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NONDEGENERACY OF THE GAUSS CURVATURE EQUATION
WITH NEGATIVE CONIC SINGULARITY

JUNCHENG WEI AND LEI ZHANG

We study the Gauss curvature equation with negative singularities. For
a local mean field type equation with only one negative index we prove a
uniqueness property. For a global equation with one or two negative indexes
we prove the nondegeneracy of the linearized equations.

1. Introduction

In this article we study two closely related equations, defined locally and globally
in R2, respectively. The first equation is defined in � ⊂ R2, which is simply
connected, open and bounded. Throughout the whole article we shall always
assume that the boundary of �, denoted as ∂�, is a rectifiable Jordan curve, and
we say � is regular. Let p0, p1, . . . , pm ∈� be a finite set in �. Then we consider
v as a solution of

(1-1)

{
1v+ λ ev∫

�
ev =−4πα0δp0 +

∑m
i=1 4παiδpi in �,

v = 0 on ∂�,

where α0 ∈ (0, 1), α1, . . . , αm > 0 and λ ∈ R.
The second equation is concerned with the stability of the following global

equation, which we suppose has u as a solution:

(1-2) 1u+ eu
=

N∑
i=1

4πβiδpi in R2,

where β1, . . . , βn are constants greater than −1 and p1, . . . , pn are the locations of
singular sources in R2. For this equation we shall prove that under some restrictions
of βi , any bounded solution of the linearized equation has to be the trivial solution.

The background of both equations is incredibly rich not only in mathematics
but also in physics. In particular, the study of (1-1) reveals core information on the
configuration of vortices in the electroweak theory of Glashow–Salam–Weinberg
[Lai 1981] and self-dual Chern–Simons theories [Dunne 1995; Hong et al. 1990;
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Jackiw and Weinberg 1990]. Also in statistical mechanics the behavior of solutions
in (1-1) is closely related to Onsager’s model of two-dimensional turbulence with
vortex sources [Caglioti et al. 1995; Chanillo and Kiessling 1994]. Most of the
motivation and applications of both equations come from their connection with
conformal geometry. The singular sources represent conic singularities on a surface
with constant curvature. There is a large number of interesting works that discuss
the qualitative properties of solutions of such equations. We mention [Chang et al.
2003; Bartolucci and Lin 2009; 2014; Bartolucci and Malchiodi 2013; Bartolucci
and Tarantello 2002; Chanillo and Kiessling 1994; Chen et al. 2004; Chen and Lin
2010; 2015; Chen and Li 1993; 1995; Li 1999; Lin et al. 2012; Luo and Tian 1992;
Malchiodi and Ruiz 2011; 2013; Nolasco and Tarantello 2000; Ohtsuka and Suzuki
2007; Spruck and Yang 1992; Struwe and Tarantello 1998; Tarantello 2010; 2017;
Troyanov 1989; 1991; Zhang 2006; 2009]. It is important to observe that it seems
there are very few works which discuss singularities with negative strength and
even fewer about the comparison between the negative indexes and positive ones.
In this article, using an improved version of the Alexandrov–Bol inequality, we
discuss the uniqueness property and the nondegeneracy for a local equation and a
global equation. Our proof is based on techniques developed in a number of works
of Bartolucci, Lin, Chang, Chen and Lin, etc.

To state the main result on the local equation, we first rewrite (1-1) using the
following Green’s function.

For p ∈�, let Gα(x, p) satisfy{
−1Gα(x, p)= 4παδp in �,

Gα(x, p)= 0, x ∈ ∂�,

and
u = v−Gα0 +

m∑
j=1

Gα j (x, p j ).

Then u satisfies

(1-3)

{
1u+ λ(Heu)/

(∫
�

Heu
)
= 0 in �,

u = 0 on ∂�,

where

(1-4) H(x)= eG0(x,p0)e
∑m

j=1 Gα j (x,p) = eh(x)
|x − p0|

−2α0
m∏

i=1
|x − pi |

2αi,

where h is harmonic in � and is continuous up to the boundary.
The first main result is the following theorem:

Theorem 1.1. Let u be a solution of (1-3) and H be defined by (1-4). Assume that
� is regular, then for any λ≤ 8π(1−α0) there exists at most one solution to (1-1).
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Here we note that for λ < 8π(1−α0), the existence result has been established
by Bartolucci and Malchiodi [2013]. The existence result for λ= 8π(1−α0) will
be discussed in a separate work.

The second main goal of this article is to consider the nondegeneracy of (1-2)
when there are exactly two negative indexes:

(1-5)
{
1u+ eu

=−4πα1δp1 − 4πα2δp2 +
∑n

i=3 4πβiδpi in R2,

u(x)=−4 log|x | + a bounded function near∞,

where α1, α2 ∈ (0, 1) and βi > 0 for i = 3, . . . , n and we assume that n ≥ 3. The
assumption of u at infinity says that∞ is not a singularity of u when R2 is identified
with S2.

Let

(1-6) u1(x)= u(x)+
2∑

i=1

2αi log|x − pi | − 2
n∑

i=3

βi log|x − pi |;

then clearly u1 satisfies{
1u1+ H1eu1 = 0 in R2,

u1(x)= (−4− 2α1− 2α2+ 2
∑n

i=3 βi ) log|x | + O(1), for |x |> 1,

where

(1-7) H1(x)=
2∏

i=1

|x − pi |
−2αi

n∏
i=3

|x − pi |
2βi , for x ∈ R2.

Our second main result is the following theorem:

Theorem 1.2. Let u, u1 and H1 be defined as in (1-5), (1-6) and (1-7), respectively.
Suppose φ is a classical solution of

(1-8) 1φ+ H1(x)eu1φ = 0 in R2.

If limx→∞|φ(x)|/ log|x | = 0 and α1, α2, βi satisfy the condition

(1-9) −max{α1, α2}+min{α1, α2}+

n∑
i=3

βi ≤ 0,

then φ ≡ 0.

Here we recall that the total angles at singularities are 2π(1−α1), 2π(1−α2),
2π(1+βi ) (i = 3, . . . , n). For a surface S with conic singularities, let

χ(S, θ)= χ(S)+
∑

i

(
θi

2π
− 1

)
,

where θi is the total angle at a conic singularity, and χ(S) is the Euler characteristic
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of S. The purpose of introducing χ(S, θ) is to put all surfaces with conic singularities
into three cases:

(i) The subcritical case if χ(S, θ) <mini {2, θi/π},

(ii) The critical case if χ(S, θ)=mini {2, θi/π},

(iii) The supercritical case if χ(S, θ) >mini {2, θi/π}.

In our case χ(S)= 2 because S is the standard sphere. It is easy to see that (1-9)
refers to the supercritical case. For the subcritical case, Troyanov’s well-known
result [1991] states that every conic singular metric is pointwise conformal to a
metric with constant curvature.

Finally, if there is only one negative singular source, a similar result still holds:
Let u satisfy

(1-10)
{
1u+ eu

=−4παδp1 +
∑n

i=2 4πβiδpi in R2,

u(x)=−4 log|x | + a bounded function near∞,

where α ∈ (0, 1) and βi > 0 for i = 2, . . . , n and we assume that n ≥ 3.
Let

u1(x)= u(x)+ 2α log|x − p1| − 2
n∑

i=2

βi log|x − pi |;

then clearly u1 satisfies

(1-11)

{
1u1+ H2eu1 = 0 in R2,

u1(x)= (−4− 2α+ 2
∑n

i=2 βi ) log|x | + O(1), for |x |> 1,

where

(1-12) H2(x)= |x − p1|
−2α

n∏
i=2

|x − pi |
2βi , for x ∈ R2.

Our third main result is:

Theorem 1.3. Let u1 be a solution of (1-11) with H2 defined in (1-12). Let φ be a
classical solution of

(1-13) 1φ+ H2(x)eu1φ = 0 in R2.

If limx→∞|φ(x)|/ log|x | = 0 and α, βi satisfy

(1-14) −α+

n∑
i=2

βi ≤ 0,

then φ ≡ 0.



GAUSS EQUATION WITH NEGATIVE CONIC SINGULARITY 459

The organization of this article is as follows. In Section 2 we derive a Bol’s
inequality with one negative singular source. Then in Section 3 the first two
eigenvalues of the linearized local equation are discussed. The proofs of the major
theorems are arranged in Sections 4 and 5. The main approach of this article follows
closely from previous works of Bartolucci, Chang, Chen and Lin, etc.

2. On Bol’s inequality and the first eigenvalues of the local equation

One of the major tools we shall use is Bol’s inequality:

Proposition 2.1. Let � b R2 be a simply connected, open and bounded domain
in R2. Let u be a solution of

1u+ V eu
= 0 in �

for

(2-1) V = |x − p1|
−2α0

n∏
i=2

|x − pi |
2βi eg

and 1g ≥ 0 in �. Here p1, . . . , pn (n ≥ 2) are distinct points in �. Let ω ⊂� be
an open subset of � such that ∂ω is a finite union of rectifiable Jordan curves. Let

Lα0(∂ω)=

∫
∂ω

(V eu)
1
2 ds, Mα0(ω)=

∫
ω

V eu dx .

Then

(2-2) 2L2
α0
(∂ω)≥ (8π(1−α0)−Mα0(ω))Mα0(ω).

The strict inequality holds if ω contains more than one singular source or is multiply
connected.

Our proof of Proposition 2.1 is motivated by the argument in [Bartolucci and
Castorina 2016] and [Bartolucci and Lin 2009; 2014]. For the case where α0 = 0,
the proposition was established in [Bartolucci and Lin 2014], and for the case where
V has only a singular source at 0, it was established by Bartolucci and Castorina. It
all starts from an inequality of Huber:

Theorem A [Huber 1954]. Let ω be an open, bounded, simply connected domain
with ∂ω being a rectifiable Jordan curve, Ṽ = |x |−2α0eg, for some 1g ≥ 0 in ω.
Then (∫

∂ω

Ṽ
1
2 ds

)2

≥ 4π(1−α0)

∫
ω

Ṽ dx if 0 ∈ ω,(∫
∂ω

Ṽ
1
2 ds

)2

≥ 4π
∫
ω

Ṽ dx if 0 6∈ ω.

Huber’s theorem can be adjusted to the following version:
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Theorem B (Bartolucci–Castorina). Let ω ⊂ R2 be an open bounded domain such
that ∂ω is a rectifiable Jordan curve. Suppose ωB is the closure of a possibly
disconnected bounded component of R2

\ ω and ωB is the interior of ωB . Let
Ṽ = |x |−2α0eg for some g satisfying 1g ≥ 0 in the interior of ω∪ωB . Then(∫

∂ω

Ṽ
1
2 ds

)2

≥ 4π(1−α0)

∫
ω

Ṽ dx,

if 0 is in the interior of ω∪ωB , and(∫
∂ω

Ṽ
1
2 ds

)2

≥ 4π
∫
ω

Ṽ dx,

if 0 is not in the interior of ω∪ωB .

Proof of Proposition 2.1. We shall only consider the first case mentioned in
Theorem B because the other case corresponds to α0 = 0. Let{

1q = 0 in ω,
q = u on ∂ω.

and let η = u− q. Then the equation for η is

(2-3)
{
1η+ V eqeη = 0 in ω,
η = 0 on ∂ω,

and we use
tm =max

ω
η.

Then we set

�(t)=
{

x ∈ ω; η(x) > t
}
, 0(t)= ∂�(t), µ(t)=

∫
�(t)

V eq dx .

Clearly �(0)= ω, µ(0)=
∫
ω

V eq dx , and µ(tm)= limt→tm− µ(t)= 0. Since µ is
continuous and strictly decreasing, it is easy to see that

(2-4)
dµ(t)

dt
=−

∫
0(t)

V eq

|∇η|
ds, for almost every t ∈ [0, tm].

For all s ∈ [0, µ(0)], set

η∗(s)= |{t ∈ [0, tm], µ(t) > s}|,

where |E | is the Lebesgue measure of the measurable set E ∈ R. It is easy to
see that η∗ is the inverse of µ on [0, tm] and is continuous, strictly monotone and
differentiable almost everywhere. By (2-4) we have, for almost all s ∈ [0, µ(0)],

(2-5)
dη∗

ds
=−

(∫
0(η∗(s))

V eq

|∇η|
dt
)−1

.
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Let

F(s)=
∫
�(η∗(s))

eηV eq dx, for almost every s ∈ [0, µ(0)].

Then by the definition of �(t) we see that

F(s)=
∫ tm

η∗(s)
et
(∫

0t

V eq

|∇η|
ds
)

dt.

Using β = µ(t), we further have

(2-6) F(s)=
∫ s

0
eη
∗(β) dβ,

where η∗ = µ−1 and (2-4) are used. The definition of F also gives

F(0)=
∫
�(η∗(0))

eηV eq
=

∫
�(tm)

eηV eq
= 0

and F(µ(0))=
∫
ω

eηdτ = M(ω). Consequently, from (2-6) we obtain

(2-7)
d F
ds
= eη

∗(s),
d2 F
ds2 =

dη∗

ds
eη
∗(s)
=

dη∗

ds
d F
ds
, for almost every s.

Here we use the argument from [Bartolucci and Castorina 2016] to show that η∗ is
locally Lipschitz in (0, µ(0)):

Lemma 2.1. For any 0< ā≤ a< b≤ b̄< ū(0), there exists C(ā, b̄, β1, . . . , βk)> 0
such that

η∗(a)− η∗(b)≤ C(b− a).

Proof of Lemma 2.1. First we find �a,b that satisfies

{x ∈ ω; η∗(b)≤ η(x)≤ η∗(a)}b�a,b b ω.

Using Green’s representation formula we have

|∇η(x)| ≤ C +C
∫
�a,b

1
|x − y|

|y− p1|
−2α0 dy.

A standard estimate gives

(2-8) |∇η(x)| ≤ C +C |x − p0|
1−2α0 .
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Recall that dη = V eqdx . Thus

b− a = µ(η∗(b))−µ(η∗(a))

=

∫
η>η∗(b)

dτ −
∫
η>η∗(a)

dτ ≥
∫
η∗(b)<η<η∗(a)

dτ

=

∫ η∗(a)

η∗(b)

(∫
0(t)

V eq

|∇η|
ds
)

dt.

Using the expression of V in (2-1) and (2-8) we further have

b− a ≥
1
C

∫ η∗(a)

η∗(b)

(∫
0(t)

1
|x − p0|2α0 + |x − p0|

)
dt

≥
1
C

∫ η∗(a)

η∗(b)
L1(0(t)) dt

≥ min
η∗(b)≤t≤η∗(a)

L1(0(t))
∫ η∗(a)

η∗(b)
dt

≥ C(η∗(a)− η∗(b)),

where the estimate of ∇η was used, L1(0(t)) stands for the Lebesgue measure of
0 and in the last inequality, the standard isoperimetric inequality

L1(0(t))≥ 4π |�(t)| ≥ 4π |�(η∗(ā)|> 0

is used. Lemma 2.1 is established. �

Now we go back to the proof of Proposition 2.1. By Cauchy’s inequality

(2-9)
(∫

0(η∗(s))
(V eq)

1
2 ds

)2

≤

(∫
0(η∗(s))

V eq

|∇η|
ds
)(∫

0(η∗(s))
|∇η| ds

)
=

(
−

dη∗

ds

)−1(∫
0(η∗(s))

(
−
∂η

∂ν

)
ds
)
, for almost every s ∈ [0, µ(0)],

where ν =∇η/|∇η|. Moreover from (2-3)
(2-10)∫
0(η∗(s))

(
−
∂η

∂ν

)
ds=

∫
�(η∗(s))

V eqeη dx=F(s), for almost every s∈[0, µ(0)].

By Theorem A, the following inequality holds for almost all s ∈ [0, µ(0)]:

(2-11)
(∫

0(η∗(s))
(V eq)

1
2

)2

≥ 4π(1−α0)µ(η
∗(s))= 4π(1−α0)s.



GAUSS EQUATION WITH NEGATIVE CONIC SINGULARITY 463

Putting (2-10) into (2-9) yields

(2-12)
(∫

0(η∗(s))
(V eq)

1
2 ds

)2

≤

(
−

dη∗

ds

)−1

F(s).

Using (2-11) in (2-12), we have

4π(1−α0)s ≤
(
−

dη∗

ds

)−1

F(s), for almost every s ∈ [0, µ(0)],

which is equivalent to

(2-13) 4π(1−α0)s
dη∗

ds
+ F(s)≥ 0, for almost every s ∈ [0, µ(0)].

By (2-7) and (2-13), we obtain

d
ds

[
4π(1−α0)

(
s

d F
ds
− F(s)

)
+

1
2 F2(s)

]
≥ 0, for almost every s ∈ [0, µ(0)].

Let P(s) denote the function in the brackets, then P is well defined, continuous,
nondecreasing on [0, µ(0)]. By the Lipschitz property of η∗, P is absolutely
continuous on [0, µ(0)];

P(µ(0))− P(0)= lim
b→µ(0)−

lim
a→0+

∫ b

a

d P
ds

ds.

Using F(0)= 0, F(µ(0))= M(ω), and d F
ds |s=µ(0) = e0

= 1, we have

8π(1−α0)(µ(0)−M(ω))+M(ω)2 ≥ 0.

Then Huber’s inequality and 0(0)= ∂ω further yield

2l2(∂ω)= 2
(∫

∂ω

(V ev)
1
2 ds

)2

= 2
(∫

∂ω

(V eq)
1
2 ds

)2

≥ 8π(1−α0)µ(0)≥ M(ω)(8π(1−α0)−M(ω)),

where we have used the fact that v = q on ∂ω. The Bol’s inequality is established.
The equality holds if V eq

= |x − p0|
−2α0 |8′t |

2ek on �(t) for almost all t ∈ (0, tm)
where k is a constant. In particular for t = 0, 80 maps � to a ball. In this case g
must be harmonic. On the other hand from the equality of Cauchy’s inequality we
have

V eq
= ct |∇η|

2 on 0(t), for almost every t ∈ (0, tm),

for some ct > 0. Putting w = 80(z) and ξ(w) = η(8−1
0 (w))+ k, we see that ξ

satisfies
1ξ + |x |−2α0eξ = 0,
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and ξ is radial. This ξ is a scaling of

log
8(1−α0)

2

1+ |x |2(1−α0))2
.

Thus we have strict inequality in Bol’s inequality if at least one of the following
situations occurs:

(1) p1 6∈ ω,

(2) ω has at least two singular sources

(3) ω is not simply connected. �

3. The first eigenvalues of the linearized local equation

Proposition 3.1. Let� be an open, bounded domain of R2 with rectifiable boundary
∂�, V = |x |−α0

∏k
i=1|x − pi |

2βi eg for some subharmonic and smooth function g,
α0 ∈ (0, 1), β1, . . . , βk > 0, and assume that all the singular points are in �: 0,
p1, . . . , pk ∈�. Let w be a classical solution of

1w+ V ew = 0 in �.

Suppose ν̂1 is the first eigenvalue of

(3-1)
{
−1φ− V ewφ = ν̂1V ewφ in �,
φ = 0 on ∂�.

Then if
∫
�

V ew ≤ 4π(1− α0) we have ν̂1 > 0. Moreover if
∫
�

V ew ≤ 8π(1− α0)

we have ν̂2 > 0.

Proof. Let ν1 = ν̂1+ 1 and φ be the eigenfunction corresponding to ν̂1, then we
have φ > 0 and {

−1φ = ν1V ewφ in �,
φ = 0 on ∂�.

Let
U0(x)= (−2) log(1+ |x |2(1−α0))+ log(8(1−α0)

2).

Then clearly U0 solves

1U0+ |x |−2α0eU0 = 0 in R2.

For t ∈ (0, t+) where t+ =max� φ, we set �(t)= {x ∈�, φ(x) > t} and we set
R(t) to satisfy ∫

�(t)
V ew =

∫
BR(t)

eU0 |x |−2α0 .
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Clearly �(0) = �, R0 = limt→0+ R(t), limt→t+− R(t) = 0. Let φ∗ be a radial
function from BR0 → R. For y ∈ BR0 and |y| = r , set

φ∗(r)= sup{t ∈ (0, t+) | R(t) > r}.

Then φ∗(R0)= limr→R0− φ
∗(r)= 0, and the definition implies

BR(t) = {y ∈ R2, φ∗(y) > t}.∫
φ∗>t

eU0 |x |−2α0 =

∫
�(t)

V ew, t ∈ [0, t+].∫
BR0

|x |−2α0eU0 |φ∗|2 =

∫
�

V ewφ2.

Then for almost all t

(3-2) − d
dt

∫
�(t)
|∇φ|2=

∫
φ=t
|∇φ|

≥

(∫
φ=t
(V ew)

1
2 ds

)2(∫
φ=t

V ew

|∇φ|
ds
)−1

,

=

(
−

d
dt

∫
�(t)

V ew
)−1(∫

φ=t
(V ew)

1
2 ds

)2

≥
1
2

(
8π(1−α0)−

∫
�(t)

V ew
)(∫

�t

V ew
)(
−

d
dt

∫
�(t)

V ew
)−1

,

=
1
2

(
8π(1−α0)−

∫
φ∗>t

eU0 |x |−2α0

)
×

(∫
φ∗>t

eU0 |x |−2α0

)(
−

d
dt

∫
φ∗>t

eU0 |x |−2α0

)−1

.

Applying the same computation to φ∗ we see that for almost all t , since φ∗ is radial,
we have

−
d
dt

∫
�(t)
|∇φ∗|2 =

∫
φ∗=t
|∇φ∗|

=

(∫
φ∗=t
|x |−α0eU0/2 ds

)2(∫
φ∗=t

|x |−2α0eU0

|∇φ∗|
ds
)−1

=

(
−

d
dt

∫
�(t)
|x |−2α0eU0

)−1(∫
φ∗=t
|x |−α0eU0/2 ds

)2

.
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Direct computation on U0 gives(
−

d
dt

∫
�(t)
|x |−2α0eU0

)−1

=
1
2

(
8π(1−α0)−

∫
φ∗>t

eU0 |x |−2α0

)(∫
φ∗>t

eU0 |x |−2α0

)
.

Thus the combination of the two equations above gives

(3-3) −
d
dt

∫
�(t)
|∇φ∗|2=

1
2

(
8π(1−α0)−

∫
φ∗>t

eU0 |x |−2α0

)
×

(∫
φ∗>t

eU0 |x |−2α0

)(
−

d
dt

∫
φ∗>t

eU0 |x |−2α0

)−1

for almost all t ∈ (0, t+).
Integrating (3-2) and (3-3) for t ∈ (0, t+) we have∫

BR0

|∇φ∗|2 ≤

∫
�

|∇φ|2.

If ν1 ≤ 1, we obtain from (3-1) that

0≥ (ν1− 1)
∫
�

V ew|φ|2 =
∫
�

|∇φ|2−

∫
�

V ew|φ|2

≥

∫
BR0

|∇φ∗|2−

∫
BR0

eU0 |x |−2α0 |φ∗|2.

Thus the first eigenvalue of
−1− |x |−2α0eU0

on BR0 with Dirichlet boundary condition is nonpositive. Since

ψ = 2(1−α0)
1− |x |2(1−α0)

1+ |x |2(1−α0)

satisfies
−1ψ − |x |−2α0eU0ψ = 0 in R2,

we see that R0 ≥ 1. But ∫
B1

|x |−2α0eU0 = 4π(1−α0),

so we clearly have ν̂ ≥ 0. From the proof of Bol’s inequality we see that the strict
inequality holds because � has more than one singular point in its interior.

The proof of ν̂2 > 0 for a higher threshold of
∫
�

V ew is very similar. If we
consider �+ and �−, which are the set of points where φ is positive or negative,
respectively, the integral of V ew on at least one of them is less than or equal to
4π(1−α0). The argument of redistribution of mass can be applied to at least one
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of them. Then we see that either one of them has the integral of V ew strictly less
than 4π(1−α0), which leads to a contradiction, or both regions have their integral
equal to 4π(1−α0). In the latter case, the equality cannot hold because 0 can only
be in the interior of at most one region. Then at least one region either does not
contain 0 in its interior, or is not simply connected. The strict inequality holds in at
least one region. Thus ν̂2 > 0 if

∫
�

V ew ≤ 8π(1−α0). �

4. The proof of Theorem 1.2

First we claim that φ in the linearized equation is actually bounded. Recall that u1

satisfies

1u1+ H1eu1 = 0 in R2,

u1(x)=
(
−4+ 2α1+ 2α2− 2

n∑
i=3

βi

)
log|x | + O(1) at∞.

By the equation for φ and the mild growth rate of φ at infinity, we have

φ(x)=
1

2π

∫
R2

log|x − y|H1(y)eu1(y)φ(y) dy+ c, x ∈ R2,

for some c ∈ R.
Differentiating the equation above, we have

∂iφ(x)=
1

2π

∫
R2

xi − yi

|x − y|2
H1eu1φ(y) dy, i = 1, 2, x ∈ R2.

By standard estimates in different regions of R2, it is easy to see that

∂iφ(x)= A
xi

|x |2
+ O(|x |−1−δ), |x |> 1, i = 1, 2,

for A = 1
2π

∫
R2 H1eu1φ and some δ > 0. Thus the assumption φ(x) = o(log|x |)

actually implies

(4-1)
∫

R2
H1eu1φ = 0.

and

(4-2) φ(x)= C + O(|x |−δ), |x |> 1,

for some δ > 0.
Next we make a transformation on the equation for u1. Without loss of generality

we assume p1 = 0 and we write H1 as

H1(x)= |x |−2α1 V1.
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Let

u2(x)= u1

(
x
|x |2

)
− (4− 2α1) log|x |,

then direct computation shows that

1u2+ V2eu2 = 0 in R2

and
u2(x)= (−4+ 2α1) log|x | + O(1) at∞,

where V2(x)= V1(x/|x |2). It is also easy to verify that

(4-3)
∫

R2
H1eu1 =

∫
R2

V2eu2 .

Setting φ1(x)= φ(x/|x |2), we see that

1φ1+ V2eu2φ1 = 0 in R2.

Here we note that by the bound of φ1 near the origin, the equation above holds in
the whole R2.

First, by the asymptotic behavior of u1 at infinity, integration of the equation for
u1 gives

(4-4)
1

2π

∫
R2

H1eu1 = 4− 2(α1+α2)+ 2
n∑

i=3

βi ≤ 4(1−α2).

From the definition of φ we have φ1(x)→ c0 as x→∞ for some c0 ∈R. Without
loss of generality we assume c0 ≤ 0. By the same estimate for φ we have

(4-5)
∫

R2
V2eu2φ1 = 0.

By (4-3) and (4-4) we have∫
R2

V2eu2 ≤ 8π(1−α2).

Let φ2 be an eigenfunction corresponding to eigenvalue ν̂:
−1φ2− V2eu2φ2 = ν̂V2eu2φ2 in R2,

limx→∞ φ2(x)= c0 ≤ 0,∫
R2 V2eu2φ2 = 0.

We claim that ν̂ > 0.
By way of contradiction we assume that ν̂ ≤ 0. By setting ν = 1+ ν̂ we clearly

have ν ≤ 1 and
1φ2+ νV2eu2φ2 = 0 in R2.
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Let �+ = {x; φ2(x) > c0}, then by the same argument as in the proof of the
previous proposition we must have∫

�+
V2eu2 = c2(c0)≥ 4π(1−α2)

and if the equality holds, we have c0 = 0. Then there is one singular source with
negative index −4πα2 in the interior of �+, which has to be simply connected at
the same time. All other singular sources (which have positive indexes) are not in
the interior of �+.

Let φ∗ be the rearrangement of φ2 in �+. By the previous argument we have∫
�+

|∇φ2|
2
≤

∫
BR1

|∇φ∗|2

and c2(c0)=
∫

BR1
|x |−2α2eU0. Let

c1 =min
R2
φ2

and we set R2 to make∫
BR2\BR1

|x |−2α2eU0 =

∫
R2\�+

V1eu2 .

Note that R2 could be∞. Then we define a radial function φ∗∗ from BR2 \BR1→R:
for any y ∈ BR2 \ BR1 , |y| = r ,

φ∗∗(r)= inf{t ∈ (c1, c0) | R(−)(t) < r},

where R(−)(t) is defined by∫
BR2\BR(−)(t)

|x |−2α2eU0 =

∫
φ2<t

V2eu2, for all t ∈ (c1, c0).

The definition of φ∗∗ implies∫
BR2\BR1

|x |−2α2eU0 |φ(∗∗)|2 =

∫
�−

V2eu2 |φ2|
2, �− = R2

\�+,

and ∫
BR2\BR1

|x |−2α2eU0φ(∗∗) =

∫
�−

V2eu2φ2, �− = R2
\�+.

The symmetrization also gives∫
BR2\BR1

|∇φ∗∗|2 ≤

∫
�−
|∇φ2|

2.
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Now we set

φ∗ : BR2 → R, φ∗ radial φ∗(r)=
{
φ∗(r) for r ∈ [0, R1],

φ∗∗(r) for r ∈ [R1, R2).

Since φ∗ is continuous, monotone, we have∫
BR2

|∇φ∗|
2
≤

∫
R2
|∇φ2|

2
=

∫
R2

V2eu2 |φ2|
2
=

∫
BR2

|x |−2α2eU0 |φ∗|
2.

From the definition of φ∗ we also have∫
BR2

|x |−2α2eU0φ∗ = 0.

Let
K ∗= inf

{∫
R2 |∇ψ |

2 dx, ψ is radial,
∫

R2 |x |−2α2eU0ψ=0,
∫

R2 |x |−2α2eU0ψ2
=1

}
.

By Hölder’s inequality we have∣∣∣∣∫
R2
|x |−2α2eU0ψ dx

∣∣∣∣≤ (∫
R2
|x |−2α2eU0ψ2

)1
2
(∫

R2
|x |−2α2eU0

)1
2
,

which implies that the minimizer (say ψ∗) also satisfies∫
R2
|x |−2α2eU0ψ∗ = 0.

Clearly the minimizer ψ∗ satisfies

1ψ∗+ K ∗|x |−2α2eU0ψ∗ = 0 in R2.

From φ∗ and the definition of K ∗ we already know K ∗ ∈ (0, 1). Our goal is to
show that K ∗ = 1 by an argument of Chang, Chen and Lin [Chang et al. 2003].
The minimizer ψ∗ should only change sign once. Let ξ0 be the zero of ψ∗.

Integrating the equation for ψ∗, we have

r
d
dr
ψ∗(r)=−K ∗

∫ r

0
|s|1−2α2eU0(s)ψ∗(s) ds = K ∗

∫
∞

r
s1−2α2eU0ψ∗(s) ds < 0,

for r > ξ0. Thus ψ∗ is decreasing for r ≥ ξ0 and r d
drψ

∗(r)→ 0 as r →∞. The
equation for ψ∗ also gives∣∣∣∣r d

dr
ψ∗(r)

∣∣∣∣≤ K ∗
(∫

∞

r
|s|1−2α2eU0(ψ∗(s))2 ds

)1
2
(∫

∞

r
s1−2α2eU0(s) ds

)1
2
≤Cr−1,

for large r . Therefore limr→∞ ψ
∗(r) exists and is a negative constant.

Let

ψ(r)= 2(1−α2)
1− r2(1−α2)

1+ r2(1−α2)
.
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Then ψ satisfies

1ψ + r−2α2eU0ψ = 0 in R2.

It is easy to obtain the following from the equations for ψ and for ψ∗:

r
(
ψ∗

ψ(r)

)′
=

1− K ∗

ψ2(r)

∫ r

0
s1−2α2eU0(s)ψ∗(s)ψ(s) ds.

If ξ0 < 1, ψ∗(r)
ψ(r) is increasing from r ∈ (0, ξ0]. Clearly this is not possible because

otherwise this could happen:

0<
ψ∗(0)
ψ(0)

<
ψ∗(ξ0)

ψ(ξ0)
= 0.

On other hand, we observe that it is also absurd to have ξ0 > 1, indeed, had this
happened, we would start from

lim
R→∞

R
(
ψ∗

ψ

)′
(R)ψ2(R)−r

(
ψ∗

ψ

)′
(r)ψ2(r)=(1−K ∗)

∫
∞

r
s1−2α2eU0ψ∗(s)ψ(s)ds.

Since

lim
R→∞

R
( d

dr
ψ∗(R)ψ(R)−ψ ′(R)ψ∗(R)

)
= 0,

we have

−r
(
ψ∗

ψ

)′
ψ2(r)= (1− K ∗)

∫
∞

r
s1−2α2eU0(s)ψ∗(s)ψ(s) ds.

If ξ0 > 1, (ψ∗(r))/(ψ(r)) is decreasing for r > 1, which yields

0=
ψ∗(ξ0)

ψ(ξ0)
> lim

r→∞

ψ∗(r)
ψ(r)

=−
1

2(1−α2)
lim

r→∞
ψ∗(r) > 0.

This contradiction proves that ξ0 = 1 and ψ∗(r)ψ(r) > 0 for all r 6= 1. Furthermore

0= lim
r→∞

(
d
dr
ψ∗(r)ψ(r)−

d
dr
ψ(r)ψ∗(r)

)
r

= (1− K ∗)
∫
∞

0
s1−2α2eU0ψ∗(s)ψ(s) ds.

Thus we have proved that K ∗ = 1 and the desired contradiction. Theorem 1.2 is
established. �

The proof of Theorem 1.3 is very similar, we just use Kelvin transformation
to move the negative singularity to infinity, then use the same argument with the
standard Bol’s inequality for nonnegative indexes.
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5. The proof of Theorem 1.1.

Our argument follows from a previous result of Bartolucci and Lin [2009] for
nonnegative indexed singularities. We prove by way of contradiction. Suppose u is
a solution of (1-3) and a nonzero function φ̃ ∈ H 1

0 (�) is a solution of{
−1φ̃− λ(Heu)/

(∫
�

Heu dx
)
φ̃+ λ

(∫
�

Heuφ̃
)
(Heu)/

(∫
�

Heu
)2
= 0 in �,

φ̃ = 0 on ∂�.

Let w = u+ log λ− log
(∫
�

Heu dx
)

and

φ = φ̃−

∫
�

Heuφ̃∫
�

Heu ;

we have

(5-1)


1φ+ Hewφ = 0 in �,

φ = c0 on ∂�,∫
�

Hewφ = 0,

λ=
∫
�

Hew ≤ 8π(1−α0).

Without loss of generality we assume c0≤ 0. Our goal is to show that φ≡ c0, which
further leads to c0 = 0, obviously. If c0 = 0, φ must change sign if not identically
equal to 0. But this situation is ruled out by Proposition 3.1 that ν2 > 0. So we only
consider c0 < 0. Let

�+ = {x ∈�, φ(x) > 0}, �− = {x ∈�, φ(x) < 0}.

Clearly dist(�+, ∂�) > 0. Then if
∫
�+

Hew ≤ 4π(1−α0) there is no way for φ to
satisfy (5-1) on �+ without being identically zero. Then using the same rearrange-
ment argument as in the proof of Theorem 1.2 we can also reach the following
conclusion: if φ2 is a solution of{

−1φ2− λeuwφ2 = νeuwφ2 in �,
φ2 = c0 on ∂�,

then ν > 0. The remaining part of the proof of Theorem 1.1 follows by standard
argument in [Chang et al. 2003] and [Bartolucci and Lin 2009]. We include it with
necessary modification.

If we use Lλ to denote the linearized operator of (1-3), we know that all eigenval-
ues of Lλ are strictly positive for λ∈ [0, 8π(1−α0)]. By using the improved Moser–
Trudinger inequality [Malchiodi and Ruiz 2011], one can easily find a solution
of (1-3) by the direct minimization method. By the uniform estimate of the linearized
equation and standard elliptic estimate we have: for any ε ∈ (0, 8π(1−α0)),

(5-2) ‖uλ‖∞ ≤ λCε,
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for some Cε > 0, λ ∈ [0, 8π(1−α0)] and uλ as a solution of (1-3). Let Sλ be the
solution’s branch for (1-3) bifurcating from (u, λ)= (0, 0). The standard bifurcation
theory of Crandall and Rabinowitz [1975] gives that Sλ is a simple branch near λ=0.
This means that for λ > 0 small there exists one and only solution for (1-3) and Sλ
is smooth in C2(�)×R. By the implicit function theorem (because Lλ has positive
first eigenvalue) Sλ can be extended uniquely for λ ∈ (0, 8π(1− α0)). If for any
given λ ∈ (0, 8π(1− α0) there is another solution, it implies the other solution’s
branch does not bend in [0, 8π(1−α0)). By the uniform estimate (5-2), this second
branch intersects Sλ at (u, λ)= (0, 0). This contradiction proves the uniqueness for
λ ∈ [0, 8π(1−α0)). If a solution exists for λ= 8π(1−α0), the implicit function
theorem and the uniqueness result can be combined to prove the uniqueness in this
case as well. Theorem 1.1 is established. �
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