
Pacific
Journal of
Mathematics

DUALITY FOR DIFFERENTIAL OPERATORS OF
LIE–RINEHART ALGEBRAS

THIERRY LAMBRE AND PATRICK LE MEUR

Volume 297 No. 2 December 2018



PACIFIC JOURNAL OF MATHEMATICS
Vol. 297, No. 2, 2018

dx.doi.org/10.2140/pjm.2018.297.405
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Let (S, L) be a Lie–Rinehart algebra over a commutative ring R. This
article proves that, if S is flat as an R-module and has Van den Bergh
duality in dimension n, and if L is finitely generated and projective with
constant rank d as an S-module, then the enveloping algebra of (S, L) has
Van den Bergh duality in dimension n+ d. When, moreover, S is Calabi–
Yau and the d-th exterior power of L is free over S, the article proves that
the enveloping algebra is skew Calabi–Yau, and it describes a Nakayama
automorphism of it. These considerations are specialised to Poisson envelop-
ing algebras. They are also illustrated on Poisson structures over two- and
three-dimensional polynomial algebras and on Nambu–Poisson structures
on certain two-dimensional hypersurfaces.
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Introduction

Rinehart [1963] introduced the concept of Lie–Rinehart algebra (S, L) over a
commutative ring R and defined its enveloping algebra U. This generalises both
constructions of universal enveloping algebras of R-Lie algebras and algebras of
differential operators of commutative R-algebras. Huebschmann [1999] investigated
Poincaré duality on the (co)homology groups of (S, L). This duality is defined by
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the existence of a right U-module C , called the dualising module of (S, L) such
that, for all left U-modules M and k ∈ N,

(0-1) ExtkU (S,M)∼= TorU
d−k(C,M).

Chemla [1999] proved that for Lie–Rinehart algebras arising from affine complex
Lie algebroids, the algebra U has a rigid dualising complex, which she determined,
and has Van den Bergh duality [1998]. Having Van den Bergh duality in dimension n
for an R-algebra A means that

• A is homologically smooth, that is, A lies in the perfect derived category
per(Ae) of the algebra Ae

:= A⊗R Aop; and

• Ext•Ae(A, Ae) is zero for • 6= 0 and invertible as an A-bimodule if •= n.

When this occurs, there is a functorial isomorphism, for all A-bimodules M and
integers i (see [Van den Bergh 1998]),

ExtiAe(A,M)∼= TorAe

n−i (A,ExtnAe(A, Ae)⊗A M);

and ExtnAe(A, Ae) is called the inverse dualising bimodule of A. Two classes of
algebras with Van den Bergh duality are of particular interest, namely,

• Calabi–Yau algebras, for which ExtnAe(A, Ae) is required to be isomorphic
to A as an A-bimodule (see [Ginzburg 2006]); and

• skew Calabi–Yau algebras, for which there exists an automorphism

ν ∈ AutR−alg(A)

such that ExtnAe(A, Ae)' Aν as A-bimodules (see [Reyes et al. 2014]); here
Aν denotes the A-bimodule obtained from A by twisting the action of A on
the right by ν.

The relevance of these algebras comes from their role in the noncommutative
geometry initiated in [Artin and Schelter 1987] and in the investigation of Calabi–
Yau categories, and also from the specificities of their Hochschild cohomology
when R is a field. For instance, it is proved in [Ginzburg 2006; Lambre 2010] that
the Gerstenhaber bracket of the Hochschild cohomology of Calabi–Yau algebras
have a BV generator.

This article investigates when the enveloping algebra U of a general Lie–Rinehart
algebra (S, L) over a commutative ring R has Van den Bergh duality.

It considers Lie–Rinehart algebras (S, L) such that S has Van den Bergh duality
and is flat as an R-module, and L is finitely generated and projective with constant
rank d as an S-module. Under these conditions, it is proved that U has Van den
Bergh duality. Note that, when R is a perfect field, the former condition amounts
to saying that S is a smooth affine R-algebra [Krähmer 2007]. Note also that,
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under the latter condition, it is proved in [Huebschmann 1999, Theorem 2.10] that
(S, L) has duality in the sense of (0-1). Under the additional assumption that S
is Calabi–Yau and 3d L is free as an S-module, it appears as a corollary that U
is skew Calabi–Yau, and a Nakayama automorphism may be described explicitly.
These considerations are specialised to the situation where the Lie–Rinehart algebra
(S, L) arises from a Poisson structure on S. Also they are illustrated by detailed
examples in the following cases:

• For Poisson brackets on polynomial algebras in two or three variables.

• For Nambu–Poisson structures on two-dimensional hypersurfaces of the shape
1+ T (x, y, z)= 0, where T is a weight homogeneous polynomial.

Throughout the article, R denotes a commutative ring, (S, L) denotes a Lie–
Rinehart algebra over R and U denotes its enveloping algebra. Given an R-Lie
algebra g, its universal enveloping algebra is denoted by UR(g). For an R-algebra A,
the category of left A-modules is denoted by Mod(A) and Mod(Aop) is identified
with the category of right A-modules. For simplicity, the piece of notation ⊗ is
used for ⊗R . All complexes have differential of degree +1.

1. Main results

A Lie–Rinehart algebra over a commutative ring R is a pair (S, L) where S is a
commutative R-algebra and L is a Lie R-algebra which is also a left S-module,
endowed with a homomorphism of R-Lie algebras,

(1-1)
L→ DerR(S),

α 7→ ∂α := α(−),

such that, for all α, β ∈ L and s ∈ S,

[α, sβ] = s[α, β] +α(s)β.

Following [Huebschmann 1999], the enveloping algebra U of (S, L) is identified
with the algebra

(S o L)/I,

where SoL is the smash-product algebra of S by the action of L on S by derivations
and I is the two-sided ideal of S o L generated by

{s⊗α− 1⊗ sα | s ∈ S, α ∈ L}

(see Lemma 3.0.1); it is proved in [Huebschmann 1999] that this set generates I as
a right ideal.

As mentioned in the introduction, when L is a finitely generated S-module with
constant rank d, the Lie–Rinehart algebra (S, L) has duality in the sense of (0-1)
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with C =3d
S L∨. Here −∨ is the duality HomS(−, S) and 3d

S L∨ is considered as a
right U-module using the Lie derivative λα, for α ∈ L (see [Huebschmann 1999,
Section 2]),

λα :3
•

S L∨→3•S L∨ ;

this is the derivation of 3•S L∨ such that, for all s ∈ S, ϕ ∈ L∨ and β ∈ L ,

λα(s)= α(s) and λα(ϕ)(β)= α(ϕ(β))−ϕ([α, β]).

The right U-module structure of 3d
S L∨ is such that, for all ϕ ∈3d

S L∨ and α ∈ L ,

(1-2) ϕ ·α =−λα(ϕ).

The first main result of the article gives sufficient conditions for U to have Van
den Bergh duality. It also describes the inverse dualising bimodule. Here are some
explanations on this description. On one hand, R-linear derivations ∂ ∈ DerR(S)
act on ExtnSe(S, Se), n ∈ N, by Lie derivatives (see Section 4),

L∂ : ExtnSe(S, Se)→ ExtnSe(S, Se).

Combining with the action of L on S yields an action α ⊗ e 7→ α · e of L on
ExtnSe(S, Se) such that, for all α ∈ L and e ∈ ExtnSe(S, Se),

α · e = L∂α (e).

Although this is not a U-module structure on ExtnSe(S, Se), it defines a left U-module
structure on 3d

S L∨⊗S ExtnSe(S, Se), d ∈N, such that, for all α ∈ L , ϕ ∈3d
S L∨ and

e ∈ ExtnSe(S, Se),
α · (ϕ⊗ e)=−ϕ ·α⊗ e+ϕ⊗α · e.

On the other hand, consider the functor

F :Mod(U )→Mod(U e)

(see Section 3.3) such that, if N ∈Mod(U ), then F(N ) equals U ⊗S N in Mod(U )
and has a right U-module structure defined by the following formula, for all α ∈ L ,
u ∈U and n ∈ N:

(u⊗ n) ·α = uα⊗ n− u⊗α · n.

This functor takes left U-modules which are invertible as S-modules to invertible
U -bimodules (see Section 3.6). The main result of this article is the following.

Theorem 1. Let R be a commutative ring. Let (S, L) be a Lie–Rinehart algebra
over R. Denote by U the enveloping algebra of (S, L). Assume that

• S is flat as an R-module,

• S has Van den Bergh duality in dimension n,

• L is finitely generated and projective with constant rank d as an S-module.
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Then, U has Van den Bergh duality in dimension n+ d and there is an isomorphism
of U-bimodules,

Extn+d
U e (U,U e)' F(3d

S L∨⊗S ExtnSe(S, Se)).

Note that when R is Noetherian and S is finitely generated as an R-algebra and
projective as an R-module, then there is an isomorphism of S-(bi)modules,

ExtnSe(S, Se)'3n
S DerR(S) ;

this isomorphism is compatible with the actions by Lie derivatives (see Section 4.5).
The above theorem was proved in [Chemla 1999, Theorem 4.4.1] when R = C

and S is finitely generated as a C-algebra.
The preceding theorem specialises to the situation where the involved invertible

S-modules are free. On one hand, when (3d
S L)∨ is free as an S-module with free

generator ϕL , there is an associated trace mapping

λL : L→ S,

such that, for all α ∈ L ,
ϕL ·α = λL(α) ·ϕL ,

where the action on the left-hand side is given by (1-2) and that on the right-hand
side is just given by the S-module structure. On the other hand, when S is Calabi–
Yau in dimension n, each generator of the free of rank one S-module ExtnSe(S, Se)

determines a volume form ωS ∈3
n
S�S/R , and the divergence

div : DerR(S)→ S

associated with ωS is defined by the following equality, for all ∂ ∈ DerR(S):

L∂(ωS)= div(∂)ωS;

(see 4.5 for details). The second main result of the article then reads as follows.

Theorem 2. Let R be a commutative ring. Let (S, L) be a Lie–Rinehart algebra
over R. Denote by U the enveloping algebra of (S, L). Assume that

• S is flat as an R-module,

• S is Calabi–Yau in dimension n,

• L is finitely generated and projective with constant rank d and 3d
S L is free as

S-modules.

Then, U is skew Calabi–Yau with a Nakayama automorphism ν ∈ AutR(U ) such
that, for all s ∈ S, and α ∈ L ,{

ν(s)= s,
ν(α)= α+ λL(α)+ div(∂α),

where λL is any trace mapping on 3d
S L∨ and div is any divergence.
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Among all Lie–Rinehart algebras, those arising from Poisson structures on S
play a special role because of the connection to Poisson (co)homology. Recall
that any R-bilinear Poisson bracket {−,−} on S defines a Lie–Rinehart algebra
structure on (S, L)= (S, �S/R) such that, for all s, t ∈ S,

• ∂ds = {s,−};

• [ds, dt] = d{s, t}.

In this case, the formulations of Theorems 1 and 2 simplify because, when �S/R is
projective with constant rank n as an S-module, the right U-module structure of
3n

S�
∨

S/R (see (1-2)) is given by classical Lie derivatives; that is, for all s ∈ S,

(1-3) λds(ϕ)= L{s,−}(ϕ).

More precisely, these theorems specialise as follows.

Corollary 1. Let R be a Noetherian ring. Let (S, {−,−}) be a finitely generated
Poisson algebra over R. Denote by U the enveloping algebra of the associated Lie
Rinehart algebra (S, �S/R). Assume that

• S is projective in Mod(R);

• S ∈ per(Se);

• �S/R , which is then projective in Mod(S), has constant rank n.

Then, U has Van den Bergh duality in dimension 2n and there is an isomorphism of
U-bimodules,

Ext2n
U e(U,U e)'U ⊗S 3

n
S DerR(S)⊗S 3

n
S DerR(S),

where the right-hand side term is a left U-module in a natural way and a right
U-module such that, for all u ∈U, ϕ, ϕ′ ∈3n

S DerR(S) and s ∈ S,

(u⊗ϕ⊗ϕ′) · ds = u ds⊗ϕ⊗ϕ′− u⊗ (L{s,−}(ϕ)⊗ϕ′+ϕ⊗L{s,−}(ϕ′)).

In particular, if S has a volume form, then U is skew Calabi–Yau with a Nakayama
automorphism ν :U →U such that, for all s ∈ S,{

ν(s)= s,
ν(ds)= ds+ 2 div({s,−}),

where div is the divergence of the chosen volume form.

For the case where R = C and S is finitely generated as a C-algebra, the above
corollary is announced in [Lü et al. 2017, Theorem 0.7, Corollary 0.8] using the
main results of [Chemla 1999].

This article is structured as follows. Section 2 presents useful information on the
case where S has Van den Bergh duality. Section 3 is devoted to technical lemmas on
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U -(bi)modules. In particular, it presents the above mentioned functor F and its right
adjoint G, which play an essential role in the proof of the main results. Section 4
introduces the action of L on Ext•Se(S, Se) by Lie derivatives. This structure is used
in Section 5 in order to describe Ext•U e(U,U e) and prove Theorem 1, Theorem 2
and Corollary 1. Finally, Section 6 applies this corollary to a class of examples of
Nambu–Poisson surfaces.

2. Poincaré duality for S

As proved in [Van den Bergh 1998] when R is a field, if S has Van den Bergh duality
in dimension n, then there is a functorial isomorphism, for all S-bimodules N,

Ext•Se(S, N )' TorSe

n−•(S,ExtnSe(S, Se)⊗S N ).

It is direct to check that this is still the case without assuming that R is a field. In
view of the proof of the main results of the article, Section 2.1 relates the above
mentioned isomorphism to the fundamental class of S, following [Lambre 2010],
and Section 2.2 relates Van den Bergh duality to the regularity of commutative
algebras, following [Krähmer 2007].

2.1. Fundamental class and contraction. Consider a projective resolution P• in
Mod(Se),

· · · → P−2
→ P−1

→ P0 ε
→ S,

and let p0
∈ P0 be such that ε(p0)= 1S . For all M, N ∈Mod(Se) and n ∈N, define

the contraction

TorSe

n (S,M)×ExtnSe(S, N )→ TorSe

0 (S,M ⊗S N ),

(ω, e) 7→ ιe(ω)

as the mapping induced by the following one:

M ⊗Se P−n
→ HomR

(
HomSe(P−n, N ), (M ⊗S N )⊗Se P0),

x ⊗ p 7→ (ϕ 7→ (x ⊗ϕ(p))⊗ p0).

This makes sense because P• is concentrated in nonpositive degrees. The construc-
tion depends neither on the choice of p0 nor on that of P•.

Following the proof of [Lambre 2010, Proposition 3.3], when S∈per(Se) and n is
taken equal to pdSe(S), the contraction induces an isomorphism for all N ∈Mod(Se),

TorSe

n (S,ExtnSe(S, Se))→ HomSe
(
ExtnSe(S, N ),TorSe

0 (S,ExtnSe(S, Se)⊗S N )
)
,

ω 7→ ι?(ω).



412 THIERRY LAMBRE AND PATRICK LE MEUR

In the particular case N = Se, the fundamental class of S is the element cS ∈

TorSe

n (S,ExtnSe(S, Se)) such that

(ι?(cS))|ExtnSe (S,Se) = IdExtnSe (S,Se).

Following the arguments in the proof of [Lambre 2010, Théorème 4.2], when S
has Van den Bergh duality in dimension n, which gives that n = pdSe(S), the
contraction with cS induces an isomorphism, for all N ∈Mod(Se),

(2-1) ι?(cS) : ExtnSe(S, N )−→∼ TorSe

0 (S,ExtnSe(S, Se)⊗S N ).

When S is projective in Mod(R), the Hochschild complex S⊗•+2 is a resolution
of S in Mod(Se) and the contraction

TorSe

n (S,M)×ExtmSe(S, N )→ TorSe

n−m(S,M ⊗S N ),

(ω, e) 7→ ιe(ω)

may be defined for all M, N ∈Mod(Se) and m, n ∈N, as the mapping induced at
the level of Hochschild (co)chains by

M ⊗ S⊗n
×HomR(S⊗m, N )→ (M ⊗S N )⊗ S⊗(m−n),

((x |s1| · · · |sn), ψ) 7→ (x ⊗ψ(s1| · · · |sm)|sm+1| · · · |sn).

When, in addition, S has Van den Bergh duality in dimension n, then [Lambre 2010,
Théorème 4.2] asserts that the following mapping given by contraction with cS is
an isomorphism, for all N ∈Mod(Se) and m ∈ N,

ι?(cS) : ExtmSe(S, N )→ TorSe

n−m(S,ExtnSe(S, Se)⊗S N ).

2.2. Relationship to regularity. The main results of this article assume that S
has Van den Bergh duality. For commutative algebras, this property is related to
smoothness and regularity. The relationship is detailed in [Krähmer 2007] for the
case where R is a perfect field, and is summarised below in the present setting.

Proposition 2.2.1 [Krähmer 2007]. Let R be a Noetherian commutative ring. Let S
be a finitely generated commutative R-algebra and projective as an R-module. Let
n ∈ N. The following properties are equivalent.

(i) S has Van den Bergh duality in dimension n.

(ii) gl. dim(Se) <∞ and �S/R , which is then projective in Mod(S), has constant
rank n.

When these properties are true, gl. dim(S) <∞ and ExtnSe(S, Se)'3n
S DerR(S) as

S-modules.



DUALITY FOR DIFFERENTIAL OPERATORS OF LIE–RINEHART ALGEBRAS 413

Proof. See [Krähmer 2007] for full details. Since S is projective over R, then
pd(Se)e(S

e) 6 2 pdSe(S) [Cartan and Eilenberg 1956, Chap. IX, Proposition 7.4];
besides, using the Hochschild resolution of S in Mod(Se) yields that

gl. dim(S)6 pdSe(S)6 gl. dim(Se);

thus

(2-2)
S ∈ per(Se)⇔ gl. dim(Se) <∞

⇒ gl. dim(S) <∞.

Note also that, following [Hochschild et al. 1962, Theorem 3.1],

(2-3) gl. dim(Se) <∞ ⇒ �S/R is projective in Mod(S).

Denote by µ the multiplication mapping S⊗ S→S. Assume gl. dim(Se) <∞,
let p ∈ Spec(S) (⊆ Spec(Se)) and denote by d the rank of (�S/R)p. Since �S/R '

Ker(µ)/Ker(µ)2 as modules over S (' Se/Ker(µ)) and gl. dim(Se)<∞, the (Se)p-
module Ker(µ)p is generated by a regular sequence having d elements. There results
a Koszul resolution of Sp in Mod((Se)p). Using this resolution and the isomorphism
Ext•Se(S, Se)p ' Ext•(Se)p

(Sp, (Se)p) in Mod((Se)p) yields isomorphisms of (Se)p-
modules,

(2-4) Ext•Se(S, Se)p '

{
0 if • 6= d,
Sp if •= d.

Now assume (i). Then, gl. dim(Se) <∞ (see (2-2)), �S/R is projective (see
(2-3)) and has constant rank n (see (2-4)). Conversely, assume that gl. dim(Se)<∞

and �S/R has constant rank n. Then, S ∈ per(Se) (see (2-2)) and the S-module
(equivalently, the symmetric S-bimodule) Ext•Se(S, Se) is zero if • 6= n and is
invertible if •= n (see (2-4)). Thus,

(i)⇔ (ii).

Finally, assume that both (i) and (ii) are true. Then, gl. dim(S) <∞ (see (2-2)).
Moreover, Van den Bergh duality [1998, Theorem 1] does apply here and provides
an isomorphism of S-modules,

Ext0Se(S,ExtnSe(S; Se)−1)' TorSe

n (S, S),

whereas [Hochschild et al. 1962, Theorem 3.1] yields an isomorphism of S-modules,

TorSe

n (S, S)'3n
S�S/R.

Thus, ExtnSe(S, Se)'3n
S DerR(S) in Mod(S). �
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3. Material on U-(bi)modules

The purpose of this section is to introduce an adjoint pair of functors (F,G) between
Mod(U ) and Mod(U e). In the proof of Theorem 1, the U -bimodule Ext•U e(U,U e)

is described as the image under F of a certain left U-module which is invertible as
an S-module. This section develops the needed properties of F. Hence, Section 3.1
recalls the basic constructions of U-modules; Sections 3.2 and 3.3 introduce the
functors G and F, respectively; Section 3.4 proves that (F,G) is adjoint; Section 3.5
introduces and collects basic properties of compatible left S o L-modules, these
are applied in Section 4 to the action of L on Ext•Se(S, Se) by Lie derivatives; and
Section 3.6 proves that the functor F transforms left U-modules that are invertible as
S-modules into invertible U -bimodules. These results are based on the description
of U as a quotient of the smash-product S o L given in the following lemma. This
description is established in [Lambre et al. 2017, Proposition 2.10] in the case of
Lie–Rinehart algebras arising from Poisson algebras.

Lemma 3.0.1. (1) The identity mappings IdS : S→ S and IdL : L→ L induce an
isomorphism of R-algebras

(3-1) (S o L)/I →U,

where I is the two-sided ideal of the smash-product algebra SoL generated by

{s⊗α− 1⊗ sα | s ∈ S, α ∈ L}.

(2) If L is projective as a left S-module, then U is projective both as a left and as
a right S-module.

Proof. (1) Recall (see [Rinehart 1963]) that U is defined as follows: Endow S⊕ L
with an R-Lie algebra structure such that, for all s, t ∈ S and α, β ∈ L ,

[s+α, t +β] = α(t)−β(s)+ [α, β].

Then, U is the factor R-algebra of the subalgebra of the universal enveloping algebra
UR(S⊕ L) generated by the image of S⊕ L by the two-sided ideal generated by
the classes in UR(S⊕ L) of the following elements, for s, t ∈ S and α ∈ L:

s⊗ t − st, s⊗α− sα.

Recall also that S o L is the R-algebra with underlying R-module

S⊗UR(L),

such that the images of S⊗ 1 and 1⊗ UR(L) are subalgebras, and the following
hold, for all s, t ∈ S and α, β ∈ S:{

(s⊗ 1) · (1⊗α)= s⊗α,
(1⊗α) · (s⊗ 1)= α(s)⊗ 1+ s⊗α.
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Therefore, the natural mappings S→U and L→U induce an R-algebra homomor-
phism from S o L to U. This homomorphism vanishes on I whence the R-algebra
homomorphism (3-1).

Besides, the universal property of U stated in [Huebschmann 1999, Section 2,
p. 110] yields an R-algebra homomorphism,

(3-2) U → (S o L)/I,

induced by the natural mappings S→ (S o L/I ) and L→ (S o L)/I. In view of
the behaviour of (3-1) and (3-2) on the respective images of S ∪ L , these algebra
homomorphisms are inverse to each other.

(2) It is proved in [Rinehart 1963, Lemma 4.1] that U is projective as a left S-module.
Consider the increasing filtration of U by the left S-submodules

0⊆ F0U ⊆ F1U ⊆ · · · ,

where FpU is the image of ⊕p
i=0S⊗L⊗i in U, for all p ∈N. In view of the equality

αs = sα+α(s)

in U for all s ∈ S and α ∈ L , the left S-module FpU is also a right S-submodule
of U, and FpU/Fp−1U is a symmetric S-bimodule for all p ∈ N. Therefore, the
considerations used in the proof of [Rinehart 1963, Lemma 4.1] may be adapted in
order to prove that U is projective as a right S-module. �

3.1. Basic constructions of U-modules. Left S o L-modules are identified with
R-modules N endowed with a left S-module structure, and a left L-module structure
such that, for all n ∈ N, α ∈ L and s ∈ S,

α · (s · n)= α(s) · n+ s · (α · n).

Left U-modules are identified with left S o L-modules N such that, for all n ∈ N,
α ∈ L and s ∈ S,

s · (α · n)= (sα) · n.

Recall that the action of L endows S with a left U-module structure.
Right So L-modules are identified with the R-modules M endowed with a right

S-module structure and a right L-module structure such that, for all m ∈ M, α ∈ L
and s ∈ S,

(m ·α) · s = m ·α(s)+ (m · s) ·α.

Right U-modules are identified with right SoL-modules M such that, for all m ∈M,
s ∈ S and α ∈ L ,

(m · s) ·α = m · (sα).
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The following constructions are classical. The corresponding U-module structures
are introduced in [Huebschmann 1999, Section 2].

Let M,M ′ be right S o L-modules. Let N , N ′ be a left S o L-module. Then:

• N is a right S o L-module for the right L-module structure such that, for all
n ∈ N, s ∈ S and α ∈ L ,

(3-3) n · s = s · n and n ·α =−α · n.

• HomS(N , N ′) is a left So L-module for the left L-module structure such that,
for all f ∈ HomS(N , N ′), n ∈ N and α ∈ L ,

(3-4) (α · f )(n)= α · f (n)− f (α · n);

moreover, this is a left U-module structure if N and N ′ are left U-modules.

• HomS(M,M ′) is a left SoL-module for the left L-module structure such that,
for all f ∈ HomS(M,M ′), m ∈ M and α ∈ L ,

(3-5) (α · f )(m)=− f (m) ·α+ f (m ·α).

• HomS(N , S) is a right S o L-module for the right L-module structure such
that, for all f ∈ HomS(N , S), n ∈ N and α ∈ L ,

(3-6) ( f ·α)(n)=−α( f (n))+ f (α · n).

• N ⊗S N ′ is a left S o L-module for the left L-module structure such that, for
all n ∈ N, n′ ∈ N and α ∈ L ,

(3-7) α · (n⊗ n′)= α · n⊗ n′+ n⊗α · n′;

moreover, this is a left U-module structure if N and N ′ are left U-modules.

• M ⊗S N is a left S o L-module for the left L-module structure such that, for
all m ∈ M, n ∈ N and α ∈ L ,

(3-8) α · (m⊗ n)=−m ·α⊗ n+m⊗α · n.

3.2. The functor G=HomSe(S,−) :Mod(U e)→Mod(U). Given M∈Mod(U e),
recall that

M S
= {m ∈ M | (for all s ∈ S) (s⊗ 1− 1⊗ s) ·m = 0}.

This is a symmetric Se-submodule of M. Recall also the canonical isomorphisms
that are inverse to each other:

(3-9)

M S
↔ HomSe(S,M)

m 7→ (s 7→ (s⊗ 1) ·m)

ϕ(1) 7→ϕ.
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Lemma 3.2.1. Let M ∈Mod(U e). Then,

(1) M S is a left U-module such that, for all m ∈ M S and α ∈ L ,

(3-10) α ·m := (α⊗ 1− 1⊗α) ·m;

(2) the corresponding left U-module structure on HomSe(S,M) (under the identi-
fication (3-9)) is such that, for all ϕ ∈ HomSe(S,M), α ∈ L and s ∈ S,

(α ·ϕ)(s)= (α⊗ 1− 1⊗α) ·ϕ(s)−ϕ(α(s)).

Proof. (1) Given all s ∈ S and α ∈ L , denote

s⊗ 1− 1⊗ s ∈U e and α⊗ 1− 1⊗α ∈U e

by ds and dα, respectively; in particular

dα · ds = ds · dα+ d(α(s)),

and, for all m ∈ M S,

ds · (dα ·m)= dα · (ds ·m)− d(α(s)) ·m = 0,

which proves that dα ·m ∈ M S. Therefore, (3-10) defines a left L-module structure
on M S. Now, for all m ∈ M S, s ∈ S and α ∈ L ,

α·(s⊗1)·m= dα·(s⊗1)·m= (α(s)⊗1+sα⊗1−s⊗α)·m

= (α(s)⊗1)·m+(s⊗1)(α⊗1−1⊗α)·m

= (α(s)⊗1)·m+(s⊗1)·(α·m),

(s⊗1)·(α·m)= (s⊗1)·(α⊗1−1⊗α)·m= (sα⊗1)·m−(s⊗1)·(1⊗α)·m

= (sα⊗1)·m−(1⊗α)·(s⊗1)·m= (sα⊗1)·m−(1⊗α)·(1⊗s)·m

= (sα⊗1−1⊗sα)·m= (sα)·m.

Hence, this left L-module structure on M S is a left U-module structure.

(2) By definition, HomSe(S,M) is endowed with the left U-module structure such
that (3-9) is an isomorphism in Mod(U ). Let ϕ ∈ HomSe(S,M), α ∈ L and s ∈ S.
Then,

(α ·ϕ)(s)= (1⊗ s) · (α ·ϕ(1))= ((1⊗ s)(α⊗ 1− 1⊗α)) ·ϕ(1)

= (α⊗ s− 1⊗ sα− 1⊗α(s)) ·ϕ(1)

= ((α⊗ 1− 1⊗α)(1⊗ s)− 1⊗α(s)) ·ϕ(1)

= α · (1⊗ s) ·ϕ(1)− (1⊗α(s)) ·ϕ(1)= α ·ϕ(s)−ϕ(α(s)). �
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Thus, the assignment M 7→ M S defines a functor

(3-11)
G :Mod(U e)→Mod(U ),

M 7→ M S.

3.3. The functor F=U⊗S− :Mod(U)→Mod(U e). Let N ∈Mod(U ). In view
of [Huebschmann 1999, (2.4)], UU ⊗S N is a right U-module such that, for all
u ∈U, n ∈ N, s ∈ S and α ∈ L ,

(u⊗ n) · s = u⊗ sn = us⊗ n and (u⊗ n) ·α = uα⊗ n− u⊗α · n.

Besides, U ⊗S N is a left U-module such that, for all u, u′ ∈U and n ∈ N,

u′ · (u⊗ n)= u′u⊗ n.

Therefore, U ⊗S N is a U -bimodule, and hence a left U e-module. These considera-
tions define a functor,

(3-12)
F :Mod(U )→Mod(U e),

N 7→U ⊗S N .

3.4. The adjunction between F and G.

Proposition 3.4.1. The functors F =U ⊗S− and G =HomSe(S,−) introduced in
Section 3.2 and Section 3.3 form an adjoint pair,

Mod U

F
��

Mod U e

G

OO

In particular, there is a functorial isomorphism, for all M ∈Mod(U e) and N ∈
Mod(U ),

HomU (N ,G(M))−→∼ HomU e(F(N ),M).

Proof. Given f ∈ HomU (N ,G(M)), denote by 8( f ) the well-defined mapping

U ⊗S N → M,

u⊗ n 7→ (u⊗ 1) · f (n).

Consider F(N ) (=U⊗S N ) as a U -bimodule. Then, for all u, u′ ∈U, n ∈ N, s ∈ S
and α ∈ L ,

8( f )(u′ · (u⊗ n))=8( f )(u′u⊗ n)= (u′u⊗ 1) · f (n)

= (u′⊗ 1) ·8( f )(u⊗ n),
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8( f )((u⊗ n) · s)=8( f )(u⊗ s · n)= (u⊗ 1) · f (s · n)

= (u⊗ 1) · ((1⊗ s) · f (n))= ((1⊗ s) · (u⊗ 1)) · f (n)

= (1⊗ s) ·8( f )(u⊗ n)= (8( f )(u⊗ n)) · s,

8( f )((u⊗ n) ·α)=8( f )(uα⊗ n− u⊗α · n)

= (uα⊗ 1) · f (n)− (u⊗ 1) · f (α · n)

= (uα⊗ 1) · f (n)− (u⊗ 1) · (α⊗ 1− 1⊗α) · f (n)

= (u⊗α) · f (n)= (1⊗α) ·8( f )(u⊗ n)

= (8( f )(u⊗ n)) ·α.

In other words,
8( f ) ∈ HomU e(F(N ),M).

Given g ∈ HomU e(F(N ),M), then, for all n ∈ N and s ∈ S,

(s⊗ 1− 1⊗ s) · g(1⊗ n)= g(s⊗S n− 1⊗S s · n)= 0 ;

hence, denote by 9(g) the well-defined mapping

N → M S,

n 7→ g(1⊗ n).

Therefore, for all n ∈ N, s ∈ S and α ∈ L ,

9(g)(s · n)= g(1⊗ s · n)= g(s⊗ n)= g((s⊗ 1) · (1⊗ n))

= (s⊗ 1) · g(1⊗ n)= (s⊗ 1) ·9(g)(n),

9(g)(α · n)= g(1⊗α · n)= g(α⊗ n− (1⊗α) · (1⊗ n))

= (α⊗ 1) · g(1⊗ n)− (1⊗α) · g(1⊗ n)= α ·9(g)(n);

in other words,
9(g) ∈ HomU (N ,G(M)).

By construction, 9 and 8 are inverse to each other. �

3.5. Compatible left So L-modules. As explained in Section 1, the main results
of this article are expressed in terms of the action of L on Ext•Se(S, Se) by Lie
derivatives and will be presented in Section 4. Although this action does not define
a U-module structure on Ext•Se(S, Se), it satisfies some compatibility with the S-
module structure. The actions of L satisfying such a compatibility have specific
properties that are used in the rest of the article and which are summarised below.
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Define a compatible left S o L-module as a left S o L-module N such that, for
all n ∈ N, α ∈ L and s ∈ S, the elements sα ∈ L and α(s) ∈ S satisfy

(3-13) (sα) · n = s · (α · n)−α(s) · n.

Note that a left S o L-module is both compatible and a left U-module if and only if
L acts trivially, that is, by the zero action.

The two following lemmas present the properties of compatible left S o L-
modules used in the rest of the article.

Lemma 3.5.1. Let M be a right U-module. Let N be a compatible left SoL-module.
Then:

(1) The right S o L-module N∨ = HomS(N , S) is a right U-module.

(2) The left S o L-module HomS(N∨,M) is a left U-module.

(3) The left S o L-module M ⊗S N is a left U-module.

(4) The following canonical mapping is a morphism of left U-modules:

θ : M ⊗S N → HomS(N∨,M),

m⊗ n 7→ (θm⊗n : ϕ 7→ m ·ϕ(n)).

Proof. (1) Given ϕ ∈ N∨, s ∈ S and α ∈ L , then

ϕ · (sα)= (ϕ · s) ·α.

Indeed, for all n ∈ N,

(ϕ ·(sα))(n)=−(sα)(ϕ(n))+ϕ((sα)·n)

=−sα(ϕ(n))+ϕ(s ·(α ·n)−α(s)·n)

=−sα(ϕ(n))+s ϕ(α ·n)−α(s)ϕ(n)

= ((ϕ ·α)·s)(n)−(ϕ ·α(s))(n)

= ((ϕ ·s)·α)(n).

(2) This is precisely [Huebschmann 1999, (2.3)].

(3) The S o L-module structure of M ⊗S N is described in (3-8). Given m ∈ M,
n ∈ N, s ∈ S and α ∈ L , then

(sα) · (m⊗ n)=−m · (sα)⊗ n+m⊗ (sα) · n

=−(m ·α) · s⊗ n+m ·α(s)⊗ n+m⊗ s · (α · n)−m⊗α(s) · n

= s · (α · (m⊗ n)).
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(4) It suffices to prove that the given mapping is L-linear. Let m ∈M, n ∈ N, α ∈ L
and ϕ ∈ HomS(N , S). Then,

(α · θm⊗n)(ϕ)=−θm⊗n(ϕ) ·α+ θm⊗n(ϕ ·α)=−(m ·ϕ(n)) ·α+m · (ϕ ·α)(n)

=−((m ·α) ·ϕ(n)−m ·α(ϕ(n)))+m · (−α(ϕ(n))+ϕ(α · n))

=−(m ·α) ·ϕ(n)+m ·ϕ(α · n)= θα·(m⊗n)(ϕ) ;

thus, α · θm⊗n = θα·(m⊗n). �

Any left S o L-module N may be considered as a symmetric S-bimodule, or
equivalently a right Se-module, such that, for all n ∈ N and s, s ′ ∈ S,

n · (s⊗ s ′)= (ss ′) · n.

Accordingly, N ⊗Se U e is a right U e-module in a natural way.

Lemma 3.5.2. Let N be a compatible left S o L-module.

(1) The right U e-module N ⊗Se U e is actually a U-U e-bimodule such that for all
n ∈ N, u, v ∈U and α ∈ L ,

α · (n⊗ (u⊗ v))= α · n⊗ (u⊗ v)+ n⊗ ((α⊗ 1− 1⊗α) · (u⊗ v)).

(2) Let M be a right U-module. Then, there exists an isomorphism of left U e-
modules

F(M ⊗S N )→ M ⊗U (N ⊗Se U e),

v⊗ (m⊗ n) 7→ m⊗ (n⊗ (1⊗ v)).

Proof. (1) Following part (3) of Lemma 3.5.1, there is a left U-module structure on
U ⊗S N such that, for all α ∈ L , v ∈U and n ∈ N,

α · (v⊗ n)=−vα⊗ n+ v⊗α · n.

Therefore, there is a left U-module structure on (U ⊗S N )⊗S U (see (3-7)) such
that, for all α ∈ L , n ∈ N and u, v ∈U,

α · ((v⊗ n)⊗ u)= α · (v⊗ n)⊗ u+ (v⊗ n)⊗αu

=−(vα⊗ n)⊗ u+ (v⊗α · n)⊗ u+ (v⊗ n)⊗αu.

Under the canonical identification

N ⊗Se U e
→ (U ⊗S N )⊗S U,

n⊗ (u⊗ v) 7→ (v⊗ n)⊗ u,

N⊗Se U e inherits a left U-module structure which is the one claimed in the statement.
Now, N ⊗Se U e inherits a right U e-module structure from U e. This structure is

compatible with the left U-module structure discussed previously so as to yield a
left U ⊗ (U e)op-module structure.
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(2) Due to (1), there is a right U e-module structure on M ⊗U (N ⊗Se U e). It is
considered here as a left U e-module structure such that, for all u, v, u′, v′ ∈ U,
m ∈ M and n ∈ N,

(3-14) (u′⊗ v′) · (m⊗ (n⊗ (u⊗ v)))= m⊗ (n⊗ (uv′⊗ u′v)).

For ease of reading, note that in F(M ⊗S N ),

(3-15)
(u⊗ 1) · (v⊗m⊗ n)= uv⊗m⊗ n

(1⊗α) · (v⊗m⊗ n)= vα⊗m⊗ n+ v⊗m ·α⊗ n− v⊗m⊗α · n,

and, in M ⊗U (N ⊗Se U e),

(3-16) m ·α⊗n⊗u⊗v =m⊗α ·n⊗u⊗v+m⊗n⊗αu⊗v−m⊗n⊗u⊗vα.

The R-linear mapping from U ⊗M ⊗ N to M ⊗U (N ⊗Se U e) given by

v⊗m⊗ n 7→ m⊗ (n⊗ (1⊗ v))

induces a morphism of S-modules from U⊗S (M⊗S N ) to M⊗U (N⊗Se U e) such
as in the statement of the lemma. Denote it by 9 ′:

9 ′ :U ⊗S (M ⊗S N )→ M ⊗U (N ⊗Se U e).

This is a morphism of left U e-modules. Indeed, for all u, v ∈ U, m ∈ M, n ∈ N
and α ∈ L ,

9 ′((u⊗1)·(v⊗m⊗n)) = 9 ′(uv⊗m⊗n) = m⊗n⊗1⊗uv

=
(3-14)

(u⊗1)·9 ′(v⊗m⊗n),

9 ′((1⊗α)·(v⊗m⊗n)) = 9 ′(vα⊗m⊗n+v⊗m ·α⊗n−v⊗m⊗α ·n)

= m⊗n⊗1⊗vα+m ·α⊗n⊗1⊗v−m⊗α ·n⊗1⊗v

=
(3-16)

m⊗n⊗α⊗v

=
(3-14)

(1⊗α)·9 ′(v⊗m⊗n).

Consider the following morphism of S-modules:

φ : M ⊗S (N ⊗Se U e)→ F(M ⊗S N ),

m⊗ (n⊗ (u⊗ v)) 7→ (1⊗ u) · (v⊗m⊗ n).

Given m ∈ M, n ∈ N, u, v ∈U and α ∈ L , then the image under φ of the term

m⊗α · n⊗ u⊗ v+m⊗ n⊗αu⊗ v−m⊗ n⊗ u⊗ vα
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is equal to

(1⊗ u) · (v⊗m⊗α · n)+ (1⊗αu) · (v⊗m⊗ n)− (1⊗ u) · (vα⊗m⊗ n),

which is equal to

(1⊗ u) · (v⊗m⊗α · n)+ (1⊗ u) · (1⊗α) · (v⊗m⊗ n)− (1⊗ u) · (vα⊗m⊗ n).

In view of (3-15), this is equal to

(1⊗ u) · (v⊗m ·α⊗ n)= φ(m ·α⊗ (n⊗ (u⊗ v))).

Thus, φ induces a morphism of S-modules

8′ : M ⊗U (N ⊗Se U e)→ F(M ⊗S N ),

m⊗ (n⊗ (u⊗ v)) 7→ (1⊗ u) · (v⊗m⊗ n).

It appears that 8′ is left and right inverse for 9 ′. Indeed,
•8′ ◦9 ′ = IdF(M⊗S N ), and
• for all u, v ∈U, m ∈ M and n ∈ N,

9 ′ ◦8′(m⊗ n⊗ u⊗ v)=9 ′((1⊗ u) · (v⊗m⊗ n))

= (1⊗ u) ·9 ′(v⊗m⊗ n) (9′ is Ue-linear)

= (1⊗ u) · (m⊗ n⊗ 1⊗ v)

= m⊗ n⊗ u⊗ v. �

3.6. Invertible U-bimodules. The following result is used in Section 5 in order to
prove that ExtiU e(U,U e) is invertible as a U -bimodule, under suitable conditions.

Proposition 3.6.1. Let R be a commutative ring. Let (S, L) be a Lie–Rinehart
algebra over R. Denote by U its enveloping algebra. Let N be a left U-module.
Assume that N is invertible as an S-module. Then F(N ) is invertible as a U-
bimodule.

This subsection is devoted to the proof of this proposition. Given a left U-
module N, then F(N ) = U ⊗S N as left U-modules. Hence, there is a functorial
isomorphism

(3-17) θ : HomS(N ,U )→ HomU (F(N ),U ).

Note:

• HomS(N ,U ) is a left U-module (see (3-4)), and it inherits a right U-module
structure from UU ; by construction, these two structures form a U -bimodule
structure.

• HomU (F(N ),U ) is a U -bimodule because so are F(N ) and U .
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• N ⊗S HomS(N ,U ) is a left U-module (see (3-7)), and it inherits a right U-
module structure from UU ; by construction, these two structures form a U -
bimodule structure.

Lemma 3.6.2. Let N be a left U-module. Then,

(1) θ : HomS(N ,U )→ HomU (F(N ),U ) is an isomorphism in Mod(U e),

(2) the mapping

8 : N ⊗S HomS(N ,U )→ F(N )⊗U HomU (F(N ),U ),

n⊗ f 7→ (1⊗ n)⊗ θ( f )

is an isomorphism in Mod(U e), and

(3) the diagram
N⊗SHomS(N ,U ) //

8

��

U

F(N )⊗U Hom(F(N ),U ) // U

with horizontal arrows given by evaluation, is commutative.

Proof. (1) By definition, θ is a morphism of right U-modules. It is also a morphism
of left U-modules because, for all n ∈ N, f ∈ HomS(N ,U ), u ∈U and α ∈ L ,

θ(α · f )(u⊗ n)= u(α · f )(n)

= u(α f (n)− f (α · n))= θ( f )(uα⊗ n− u⊗α · n)

= θ( f )((u⊗ n) ·α)= (α · θ( f ))(u⊗ n).

(2) By definition, 8 is a morphism of right U-modules. It is also a morphism of
left U-modules because, for all n ∈ N, f ∈ HomS(N ,U ) and α ∈ L ,

8(α · (n⊗ f ))=8(α · n⊗ f + n⊗α · f )

= (1⊗α · n)⊗ θ( f )+ (1⊗ n)⊗ θ(α · f )︸ ︷︷ ︸
=α·θ( f )

= (1⊗α · n)⊗ θ( f )+ (1⊗ n) ·α︸ ︷︷ ︸⊗ θ( f )

=α⊗ n−1⊗α·n

= (α⊗ n)⊗ θ( f )

= α ·8(n⊗ f ).

In order to prove that 8 is bijective, consider the linear mapping

ψ : F(N )⊗S HomU (F(N ),U )→ N ⊗S HomS(N ,U ),

(u⊗ n)⊗ g 7→ u · (n⊗ θ−1(g)).
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Note that, for all u ∈U, α ∈ L , n ∈ N and g ∈ HomU (F(N ),U ),

ψ((u⊗ n) ·α⊗ g)= ψ((uα⊗ n)⊗ g− (u⊗α · n)⊗ g)

= uα · (n⊗ θ−1(g))− u · (α · n⊗ θ−1(g))

= u · (α · n⊗ θ−1(g)+ n⊗α · θ−1(g))− u · (α · n⊗ θ−1(g))

= u · (n⊗ θ−1(α · g)) (see part (1))

= ψ((u⊗ n)⊗α · g).

Hence, ψ induces a linear mapping,

9 : F(N )⊗U HomU (F(N ),U )→ N ⊗S HomS(N ,U ),

(u⊗ n)⊗ g 7→ u · (n⊗ θ−1(g)).

Now, by definition of 8 and 9,

9 ◦8= IdN⊗SHomS(N ,U ).

Since

• 9 is a morphism of left U-modules by construction;

• as a left U-module, F(N )⊗U HomU (F(N ),U ) is generated by the image of
(1⊗ N )⊗HomU (F(N ),U ); and

• for all n ∈ N and g ∈ HomU (F(N ),U ),

8 ◦9((1⊗ n)⊗ g)= (1⊗ n)⊗ g,

the following holds:

8 ◦9 = IdF(N )⊗U HomU (F(N ),U ).

Altogether, these considerations show that 8 is an isomorphism in Mod(U e).

(3) The diagram is commutative by definition of 8. �

Like in the previous lemma, for all N ∈Mod(U ), HomS(N ,U ) is a U -bimodule,
and hence HomS(N ,U )⊗S N is a U -bimodule by means of (3-7) and the right
U-module structure of U.

Lemma 3.6.3. Let N be a left U-module. Then,

(1) the mapping

8′ : HomS(N ,U )⊗S N → HomU (F(N ),U )⊗U F(N ),

f ⊗ n 7→ θ( f )⊗ (1⊗ n)

is an isomorphism in Mod(U e); and
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(2) the diagram
HomS(N ,U )⊗S N //

8′

��

U

HomU (F(N ),U )⊗U F(N ) // U

with horizontal arrows given by evaluation, is commutative.

Proof. (1) First, since F(N )=U ⊗S N in Mod(U e), then

HomU (F(N ),U )⊗U F(N )∼= HomU (F(N ),U )⊗S N

as left U-modules. Under this identification, 8′ expresses as

8′ : f ⊗ n 7→ θ( f )⊗ n.

Therefore, 8′ is bijective because so is θ .
Next, 8′ is a morphism of left U-modules because so is θ . And it is a morphism

of right U-modules because it is a morphism of right S-modules, and because, for
all f ∈ HomS(N ,U ), n ∈ N and α ∈ L ,

8′(( f ⊗ n) ·α)=8′( f ·α⊗ n− f ⊗α · n)

= θ( f ·α)︸ ︷︷ ︸
=θ( f )·α

⊗ (1⊗ n)− θ( f )⊗ (1⊗α · n)

= θ( f )⊗α · (1⊗ n)︸ ︷︷ ︸
=α⊗n

− θ( f )⊗ (1⊗α · n)

= θ( f )⊗ ((1⊗ n) ·α)= (θ( f )⊗ (1⊗ n)) ·α

=8′( f ⊗ n) ·α.

This proves (1).

(2) The diagram commutes by definition of 8′. �

It is now possible to prove the result announced at the beginning of the subsection.

Proof of Proposition 3.6.1. Since N is invertible as an S-module, then the following
evaluation mappings are bijective

N ⊗S HomS(N ,U )→U and HomS(N ,U )⊗S N →U.

According to Lemmas 3.6.2 and 3.6.3, the following evaluation mappings are
isomorphisms of U -bimodules

F(N )⊗U HomU (F(N ),U )→U and HomU (F(N ),U )⊗U F(N )→U.

Thus, F(N ) is invertible as a U -bimodule. �
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4. The action of L on the inverse dualising bimodule of S

This section introduces an action of L on Ext•Se(S, Se) by means of Lie derivatives,
which is used to describe Ext•U e(U,U e) in the next section. When S is projective
in Mod(R), then Ext•Se(S,−) is the Hochschild cohomology H •(S;−); in this
setting, the Lie derivatives on H •(S; S) and H•(S; S) are defined in [Rinehart 1963,
Section 9] and have a well-known expression in terms of the Hochschild resolution
of S. For the needs of the article, the definition is translated to arbitrary coefficients
in terms of any projective resolution of S in Mod(Se).

Hence, Section 4.1 introduces preliminary material, Section 4.2 deals with
derivations on projective resolutions of S in Mod(Se), Section 4.3 defines the Lie
derivatives, Section 4.4 presents the action of L on Ext•Se(S, Se), and Section 4.5
discusses particular situations.

For the section, a projective resolution of S in Mod(Se) is considered;

(P•, d)→ S.

Denote S by P1 and the augmentation mapping P0
→ S by d0. For all M ∈Mod(Se)

and s ∈ S, denote by λs and ρs the multiplication mappings

λs : M→ M, m 7→ (s⊗ 1) ·m

and
ρs : M→ M, m 7→ (1⊗ s) ·m.

4.1. Data on the projective resolution. For all s ∈ S, the mappings λs, ρs on P•

are morphisms of complexes of left Se-modules and induce the same mapping

S→ S,

t 7→ st

in cohomology. Hence, there exists a morphism of graded left Se-modules,

(4-1) ks : P•→ P•[−1],

such that

(4-2) λs − ρs = ks ◦ d + d ◦ ks .

Lemma 4.1.1. Let ∂ : S→ S be an R-linear derivation. Let ψ : P•→ P• be a
morphism of complexes of R-modules such that

• H 0(ψ) : S→ S is the zero mapping;

• there exists a morphism of graded left Se-modules,

k : P•→ P•[−1],
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such that, for all p ∈ P• and s, t ∈ S,

(4-3) ψ((s⊗ t) · p)= (s⊗ t) ·ψ(p)− (1⊗ ∂)(s⊗ t) · (k ◦ d + d ◦ k)(p).

Then, there exists a morphism of graded R-modules,

h : P•→ P•[−1],

such that

• ψ = h ◦ d + d ◦ h; and

• for all s, t ∈ S and p ∈ P•,

h((s⊗ t) · p)= (s⊗ t) · h(p)− (1⊗ ∂)(s⊗ t) · k(p).

Proof. The proof is an induction on n 6 1, taking h1
: S→ P0 equal to 0. Let n 6 0

and assume that there exist linear mappings, for all j such that n+ 16 j 6 1,

h j
: P j
→ P j−1

such that, for all j satisfying n+ 16 j 6 0, p ∈ P j and s, t ∈ S,

(4-4)
ψ j
= h j+1

◦ d j
+ d j−1

◦ h j

h j ((s⊗ t) · p)= (s⊗ t) · h j (p)− (1⊗ ∂)(s⊗ t) · k j (p).

This is illustrated in the following diagram:

Pn dn
//

ψn

��

Pn+1

ψn+1

��

hn+1

ww

dn+1
// Pn+2 dn+2

//

hn+2

ww

· · ·

Pn dn
// Pn+1 dn+1

// Pn+2 dn+2
// · · ·

Let
((pi , ϕ

i ))i∈I

be a coordinate system of the projective left Se-module Pn. That is, let pi ∈ Pn and
ϕi
∈ HomSe(Pn, Se) for all i ∈ I such that, for all p ∈ Pn,

p =
∑
i∈I

ϕi (p) · pi ,

where {i ∈ I | ϕi (p) 6= 0} is finite. Since ψ : P•→ P• is a morphism of complexes,
it follows from (4-4) that, for all i ∈ I , there exists p′i ∈ Pn−1 such that

(4-5) ψn(pi )= dn−1(p′i )+ hn+1
◦ dn(pi ).

Denote by hn the linear mapping from Pn to Pn−1 such that, for all p ∈ Pn,

hn(p)=
∑
i∈I

ϕi (p) · p′i − (1⊗ ∂)(ϕ
i (p)) · kn(pi ).
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Then, for all p ∈ Pn and s, t ∈ S,

hn((s⊗t)·p)

=

∑
i∈I

(s⊗t)·ϕi (p)·p′i−(s⊗t)·(1⊗∂)(ϕi (p))·kn(pi )−(1⊗∂)(s⊗t)·ϕi (p)·kn(pi )

= (s⊗t)·hn(p)−(1⊗∂)(s⊗t)·kn
(∑

i∈I

ϕi (p)·pi

)
= (s⊗t)·hn(p)−(1⊗∂)(s⊗t)·kn(p).

Moreover,
ψn
= hn+1

◦ dn
+ dn−1

◦ hn.

Indeed, for all p ∈ Pn, p =
∑

i∈I ϕ
i (p) · pi , and hence

dn−1
◦hn(p)+hn+1

◦dn(p)

=

∑
i∈I

ϕi (p)·dn−1(p′i )−(1⊗∂)(ϕ
i (p))·dn−1

◦kn(pi )+hn+1
(∑

i∈I

ϕi (p)·dn(pi )

)
=

(4-4)

∑
i∈I

ϕi (p)·dn−1(p′i )−(1⊗∂)(ϕ
i (p))·dn−1

◦kn(pi )

+ϕi (p)·hn+1
◦dn(pi )−(1⊗∂)(ϕi (p))·kn+1

◦dn(pi )

=
(4-3)

∑
i∈I

ϕi (p)·dn−1(p′i )+ϕ
i (p)·hn+1

◦dn(pi )+ψ
n(ϕi (p)·pi )−ϕ

i (p)·ψn(pi )

=
(4-5)

∑
i∈I

ψn(ϕi (p)·pi )=ψ
n(p). �

4.2. Derivations on the projective resolution. Let ∂ : S→ S be an R-linear deriva-
tion. It defines an R-linear derivation on Se denoted by ∂e,

∂e
: Se
→ Se,

s⊗ t 7→ ∂(s)⊗ t + s⊗ ∂(t).

For every left Se-module M, a derivation of M relative to ∂ is an R-linear mapping,

∂M : M→ M,

such that, for all m ∈ M and s, t ∈ S,

∂M((s⊗ t) ·m)= ∂e(s⊗ t) ·m+ (s⊗ t) · ∂M(m).

A derivation of P• relative to ∂ is a morphism of complexes of R-modules,

∂• : P•→ P•,

such that ∂n
: Pn

→ Pn is a derivation relative to ∂ for all n, and such that
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H 0(∂•)= ∂ . Note that a morphism of complexes of R-modules ∂• : P•→ P• such
that H 0(∂•)= ∂ is a derivation relative to ∂ if and only if

(4-6)
{
∂• ◦ λs = λ∂(s)+ λs ◦ ∂

•,

∂• ◦ ρs = ρ∂(s)+ ρs ◦ ∂
•.

Remark. For all derivations ∂•1, ∂
•

2 : P
•
→ P• relative to ∂ , the difference

∂•1− ∂
•

2 : P
•
→ P•

is a null-homotopic morphism of complexes of left Se-modules.

Lemma 4.2.1. There exists a mapping, which need not be linear,

(4-7)
DerR(S)→ HomR(P•, P•),

∂ 7→ ∂•

such that:

(1) For all ∂ ∈ DerR(S), the mapping ∂• is a derivation relative to ∂ .

(2) For all ∂1, ∂2 ∈ DerR(S) and r ∈ R, there exist morphisms of graded left
Se-modules,

`, `′ : P•→ P•[−1],

such that

(4-8)
{
[∂1, ∂2]

•
− [∂•1, ∂

•

2] = ` ◦ d + d ◦ `,
(∂1+ r∂2)

•
− (∂•1+ r∂•2) = `′ ◦ d + d ◦ `′.

(3) For all s ∈ S and ∂ ∈ DerR(S), there exists a morphism of graded R-modules

h : P•→ P•[−1],
such that

(4-9) (s∂)•− λs ◦ ∂
•
= h ◦ d + d ◦ h

and, for all p ∈ P• and t1, t2 ∈ S,

(4-10) h((t1⊗ t2) · p)= (t1⊗ t2) · h(p)− (t1⊗ ∂(t2)) · ks(p).

Recall that ks : P•→ P•[−1] is a morphism of graded left Se-modules such
that λs − ρs = ks ◦ d + d ◦ ks (see (4-1) and (4-2)).

Proof. (1) Let ∂ ∈DerR(S). For convenience, denote ∂ by ∂1
: S→ S. The proof is

an induction on n 6 1. Let n 6 0, and assume that a commutative diagram is given

Pn dn
// Pn+1 //

∂n+1

��

· · · // P0 d0
//

∂0

��

P1 //

∂1

��

0

Pn dn
// Pn+1 // · · · // P0 d1

// P1 // 0
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where ∂ i
: P i
→ P i is a derivation relative to ∂ for all i ∈ {n+1, n+2, · · · , 0}. Let

((pi , ϕ
i ))i∈I

be a coordinate system of the projective left Se-module Pn (see the proof in 4.1).
Then, for all i ∈ I , there exists p′i ∈ Pn such that

∂n+1
◦ dn(pi )= dn(p′i ).

Denote by ∂n the R-linear mapping from Pn to Pn such that, for all p ∈ Pn,

∂n(p)=
∑
i∈I

∂(ϕi (p)) · pi +ϕ
i (p) · p′i .

Then, for all p ∈ Pn,

dn
◦ ∂n(p)=

∑
i∈I

∂(ϕi (p)) · dn(pi )+ϕ
i (p) · dn(p′i )

=

∑
i∈I

∂(ϕi (p)) · dn(pi )+ϕ
i (p) · ∂n+1

◦ dn(pi )

= ∂n+1
◦ dn

(∑
i∈I

ϕi (p) · pi

)
= ∂n+1

◦ dn(p).

Thus,
dn
◦ ∂n
= ∂n+1

◦ dn.

Moreover, ∂n is a derivation of Pn relative to ∂ because ∂ is a derivation of Se and
ϕi
∈ HomSe(Pn, Se) for all i ∈ I.

(2) Note that [∂1, ∂2]
• and [∂•1, ∂

•

2] (or, (∂1 + r∂2)
• and ∂•1 + r∂•2) are derivations

of P• relative to [∂1, ∂2] (or, to ∂1+ r∂2, respectively). The conclusion therefore
follows from the remark preceding Lemma 4.2.1.

(3) Denote by ψ the mapping (s∂)•− λs ◦ ∂
• given by

P•→ P•,

p 7→ (s∂)•(p)− (s⊗ 1) · ∂•(p).

Then, for all p ∈ P• and t ∈ S,

ψ((t⊗1)·p)

= (s∂)•((t⊗1)·p)−(s⊗1)·∂•((t⊗1)·p)

= (s∂(t)⊗1)·p+(t⊗1)·(s∂)•(p)−(s⊗1)·(∂(t)⊗1)·p−(s⊗1)·(t⊗1)·∂•(p)

= (t⊗1)·ψ(p)
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and

ψ((1⊗t)·p)

= (s∂)•((1⊗t)·p)−(s⊗1)·∂•((1⊗t)·p)

= (1⊗s∂(t))·p+(1⊗t)·(s∂)•(p)−(s⊗1)·(1⊗∂(t))·p−(s⊗1)·(1⊗t)·∂•(p)

= (1⊗t)·ψ(p)+(1⊗∂(t))·(ρs−λs)(p)

=
(4-2)

(1⊗t)·ψ(p)−(1⊗∂(t))·(ks◦d+d◦ks)(p).

Hence, Lemma 4.1.1 may be applied, which yields (3). �

Remark. Using the remark preceding Lemma 4.2.1, it may be checked that, al-
though the mapping DerR(S)→ HomR(P•, P•) of the lemma is not unique, two
such mappings induce the same mapping from DerR(S) to H 0HomR(P•, P•), which
is R-linear.

When S is projective in Mod(R), it is possible to be more explicit on a possible
mapping, ∂ 7→ ∂•. Indeed, the Hochschild complex B(S)= S⊗•+2 is a projective
resolution of S. For all ∂ ∈ DerR(S), define the following mapping:

L∂ : B(S)→ B(S),

(s0| · · · |sn+1) 7→

n+1∑
i=0

(s0| · · · |si−1|∂(si )| · · · |si+1| · · · |sn).

This is a derivation of B(S) relative to ∂ . It is direct to check that the mapping

DerR(S)→ HomR(B(S), B(S)),

∂ 7→ L∂

is a morphism of Lie algebras over R. Now, consider homotopy equivalences of
complexes of Se-modules,

P•
f
// B(S) ,

g
oo

and, for all ∂ ∈ DerR(S), define ∂• as

∂• = g ◦ L∂ ◦ f ;

this is a derivation relative to ∂ because so is L∂ and because f and g are morphisms
of resolutions of S in Mod(Se). The following mapping satisfies the conclusion of
the preceding lemma, it is moreover R-linear:

DerR(S)→ HomR(P•, P•),

∂ 7→ ∂•.
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4.3. Lie derivatives. Consider a mapping ∂ 7→ ∂• such as in Lemma 4.2.1. Let M
be an S-bimodule and ∂ : S→ S be an R-linear derivation. Let ∂M : M→ M be a
derivation relative to ∂ . Given n ∈N and ψ ∈ HomSe(P−n,M), denote by L∂(ψ)
the mapping

(4-11) L∂(ψ)= ∂M ◦ψ −ψ ◦ ∂
−n.

This is a morphism in Mod(Se) because so is ψ and because ∂M and ∂−n are
derivations relative to ∂; moreover, it is a cocycle (or a coboundary) as soon as ψ
is, because ∂• : P•→ P• is a morphism of complexes. Denote by L∂ the resulting
mapping in cohomology

L∂ : Ext•Se(S,M)→ Ext•Se(S,M)

such that for all c ∈ Ext•Se(S,M), say represented by a cocycle ψ , then L∂(c) is
represented by the cocycle L∂(ψ). In the situations considered later in the article,
there is no ambiguity on ∂M , whence its omission in the notation.

Following similar considerations denote also by L∂ the mapping

L∂ : TorSe

•
(S,M)→ TorSe

•
(S,M)

such that for all ω ∈ TorSe

•
(S,M), say represented by a cocycle m⊗ p ∈ M ⊗Se P•

with sum sign omitted, L∂(ω) is represented by the cocycle

L∂(m⊗ p) := m⊗ ∂•(p)+ ∂M(m)⊗ p.

When S is projective in Mod(R), these operations may be written explicitly
in terms of the Hochschild resolution. When ψ is a Hochschild cocycle lying in
HomR(S⊗n,M), the mapping L∂(ψ) is given by

(4-12) (s1| · · · |sn) 7→ ∂M( f (s1| · · · |sn))−

n∑
i=1

f (s1| · · · |∂(si )| · · · |sn).

Likewise, the operation in Hochschild homology is induced by the following
mapping at the level of Hochschild chains,

M ⊗ S⊗n
→ M ⊗ S⊗n

(m|s1| · · · |sn) 7→ (∂M(m)|s1| · · · |sn)+

n∑
i=1

(m|s1| · · · |∂(si )| · · · |sn).

The operator L∂ is of course called the Lie derivative of ∂ . When M = S and S
is projective in Mod(R), this is nothing else but the classical Lie derivative defined
in [Rinehart 1963, Section 9]. In view of the remark following Lemma 4.2.1,
these constructions depend only on ∂ and ∂M and not on the choices of P• and the
mapping ∂ 7→ ∂•.
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In the sequel these constructions are considered mainly in the following cases:

• M = S and ∂M = ∂ .

• M = Se and ∂M = ∂
e.

• M = ExtnSe(S, Se) (n ∈ N) and ∂M = L∂ , which makes sense according to the
result below.

In the sequel the following construction is also used. Consider S-bimodules M, N.
Let m, n ∈N. Let ∂ ∈ DerR(S) and let ∂M : M→ M and ∂N : N → N be R-linear
derivations relative to ∂ . Then, for all f ∈HomR(ExtmSe(S,M),TorSe

n (S, N )), define
L∂( f ) as

L∂ ◦ f − f ◦L∂ .

Recall that for all M ∈Mod(Se), the spaces Ext•Se(S,M) and TorSe

•
(S,M) are left

S-modules by means of λs : M→ M for all s ∈ S; the corresponding multiplication
by s on these (co)homology spaces is denoted by λs .

Lemma 4.3.1. Let M ∈Mod(Se), n ∈ N and s ∈ S. Let ∂, ∂ ′ : S→ S be R-linear
derivations. Let ∂M , ∂

′

M : M → M be R-linear derivations relative to ∂ and ∂ ′,
respectively. Then, the following hold in Ext•Se(S,M):

(1) L∂ ◦ λs = λ∂(s)+ λs ◦L∂ .

(2) L[∂,∂ ′] = [L∂ ,L∂ ′].

(3) Let m ∈ N, let N be another S-bimodule and let ∂N : N → N be a derivation
relative to ∂ . Consider the contraction mapping

TorSe

m (S,M)→ HomR(ExtnSe(S, N ),TorSe

m−n(S,M ⊗S N )),

ω 7→ (c 7→ ιc(ω)).

If m = n, then it is L∂ -equivariant. When S is projective in Mod(R), it is L∂
equivariant for all m, n ∈ N.

(4) If M is symmetric as an S-bimodule, Ls∂ = λs ◦L∂ .

(5) When M = Se (and ∂M = ∂
e), the following equality holds in Ext•Se(S,M):

Ls∂ = λs ◦L∂ − λ∂(s).

Proof. (1) The equality is checked on cochains. Let ψ ∈ HomSe(P−n,M). Then,

L∂ ◦ λs(ψ)= ∂M ◦ λs ◦ψ − λs ◦ψ ◦ ∂
•

= (λ∂(s)+ λs ◦ ∂M) ◦ψ − λs ◦ψ ◦ ∂
•

= (λ∂(s)+ λs ◦L∂)(ψ).
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(2) Note that L[∂,∂ ′] is defined with respect to [∂M , ∂
′

M ], which is a derivation of
M relative to [∂, ∂ ′]. Following Lemma 4.2.1, there exists a morphism of graded
Se-modules,

` : P•→ P•[−1],

such that
[∂, ∂ ′]•− [∂•, ∂ ′•] = ` ◦ d + d ◦ `.

Let ψ ∈ HomSe(P−n,M). If this is a cocycle, then

L[∂,∂ ′](ψ)= [∂M , ∂
′

M ] ◦ψ −ψ ◦ ([∂
•, ∂ ′•] + ` ◦ d + d ◦ `)

= [L∂ ,L∂ ′](ψ)−ψ ◦ ` ◦ d −ψ ◦ d︸ ︷︷ ︸
=0

◦ `,

which is cohomologous to [L∂L∂ ′](ψ). This proves (2).

(3) Note that the mapping

∂M⊗S N : M ⊗S N → M ⊗S N ,

x ⊗ y 7→ ∂M(x)⊗ y+ x ⊗ ∂N (y),

is a well-defined derivation relative to ∂ , which defines L∂ on

TorSe

m−n(S,M ⊗S N ).

Assume first that m = n. Let p0 be any element of the preimage of 1S under the
augmentation mapping P0

→ S. Let x⊗ p ∈M⊗Se P−m and ψ ∈HomSe(P−m, N ),
and use the notation

ιψ(x ⊗ p) := (x ⊗ψ(p))⊗ p0.

Recall that the contraction mapping is induced by the mapping

M ⊗Se P−m
→ HomR(HomSe(P−m, N ), (M ⊗S N )⊗Se P0),

x ⊗ p 7→ ι?(x ⊗ p).

Denote L∂(ιψ(x ⊗ p))− ιL∂ (ψ)(x ⊗ p) by δ. Then,

δ = L∂((x ⊗ψ(p))⊗ p0)− (x ⊗L∂(ψ)(p))⊗ p0

= ∂M(x)⊗ψ(p)⊗ p0
+ x ⊗ ∂N (ψ(p))⊗ p0

+ x ⊗ψ(p)⊗ ∂0(p0)

−x ⊗ ∂N (ψ(p))⊗ p0
+ x ⊗ψ(∂−m(p))⊗ p0

= ιψ(L∂(x ⊗ p))+ x ⊗ψ(p)⊗ ∂0(p0).

Note that ∂0(p0) lies in the image of d : P−1
→ P0 because the image of p0 under

P0
→ S is 1 and H 0(∂•)= ∂ . These considerations therefore prove (3) when m = n.
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Now assume that S is projective in Mod(R). Then, the equivariance may be
checked at the level of Hochschild (co)chains. Let o = (x |s1| · · · |sm) ∈ S⊗m and
ψ ∈ HomR(S⊗n, N ). Then,

L∂(ιψ(o))−ιL∂ (ψ)(o)
=L∂(x⊗ψ(s1| · · · |sn)|sn+1| · · · |sm)−(x⊗L∂(ψ)(s1| · · · |sn)|sn+1| · · · |sm)

= (∂M(x)⊗ψ(s1| · · · |sn)|sn+1| · · · |sm)+(x⊗∂N (ψ(s1| · · · |sn))|sn+1| · · · |sm)

+

m∑
j=n+1

(x⊗ψ(s1| · · · |sn)|sn+1| · · · |∂(s j )| · · · |sm)

−(x⊗∂N (ψ(s1| · · · |sn))|sn+1| · · · |sm)

+

n∑
j=1

(x⊗ψ(s1| · · · |∂(s j )| · · · |sn)|sn+1| · · · |sm)

= ιψ(L∂(o)),

which proves (3) for all m, n ∈ N when S is projective in Mod(R).

(4) Note that Ls∂ is defined with respect to the derivation s∂M (= λs ◦∂M ). Assume
that M is symmetric as an S-bimodule. Therefore, the mapping

λs ◦ ∂
•
: P•→ P•

is a derivation relative to s∂ . Let ψ ∈HomSe(P•,M) be a cocycle with cohomology
class denoted by c. Since ψ ◦ λs = λs ◦ψ ,

Ls∂(ψ)= (λs ◦ ∂M) ◦ψ −ψ ◦ (λs ◦ ∂
•)= λs ◦L∂(ψ).

Taking cohomology classes yields that Ls∂(c)= λs ◦L∂(c).

(5) Recall that, here, ∂M is taken equal to

(s∂)e : Se
→ Se,

s1⊗ s2 7→ s∂(s1)⊗ s2+ s1⊗ s∂(s2).

Let ψ ∈ HomSe(P−n,M) be a cocycle with cohomology class denoted by c. Let h
be as in part (3) of Lemma 4.2.1. Then,

Ls∂(ψ)= (s∂)e ◦ψ −ψ ◦ (s∂)•

= (s∂ ⊗ 1+ 1⊗ s∂) ◦ψ −ψ ◦ (s∂)•

= λs ◦ (∂ ⊗ 1) ◦ψ + ρs ◦ (1⊗ ∂) ◦ψ −ψ ◦ (s∂)•.

Using (4-9), the equality becomes

Ls∂(ψ)= λs◦(∂⊗1)◦ψ+ρs◦(1⊗∂)◦ψ−λs◦ψ◦∂
•
−ψ◦h◦d−ψ◦d︸︷︷︸

=0

◦h.
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Using [∂, ρs] = ρ∂(s), it then becomes

Ls∂(ψ)= λs ◦ (∂ ⊗ 1) ◦ψ + (1⊗ ∂) ◦ ρs ◦ψ − ρ∂(s) ◦ψ − λs ◦ψ ◦ ∂
•
−ψ ◦ h ◦ d

= λs ◦ (∂ ⊗ 1) ◦ψ − ρ∂(s) ◦ψ + (1⊗ ∂) ◦ψ ◦ (ρs − λs)

+ (1⊗ ∂) ◦ψ ◦ λs − λs ◦ψ ◦ ∂
•
−ψ ◦ h ◦ d.

Using (4-2), this becomes

Ls∂(ψ)= λs◦(∂⊗1)◦ψ−ρ∂(s)◦ψ−(1⊗∂)◦ψ◦d︸︷︷︸
=0

◦ks

−(1⊗∂)◦ψ◦ks◦d+ (1⊗∂)◦ψ◦λs︸ ︷︷ ︸
=(1⊗∂)◦λs◦ψ=λs◦(1⊗∂)◦ψ

−λs◦ψ◦∂
•
−ψ◦h◦d

= λs◦(∂⊗1+1⊗∂)◦ψ−ρ∂(s)◦ψ−λs◦ψ◦∂
•
−(ψ◦h+(1⊗∂)◦ψ◦ks)◦d

= λs◦(L∂(ψ))−ρ∂(s)◦ψ−(ψ◦h+(1⊗∂)◦ψ◦ks)◦d.

Now, consider the following R-linear mapping denoted by f :

ψ ◦ h+ (1⊗ ∂) ◦ψ ◦ ks : P−n+1
→ Se.

This is a morphism of S-bimodules. Indeed,

• it is a morphism of left S-modules because so are ψ , 1⊗ ∂ , ks and h (see
(4-10));

• since ψ and ks are morphisms of S-bimodules, then, for all t ∈ S,

f ◦ ρt = ψ ◦ h ◦ ρt + (1⊗ ∂) ◦ ρt ◦ψ ◦ ks

=
(4-10)

ψ ◦ (ρt ◦ h− ρ∂(t) ◦ ks)+ (1⊗ ∂) ◦ ρt ◦ψ ◦ ks

= ρt ◦ψ ◦ h− ρ∂(t) ◦ψ ◦ ks + (1⊗ ∂) ◦ ρt ◦ψ ◦ ks

= ρt ◦ψ ◦ h+ ρt ◦ (1⊗ ∂) ◦ψ ◦ ks

= ρt ◦ f.

Therefore, Ls∂(ψ) and λs ◦ L∂(ψ)− ρ∂(s) ◦ ψ are cohomologous. Since so are
λ∂(s) ◦ψ and ρ∂(s) ◦ψ it follows that

Ls∂(c)= λs ◦L∂(c)− λ∂(s)(c). �

4.4. The action of L on Ext•Se(S, Se). According to Lemma 4.3.1, the mapping

(4-13)
L ×ExtnSe(S, Se)→ ExtnSe(S, Se),

(α, e) 7→ α · e := L∂α (e)



438 THIERRY LAMBRE AND PATRICK LE MEUR

endows Ext•Se(S, Se) with a compatible left S o L-module structure in the sense
of (3-13), that is, a left S o L-module structure such that, for all e ∈ Ext•Se(S, Se),
α ∈ L and s ∈ S,

(4-14) (sα) · e = s · (α · e)−α(s) · e.

This left S o L-module structure on Ext•Se(S, Se) does not define a left U-module
structure in general. However, Lemma 3.5.1 yields that Ext•Se(S, Se)∨ is a right
U-module by defining θ ·α, for all θ ∈ Ext•Se(S, Se)∨ and α ∈ L , as

θ ·α : ExtnSe(S, Se)→ S,

e 7→ −α(θ(e))+ θ(α · e).

4.5. Particular case of Van den Bergh and Calabi–Yau duality. Recall that, when-
ever TorSe

n (S, S) ' S as S-(bi)modules, a volume form is a free generator ωS of
TorSe

n (S, S), and the associated divergence

div : DerR(S)→ S

is defined such that, for all ∂ ∈ DerR(S),

(4-15) L∂(ωS)= div(∂)ωS.

When S is Calabi–Yau in dimension n, any free generator eS of the left S-module
ExtnSe(S, Se) defines an isomorphism of S-bimodules

θ : S→ ExtnSe(S, Se),

s 7→ seS.

In such a situation, the fundamental class cS ∈ TorSe

n (S,ExtnSe(S, Se)) (see 2.1) is a
free generator of the left S-module TorSe

n (S,ExtnSe(S, Se)), and hence the preimage
ωS of cS under the bijective mapping

θ∗ : TorSe

n (S, S)→ TorSe

n (S,ExtnSe(S, Se))

is a volume form for S, thus defining a divergence operator.

Proposition 4.5.1. (1) Assume the following:

• R is Noetherian and S is finitely generated as an R-algebra.
• S is projective in Mod(R).
• S has Van den Bergh duality with dimension n.

Then there is an isomorphism of S-modules compatible with Lie derivatives

ExtnSe(S, Se)'3n
S DerR(S).
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(2) Assume that S is Calabi–Yau in dimension n. Let eS be a free generator of the
left S-module ExtnSe(S, Se). Let div be the resulting divergence operator. Then,
for all ∂ ∈ DerR(S),

(4-16) L∂(eS)=−div(∂)eS.

Proof. In both cases, S lies in per(Se). Denote the fundamental class of S by cS . In
view of part (3) of Lemma 4.3.1, the definition of cS gives that

(4-17) L∂(cS)= 0.

(1) Denote ExtnSe(S, Se) by D. In view of Proposition 2.2.1, [Hochschild et al. 1962,
Theorem 3.1] applies and yields an isomorphism of S-modules,

(4-18) TorSe

n (S, S)'3n
S�S/R.

Following [Rinehart 1963, Section 9], this isomorphism is compatible with Lie
derivatives. Identify D−1 with HomS(D, S) and define ∂D−1 as follows, for all
∂ ∈ DerR(S):

∂D−1 : HomS(D, S)→ HomS(D, S),

f 7→ ∂ ◦ f − f ◦L∂ .

The evaluation isomorphism

(4-19) ev : D⊗S D−1
−→∼ S

is compatible with Lie derivatives in the following sense, where ∂ ∈ DerR(S):

(4-20) ∂ ◦ ev= ev ◦ (L∂ ⊗ Id+ Id⊗ ∂D−1).

Besides, the duality isomorphism

(4-21) ι?(cS) : Ext0Se(S, D−1)→ TorSe

n (S, D⊗S D−1)

is compatible with the action of Lie derivatives because of (4-17) (see part (3) of
Lemma 4.3.1). Combining (4-18), (4-19), (4-20) and (4-21) yields an isomorphism
that is compatible with Lie derivatives

D−1
'3n

S�S/R.

This proves (1).

(2) Keep the notation cS , ωS , θ , θ∗ for the objects defined from eS before the
statement of the proposition. Let ∂ ∈ DerR(S). There exists λ ∈ S such that

L∂(eS)= λeS.
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Now, for all s⊗ p ∈ S⊗Se P−n ,

L∂(θ∗(s⊗ p))= L∂(seS ⊗ p)

= ∂(s)eS ⊗ p+ sL∂(eS)⊗ p+ seS ⊗ ∂
•(p)

= θ∗(L∂(s⊗ p))+ λθ∗(s⊗ p).

Therefore,

0= L∂(cS)= L∂(θ∗(ωS))= θ∗(L∂(ωS)︸ ︷︷ ︸
=div(∂)ωS

)+ λθ∗(ωS)= (λ+ div(∂))cS.

Since cS is regular, λ=−div(∂). �

5. Proof of the main theorems

The main results of this article are proved in this section. For this purpose, a
description of Ext•U e(U,U e) is made in Section 5.1, the underlying S-module is
expressed in terms of Ext•Se(S, Se) and Ext•U (S,U ), and the U -bimodule structure
is described using the functor F : Mod(U )→ Mod(U e) and the action of L on
Ext•Se(S, Se) introduced in Section 4. This description is applied in Section 5.2 in
order to prove Theorem 1. And Theorem 2 and Corollary 1 are proved in Sections 5.3
and 5.4 by specialising to the situations where Exttop

Se (S, Se) and Exttop
U (S,U ) are

free, and where (S, L) arises from a Poisson bracket on S, respectively.
Throughout the section, Ext•Se(S, Se) is endowed with its compatible left S o L-

module structure introduced in Section 4.4.

5.1. The inverse dualising bimodule of U. This subsection proves the following
result.

Proposition 5.1.1. Let R be a commutative ring and d ∈ N. Let (S, L) be a Lie–
Rinehart algebra over R. Assume the following:

(a) S is flat as an R-module.

(b) For all n ∈ N, the S-module ExtnSe(S, Se) is projective.

(c) S ∈ per(Se).

(d) L is finitely generated and projective with constant rank equal to d in Mod(S).

Then, 3d
S L∨ ⊗S Ext•Se(S, Se) is a graded left U-module such that, for all α ∈ L ,

c ∈ Ext•Se(S, Se) and ϕ ∈3d
S L∨,

α · (ϕ⊗ c)=−ϕ ·α⊗ c+ϕ⊗α · c.

Moreover, U is homologically smooth. Finally, there is an isomorphism of graded
right U e-modules,

Ext•U e(U,U e)' F(3d
S L∨⊗S Ext•−d

Se (S, Se)).



DUALITY FOR DIFFERENTIAL OPERATORS OF LIE–RINEHART ALGEBRAS 441

For this subsection, assume (a), (b), (c) and (d) are true, and consider

• a bounded resolution Q•→ S in Mod(U ) by finitely generated and projective
modules (see [Rinehart 1963, Lemma 4.1]),

• a bounded resolution π : P•→ S in Mod(Se) by finitely generated and projec-
tive modules,

• an injective resolution j :U e
→ I • in Mod(U e

⊗ (U e)op).

Since S is flat over R and L is projective in Mod(S), part (2) of Lemma 3.0.1 gives
that U e is flat over R. Therefore, the extension-of-scalars functor

−⊗U e
:Mod(U e)→Mod(U e

⊗ (U e)op)

is exact. Hence, the restriction-of-scalars-functor transforms injective U e-bimodules
into injective left U e-modules. Thus, I • is an injective resolution of U e in Mod(U e).
Therefore, there is an isomorphism of graded right U e-modules,

(5-1) Ext•U e(U,U e)' H •HomU e(U, I ∗).

The right-hand side is a right U e-module by means of I ∗.
The proof of the above proposition is divided into separate lemmas.

Lemma 5.1.2. U is homologically smooth.

Proof. Since U is projective in Mod(S) (see part (2) of Lemma 3.0.1), the functor

F :Mod(U )→Mod(U e)

is exact. Moreover, F(S) ' U and S ∈ per(U ). Therefore, in order to prove that
U is homologically smooth, it suffices to prove that F(U ) ∈ per(U e), which is
equivalent to F(U ) being compact in the derived category D(U e) of complexes of U -
bimodules. Here is a proof of this fact. Let (Mk)k∈K be a family in D(U e), denote
⊕k∈K Mk by M , and consider fibrant resolutions of complexes of U -bimodules
Mk→ i(Mk), for all k ∈ K , and M→ i(M). Since S is homologically smooth, S is
compact in D(Se), and hence the following natural mapping is a quasi-isomorphism:⊕

k∈K

HomSe(P•,Mk)→ HomSe(P•,M).

Since P• is a right bounded complex of projective S-bimodules, the functor
HomSe(P•,−) preserves quasi-isomorphisms, and hence the following natural
mapping is a quasi-isomorphism:⊕

k∈K

HomSe(P•, i(Mk))→ HomSe(P•, i(M)).
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Since U is projective over S on both sides, U e is projective in Mod(Se). There-
fore, for all fibrant complexes I of U -bimodules, the functor HomSe(−, I ) pre-
serves quasi-isomorphisms. Accordingly, the following natural mapping is a quasi-
isomorphism: ⊕

k∈K

HomSe(S, i(Mk))→ HomSe(S, i(M)) .

Since the pair (F,G) is adjoint and G is induced by the functor HomSe(S,−), the
following natural mapping is a quasi-isomorphism:⊕

k∈K

HomU e(F(U ), i(Mk))→ HomU e(F(U ), i(M)).

Taking cohomology in degree 0 yields that the following natural mapping is bijective:⊕
k∈K

D(U e)(F(U ), i(Mk))→ D(U e)(F(U ), i(M)) .

This proves that F(U ) is compact in D(U e). Thus, U is homologically smooth. �

The authors thank Bernhard Keller for having pointed out an incorrect argument in
a previous version of this proof.

Lemma 5.1.3. There is an isomorphism of graded right U e-modules,

(5-2) Ext•U e(U,U e)' H •(HomU (Q∗,U )⊗U G(I ∗)).

Proof. Because of the isomorphism F(S) ' U in Mod(U e) and the adjunction
(F,G), there is a functorial isomorphism of complexes of right U e-modules,

(5-3) HomU e(U, I •)' HomU (S,G(I •)).

Since F is exact and the pair (F,G) is adjoint, G(I •) is a left bounded complex of
injective left U-modules. Hence, HomU (−,G(I •)) preserves quasi-isomorphisms.
Thus, the quasi-isomorphism Q•→ S induces a quasi-isomorphism of complexes
of right U e-modules,

(5-4) HomU (S,G(I •))→ HomU (Q•,G(I •)).

Since Q• is bounded and consists of finitely generated projective left U-modules,
the following canonical mapping is a functorial isomorphism:

(5-5) HomU (Q•,U )⊗U G(I •)→ HomU (Q•,G(I •)).

Note that, whether in (5-3), (5-4), or (5-5), the involved right U e-module structures
are inherited from I •. Thus, the announced isomorphism is proved. �

In order to examine the right-hand side of (5-2) by means of a spectral sequence,
the following lemma describes H •(G(I ∗)) as a graded U −U e-bimodule.
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Lemma 5.1.4. Consider Ext•Se(S, Se) as a left S o L-module as in Section 4.4.
Then, there is a U −U e-bimodule structure on Ext•Se(S, Se)⊗Se U e such that the
right U e-module structure is inherited from U e and for all α ∈ L , c ∈ Ext•Se(S, Se)

and u, v ∈U,

α · (c⊗ (u⊗ v))= α · c⊗ (u⊗ v)+ c⊗ ((α⊗ 1− 1⊗α) · (u⊗ v)).

For this structure, there is an isomorphism of graded U −U e-bimodules,

H •(G(I ∗))' Ext•Se(S, Se)⊗Se U e.

Proof. The object G(I •) is HomSe(S, I •) as a complex of S-modules, its right
U e-module structure is inherited from I •, and the one of left U-module is given in
Section 3.2.

First, since U e is projective in Mod(Se) and I • consists of injective left U e-
modules, I • is a left bounded complex of injective left Se-modules. Hence,
HomSe(−, I •) preserves quasi-isomorphisms. Thus, π : P•→ S induces a quasi-
isomorphism of complexes of right Se-modules,

(5-6) π ′ : HomSe(S, I •)→ HomSe(P•, I •).

For all α∈ L , let ∂•α : P
•
→ P• be a derivation relative to ∂α : S→ S (see Section 4.2),

and denote by δ•α the mapping from I • to I • given by

i 7→ (α⊗ 1− 1⊗α) · i.

Then, define α · f and α · g, for all f ∈ HomSe(S, I •) and g ∈ HomSe(P•, I •), by

α · f = δ•α ◦ f − f ◦ ∂α

α · g = δ•α ◦ g− g ◦ ∂•α ;

since π ◦ ∂•α = ∂α ◦π ,
π ′(α · f )= α ·π ′( f ).

The hypotheses on P• yield an isomorphism of complexes of right U e-modules,

(5-7) ev : HomSe(P•, Se)⊗Se I •→ HomSe(P•, I •).

Endow the left-hand side term with the following action of L . For all α ∈ L and
ϕ⊗ i ∈ HomSe(P•, Se)⊗Se I •, denote by α · (ϕ⊗ i) the (well-defined) element of
HomSe(P•, Se)⊗Se I •,

α ·ϕ⊗ i +ϕ⊗ (δ•αi).

The assignment ϕ⊗ i 7→ α · (ϕ⊗ i) is a morphism of complexes of R-modules from
HomSe(P•, Se)⊗Se I • to itself. In view of (4-8) and of the identity

(α⊗ 1− 1⊗α) · ((s⊗ t) · j)= ∂α(s⊗ t) · j + (s⊗ t) · (α⊗ 1− 1⊗α) · j
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in I •, for all s, t ∈ S and j ∈ I •, the following holds:

(5-8) ev(α · (ϕ⊗ i))= α · ev(ϕ⊗ i).

HomSe(P•, Se) is also a bounded complex of projective right Se-modules. Hence,
the functor HomSe(P•, Se)⊗Se− preserves quasi-isomorphisms. Thus, j :U e

→ I •

induces a quasi-isomorphism of right U e-modules,

(5-9) Id⊗ j : HomSe(P•, Se)⊗Se U e
→ HomSe(P•, Se)⊗Se I •.

Endow the left-hand side term with the following action of L . For all α ∈ L ,
ϕ ∈ HomSe(P•, Se) and u, v ∈U, denote by α · (ϕ⊗ (u⊗ v)) the following (well-
defined) element of HomSe(P•, Se)⊗Se U e:

α ·ϕ⊗ (u⊗ v)+ϕ⊗ ((α⊗ 1− 1⊗α) · (u⊗ v)).

The assignment ϕ⊗ (u⊗ v) 7→ α · (ϕ⊗ (u⊗ v)) is a morphism of complexes of
R-modules from HomSe(P•, Se)⊗Se U e to itself, and

(Id⊗ j)(α · (ϕ⊗ (u⊗ v))= α · ((Id⊗ j)(ϕ⊗ (u⊗ v)))

because j :U e
→ I • is a morphism of complexes of U e

−U e-bimodules.
Since U e is projective in Mod(Se), there is an isomorphism of right U e-modules,

(5-10) H •(HomSe(P∗, Se)⊗Se U e)' Ext•Se(S, Se)⊗Se U e.

For all cocycles ϕ ∈ HomSe(P•, Se), with cohomology class denoted by c, and for
all α ∈ L and u, v ∈U, the image under (5-10) of the cohomology class of

α · (ϕ⊗ (u⊗ v))

is

(5-11) α · c⊗ (u⊗ v)+ c⊗ ((α⊗ 1− 1⊗α) · (u⊗ v)),

where α · c is defined in Section 4.4 (see (4-13)).
Combining (5-6), (5-7), (5-9), (5-10) yields an isomorphism of right U e-modules,

(5-12) Ext•Se(S, Se)⊗Se U e
−→∼ H •(G(I ∗)),

such that, for all α ∈ L , c ∈ Ext•Se(S, Se) and u, v ∈U, if γ denotes the image of
c⊗ (u⊗ v) under (5-12), then α · γ is the image of (5-11).

Thus, applying part (1) of Lemma 3.5.2 to N =Ext•Se(S, Se) yields the announced
conclusion. �

Proof of Proposition 5.1.1. The statement relative to the left U-module structure on
3d

S L∨⊗Ext•Se(S, Se) follows from Lemma 3.5.1, and Lemma 5.1.2 shows that U
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is homologically smooth. The (first quadrant, cohomological) spectral sequence of
the bicomplex

(5-13) (HomU (Q p,U )⊗U G(I q))p,q

converges to H •(HomU (Q∗,U )⊗U G(I ∗)) and its E p,q
2 -term is, for all p, q ∈ Z,

H p
h (H

q
v (HomU (Q•,U )⊗U G(I •)).

Since HomU (Q•,U ) consists of projective right U-modules, there is an isomorphism
of right U e-modules, for all p, q ∈ Z,

(5-14) Hq(HomU (Q p,U )⊗U G(I •))' HomU (Q p,U )⊗U Hq(G(I •)).

The description of H •(G(I ∗)) made in Lemma 5.1.4 combines with (5-14) into the
following isomorphism of right U e-modules, for all p, q ∈ Z:

(5-15) Hq(HomU (Q p,U )⊗U G(I •))'HomU (Q p,U )⊗U (ExtqSe(S, Se)⊗Se U e).

Using Lemma 3.5.2 (part (2)), this isormorphism yields an isomorphism of right
U e-modules, for all p, q ∈ Z:

(5-16) Hq(HomU (Q p,U )⊗U G(I •))' F(HomU (Q p,U )⊗S ExtqSe(S, Se)).

Given that F is an exact functor, that ExtqSe(S, Se) is projective in Mod(S) for all q
and that (S, L) has duality in dimension d, it follows from (5-16) that there is an
isomorphism of right U e-modules, for all p, q ∈ Z,

H p
h (H

q
v (HomU (Q•,U )⊗U G(I •)))'

{
F(ExtdU (S,U )⊗S ExtqSe(S, Se)) if p= d ,

0 if p 6= d .

Therefore, the spectral sequence of the bicomplex (5-13) degenerates at E2. Thus,

H •(HomU (Q∗,U )⊗U G(I ∗))' F(ExtdU (S,U )⊗S Ext•−d
Se (S, Se)) in Mod(Se).

The conclusion follows from (5-2) and from the isomorphism ExtdU (S,U )'3
d
S L∨

in Mod(U ) established in [Huebschmann 1999, Theorem 2.10] �

5.2. Proof of the main theorem.

Proof of Theorem 1. Following Proposition 5.1.1, U is homologically smooth and
there is an isomorphism of graded right U e-modules,

Ext•U e(U,U e)' F(3d
S L∨⊗S Ext•−d

Se (S, Se)).

According to Proposition 3.6.1, the functor F transforms left U-modules that are
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invertible as S-modules into invertible U -bimodules. Note that

• 3d
S L∨ is invertible as an S-module because L is projective with constant rank,

and

• Ext•Se(S, Se) is concentrated in degree n and ExtnSe(S, Se) is invertible as an
S-module because S has Van den Bergh duality.

Thus, Ext•U e(U,U e) is concentrated in degree n+d and Extn+d
U e (U,U e) is invertible

as a U -bimodule. Hence, U has Van den Bergh duality in dimension n+ d . �

5.3. Proof of Theorem 2. The hypotheses of Theorem 2 are assumed throughout
this subsection. Let ϕL be a free generator of the S-module 3d

S L∨. Let eS be a free
generator of the S-module ExtnSe(S, Se). Therefore, there exist mappings

λL , λS : L→ S

such that, for all α ∈ L , {
α · eS = λS(α) · eS,

ϕL ·α = λL(α) ·ϕS.

Some basic properties of these are summarised below.

Lemma 5.3.1. Let λ be either one of λS or λL . Then, for all α, β ∈ L and s ∈ S,

(1) λ(sα)= sλ(α)−α(s),

(2) λ([α, β])= α(λ(β))−β(λ(α)).

Proof. Assume that λ= λS . Let s ∈ S and α ∈ L . Then, using Section 4.4,

(sα) · eS = s · (α · eS)−α(s) · eS

= (sλ(α)−α(s)) · eS,

which proves (1), and

α · (β · eS)= α · (λ(β) · eS)

= α(λ(β)) · eS + λ(β) · (α · eS)

= (α(λ(β))+ λ(α)λ(β)) · eS,

from which (2) may be proved directly. The proof when λ= λL is analogous, using
the right U-module structure of 3d

S L∨ instead of Section 4.4. �

As proved later, the following automorphism is a Nakayama automorphism for U.

Lemma 5.3.2. There exists a unique R-algebra homomorphism,

ν :U →U,
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such that, for all s ∈ S and α ∈ L ,{
ν(s) = s,
ν(α)= α+ λL(α)− λS(α).

This is an automorphism of R-algebra.

Proof. The uniqueness is immediate. For all α ∈ L , denote α + λL(α)− λS(α)

by να. Then, for all s ∈ S and α, β ∈ L ,

[να, νβ] = [α+ λL(α)− λS(α), β + λL(β)− λS(β)]

=
Lemma 5.3.1

[α, β] + λL([α, β])− λS([α, β])= ν[α,β],

νsα = sα+ λL(sα)− λS(sα)

=
Lemma 5.3.1

sα+ sλL(α)− sλS(α)= sνα,

[να, s] = [α+ λL(α)− λL(α), s] = α(s).

This proves the existence of ν. Note that ν preserves the filtration of U by the powers
of L and that gr(ν) is the identity mapping of U. Accordingly, ν is bijective. �

Now it is possible to prove Theorem 2.

Proof of Theorem 2. From Theorem 1, U has Van den Bergh duality in dimension
n+ d and there is an isomorphism of U -bimodules,

(5-17) Extn+d
U e (U,U e)' F(3d

S3
∨
⊗S ExtnSe(S, Se)),

where the tensor product inside F(•) is a left U-module by (3-8).
Recall that 3d

S L∨ and ExtnSe(S, Se) are freely generated by ϕL and eS , respec-
tively. Therefore, the following mapping is an isomorphism of left U-modules (see
Section 3.3):

(5-18)
8 :U → F(3d

S L∨⊗S ExtnSe(S, Se)),

u 7→ u⊗ (ϕL ⊗ eS).

For all s ∈ S, α ∈ L and u ∈U,

8(u)s = (u⊗ (ϕL ⊗ eS)) · s = us⊗ (ϕL ⊗ eS)=8(us),

8(u)α = (u⊗ (ϕL ⊗ eS)) ·α

= uα⊗ (ϕL ⊗ eS)− u⊗α · (ϕL ⊗ eS)

= uα⊗ (ϕL ⊗ eS)− (−u⊗ (ϕL ·α⊗ eS)+ u⊗ (ϕL ⊗α · eS))

= (u(α+ λL(α)− λS(α)))⊗ (ϕL ⊗ eS)

=8(u(α+ λL(α)− λS(α))).
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Thus, denoting by ν the automorphism of U considered in Lemma 5.3.2, then, for
all u, v ∈U,

(5-19) 8(u) · v =8(uν(v)).

Combining (5-17), (5-18) and (5-19) yields that there is an isomorphism of bimod-
ules,

Extn+d
U e (U,U e)'U ν .

Since λS =−div (see Proposition 4.5.1), this proves Theorem 2. �

5.4. Case of Poisson algebras.

Proof of Corollary 1. From Proposition 2.2.1, S has Van den Bergh duality in
dimension n. Moreover, Proposition 4.5.1 yields an isomorphism of S-modules
3n

S DerR(S)' ExtnSe(S, Se) which is compatible with the action of Lie derivatives.
Finally, according to (1-3), the dualising module of (S, �S/R) is 3n

S DerR(S) with
right U-module structure such that, for all s ∈ S and ϕ ∈3n

S DerR(S),

ϕ · ds =−L{s,−}(ϕ).

Using these considerations, the corollary follows from Theorems 1 and 2. �

6. Examples

6.1. The case where L is free as an S-module. In this subsection, it is assumed
that L is free as an S-module. Consider a basis (α1, . . . , αd) of L over S. Denote
the dual basis of L∨ by (α∗1 , . . . , α

∗

d). In particular, 3d
S L∨ is free of rank one in

Mod(S), with a generator denoted by ϕL ,

ϕL = α
∗

1 ∧ · · · ∧α
∗

d .

For all i ∈ {1, . . . , d}, consider the matrix of adαi , denoted by (si
j,k) j,k ∈ Md(S).

Hence, for all i, k ∈ {1, . . . , d},

[αi , αk] =

d∑
j=1

si
j,kα j .

In this situation, the action of L on 3•S L by Lie derivatives specialises as follows.
For all i, j, k ∈ {1, . . . , d},

(λαi (α
∗

j ))(αk)= αi (α
∗

j (αk))−α
∗

j ([αi , αk])=−si
j,k .

Hence, for all i, j ∈ {1, . . . , d},

λαi (α
∗

j )=−

d∑
k=1

si
j,kα
∗

k .
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Thus, the right U-module structure of 3d
S L∨ is such that, for all α ∈ L ,

(6-1) ϕL ·α = Tr(adα)ϕL .

Using this simplified description of 3d
S L∨ yields the following corollary of the

main theorems of this article.

Corollary 6.1.1. Let R be a commutative ring. Let (S, L) be a Lie–Rinehart
algebra of R. Denote by U its enveloping algebra. Assume that

• S is flat as an R-module,

• S has Van den Bergh duality in dimension n,

• L is free of rank d as an S-module.

Let (α1, . . . , αd) be a basis of L over S as considered previously. Then, U has Van
den Bergh duality in dimension n+ d and there is an isomorphism of U-bimodules,

Extn+d
U e (U,U e)'U ⊗S ExtnSe(S, Se),

where the left U-module structure on U ⊗S ExtnSe(S, Se) is the natural one and the
right U-module structure is such that, for all u ∈U, e ∈ ExtnSe(S, Se) and α ∈ L ,

(u⊗ e) ·α = uα⊗ e+ u⊗Tr(adα)e− u⊗L∂α (e).

If , moreover, S is Calabi–Yau, then U is skew Calabi–Yau and each volume form
on S determines a Nakayama automorphism ν ∈ AutR(U ) such that, for all s ∈ S
and α ∈ L , {

ν(s) = s,
ν(α)= α+Tr(adα)+ div(∂α),

where div denotes the divergence of the chosen volume form.

Proof. In view of (6-1), there is an isomorphism of right U-modules,

3d
S L∨ ' S,

where the right U-module structure on the right-hand side term is such that, for
all α ∈ L ,

1 ·α = Tr(adα).

The corollary therefore follows directly from Theorems 1 and 2. �

The previous corollary applies to any Lie–Rinehart algebra arising from a Poisson
structure on R[x1, . . . , xn], n ∈ N\{0, 1}.

Example 6.1.2. Let S = R[x, y]. Let P ∈ S. This defines a Poisson structure on S
such that

{x, y} = P.
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Let L :=�S/R and consider (S, L) as a Lie–Rinehart algebra over R such that, for
all s, t ∈ S,

• [ds, dt] = d{s, t};

• ∂ds = {s,−}.

Then (dx, dy) is a basis of �S/R over S. Note that
Tr(addx)= div(∂dx)=

∂P
∂y
,

Tr(addy)= div(∂dy)= −
∂P
∂x
.

From Corollary 6.1.1, U is skew Calabi–Yau in dimension 4 and has a Nakayama
automorphism ν ∈ AutR(S) such that

ν(x)= x, ν(dx)= dx + 2∂P
∂y
,

ν(y)= y, ν(dy)= dy− 2∂P
∂x
.

By considering the filtration of U by the powers of the image of L in U, with
associated graded algebra the symmetric algebra of L over S (see [Rinehart 1963,
Theorem 3.1]), it appears that U× = S× = R×. Accordingly, U has no nontrivial
inner automorphism. Consequently, U is Calabi–Yau if and only if ν = IdU , that is,
if and only if char(R)= 2, or else P ∈ R.

Example 6.1.3. Let S = R[x, y, z]. Let Px , Py, Pz ∈ S be such that

−→
P ∧ curl(

−→
P )= 0,

where
−→
P denotes (

Px
Py
Pz

)
.

Hence, the following defines a Poisson bracket on S,

{x, y} = Pz, {y, z} = Px , {z, x} = Py .

As in the previous example, let (S, L := �S/R) be the associated Lie–Rinehart
algebra over R. As is well-known,

{x,−}= Pz
∂

∂y
−Py

∂

∂z
, {y,−}= Px

∂

∂z
−Pz

∂

∂x
, {z,−}= Py

∂

∂x
−Px

∂

∂y
.
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Therefore, using the basis (dx, dy, dz) of �S/R over S,div(∂dx)

div(∂dy)

div(∂dz)

=
Tr(addx)

Tr(addy)

Tr(addz)

= curl(
−→
P ).

Using Corollary 6.1.1, it follows that U is skew Calabi–Yau in dimension 6 and
has a Nakayama automorphism ν ∈ AutR(S) such thatν(x)ν(y)

ν(z)

=
x

y
z

 and

ν(dx)
ν(dy)
ν(dz)

=
dx

dy
dz

+ 2 curl(
−→
P ).

As in the previous example, there are no nontrivial inner automorphisms for U.
Hence, U is Calabi–Yau if and only if char(R) = 2, or else curl(

−→
P )= 0. In

particular, when R contains Q as a subring, then U is Calabi–Yau if and only if the
Poisson bracket is Jacobian, that is, there exists Q ∈ S such that P =

−−→
grad(Q).

By the Quillen–Suslin Theorem, when R is a field and n ∈N, any R[x1, . . . , xn]-
module that is finitely generated and projective is free. Hence, Corollary 6.1.1 also
applies to all Lie–Rinehart algebras of the shape (R[x1, . . . , xn], L), where R is a
field.

6.2. On two-dimensional Nambu–Poisson structures. Following Corollary 1, U is
skew Calabi–Yau when S is flat over R and Calabi–Yau and (S, L) is given by a
Poisson bracket on S. Assuming these properties, this section computes a Nakayama
automorphism of U for a class of examples of two-dimensional Nambu–Poisson
structures (see [Laurent-Gengoux et al. 2013, Section 8.3]).

Let S = R[x, y, z]/(P) where P = 1+ T for some T ∈ R[x, y, z] which is
(p, q, r)-homogeneous in the sense that p, q, r ∈ R and t := pα+ qβ + rγ is a
unit in R which does not depend on the monomial xα yβzγ appearing in T. The
hypotheses imply the following equality in S:

(6-2) px
∂P
∂x
+ qy

∂P
∂y
+ r z

∂P
∂z
=−t (∈ R×).

Let Q ∈ R[x, y, z] and endow S with the Poisson structure such that

(6-3) {x, y} = Q
∂P
∂z
, {y, z} = Q

∂P
∂x
, {z, x} = Q

∂P
∂y
.

Consider (S, L :=�S/R) as a Lie–Rinehart algebra such that, for all s, t, s ′ ∈ S,

• [ds, dt] = d{s, t},

• (sdt)(s ′)= s{t, s ′}.
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Consider the following 2-form on S:

ωS = pxdy ∧ dz+ qydz ∧ dx + r zdx ∧ dy.

According to (6-2), �S/R is a projective S-module of rank 2. And the relation

∂P
∂x

dx +
∂P
∂y

dy+
∂P
∂z

dz = 0

in �S/R yields the following relations in 32
S�S/R:

∂P
∂x

dx ∧ dy = ∂P
∂z

dy ∧ dz,

∂P
∂y

dy ∧ dz = ∂P
∂x

dz ∧ dx,

∂P
∂z

dz ∧ dx = ∂P
∂y

dx ∧ dy.

Combining with (6-2) yields

dx ∧ dy =−t−1 ∂P
∂z
ωS,

dy ∧ dz =−t−1 ∂P
∂x
ωS,

dz ∧ dx =−t−1 ∂P
∂y
ωS.

Thus, ωS is a volume form of S.
In order to determine the divergence of ωS , consider the derivations δx , δy, δz ∈

DerR(S) given by

δx : x 7→ 0 δy : x 7→ −
∂P
∂z

δz : x 7→
∂P
∂y

y 7→ ∂P
∂z

y 7→ 0 y 7→ − ∂P
∂x

z 7→ − ∂P
∂y

z 7→ ∂P
∂x

z 7→ 0.

Note that

{x,−} = Qδx , {y,−} = Qδy and {z,−} = Qδz .

Then,
ιδx (ωS)= ιδx (pxdy ∧ dz+ qydz ∧ dx + r zdx ∧ dy)

= px
(
∂P
∂z

dz+ ∂P
∂y

dy
)
− qy ∂P

∂y
dx − r z ∂P

∂z
dx

= tdx (see (6-2)).
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Therefore, using the symmetry between x , y and z,

div(δx)= div(δy)= div(δz)= 0.

Apply Lemma 5.3.1, taking into account that λS =−div (see (4-16); then,

div({x,−})= div(Qδx)= Qdiv(δx)+ δx(Q).

Therefore,

(6-4) div({x,−})= ∂Q
∂y

∂P
∂z
−
∂Q
∂z

∂P
∂y
.

Applying Corollary 1 gives that the enveloping algebra U of (S, �S/R) is skew
Calabi–Yau. It has a Nakayama automorphism ν :U →U such that, for all s ∈ S,

ν(s)= s,ν(dx)

ν(dy)

ν(dz)

=
dx

dy

dz

+ 2
−−→
grad(Q)∧

−−→
grad(P).
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