, [g, Ek2]n〉 = (−1)n
0(k− 1)0(k2+ n)
(4π)k−1n!0(k2)

L( f × g, k1+ k2+ n− 1).

Remark 4.3. In the hypothesis of Theorem 4.2, the condition k2 ≥ k1+ 2> 2 can
be removed if g is a cusp form.

If g = Ek1 , then we have the following result; see [Lanphier and Takloo-Bighash
2004, Theorem 2.2].

Theorem 4.4. Let k1, k2 ≥ 4 be even integers and let n be a nonnegative integer
and k = k1+ k2+ 2n. Suppose that f ∈ Sk is a normalized eigenform. Then

〈 f, [Ek1, Ek2]n〉

= (−1)k2/2+n 2k1

Bk1

2k2

Bk2

0(k− 1)
n!2k−10(k− n− 1)

L∗( f, k− n− 1)L∗( f, k2+ n).

Remark 4.5. Note that we have an extra (−1)n appearing in the right-hand sides
of both the expressions given in Theorems 4.2 and 4.4. This is because an extra
(−1)n appears in the definition of Rankin–Cohen brackets given in [Zagier 1977].

We now recall an interesting nonvanishing result of the L-function L( f, s)
associated with the cusp form f [Lanphier and Takloo-Bighash 2004, Corollary 3.2]
at the center critical point.

Lemma 4.6. Suppose that k>20 and k≡0 (mod 4). Then there are two eigenforms
f, g ∈ Sk with L∗( f, k/2) 6= 0 and L∗(g, k/2) 6= 0.

Remark 4.7. We know that [E4, E4]2= 4800112 for some nonzero constant c ∈R.
Also we have

〈112,112〉 = 4800〈112, [E4, E4]2〉 6= 0.

Thus by Theorem 4.4, L∗(112, 6) 6= 0. Similarly one proves that L∗(116, 8) 6= 0
and L∗(120, 10) 6= 0. Therefore by Lemma 4.6 we deduce that for each integer
k ≥ 12 with k ≡ 0 (mod 4), there exists a nonzero eigenform f ∈ Sk such that
L∗( f, k/2) 6= 0.

5. Preparatory results

We start the section with the following result of Shimura [1976, Theorem 2], who
has proved the result for modular forms of higher level with characters. Here we
state the result for the group SL2(Z) for our purpose.

Theorem 5.1. Suppose f ∈ Sk , g ∈ Mk1 , and k1 + 2r2 < k with a nonnegative
integer r2. Then

〈 f, g · Rr2
k2

Ek2〉 = cL( f × g, k− 1− r2),

where k2 = k− k1− 2r2, and c = 0(k− 1− r2)0(k− k1− r2)/0(k− k1− 2r2).
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The following result generalizes Theorem 5.1 and may be of independent interest.
We follow the idea of Shimura to prove the result. We obtain Theorem 4.2 as a
special case of the following result.

Theorem 5.2. Let k1, k2, k, r1, r2, ν be nonnegative integers such that k2 ≥ 4,
k + 2r = k1 + k2 + 2r1 + 2r2 + 2ν. Suppose that f =

∑
∞

n=1 a(n)e2π inz
∈ Sk

and g=
∑
∞

n=0 b(n)e2π inz
∈ Mk1 . Assume that either g is a cusp form or k2 ≥ k1+2.

Then we have

(11) 〈Rr
k f, [Rr1

k1
g, Rr2

k2
Ek2]ν〉 = c(k, r; k1, r1, k2, r2) ·L

(
f ×g, k

2
+

k1
2
+

k2
2
−1
)
,

where
c(k,r;k1,r1,k2,r2)=

(−1)r2+ν

(4π)k+2r−1

ν∑
α=0

Aα
r∑

u=0

r1+α∑
v=0

(−1)−u−vP (r)u,k P (r1+α)
v,k1

0(k+2r−r2−ν+α−u−v−1),

with
Aα =

(k1+r1+ν−1
ν−α

)(k2+r2+ν−1
α

)0(k2+ r2+ ν−α)

0(k2)

and
P (r)u,k =

( r
u

) 0(k+ r)
0(k+ r − u)

.

Moreover, for r = 0 we have

(12) c(k, 0; k1, r1, k2, r2)

=
(−1)r2+ν

(4π)k−1

0(k2+ r1+ r2+ ν)0(k1+ k2+ r1+ r2+ 2ν− 1)
0(k2)0(ν+ 1)

6= 0.

Proof. Using the definitions of Rankin–Cohen brackets and the Petersson inner
product we have

〈Rr
k f, [Rr1

k1
g, Rr2

k2
Ek2]ν〉 =

ν∑
α=0

(−1)α
(k1+r1+ν−1

ν−α

)(k2+r2+ν−1
α

)
×

∫
SL2(Z)\H

Rr
k f Rr1+α

k1
g Rr2+ν−α

k2
Ek2 yk+2r dx dy

y2 .

Using the identity (4) for Rr2+ν−α
k2

Ek2 in the above expression we obtain

(13) 〈Rr
k f, [Rr1

k1
g, Rr2

k2
Ek2]ν〉 =

ν∑
α=0

(−1)r2+ν
Aα

(4π)r2+ν−α

∫
SL2(Z)\H

∑
γ∈0∞\SL2(Z)

Rr
k f Rr1+α

k1
g

× j (γ, z)−k2−2r2−2ν+2α
| j (γ, z)−2(−r2−ν+α)|yk+2r−r2−ν+α

dx dy
y2 .



394 ARVIND KUMAR AND JABAN MEHER

To interchange the sum and integral in (13), we observe that∫
SL2(Z)\H

∑
γ∈0∞\SL2(Z)

∣∣Rr
k f Rr1+α

k1
g j (γ, z)−k2−2r2−2ν+2α

| j (γ, z)|2(r2+ν−α)
∣∣

× yk+2r−r2−ν+α
dx dy

y2

≤

∫
SL2(Z)\H

∣∣y 1
2 (k+2r+k1+2r1+2α)Rr

k f Rr1+α
k1

g
∣∣ ∑
γ∈0∞\0

| j (γ, z)|−k2 yk2/2 dx dy
y2 .

For k2 ≥ 4 note that ∑
γ∈0∞\SL2(Z)

| j (γ, z)|−k2 ≤ ζ(k2− 1).

Also, since f is a cusp form, Rr
k f is a rapidly decreasing function and so is

(Rr
k f )(Rr1+α

k1
g). Hence, the integral in the right-hand side of above inequality is a

finite quantity. Interchanging the sum and integral in (13), we obtain

〈Rr
k f, [Rr1

k1
g, Rr2

k2
Ek2]ν〉

= (−1)r2+ν

ν∑
α=0

Aα
(4π)r2+ν−α

∑
γ∈0∞\SL2(Z)

∫
SL2(Z)\H

Rr
k f (z) Rr1+α

k1
g(z)

× j (γ, z)−k2−2r2−2ν+2α
| j (γ, z)|−2(−r2−ν+α) yk+2r−r2−ν+α

dx dy
y2 .

Changing the variable z 7→ γ−1z in the above expression and unfolding we obtain

〈Rr
k f, [Rr1

k1
g, Rr2

k2
Ek2]ν〉

= (−1)r2+ν

ν∑
α=0

Aα
(4π)r2+ν−α

∫
∞

0

∫ 1

0
Rr

k f (z)Rr1+α
k1

g(z) yk+2r−r2−ν+α−2dx dy.

From the Fourier expansions of f and g we get

(14) 〈Rr
k f, [Rr1

k1
g, Rr2

k2
Ek2]ν〉

= (−1)r2+ν

ν∑
α=0

Aα
(4π)r2+ν−α

r∑
u=0

P (r)u,k

r1+α∑
v=0

P (r1+α)
v,k1

(−4π)−u−v

×

∫
∞

0

∫ 1

0

∑
m≥1,n≥0

a(m)b(n)mr−unr1+α−ve2π i x(m−n)e−2πy(m+n)

×yk+2r−r2−ν+α−2−u−v dx dy.

Since either g is a cusp form or k2 ≥ k1 + 2, by using the bounds of Fourier
coefficients we can interchange the sum and integration of the above expression,
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and using the fact that the integral over the variable x will be nonzero only when
m = n, we obtain

〈Rr
k f, [Rr1

k1
g, Rr2

k2
Ek2]ν〉

= (−1)r2+ν

ν∑
α=0

Aα
(4π)r2+ν−α

r∑
u=0

P (r)u,k

r1+α∑
v=0

P (r1+α)
v,k1

(−4π)−u−v

∑
m≥1

a(m)b(m)mr+r1+α−u−v
∫
∞

0
e−4πym yk+2r−r2−ν+α−2−u−v dy.

Using the definition of the Gamma function above gives (11). It remains to simplify
the constant for r = 0. The proof is straightforward and purely combinatorial.
We use the following two binomial identities, which hold for nonnegative integers
x, j, n with x, j ≥ n. The first identity (see [Quaintance and Gould 2016, pp. 74]) is

(15)
n∑

i=0

(−1)i
(n

i

)( x−i
j

)
=

( x−n
j−n

)
and second is the well-known Vandermonde’s identity, given by

(16)
n∑

k=0

( x
k

)( j
n−k

)
=

( x+ j
n

)
.

In the expression of c(k, 0; k1, r1, k2, r2), we first apply (15) to the sum over the
variable v, simplify the obtained expression and then use (16) to obtain its required
form as given in (12). �

Next we prove a result similar to Theorem 5.2 in the case when g is the Eisenstein
series Ek1 and k1, k2 ≥ 4 are any even integers. We first recall a result of Diamantis
and O’Sullivan [2010, Proposition 2.1].

Lemma 5.3. Let k1, k2 be even and nonnegative with k = k1 + k2. Then for any
normalized eigenform f ∈ Sk and for all s, w ∈ C, we have

〈 f, y−k/2 E∗k1
(z, u)E∗k2

(z, v)〉 = (−1)k2/22π k/2L∗( f, s)L∗( f, w),

where 2u = s+w− k+ 1 and 2v =−s+w+ 1.

We show the following result.

Theorem 5.4. Let k1, k2 be even nonnegative integers and r1, r2 ≥ 0 be integers.
For any integer ν ≥ 0, let k = k1+ k2+ 2r1+ 2r2+ 2ν. Then for any normalized
eigenform f ∈ Sk , we have

〈 f, [Rr1
k1

Ek1, Rr2
k2

Ek2]ν〉

= c(k; k1, r1, k2, r2) · L∗
(

f, k
2
+

k1
2
−

k2
2

)
L∗
(

f, k
2
+

k1
2
+

k2
2
− 1

)
,
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where

c(k; k1, r1, k2, r2)=
(−1)k1/2−r1

2k−1

2k1

Bk1

2k2

Bk2

(k1+k2+r1+r2+2ν−2
ν

)
.

Proof. Using the definition of Rankin–Cohen brackets

(17) 〈 f, [Rr1
k1

Ek1, Rr2
k2

Ek2]ν〉

=

ν∑
α=0

(−1)α
(k1+r1+ν−1

ν−α

)(k2+r2+ν−1
α

)
〈 f, (Rr1+α

k1
Ek1)(R

r2+ν−α
k2

Ek2)〉.

For any 0≤ α ≤ ν, by (4) we write

〈 f, (Rr1+α
k1

Ek1)(R
r2+ν−α
k2

Ek2)〉

= (−4π)−r1−r2−ν
0(k1+ r1+α)0(k2+ r2+ ν−α)

0(k1)0(k2)

×〈 f, y−r1−r2−νEk1+2r1+2α(z,−r1−α)Ek2+2r2+2ν−2α(z,−r2− ν+α)〉.

Using the relation given in (6) between the Eisenstein series Ek(z, s) and the
completed Eisenstein series E∗(z, s), the above identity can be rewritten as

〈 f, (Rr1+α
k1

Ek1)(R
r2+ν−α
k2

Ek2)〉

=
(−4π)−r1−r2−ν0(k1+ r1+α)0(k2+ r2+ ν−α)

0(k1)0(k2)θk1+2r1+2α(k1/2)θk2+2r2+2ν−2α(k2/2)

×〈 f, y−k/2 E∗k1+2r1+2α(z, k1/2)E∗k2+2r2+2ν−2α(z, k2/2)〉.

Now using Lemma 5.3 in the above identity and substituting it into (17), we obtain

〈 f, [Rr1
k1

Ek1, Rr2
k2

Ek2]ν〉

= c(k; k1, r1, k2, r2) · L∗
(

f, k
2
+

k1
2
−

k2
2

)
L∗
(

f, k
2
+

k1
2
+

k2
2
− 1

)
,

where

c(k; k1, r1, k2, r2)

=

ν∑
α=0

(−1)α
(k1+r1+ν−1

ν−α

)(k2+r2+ν−1
α

) (−1)k2/2+r1+α2π k1+k2

4r+r2+νζ(k1)ζ(k2)0(k1)0(k2)
·

Using (16) we further simplify the above expression and deduce that

c(k; k1, r1, k2, r2)=
2(−1)k2/2−r1π k1+k2

4r1+r2+ν0(k1)0(k2)ζ(k1)ζ(k2)

(k1+k2+r1+r2+2ν−2
ν

)
.

For any positive even integer m, we get the required result by using the well-known
relation ζ(m)=− 1

2(2π i)m Bm/m!, in the above expression. �

We also need the following result which we will use in the proof of Theorem 1.1.
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Theorem 5.5. Let k, k1, k2, r1, r2 and ν be as in the Theorem 5.4. Then for any
normalized eigenform f ∈ Sk−2 we have

〈Rk−2 f, [Rr1
k1

Ek1, Rr2
k2

Ek2]ν〉

= c1(k; k1, r1, k2, r2) · L∗
(

f, k
2
+

k1
2
−

k2
2
− 1

)
L∗
(

f, k
2
+

k1
2
+

k2
2
− 1

)
,

where

c1(k; k1, r1, k2, r2)=
(−1)k1/2

2k−1

2k1

Bk1

2k2

Bk2

ν∑
α=0

Aαtα,

with tα= (−1)r1−1(r1+α)(k1+r1+α−1)+(−1)r2+ν−1(r2+ν−α)(k2+r2+ν−α−1)
and

Aα =
(k1+r1+ν−1

ν−α

)(k2+r2+ν−1
α

)
.

Furthermore, we have

(18) c1(k; k1, 0, k2, r2) 6= 0 for r2 6= 0.

Proof. Using the definition of Rankin–Cohen bracket and Lemma 2.7 we have

〈Rk−2 f, [Rr1
k1

Ek1, Rr2
k2

Ek2]ν〉

=

ν∑
α=0

(−1)αAα
{
〈 f, (L Rr1+α

k1
Ek1)(R

r2+ν−α
k2

Ek2)〉+〈 f, (R
r1+α
k1

Ek1)(L Rr2+ν−α
k2

Ek2)〉
}
.

Now using the second identity of Lemma 2.11 and then Lemma 2.8 in the last two
inner products, we obtain

〈Rk−2 f, [Rr1
k1

Ek1, Rr2
k2

Ek2]ν〉

=

ν∑
α=0

(−1)αAα
4

{
(r1+α)(k1+ r1+α− 1)〈 f, (Rr1+α−1

k1
Ek1)(R

r2+ν−α
k2

Ek2)〉

+ (r2+ ν−α)(k2+ r2+ ν−α− 1)〈 f, (Rr1+α
k1

Ek1)(R
r2+ν−α−1
k2

Ek2)〉
}
.

Applying the same method as used in the proof of Theorem 5.4 for both the terms
on the right-hand side of the above identity, we get the main result. To complete the
proof, we prove (18) by using simple combinatorial methods. Let r1 = 0 and r2 6= 0.
If r2 + ν is even or ν = 0, the result follows trivially and hence we assume that
r2+ ν is odd and ν ≥ 1. After simplifying the expression for tα, we see that

ν∑
α=0

Aαtα =−(k− 2)
ν∑
α=0

Aαα+ (r2+ ν)(k2+ r2+ ν− 1)
ν∑
α=0

Aα.

Using Vandermonde’s identity (16) for both the sums in the above expression, a
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simple calculation gives
ν∑
α=0

Aαtα =
r2(k2+ r2+ ν− 1)(k− ν− r2− 2)

ν

(k1+k2+r2+2ν−3
ν−1

)
,

which is nonzero. This completes the proof. �

6. Proof of Theorem 1.1

By Proposition 3.2, Lemma 3.3 and Lemma 3.4, to prove Theorem 1.1 we need to
check only whether the following cases give eigenforms:

• [Ek1, Dr2 Ek2]ν for k1 6= k2.

• [Ek1, Dr1 Ek1]ν .

• [Dr1 f, Ek2]ν , where f ∈ Sk1 is an eigenform.

By Theorem 3.5 it is equivalent to check the following cases of Rankin–Cohen
brackets of nearly holomorphic modular forms are eigenforms:

• [Ek1, Rr2
k2

Ek2]ν for k1 6= k2.

• [Ek1, Rr1
k1

Ek1]ν .

• [Rr1
k1

f, Ek2]ν , where f ∈ Sk1 is an eigenform.

Consider the first case. Let [Ek1, Rr2
k2

Ek2]ν be an eigenform, where k1 6= k2. Put
k = k1+ k2+ 2r2+ 2ν and a = k1+ k2+ r2+ ν. By Proposition 2.10 we have

(19) [Ek1, Rr2
k2

Ek2]ν = Rr ′
k−2r ′g,

where g ∈ Mk−2r ′ is an eigenform and r ′ ≥ 0 is an integer.
If k = 24 or k ≥ 28, then the dimension of Sk is at least 2. Therefore if r ′ = 0

and k = 24 or k ≥ 28 in (19), there exists a nonzero eigenform h ∈ Sk such that

〈h, g〉 = 〈h, [Ek1, Rr2
k2

Ek2]ν〉 = 0.

Then by Theorem 5.4 we deduce that

(20) L(h, a− 1)L(h, a− k1)= 0.

Since L(h, s) has an Euler product in the region Re(s) > k+1
2 , L(h, s) does not

vanish for Re(s) > k+1
2 . We see that a−1> k+1

2 and therefore L(h, a−1) 6= 0. We
will also prove that L(h, a−k1) 6= 0. First assume that k2> k1. Since k2> k1 and k1

and k2 are even positive numbers, we have k1 < k2+ 1. Thus L(h, a− k1) 6= 0 as
a − k1 >

k+1
2 . If k1 > k2, then k − a + k1 >

k+1
2 , and by the functional equation

of L-functions, we deduce that L(h, a− k1) 6= 0. Therefore, the above discussion
gives a contradiction to (20). Thus if r ′ = 0 and k = 24 or k ≥ 28, [Ek1, Rr2

k2
Ek2]ν

is not an eigenform whenever k1 6= k2.
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For r ′ = 0, k 6= 24 and k < 28, we have finitely many cases to verify. We
find that there are the following cases for which Rankin–Cohen brackets of nearly
holomorphic eigenforms give rise to eigenforms:

• The holomorphic modular cases listed in Theorem 1.1 for which k1 6= k2.

• The nonholomorphic cases given by [E4, R8 E8]1 = [E8, R4 E4]1 = 1920116,
[E4, R6 E6]2 =−5040116, [E6, R4 E4]2 = 5040116.

By Theorem 3.5, we get the corresponding cases for quasimodular eigenforms.
If r ′ ≥ 1 and k 6= 14, by employing Lemma 2.8 as done in the case when r ′ = 0

and k = 24 or k ≥ 28, we deduce that the Rankin–Cohen brackets of eigenforms do
not result in eigenforms. If r ′ ≥ 1 and k = 14, we get the following cases for which
we get eigenforms:

[E6, DE4]1 = 1440D112, [E4, DE6]1 =−2016D112.

Now consider the second case. Assume that

(21) [Ek1, Rr1
k1

Ek1]ν = Rr ′
k−2r ′ f,

where f ∈ Mk−2r ′ is an eigenform and r ′ ≥ 0 is an integer. Put k = 2k1+ 2r1+ 2ν.
If ν= 0, the Rankin–Cohen bracket reduces to the product of two nearly holomor-

phic eigenforms. This has been done in [Kumar and Meher 2016]. By Theorem 3.5
we see that the only case for which the product of quasimodular eigenforms is an
eigenform, is

E4(DE4)=
1
2 DE8.

Assume that ν ≥ 1. If r ′ = 0, comparing the Fourier expansion of both sides of (21),
we deduce that f has to be a cusp form. Since 〈 f, f 〉 6= 0, we have

〈 f, [Ek1, Rr1
k1

Ek1]ν〉 6= 0.

Thus by Theorem 5.4 we have

L∗( f, k/2+ k1− 1)L∗( f, k/2) 6= 0.

Since k/2+ k1 − 1 lies in the region in which L( f, s) has an Euler product, we
have L( f, k/2+ k1− 1) 6= 0. Thus L∗( f, k/2) 6= 0. From the functional equation
of L( f, s) we see that L∗( f, k/2)= 0 if k ≡ 2 (mod 4). Therefore k ≡ 0 (mod 4).
If k > 20 and k ≡ 0 (mod 4), by Lemma 4.6, there exist two eigenforms g, h ∈ Sk

such that
〈g, f 〉 6= 0 and 〈h, f 〉 6= 0.

This contradicts the fact that f is an eigenform. If k ≤ 20, there are only finitely
many cases to verify, and we obtain the following cases for which the Rankin–Cohen
brackets of two nearly holomorphic eigenforms give rise to eigenforms:

• The holomorphic modular cases listed in Theorem 1.1.
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• The nonholomorphic modular cases

[E4, R4 E4]1 = 960112, [E6, R6 E6]1 =−3024116,

[E4, R4 E4]3 = 4800116, [E8, R8 E8]1 = 3840120,

[E6, R6 E6]3 =−28224120, [E4, R4 E4]5 = 13440120.

Then by Theorem 3.5 we get the corresponding result for quasimodular eigenforms.
Let r ′ ≥ 1. By (21) and Lemma 2.8, for any eigenform g ∈ Sk we have

〈g, [Ek1, Rr1
k1

Ek1]ν〉 = 0.

As done in the case when r ′ = 0, we deduce that L∗(g, k/2)= 0. By Remark 4.7
this implies that k ≡ 2 (mod 4). If r ′ = 1 then [Ek1, Rr1

k1
Ek1]ν = Rk−2 f and

k− 2≡ 0 (mod 4). Also if k− 2> 20 and k− 2≡ 0 (mod 4), by Lemma 4.6 there
exist two normalized eigenforms f1 and f2 in Sk−2 such that

L∗
(

f1,
k−2

2

)
6= 0 and L∗

(
f2,

k−2
2

)
6= 0.

Then by Theorem 2.12 we have

〈 f1, f 〉 = 1
c1
〈Rk−2 f1, Rk−2 f 〉 = 1

c1
〈Rk−2 f1, [Ek1, Rr1

k1
Ek1]ν〉,

and
〈 f2, f 〉 = 1

c1
〈Rk−2 f2, Rk−2 f 〉 = 1

c1
〈Rk−2 f1, [Ek1, Rr1

k1
Ek1]ν〉.

Thus by applying Theorem 5.5 (in view of (18)) we deduce that there are two
normalized eigenforms f1 and f2 in Sk−2 such that

〈 f1, f 〉 6= 0 and 〈 f2, f 〉 6= 0.

This gives a contradiction.
If k − 2 ≤ 20, we verify the finitely many remaining cases and deduce that if

r ′ = 1 and ν ≥ 1, we get the following cases for which Rankin–Cohen brackets of
two nearly holomorphic modular forms are again eigenforms:

• The holomorphic modular cases listed in Theorem 1.1.

• The nonholomorphic cases:

[E4, R2
4 E4]1 = 960R12112, [E4, R4 E4]2 = 2400R12112,

[E6, R2
6 E6]1 =−3024R16116, [E6, R6 E6]2 =−10584R16116,

[E4, R2
4 E4]3 = 4800R16116, [E4, R4 E4]4 = 8400R16116,
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[E8, R2
8 E8]1 = 3840R20120, [E8, R8 E8]2 = 17280R20120,

[E6, R2
6 E6]3 =−28224R20120, [E6, R6 E6]4 =−63504R20120,

[E4, R2
4 E4]5 = 13440R20120, [E4, R4 E4]6 = 20160R20120.

By Theorem 3.5 we have the corresponding cases for quasimodular forms.
Let r ′ ≥ 2. If g ∈ Sk−2 is any eigenform, then Theorem 2.12 implies that

〈Rk−2g, [Ek1, Rr1
k1

Ek1]ν〉 = 〈Rk−2g, Rr ′
k−2r ′ f 〉 = 0.

Thus by Theorem 5.5 (in view of (18)), the above identity implies L∗
(
g, k−2

2

)
= 0.

We have already proved that if r ′ ≥ 1, then k ≡ 2 (mod 4). Since k−2≡ 0 (mod 4)
and g is an arbitrary eigenform, if k− 2> 20, Lemma 4.6 gives a contradiction. If
k−2≤ 20, by checking the remaining finitely many cases, we deduce that if r ′ ≥ 2,
we do not get any case where Rankin–Cohen brackets of two nearly holomorphic
eigenforms give rise to eigenforms. Thus by Theorem 3.5, we get the corresponding
result in the case of quasimodular forms.

Now consider the third case. Let [Rr1
k1

f, Ek2]ν be an eigenform, where f ∈ Sk is
an eigenform. Let k = k1+ k2+ 2r1+ 2ν. By Proposition 2.10 we have

[Rr1
k1

f, Ek2]ν = Rr ′
k−2r ′g,

where r ′ is a nonnegative integer and g ∈ Mk−2r ′ is an eigenform. If either k = 24
or k ≥ 28, the dimension of Sk is at least 2. Therefore if r ′ = 0 and either k = 24
or k ≥ 28, there exists a nonzero eigenform h ∈ Sk such that

〈h, g〉 = 〈h, [Rr1
k1

f, Ek2]ν〉 = 0.

Applying Theorem 5.2 (in view of (12)), we get

(22) L
(

h× f, k
2
+

k1
2
+

k2
2
− 1

)
= 0.

Since h and f are both eigenforms of weight k and k1, respectively, L(h× f, s) has
an Euler product in the region Re(s)> k

2+
k1
2 and hence L

(
h× f, k

2+
k1
2 +

k2
2 −1

)
6=0.

This contradicts (22). Therefore, when r ′ = 0 and either k = 24 or k ≥ 28, the
Rankin–Cohen brackets do not result in eigenforms. If r ′ = 0, k 6= 24 and k < 28,
we verify these finitely many cases and deduce that we obtain only the modular
cases listed in Theorem 1.1. If r ′ ≥ 1, by employing Lemma 2.8 as done in the
case when r ′ = 0 and either k = 24 or k ≥ 28, we deduce that the Rankin–Cohen
brackets of eigenforms do not result in eigenforms. This proves Theorem 1.1.
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7. Further remarks

Although Theorem 1.1 is a result about quasimodular eigenforms, it is clear from
the proof of Theorem 1.1 that one can state a similar result in the case of nearly
holomorphic eigenforms. The result in the case of nearly holomorphic eigenforms
is a generalization of the main result of [Beyerl et al. 2012] to the case of Rankin–
Cohen brackets. Thus in this way we give a different proof of the main result of
[Beyerl et al. 2012]. Our proof has the same flavor as the proofs of the main results
given in [Duke 1999; Ghate 2000; Lanphier and Takloo-Bighash 2004].
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