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ON SOME REFINEMENTS OF THE EMBEDDING OF
CRITICAL SOBOLEV SPACES INTO BMO

ALMAZ BUTAEV

We introduce the nonhomogeneous analogs of function spaces studied
by Van Schaftingen. We show that these classes refine the embedding
W 1,n(Rn) ⊂ bmo(Rn). The analogous results are established on bounded
Lipschitz domains and Riemannian manifolds with bounded geometry.

1. Introduction

Let f be a locally integrable function on Rn. Given a cube Q ⊂ Rn (henceforth by
a cube we will understand a cube with sides parallel to the axes), we denote the
average of f over Q by fQ , i.e.,

fQ =
1
|Q|

∫
Q

f (x) dx,

where |Q| is the Lebesgue measure of Q.
In 1961, John and Nirenberg introduced the space of functions of bounded mean

oscillation (BMO).

Definition 1.1. We say that f ∈ BMO(Rn) if

‖ f ‖BMO := sup
Q

1
|Q|

∫
Q
| f (x)− fQ | dx <∞.

Note that ‖ · ‖BMO is a norm on the quotient space of functions modulo constants.

Functions of bounded mean oscillations turned out to be the right substitute
for L∞ functions in a number of questions in analysis. In particular, the embedding
theorem of Gagliardo, Nirenberg and Sobolev (see, e.g., [Stein 1970, Chapter V])
asserts that for any p ∈ [1, n) there exists C p such that

‖ f ‖Lnp/(n−p) ≤ C p‖∇ f ‖L p , for all f ∈ D.

The inequality fails for p = n, so we do not have the embedding W 1,n into L∞.
However, it follows from the Poincaré inequality that for some constant C > 0,

‖ f ‖BMO ≤ C‖∇ f ‖Ln , for all f ∈ D,

MSC2010: 42B35, 46E35.
Keywords: critical Sobolev spaces, BMO.
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and therefore W̊ 1,n is continuously embedded into BMO(Rn).
Based on an inequality established by Bourgain and Brezis [2004], Van Schaftin-

gen [2006] defined a scale of spaces Dk using the k-differential forms

8(x)=
∑

1≤i1<···<ik≤n

φi1,...,ik (x)dx i1 ∧ · · · ∧ dx ik

as follows:

Definition 1.2. For 1≤ k ≤ n, Dk is defined as

Dk(R
n)= {u ∈ D′(Rn) : ‖u‖Dk <∞},

where

‖u‖Dk := sup{|u(φi1,...,ik )| :8 ∈ D(R
n
;3k(Rn)), d8= 0, ‖8‖L1 ≤ 1}.

It was shown in [Van Schaftingen 2006] that the Dk classes lie strictly between
the critical Sobolev spaces and BMO(Rn), refining the classical embedding W̊ 1,n

⊂

BMO. More precisely, the following proper inclusions are continuous:

W̊ 1,n
⊂ Dn−1 ⊂ · · · ⊂ D1 ⊂ BMO.

From the point of view of some applications to PDEs, as function spaces Dk

(k < n) lack certain “useful” properties: multiplications by smooth cut-off functions
are not necessarily bounded operators on Dk and Dk are not invariant under all
smooth changes of variables.

In this paper, we introduce the nonhomogeneous analogs of Van Schaftingen’s
classes Dk , which we denote by dk(Rn).

Definition 1.3. Let 1≤ k ≤ n. We say that u ∈ D′(Rn) belongs to dk(Rn) if

(1-1) sup
‖8‖

ϒ1
k (R

n )≤1
max

I
|u(φI )|<∞,

where the supremum is taken over all k-differential forms 8 =
∑

I φI dx I, φI ∈

D(Rn) and ‖8‖ϒ1
k
= ‖8‖L1 +‖d8‖L1 . We will denote this supremum by ‖u‖dk .

It is useful to compare the defined classes dk(Rn) with Dk(R
n). First of all,

dk(Rn)⊂ Dk(R
n), k= 1, 2, . . . , n as sets. As Banach spaces Dk(R

n) are classes of
functions modulo constants, while in dk(Rn) two functions that differ by a nonzero
constant are considered as different elements.

In contrast to Dk spaces, the smooth change of variables and multiplications
by cut-off functions are invariant operations on dk. In particular, this allows us to
define dk on certain Riemannian manifolds. In Section 2, we recall some facts from
the theory of local Hardy spaces, which will be used later. In Section 3, we prove
the following theorem:
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Theorem 1.4. The space d1(Rn) is continuously embedded into the space bmo(Rn)

and there exists C > 0 such that for any u ∈ dk(Rn), 1≤ k ≤ n,

‖u‖bmo ≤ C‖u‖dk .

Combining this theorem with the result of Van Schaftingen [2004a] shows that
the dk classes refine the embedding W 1,n(Rn)⊂ bmo(Rn), where bmo is the local
BMO space of Goldberg [1979] in the sense that

W 1,n
⊂ dn−1

⊂ · · · ⊂ d1
⊂ bmo.

We also prove that continuous dn−1 functions can be characterized in terms of
line integrals, as is the case for the inequality of Bourgain, Brezis and Mironescu
[Bourgain et al. 2004]

Theorem 1.5. Let u ∈ D(Rn). Then u ∈ dn−1(Rn) if and only if

sup
∂γ=∅

1
|γ |

∣∣∣∣∫
γ

u(t)τ (t) dt
∣∣∣∣+ sup
|γ |≥1

1
|γ |

∣∣∣∣∫
γ

u(t)τ (t) dt
∣∣∣∣<∞,

where the suprema are taken over smooth curves γ with finite lengths |γ |, bound-
aries ∂γ and unit tangent vectors τ .

As an application of dk classes for PDEs, the following fact is established:

Theorem 1.6. Let n ≥ 2, F ∈ L1(Rn
;Rn) and div F ∈ L1(Rn). Then the system

(I −1)U = F admits a unique solution U such that:
• If n = 2, then

‖U‖∞+‖∇U‖2 ≤ C(‖F‖1+‖ div F‖1).

• If n ≥ 3, then

‖U‖n/(n−2)+‖∇U‖n/n−1 ≤ C(‖F‖1+‖ div F‖1).

In Section 4, we introduce the localized versions of dk spaces on bounded
Lipschitz domains �. The main result of Section 4 is the proof of the following fact,
which was conjectured by Van Schaftingen [2006] for the bmo spaces on domains
(see Definition 2.13 below).

Theorem 1.7. Any u ∈ d1(�) is a bmor (�) function as there exists C > 0 such that

‖u‖bmor (�) ≤ C‖u‖d1(�) for all u ∈ d1(�).

In Section 5, we define dk classes on Riemannian manifolds with bounded
geometry, and based on the results of Section 3 we prove the refined embeddings
between critical Sobolev space and bmo on such manifolds.

Theorem 1.8. Let M be the Riemannian manifold with bounded geometry. Then
the following continuous embeddings hold:

W 1,n(M)⊂ dn−1(M)⊂ · · · ⊂ d1(M)⊂ bmo(M).
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2. Preliminaries

Let �⊂Rn be open. We will use the Schwartz notation: E(�) will denote the class
of smooth functions on �, D(�) and S(�) will stand for compactly supported
smooth functions and smooth functions rapidly decaying at infinity with all their
derivatives. By Dk(�) we denote the class of k-differential forms with D(�)
components. All L p spaces in this paper are considered relative to the Lebesgue
measure. For the differential form of order k, 8=

∑
|I |=k φI dx I, we will use the

notation
‖8‖L1

k
=

∑
I

‖φI‖L1 .

However, often when it does not create confusion we will omit the subscript k and
simply write ‖8‖L1 or ‖8‖1.

2A. Local Hardy and BMO spaces of Goldberg. We recall the definition and
basic properties of the local Hardy space h1(Rn) introduced by Goldberg [1979].

Let us fix φ ∈ S(Rn) such that
∫
φ 6= 0. For f ∈ L1(Rn), we define the local

maximal function mφ f (x) by

mφ f (x)= sup
0<t<1

|φt ∗ f (x)|,

where φt(y)= t−nφ(y/t).

Definition 2.1. We say that f belongs to the local Hardy space h1(Rn) if mφ f lies
in L1(Rn); in this case we put

‖ f ‖h1 := ‖mφ f ‖L1 .

It is useful to compare h1 with the classic real Hardy space H 1(Rn), which can
be defined using the global maximal function Mφ ,

Mφ f (x) := sup
t>0
|φt ∗ f (x)|, f ∈ L1(Rn).

Definition 2.2. We say that f belongs to the Hardy space H 1(Rn) if Mφ f ∈ L1(Rn),
and we put

‖ f ‖H1 := ‖Mφ f ‖L1 .

It follows from the definitions of the maximal functions that mφ f (x)≤ Mφ f (x)
for any f ∈ L1 and x ∈ Rn. Therefore H 1

⊂ h1. One of the reasons it is often more
convenient to deal with a larger space h1 instead of H 1 is that S(Rn) ⊂ h1(Rn),
while any f ∈ H 1(Rn) has to satisfy

∫
Rn f = 0. Moreover:

Lemma 2.3 [Goldberg 1979]. The space D(Rn) is dense in h1(Rn).

It is important to note that f ∈h1(Rn) and
∫

Rn f =0 do not imply that f ∈H 1(Rn)

(see Theorem 3 in [Goldberg 1979]). However, the following is true:
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Lemma 2.4. If f ∈ h1(Rn),
∫

Rn f (x) dx = 0 and supp f ⊂ B, where B is a
bounded subset of Rn, then there exists CB > 0 such that

‖ f ‖H1 ≤ CB‖ f ‖h1 .

Definition 2.5 [Goldberg 1979]. We say that f ∈ L1
loc(R

n) belongs to bmo(Rn) if

‖ f ‖bmo := sup
l(Q)≤1

1
|Q|

∫
Q
| f (x)− fQ | dx + sup

l(Q)≥1

1
|Q|

∫
Q
| f (x)| dx <∞,

where fQ = 1/|Q|
∫

Q f (y) dy and Q are cubes with sides parallel to the axes, of
side-length l(Q).

It is clear that bmo(Rn) is a subspace of BMO(Rn). Moreover, if ‖ f ‖bmo = 0,
then f = 0 almost everywhere on Rn, unlike in BMO(Rn), where constant functions
are identified with f ≡ 0.

The following theorem of Goldberg shows the relation between h1 and bmo and
the boundedness of pseudodifferential operators of degree zero on h1.

Theorem 2.6 [Goldberg 1979]. The space bmo(Rn) is isomorphic to the space of
continuous linear functionals on h1(Rn).

Theorem 2.7 [Goldberg 1979]. If T ∈ OPS0, then there exists a constant C > 0
such that

‖T f ‖h1 ≤ C‖ f ‖h1 for any f ∈ S(Rn).

Therefore, any T ∈OPS0 can be extended to a continuous linear operator on h1(Rn).

2B. Local Hardy and BMO spaces on Lipschitz domains. The BMO and Hardy
spaces on bounded Lipschitz domains were studied in [Chang et al. 1993; 1999;
Miyachi 1990] (see also [Jones 1980; Strichartz 1972]).

Definition 2.8 [Chang et al. 1993; Miyachi 1990]. Let � ⊂ Rn be a bounded
Lipschitz domain. The space h1

r (�) consists of elements of L1(�) which are the
restrictions to � of elements of h1(Rn), i.e.,

h1
r (�)= { f ∈ L1(�) : there exists F ∈ h1(Rn) : F = f on �}.

We can consider this as a quotient space equipped with the quotient norm

‖ f ‖h1
r (�)
:= inf{‖F‖h1(Rn) : F = f on �}.

Definition 2.9 [Chang et al. 1999]. The space h1
z (�) is defined to be the subspace

of h1(Rn) consisting of those elements which are supported on �.

Like in the case of Rn, smooth and compactly supported functions are dense in
these spaces:
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Lemma 2.10 [Caetano 2000]. Let � be a bounded Lipschitz domain. Then the
space D(�) is dense in h1

r (�).

Lemma 2.11. Let � be a domain of Rn. Then the set of D(�) functions is dense
in h1

z (�).

The BMO analogs on � are defined as follows.

Definition 2.12. The space bmoz(�) is defined to be a subspace of bmo(Rn) con-
sisting of those elements which are supported on �, i.e.,

bmoz(�)= {g ∈ bmo(Rn) : g = 0 on Rn
\�}

with
‖g‖bmoz(�) = ‖g‖bmo(Rn).

Definition 2.13 [Chang et al. 1999]. Let � be a bounded Lipschitz domain. A
function g ∈ L1

loc(�) is said to belong to bmor (�) if

‖g‖bmor (�) = sup
|Q|≤1

1
|Q|

∫
Q
|g(x)− gQ | dx + sup

|Q|>1

1
|Q|

∫
Q
|g(x)| dx <∞,

where suprema are taken over all cubes Q ⊂ �. The space of such functions
equipped with norm ‖ · ‖bmor (�) is called bmor (�).

Theorem 2.14 [Chang 1994; Miyachi 1990]. The space bmoz(�) is isomorphic to
the dual of h1

r (�).

Theorem 2.15 [Chang 1994; Jonsson et al. 1984]. The space bmor (�) is isomor-
phic to the dual of h1

z (�).

2C. H1
z (�) space. We will also need the following function space:

Definition 2.16 [Chang et al. 1993]. The space H 1
z (�) is defined to be the subspace

of H 1(Rn) consisting of those elements which are supported on �.

One of the alternative ways to define H 1
z (�) is to invoke the notion of atoms.

Definition 2.17. An H 1
z (�) atom is a Lebesgue measurable function a on Rn,

supported on a cube Q ⊂�, such that

‖a‖L2(Q) ≤ |Q|
−1/2

and ∫
Q

a(x) dx = 0.

Any H 1
z (�) function can be represented as a series of H 1

z atoms in the following
sense:
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Theorem 2.18 [Chang et al. 1993, Theorem 3.3]. Let � be a bounded Lipschitz
domain and f ∈ L1(�). Then f ∈ H 1

z (�) if and only if there exist a sequence of
H 1

z (�) atoms {ak} and real numbers {λk} ⊂ R such that
∑
|λk |<∞ and∑

k

λkak→ f in D′(�).

Furthermore,

‖ f ‖H1 ≈ inf
{∑

k

|λk | : f =
∑

k

λkak

}
,

where the infimum is taken over all atomic decompositions of f .

3. dk spaces on Rn

Definition 3.1. Let 1≤ k ≤ n. We say that u ∈ D′(Rn) belongs to dk(Rn) if

(3-1) sup
‖8‖

ϒ1
k (R

n )≤1
max
|I |=k
|u(φI )|<∞,

where the supremum is taken over all 8=
∑
|I |=k φI dx I

∈ Dk(Rn) and ‖8‖ϒ1
k
=

‖8‖L1
k
+‖d8‖L1

k+1
. We will denote this supremum by ‖u‖dk .

Remark 3.2. It is not difficult to show that the class of compactly supportedϒ1
k (R

n)

forms is dense in ϒ1
k (R

n). This suggests that the domain of u ∈ dk(Rn) can be
extended to include components of all ϒ1

k (R
n) forms. Let u ∈ D′(�) and ũ be a

linear map from Dk(�) to (
R(

n
k), ‖ · ‖max

)
,

associated to u by

ũ
( ∑
|I |=k

φI dx I
)
= (u(φI )).

Then u ∈ D′(Rn) belongs to dk(Rn), if and only if ũ can be extended to a bounded
linear map from ϒ1

k (R
n) to

(n
k

)
-dimensional Euclidean space equipped with the

max norm.

Note that ϒ1
n (R

n)= L1(Rn), so dn(Rn) is isomorphic to L∞(Rn).

Lemma 3.3. Let 1≤ k < l ≤ n and u ∈ dl(Rn). Then u ∈ dk(Rn) and ‖u‖dk(Rn) ≤

‖u‖dl (Rn). In other words, the following embeddings are continuous:

dn(Rn)⊂ dn−1(Rn)⊂ · · · ⊂ d1(Rn).

Proof. It is enough to consider the case k = l − 1, because the general case will
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follow from it by induction. Let 1≤ l ≤ n, u ∈ dl(Rn) and

8(x)=
∑
|I |=l−1

φI (x)dx I
∈ Dl−1(Rn).

We need to show that for any component φI ,

|u(φI )| ≤ ‖u‖dl‖8‖ϒ1
l−1
.

Fix any such I. Since |I | = l−1< n, there exists j ∈ [1, n] such that dx I
∧dx j

6= 0.
Put 8̃(x) = 8(x) ∧ dx j. Then 8̃ ∈ Dl and ‖ 8̃ ‖ϒ1

l
≤ ‖8 ‖ϒ1

l−1
. Moreover, by

construction, one of the components of 8̃ equals ±φI dx I
∧ dx j. Since u ∈ dl(Rn),

|u(φI )| ≤ ‖u‖dl‖8̃‖ϒ1
l
≤ ‖u‖dl‖8‖ϒ1

l−1
. �

The following theorem follows immediately from the definition of dk spaces and
the result of Van Schaftingen [2004a].

Theorem 3.4. W 1,n(Rn) is continuously embedded into dn−1(Rn) as there exists
C > 0 such that for any u ∈W 1,n ,

‖u‖dn−1 ≤ C‖u‖W 1,n .

One of main results in this section is the following:

Theorem 3.5. The space d1(Rn) is continuously embedded into the space bmo(Rn)

and there exists C > 0 such that for any u ∈ dk(Rn), 1≤ k ≤ n,

‖u‖bmo ≤ C‖u‖dk .

Remark 3.6. This result is a nonhomogeneous analog of the main theorem in
[Van Schaftingen 2006]. We adapt the proof of that theorem to the nonhomogeneous
setting.

Proof. By Lemma 3.3, it is enough to prove the case k = 1. The argument is
based on the fact that bmo(Rn) is the dual space of h1(Rn). We claim that given
f ∈D(Rn), there exist n differential forms {8 j

}
n
j=1⊂ϒ

1
1 (R

n) such that for some C
independent of f ,

‖8 j
‖ϒ1

1
≤ C‖ f ‖h1,(3-2)

f =
n∑

i=1

φi
i ,(3-3)

where

8 j
=

n∑
i=1

φ
j
i dx i .
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Assuming the claim, the proof is easy. Let u ∈ d1(Rn). For arbitrary f ∈D(Rn), let
8 j be such that (3-2) and (3-3) are true. Then by the Remark 3.2 we can apply u
to φi

i to have

(3-4) |u( f )| ≤
n∑

i=1

|u(φi
i )| ≤

n∑
i=1

‖u‖d1‖8i
‖ϒ1

1
≤ Cn‖u‖d1‖ f ‖h1 .

By the density of D in h1 and the duality bmo= (h1)′, we conclude that u∈bmo(Rn).
In order to prove the claim, let f ∈ D be arbitrary and consider the equation

(I −1)v = f in Rn.

Then v = J ( f ), where J is a convolution operator whose kernel is the Bessel
potential of order 2, G2. For j ∈ [1, n], let

8 j
=

n∑
i=1

(
J
n
− ∂i∂ jJ

)
( f )dx i .

Since f ∈ D ⊂ S, all components of 8 j are S functions and

d8 j
=

∑
1≤i<k≤n

(
∂iJ − ∂kJ

n

)
( f ) dx i

∧ dxk .

It is clear that,

J
n
− ∂i∂ jJ ∈ OPS−2(Rn)+OPS0(Rn)⊂ OPS0(Rn)

and (
∂iJ − ∂kJ

n

)
∈ OPS−1(Rn)⊂ OPS0(Rn).

Recalling Theorem 2.7, we see that the components of8 j and d8 j are h1 functions
and for some C independent of f ,

‖8 j
‖L1

1
+‖d8 j

‖L1
2
≤ C‖ f ‖h1,

which proves (3-2). Finally, {8 j
} satisfy (3-3) for

n∑
i=1

(
J
n
− ∂i∂iJ

)
f = J ( f )−1J ( f )= (I −1)J ( f )= f. �

Corollary 3.7. For 1≤ k ≤ n, the space dk(Rn) equipped with the norm ‖ · ‖dk is a
Banach space.

Proof. Let {um}
∞

m=0 be a Cauchy sequence in dk. Theorem 3.5 shows that um is
a Cauchy sequence in bmo(Rn). Since bmo is a complete Banach space, there
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exists u ∈ bmo(Rn), such that um → u in ‖ · ‖bmo. Moreover, for any 8 =∑
|I |=kφI dx I

∈ Dk(Rn) and j ≥ 0, using the duality of bmo and h1 and the fact
that each φI is in D ⊂ h1,∣∣∣∣∫ (u j − u)φI

∣∣∣∣= lim
m→∞

∣∣∣∣∫ (u j − um)φI

∣∣∣∣≤ lim
m→∞

‖u j − um‖dk‖8‖ϒ1
k
,

which shows that u ∈ dk(Rn), and ‖u j − u‖dk → 0, as j→∞. �

Summing up the results of this section, we can now say that for 1≤ k ≤ n,

W 1,n(Rn)⊂ dn−1(Rn)⊂ · · · ⊂ d1(Rn)⊂ bmo(Rn).

3A. vk classes.

Definition 3.8. Let 1≤ k ≤ n. We define the class vk(Rn) as the closure of C0(R
n)

functions in the norm ‖ · ‖dk . Here,

C0(R
n)=

{
u :∈ C(Rn) : lim

|x |→∞
u(x)= 0

}
.

First of all we notice that by Lemma 3.3, the vk(Rn) form a monotone family
of spaces

vn(Rn)⊂ vn−1(Rn)⊂ · · · ⊂ v1(Rn).

The appropriate subspace that will contain all vk functions was studied by Dafni
[2002] and Bourdaud [2002].

Definition 3.9 [Dafni 2002]. The space vmo(Rn) is the subspace of bmo(Rn)

functions satisfying

(3-5) lim
δ→0

sup
l(Q)≤δ

1
|Q|

∫
Q

| f (x)− fQ | dx = 0

and

(3-6) lim
R→∞

sup
l(Q)>1,

Q∩B(0,R)=∅

1
|Q|

∫
Q

| f (x)| dx = 0.

Theorem 3.10 [Dafni 2002]. The space vmo(Rn) is the closure of C0(R
n) in

bmo(Rn).

An immediate consequence of this result and Theorem 3.5 is:

Theorem 3.11. For 1≤ k ≤ n, the space vk(Rn) is embedded into vmo(Rn).

Corollary 3.12. The space v1(Rn) does not contain dn(Rn) as a subspace. In
particular, the vk(Rn) are proper subspaces of dk(Rn) for k = 1, . . . , n.
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Proof. Recall that dn(Rn) coincides with L∞(Rn). If L∞ was a subspace of v1(Rn),
then by Theorem 3.11 we would have L∞ ⊂ vmo(Rn). However, choosing f as a
characteristic function of the quadrant {x = (x1, . . . , xn) ∈ Rn

: xi > 0}, we have
an example of an L∞ function that does not satisfy (3-5). So L∞ 6⊂ vmo(Rn). �

Finally, we recall that D(Rn) is dense in W 1,p(Rn) for any p ∈ [1,∞). Therefore
by Theorem 3.4, we have W 1,n

⊂ vn−1(Rn).
All in all, we conclude that the following embeddings hold:

W 1,n(Rn)⊂ vn−1(Rn)⊂ · · · ⊂ v1(Rn)⊂ vmo(Rn).

3B. Intrinsic definition of the space vn−1.

Definition 3.13. For u ∈ dn−1(Rn)∩C(Rn), we will use the notation

‖u‖∗ = sup
∂γ=∅

1
|γ |

∣∣∣∣∫
γ

u(t)τ (t) dt
∣∣∣∣+ sup
|γ |≥1

1
|γ |

∣∣∣∣∫
γ

u(t)τ (t) dt
∣∣∣∣,

where the suprema are taken over smooth curves γ with finite lengths |γ | and
boundaries ∂γ , and τ is the unit tangent vector to the curve γ .

Our goal is to prove the following result.

Theorem 3.14. There are constants c1 and c2 great than 0 such that for every
u ∈ dn−1(Rn)∩C(Rn),

c1‖u‖∗ ≤ ‖u‖dn−1 ≤ c2‖u‖∗.

The proof is based on the following three lemmas:

Lemma 3.15. There exists C > 0 such that for any γ with ∂γ =∅ or |γ | ≥ 1,

1
|γ |

∣∣∣∣∫
γ

u(y)τ (y) dy
∣∣∣∣≤ C‖u‖dn−1 .

Proof. The proof is based on the argument of Bourgain and Brezis [2004].
Let η≥ 0 be a smooth radial function on Rn, compactly supported in |x | ≤ 1, such

that ‖η‖L1 = 1. As usual we put ηε(x)= ε−nη(x/ε). Let us define the (n−1)-form

8ε(x)=
n∑

j=1

(∫
γ

ηε(t − x)τ j (t) dt
)

dx I j , x ∈ Rn,

where I j = (i1, . . . , in−1), ik 6= j.
The reason to introduce this differential form is the equality∣∣∣∣∫
γ

u(t)τ (t) dt
∣∣∣∣= lim

ε→0

∣∣∣∣∫
γ

τ(t)
∫

Rn
u(x)ηε(x − t) dx dt

∣∣∣∣= lim
ε→0

∣∣∣∣∫ u(x)8ε(x) dx
∣∣∣∣.
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By Remark 3.2, we need to estimate ‖8ε‖ϒ1
n−1

. It is clear that

‖8ε‖L1
n−1
≤ n‖ηε‖L1 |γ | = n|γ |.

Moreover,

d8ε(x)=−
(∫

γ

∇ηε(y− x) · τ(y) dy
)

dx1
∧ · · · ∧ dxn

= [ηε(a− x)− ηε(b− x)]dx1
∧ · · · ∧ dxn.

Therefore ‖d8ε‖L1
n

is 0 if γ is closed or ≤ 2 if γ is not closed. Finally,

1
|γ |

∣∣∣∣∫
γ

u(s)τ (s) ds
∣∣∣∣≤ 1
|γ |

lim sup
ε→0

∣∣∣∣∫ u(x)8ε dx
∣∣∣∣≤ ‖u‖dk (2+ n),

because |γ | ≥ 1 for nonclosed γ . So we have proved the lemma with C = n+2. �

In order to prove the converse estimate, Bourgain and Brezis evoked the decom-
position theorem of Smirnov.

Theorem 3.16 [Smirnov 1993]. For any compactly supported 8 ∈ L1
n−1(R

n), with
d8= 0, there exists a sequence of positive numbers {µm

j } and closed smooth curves
{γ m

j } such that for all m ≥ 1,

∞∑
j=1

|µm
j | |γ

m
j | ≤ ‖8‖L1

n−1
,

and for every u ∈ C(Rn) and 1≤ i ≤ n,

∞∑
j=1

µm
j

∫
γm

j

u(s)τi (s) ds→
∫

u(x)φi (x) dx, as m→∞,

where φi are the components of 8.

In our case d8 ∈ L1
n−1(R

n) does not necessarily vanish and we need a more
general version of Smirnov’s theorem, which we formulate in the following form:

Theorem 3.17 [Smirnov 1993]. Let8 ∈ ϒ1
n−1(R

n). Then there exist P ∈ ϒ1
n−1(R

n)

and Q ∈ ϒ1
n−1(R

n) such that

• ‖8‖L1
n−1
= ‖P‖L1

n−1
+‖Q‖L1

n−1
,

• d P = 0 and we can apply the previous theorem to P ,

• d Q = d8.
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Moreover, there exist {λl
j } and smooth curves γ̃ l

j (not necessarily closed) such that
for all l ≥ 1, ∞∑

j=1

|λl
j ||γ̃

l
j | ≤ ‖Q‖L1

n−1
,

∞∑
j=1

|λl
j | ≤ ‖d Q‖L1

n

and for 1≤ i ≤ n,

∞∑
j=1

λl
j

∫
γ̃ l

j

u(s)τi (s) ds→
∫

u(x)qi (x) dx, as l→∞,

where qi are the components of Q.

Let us introduce an auxiliary norm for u ∈ C(Rn):

‖u‖∗∗= sup
∂γ=∅

1
|γ |

∣∣∣∣∫
γ

u(s)τ (s)ds
∣∣∣∣+ sup
|γ |<1

∣∣∣∣∫
γ

u(s)τ (s)ds
∣∣∣∣+ sup
|γ |≥1

1
|γ |

∣∣∣∣∫
γ

u(s)τ (s)ds
∣∣∣∣.

Lemma 3.18. For any u ∈ dn−1(Rn)∩C(Rn),

‖u‖dn−1(Rn) ≤ 2‖u‖∗∗.

Proof. By the definition of dn−1(Rn), there exists

8=

n∑
i=1

φi dx1
∧ · · · d̂x i

∧ · · · dxn
∈ Dn−1(Rn)

such that
‖8‖L1

n−1
+‖d8‖L1 ≤ 1

and

(3-7) ‖u‖dn−1 ≤ 2 max
I
|u(φI )|.

Let us apply Theorem 3.17 to 8. Then 8 can be decomposed into the sum of P
and Q such that d8=d Q, ‖8‖L1

n−1
=‖P‖L1

n−1
+‖Q‖L1

n−1
and Q is a weak limit of

the linear combination of the curves γ̃ l
j in the sense that

∞∑
j=1

λ̃l
j

∫
γ̃ l

j

u(s)τi (s) ds→
∫

u(x)qi (x) dx, as l→∞,

where
∞∑
j=1

|λ̃l
j |(1+ |γ̃

l
j |)≤ ‖Q‖L1

n−1
+‖d Q‖L1 ≤ 1, for all l ≥ 1.
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Moreover, applying Theorem 3.16 to P, we get a sequence of closed curves γ l
j and

numbers λl
j such that
∞∑
j=1

λl
j

∫
γ l

j

u(s)τi (s) ds→
∫

u(x)pi (x) dx, as l→∞,

and
∞∑
j=1

|λl
j ||γ

l
j | ≤ ‖P‖L1

n−1
≤ 1, for all l ≥ 1.

All in all,∫
u(x)φi (x) dx = lim

l→∞

∞∑
j=1

λl
j

∫
γ l

j

u(s)τi (s) ds+
∞∑
j=1

λ̃l
j

∫
γ̃ l

j

u(s)τi (s) ds

and

(3-8)
∣∣∣∣∫ u(x)φi (x) dx

∣∣∣∣≤ sup
l, j

∣∣∣∣ 1
|γ l

j |

∫
γ l

j

u(s)τi (s) ds
∣∣∣∣+ sup

l,|γ̃ l
j |<1

∣∣∣∣∫
γ̃ l

j

u(s)τi (s) ds
∣∣∣∣

+ sup
l,|γ̃ l

j |≥1

∣∣∣∣ 1
|γ̃ l

j |

∫
γ̃ l

j

u(s)τi (s) ds
∣∣∣∣≤ ‖u‖∗∗.

The result follows from (3-7) and (3-8). �

Lemma 3.19. For any u ∈ C(Rn),

‖u‖∗ ≤ ‖u‖∗∗ ≤ 4‖u‖∗.

Proof. The first inequality follows from the definitions of the norms. In order to
see the second one, we need to show

sup
|γ |<1

∣∣∣∣∫
γ

u(s)τ (s) ds
∣∣∣∣≤ sup

∂γ=∅

3
|γ |

∣∣∣∣∫
γ

u(s)τ (s) ds
∣∣∣∣+ sup
|γ |≥1

3
|γ |

∣∣∣∣∫
γ

u(s)τ (s) ds
∣∣∣∣.

Let us consider any γ with |γ |< 1 and ∂γ = {a, b}. We can always find γ ′ such
that 1< |γ ′|< 2 and γ ′′ := γ + γ ′ is a closed curve.

Then∣∣∣∣∫
γ

u(s)τ (s) ds
∣∣∣∣≤ ∣∣∣∣∫

γ ′′
u(s)τ (s) ds

∣∣∣∣+ ∣∣∣∣∫
γ ′

u(s)τ (s) ds
∣∣∣∣

≤

∣∣∣∣ 3
|γ ′′|

∫
γ ′′

u(s)τ (s) ds
∣∣∣∣+ ∣∣∣∣ 3
|γ ′|

∫
γ ′

u(s)τ (s) ds
∣∣∣∣. �

3C. Examples of dk(Rn) functions. In this section, we want to show that there
are more functions in dk(Rn) besides those in W 1,n(Rn).
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3C1. Triebel–Lizorkin and Besov functions. We recall that the Sobolev space
W s,p(Rn), 1< p <∞, is a special case of more general classes of functions

W s,p(Rn)= F s,p
p (Rn)= Bs,p

p (Rn),

where F s,p
q , s ∈ R, 0 < p, q <∞, is the Triebel–Lizorkin space and Bs,p

q (Rn),
s ∈ R, 0 < p, q ≤∞, is the Besov space (see, e.g., [Grafakos 2009] or [Triebel
1992] for definitions).

It was shown in [Van Schaftingen 2010, Proposition 2.1] that F̊ s,p
q ⊂ Dn−1

for all sp = n, 1 < p <∞, 0 < q <∞ (here F̊ s,p
q is a homogeneous Triebel–

Lizorkin space). Recalling the embedding theorems (see, e.g., [Grafakos 2009,
Example 6.5.2])

B̊s,p
min(p,q) ⊂ F̊ s,p

q ⊂ B̊s,p
max(p,q),

and
B̊s,p

q ⊂ B̊s′,p′
q , if sp = s ′ p′ and s > s ′,

one can obtain the embedding B̊s,p
q ⊂ Dn−1 for 0 < q <∞. The case q = ∞

remains open (see [Van Schaftingen 2014, Open problem 1]).
One can notice that the proof of Proposition 2.1 in [Van Schaftingen 2010] is

exactly the same as the proof of Theorem 1.5 in [Van Schaftingen 2004b]. In fact it
can be extended to the nonhomogeneous setting as follows:

Theorem 3.20. Let 1 < p <∞, 1 < q <∞. Then there exists constants C1 and
C2 such that

‖u‖dn−1 ≤ C1‖u‖Fn/p,p
q

and
‖u‖dn−1 ≤ C2‖u‖Bn/p,p

q
.

3C2. Locally Lipschitz functions. The following proposition provides a simple
sufficient condition to ensure that u ∈ dn−1(Rn).

Proposition 3.21. Let u ∈ W 1,1
loc (R

n
\ {0}). If |x |(u(x)+∇u(x)) ∈ L∞(Rn), then

u ∈ dn−1(Rn) and
‖u‖dn−1 ≤ C‖|x |(|u| + |∇u|)‖L∞ .

Proof. The proof follows from integration by parts as in the proof of Proposition 4.3
in [Van Schaftingen 2006].

We need to show that for any8=
∑n

j=1 φ j (x)dx1
∧· · · d̂x j

∧· · · dxn
∈Dn−1(Rn),

we have ∣∣∣∣∫ u(x)φ j (x) dx
∣∣∣∣≤ C‖|x |(u(x)+∇u(x))‖L∞‖8‖ϒ1

n−1
.
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Note that∫
x j

(∑
i

φi∂i u
)

dx =−
∫
φ j u dx −

∫
x j u ·

(∑
i

∂iφi

)
dx .

So ∣∣∣∣∫ u(x)φ j (x) dx
∣∣∣∣≤ n‖|x |∇u‖L∞‖8‖L1

n−1
+‖|x |u‖L∞‖d8‖L1

n
. �

The proposition allows us to give an example of u ∈ dn−1 which is not covered
by the previous classes of functions, the Bessel potential Gn .

Remark 3.22. A typical example of u ∈ Dn−1
\W 1,n in [Van Schaftingen 2006]

is the function u(x)= log |x |. However, this function does not belong to bmo(Rn)

and therefore is not in any dk, 1≤ k ≤ n, as

sup
|Q|>1

1
|Q|

∫
Q
| log |y|| dy =∞.

Example 3.23. Let Gn(x) be the Bessel potential of order n, i.e., the function
whose Fourier transform is given by Ĝn(ξ)= (1+ |ξ |2)−n/2.

The fact that Gn satisfies the conditions of the last proposition follows from the
fact that Gn is a continuously differentiable function on Rn

\{0} and the asymptotic
formulas for the Bessel potentials (see, e.g., [Aronszajn and Smith 1961], pp.
415–417):

Gn(x)∼ C1 log |x |, as x→ 0,

Gn(x)∼ C2|x |−1/2e−|x |, as x→∞.

Moreover,
∂

∂xi
Gn(x)= C ′s ·

xi

|x |
K1(|x |),

where K1 is the Bessel–Macdonald function of order 1, with the asymptotics

K1(r)∼ C3r−1, as r→ 0+,

K1(r)∼ C4r−1/2e−r , as r→∞.

3D. Application to PDEs. We will illustrate how nonhomogeneous dk spaces can
be used in the analysis of classic PDEs.

The following result was shown in [Bourgain and Brezis 2007, Theorems 2
and 3]: if 1U = F in Rn and div F = 0, then

‖U‖∞+‖∇U‖2 ≤ C‖F‖1, if n = 2,

and
‖U‖n/(n−2)+‖∇U‖n/(n−1) ≤ C‖F‖1, if n ≥ 3.
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A more general result of Bourgain and Brezis ([Bourgain and Brezis 2007,
Theorem 4′] and [Brezis and Van Schaftingen 2007, Remark 2.1]) implies that one
can relax the condition div F = 0 to div F ∈ L1 to obtain

‖∇U‖n/(n−1) ≤ C(‖F‖1+‖ div F‖1).

Note that for n ≥ 3 this can be combined with a Sobolev embedding theorem to
produce

‖U‖n/(n−2)+‖∇U‖n/(n−1) ≤ C(‖F‖1+‖ div F‖1).

However (as noted in [Brezis and Van Schaftingen 2007]), if n = 2 then U may
no longer be an L∞ vector field. Let us explain why this may happen using
Theorem 3.5.

Let g(x)= log |x |. Then g ∗ F is continuous for any F ∈ ϒ1
1 and if

‖U‖∞ = (2π)−1
‖g ∗ F‖∞ ≤ C(‖F‖1+‖ div F‖1)

were true for any F ∈ D1(R2), then we would have

|g ∗ F(0)| =
∣∣∣∣∫ g(x)F(x) dx

∣∣∣∣≤ C‖F‖ϒ1
1
,

and g(x)= log |x | would be a d1 function and by Theorem 3.5, log |x | ∈ bmo(R2).
However, this is false by Remark 3.22.

So the solution of equation 1U = F ∈ R2 can be essentially unbounded even if
div F ∈ L1, because the fundamental solution of1 in R2 is not an element of d1(R2).
Based on the examples of dn−1(Rn) functions, one can guess that the situation
should be better in the case of the Helmholtz equation. Indeed, the following
proposition shows that solutions to the Helmholtz equation can be fully controlled
even under relaxed conditions.

Theorem 3.24. Let n ≥ 2, F ∈ L1(Rn
;Rn) and div F ∈ L1(Rn). Then the system

(I −1)U = F admits a unique solution U such that:

• If n = 2, then
‖U‖∞+‖∇U‖2 ≤ C(‖F‖1+‖ div F‖1).

• If n ≥ 3, then

‖U‖n/(n−2)+‖∇U‖n/(n−1) ≤ C(‖F‖1+‖ div F‖1).

Proof. Without loss of generality we can assume that F ∈ S(R2
;R2).

Case 1: If n ≥ 3, then

1U =
1

I −1
F =: F̃ .
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As 1/(I −1) is an operator of convolution against a finite measure (see, e.g.,
Chapter 5 in [Stein 1970]), F̃ ∈ L1 and div F̃ =1/(I −1) div F ∈ L1, with

‖F̃‖1+‖ div F̃‖1 ≤ C(‖F‖1+‖ div F‖1).

Hence by Theorem 4′ in [Bourgain and Brezis 2007],

‖∇U‖n/(n−1) ≤ C(‖F̃‖1+‖ div F̃‖1)≤ C ′(‖F‖1+‖ div F‖1)

and the application of Sobolev’s embedding theorem completes the proof.

Case 2: If n = 2, then solution U has the form U (x) = G2 ∗ F(x), where G2(x)
is the Bessel potential of order 2. By Example 3.23, G2 ∈ d1(R2). Thus for any
x ∈ R2,

|U (x)| = |G2 ∗ F(x)| ≤ ‖G2‖d1‖τx F‖ϒ1
1 (R

2) = ‖G2‖d1‖F‖ϒ1
1 (R

2),

where τx is the translation operator defined by (τx f )(y)= f (y−x). In other words

(3-9) ‖U‖∞ ≤ C(‖F‖1+‖ div F‖1).

In order to control ∇U , notice that the decay of F and G2 implies∫
|∇Ui (x)|2 dx =−

∫
Ui (x)1Ui (x) dx =

∫
Ui (x)Fi (x) dx −

∫
U 2

i (x) dx .

Hence, recalling that U is a convolution of the L1 functions G2 and F,

‖∇U‖2 ≤ C‖U‖1/2
∞
(‖F‖1+‖U‖1)1/2 ≤ C‖U‖1/2

∞
‖F‖1/21 .

Using (3-9) we complete the proof. �

4. dk spaces on Lipschitz domains

In this section we define dk classes on domains. Everywhere in this section we
assume � to be a bounded Lipschitz domain in Rn.

Definition 4.1. Let 1≤ k ≤ n. A distribution u ∈D′(�) is said to belong to dk(�)

if there exists C > 0 such that |u(φI )| ≤ C‖8‖ϒ1
k (�)

for any

8=
∑
|I |=k

φI dx I
∈ Dk(�).

We denote the space of such distributions by dk(�) and equip it with the norm

‖u‖dk(�) := sup{|u(φI )| :8 ∈ Dk(�); ‖8‖ϒ1
k (�)
≤ 1}.
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Remark 4.2. Let 1≤ k ≤ n. We want to consider distributions u ∈ E ′(�) such that
|u(φI )| ≤ C‖8‖ϒ1

k (�)
for some finite C > 0 and any

8=
∑
|I |=k

φI dx I
∈ Dk(Rn).

The class of E ′(�)∩dk(Rn), equipped with the norm ‖ · ‖dk(Rn) forms an incomplete
normed space. Therefore we define dk

z (�) as follows.

Remark 4.3. The definitions we use were suggested by Van Schaftingen [2006]. It
is also possible to define dk(�) as we did in Remark 3.2. Any u ∈ D′(�) defines a
linear map ũ : Dk(�)→ R(

n
k) by

ũ
(∑
|I |=k

φI dx I
)
= (u(φI ))I

and u ∈ dk(�) if and only if ũ can be extended to a bounded linear map from
ϒ1

k,0(�) to
(
R(

n
k), ‖ · ‖max

)
, where ϒ1

k,0(�)= Dk(�) and the closure is taken with
respect to the ϒ1

k norm.

4A. dk
z (�) spaces. All properties of dk

z (�) spaces can be deduced from the previ-
ous results and the following definition:

Definition 4.4. For 1≤ k ≤ n, set dk
z (�)= {u ∈ dk(Rn) : supp u ∈�}.

Remark 4.5. It is clear that dk
z (�) is a closed subspace of dk(Rn), and therefore

complete, and that E ′(�)∩ dk(Rn)⊂ dk
z (�). Conversely, any u ∈ dk

z is the weak
limit of E ′(�) ∩ dk(Rn). Indeed, consider any u ∈ dk(Rn) supported in �. By
Theorem 3.5 and the definition of bmoz(�), u ∈ bmoz(�). In particular u ∈ L1(�).
Let η j be a sequence of D(�) functions such that lim j→∞ η j = χ�, the character-
istic function of �. Then by Lebesgue’s dominated convergence theorem, for any
8 ∈ Dk(�) and I,∫

�

u(x)φI (x) dx = lim
j→∞

∫
�

(η j u)(x)φI (x) dx .

This shows that u = lim
j→∞

(η j u) is a weak limit.

Combining this definition with Lemma 3.3 we obtain:

Proposition 4.6. The spaces dk
z (�) form a monotone family, i.e., the following

embeddings hold:
dn

z (�)⊂ dn−1
z (�)⊂ · · · ⊂ d1

z (�).

Proposition 4.7. Let� be a bounded Lipschitz domain and W 1,n
0 (�) be the closure

of D(�) functions in the norm ‖·‖W 1,n(�). Then W 1,n
0 (�) is continuously embedded

into dn−1
z (�).
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Proof. The space W 1,n
0 (�) can be characterized (see, e.g., Theorem 5.29 in [Adams

and Fournier 2003]) as follows: let f ∈W 1,n(�), then f ∈W 1,n
0 (�) if and only if

the extension of f by zero to Rn
\� belongs to W 1,n(Rn). Using this characteri-

zation, we can identify any u ∈W 1,n
0 (�) with ũ ∈ W 1,n(Rn) supported in �. By

Van Schaftingen’s theorem such ũ is an element of dn−1(Rn) and is supported in �.
Therefore by Definition 4.4, ũ ∈ dn−1

z (�). �

Proposition 4.8. The space d1
z (�) is a proper subspace of bmoz(�).

Proof. This follows immediately from Theorem 3.5, Definition 4.4 and the definition
of bmoz(�). �

All in all, we can see that the spaces dk
z (�) form a family of intermediate spaces

between W 1,n
0 (�) and bmoz(�).

4B. dk(�) spaces. It follows directly from the definitions of dk(Rn) and dk(�),
that u→ u|� maps dk(Rn) to dk(�) and

(4-1) ‖u|�‖dk(�) ≤ ‖u‖dk(Rn),

where u|� stands for the restriction of u to �.
Repeating verbatim the proof of Lemma 3.3, one obtains:

Proposition 4.9. Let 1≤ k < l ≤ n and u ∈ dl(�). Then u ∈ dk(�) and ‖u‖dk(�) ≤

‖u‖dl (�). In other words:

dn(�)⊂ dn−1(�)⊂ · · · ⊂ d1(�).

In order to show that W 1,n(�) ⊂ dn−1(�), we recall the extension property
of Sobolev spaces. It is well known (see, e.g., Theorem 5.24 in [Adams and
Fournier 2003]) that if � is a Lipschitz domain, then there exists a bounded linear
operator E :W l,p(�)→W l,p(Rn) such that Eu = u almost everywhere in � for
all u ∈W l,p(�). If we consider such an extension E on W 1,n(�) and recall (4-1)
and Theorem 3.4, then

‖u‖dn−1(�) = ‖Eu|�‖dn−1(�) ≤ ‖Eu‖dn−1(Rn) ≤ ‖Eu‖W 1,n(Rn) ≤ ‖E‖‖u‖W 1,n(�).

In other words:

Proposition 4.10. If � is a bounded Lipschitz domain, then W 1,n(�) is continu-
ously embedded into dn−1(�).

The following result is the analog of Theorem 3.5 on Lipschitz domains.

Theorem 4.11. Any u ∈ d1(�) is a bmor (�) function and

‖u‖bmor (�) ≤ C‖u‖d1(�).
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The proof is more technical than that of Theorem 3.5 because of the presence
of ∂�. Firstly, we state a corollary of the Nečas inequality:

‖ f ‖L2(�) ≤ C(‖ f ‖W−1,2(�)+‖∇ f ‖W−1,2(�)) for all f ∈ L2(�).

Lemma 4.12 [Auscher et al. 2005, Lemma 10]. Let � be a bounded Lipschitz
domain in Rn. If g ∈ L2(�) and

∫
g = 0, then there exists a vector-valued function

F ∈W 1,2
0 (�,Rn) such that {

div F = g in �,
‖DF‖L2 ≤ C‖g‖2.

Here DF is a matrix ∂ j Fi and C > 0 depends only on the Lipschitz constant of �.

Using this lemma we prove the following:

Lemma 4.13. Let � be a bounded Lipschitz domain in Rn. If g ∈ H 1
z (�), then

there exists a vector-valued function F ∈W 1,1
0 (�,Rn) such that{

div F = g in �,
‖DF‖L1 ≤ C‖g‖H1 .

Proof. Let g ∈ H 1
z (�). Then by Theorem 2.18, it can be decomposed into H 1

z (�)

atoms ai ∈ L2(Rn) as

g =
∞∑

i=1

λi ai

and
∞∑

i=1

|λi | ≤ 2‖g‖H1 .

For each i ≥ 1, using Lemma 4.12, we can find V i
∈W 1,2

0 (Qi ,Rn), such that{
div V i

= ai in Qi ,

‖DV i
‖L2 ≤ C‖ai‖L2 .

As W 1,2
0 (Qi ) fields, V i can be continuously extended by 0 to W 1,2(�). We

denote these extensions by the same V i. We claim that F =
∑
∞

i=1 λi V i is the
solution we seek.

Indeed, since the ai are atoms, we have

‖DV i
‖L1 ≤ |Qi |

1/2
‖DV i

‖L2 ≤ C |Qi |
1/2
‖ai‖L2 ≤ C1 for all i ≥ 1.

Therefore, the partial sums
∑N

i=1 λi V i, supported in �, converge to an element F
of W 1,1

0 (�,Rn×n) and

‖DF‖L1 ≤ C1
∑

i

|λi | ≤ C‖g‖H1 .
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Finally, by the construction of F,

div F =
∑

i

λi · div V i
=

∑
i

λi ai = g. �

Now we can prove the last theorem of this section:

Proof of Theorem 4.11. We will use the duality between h1
z (�) and bmor (�)

asserted by Theorem 2.15. By Lemma 2.11, it is enough to show that for any
f ∈ D(�) and u ∈ d1(�),

(4-2) |u( f )| ≤ C‖u‖d1‖ f ‖h1 .

Given f ∈ D(�), we write f as the sum f = g+ θ , where

g = f −
∫

f (x) dx ·ψ and θ =

∫
f (x) dx ·ψ,

where ψ ∈ D(�) is any function with
∫
ψ = 1.

Note that θ ∈ D(�) with ‖θ‖h1 ≤ ‖ψ‖L1‖ f ‖h1 and ‖θ‖W 1,1 ≤ ‖ f ‖h1‖ψ‖W 1,1 .
Moreover if we define2=

∑n
i=1 θ dx i

∈D1(�), then ‖2‖ϒ1
1 (�)
≤C‖ψ‖W 1,1‖ f ‖h1 .

Therefore

(4-3) |u(θ)| ≤ ‖u‖d1(�)‖2‖ϒ1
1 (�)
≤ Cψ‖u‖d1(�)‖ f ‖h1 .

On the other hand, for g ∈D(�), we recall Lemma 2.4 to see that g ∈ H 1
z (�) and

(4-4) ‖g‖H1 ≤ C�‖g‖h1 ≤ C ′ψ‖ f ‖h1 .

Hence, Lemma 4.13 is applicable and there exists F ∈W 1,1
0 (�;Rn) such that{

div F = g in �,
‖DF‖L1(�;Rn×n) ≤ C‖g‖H1 .

Using this F, we introduce n differential forms

8 j
=

n∑
i=1

∂i F j dx i .

We claim that all the 8 j are in ϒ1
1,0(�) and ‖8 j

‖ϒ1
1 (�)
≤ C ′ψ‖ f ‖h1 (recall that

ϒ1
k,0(�)= Dk(�) where the closure is taken with respect to the ϒ1

k norm). Assum-
ing the claim and recalling that u is well defined on components of ϒ1

1,0(�) forms
(see Remark 4.3), one has

(4-5) |u(g)| =
∣∣∣∣u( n∑

i=1

∂i Fi

)∣∣∣∣≤ n∑
i, j=1

|u(∂i F j )| ≤ n‖u‖d1(�) max
1≤ j≤n

‖8 j
‖ϒ1

1 (�)

≤ C‖u‖d1(�)‖ f ‖h1 .
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We complete the proof by deducing (4-2) from (4-3), (4-5) and the triangle inequality.
In order to prove the claim, we note that d8 j

= 0 by construction and all
components of 8 j are L1(�) functions, bounded in the L1-norm by a multiple
of ‖g‖H1 . Recalling (4-4), we may conclude that

‖8 j
‖ϒ1

1 (�)
= ‖8 j

‖L1
1(�)
≤ C‖ f ‖h1 .

Furthermore, F j ∈W 1,1
0 (�) for j=1, . . . , n, which means that there exist sequences

{Fm
j }
∞

m=1⊂D(�) such that ‖∂i Fm
j −∂i F j‖L1(�)→0, as m→∞. Hence, by forming

closed D1(�)-forms,

8 j,m
=

n∑
i=1

∂i Fm
j dx i ,

we can construct D1(�) approximations of 8 j, such that, as m→∞,

‖8 j,m
−8 j
‖ϒ1

1 (�)
= ‖8 j,m

−8 j
‖L1

1(�)
→ 0,

which shows that 8 j
∈ ϒ1

1,0(�) for j = 1, . . . , n. �

5. dk spaces on Riemannian manifolds

Let (M, g) be a complete Riemannian manifold. Then expp is defined on Tp M and,
as mentioned earlier, for sufficiently small rp > 0, maps Brp(0) ∈ Tp M diffeomor-
phically onto an open subset of M. Let us denote by injM(p), the supremum of all
such rp > 0 and define the injectivity radius of M as

injM := inf{injM(p) : p ∈ M}.

Definition 5.1. A Riemannian manifold (M, g) is called a manifold with bounded
geometry if

(1) M is complete and connected;

(2) injM > 0;

(3) for every multi-index α, there exists Cα > 0 such that |Dαgi, j | ≤ Cα in the
normal geodesic coordinates (�p(rp), exp−1

p ).

Examples of manifolds with bounded geometry include compact Riemannian
manifolds, Rn and Hn (see, e.g., [Eldering 2013]).

5A. Tame partition of unity. Let (M, g) be a Riemannian manifold with bounded
geometry. For δ ∈ (0, injM), we denote by �δ(p) the image Bδ(0) by the map expp
which is called a geodesic ball with radius δ centered at p.

Proposition 5.2 [Triebel 1992, p. 284]. For sufficiently small δ > 0 there ex-
ists a uniformly locally finite covering of M by a sequence of geodesic balls
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{�δ(p j )} j∈Z+ and a corresponding smooth partition of unity {ψ j } j∈Z+ subordinate
to {�δ(p j )} j∈Z+ .

Following Taylor [2009], we will call such a covering and partition of unity a
tame covering and a tame partition of unity.

5B. W s, p(M), h1(M) and bmo(M).

Definition 5.3 [Triebel 1992, Chapter 7]. Let (M, g) be a Riemannian manifold
with bounded geometry and let {ψ j } be a tame partition of unity subordinate to a
tame cover by geodesic balls {�δ(p j )}. The Sobolev space W s,p(M), 1< p <∞,
s > 0, is defined as

W s,p(M)=
{

f ∈ D′(M) :
∑
j∈Z+

‖ψ j f ◦ expp j
‖

p
W s,p(Rn) <∞

}
Taylor [2009], introduced versions of Hardy spaces and bmo on manifolds with

bounded geometry. One way to define h1(M) is as follows:

Definition 5.4 [Taylor 2009, Corollary 2.4]. Let f ∈D′(M) and let {ψ j } be a tame
partition of unity subordinate to a tame cover by geodesic balls {�δ(p j )}. We say
that f ∈ h1(M) if

∑
j ‖(ψ j f )◦expp j

‖h1(Rn)<∞. We equip the space h1(M) with
the norm

‖ f ‖h1(M) =
∑

j

‖(ψ j f ) ◦ expp j
‖h1(Rn).

The space bmo(M) is defined similarly.

Definition 5.5 [Taylor 2009, Corollary 3.4]. Let f ∈ L1
loc(M) and let {ψ j } be a

tame partition of unity subordinate to a tame cover by geodesic balls {�δ(p j )}.
We say that f ∈ bmo(M) if

∑
j ‖(ψ j f ) ◦ expp j

‖bmo(Rn) <∞. We equip the space
bmo(M) with the norm

‖ f ‖bmo(M) =
∑

j

‖(ψ j f ) ◦ expp j
‖bmo(Rn).

Remark 5.6. All these classes of functions have equivalent global definitions.
However, for our purposes it is more convenient to use the introduced versions. We
refer to [Taylor 2009; Aubin 1982; Triebel 1992] for alternative definitions and the
proofs of their equivalence.

5C. dk(M) spaces and the embedding into bmo(M).

Definition 5.7. Let {ψ j } be a tame partition of unity subordinate to a tame cover
by geodesic balls {�δ(p j )}. We say that u ∈ D′(M) ∈ dk(M) if, for each j,
(ψ j u) ◦ expp j

∈ dk(Rn) and

‖u‖dk(M) :=
∑

j

‖(ψ j u) ◦ expp j
‖dk(Rn) <∞.
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We complete this part with the result which immediately follows from the
definitions of the spaces W 1,n(M), dk(M), bmo(M), and the results of Section 3B:
Lemma 3.3 and Theorems 3.4 and 3.5.

Theorem 5.8. Let M be the Riemannian manifold with bounded geometry. Then
the following continuous embeddings hold:

W 1,n(M)⊂ dn−1(M)⊂ · · · ⊂ d1(M)⊂ bmo(M).
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A COUNTEREXAMPLE TO THE EASY DIRECTION OF THE
GEOMETRIC GERSTEN CONJECTURE.

DAVID BRUCE COHEN

For finitely generated groups H and G, equipped with word metrics, a
translation-like action of H on G is a free action such that each element
of H acts by a map which has finite distance from the identity map in the
uniform metric. For example, if H is a subgroup of G, then right translation
by elements of H yields a translation-like action of H on G. Whyte asked
whether a group having no translation-like action by a Baumslag–Solitar
group must be hyperbolic, where the free abelian group of rank 2 is under-
stood to be a Baumslag–Solitar group. We show that the converse question
has a negative answer, and in particular the fundamental group of a closed
hyperbolic 3-manifold admits a translation-like action by the free abelian
group of rank 2.

1. Introduction

A metric space X is said to be uniformly discrete if it has a minimum distance,
meaning

inf{d(x, y) : x, y ∈ X; x 6= y}> 0,

and said to have bounded geometry if for all r > 0, there is some Nr > 0 such that
every r-ball has cardinality at most Nr . If X satisfies both of these conditions, it
is said to be a UDBG space [Whyte 1999, §2]. For example, a finitely generated
group equipped with a word metric is a UDBG space. More generally, if X is the
vertex set of a connected graph of bounded degree, equipped with the metric that
assigns length 1 to each edge, then X is a UDBG space.

Definition [Whyte 1999, Definition 6.1]. Let X be a UDBG space. A translation-
like action of a group H on X is a free action by maps at a finite distance from the
identity. That is, the action satisfies the following rules.

• For x ∈ X and h ∈ H, if h · x = x , then h = 1H .

• For all h ∈ H, the set {d(x, h · x) : x ∈ X} is bounded.
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We will mostly be interested in the case where H is finitely generated and the
UDBG space X is a finitely generated group G equipped with a word metric. In
this case, a translation-like action of H on G is just a vertex-surjective embedding
of a disjoint union of copies of a Cayley graph of H into a Cayley graph of G (since
an orbit of a translation-like action of H on G embeds the Cayley graph of H into
some Cayley graph of G).

Translation-like actions generalize subgroups. If H is a finitely generated subgroup
of G, then H acts translation-like on G via

h · g = gh−1

for h ∈ H and g ∈ G. Many properties which pass to subgroups of G also pass to
groups which act translation-like on G. For instance, Jeandel [2015, Theorem 3]
has shown that if G has no weakly aperiodic subshift of finite type, then the same
is true for finitely presented groups acting translation-like on G. By considering
that many properties which pass to subgroups of G also pass to groups which act
translation-like on G, Whyte was able to give “geometric” versions of several famous
conjectures about how the properties of G constrain its subgroups [Whyte 1999, §6].

The geometric von Neumann–Day conjecture. The von Neumann–Day conjecture
(disproven by Olshanskii [1980]) asserts that a group G should be nonamenable if
and only if G contains a free subgroup. Whyte [1999, Theorem 6.1] used translation-
like actions to formulate and prove a geometric version of this conjecture — namely,
that G is nonamenable if and only if Z ∗Z acts translation-like on G.

The geometric Burnside problem. The Burnside problem (answered in the negative
by Golod and Shafarevich [Golod 1964]) asks whether every infinite finitely gener-
ated group contains a Z-subgroup. The geometric Burnside problem asks whether
every infinite, finitely generated group admits a translation-like action of Z. Seward
[2014, Theorem 1.4] proved that the answer to this question is yes.

The geometric Gersten conjecture. Recall that for m, n∈Z6=0, the Baumslag–Solitar
group BS(m, n) is the group presented by 〈a, b|abma−1

= bn
〉, and in particular

BS(1, 1)∼= Z2. It is known that these groups do not embed in hyperbolic groups.
The Gersten conjecture [Bestvina 2000, Q 1.1] — usually attributed to Gromov —
roughly states that for a group satisfying some finiteness properties, hyperbolicity
should be equivalent to having no Baumslag–Solitar subgroup. We do not know
whether Gersten actually asked this question, although [Gersten 1996] asks whether
every finitely presented subgroup of a hyperbolic group must be hyperbolic. [Brady
1999] showed that this was false, and hence that the Gersten conjecture is false for
finitely presented groups (weaker versions remain open).

The geometric Gersten conjecture states being hyperbolic is equivalent to having
no translation-like action by any BS(m, n). In point of fact, Whyte only asked
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about the “hard” direction — whether a group which is not hyperbolic must admit a
translation-like action of a Baumslag–Solitar group — and only for 2-dimensional
groups. By an observation of Jeandel [2015, §5], knowing the hard direction for
all amenable groups would imply that every group (except for virtually cyclic
groups) has a weakly aperiodic subshift of finite type, as conjectured by Carroll and
Penland [2015]. In a recent preprint Jiang [2017] has shown that the lamplighter
group admits no translation-like actions by Baumslag–Solitar groups. Since the
lamplighter is not hyperbolic, this disproves the hard direction of the geometric
Gersten conjecture, although finitely presented counterexamples remain unknown.

Seward [2014, §1.(3’)] asked about the other direction — whether Baumslag–
Solitar groups may act translation-like on hyperbolic groups. Our main theorem
gives a negative answer to this question.

Theorem 1.1. Let G be the fundamental group of a closed hyperbolic 3-manifold.
Then Z2 acts translation-like on G.

2. Proof of Theorem 1.1

Let G be the fundamental group of a closed hyperbolic 3-manifold. We will prove
Theorem 1.1 by showing that G is bilipschitz to a UDBG space which admits a
translation-like action of Z2 — the following lemma says that this is sufficient.

Lemma 2.1. If H acts translation-like on X1, and X1 is bilipschitz to X2 then H
acts translation-like on X2.

Proof. Let ψ : X1→X2 be a bilipschitz map. We define a translation-like action
of H on X2 by conjugating the action as follows. For x ∈ X2, take

h · x = ψ(h ·ψ−1(x)).

It is clear that this is a free action, and it is translation-like because

d(x, h · x)≤ Lip(ψ)d(ψ−1(x), h ·ψ−1(x)). �

Lemma 2.2. There exists a UDBG space X such that Z2 acts translation-like on X
and X is bilipschitz to G.

Proof. Consider the set of points

X = {(2ca, 2cb, 2c) : a, b, c ∈ Z}

in the upper half space model of H3. (See [Ratcliffe 1994, §4.6] for details on the
upper half space model). The reader may verify that this is indeed a UDBG space
(the shortest distance is log(2) and it is not hard to see that the size of r -balls in X
is roughly exponential in r ).
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To define a translation-like action of Z2 on X, let the generators e1, e2 of Z2 act by

e1 · (2ca, 2cb, 2c)= (2c(a+ 1), 2cb, 2c)

and
e2 · (2ca, 2cb, 2c)= (2ca, 2c(b+ 1), 2c).

These maps commute, each moves points by a distance of 1, and the Z2-action they
induce is clearly free, so it is translation-like.

Observe that X is quasi-isometric to H3 because every point of H3 lies within
a bounded distance of X ⊂H3. Thus, by the Svarc–Milnor theorem [Bridson and
Haefliger 1999, Proposition I.8.19], X is quasi-isometric to G. By combining
[Whyte 1999, Theorem 1] and [Whyte 1999, Theorem 5.1], one sees that any
quasi-isometry between nonamenable UDBG spaces is at a bounded distance from
a bilipschitz map, so X is bilipschitz to G. �

Combining Lemmas 2.1 and 2.2, we have proved Theorem 1.1

3. Questions

We close with three questions.

Other Baumslag–Solitar groups. Do any hyperbolic groups admit translation-like
actions of Baumslag–Solitar groups BS(m, n) with m ≥ 2?

Other hyperbolic groups. Which hyperbolic groups admit translation-like actions
of Z2? Jiang [2017] recently observed that one may use results of [Benjamini et al.
2012] to show that Z2 cannot act translation-like on free groups, and it appears that
this technique may be used to rule out translation-like actions of Z2 on hyperbolic
surface groups [Benjamini et al. 2012, Proposition 4.1], but we have no idea whether
such actions exist on hyperbolic one-relator groups or on random groups.

Gromov–Furstenberg for returns of the horospherical flow in a hyperbolic 3-
manifold. (See [Burago and Kleiner 2002] for context). Let 0 be a cocompact
lattice in PSL(2;C), let H be an ε-neighborhood of some horosphere H0 in H3,
let ∗ ∈ H3, and consider the intersection O = (0 · ∗)∩ H. If we equip O with the
metric inherited from H, then O is quasi-isometric to H0∩(0 ·Bε(∗)), where Bε(∗)
denotes the ε ball around ∗ in H3. From Ratner’s theorem [1991], it then follows
(with some thought) that O is quasi-isometric to Z2. Must O be bilipschitz to Z2?
This was our original attempt at finding a translation-like action of Z2 on 0.
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We deal with the symmetries of a (2-term) graded vector space or bundle.
Our first theorem shows that they define a (strict) Lie 2-groupoid in a nat-
ural way. Our second theorem explores the construction of nerves for Lie
2-categories, showing that it yields simplicial manifolds if the 2-cells are
invertible. Finally, our third and main theorem shows that smooth pseudo-
functors into our general linear 2-groupoid classify 2-term representations
up to homotopy of Lie groupoids.
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1. Introduction

A Lie group G can be thought of as a smooth collection of symmetries of an abstract
object. A linear representation G yV is therefore a way to realize these symmetries
on a concrete vector space V, which we will assume to be finite-dimensional and
real. Such a representation can be defined either as a smooth map ρ : G× V → V
satisfying ρhρg

= ρhg and ρ1
= id, or as a Lie group morphism G → GL(V )

into the general linear group. We can then study the group G by looking at its
representations G y V, and this approach turns out to be very profitable.

Following the previous philosophy, a Lie groupoid G⇒ M should be thought of
as a smooth collection of symmetries of an abstract family parametrized by M. Lie
groupoids have received much attention lately, as they provide a unifying framework
for classic geometries, and also serve as models for spaces with singularities such
as orbifolds and, more generally, differentiable stacks. The infinitesimal versions
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of Lie groupoids are Lie algebroids, geometric objects intertwining Lie algebra
bundles and (singular) foliations. Differentiation and integration set up a fruitful
interaction between the two theories.

A linear representation (G⇒ M)y (V → M) of a Lie groupoid over a vector
bundle associates to each arrow y g

← x a linear isomorphism ρg
: V x
→ V y between

the corresponding fibers, in a way compatible with identities and compositions. It
can be presented either as a partially defined map G×V → V or as a Lie groupoid
map G→ GL(V ) into the general linear groupoid [del Hoyo 2013]. The problem
with Lie groupoid representations is that they are rather scarce, they impose strong
conditions on V, and they do not provide us with enough information on G⇒ M.
This reflects in the lack of an adjoint representation, or in the limitations when
establishing a Tannaka duality result for Lie groupoids (see [Trentinaglia 2010]).

A solution for these problems, proposed by C. Arias Abad and M. Crainic [2013],
involves representations up to homotopy G y V of a Lie groupoid over a graded
vector bundle. Such objects can be easily defined as differentials on certain bigraded
algebras of sections; alternatively, they can be regarded as a sequence of tensors: a
differential ∂ on V, followed by chain maps ρg

: V x
→ V y between the fibers, then

chain homotopies γ h,g relating ρhg and ρhρg, etc. Representation up to homotopy
has proved to be a useful concept in dealing, for instance, with cohomology theory
[loc. cit.], deformations [Crainic et al. 2018] and Morita equivalences [del Hoyo
and Ortiz 2018].

When V = V1⊕V0 is a 2-term graded vector bundle, a representation up to homo-
topy G y V leads to a VB-groupoid, a double structure mixing Lie groupoids and
vector bundles, via a semidirect product construction G n V → G. It turns out that
any VB-groupoid can be split as a semidirect product, by choosing a horizontal lift
of arrows, as proven first in [Gracia-Saz and Mehta 2017]. This yields a one-to-one
correspondence between VB-groupoids and 2-term representations up to homotopy,
which can be extended to maps, and respect equivalence classes [del Hoyo and
Ortiz 2018]. Prominent examples of VB-groupoids are the tangent and cotangent
constructions. They encode the adjoint and coadjoint representations, respectively.

A VB-groupoid is an instance of a fibration of groupoids, and according to classic
Grothendieck correspondence, after choosing a horizontal lift of arrows, a groupoid
fibration E→ G is the same as a pseudofunctor G 99K {Groupoids} (see [SGA 1
1971]). It follows that 2-term representations up to homotopy should, in some sense,
be the same as pseudofunctors. The main purpose of the present paper is to shed
light on this. To take care of the smooth and the linear structure, we are led to fix a
2-term graded vector bundle V and restrict our attention to pseudofunctors involving
the several fibers of V. The resulting G 99K GL(V ) is a suitable generalization of
the classification map G→ GL(V ) for actual representations.

Given a graded vector bundle V = V1⊕ V0→ M , we construct a general linear
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2-groupoid GL(V ), consisting of differentials on the fibers, quasi-isomorphisms
between them, and chain homotopies. There are several nonequivalent notions
of Lie 2-groupoids in the literature, some of them too strict and some others too
lax for our purposes. After discussing some variants, we introduce a notion of
Lie 2-groupoid, and prove our Theorem 5.5, asserting that GL(V ) is indeed a Lie
2-groupoid. It is remarkable that even for a 2-term graded vector space V, its
general linear 2-groupoid GL(V ) is not a 2-group; it has more than one object, so
groupoids arise naturally.

In the set-theoretic context there is a nerve for 2-categories that relates lax
functors with simplicial maps [Bullejos et al. 2005; Lack 2010]. We develop the
smooth version of it, and our Theorem 6.3 shows that, even though NC is not always
a simplicial manifold, it is so when the Lie 2-category C has invertible 2-arrows, in
particular for a Lie 2-groupoid. This nerve construction relates our notion of Lie 2-
groupoids with the simplicial approach to Lie 2-groupoids, based on the horn-filling
condition, which has received much attention lately. This can be seen as a piece of
evidence supporting our definitions for Lie 2-groupoids and smooth pseudofunctors.
We also compare our construction with that of [Mehta and Tang 2011].

Building on the previous results, which we believe are of interest in their own right,
we finally establish our Theorem 7.7, setting an equivalence of categories between
2-term representations up to homotopy G y V and pseudofunctors G 99K GL(V )
commuting with basic projections. Combining this with the main theorem of
[Gracia-Saz and Mehta 2017], and its extension in [del Hoyo and Ortiz 2018], we
get what we might call a smooth linear variant of Grothendieck correspondence
(see Remark 2.5):{

VB-groupoids
0→ G

}



{
2-term representations up to homotopy

G y V1⊕ V0

}



{
pseudofunctors
G 99K GL(V )

}
.

It seems natural to extend this result for higher degrees, relating positively graded
representations up to homotopy and maps into a general linear∞-groupoid. Also,
as potential applications of our theorem, we believe it is possible to relate our
correspondence with the infinitesimal version announced in [Mehta 2014], and to
frame the main theorem from [del Hoyo and Ortiz 2018] as a result about maps
between differentiable 2-stacks. These problems will be explored elsewhere.

Organization. In Sections 2 and 3 we quickly review 2-categories and their nerves,
to fix notation and provide a reference for the tools needed later. Section 4 introduces
our notion of a Lie 2-groupoid and compares it with other important ones found in the
literature. In Section 5 we prove our first theorem, which constructs the fundamental
example: the general linear 2-groupoid. Section 6 explores the combinatorics behind
the nerve of 2-categories, and exploits it to establish our second theorem: the nerve
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of a Lie 2-category whose 2-cells are invertible is a simplicial manifold. In Section 7
we prove our main theorem, realizing representations up to homotopies as maps,
and we discuss further questions and applications.

2. Basics on 2-categories

We review here definitions and basic facts on set-theoretic 2-categories that are
fundamental for the rest of the paper. We give a definition of 2-groupoid, compare
it with others in the literature, and discuss the notion of lax functors. We refer to
[Borceux 1994; Lack 2010; Mac Lane 1998] for further details. The material here
is preparatory, to set notation and conventions and to serve as a quick reference.

A 2-category C is a category enriched over the category of small categories. It
has three levels of structure: objects, arrows between objects, and arrows between
arrows or 2-cells, whose collections we denote by C0,C1,C2, respectively. We use
letters x, y, . . . for objects, f, g, . . . for arrows, and α, β, . . . for 2-cells:

y ⇓ α x
g
ff

f
xx

The arrows and 2-cells between two fixed objects x, y form a category C(y, x),
whose composition we denote by •. For each triple x, y, z there is a composition
functor C(z, y)×C(y, x) ◦→C(z, x) and a unit idx ∈C(x, x) satisfying the axioms
encoded in the following commutative diagrams:

C(w, z)×C(z, y)×C(y, x)
◦× id
vv

id×◦
((

C(w, y)×C(y, x)

◦ ((

C(w, z)×C(z, x)

◦vv

C(w, x)

C(y, x)
id× idx

''

idy × id

ww

id

��

C(y, y)×C(y, x)

◦ ''

C(y, x)×C(x, x)

◦ww

C(y, x)

Example 2.1. The paradigmatic example of a 2-category is that of small categories,
functors and natural transformations. Another basic example is that of spaces,
continuous maps and (homotopy classes of) homotopies.
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We are interested in 2-groupoids. For us, a 2-groupoid G is a 2-category such
that (i) it is small, in the sense that G0 is a set, (ii) every 2-cell is invertible, and
(iii) every arrow y f

← x is invertible up to homotopy, namely, there exist x g
← y and

2-cells f g ∼= idy and g f ∼= idx . Some references demand the arrows be invertible
on the nose. We call such 2-groupoids strict. Let us remark that our fundamental
example, that of the general linear 2-groupoid, is not strict.

Example 2.2. A topological space X yields a 2-groupoid π2(X) whose objects are
the points of X, whose arrows are the continuous paths I → X, and whose 2-cells
are (homotopy classes of) path homotopies. Composition is given by juxtaposition,
moving through each path at double speed. A nonconstant path is only invertible
up to homotopy, hence π2(X) is not strict.

A simple characterization of (small) 2-categories and strict 2-groupoids is by
using double structures, namely diagrams of compatible structures as below, where
compatible means that the horizontal structural maps are functorial with respect to
the vertical structures:

G2
//
//

����

G0

����

G1
//
// G0

However, our notion of 2-groupoid does not benefit much from this perspective.
The following lemma, which is automatic for strict groupoids but works in general,
will be useful later.

Lemma 2.3. If G is a 2-groupoid and y f
← x is an arrow in G, then the right

multiplication functor R f : G(z, y)→ G(z, x) is an equivalence of categories for
any z. The same holds for left multiplication.

Proof. A 2-cell α : f ⇒ g defines a natural isomorphism R f ⇒ Rg, for the 2-cells
are invertible. Then, given an arbitrary f , and picking g a quasi-inverse, we have
idG(x,x) = Ridx

∼= Rg R f and analogously idG(y,y) = Ridy
∼= R f Rg. �

A functor φ : C→ D between 2-categories consists of functions φi : Ci → Di

preserving all the structure on the nose. This notion is sometimes too rigid, for it
involves many identities between functors. A useful variant is that of a (normal)
lax functor φ : C 99K D, which consists of three maps φi : Ci → Di preserving
source, target, units and the composition • , but only preserving ◦ up to a given
natural transformation. More precisely, also given is a map

φ1,1 : C1×C0 C1→ D2, φ1,1(g, f ) : φ1(g f )⇒ φ1(g) ◦φ1( f ),

ruling the failure of associativity of ◦ and satisfying these coherence axioms:

(i) φ1,1(idy, f )= id f = φ1,1( f, idx), where y f
← x (normality).
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(ii) (φ2(β) ◦φ2(α)) • φ1,1(g, f )= φ1,1(g′, f ′) • φ2(β ◦α), where

z ⇓ β y ⇓ α
g′
hh

g
vv x

f ′
hh

f
vv

.

(iii) (φ1,1(h, g) ◦φ1( f )) •φ1,1(hg, f )= (φ1(h) ◦φ1,1(g, f )) •φ1,1(h, g f ), where

w
h
← z g
← y f
← x .

When the structure 2-cells φ1,1(g, f ) are invertibles the lax functor is called a
pseudofunctor. These notions are very interesting even when C is a usual category,
viewed as a 2-category with only identity 2-cells. To ease the notation we will often
write φ instead of φi , etc.

Example 2.4. Given an epimorphism of groups π : G→ H , a set-theoretic section
σ : H → G, σ(1G)= 1H , leads to a pseudofunctor φ : H 99K {Groups}, where G
is viewed as a 2-groupoid with one object and only identity 2-cells, and {Groups}
is the 2-category of groups, morphisms, and inner automorphisms as 2-cells. Here
φ(∗)= K is the kernel of π , φ(h) is given by conjugation by σ(h), and φ(h′, h)
is the conjugation by σ(h′)σ (h)σ (h′h)−1. The lax functor is an actual functor if
and only if σ is a morphism.

We also need to deal with morphisms between lax functors (see [Borceux 1994]).
Given lax functors φ,ψ : C 99K D between 2-categories, a lax transformation
H : φ ⇒ ψ associates to each x ∈ C0 an arrow Hx : φ(x)→ ψ(x) and to each
arrow f : x→ y a 2-cell H f : Hyφ( f )⇒ ψ( f )Hx satisfying these conditions:

(i) Hidx = idHx (normality),

(ii) (ψ(α) ◦ idHx ) • H f = Hg • (idHy ◦φ(α)). where

y ⇓ α x
g
hh

f
vv

.

(iii) For each pair of composable arrows z g
← y f
← x there is a commutative prism

with vertical faces Hg, H f , Hg f and horizontal faces given by the structural
2-cells of φ,ψ :

φ(z)

��

φ(x)oo

��

ww

φ(y)

��

gg

ψ(z) ψ(x)oo

ww

ψ(y)

gg
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Such an H is a lax equivalence if the Hx are invertible up to a 2-cell and the H f

are invertible.

Remark 2.5. Example 2.4 can be easily extended to suitable epimorphisms be-
tween categories, known as fibered categories [Borceux 1994; SGA 1 1971]. The
outcome is the Grothendieck correspondence between equivalence classes of fibered
categories E → C and pseudofunctors C 99K {Categories}. This is the first and
most important example of lax functors. The main goal of the present paper can be
considered to be a smooth linear variant of this correspondence.

3. The nerve of a 2-category

After reviewing the classic nerve construction, we discuss here the nerve for 2-
categories and 2-groupoids. We explain its behavior with respect to lax functors,
and we use it to relate 2-groupoids with the weak approach to higher categories
based on the horn-filling condition. Some references for this are [Bullejos and
Cegarra 2003; Bullejos et al. 2005; Henriques 2008; Lack 2010].

As usual, let [n] = {n, n − 1, . . . , 1, 0} denote the ordinal of cardinality n+1,
and let 1 be the category of finite ordinals and order-preserving maps, spanned by
the elementary maps

d i
: [n− 1] → [n], d i (k)=

{
k if k < i,
k+ 1 if k ≥ i,

s j
: [n+ 1] → [n], s j (k)=

{
k if k ≤ j,
k− 1 if k > j,

which satisfy the so-called simplicial identities. Then a simplicial set is a contravari-
ant functor X :1◦→{Sets}. It can be described as a sequence of sets Xn = X ([n])
and a collection of face di = X (d i ) and degeneracy s j = X (s j ) operators satisfying
the (dual) simplicial identities. Maps of simplicial sets are natural transformations,
or equivalently, sequences of maps compatible with the faces and degeneracies.
Simplicial objects on a category C are defined analogously.

Example 3.1. A simple but fundamental example is the n-simplex 1n. From the
functorial viewpoint, it is the one represented by the ordinal [n]. Thinking of 1n as
a graded set with further structure, it is freely generated by an element of type [n],
namely id[n]. By Yoneda’s lemma, a map 1n

→ X is the same as an element in Xn .
The border ∂1n

⊂ 1n is spanned by all the faces of the generator, and the horn
3n

k ⊂1
n by all the faces but the k-th.

Given a category C and a covariant functor φ :1→ C, which should be thought
of as a model for simplices in C, we can define a singular functor

φ∗ : C→ {Simplicial sets}
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that associates to each object X ∈ C a simplicial set by the formula (φ∗X)n =
homC(φ([n]), X). In other words, φ∗X is the restriction of the contravariant functor
represented by X to 1 via φ.

Example 3.2. When C is the category of topological spaces and φ([n]) is the
topological n-simplex, then φ∗X = SX is the singular simplicial set associated
to X, used to define its homology. When C is the category of (small) categories and
φ([n])= [n], where we see an ordinal as a category by setting an arrow i→ j if
i ≤ j, then φ∗C = NC is the nerve of the category, whose n-simplices are chains
of n composable arrows and whose faces and degeneracies are given by dropping
an extremal arrow, composing two consecutive ones, or inserting an identity.

We are concerned with the nerve construction for 2-categories, namely the
singular functor defined when C is the category of 2-categories and lax functors,
and φ([n])= [n] is viewed as a 2-category with only identity 2-cells. Thus, if C is
a 2-category, then its nerve NC has as n-simplices the lax functors u : [n] 99K C ,
and its simplicial operators are given by precomposition. Note that NC0 = C0 and
NC1 = C1 consist of the objects and arrows of C , respectively, and NC2 consists of
triangles that are commutative up to a given 2-cell:

y
g

��
z

⇑ α

x

f
__

h
oo

To describe the higher simplices, note that a lax functor u : [n] 99K C can be
thought of as a labeling in an abstract n-simplex, where ui are objects at the vertices,
u j,i are arrows at its edges, and uk, j,i are 2-cells corresponding to each triangle. For
each tetrahedron on the simplex the following equation among 2-cells must hold:

ul,i ul, j,i

�'

ul,k,i

w�
ul,kuk,i

ul,kuk, j,i �'

ul, j u j,i

ul,k, j u j,iw�
ul,kuk, j u j,i

The above data completely determines the nerve NC in the sense that it is 3-
coskeletal, that is, for k > 3 we have

NCk = {∂1
k
→ NC}.

A fundamental feature of the classic nerve for 1-categories is that it defines a fully
faithful functor; it embeds the category of (small) categories into that of simplicial
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sets. Extending this, there is the following proposition for the nerve of 2-categories,
which also provides information about the 2-cells. Here, by a simplicial homotopy
we mean a simplicial map X ×11

→ Y.

Proposition 3.3 [Bullejos et al. 2005]. The nerve C 7→ NC defines a fully faithful
functor from the category of (small) 2-categories and (normal) lax functors to the
category of simplicial sets. Moreover, if φ,ψ : C 99K D are lax functors and every
2-cell in D is invertible, then there is a lax transformation H : φ⇒ ψ if and only if
there is a simplicial homotopy H̃ : Nφ ∼= Nψ .

Sketch of proof. Given a simplicial map φ̃ : NC→ ND, we can define a lax functor
φ :C 99K D such that Nφ= φ̃ by setting φ0= φ̃0, φ1= φ̃1, and defining φ2 and φ1,1

as restrictions of φ̃2 to the following types of triangles:

y
idy

��
y

⇑ α

x

f
]]

f
oo

y
g

��
z

⇑ idg f

x

f
]]

g f
oo

The simplicial identities on φ̃ imply the axioms of a lax functor on φ, and that
Nφ = φ̃, proving the first assertion.

Regarding the second triangle, given lax functors φ,ψ : C 99K D, while a lax
transformation H :φ∼=ψ associates to an arrow y f

← x a 2-cell filling a commutative
square, a simplicial homotopy H̃ : Nφ ∼= Nψ should provide a triangulation of that
square:

φ(y)

Hy

��

⇓ H f

φ(x)

Hx

��

φ( f )
oo

ψ(y) ψ(x)
ψ( f )

oo

φ(y)

H̃y

��

⇑ H̃ f,0

φ(x)

H̃x

��

φ( f )
oo

xx ⇓ H̃ f,1

ψ(y) ψ(x)
ψ( f )

oo

where H̃ f,0 and H̃ f,1 are short for H̃(s1( f ), s0(id[1])) and H̃(s0( f ), s1(id[1])). The
lax transformation H induces a simplicial homotopy H̃ by setting H̃ f,0 = id and
H̃ f,1 = H f . Conversely, if every 2-cell on D is invertible, we can define an H out
of H̃ by setting

H f = H̃ f,1 • (H̃ f,0)
−1. �

Another fundamental feature of the classic nerve is the following characterization
of its image: a simplicial set is the nerve of a category if and only if every inner
horn (0< k < n) admits a filling, and this filling is unique for n > 1. Similarly, it is
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the nerve of a groupoid if and only if the same holds for every horn, inner or not:

3n
k
∀
//

��

X

1n
∃(!)

>>

This motivates an approach to higher category theory that has received much
attention lately. A simplicial set X is then a weak m-category if every inner horn
in X admits a filling, and the filling is unique for n>m, and X is a weak m-groupoid
if the same holds for every horn, inner or not. The missing face of the horn, provided
by the filling, should be thought of as a composition, defined up to homotopy, of the
remaining faces. The next proposition relates 2-groupoids with weak 2-groupoids
via the nerve functor. Similar results are discussed in [Duskin 2002].

Proposition 3.4. Let C be a 2-category. NC is a weak 2-category if and only if
every 2-cell of C is invertible, and NC is a weak 2-groupoid if and only if C is a
2-groupoid.

Proof. Since NC is 3-coskeletal, every (n, k)-horn has a unique filling for n ≥ 5.
For n = 2 the horizontal composition of arrows provides inner horn-fillings, and
the fillings of the outer horns correspond to the existence of quasi-inverses. So let
us study the cases n = 3, 4.

For n = 3, given a 2-cell α : f ⇒ g : x → y, we can build a (3, 1)-horn with
faces thus:

y

id⇒ id⇒
y

id

OO

id

''x
f

//

g

CC

g
77

α ⇑

y

id

[[

and the remaining face of a filling will give a right inverse β : g⇒ f to α, showing
that inner-horn filling implies that every 2-cell is invertible. Conversely, a horn
gives three 2-cells, which correspond to three sides of this square:

u3,0
+3

��

u3,1u1,0

��
u3,2u2,0

+3 u3,2u2,1u1,0

In an inner horn, either the 2-cell on the top or in the left is missing, but since
every 2-cell is invertible, we can fill the square by taking the obvious composition.
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In an outer horn, either the 2-cell on the bottom or on the right is missing, and
assuming C is a 2-groupoid, we can get the missing face by factoring the triple
composition by either u3,2 or u1,0 as it follows from Lemma 2.3.

For n = 4, the 2-skeleton of a 4-simplex u gives the edges of a cube as below:

u4,0

$,rz ��
u4,1u1,0

�� $,

u4,2u2,0

rz $,

u4,3u3,0

��rz
u4,2u2,1u1,0

$,

u4,3u3,1u1,0

��

u4,3u3,2u2,0

rz
u4,3u3,2u2,1u1,0

Each face of the 4-simplex corresponds to the commutativity of the corresponding
face of the cube. The bottom face commutes because of the compatibility between
horizontal and vertical composition. Since every 2-cell is invertible, five commuting
faces on the cube imply that the other is commutative as well, thus every horn
admits a unique filling, concluding the proof. �

Remark 3.5. Other ways to associate a simplicial set to a 2-category C are by
regarding it as a double category with a trivial side, applying twice the classic
nerve, or reducing the resulting bisimplicial set by using the diagonal d and the
total functor T, also known as the bar or codiagonal:

2-categories
N 2

−→ bisimplicial sets
d,T
⇒ simplicial sets.

It is shown in [Bullejos and Cegarra 2003] that T N 2C and d N 2C are equivalent to
NC from a homotopy viewpoint. We remark here that, when C is a strict 2-groupoid
there is actually an isomorphism T N 2C ∼= NC, which is completely determined by
the following formula for 2-cells:

z y
g

oo

⇑ α

xh
oo

y x
f

oo

x

7→

y
g

��
z

⇑ gα−1

x

f
__

gh
oo

4. Defining Lie 2-groupoids

We discuss here the smooth versions of 2-categories and 2-groupoids we will work
with, provide some examples, and discuss other uses for those terms in the literature.

A Lie 2-category C is, roughly speaking, a 2-category internal to the category of
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smooth manifolds. It consists of a (small) 2-category as defined before, on which
(i) the sets of objects C0, arrows C1 and 2-cells C2 are equipped with manifold
structures; (ii) the source and target maps s, t :Ci→Ci−1 of 2-cells and arrows are
surjective submersions, and (iii) the units u : Ci−1→ Ci and the multiplications ◦
and • are smooth. Functors φ : C→ D between Lie 2-categories are easy to define,
as 2-functors for which the three maps φi : Ci → Di are smooth.

Example 4.1. Let (R, · ) be the multiplicative monoid of real numbers, viewed as
a Lie 2-category with a single object, space of arrows R, and both horizontal and
vertical composition equal to the multiplication. This is a Lie 2-category on which
not every 2-cell is invertible.

Let G be a Lie 2-category that, from the set-theoretic viewpoint, is also a 2-
groupoid, as defined in the previous sections. In order to define when G is a Lie
2-groupoid we have to make sense of smooth inversions. For 2-cells this is clear,
for there is an inversion map i : G2→ G2, and we can require it to be smooth. For
arrows this is less clear, for inversion is only defined up to homotopy: there is no
inversion map in general. Note that, since source and target G2→G1 are surjective
submersions, the sets of 2-horns N2,i G = hom(32

i ,NG) define manifolds:

N2,0G =

 y

z x

f__

h
oo

, N2,1G =

{
yg
��

z x

f__
}
, N2,2G =

 yg
��

z x
h
oo

.
We will discuss a smooth structure on the whole nerve NG in the following sections.
For now, we just endow N2G with a manifold structure using the fibered product

N2G //

��

N2,1G

m
��

G2 t
// G1

We define G to be a Lie 2-groupoid if, besides being a Lie 2-category and a
2-groupoid, (i) the inversion of 2-cells i :G2→G2 is smooth, and (ii) the following
restriction maps are surjective submersions:

d2,0 : N2G→ N2,0G, d2,2 : N2G→ N2,2G.

We say that the Lie 2-groupoid is strict if it is set-theoretic strict and the inversion
of arrows i : G1→ G1 is smooth. The smooth structure on N2G also allow us to
make sense of lax functors in the smooth setting. We define a smooth lax functor
between Lie 2-categories φ : C 99K D as a lax functor such that φ0, φ1 and the map
(φ2, φ1,1) : N2C→ N2 D are smooth. A smooth lax transformations H : φ⇒ ψ is
one on which the maps C0→ D1, C1→ D2 are smooth.
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Example 4.2. Given an abelian Lie group K , we can see it as the 2-cells of a Lie
2-category with one object and one arrow, and where both multiplications • and ◦
agree with that of K. The resulting 2-category K⇒∗⇒∗ is in fact a Lie 2-groupoid.
A similar thing can be done with a bundle of abelian Lie groups G ⇒ M, such
as a torus bundle. This delooping construction stays within the finite-dimensional
setting and plays a key role for instance in the theory of gerbes.

We would like to quickly review the Dold–Kan construction. When C is an
abelian category, e.g., that of vector spaces, then a simplicial object X :1◦→ C
gives rise to a chain complex (X ′n, ∂) by defining X ′n = ∩i>0 ker(di : Xn→ Xn−1)

and ∂ = d0. It turns out that this construction yields an equivalence of categories
between simplicial objects and positively graded chain complexes. The horn-filling
condition translates into the abelian setting, in such a way that categories and
groupoids both correspond to 2-term complexes, and linear natural transformations
correspond to chain homotopies.

Example 4.3. By a linear 2-category we mean a Lie 2-category V on which the Vi

are (real finite-dimensional) vector spaces and the structure maps are linear. They
are examples of Lie 2-groupoids. Viewing them as double linear categories, and
applying Dold–Kan correspondence both horizontally and vertically, we encode
such a V into a 3-term complex thus:

V ′2 //

��

0

��

V ′1 // V0

Remark 4.4. The term “Lie 2-groupoid” is used in the literature in senses other
than the one we have introduced, which is suitable for our fundamental example. In
[Mehta and Tang 2011] and other references, it refers to what we called a strict Lie
2-groupoid and presupposes the existence of inverse arrows, whereas our notion is
more general. In [Zhu 2009] and other references, a Lie 2-groupoid is defined as a
smooth version of a weak 2-groupoid; the existence of a well-defined composition
is not required. We will see later that a smooth version of the nerve functor for Lie
2-categories allows us to regard our Lie 2-groupoids as examples of them.

5. The general linear 2-groupoid

Here we show our first main theorem, asserting that the symmetries of a (2-term)
graded vector space or bundle can be endowed with the structure of a Lie 2-groupoid,
which we call the general linear 2-groupoid. This construction extends the general
linear groupoid of a vector bundle without a grading (see, e.g., [del Hoyo 2013]).
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Throughout this section, let V = V1 ⊕ V0 → M be a graded vector bundle
over a smooth manifold. We will first describe the set-theoretic structure of its
general linear 2-groupoid GL(V ) and then take care of the smoothness. From the
set-theoretic viewpoint we have:

(i) An object ∂ x
∈ GL(V )0 is a differential ∂ x

: V x
1 → V x

0 on the fiber V x
=

V x
0 ⊕ V x

1 .

(ii) An arrow α : ∂ x
→ ∂ y

∈ GL(V )1 is a couple of linear maps α1 : V x
1 → V y

1 ,
α0 : V x

0 → V y
0 , defining a quasi-isomorphism between V x and V y :

V x
1

α1
//

∂ x

��

V y
1

∂ y

��

V x
0 α0

// V y
0

(iii) A 2-cell R : α→ α′ : ∂ x
→ ∂ y on GL(V )2 is a chain homotopy, given by a

linear map R : V x
0 → V y

1 such that R∂ x
= α1−α

′

1 and ∂ y R = α0−α
′

0.

V x
1

α1
//

∂ x

��

V y
1

∂ y

��

V x
0 α0

//

R
??

V y
0

The multiplication ◦ in GL(V ) is the composition of maps, and the multiplication •
is the composition of chain homotopies, which is just the sum of the corresponding
maps R. Every 2-cell is invertible, and every arrow is invertible up to a 2-cell. Thus
we have a well-defined 2-groupoid GL(V ). Via Dold–Kan we can embed it into
the 2-category of linear categories.

Remark 5.1. Even when M = ∗ our construction GL(V ) yields a 2-groupoid and
not what one might call a 2-group, for there are many objects and not just one.
Fixing an object ∂ on GL(V ), its isotropy 2-groupoid GL(V )∂ can be compared
with the construction studied in [Sheng and Zhu 2012].

Next we show that GL(V ) inherits a smooth structure from certain vector bundles.
To ease the notation, given vector bundles A, B→ M , we write [A, B] → M for
the inner-hom vector bundle. Then:

(i) GL(V )0 identifies with the total space of [V1, V0] → M.

(ii) GL(V )1 is a subspace of

E = [π∗1 V1, π
∗

1 V0]⊕ [π
∗

2 V1, π
∗

2 V0]⊕ [π
∗

1 V1, π
∗

2 V1]⊕ [π
∗

1 V0, π
∗

2 V0],
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a vector bundle over M × M, where πi : M × M → M are the obvious
projections.

(iii) GL(V )2 is the set-theoretic fiber product GL(V )1×M×M [π
∗

1 V0, π
∗

2 V1].

The issue here is to show that GL(V )1 ⊂ E is a submanifold. Then GL(V )2 will
identify with a fibered product along a submersion, in fact with a pullback vector
bundle. This issue is rather subtle and will require a careful analysis. The first step
in our argument is to provide a simple system of equations describing GL(V )1 ⊂ E .

Lemma 5.2. We can write GL(V )1 = F ∩U1 ∩U0, where

F = {(∂ x , ∂ y, α0, α1) ∈ E : α0∂
x
= ∂ yα1},

U1 = {(∂
x , ∂ y, α0, α1) ∈ E : ker(∂ x)∩ ker(α1)= 0},

U0 = {(∂
x , ∂ y, α0, α1) ∈ E : im(∂ y)+ im(α0)= V y

0 }.

Proof. An element (∂ x , ∂ y, α0, α1) belongs to F if and only if the corresponding
square of vector space maps commutes, it belongs to U1 if and only if the morphism
between the fibers is injective in degree 1 homology, and belongs to U0 if and
only if it is surjective in degree 0 homology. Since both fibers V x , V y, as 2-term
complexes, have the same Euler characteristic dim V0− dim V1, then so do their
homologies, and therefore the two inequalities dim H1(V x) ≤ dim H1(V y) and
dim H0(V x)≥ dim H0(V y) imply that α is in fact a quasi-isomorphism. �

The subset F can be seen as the preimage of the zero section of the following map
between the total space of vector bundles over M ×M, where E ′ = [π∗1 V1, π

∗

2 V0]:

φ : E→ E ′, φ(∂ x , ∂ y, ρ1, α0)= α0∂
x
− ∂ yα1.

This map is quadratic and its rank is not constant in general, as the next example
shows.

Example 5.3. Let M = ∗ and V0 = V1 = R. Then GL(V )0 ∼= R, E ∼= R4 and F
identifies with {(x, y, z, w) ∈ R4

: xy− zw = 0}, which is not a submanifold of R4.
This example shows that if we define the general linear 2-category gl(V ) as we
have defined GL(V ), but without imposing the quasi-isomorphism axiom, then
gl(V ) cannot be made a Lie 2-category in a reasonable way.

Next we show that the map φ above has maximal rank over the opens Ui , and
since the zero section 0M×M ⊂ E ′ is closed embedded, the same holds for GL(V )1.

Proposition 5.4. The map φ : E→ E ′ has maximal rank over the opens Ui .

Proof. Let p = (∂ x , ∂ y, α1, α0) ∈ U1 and let q = φ(p) = α0∂
x
− ∂ yα1. To show

that dφp : Tp E → Tq E ′ is surjective we argue by realizing vectors as 1-jets of
curves. Given γ (t) ∈ E ′, γ (0) = q, we want to lift the curve γ to a curve on E
through p. By using local trivializations of V we can assume that x(t) = x and
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y(t)= y are fixed. Let us suppose that p ∈U1; the other case is analogous. Since
ker ∂ x

∩ kerα1 = 0, the linear map (∂ x , α1) : V x
1 → V x

0 ⊕ V y
1 is a monomorphism,

and therefore it admits a linear retraction (∂̃ x , α̃1) : V x
0 ⊕ V y

1 → V x
1 . Then the curve

γ̃ (t)= (∂ x , γ (t)α̃1, α1, γ (t)∂̃ x) ∈ E is a lift as required. �

Theorem 5.5. Given a graded vector bundle V = V1 ⊕ V0, the general linear
2-groupoid GL(V ) inherits a natural structure of a Lie 2-groupoid.

Proof. As we have already discussed, GL(V )0 identifies [V1, V0], GL(V )1 ⊂ E
with the preimage of a closed embedded submanifold along a maximal rank map,
and GL(V )2 is a fiber product along a submersion. It is straightforward to check
that with these definitions the structure maps of GL(V ) are smooth, including the
inversion of 2-cells. It only remains to show that the following restriction maps are
surjective submersions:

d2,0 : N2G→ N2,0G, d2,2 : N2G→ N2,2G.

Let us show it for d2,0, the other case is analogous. We argue again by lifting curves.
We start with α(t) : ∂ x(t)

→ ∂ y(t) and γ (t) : ∂ x(t)
→ ∂ z(t)

∈GL(V )1, defining a curve
on N(2,0)G, and in order to lift it to N2G, we want to define β(t) : ∂ y(t)

→ ∂ z(t) and
R(t) : γ (t)⇒ β(t)α(t). Working locally we can again assume x = x(t), y = y(t),
z = z(t) are fixed. The monomorphism (α1(t), ∂ x(t)) : V x

1 → V y
1 ⊕ V y

0 admits a
retraction α̃1(t), ∂̃ x(t), and by basic arguments on linear algebra, we can take it
smooth on t . Then the short exact sequence

0→ V x
1

(α1(t),∂ x (t))
−−−−−−−→ V y

1 ⊕ V y
0

(∂ y(t),α0(t))
−−−−−−−→ V y

0 → 0

splits smoothly and we gain a section (∂̃ y(t), α̃0(t)). We can then define

βi (t)= γi (t)α̃i (t), R(t)= γ1(t)∂̃ x. �

Remark 5.6. Let us denote by GL′(V )⊂GL(V ) the open Lie 2-groupoid with the
same objects, arrows the invertible chain maps, and 2-cells the chain homotopies.
This is a strict Lie 2-groupoid, somehow simpler than our version, and both agree
around the units, thus both should behave in the same way with respect to differen-
tiation, even though this process is not yet clear. See [Sheng and Zhu 2012] for a
related discussion. But regarding our purposes, this simpler construction GL(V )′

is not satisfactory; there are representations up to homotopy of Lie groupoids that
cannot be invertible. An example is the adjoint representation of the pair groupoid
of the sphere Pair(S2), or of any other nonparallelizable manifold. We will come
back to this later.
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6. The nerve of a Lie 2-category

We deal here with the problem of endowing the nerve NC of a Lie 2-category C with
a reasonable smooth structure. We show with a simple example that for general C
this may not be possible. Our second main theorem shows that if every 2-cell is
invertible then NC is indeed a simplicial manifold, and this happens for instance
if C is a Lie 2-groupoid.

Given a Lie 2-category C , we define its ambient simplicial manifold AC for the
nerve NC, roughly speaking, by considering arbitrary collections {uk, j,i } of 2-cells
and disregarding any compatibility. More precisely, we define AC by

AnC =
∏
[2]

a
−→[n]

C2, u ∈ AnC, b : [m] → [n] ⇒ b∗(u)a = ub◦a ∈ AmC

This way AC is a well-defined simplicial manifold, and every face map is a surjective
submersion, for it is just the projection onto some of the coordinates. There is
a canonical inclusion φ : NC→ AC defined by the formula φ(u)a = (u ◦ a)2,1,0,
where u ∈ NnC , u : [n] 99K C , and a : [2] → [n]. In other words, φ(u) keeps track
of the 2-cells corresponding to each triangle, and by means of the identities, the
arrows on the edges and the objects on the vertices. Since every simplex in NC is
determined by its 2-skeleton, the map φ is injective. We are concerned with the
question of whether φ(NnC) ⊂ AnC is a submanifold, which is not the case in
general.

Example 6.1. Let (R, · ) be the multiplicative monoid viewed as a Lie 2-category
as described in Example 4.1. Then N0C = {∗}, N1C = {id∗}, and N2C = R, but
N3C ⊂ A3C is not a submanifold. Disregarding the degenerate coordinates, we
can identify N3C with tuples (x, y, z, w) ∈ R4 such that xy = zw, the equation
corresponding to the commutativity of the tetrahedron.

For C a 1-category, a simplex u ∈ NnC is the same as a chain of n composable
arrows, so we can write NnC as an iterated fiber product, and use this to define a
smooth structure on it. Next we develop a similar combinatorial description for
simplices u ∈ NnC , where C is a 2-category whose 2-cells are invertible.

We see 1n−1 inside 1n by using the face dn , and define a decreasing filtration

1n
= F01

n
⊃ F11

n
⊃ · · · ⊃ Fn−11

n
⊃1n−1

by setting Fk1
n
= {a : [m] → [n]/a(m) < n or a(0) ≥ k}, namely Fk1

n is the
union of 1n−1 with the last face of dimension k. As an example, Figure 1 depicts
the filtration for n = 3.

Define N k
n C = {Fk1

n
→NC}. Note that N 0

n C = NnC , that we have projections
N k

n C→ N k+1
n C , and that N n−1

n C = Nn−1×C0 C1 is the set-theoretic fiber product
over u 7→ un and s.
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Figure 1. From left to right: F01
3, F11

3, F21
3.

Proposition 6.2. If every 2-cell of C is invertible then there are set-theoretic fiber
products:

N k−1
n C

t
��

φk
n

//

//

��

C2

N k
n C C1

, φk
n(u)= un,k ◦ uk,k−1.

Proof. The inclusion Fk+11
n
→ Fk1

n has all the vertices on its image, all the edges
except for (n, k), and all the triangles except for (n, l, k), with k < l < n. Thus,
given u : Fk1

n
→ NC, if we know its restriction u′ to Fk+11

n and the 2-cell α
corresponding to the triangle (n, k+1, k), then we have all the vertices, we recover
the edge (n, k) as the source of α, and we recover the 2-cells corresponding to the
triangles (n, l, k) inductively on l − k by means of the equation

un,l,k = (un,l ◦ ul,k+1,k)
−1
• (un,l,k+1 ◦ uk+1,k) • un,k+1,k .

This shows that the map N k
n C→ N k+1

n C ×C1 C2 is injective.
To see that it is also surjective, we need to check that, given u′ : Fk+11

n
→ NC

and given α : u′n,k ⇒ u′n,k+1u′k+1,k , the above equations can be used to define
a simplicial map u : Fk1

n
→ NC. This translates into showing that for every

tetrahedron (l, k, j, i) the above equation holds. The only tetrahedrons that deserve
an explanation are those of the type (n, l ′, l, k) with k < l < l ′ < n. Moreover, if
l = k+ 1 then the equation holds by the construction of u. So let us assume that
k+ 1< l. The 4-simplex corresponding to (n, l ′, l, k+ 1, k) yields a cube:

un,k

&.ow ��
un,k+1uk+1,k

�� '/

un,lul,k

ow &.

un,l ′ul ′,k

��px
un,lul,k+1uk+1,k

'/

un,l ′ul ′,k+1uk+1,k

��

un,l ′ul ′,lul,k

px
un,l ′ul ′,lul,k+1uk+1,k
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We want to see that the back right face commutes. But we know that: the back left
face commutes by definition of un,l,k ; the upper face commutes by definition of
un,l ′,k ; the left front face commutes for it factors through uk+1,k ; the right front face
commutes for it factors through un,l ′ ; and the bottom face commutes for ◦ and •
are mutually distributive. Hence the result. �

We can now prove our second main theorem.

Theorem 6.3. Given a Lie 2-category C whose 2-arrows are (smoothly) invertible,
the nerve NC is naturally a simplicial manifold.

Proof. We endow each NnC with a smooth structure inductively. For n= 0, 1 we do
this by means of the obvious identifications N0C =C0 and N1C =C1. For larger n
we use the filtration and fiber products of the previous proposition, noting that one
of the maps is always a surjective submersion, and using the standard transversality
criterion. Hence NnC is a closed embedded submanifold of the product

NnC ⊂ Nn−1C ×
∏
(i+1,i)

C1×
∏

(n,i+1,i)

C2.

We will prove that, for these smooth structures, the canonical inclusion φ : NnC→
AnC into the ambient is a closed embedding. This implies that (i) the smooth
structures that we have defined on NnC do not depend on the particular filtration
we have used, and that (ii) the simplicial maps on NC are smooth and NC is a
simplicial manifold.

For each triple (k, j, i), we have to show that the composition

φk, j,i = πk, j,iφ : NnC→ AnC→ C2

is smooth. By projecting on the first coordinate of the above product, and using an
inductive argument, we solve the case n> k. By projecting on the other coordinates
we solve the cases (n, i + 1, i). It remains to study the other projections φn, j,i . But
such a projection can be written as an expression involving the other coordinates
and the multiplications ◦ and •, which are smooth. A similar argument applies also
to the degenerate coordinates. �

It follows from our theorem that the nerve of a Lie 2-groupoid is a simplicial
manifold, and that a smooth pseudofunctor φ : G 99K G ′ is the same as a simplicial
smooth map φ : NG→ NG′. Next we present a less immediate corollary.

Corollary 6.4. With the above hypothesis, the face maps di : NnC→ Nn−1C are
surjective submersions.

Proof. This is more a corollary of the proof rather than of the statement. When i = n
it follows by factoring dn through the filtration, for each projection N k

n C→ N k+1
n C

is the base-change of a surjective submersion, as well as N n−1
n C→ Nn−1C . When
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i 6=n we can argue similarly, but now using a different filtration of1n, by complexes
containing the face di (1

n−1). �

We finish this section by developing a smooth version of Proposition 3.4, setting
a bridge between our theory and that of weak Lie 2-categories and weak Lie 2-
groupoids, as defined in [Henriques 2008; Zhu 2009]. A simplicial manifold X is a
weak Lie m-category or a weak Lie m-groupoid if the corresponding restrictions
maps Xn→ Xn,k are surjective submersions, for some reasonable smooth structure
on the space of (n, k)-horns. The space of horns Xn,k can be expressed as an
equalizer ∏

i 6=k

Xn−1⇒
∏

i, j 6=k

Xn−1,

which may not exist in the category of manifolds. In general this is proved by an
inductive argument. In our case, when X = NC is the nerve of a Lie 2-category
with invertible 2-arrows, it follows from our construction that Xn→

∏
i 6=k Xn−1 is

a closed embedded submanifold for n > 3 and for n = 3, k = 2. The case n = 3,
k = 1, follows by using a symmetric filtration on the simplex. Therefore, since Xn

is also a set-theoretic equalizer, we conclude that Xn ∼= Xn,k is a diffeomorphism
in these cases. The case n = 2 is easy, and therefore we can conclude:

Proposition 6.5. Let C be a Lie 2-category on which every 2-arrow is invertible.
Then NC is a weak Lie 2-category. Moreover, NC is a weak Lie 2-groupoid if and
only if C is a Lie 2-groupoid.

Remark 6.6. The main theorem on [Mehta and Tang 2011] shows that if G is a
strict Lie 2-groupoid then T N 2G is a weak Lie 2-groupoid. Thus, in light of the
isomorphism described in Remark 3.5, our theorem can be regarded as an extension
of that to a nonstrict Lie 2-groupoid. This is crucial for us, for our fundamental
example GL(V ) is not strict.

7. Representations as pseudofunctors

In this section we review the notion of representation up to homotopy G yV of a Lie
groupoid G, the particular case of 2-term vector bundles V = V1⊕ V0, and present
our main theorem, stating a one-to-one correspondence between representations
G y V and pseudofunctors G 99K GL(V ).

Given a Lie groupoid G ⇒ M and a vector bundle E → M , a representation
G y E can be defined as a map ρ :G×M E→ E , ρ(y g

←x, e)=ρg(e), such that (i)
ρg : Ex→ Ey is linear, (ii) ρid= id, and (iii) ρhρg = ρhg. A pseudorepresentation is
a sort of nonassociative action; it is defined analogously but just requiring (i) and (ii).

Example 7.1. If G ⇒ ∗ is a Lie group, viewed as a Lie groupoid with a single
object, then its representations are the usual ones. If M⇒ M is a manifold, viewed
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as a Lie groupoid with only identities arrows, then its representations are the vector
bundles over M. More generally, if G × M ⇒ M is the groupoid arising from a
Lie group action G y M, then a representation (G ×M)y E is the same as an
equivariant vector bundle.

Example 7.2. Given a manifold M , a representation Pair(M) y E of its pair
groupoid is the same as a trivialization of E . Given a surjective submersion q :
M→ N, a representation M×N M y E of the submersion groupoid (see [del Hoyo
2013]) is the same as an isomorphism E ∼= q∗E ′ with a pullback vector bundle.
This can be further generalized to a foliation F ⊂ TM, which yields a holonomy
groupoid Hol(F)⇒ M, whose representations are the same as foliated bundles.

Example 7.3. Let P2 denote the real projective plane, and let E → P2 be its
tautological line bundle. Since it is not trivial there cannot be a representation
of the pair groupoid Pair(P2)y E . Still, we can define a pseudorepresentation
Pair(P2)y E , by defining for instance ρ(`′,`)(v) as the orthogonal projection of
v ∈ ` over `′.

By means of the exponential law, a Lie groupoid representation can be described
as a Lie groupoid morphism into the general linear groupoid (see, e.g., [del Hoyo
2013])

ρ#
: (G⇒ M)→ (GL(E)⇒ M), ρ#(g)= ρg,

whose objects are the fibers of E→M and whose arrows are isomorphisms between
fibers. In the case of a pseudorepresentation we still have a smooth map G→GL(E)
between the arrow spaces, compatible with source and target but that may fail to
preserve the multiplication. This viewpoint allows one to treat representations as
maps, and it is especially useful when dealing with differentiation and integration.

Lie groupoid representations turn out to be very restrictive. A convenient gen-
eralization, is that of a representation up to homotopy of a Lie groupoid G over
a graded vector bundle V =

⊕
Vi . It is defined as a degree 1 differential D on a

space of sections 0(NG, V ) of V over the nerve of G inducing a graded module
structure. By decomposing D =

⊕
Di into bihomogeneous components, we can

reinterpret D as a pseudorepresentation over a complex (V, ∂) with homotopies
controlling its associativity. See [Arias Abad and Crainic 2013; del Hoyo and Ortiz
2018; Mehta and Tang 2011] for further details. We recall here the 2-term case, the
simplest new case, using an homological convention.

Proposition 7.4 [del Hoyo and Ortiz 2018; Gracia-Saz and Mehta 2017]. If V =
V1 ⊕ V0, then a representation up to homotopy G y V is the same as a tuple
(∂, ρ1, ρ0, γ ), where ∂ : V1→ V0 is a linear map, ρi : G y Vi are pseudorepresen-
tations commuting with ∂ , and

γ : (z h
→ y g
→ x) 7→ (γ h,g

: ρhg
⇒ ρhρg)
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is a curvature tensor satisfying

ρ
g3
1 ◦ γ

g2,g1 − γ g3g2,g1 + γ g3,g2g1 − γ g3,g2 ◦ ρ
g1
0 = 0.

A morphism θ :V→V ′ is the same as a triple (θ1, θ0, µ)where θ= (θ1, θ0) :V→V ′

is a vector bundle chain map and µ : (y g
→ x) 7→ (µg

: V x
0 → V ′1

y
) is a tensor

satisfying ρ ′θ − θρ = ∂ ′µ+µ∂ , and

θ z
1γ

h,g
+µhρ

g
0 + ρ

′h
1µg −µ

hg
− γ h,gθ x

0 = 0.

The point-wise homology of a 2-term representation G y V consists of H x
1 (V )=

ker ∂ x and H x
0 (V )= coker ∂ x. If the rank of ∂ is constant then H1(V ) and H0(V ) are

vector bundles and there is an induced representation over them. A representation up
to homotopy V whose point-wise homology vanishes is called acyclic. A morphism
θ : V →W of 2-term representations up to homotopy inducing isomorphisms on
the point-wise homology is called a quasi-isomorphism.

Example 7.5. for ρ : Pair(P2) y E the pseudorepresentation discussed before,
we can define an acyclic representation up to homotopy Pair(P2)y E ⊕ E by
setting ∂ = id, ρ1 = ρ0 = ρ and γ = ρ − ρρ. The same can be done for any
pseudorepresentation.

Example 7.6. Given a Lie groupoid G⇒M endowed with a connection σ , namely
a section of s : T G→ s∗ TM, the adjoint representation G y (A⊕TM) has ∂ equal
to the anchor map and ρ0 given by tσ . The equivalence class does not depend on σ .
This generalizes the classical adjoint representation of Lie groups and plays a role in
the deformation theory of groupoids. The coadjoint representation G y T ∗M⊕ A∗

is defined by duality.

We are now ready to present our main theorem. Given a Lie groupoid G⇒ M
we have a canonical projection πG : G→ Pair(M) into the pair groupoid that just
remembers the source and target of an arrow. Given a 2-term vector bundle V →M,
we have a canonical projection πV : GL(V )→ Pair(M) that only remembers the
base-points on the vector bundle.

Theorem 7.7. Given a Lie groupoid G ⇒ M and a graded vector bundle V =
V1⊕V0→M , there is an equivalence between the category of representations up to
homotopy ρ : G y V and quasi-isomorphisms and the category of pseudofunctors
φ : G 99K GL(V ) satisfying πVφ = πG and smooth lax equivalences.

This result is truly a generalization of the situation for ordinary representations.
That is, when V is only in degree 0, then GL(V ) is the usual general linear groupoid,
and the pseudofunctors G 99K GL(V ) are just morphisms of Lie groupoids.

Proof. This is a direct consequence of the constructions and results collected during
our work. In light of the set-theoretical simplicial interpretation in Proposition 3.3,
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our construction of the general linear 2-groupoid in Theorem 5.5, and our character-
ization for smooth nerve in Theorem 6.3, a smooth pseudofunctor φ :G 99KGL(V )
is the same as a simplicial map φ : NG→ NGL(V ). The degree 0 component φ0

is the same as a differential ∂ on V, the degree 1 component φ1 gives a pseudo-
representation ρ on V compatible with ∂ , and the degree 2 component φ2 yields a
curvature tensor

γ : (z
h
←− y

g
←− x) 7→ (γ h,g

: ρhg
⇒ ρhρg),

defining a 2-term representation up to homotopy, as characterized in Proposition 7.4.
Similarly, a smooth lax equivalence H : φ⇒ ψ : G 99K GL(V ) consists of smooth
maps M→ GL(V )1, G→ GL(V )2, corresponding to the components θ and µ of
a quasi-isomorphism (see Proposition 7.4). It is straightforward to check that these
correspondences between objects and arrows are functorial. �

There are some remarks to be made regarding functoriality. Firstly, even though a
quasi-isomorphism θ : V → V of representations up to homotopy gives a simplicial
homotopy NG×I → NGL(V ), not every such homotopy arises in this way, as
can be seen in the proof of Proposition 3.3. Secondly, if we want to consider
morphisms V → V that are not quasi-isomorphisms, then the corresponding lax
transformations would involve chain maps that are not within GL(V ). Lastly, since
the construction V 7→ GL(V ) is not functorial, it makes little sense to frame the
noninvertible morphism V→ V ′ between different vector bundles within our theory.

We close this paper by outlining three different problems related to our results,
the first related to the infinitesimal picture, the second to the theory of 2-stacks, and
the third to higher versions of our results.

Remark 7.8. In [Mehta 2014], an infinitesimal analog to our main theorem was
announced. It is commonly accepted that weak higher Lie groupoids and higher
Lie algebroids are related by a theory of differentiation and integration, though the
details of such a theory are yet to be understood. Within this context, we expect that
the differentiation of our general linear 2-groupoid is the object gl(V ) introduced
there, and that the differentiation and integration of maps will provide an alternative
approach to the integration of 2-term representations up to homotopy, other than
that of [Bursztyn et al. 2016].

Remark 7.9. In [del Hoyo and Ortiz 2018], the Morita equivalences of VB-
groupoids are discussed. It is proved there that the derived category of VB-groupoids
VB[G] over a fixed base is a Morita invariant, and consequently, the same holds for
2-term representations up to homotopy. This result, from our framework, admits
the following interpretation. Our general linear 2-groupoid GL(V ) represents a
differentiable 2-stack, and the maps into it classify certain VB-groupoids, with
prescribed side and core bundle. This should be thought of as an incarnation of
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the 2-stack Perf2 appearing in algebraic geometry. Further details demand a better
understanding of differentiable 2-stacks, and are postponed to be studied elsewhere.

Remark 7.10. It is natural to expect our results to remain valid on higher degrees.
The construction of the general linear groupoid seems suitable to be generalized
for more general graded vector bundles. The understanding of pseudofunctors
within this context seems to be less clear, though a complete immersion into the
simplicial approach would solve this issue. Related to this, a realization of more
general representations up to homotopy as higher VB-groupoids is currently being
studied [del Hoyo and Trentinaglia ≥ 2019]. Expectations here should be curbed,
for even disregarding the smooth and linear structures, such a higher analog for
Grothendieck correspondence is still unknown.
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EQUIVARIANT FORMALITY OF HAMILTONIAN
TRANSVERSELY SYMPLECTIC FOLIATIONS

YI LIN AND XIANGDONG YANG

Consider the Hamiltonian action of a compact connected Lie group on a
transversely symplectic foliation which satisfies the transverse hard Lefschetz
property. We establish an equivariant formality theorem and an equivariant
symplectic dδ-lemma in this setting. As an application, we show that if the
foliation is also Riemannian, then there exists a natural formal Frobenius
manifold structure on the equivariant basic cohomology of the foliation.

1. Introduction

Reinhart [1959b] introduced the basic cohomology of foliations in the late 1950s
as a cohomology theory for the space of leaves. It has become one of fundamental
topological invariants for foliations, especially for Riemannian foliations. An im-
portant subclass of Riemannian foliations are Killing foliations, as any Riemannian
foliation on a simply connected manifold is Killing. According to Molino’s structure
theory [1988], for Killing foliations, the leaf closures are the orbits of leaves under
the action of an abelian Lie algebra of transverse Killing fields, called the structural
Killing algebra. Goertsches and Töben [2018] introduced the notion of equivariant
basic cohomology, and used it to study the transverse actions of structural Killing
algebras on Killing foliations. Among other things, they proved a Borel type
localization theorem, and established the equivariant formality in the presence of a
basic Morse–Bott function whose critical set is the union of closed leaves. As a
result, they were able to compute the basic Betti number in many concrete examples,
and relate the basic cohomology to the dynamical aspects of a foliation.

Let (M, η, g) be a compact K -contact manifold with a Reeb vector field ξ , and
let T be the closure of the Reeb flow in the isometry group Isom(M, g). Then T is
a compact connected torus. Moreover, the characteristic Reeb foliation is Killing,
with a structural Killing algebra isomorphic to Lie(T )/ span{ξ}. It is well known
that in this situation a generic component of the contact moment map 8 : M→ t∗
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is a Morse–Bott function, whose critical set is the union of closed Reeb orbits.
In particular, the results established in [Goertsches and Töben 2018] apply to the
transverse actions of the structural Killing algebras on K -contact manifolds, and
yield the equivariant formality theorem in this case (see [Goertsches et al. 2012]).

It is noteworthy that the characteristic foliation of the Reeb vector field of a
K -contact manifold (M, η, g) is transversely symplectic; in addition, the transverse
action of the structural Killing algebra is Hamiltonian in the sense of Souriau [1997].
In view of Goertsches and Töben’s equivariant formality result on K -contact mani-
folds, one naturally wonders if the equivariant formality theorem would continue to
hold for a more general class of Hamiltonian actions on transversely symplectic
foliations.

On symplectic manifolds, there are two approaches to proving the Kirwan–
Ginzburg equivariant formality theorem. The first approach is Morse theoretic,
which works for arbitrary compact Hamiltonian symplectic manifolds (see [Ginzburg
1987; Kirwan 1984]). The second approach is symplectic Hodge theoretic, which
needs to assume that the underlying symplectic manifold has the hard Lefschetz
property (see [Lin and Sjamaar 2004]). On the upside, it provides an improved
version of the equivariant formality theorem, which asserts that any de Rham
cohomology class has a canonical equivariant extension.

In an accompanying paper [Lin 2018], the first author extended symplectic Hodge
theory to any transversely symplectic manifold with the transverse s-Lefschetz
property, and established the symplectic dδ-lemma in this framework. In the present
article, for Hamiltonian actions of compact connected Lie groups on transversely
symplectic foliations, we apply the symplectic Hodge theory to prove the following
result.

Theorem 1.1 (Theorem 3.11). Consider the Hamiltonian action of a compact
connected Lie group G on a compact transversely symplectic foliation (M,F, ω).
Suppose that (M,F, ω) satisfies the transverse hard Lefschetz property. Then there
is a canonical S(g∗)G-module isomorphism from the equivariant basic cohomology
HG(M,F) to S(g∗)G ⊗ H(M,F).

It is important to note that on a transversely symplectic foliation, components of
a moment map are in general not Morse–Bott functions, unless the action satisfies
the so-called clean condition discovered by Lin and Sjamaar [2017]. However,
a striking feature of our Hodge theoretic approach is that it would continue to work,
even when the action is not clean, as long as the transverse hard Lefschetz property
is satisfied.

On a compact symplectic manifold with the hard Lefschetz property, Merkulov
[1998] established the symplectic dδ-lemma, and used it to produce a formal Frobe-
nius manifold structure on the de Rham cohomology of the symplectic manifold.
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Independently, Cao and Zhou [1999; 2000] proved similar results on the ordinary
and equivariant de Rham cohomology of Kähler manifolds. For Hamiltonian
Lie group actions on transversely symplectic foliations with the transverse hard
Lefschetz property, our method yields an equivariant version of the symplectic
dδ-lemma on basic forms. As an application of this result, we show that there
is a formal Frobenius manifold structure on the equivariant basic cohomology of
the foliation (Theorem 4.7). This simultaneously generalizes the constructions of
Merkulov and Cao and Zhou.

Transversely symplectic foliations are naturally related to different areas in
differential geometry. Reeb characteristic foliations in both contact and cosymplectic
geometries are clearly transversely symplectic. Moreover, leaf spaces of transversely
symplectic foliations include symplectic orbifolds (in the sense of Satake [1957])
and symplectic quasifolds [Prato 2001] as special examples. In many known cases,
transversely symplectic foliations arise as taut Kähler foliations, which are known
to have the transverse hard Lefschetz property (see [El Kacimi-Alaoui 1990]). The
results proved in this paper apply to these situations, and yield new examples of
dGBV-algebras whose cohomologies carry the structure of a formal Frobenius
manifold.

This paper is organized as follows. In Section 2 we review symplectic Hodge
theory on transversely symplectic foliations. In Section 3, we establish an equi-
variant formality theorem for the Hamiltonian action of a compact connected Lie
group on a transversely symplectic foliation. We also obtain an equivariant version
of the symplectic dδ-lemma on transversely symplectic foliations. In Section 4,
we show that there exists a formal Frobenius manifold structure on the equivariant
basic cohomology of a Hamiltonian transversely symplectic foliation that satisfies
the transverse hard Lefschetz property. In Section 5, we present some concrete
examples of transversely symplectic foliations, which are also Riemannian, and
which satisfy the transverse hard Lefschetz property.

2. Hodge theory on transversely symplectic foliations

In this section, we review the elements of transversely symplectic Hodge theory
to set up the stage. We refer to [Brylinski 1988] and [Yan 1996] for general
background on symplectic Hodge theory, and to [Lin 2018] for a detailed exposition
on symplectic Hodge theory on foliations.

Assume that F is a foliation on a smooth manifold M of codimension m.
Let 4(M) be the Lie algebra of smooth vector fields on M, and let 4(F)⊂4(M)
be the Lie subalgebra of vector fields which are tangent to the leaves of F . We
say that an element X ∈ 4(M) is foliate, if [X, Y ] ∈ 4(F) for any Y ∈ 4(F).
In particular, the set of foliate fields, denoted by L(M,F), is a Lie subalgebra
of 4(M), since it is the normalizer of 4(F) in 4(M). A transverse vector field is
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a smooth section of T M/TF that is induced by a foliate vector field. It is easy to
see that the set of transverse fields l(M,F) = L(M,F)/4(F) also admits a Lie
algebra structure with an induced Lie bracket from L(M,F).

The space of basic forms on M is defined as follows.

�(M,F)=
{
α ∈�(M) | ι(X)α = L(X)α = 0, for all X ∈4(F)

}
.

Since the exterior differential operator d preserves basic forms, we obtain a sub-
complex of the de Rham complex {�∗(M), d}, called the basic de Rham complex:

· · · →�k−1(M,F) d
−→�k(M,F) d

−→�k+1(M,F) d
−→· · · .

The cohomology of the basic de Rham complex {�∗(M,F), d}, denoted by
H(M,F), is called the basic cohomology of M with respect to the foliation F .
If M is connected, then H 0(M,F)∼= R1. In general, the group H k(M,F) may be
infinite-dimensional for k ≥ 2. However, if M is a closed oriented manifold and
if F is a Riemannian foliation, then the basic cohomology is finite-dimensional;
moreover, we have either H m(M,F)= 0 or H m(M,F)=R (see [El Kacimi-Alaoui
et al. 1985, Théorème 0.]). In particular, a Riemannian foliation F on a closed
manifold M is said to be taut if H m(M,F)= R.

Definition 2.1 [Haefliger 1971]. Let F be a foliation on a smooth manifold M,
and let P be the integrable subbundle of T M associated to F . We say that F is
a transversely symplectic foliation, if there exists a closed 2-form ω, called the
transversely symplectic form, such that for each x ∈ M, the kernel of ωx coincides
with the fiber of P at x .

Let (M,F, ω) be a transversely symplectic foliation of codimension 2n. The
transversely symplectic form ω induces a nondegenerate bilinear paring B( · , · )
on �p(M,F), which in turn gives rise to the symplectic Hodge star operator ? on
�p(M,F) as

β ∧ ?α = B(α, β)ω
n

n!
,

for any α, β ∈ �p(M,F). The bilinear pairing B( · , · ) is symmetric when p is
even, and skew-symmetric when p is odd. It follows easily from the definition that

(1) β ∧ ?α = ?β ∧α, ?2
= id .

The transpose operator δ of d is defined by

δ :�p(M,F)→�p−1(M,F), α 7→ (−1)p+1 ? d ? α.

By definition, it is easy to see that the operator δ satisfies the equations δ2
= 0

and dδ+ δd = 0. In this context, a basic form α is called (symplectic) harmonic if
it satisfies dα = δα = 0. Set

�har(M,F)= {α ∈�(M,F) | dα = δα = 0}.
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There are three important operators acting on the space of basic forms:

L :�∗(M,F)→�∗+2(M,F), α 7→ α∧ω,

3 :�∗(M,F)→�∗−2(M,F), α 7→ ?L ? α,

H :�k(M,F)→�k(M,F), α 7→ (n− k)α.

In particular, we have the following result.

Lemma 2.2. Let f be a basic function, and X a foliate vector field such that
ι(X)ω = d f . Then for any basic form α we have:

(i) [3, ι(X)]α = 0.

(ii) δ( f α)= f δα− ι(X)α.

(iii) δ(d f ∧α)=−d f ∧ δα+L(X)α.

Proof. The assertion (i) is a direct consequence of [Lin 2018, Lemma 3.2], and (ii)
can be proved by the same argument as the one used in [Lin and Sjamaar 2004,
Proposition 2.5]. It remains to check the assertion (iii). Using (ii) and the identity
dδ+ δd = 0, we have

δ(d f ∧α)= δ(d( f α)− f dα)

=−dδ( f α)− δ( f dα)

=−d( f δα− ι(X)α)− f δdα+ ι(X)dα

=−d( f δα)− f δdα+ (dι(X)+ ι(X)d)α

=−d f ∧ δα− f (dδ+ δd)α+L(X)α

=−d f ∧ δα+L(X)α.
This proves the assertion (iii). �

A straightforward calculation yields the following commutator relations.

Proposition 2.3 (see [Lin 2018, Lemma 3.2]).

[L , d] = 0, [3, d] = δ, [3, δ] = 0, [L , δ] = −d,

[L ,3] = H, [H, L] = −2L , [H,3] = 23.

Definition 2.4. Let (M,F, ω) be a transversely symplectic foliation of codimen-
sion 2n. We say that M satisfies the transverse hard Lefschetz property, if for any
0≤ k ≤ n, the map

Lk
: H n−k(M,F)→ H n+k(M,F)

is an isomorphism.

On compact symplectic manifolds, Brylinski [1988] conjectured that every
de Rham cohomology class has a symplectic harmonic representative. However,
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Mathieu [1995] proved that this conjecture is true if and only if the manifold satisfies
the hard Lefschetz property. Mathieu’s theorem was sharpened by Merkulov [1998]
and Guillemin [2001], who independently established the symplectic dδ-lemma.
The symplectic dδ-lemma was first extended to transversely symplectic flows by
Zhenqi He [2010], and more recently, by the first author [Lin 2018] to arbitrary
transversely symplectic foliations. The following results are reformulations of [Lin
2018, Theorems 4.1 and 4.8].

Theorem 2.5. Let (M,F, ω) be a transversely symplectic foliation with the trans-
verse hard Lefschetz property. Then every basic cohomology class has a symplectic
harmonic representative.

Theorem 2.6. Assume that (M,F, ω) is a transversely symplectic foliation that
satisfies the transverse hard Lefschetz property. Then on the space of basic forms,

im d ∩ ker δ = ker d ∩ im d = im dδ.

Let �δ(M,F)= ker δ ∩�(M,F). Since d anticommutes with δ, the subspace
�δ(M,F) forms a subcomplex of the basic de Rham complex {�(M,F), d}, the
cohomology of which we denote by Hδ(M,F). The following result is a direct
consequence of Theorem 2.6. Here H(�(M,F), δ) denotes the homology of
�(M,F) with respect to δ.

Theorem 2.7. Assume that (M,F, ω) is a transversely symplectic foliation that
satisfies the transverse hard Lefschetz property. Then the d-chain maps in the
diagram

�(M,F)←−�δ(M,F)−→ H(�(M,F), δ)

are quasi-isomorphisms that induce isomorphisms in cohomology.

3. Equivariant formality and basic dGδ-lemma

In this section we study the equivariant basic cohomology of Hamiltonian actions
on transversely symplectic foliations using the Hodge theoretic approach. Let g be
a finite-dimensional Lie algebra. Recall that a transverse action of g on a foliated
manifold (M,F) is defined to be a Lie algebra homomorphism g→ l(M,F) (see
[Goertsches and Töben 2018, Definition 2.1]). We propose the following definition
of transverse actions of a Lie group G.

Definition 3.1. Consider the action of a Lie group G with the Lie algebra g on a
foliated manifold (M,F). We say that the action of G is transverse if the image of
the associated infinitesimal action map g→4(M) lies in L(M,F).

Remark 3.2. Suppose that there is a transverse action of a Lie group G with Lie
algebra g on a foliated manifold (M,F). Then by definition we have the following
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commutative diagram of Lie algebra homomorphisms:

g

##

// L(M,F)

pr
��

l(M,F)

Here the vertical map is the natural projection. Therefore we also have a transverse
g-action on (M,F) in the sense of [Goertsches and Töben 2018, Definition 2.1].

Lemma 3.3. Consider the transverse action of a compact connected Lie group G
on a foliated manifold (M,F). If α is a basic form, and if X M is a fundamental
vector field induced by an element X ∈ g, then ι(X M)α and L(X M)α are also basic
forms.

Proof. Let Y ∈4(F). Since the action of G is transverse, we get [Y, X M ] ∈4(F).
It follows that

ι(Y )ι(X M)α =−ι(X M)ι(Y )α = 0,

and that
L(Y )ι(X M)α = ι([Y, X M ])α+ ι(X M)L(Y )α = 0.

This proves that ι(X M)α is a basic form. A similar calculation shows that L(X M)α

is also basic. �

Suppose that there is a transverse action of a compact connected Lie group G
on a foliated manifold (M,F). As an immediate consequence of Lemma 3.3, we
see that �(M,F) is a G?-module in the sense of [Guillemin and Sternberg 1999,
Definition 2.3.1]. Therefore, there is a well defined Cartan model of �(M,F)
given by

�G(M,F) := [S(g∗)⊗�(M,F)]G,

which we call the equivariant basic Cartan complex.
To simplify the notation, let us write �bas =�(M,F), and �G,bas =�G(M,F).

Elements of �G,bas can be regarded as equivariant polynomial maps from g to �bas,
and are called equivariant basic differential forms on M. The equivariant basic
Cartan model �G,bas has a bigrading given by

�
i, j
G,bas = [S

i (g∗)⊗�
j−i
bas ]

G
;

moreover, it is equipped with the vertical differential 1⊗ d, which we abbreviate
to d , and the horizontal differential ∂ , which is defined by

∂(α(ξ))=−ι(ξ)α(ξ), for all ξ ∈ g.

Here ι(ξ) denotes the inner product with the fundamental vector field on M induced
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by ξ ∈ g. As a single complex, �G,bas has a grading given by

�k
G,bas =

⊕
i+ j=k

�
i, j
G,bas,

and a total differential dG=d+∂ , which is called the equivariant exterior differential.
We say that an equivariant differential basic form α is equivariantly closed, resp.,
equivariantly exact, if dGα = 0, resp. α = dGβ for some equivariant basic form β.

Definition 3.4. The equivariant basic cohomology of the transverse G-action on
(M,F) is defined to be the total cohomology of the equivariant basic Cartan complex
{�G(M,F), dG}, which is denoted by HG(M,F).

We would like to point out that the above definition of equivariant basic coho-
mology was first introduced by Goertsches and Töben [2018] using the language of
equivariant cohomology of g?-algebras. Following Goresky, Kottwitz and MacPher-
son [Goresky et al. 1998], we propose the following definition of equivariant
formality for transverse G-actions.

Definition 3.5. A transverse G-action on (M,F) is equivariantly formal if

HG(M,F)∼= S(g∗)G ⊗ H(M,F)

as graded S(g∗)G-modules.

Next, we review the notion of Hamiltonian G-actions on transversely symplectic
foliations.

Definition 3.6 [Lin and Sjamaar 2017]. Consider the action of a compact connected
Lie group G with the Lie algebra g on a transversely symplectic foliation (M,F, ω).
We say that the G-action on (M,F, ω) is Hamiltonian, if the G-action preserves
the transversely symplectic form ω, and if there exists an equivariant map,

8 : M→ g∗,

called a moment map, such that d〈8, ξ〉 = ι(ξ)ω, for each ξ ∈ g. Here 〈 · , · 〉
denotes the dual pairing between g and g∗.

Remark 3.7. By definition, the Hamiltonian action of a Lie group G on a trans-
versely symplectic manifold (M,F, ω) is always transverse. Indeed, since the action
preserves the transversely symplectic form ω, it also preserves its null foliation F .
It then follows from [Molino 1988, Proposition 2.2] that the G-action must be
transverse.

From now on, we assume that (M,F, ω) is a compact transversely symplectic
foliation that satisfies the transverse hard Lefschetz property, and that there is a
compact connected Lie group G acting on (M,F, ω) in a Hamiltonian fashion with
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a moment map 8 :M→ g∗, where g=Lie(G). The symplectic Hodge theory gives
rise to a third differential 1⊗ δ on �G,bas, which we will abbreviate to δ.

Lemma 3.8. On the space of equivariant basic differential forms �G,bas, the fol-
lowing identities hold:

∂δ =−δ∂, dGδ =−δdG .

Proof. It was shown in [Lin and Sjamaar 2004, Lemma 3.1] that ∂δ = −δ∂ and
dGδ =−δdG hold on the space of equivariant differential forms. Since dG, δ and ∂
map basic forms to basic forms, these two identities also hold on the space of
equivariant basic differential forms. �

This implies that �δG,bas := ker δ∩�G,bas is a double subcomplex of �G,bas, and
that the homology H(�G,bas, δ) with respect to δ is a double complex with the
differentials induced by d and ∂ . Thus we have a diagram of morphisms of double
complexes
(2) �G,bas←−�

δ
G,bas −→ H(�G,bas, δ).

Since δ acts trivially on the polynomial part, these morphisms in (2) are actually
morphisms of S(g∗)G-modules.

We first establish a preliminary result about the action of ι(ξ) on invariant basic
forms. Let�G

bas be the space of G-invariant basic forms on M. The Cartan’s identity

L(ξ)= ι(ξ)d + dι(ξ)

implies that the morphism ι(ξ) :�G
bas→�G

bas is a chain map with respect to d . Here
L(ξ) denotes the Lie derivative of the fundamental vector field on M induced by
ξ ∈ g. Similarly, an application of the identity δ∂ + ∂δ = 0 to the zeroth column of
�G,bas implies that ι(ξ) is a chain map with respect to δ.

Lemma 3.9. Let ξ ∈ g and α ∈�G
bas. If α is d-closed, then ι(ξ)α is d-exact. If α is

δ-closed, then ι(ξ)α is δ-exact.

Proof. Since the action of G is Hamiltonian, it follows from [Lin and Sjamaar 2004,
Proposition 2.5] that
(3) ι(ξ)α =8ξ (δα)− δ(8ξα),

where 8ξ is the ξ -component of the moment map 8 : M → g∗. If α is δ-closed,
then we have that ι(ξ)α = −δ(8ξα). Since 8ξ is a basic function, we get that
ι(ξ)α is δ-exact in �G

bas.
It remains to show that if α ∈ �G

bas is a d-closed basic k-form, then ι(ξ)α is
d-exact. Since M satisfies the transverse hard Lefschetz property, by [Lin 2018,
Theorem 4.3], for each class [α] ∈ H k(M,F) there exists a unique primitive
decomposition

[α] =
∑

r

Lr
[αr ].
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Here [αr ] ∈ H k−2r (M,F) is a primitive basic cohomology class, i.e., Ln−k+2r+1
[α]

is equal to 0. However, since the action is Hamiltonian, we have

ι(ξ)(ω∧α)= d8ξ ∧α+ω∧ ι(ξ)α.

Thus to finish the proof, it suffices to show that ι(ξ)α is exact when [α] is a primitive
basic cohomology class. We note that the argument given in [Lin and Sjamaar
2004, Lemma 3.2] continues to hold in the present situation to show the exactness
of ι(ξ)α. �

Note that the symplectic dδ-lemma, Theorem 2.6, holds for equivariant basic
differential forms as well as for ordinary basic differential forms. In particular, the
inclusion �G

bas ↪→�bas is a deformation retraction for δ as well as for d . The same
argument as given in the proof of [Lin and Sjamaar 2004, Lemma 3.3.] provides us
the following result.

Lemma 3.10. The differentials induced by d and ∂ on H(�G,bas, δ) are 0. More-
over, we have the isomorphism

(4) H(�G,bas, δ)∼= S(g∗)G ⊗ H(M,F).

We are now in a position to prove the equivariant formality property of Hamil-
tonian actions on transversely symplectic foliations.

Theorem 3.11. Let (M,F, ω) be a compact transversely symplectic manifold that
satisfies the transverse hard Lefschetz property, and let a compact connected Lie
group G act on M in a Hamiltonian fashion. Then the morphisms in (2) induce
isomorphisms of S(g∗)G-modules

HG(M,F)
∼=
←− H(�δG,bas, dG)

∼=
−→ H(�G,bas, δ).

Proof. We first note that since G is connected, the identity L(ξ)= dι(ξ)+ ι(ξ)d
together with the identity (3) imply that G acts trivially on both H(M,F) and
H(�(M,F), δ). Let E be the spectral sequence of �G,bas relative to the filtration
associated to the horizontal grading and Eδ that of �δG,bas. The first terms are

E1 = ker d/ im d = [S(g∗)⊗ H(M,F)]G = S(g∗)G ⊗ H(M,F)(5)

(Eδ)1 = (ker d ∩ ker δ)/(im d ∩ ker δ)(6)

= [S(g∗)⊗ H(�(M,F), δ)]G = S(g∗)G ⊗ H(M,F).

Here we used the observation we made in the paragraph right before Lemma 3.10,
as well as the isomorphism H(�(M,F), δ) ∼= H(M,F) of Theorem 2.7. By
Lemma 3.10, H(�G,bas, δ) is a trivial double complex, its spectral sequence is
therefore constant with trivial differentials at each stage. The two morphisms in (2)
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induce morphisms of spectral sequences,

E←− Eδ −→ H(�G,bas, δ).

It follows from (4), (5) and (6) that these morphisms induce isomorphisms at the
first stage. Thus they must induce isomorphisms at every stage. In particular, these
three spectral sequences converge to the same limit, and so the morphisms in (2)
induce isomorphisms on total cohomology. This completes the proof. �

An argument similar to the one used in [Lin and Sjamaar 2004, Theorem 3.9] gives
us the following equivariant version of the symplectic dδ-lemma on transversely
symplectic manifolds.

Theorem 3.12. Let α ∈ �G,bas be an equivariant basic form satisfying dGα = 0
and δα = 0. If α is either dG-exact or δ-exact, then there exists β ∈�G,bas such that
α = dGδβ.

We now discuss the implications of Theorem 3.11. Observe that�0,k
G,bas= (�

k
bas)

G,
the space of G-invariant basic k-forms on M. Thus the zeroth column of the
basic Cartan model is the G-invariant basic de Rham complex �G

bas, which is a
deformation retraction of the basic de Rham complex because G is connected.
Therefore, we have an isomorphism H(�G

bas)
∼= H(M,F). The natural projection

map p̄ :�G,bas→�G
bas, defined by p̄(α)= α(0), is a chain map with respect to the

equivariant exterior derivative dG on �G,bas and the ordinary exterior derivative d
on�bas. It induces a morphism of cohomology groups p : HG(M,F)→ H(M,F).
Theorem 3.11 implies that the spectral sequence E degenerates at the first stage,
and that the map p is surjective. In other words, every basic cohomology class can
be extended to an equivariant basic cohomology class. However, Theorem 3.11
would also imply that there is a canonical choice of such an extension. Let

(7) s : H(M,F)→ HG(M,F)

be the composition of the map

H(M,F)→ S(g∗)G ⊗ H(M,F)

which sends a cohomology class a to 1⊗ a, and the isomorphism

S(g∗)G ⊗ H(M,F)→ HG(M,F)

as given by Theorem 3.11. The following result is a direct consequence of Theo-
rems 2.7 and 3.11.

Corollary 3.13. The map s is a section of p. Thus every basic cohomology class
can be extended to an equivariant basic cohomology class in a canonical way.

Proof. For details of the proof see [Lin and Sjamaar 2004, Corollary 3.5]. �
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4. Formal Frobenius manifolds modeled on equivariant basic cohomology

Consider the Hamiltonian action of a compact connected Lie group on a transversely
symplectic foliation. In this section, following the approach initiated by Barannikov
and Kontsevich [1998], we show that if the foliation satisfies the transverse hard
Lefschetz property, and if it is also a Riemannian foliation, then there exists a formal
Frobenius manifold structure on its equivariant basic cohomology.

dGBV algebra in transversely symplectic geometry. We first give a quick review
of differential Gerstenhaber–Batalin–Vilkovisky (dGBV) algebra. Suppose (A ,∧)
is a supercommutative graded algebra with identity over a field k, and that there is
a k-linear operator δ : A ∗→ A ∗−1. Define the bracket [•] by setting

[a • b] = (−1)|a|
(
δ(a ∧ b)− (δa)∧ b− (−1)|a|a ∧ (δb)

)
,

where a and b are homogeneous elements and |a| is the degree of a ∈ A . We say
that (A ,∧, δ) forms a Gerstenhaber–Batalin–Vilkovisky (GBV) algebra with odd
bracket [•] if it satisfies:

(i) δ is a differential, i.e., δ2
= 0.

(ii) For any homogeneous elements a, b and c we have

(8) [a • (b∧ c)] = [a • b] ∧ c+ (−1)(|a|+1)|b|b∧ [a • c].

Definition 4.1. A GBV-algebra (A ,∧, δ) is called a dGBV-algebra, if there exists
a differential operator d : A ∗→ A ∗+1 such that

(i) d is a derivation with respect to the product ∧, i.e.,

d(a ∧ b)= da ∧ b+ (−1)|a|a ∧ db

for any homogeneous elements a and b;

(ii) dδ+ δd = 0.

An integral on a dGBV algebra A is a k-linear functional

(9)
∫
: A → k

such that for all a, b ∈ A , the following equations hold:∫
(da)∧ b = (−1)|a|+1

∫
a ∧ db,∫

(δa)∧ b = (−1)|a|
∫

a ∧ δb.

Moreover, an integral
∫

induces a bilinear pairing on H(A , d) as follows:

( · , · ) : H(A , d)× H(A , d)→ k, ([a], [b])=
∫

a ∧ b.
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In particular, if the above bilinear pairing is nondegenerate, then we say that the
integral is nice.

The following theorem enables us to use a dGBV algebra as an input to produce
a formal Frobenius manifold (see [Barannikov and Kontsevich 1998; Manin 1999]).

Theorem 4.2. Let (A ,∧, δ, d, [•]) be a dGBV algebra satisfying the following
conditions:

(1) The dimension of H(A , d) is finite.

(2) There exists a nice integral on A .

(3) The inclusions (ker δ, d) ↪→ (A , d) and (ker d, δ) ↪→ (A , δ) are quasi-
isomorphisms.

Then there is a canonical construction of a formal Frobenius manifold structure on
H(A , d).

As an initial step, we first prove that the equivariant basic Cartan complex of a
transversely symplectic manifold carries the structure of a dGBV algebra.

Proposition 4.3. Suppose that there is a transverse action of a compact connected
Lie group G on a transversely symplectic manifold (M,F, ω). Let δ be the dif-
ferential on equivariant basic differential forms as introduced in Section 3, and
let ∧ denote the wedge product. Then the quadruple (�G,bas,∧, δ, dG) is a dGBV
algebra.

Proof. The only thing that requires a proof is that (8) holds on equivariant basic
differential forms. To this end, it suffices to show that (8) holds for ordinary basic
differential forms a, b, c on a foliated coordinate neighborhood. So without loss of
generality, we may assume that b = f0d f1 ∧ · · · ∧ d fk , and that for each 0≤ i ≤ k,
fi is a basic functions such that d fi = ι(X i )ω for some foliate vector field X i .
However, it is easy to see that if b1, . . . , bs are basic forms such that for each
1 ≤ i ≤ s, (8) holds for b = bi and arbitrarily given basic forms a and c, then (8)
holds for b= b1∧· · ·∧bs and arbitrarily given basic forms a and c. Therefore it is
enough to show that (8) is true in the following two cases.

Case 1: Assume that b = f is a basic function such that d f = ι(X)ω for some
foliate vector X. Applying Lemma 2.2(ii), we have

[a • f c] = (−1)|a|(δ(a ∧ f c)− δ(a)∧ f c− (−1)|a|a ∧ δ( f c))

= (−1)|a|
(

f δ(a ∧ c)− (ι(X)a)∧ c− δ(a)∧ f c− (−1)|a|a ∧ f δc
)

= f [a • c] − (−1)|a|(ι(X)a)∧ c

= f [a • c] + (−1)|a|(δ( f a)− f δa)∧ c

= f [a • c] + [a • f ] ∧ c.
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Case 2: Assume that b= d f for a basic function f such that d f = ι(X)ω for some
foliate vector X. On the one hand, due to the identity Lemma 2.2(iii), we get

(10) [a•(d f∧c)]

= (−1)|a|
(
δ(a∧d f∧c)−δa∧d f∧c−(−1)|a|a∧δ(d f∧c)

)
=L(X)(a∧c)−d f∧δ(a∧c)−(−1)|a|δa∧d f∧c+a∧d f∧δc−a∧L(X)c

= (L(X)a)∧c−d f∧δ(a∧c)+d f∧δa∧c+a∧d f∧δc

= (L(X)a)∧c−d f∧
(
δ(a∧c)−δa∧c−(−1)|a|a∧δc

)
= (L(X)a)∧c+(−1)|a|+1d f∧[a•c].

On the other hand, applying Lemma 2.2(iii) again, we have

(11) [a • d f ] = (−1)|a|
(
δ(a ∧ d f )− δa ∧ d f − (−1)|a|a ∧ δd f

)
= δ(d f ∧ a)− (−1)|a|δa ∧ d f + a ∧ dδ f

=−d f ∧ δa+L(X)a+ d f ∧ δa

= L(X)a.

It follows immediately from (10) and (11) that (8) holds in this case. �

Formal Frobenius manifolds from dGBV-algebras. To show that there is a nice
integral on the dGBV-algebra (�G,bas,∧, δ, dG), we need the transverse integration
theory developed on the space of basic forms on a taut Riemannian foliation (see
[Tondeur 1997, Chapter 7; Sergiescu 1985]). Here we follow the method used in
[Tondeur 1997], as it may be easier to describe for a general audience.

Recall that a foliation F on a smooth manifold M is said to be Riemannian,
if there exists a Riemannian metric g on M, called a bundle-like metric for the
foliation F , such that for any two foliate vector fields Y and Z on an open subset
U ⊂ M which are perpendicular to the leaves, the function g(Y, Z) is basic on U
(see [Reinhart 1959a]). From now on, we assume that M is a closed oriented
connected smooth manifold, that (M,F, ω) is a transversely symplectic foliation
of dimension l and codimension 2n which satisfies the transverse hard Lefschetz
property, and that there is a Hamiltonian action

G×M→ M, (h, x) 7→ Lh(x)

of a compact connected Lie group G on M. In addition, we also assume that F is a
Riemannian foliation with a bundle-like metric g.

Let P be the integrable subbundle of T M associated to the foliation F on M.
Observe that under our assumption F is transversely oriented. It follows that F is
also tangentially oriented. That is to say that P is an oriented vector bundle. Fix an
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orientation on P, and define the characteristic form χF for the triple (M, g,F) as
follows (see [Tondeur 1997, Chapter 4]):

(12) χF (Y1, . . . , Yl)= det(g(Yi , E j )),

where Y1, . . . , Yl ∈ Tx M, and (E1, . . . , El) is an oriented orthonormal frame of Px .
Clearly, when the orientation on P is fixed, the definition of χF depends only on the
choice of a bundle-like metric. However, by the transverse hard Lefschetz property,
H 2n(M,F)∼= H 0(M,F)∼=R, which implies that the Riemannian foliation (M,F)
is taut (see [Royo Prieto et al. 2009, Theorem 1.4.6]). Thus as explained in [Tondeur
1997, Chapter 7 and Formula 4.26], we can choose a bundle-like metric g such that
the corresponding characteristic form χF satisfies

(13) ι(X1) · · · ι(Xl)dχF = 0 for all X1, . . . , Xl ∈ C∞(P).

Since the action of G preserves the foliation F , it is easy to check that for all h∈G,
the characteristic form with respect to the pullback metric L∗hg is L∗hχF . A straight-
forward check shows that L∗hχF also satisfies (13). So averaging the bundle-like
metric g over the compact Lie group G if necessary, we may assume that the
characteristic form χF with respect to the bundle-like metric g is not only G-
invariant, but also satisfies (13). In particular, χF can be regarded as an equivariant
differential form. Using the usual equivariant integration (see [Guillemin and
Sternberg 1999]), we define a S(g∗)G-linear operator as

(14)
∫
:�G,bas→ S(g∗)G, α 7→

∫
M
α∧χF .

Lemma 4.4. For all α ∈�s
G,bas, for all β ∈�t

G,bas,∫
(dGα)∧β = (−1)s+1

∫
α∧ dGβ,(15) ∫

(δα)∧β = (−1)s
∫
α∧ δβ.(16)

Proof. We first prove a preliminary result that for any two ordinary basic differential
forms α ∈�s(M,F) and β ∈�t(M,F), the following identity holds.

(17)
∫

M
(dα)∧β ∧χF = (−1)s+1

∫
M
α∧ dβ ∧χF .

By the Leibniz rule,

d(α∧β ∧χF )= dα∧β ∧χF + (−1)sα∧ (dβ)∧χF + (−1)s+tα∧β ∧ dχF .

Since ∫
M

d(α∧β ∧χF )= 0,
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to prove (17) it suffices to show that

(18)
∫

M
α∧β ∧ dχF = 0.

Observe that χF is of degree l; we may assume that s+t = 2n−1, for otherwise (18)
holds for degree reasons. Next recall that by our choice of the bundle-like metric,
the characteristic form χF has the property that for any vector fields X1, · · ·, Xl

tangent to the leaves of F , ι(X1) · · · ι(Xl)dχF = 0. Since α and β are basic, this
would imply that α ∧ β ∧ dχF = 0, from which (17) follows as an immediate
consequence.

Since d does not act on the polynomial part of an equivariant basic form, (17) also
holds for equivariant basic forms. On the other hand, for each α ∈�s

G(M,F) and
β ∈�t

G(M,F), a simple degree counting shows that

(19)
∫

M
∂α∧β ∧ dχF =

∫
M
α∧ ∂β ∧ dχF = 0.

Combing (17) and (19) we get that (15) holds.
To prove that (16) holds, it suffices to show that for any ordinary basic forms

α ∈�s(M,F) and β ∈�t(M,F),∫
M
(δα)∧β ∧χF = (−1)s

∫
α∧ (δβ)∧χF .

Without loss of generality, we may assume that s+ t = 2n+ 1. Using (1) and (17),
we have ∫

M
(δα)∧β ∧χF = (−1)s+1

∫
M
(?d ? α)∧β ∧χF

= (−1)s+1
∫

M
(d ? α)∧ ?β ∧χF

=

∫
M
(?α)∧ d ? β ∧χF

= (−1)s
∫

M
α∧ δβ ∧χF .

This completes the proof. �

Note that S(g∗)G is an integral domain. Let F =
{ f

g | f, g ∈ S(g∗)G
}

be the
fractional field of S(g∗)G. Define

�̃G,bas =�G,bas⊗S(g∗)G F.

Extend dG,∧ and δ to �̃G,bas, and define

(20) H̃G(M,F)= H(�̃G,bas, dG).
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As a direct consequence of Theorem 3.11, we have

H̃G(M,F)= HG(M,F)⊗S(g∗)G F.

Applying Proposition 4.3, we see that (�̃G,bas, δ,∧, dG) is a dGBV-algebra
over F. Moreover, the operator defined in (14) naturally extends to a F-linear
operator

(21)
∫
: �̃G,bas→ F.

Clearly, Lemma 4.4 implies that the operator (21) defines an integral on the dGBV
algebra (�̃G,bas,∧, δ, dG). To show that this integral is also nice, we need the
following result on the basic Poincaré duality.

Theorem 4.5 [Tondeur 1997, Corollary 7.58]. Let F be a taut and transversally
oriented Riemannian foliation on a closed oriented manifold M. The pairing

α⊗β 7→

∫
M
α∧β ∧χF

induces a nondegenerate pairing

H r (M,F)× Hq−r (M,F)→ R

on finite-dimensional vector spaces, where q = codimF .

Lemma 4.6. The integral operator defined in (21) is nice, i.e., it induces a F-bilinear
nondegenerate pairing

H̃∗G(M,F)× H̃∗G(M,F)→ F.

Proof. Let [α] be an arbitrary class in HG(M,F) such that∫
M
α∧β ∧χF = 0, for each [β] ∈ HG(M,F).

To prove Lemma 4.6, it suffices to show that [α] has to vanish.
Let { f1, . . . , fk} be a basis of the real vector space (Sg∗)G. By Theorem 3.11,

there exist finitely many cohomology classes [γi ] in H(M,F) such that

[α] =
∑

i

fi ⊗ s([γi ]).

Here s : H(M,F)→ HG(M,F) is the canonical section introduced in (7). Let ki

be the degree of the basic form γi . After a reshuffling of the index, we may assume
that k1 ≥ k2 ≥ · · · . Then for any [ζ ] ∈ H 2n−k1(M,F),∑

i

fi ⊗

(∫
M

s([γi ])∧ s([ζ ])∧χF

)
= 0,
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which implies ∫
M

s([γ1])∧ s([ζ ])∧χF = 0.

It then follows from a simple counting of degrees that
∫

M γ1 ∧ ζ ∧χF = 0. Since
[ζ ] ∈ H 2n−k1(M,F) is arbitrarily chosen, by Theorem 4.5 we have that [γ1] = 0.
Thus s([γ1])= 0. Repeating this argument, we see that [γi ] = 0 for all i . It follows
that [α] must be zero. �

We are ready to state the main result of this section.

Theorem 4.7. Assume that (F, ω) is a transversely symplectic foliation on a closed
oriented smooth manifold M that satisfies the transverse hard Lefschetz property,
and that a compact connected Lie group G acts on (M,F, ω) in a Hamiltonian
fashion. If F is also a Riemannian foliation, then there is a canonical formal
Frobenius manifold structure on the equivariant basic cohomology H̃G(M,F) as
defined in (20).

Proof. It remains to show that the following maps induced by the inclusions

ρ : H(ker δ, dG)→ H(�G,bas, dG)(22)

µ : H(ker dG, δ)→ H(�G,bas, δ)(23)

are isomorphisms. The fact that the map (22) is an isomorphism is a direct con-
sequence of Theorem 3.11. Let α ∈ ker dG be a δ-closed form which represents
a class [α] in H(ker dG, δ). Suppose that [α] is trivial in H(�G,bas, δ), then there
exists a β ∈ �G,bas such that α = δβ. By Theorem 3.12, we have α = dGδγ for
some γ ∈�G,bas. This shows that α represents a trivial class in H(ker dG, δ), and
that the map (23) is injective.

To see that (23) is surjective, suppose that α ∈�G,bas such that δα = 0, i.e., [α]
is a class in H(�G,bas, δ). Let γ = dGα. Then γ is both dG-exact and δ-closed. By
Theorem 3.12, there exists a β ∈�G,bas such that γ = dGδβ. Set α̃ = α− δβ. Then
α̃ ∈ ker dG and [α̃] = [α] in H(�G,bas, δ). This proves that (23) is surjective. By
Theorem 4.2 there exists a formal Frobenius manifold structure on H̃G(M,F). �

When G is a trivial group consisting of one single element, we have the following:

Corollary 4.8. Assume that (M,F, ω) is a transversely symplectic manifold that
satisfies the transverse hard Lefschetz property. If F is also a Riemannian folia-
tion, then there is a canonical formal Frobenius manifold structure on the basic
cohomology H(M,F).

Remark 4.9. When the foliation F is zero-dimensional, from Corollary 4.8 we
recover the Merkulov’s construction [1998] of a Frobenius manifold structure
on the de Rham cohomology of a symplectic manifold with the hard Lefschetz
property. When the foliation F is zero-dimensional, and when M is a closed Kähler
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manifold, we recover from Theorem 4.7 the construction by Cao and Zhou [1999],
which produces a Frobenius manifold structure on the equivariant cohomology
of a Hamiltonian action of a compact connected Lie group on a Kähler manifold.
Moreover, we are able to remove the assumption in [Cao and Zhou 1999] that the
action is holomorphic.

5. Examples of Frobenius manifolds from transversely symplectic foliations

In this section we present some examples of transversely symplectic foliations
which give rise to new examples of dGBV-algebra whose cohomology admits a
formal Frobenius manifold structure. We begin with a useful observation on when
an action of a compact Lie group gives rise to a G-invariant Riemannian foliation.

Lemma 5.1. Consider the action of a compact Lie group G on a manifold M.
Suppose that h is an ideal of the Lie algebra g of G, and that the induced infinitesimal
action of h on M is free. Then it generates a G-invariant Riemannian foliation F
on M.

Proof. It is clear from our assumption that the foliation F is G-invariant. Now
suppose that g is an G-invariant Riemannian metric. We will show that g must be a
bundle-like metric. Let Y and Z be two foliate vector fields which are perpendicular
to the leaves, and let ξM be the fundamental vector field generated by the infinitesimal
action of ξ ∈ h. Then,

L(ξM)(g(Y, Z))= (L(ξM)g)(Y, Z)+ g([ξM , X ], Y )+ g(X, [ξM , Y ]).

Note that L(ξM)g = 0 because g is G-invariant. Moreover, since X is a foliate
vector field, [ξM , X ] must be tangent to the leaves. Thus g([ξM , X ], Y )= 0 as Y
is perpendicular to the leaves. For the same reason, g(X, [ξM , Y ])= 0. It follows
that L(ξM)(g(Y, Z))= 0. Since ξ ∈ h is arbitrarily chosen, g(Y, Z) must be a basic
function. This completes the proof. �

Now, we will discuss examples of transversely symplectic foliations to which
Theorem 4.7 and Corollary 4.8 apply.

Example 5.2 (cooriented contact manifolds). Let M be a (2n+1)-dimensional
cooriented compact contact manifold with a contact one form η and a Reeb vector ξ .
Then the Reeb characteristic foliation Fξ induced by ξ is transversely symplectic,
with a transversely symplectic form dη. If there exists a contact metric g such
that ξ is a Killing vector field, then (M, η, g) is called a K -contact manifold. It is
well known that the Reeb characteristic foliation of a K -contact manifold (M, η, g)
is Riemannian. By Corollary 4.8, when M satisfies the transverse hard Lefschetz
property, its basic cohomology will carry the structure of a formal Frobenius
manifold. In particular, this is the case when (M, η, g) is a Sasakian manifold
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(see [Boyer and Galicki 2008]). It is also noteworthy that there exist examples of
compact K -contact manifolds which do not admit any Sasakian structures, and
which satisfy the hard Lefschetz property as introduced in [Cappelletti-Montano
et al. 2015; 2016]. By [Lin 2013, Theorem 4.4], these non-Sasakian K -contact
manifolds also satisfy the transverse hard Lefschetz property.

Example 5.3 (Hamiltonian actions on contact manifolds). Let M be a (2n+1)-
dimensional compact contact manifold with a contact one form η and a Reeb vector
field ξ , and let G be a compact connected Lie group with the Lie algebra g. Suppose
that G acts on M preserving the contact one form η. Then the η-contact moment
map 8 : M→ g∗, given by

〈8, X〉 = η(X M), for all X ∈ g,

also defines a moment map for the transverse G-action on the transversely symplectic
foliation (M,Fξ , dη). Here 〈 · , · 〉 is the dual pairing between g and g∗, and X M is
the fundamental vector field generated by X.

Recall that the action of G is said to be of Reeb type, if the Reeb vector ξ is
generated by the infinitesimal action of an element in g (see [Boyer and Galicki
2008, Definition 8.4.28]). It is clear from Lemma 5.1 that when the action of G
is of Reeb type, the Reeb characteristic foliation Fξ is Riemannian. If in addition,
(M, η, g) is a Sasakian manifold, then Fξ satisfies the transverse hard Lefschetz
property. In particular, these observations apply to the case when (M, η, g) is a
compact toric contact manifold of Reeb type. Therefore, by Theorem 4.7, there is a
formal Frobenius manifold structure on the equivariant basic cohomology of toric
contact manifolds of Reeb type.

Example 5.4 (cosymplectic manifolds [Li 2008]). Let (M, η, ω) be a (2n+1)-
dimensional compact cosymplectic manifold. By definition, η is a closed one
form, and ω a closed two form ω, such that η ∧ωn is a volume form. Then the
Reeb characteristic foliation Fξ induced by the Reeb vector field ξ (defined by the
equations ι(ξ)η= 1 and ι(ξ)ω= 0) is transversely symplectic with the transversely
symplectic form ω.

We claim that for any 1≤ k≤n, the basic form ωk represents a nontrivial basic co-
homology class in H 2k(M,F). Assume to the contrary that [ωk

] = 0 ∈ H 2k(M,F)
for some 1≤ k ≤ n. Then there exists a basic (2n−1)-form β such that ωn

= dβ.
Since dη = 0, we have∫

M
η∧ωn

=

∫
M
η∧ dβ =

∫
M
−d(η∧β)= 0,

which contradicts the fact that η∧ωn is a volume form. This proves our claim.
The cosymplectic manifold M is called a co-Kähler manifold, if one can associate

to (M, η, ω) an almost contact structure (φ, ξ, η, g), where φ is an (1, 1)-tensor,
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and g a Riemannian metric, such that φ is parallel with respect to the Levi-Civita
connection of g. It is straightforward to check that if M is co-Kähler, then the
Reeb characteristic foliation Fξ is transversely Kähler. Due to the claim established
in the previous paragraph, it is indeed a taut transversely Kähler foliation, and
therefore satisfies the transverse hard Lefschetz property. By Corollary 4.8, the
basic cohomology of M has a structure of a formal Frobenius manifold.

Example 5.5 (symplectic orbifolds). Let (X, σ ) be an effective symplectic orbi-
fold of dimension 2n. Then the total space of the orthogonal frame orbibundle
π : Fr(X)→ X is a smooth manifold on which the structure group O(2n) acts
locally free. The form ω := π∗σ is a closed 2-form on Fr(X) whose kernel gives
rise to a transversely symplectic foliation F . It follows easily from Lemma 5.1 that
F is also Riemannian. When X is a Kähler orbifold, it was shown in [Wang and
Zaffran 2009] that Fr(X) satisfies the transverse hard Lefschetz property. Since in
this case, the basic differential complex of (Fr(X),F) is isomorphic to the de Rham
differential complex on X, Corollary 4.8 implies that there is a formal Frobenius
manifold structure on the de Rham cohomology of X.

Now suppose that a compact connected Lie group G acts on (X, σ ) in a Hamil-
tonian fashion with a moment map 8 : X→ g∗, where g= Lie(G). By averaging,
we may assume that there is a G-invariant Riemannian metric g that is compatible
with σ . Then the G-action maps an orthogonal frame to another orthogonal frame;
and therefore, lifts to a Hamiltonian G-action on (Fr(X),F, ω). Analogous to the
discussion in the previous paragraph, when X is Kähler orbifold, Theorem 4.7
implies that there is a formal Frobenius manifold structure on the equivariant
de Rham cohomology of X.

Example 5.6 (symplectic quasifolds [Prato 2001]). Assume that (X, σ ) is a sym-
plectic manifold on which the torus T acts in a Hamiltonian fashion. We denote the
moment map by φ : X→ t∗. Let N ⊂ T be a nonclosed subgroup with Lie algebra n
and let a be a regular value of the corresponding moment map ϕ : X→ n∗. Consider
the submanifold

M = ϕ−1(a)⊂ X.

The N -action on M yields a transversely symplectic foliation F with ω := i∗σ
being the transversely symplectic form, where i is the inclusion map of M in X. In
this case, the leaf space M/F is a symplectic quasifold in the sense of Prato [2001],
at least when N is a connected subgroup of T. It is straightforward to check that
the induced T -action on (M,F, ω) is Hamiltonian.

It follows from Lemma 5.1 that F is also a Riemannian foliation. Moreover,
using an argument similar to the one given in Example 5.4, it can be shown that F
is a taut Riemannian foliation. The leaf space of F is called a toric quasifold
when dim(T/N ) is half of the dimension of the leaf space. It is shown by [Ishida
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2017, Theorem 5.7] that when this is the case, F is a transversely Kähler foliation.
Therefore there exist formal Frobenius manifold structures on the basic cohomology
and equivariant basic cohomology of toric quasifolds.
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HEEGAARD FLOER HOMOLOGY
OF L-SPACE LINKS WITH TWO COMPONENTS

BEIBEI LIU

We compute different versions of link Floer homology HFL− and ĤFL for
any L-space link with two components. The main approach is to compute
the h-function of the filtered chain complex which is determined by Alexan-
der polynomials of all sublinks of the L-space link. As an application, the
Thurston norm of its complement is explicitly determined by Alexander
polynomials of the link and its components.

1. Introduction

Heegaard Floer homology is an invariant for closed, oriented 3-manifolds, defined
using Heegaard diagrams [Ozsváth and Szabó 2004b]. This construction can be
extended to give an invariant, Heegaard Floer link homology (also called link Floer
homology), for oriented links in S3 [Ozsváth and Szabó 2008a]. In general, it is
very hard to compute the Heegaard Floer link homology HFL− and ĤFL. For any
L-space link with two components (see Definition 2.2), Yajing Liu [2017] computed
the link Floer homology HFL−. Based on his work, we come up with a method to
compute the link Floer homology ĤFL of any L-space link with two components.
By the work of Ozsváth and Szabó [2008b], we compute the Thurston polytope
and the Thurston norm of its complement. For an r -component L-space link with a
given generic admissible multipointed Heegaard diagram, one can associate it with
generalized Floer complexes A−(s) filtered by Alexander gradings [Manolescu and
Ozsváth 2010]. In this article, we work over F= F2 and s ∈ H, where H is some
r -dimensional lattice; see Definition 2.3 and [Manolescu and Ozsváth 2010]. If the
link L is an L-space link, we have the following result for A−(s):

Proposition 1.1 [Liu 2017, Proposition 1.11]. For any L-space link,

H∗(A−(s))= F[[U ]] with s ∈ H.

Here U has homological grading −2. Define −2h(s) as the homological grading
of the generator in H∗(A−(s)). By the work of Gorsky, Némethi and Yajing Liu,
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h(s) is determined by Alexander polynomials 1L(t1, t2), 1L1(t) and 1L2(t) for
any 2-component L-space link and s ∈ H. There is a spectral sequence which
converges to HFL−(L , s) [Gorsky and Némethi 2015]. It collapses at the E2-page,
and h(s) determines its E1-page; see [Gorsky and Némethi 2015, Theorem 2.2.10;
Liu 2017].

The computation of ĤFL(L , s) is more complicated. We introduce a bigraded
“iterated cone” complex (C(s1, s2), d + d1) in Section 3. There exists a spectral
sequence associated with this bigraded complex where the E1-page is defined
by HFL− and E3

= ĤFL(L , s1, s2). Theorem 3.2 shows that the E1-page of this
spectral sequence is

HFL−(s1+ 1, s2+ 1)⊕HFL−(s1, s2+ 1)⊕HFL−(s1+ 1, s2)⊕HFL−(s1, s2),

and the differential d1 is induced by actions of U1 and U2. Lemma 3.3 indicates
how Ui acts on the Heegaard Floer link homology HFL−(L , s) for any s ∈ H and
i = 1, 2. So we can compute the E2-page of the spectral sequence. If d2 = 0,
the spectral sequence collapses at the E2-page. If d2 is nonzero, we need to use
another strategy to compute ĤFL(L , s). We first find all possible cases where d2

may be nontrivial. In order to compute ĤFL(L , s), we use the symmetric property
of Heegaard Floer link homology: ĤFL(L , s)∼= ĤFL(L ,−s), up to some grading
shift [Ozsváth and Szabó 2006, Equation 5]. In Section 3, we find that in all cases
where d2 may be nontrivial, the spectral sequence corresponding to ĤFL(L ,−s)
collapses at its E2-page. Then we can compute ĤFL(L ,−s), and hence ĤFL(L , s).
Therefore, we compute ĤFL for all L-space links with two components and obtain
the main theorem of this paper.

Theorem 1.2. For any L-space link L = L1∪L2 with two components, ĤFL(s1, s2)

is determined by the h-function and hence determined by symmetrized Alexander
polynomials 1L(t1, t2), 1L1(t), 1L2(t), and the linking number lk of L1 and L2.

Remark 1.3. The Heegaard Floer link homology depends on the orientation of the
link. For any L-space link L = L1 ∪ L2, we need to give it an orientation, which
determines the linking number of L1 and L2.

Yajing Liu [2017] showed that rankF(HFL−(L , s)) ≤ 2. We show that 4 is a
bound for the rank of link Floer homology ĤFL for any L-space link with two
components. Then we give examples for all possible ranks from 0 to 4 in Section 3.

Corollary 1.4. For 2-component L-space links L = L1 ∪ L2 and s ∈ H,

rankF(ĤFL(L , s))≤ 4.

In particular, |χ(ĤFL(L , s))| ≤ 4.
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In Section 4, we present an application of Theorem 1.2. It is known from
[Ozsváth and Szabó 2008b] that ĤFL(L) detects the Thurston norm of the link
complement. For any compact, oriented surface with boundary F=

⋃n
i=1 Fi (maybe

disconnected), define its complexity as

χ−(F) =
∑

{Fi |χ(Fi )≤0}

−χ(Fi ).

For any link L ⊆ S3, and any homology class h ∈ H2(S3, L), there exists a compact
oriented surface F with boundary embedded in S3

\ nd(L) which represents this
homology class (i.e., [F] = h). So for any homology class h ∈ H2(S3, L;Z), we
can assign a function

x(h)= min
{F↪→S3\nd(L), [F]=h}

χ−(F).

This function can be naturally extended to a seminorm, the Thurston seminorm,
denoted by x : H2(S3, L;R)→R [Ozsváth and Szabó 2008b]. The unit ball for the
norm x is called the Thurston polytope. Consider the convex hull of lattice points
s ∈H, where ĤFL(L , s) 6= 0, which is also called the link Floer homology polytope.
We can compute the dual Thurston polytope, and thus the Thurston norm by [Ozsváth
and Szabó 2008b]. So for any 2-component L-space link L = L1∪L2, the Thurston
polytope and the Thurston norm are determined by Alexander polynomials of all
sublinks, but in a very nontrivial way.

Theorem 1.5. If L = L1 ∪ L2 is an L-space link with two components in S3, then
the Thurston norm of its complement is determined by Alexander polynomials
1L(t1, t2), 1L1(t), 1L2(t) and the linking number of L1 and L2.

Ozsváth and Szabó pointed out that for any alternating link, up to a scalar, the
Thurston polytope is dual to the Newton polytope of its multivariable Alexander
polynomial [Ozsváth and Szabó 2008b], which is contained in the dual Thurston
polytope by [McMullen 2002]. We compute dual Thurston polytopes of two
nonalternating L-space links with two components in Examples 4.4 and 4.5. They
both agree with Newton polytopes of their Alexander polynomials. A natural
question arises:

Question 1.6. For any 2-component L-space link which is not a split union of
two L-space knots, is the Thurston polytope dual to the Newton polytope of its
multivariable Alexander polynomial?

Remark 1.7. In Example 4.4, we present a 2-component L-space link where the
set supp(ĤFL) = {(s1, s2) ∈ H | ĤFL(s1, s2) 6= 0} is larger than supp(χ(ĤFL)) =
{(s1, s2) ∈ H | χ(ĤFL(s1, s2)) 6= 0}. But the convex hull of supp(ĤFL) is the same
as that of supp(χ(ĤFL)), since lattice points (s1, s2) for which χ(ĤFL(s1, s2))= 0
and ĤFL(s1, s2) 6= 0 are inside the convex hull of supp(χ(ĤFL)).
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For any split L-space link, the answer to Question 1.6 is negative since its Alexan-
der polynomial vanishes, but the dual Thurston polytope is nonempty. Example 5.5
gives the link Floer homology polytope of the split union of two right-handed
trefoils. The split union of two L-space knots is an L-space link [Liu 2017], and
the h-function of the link satisfies h(s1, s2)= h1(s1)+ h2(s2), where h1 and h2 are
h-functions of L1 and L2, respectively. We compute ĤFL for any split union of
two L-space knots. In general, we compute ĤFL for all 2-component L-space links
with Alexander polynomials 1(t1, t2)= 0.

Theorem 1.8. For any 2-component L-space link L = L1 ∪ L2 and (s1, s2) ∈ H, if
1L(t1, t2)= 0, then

ĤFL(L , s1, s2)∼= ĤFL(L1t L2, s1, s2)∼= ĤFL(L1, s1)⊗ ĤFL(L2, s2)⊗ (F⊕F−1),

where L1 t L2 denotes the split union of L1 and L2 .

In this paper, we use L = L1 ∪ L2 to denote L-space links with two components
L1, L2, unless otherwise stated.

2. Heegaard Floer link homology

2A. L-space links. The concept of L-spaces was introduced in [Ozsváth and Szabó
2005].

Definition 2.1. A 3-manifold Y is an L-space if it is a rational homology sphere and
its Heegaard Floer homology has minimal possible rank: for any Spinc-structure s,
ĤF(Y, s)= F has rank 1, and HF−(Y, s) is a free F[U ]-module of rank 1.

Gorsky and Némethi [2016] defined L-space links in terms of large surgeries.

Definition 2.2. An l-component link L⊆ S3 is an L-space link if there exist integers
p1, p2, . . . , pl such that for all integers ni ≥ pi , 1 ≤ i ≤ l, the (n1, n2, . . . , nl)-
surgery S3

n1,n2,...,nl
is an L-space.

The computation of Heegaard Floer link homology is not easy. However, L-space
links have some nice properties which make the computation of Heegaard Floer
link homology easier. In particular, we only consider L-space links L = L1 ∪ L2

with two components in this article.
For a 2-component L-space link L = L1∪L2 in S3, consider a generic admissible

multipointed Heegaard diagram with each component L i having only two basepoints
wi , zi . One can associate a generalized Floer complex A−(s1, s2) with (s1, s2) ∈H,
which is introduced in [Manolescu and Ozsváth 2010, Section 4]. It is a free
F[U1,U2]-module. The operations U1 and U2 are homotopic to each other on each
A−(s1, s2) (see [Ozsváth and Szabó 2008a]), and both have homological degree −2.
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Definition 2.3. For an oriented link L = L1 ∪ L2 with two components, define H

to be an affine lattice over Z2,

H= H1⊕H2, Hi = Z+
lk(L1, L2)

2
(i = 1, 2),

where lk(L1, L2) denotes the linking number of L1 and L2.

By Proposition 1.1, for any L-space link L with two components, we have
H∗(A−(s1, s2)) = F[[U ]], where (s1, s2) ∈ H. Let −2h(s1, s2) denote the homo-
logical grading of the generator in H∗(A−(s1, s2)). The function h(s1, s2) is the
HFL-weight function of an L-space link defined in [Gorsky and Némethi 2015]. In
this article, we call it the h-function. On each A−(s1, s2), the operations U1 and U2

are homotopic, and we denote them by U .

Lemma 2.4 [Gorsky and Némethi 2015, Lemma 2.2.3]. Let e1 = (1, 0) and
e2= (0, 1). For any s= (s1, s2)∈H, there are inclusions j : A−(s1, s2) ↪→ A−(s+ei )

for i = 1, 2 which induce injections on homology as follows:

j∗ : H∗(A−(s1, s2))→ H∗(A−(s+ ei )),

where j∗ =U δ(i)
i and δ(i)= 0 or 1.

Remark 2.5. The actions Ui induce maps Ui : A−(s+ ei )→ A−(s) for i = 1, 2,
and induce maps on homology. By Proposition 1.1, H∗(A−(s)) ∼= F[[U ]] for any
s ∈ H. Assume that a, b are the generators of H∗(A−(s)) and H∗(A−(s + ei )).
Then j∗(a)=U δ(i)b and Ui (b)=U 1−δ(i)a.

Corollary 2.6. For any L-space link with two components and s ∈ H, either
h(s)= h(s+ei ) or h(s)= h(s+ei )+1, where i = 1, 2, e1= (1, 0), and e2= (0, 1).

Proof. By Lemma 2.4, we have −2h(s) = −2h(s+ ei )− 2δ(i), where δ(i) = 0
or 1. So h(s)= h(s+ ei ) or h(s)= h(s+ ei )+ 1. �

Next, we revisit Yajing Liu’s work [2017] about how to use the h-function to
compute HFL−(L) for any 2-component L-space link L = L1 ∪ L2.

Lemma 2.7 [Gorsky and Némethi 2015, Lemma 2.2.9]. For any (s1, s2) ∈ H, the
chain complex CFL−(s1, s2) of the L-space link L = L1 ∪ L2 is quasi-isomorphic
to the “iterated cone” complex

A−(s1− 1, s2) A−(s1, s2)

A−(s1− 1, s2− 1) A−(s1, s2− 1)

i1

i1

i2 i2


where i1 and i2 are inclusion maps in Lemma 2.4.
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Let d denote the differential in the generalized Floer complex A−(s1, s2) and
i = i2− i1. The above “iterated cone” complex has two differentials d and i . The
differential d acts in Floer complexes on vertices of the cube, and i acts between
Floer complexes. Let the cube grading |K | of the upper-right corner of the cube be
0. The differential d decreases the homological grading by 1, and preserves the cube
grading. The differential i preserves the homological grading, and decreases |K | by
1. The total grading is defined as the sum of the homological grading and the cube
grading. Let D = d + i and K(s1, s2) denote the “iterated cone” complex. There
exists a spectral sequence whose E∞-page is the homology of K(s1, s2) under D.

Theorem 2.8 [Gorsky and Némethi 2015, Theorem 2.2.10]. Let L = L1 ∪ L2

be an L-space link with two components. For any (s1, s2) ∈ H, there exists a
spectral sequence which converges to HFL−(s1, s2) and collapses at its E2-page.
Its E2-page is isomorphic to H∗(H∗(A−(s1, s2), d), i).

So HFL−(s1, s2) is isomorphic to H∗(H∗(A−(s1, s2), d), i). By Proposition 1.1,
for any (s1, s2) ∈ H, H∗(A−(s1, s2), d) ∼= F[[U ]][−2h(s1, s2)], where −2h(s1, s2)

is the homological grading of the generator in H∗(A−(s1, s2), d), and U1,U2 act as
U , homotopic to each other on A−(s1, s2) [Ozsváth and Szabó 2008a]. To compute
HFL−(s1, s2), we just need to compute the homology of the mapping cone of i :

F[[U ]][−2h(s1− 1, s2)][b] F[[U ]][−2h(s1, s2)][a]

F[[U ]][−2h(s1− 1, s2− 1)][c] F[[U ]][−2h(s1, s2− 1)][d]

i1

i1

i2 i2

where a, b, c, d denote the generators in F[[U ]][−2h(s1, s2)], F[[U ]][−2h(s1−1, s2)],
F[[U]][−2h(s1−1, s2−1)], and F[[U]][−2h(s1, s2−1)], respectively. Let h=h(s1, s2).
By Corollary 2.6, there are 6 cases for the h-function corresponding to the mapping
cone.

h h

h h

Case (1)

h h

h+ 1 h+ 1

Case (2)

h+ 1 h

h+ 1 h

Case (3)

h h

h+ 1 h

Case (4)

h+ 1 h

h+ 1 h+ 1

Case (5)

h+ 1 h

h+ 2 h+ 1

Case (6)

Figure 1. Possible local behaviors of the h-function.
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According to the h-function in Figure 1, we can compute the corresponding
HFL−(s1, s2) in each case.

Case (1): i(b)= a, i(c)= b− d, i(d)= a and i(a)= 0, so HFL−(s1, s2)= 0.

Case (2): i(b)= a, i(c)=Ub− d, i(d)=Ua and i(a)= 0, so HFL−(s1, s2)= 0.

Case (3): i(b)=Ua, i(c)= b−Ud, i(d)= a and i(a)= 0, so HFL−(s1, s2)= 0.

Case (4): i(b)=a, i(c)=Ub−Ud, i(d)=a and i(a)=0, so HFL−(s1, s2)=〈b−d〉.
Both b and d have homological grading −2h and cube grading 1. The total grading
of b− d is −2h+ 1. Thus HFL−(s1, s2)= F[−2h+ 1].

Case (5): i(b)=Ua, i(c)= b− d, i(d)=Ua and i(a)= 0, so HFL− = 〈a〉 with
total grading −2h . Thus HFL−(s1, s2)= F[−2h].

Case (6): i(b) = Ua, i(c) = Ub−Ud, i(d) = Ua, and i(a) = 0, so in this case
HFL−(s1, s2)=〈a, b−d〉. Here a has total grading−2h and b−d has total grading
−2(h+ 1)+ 1=−2h− 1. Thus HFL−(s1, s2)= F[−2h]⊕ F[−2h− 1].

Moreover, we also determine the Euler characteristics χ(HFL−(s1, s2)) in these
six cases. In Case (1), Case (2), Case (3) and Case (6), χ(HFL−(s1, s2)) = 0. In
Case (4), χ(HFL−(s1, s2))=−1, and in Case (5), χ(HFL−(s1, s2))= 1. Thus for
any L-space link with two components, once the h-function is determined, we can
compute HFL−(s1, s2) for any (s1, s2) ∈ H.

Corollary 2.9. For any 2-component L-space link and (s1, s2) ∈ H, HFL−(s1, s2)

is spanned by a or b− d or both, where a has even grading and b− d has odd
grading.

2B. Alexander polynomials of L-space links. In this section, we mainly introduce
Yajing Liu’s work [2017] about how to determine the h-function of any 2-component
L-space link L= L1∪L2 by Alexander polynomials1L(t1, t2),1L1(t), and1L2(t).
Recall that for any L-space link L = L1 ∪ L2, we have

1L(t1, t2)
.
=

∑
(s1,s2)∈H

χ(HFL−(s1, s2))t
s1
1 t s2

2 ,

1L(t, 1) .=
1− t lk

1− t
1L1(t),(2-1)

where f .
= g means that f and g differ by multiplication by units. Yajing Liu

[2017] defined normalization of Alexander polynomials.

Definition 2.10 [Liu 2017, Definition 5.12]. Let the symmetrized Alexander poly-
nomial of L be 1L(x1, x2) in the form of

1L(t1, t2)=
∑
i, j

aL
i, j · t

i
1 · t

j
2 ,
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where ti corresponds to the link component L i for i = 1, 2. Let the symmetrized
Alexander polynomials of L1 and L2 be 1L1(t),1L2(t) in the form of

t
t−1

1L1(t)=
∑
k∈Z

aL1
k · t

k,
t

t−1
1L2(t)=

∑
k∈Z

aL2
k · t

k .

Let (i0, j0) be such that

j0 =max
{

j ∈ Z+
lk−1

2
∣∣ aL

i, j 6= 0
}
, i0 =max

{
i ∈ Z+

lk−1
2

∣∣ aL
i, j0 6= 0

}
.

Then these Alexander polynomials are called normalized if

(1) the leading coefficient of 1L i (t) is 1 for both i = 1, 2,

(2) if aL2
j0−lk /2+1/2 = 1, then aL

i0, j0 = 1, while if aL2
j0−lk /2+1/2 = 0, then aL

i0, j0 =−1,
where lk is the linking number of L1 and L2.

For the normalized Alexander polynomials of the 2-component L-space link
L = L1 ∪ L2, χ(HFL−)(s1, s2) = aL

s1−1/2,s2−1/2 and χ(HFK−(L i , s)) = aL i
s for

i = 1, 2 [Liu 2017]. Moreover, Yajing Liu gave the following formulas to determine
the h-function in [Liu 2017, (5.8)]:

(2-2) h(s1, s2− 1)− h(s1, s2)= aL2
s2−lk /2−

∞∑
i=1

aL
s1+i−1/2,s2−1/2 = 0 or 1.

Similarly,

(2-3) h(s1− 1, s2)− h(s1, s2)= aL1
s1−lk /2−

∞∑
i=1

aL
s1−1/2,s2+i−1/2 = 0 or 1.

When s1→+∞ or s2→+∞,

h(+∞, s2)= h2(s2− lk /2), h(s1,+∞)= h1(s1− lk /2),(2-4)

h1(s− 1)− h1(s)= aL1
s , h2(s− 1)− h2(s)= aL2

s ,(2-5)

where h1(s1 − lk /2) and h2(s2 − lk /2) are h-functions for link components L1

and L2, and s ∈ Z. For sufficiently large s, h1(s) = h2(s) = 0. By using the
formulas above, we can compute the h-function, and hence HFL−(s1, s2) for any
2-component L-space link L = L1 ∪ L2.

Remark 2.11. The link components L1 and L2 of 2-component L-space links are
both L-space knots [Liu 2017, Lemma 1.10].

Corollary 2.12 [Dawra 2015; Gorsky and Némethi 2015; Liu 2017]. For any L-
space link L = L1∪L2 with two components, HFL−(L) is determined by Alexander
polynomials 1L(t1, t2),1L1(t) and 1L2(t).
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3. Computation of ĤFL for 2-component L-space links

3A. The spectral sequence corresponding to ĤFL. In Section 2, we proved that
for any L-space link L = L1∪ L2 with (s1, s2) ∈H, HFL−(s1, s2) is determined by
the h-function. Now we are going to prove Theorem 1.2 that the Heegaard Floer
link homology ĤFL(s1, s2) is also determined by the h-function.

Let C(s1, s2) denote

CFL−(s1+ 1, s2+ 1)⊕CFL−(s1+ 1, s2)⊕CFL−(s1, s2+ 1)⊕CFL−(s1, s2).

For any (s1, s2) ∈ H, we have maps U1 : CFL−(s1, s2)→ CFL−(s1 − 1, s2) and
U2 : CFL−(s1, s2)→ CFL−(s1, s2 − 1). The action of U1 (or U2) is defined by
the h-function (see Lemma 3.3). Let D = d + d1, where d is the differential in
chain complex CFL−(s1, s2) and d1 =U1−U2. Then we have the “iterated cone”
complex (C(s1, s2), d + d1) in the following form:

CFL−(s1, s2+ 1) CFL−(s1+ 1, s2+ 1)

CFL−(s1, s2) CFL−1(s1+ 1, s2)

U2

U1

U2

U1

Lemma 3.1. Suppose that L = L1 ∪ L2 is an L-space link. Let ĈFL(s1, s2) denote
the chain complex of the hat-version of Heegaard Floer link homology of L with
(s1, s2) ∈H. Then ĈFL(s1, s2) is quasi-isomorphic to the “iterated cone” complex
(C(s1, s2), d + d1).

Proof. We can write ĈFL(s1, s2) as

CFL−(s1, s2)/U1(CFL−(s1+ 1, s2))

U2(CFL−(s1, s2+ 1)/U1(CFL−(s1+ 1, s2+ 1)))
.

The quotient CFL−(s1, s2)/U1(CFL−(s1 + 1, s2)) can be realized as the map-
ping cone of U1 : CFL−(s1 + 1, s2)→ CFL−(s1, s2), and similarly the quotient
CFL−(s1, s2+1)/U1(CFL−(s1+1, s2+1)) can be realized as the mapping cone of
U1 : CFL−(s1+ 1, s2+ 1)→ CFL−(s1, s2+ 1). Thus ĈFL(s1, s2) can be realized
as the cone of the natural map induced by U2 between these two cones. �

Theorem 3.2. Let L = L1 ∪ L2 be an L-space link with two components. For any
(s1, s2) ∈ H, there exists a spectral sequence with the following properties:

(a) Its E2-page is isomorphic (as a graded F-module) to H∗(H∗(C(s1, s2), d), d1).

(b) Its E∞-page is isomorphic (as a graded F-module) to ĤFL(s1, s2).

(c) The spectral sequence collapses at the E3-page.
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Proof. For the “iterated cone” complex C(s1, s2), it is doubly graded. One is the
homological grading ν in the chain complex CFL−(s1, s2) with (s1, s2) ∈ H. We
define cube grading |C | in the cube of the “iterated cone” complex C(s1, s2). Fix
(s1, s2)∈H. The cube grading is defined as (s1+s2)−(v1+v2), where (v1, v2)∈H.
It is equivalent to saying that the cube grading of the lower left corner is 0, and U1

(or U2) increases the cube grading by 1.
The spectral sequence corresponding to the doubly-graded complex C(s1, s2)

with two (anti)commuting differentials d and d1 converges to H∗(C(s1, s2), d+d1).
By Lemma 3.1, its E∞-page is isomorphic to ĤFL(s1, s2). Its E1-page is written
as HFL−(s1 + 1, s2 + 1)⊕HFL−(s1 + 1, s2)⊕HFL−(s1, s2 + 1)⊕HFL−(s1, s2).
Its E2-page is H∗(H∗(C(s1, s2), d), d1). The differential d0 = d preserves the cube
grading |C | and decreases the homological degree ν by 1. The differential d1 in the
E1-page increases |C | by 1 and decreases ν by 2. For any nonnegative integer k, the
differential dk increases |C | by k and decreases ν by k+ 1. The total homological
grading is ν + |C |. By grading reasons, the cube grading is less than or equal
to 2. Thus, for the integer k > 2, dk = 0 and this spectral sequence collapses at the
E3-page. �

By Theorem 3.2, ĤFL(s1, s2) ∼= E3. Then we can compute ĤFL(s1, s2) by
computing the E3-page of the spectral sequence. The following lemma describes
the action of U1 (or U2) on the E1-page.

Lemma 3.3. Consider the map U1 :HFL−(s1+1, s2+1)→HFL−(s1, s2+1). Let
α be a generator of HFL−(s1+1, s2+1) with total homological grading x. If there
exists a generator β in HFL−(s1, s2+1) with total homological grading x−2, then
U1(α)= β.

Proof. As shown in Figure 2, let a1, b1, c1 and d1 denote the generators of
H∗(A−(s1, s2+1)), H∗(A−(s1−1, s2+1)), H∗(A−(s1−1, s2)) and H∗(A−(s1, s2)),
respectively, and likewise a, b, c and d the generators of H∗(A−(s1+ 1, s2+ 1)),
H∗(A−(s1, s2+ 1)), H∗(A−(s1, s2)) and H∗(A−(s1+ 1, s2)). Here a1 and b have
different cube gradings as generators of H∗(A−(s1, s2 + 1)) and d1 and c have
different cube gradings as generators of H∗(A−(s1, s2)). By the computation of
HFL− in Section 2A, h(s1, s2+1)=h(s1+1, s2) if HFL−(s1+1, s2+1) is nonempty.
Similarly, h(s1−1, s2+1)=h(s1, s2) since HFL−(s1, s2) is also nonempty. Assume
that α = b− d. Then it has total homological grading −2h(s1, s2 + 1)+ 1. The
generator a1 has total homological grading −2h(s1, s2+ 1), and b1− d1 has total
homological grading −2h(s1−1, s2+1)+1. By the assumption of this lemma, the
total homological grading of β is −2h(s1, s2+ 1)− 1. So β can only be b1− d1,
and h(s1− 1, s2+ 1)= h(s1, s2+ 1)+ 1.

Now consider the map U1 : H∗(A−(s1, s2 + 1)) → H∗(A−(s1 − 1, s2 + 1)),
where H∗(A−(s1, s2+ 1))= 〈b〉 and H∗(A−(s1− 1, s2+ 1))= 〈b1〉. Since U1 has
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A−(s1− 1, s2+ 1)[b1] A−(s1, s2+ 1)[a1]

A−(s1− 1, s2)[c1] A−(s1, s2)[d1]

HFL−(s1, s2+ 1)

A−(s1, s2+ 1)[b] A−(s1+ 1, s2+ 1)[a]

A−(s1, s2)[c] A−(s1+ 1, s2)[d]

HFL−(s1+ 1, s2+ 1)

Figure 2. Generators for Lemma 3.3.

homological degree −2, U1(d) = d1 by Lemma 2.4 and Remark 2.5. Similarly,
U1(c) = c1. Then U1(α) = U1(b− d) = b1− d1 = β. If α = a, then β = a1, and
we can use a similar argument to prove U1(α)= β in this case. �

Remark 3.4. The map U2 : HFL−(s1 + 1, s2 + 1) → HFL−(s1 + 1, s2) can be
described similarly to Lemma 3.3.

3B. Proof of the main theorem. In this subsection, we prove Theorem 1.2, and
show that 4 is an upper bound for the rank of link Floer homology ĤFL(s1, s2) for
any 2-component L-space link and (s1, s2) ∈ H. Example 3.8 gives a 2-component
L-space link where the rank of ĤFL(s1, s2) ranges from 0 to 4.

In order to prove Theorem 1.2, we need the symmetric property of Heegaard
Floer link homology.

Lemma 3.5 [Ozsváth and Szabó 2006, Equation 5]. For an oriented L-space link
L = L1 ∪ L2 with two components and s = (s1, s2) ∈ H, there exists a relatively
graded isomorphism

ĤFL(L , s)∼= ĤFL(L ,−s).

Remark 3.6. In particular, the h-functions satisfy h(−s)= h(s)+ |s|, [Liu 2017,
Lemma 5.5], where |s| = s1+ s2.

Proof of Theorem 1.2. Let h= h(s1+1, s2+1). If d2= 0, then the spectral sequence
in Theorem 3.2 collapses at its E2-page. We can use the computation of HFL− in
Section 2A and Lemma 3.3 to compute ĤFL(s1, s2). For example, suppose that the
h-function corresponding to ĤFL(s1, s2) is the following:

h+ 1 h h

h+ 1 h+ 1 h

h+ 2 h+ 1 h+ 1
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Then the E2-page of the spectral sequence is:

F[−2h] F[−2h+ 1]

F[−2h− 1] F[−2h]

U2

U1

U2

U1

Since U1 and U2 both have homological grading−2, U1=U2= 0. By Theorem 3.2,
d2 = 0 since it increases the cube grading by 2, and decreases the homological grad-
ing ν by 3. Thus ĤFL(s1, s2)∼=F[−2h−1]⊕F[−2h−1]⊕F[−2h−1]⊕F[−2h−1].
Here the cube grading for the generator in F[−2h−1] is 0. We can use this method
to compute ĤFL in all cases where d2 = 0. Now it suffices to consider cases where
d2 may be nontrivial.

If d2 6= 0, then HFL−(s1 + 1, s2 + 1) and HFL−(s1, s2) are both nonzero and
contain generators such that their homological grading difference is 3. For nonzero
HFL−(s1+1, s2+1), we have the following three possibilities for the corresponding
h-function:

h h

h+ 1 h

Case (1)

h+ 1 h

h+ 1 h+ 1

Case (2)

h+ 1 h

h+ 2 h+ 1

Case (3)

In Case (1), HFL−(s1+ 1, s2+ 1)= F[−2h+ 1]. In order to have nontrivial d2,
HFL−(s1, s2) must contain a generator with homological grading −2h− 2. So the
h-function corresponding to HFL−(s1, s2) can only have the pattern as in Case (2)
or Case (3). Once the h-function in HFL−(s1, s2) is determined, its values in
HFL−(s1, s2+1) and HFL−(s1+1, s2) are also determined by Corollary 2.6. Thus
there are two possibilities for the h-function corresponding to ĤFL(s1, s2):

h+ 1 h h

h+ 2 h+ 1 h

h+ 2 h+ 2 h+ 1

Case (1a)

h+ 1 h h

h+ 2 h+ 1 h

h+ 3 h+ 2 h+ 1

Case (1b)

In both cases, we have HFL−(s1+1, s2+1)= F[−2h+1], HFL−(s1, s2+1)=
F[−2h]⊕F[−2h−1] and HFL−(s1+1, s2)=F[−2h]⊕F[−2h−1]. By Lemma 3.3,
U1a = b and U2a = c, where a is the generator in HFL−(s1 + 1, s2 + 1), and b
and c are generators with homological grading −2h− 1 in HFL−(s1, s2+ 1) and
HFL−(s1 + 1, s2), respectively. So the image of a under the differential d1 is
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nonzero, and a does not survive in the E2-page. Thus d2 is trivial in both Case (1a)
and Case (1b).

In Case (2), HFL−(s1 + 1, s2 + 1) = F[−2h]. In order to have nontrivial d2,
HFL−(s1, s2) must contain a generator with homological grading [−2h−3]. So the
h-function in HFL−(s1, s2) must have the pattern in Case (3). Then HFL−(s1, s2)∼=

F[−2h− 2]⊕ F[−2h− 3]. Corresponding to this case, there are four possibilities
for the h-function in ĤFL(s1, s2):

h+ 1 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 3 h+ 2 h+ 1

Case (2a)

h+ 2 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 3 h+ 2 h+ 2

Case (2b)

h+ 2 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 3 h+ 2 h+ 1

Case (2c)

h+ 1 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 3 h+ 2 h+ 2

Case (2d)

We use the symmetric property of Heegaard Floer link homology to compute
ĤFL(s1, s2). Let h∗ = h(−s1,−s2). By Remark 3.6,

h(−s1,−s2− 1)− h(−s1,−s2)= 1− (h(s1, s2)− h(s1, s2+ 1))
and

h(−s1− 1,−s2)− h(−s1,−s2)= 1− (h(s1, s2)− h(s1+ 1, s2)).

So the h-function in ĤFL(−s1,−s2) corresponding to these four subcases are

h∗ h∗ h∗

h∗+1 h∗ h∗

h∗+1 h∗+1 h∗

dual-h (2a)

h∗+1 h∗ h∗

h∗+1 h∗ h∗

h∗+1 h∗+1 h∗+1

dual-h (2b)

h∗ h∗ h∗

h∗+1 h∗ h∗

h∗+1 h∗+1 h∗+1

dual-h (2c)

h∗+1 h∗ h∗

h∗+1 h∗ h∗

h∗+1 h∗+1 h∗

dual-h (2d)

Note that in all these four cases for ĤFL(−s1,−s2), HFL−(−s1+1,−s2+1)= 0.
So d2 = 0 in the spectral sequence corresponding to ĤFL(−s1,−s2). Now the
computation of ĤFL(−s1,−s2) is quite straightforward.
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In dual-h (2a),

ĤFL(−s1,−s2)∼=


F[−2h∗+ 1] 0

F[−2h∗] F[−2h∗+ 1]

U2

U1

U2

U1


By grading reasons, d2 =U1 =U2 = 0. Then it is easy to obtain ĤFL(−s1,−s2)∼=

F[−2h∗]⊕F[−2h∗]⊕F[−2h∗], and the Euler characteristic χ = 3. By Lemma 3.5,
ĤFL(s1, s2) contains 3 generators with the same total grading. Observe that
HFL−(s1, s2)= F[−2h− 2]⊕ F[−2h− 3]. Then the generator with total grading
−2h− 2 survives in ĤFL(s1, s2). Thus

ĤFL(s1, s2)∼= F[−2h− 2]⊕ F[−2h− 2]⊕ F[−2h− 2],

and the Euler characteristic χ is 3.
In dual-h (2b),

ĤFL(−s1,−s2)∼=


0 0

F[−2h∗] 0

U2

U1

U2

U1


In this case, ĤFL(−s1,−s2)∼= F[−2h∗]. By an argument similar to the one in dual-
h (2a), we obtain that ĤFL(L)(s1, s2)∼= F[−2h−2], and the Euler characteristic χ
is 1.

In dual-h (2c),

ĤFL(−s1,−s2)∼=


F[−2h∗+ 1] 0

F[−2h∗] 0

U2

U1

U2

U1


By grading reasons, d2=U1=U2= 0. Then ĤFL(−s1,−s2)∼=F[−2h∗]⊕F[−2h∗].
So ĤFL(s1, s2)∼= F[−2h− 2]⊕ F[−2h− 2], and the Euler characteristic is χ = 2.

In dual-h (2d),

ĤFL(−s1,−s2)∼=


0 0

F[−2h∗] F[−2h∗+ 1]

U2

U1

U2

U1


Hence, ĤFL(L)(s1, s2)∼= F[−2h− 2]⊕F[−2h− 2], and the Euler characteristic is
χ = 2.
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Now we consider Case (3). In this case, we have HFL−(s1 + 1, s2 + 1) ∼=
F[−2h] ⊕ F[−2h − 1]. Then there are three possibilities for HFL−(s1, s2) if d2

is nontrivial: HFL−(s1, s2) is either F[−2h − 4] or F[−2h − 4] ⊕ F[−2h − 5] or
F[−2h−3]. If HFL−(s1, s2)=F[−2h−4], its h-function is shown in Case (3a), and
if HFL−(s1, s2)∼= F[−2h− 4]⊕ F[−2h− 5], its h-function is shown in Case (3b):

h+ 2 h+ 1 h
h+ 3 h+ 2 h+ 1
h+ 3 h+ 3 h+ 2

Case (3a)

h+ 2 h+ 1 h
h+ 3 h+ 2 h+ 1
h+ 4 h+ 3 h+ 2

Case (3b)

In Case (3a) and Case (3b), we observe that both generators in HFL−(s1+1, s2+1)
have nontrivial images in HFL−(s1, s2+ 1) and HFL−(s1+ 1, s2) by Lemma 3.3.
So these two generators have nontrivial images under the differential d1, and cannot
survive in the E2-page. Thus d2 is trivial in both cases.

If HFL−(s1, s2) ∼= F[−2h − 3], there are four possibilities for the h-function
corresponding to ĤFL(s1, s2):

h+ 1 h+ 1 h
h+ 2 h+ 2 h+ 1
h+ 3 h+ 2 h+ 1

Case (3c)

h+ 2 h+ 1 h
h+ 2 h+ 2 h+ 1
h+ 3 h+ 2 h+ 2

Case (3d)

h+ 1 h+ 1 h
h+ 2 h+ 2 h+ 1
h+ 3 h+ 2 h+ 2

Case (3e)

h+ 2 h+ 1 h
h+ 2 h+ 2 h+ 1
h+ 3 h+ 2 h+ 1

Case (3f)

Let h∗=h(−s1,−s2)=h(s1, s2)+s1+s2. By Remark 3.6, we find the h-function
in ĤFL(−s1,−s2) corresponding to each case:

h∗−1 h∗−1 h∗−1
h∗ h∗ h∗−1
h∗ h∗ h∗−1

dual-h (3c)

h∗ h∗−1 h∗−1
h∗ h∗ h∗−1
h∗ h∗ h∗

dual-h (3d)

h∗ h∗−1 h∗−1
h∗ h∗ h∗−1
h∗ h∗ h∗−2

dual-h (3e)

h∗−1 h∗−1 h∗−1
h∗ h∗ h∗−1
h∗ h∗ h∗

dual-h (3f)
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Observe that in these four cases, HFL−(−s1,−s2) = 0. So d2 is trivial in the
spectral sequence corresponding to ĤFL(−s1,−s2). We compute ĤFL(−s1,−s2),
and hence ĤFL(s1, s2).

In dual-h (3c), ĤFL(−s1,−s2)∼= F[−2h∗+ 1]. By Lemma 3.5, ĤFL(s1, s2)∼=

F[−2h− 3] with the Euler characteristic χ =−1.
In Case (3d), ĤFL(L)(s1, s2)∼= F[−2h−3]⊕F[−2h−3]⊕F[−2h−3], and the

Euler characteristic is χ =−3 by a similar computation.
In Case (3e), ĤFL(L)(s1, s2)∼= F[−2h− 3]⊕F[−2h− 3], and the Euler charac-

teristic is χ =−2.
In Case (3f), ĤFL(L)(s1, s2)∼= F[−2h− 3]⊕ F[−2h− 3], and the Euler charac-

teristic is χ =−2.
Thus we conclude that for any L-space link L = L1 ∪ L2 with two components,

if the h-function is determined, we can compute ĤFL(s1, s2) with any (s1, s2) ∈ H.
By equations in Section 2B, the h-function is determined by Alexander polynomials
1L(x1, x2), 1L1(t), 1L2(t) and the linking number lk(L1, L2). �

Furthermore, we also get a bound for rankF(ĤFL(s1, s2)) and the Euler charac-
teristic χ(ĤFL(s1, s2)) with any (s1, s2) ∈ H.

Proof of Corollary 1.4. Consider the short exact sequence

(3-1) 0→ CFL−(s1+ 1, s2+ 1)
U1
−→ CFL−(s1, s2+ 1)→ C1(s1, s2+ 1)→ 0,

where C1(s1, s2+1) is the quotient complex with (s1, s2+1) ∈H. By Lemma 3.1,

(3-2) ĈFL(s1, s2)∼= C1(s1, s2)/U2(C1(s1, s2+ 1)).

Now we claim that rankF(H∗(C1(s1, s2+ 1))) ≤ 2 for any (s1, s2) ∈ H. From the
short exact sequence (3-1), we have

(3-3) rankF(H∗(C1(s1, s2+ 1)))
≤ rankF(HFL−(s1+ 1, s2+ 1))+ rankF(HFL−(s1, s2+ 1)).

If rankF(H∗(C1(s1, s2 + 1))) ≥ 3, then at least one of HFL−(s1 + 1, s2 + 1) and
HFL−(s1, s2+ 1) should have rank at least 2, and the other one should have rank
at least 1. By the computation in Section 2A, the h-functions corresponding to
HFL−(s1+ 1, s2+ 1) and HFL−(s1, s2+ 1) have the following possibilities:

h+ 1 h h− 1
h+ 1 h+ 1 h

Case (1)

h+ 1 h h
h+ 2 h+ 1 h

Case (2)

h+ 1 h h− 1
h+ 2 h+ 1 h

Case (3)
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Here we assume that the generator of H∗(A−(s1, s2 + 1)) has homological
grading −2h. In Case (1), we have U1 : F[−2h + 2] ⊕ F[−2h + 1] → F[−2h].
Let α denote the generator of F[−2h + 2] ⊆ HFL−(s1 + 1, s2 + 1), and β the
generator of F[−2h] ∼= HFL−(s1, s2 + 1). By Lemma 3.3, U (α) = β. Then
H∗(C1(s1))∼= F[−2h+ 1], and the rank in this case is 1.

In Case (2), we have U1 : F[−2h + 1] → F[−2h] ⊕ F[−2h − 1]. Similarly
H∗(C1(s1, s2+ 1))∼= F[−2h], and it has rank 1.

In Case (3), we have U1 : F[−2h+ 2] ⊕ F[−2h+ 1] → F[−2h] ⊕ F[−2h− 1].
By Lemma 3.3, H∗(C1(s1, s2+ 1))= 0.

Thus for any (s1, s2) ∈ H, rankF(H∗(C1(s1, s2+ 1)))≤ 2. By (3-2),

rankF(ĤFL(s1, s2))≤ rankF(H∗(C1(s1, s2+1)))+rankF(H∗(C1(s1, s2)))≤2+2=4

for any (s1, s2) ∈ H. Therefore, −4≤ χ(ĤFL(L , s1, s2))≤ 4. �

In fact, we construct an example with χ(ĤFL(L , s1, s2)) = −4, given in the
proof of Theorem 1.2, where d2 = 0. Similarly, we construct an example with
χ(ĤFL(L , s1, s2))= 4.

Example 3.7. Assume that the h-function corresponding to ĤFL(s1, s2) is the
following:

h+ 1 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 2 h+ 2 h+ 1

In this case, ĤFL(s1, s2)∼= F[−2h− 2]⊕ F[−2h− 2]⊕ F[−2h− 2]⊕ F[−2h− 2],
and hence χ(ĤFL(s1, s2))= 4.

Example 3.8. Figure 3 depicts the two-bridge link b(20,−3).

Figure 3. b(20,−3).
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Figure 4. The h-function for b(20,−3).

Yajing Liu proved that b(20,−3) is an L-space link [2017, Theorem 3.8]. Its
two components are both unknots with linking number 2. By [Dawra 2015], its
normalized multivariable Alexander polynomial is

(3-4) 1L(t1, t2)= t1/2
1 t3/2

2 + t3/2
1 t1/2

2 + t1/2
1 t−1/2

2 + t−1/2
1 t1/2

2 + t−3/2
1 t−1/2

2

+ t−1/2
1 t−3/2

2 − t3/2
1 t3/2

2 − t1/2
1 t1/2

2 − t−1/2
1 t−1/2

2 − t−3/2
1 t−3/2

2 .

Let L1 and L2 denote the unknot components. We obtain normalized Alexander
polynomials of L1 and L2:

t
t−1

1L1(t)=
t

t−1
1L2(t)= 1+ t−1

+ t−2
+ t−3

+ t−4
+ · · · .

Using results of Section 2B, we compute the h-function for ĤFL(s1, s2) with any
(s1, s2) ∈H by Alexander polynomials. The h-function is shown in Figure 4, where
numbers denote h(s1, s2) for any (s1, s2)∈H. For example, h(0, 0)= h(−1, 0)= 2.
The black dots • denote the lattice points (s1, s2)∈H where ĤFL(s1, s2) is nonzero.
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Figure 5. ĤFL(b(20,−3)).

By an explicit computation, the link Floer homology ĤFL(s1, s2) is shown in
Figure 5. We observe that |χ(s1, s2)| = rankF(ĤFL(s1, s2)), and the rank of
ĤFL(s1, s2) ranges from 0 to 4. This indicates that the bound for the rank in
Corollary 1.4 can be realized by some L-space link with some (s1, s2) ∈ H. More
precisely, rankF(ĤFL(2, 2)) = 1, rankF(ĤFL(2, 1)) = 2, rankF(ĤFL(1, 0)) = 3,
rankF(ĤFL(0, 0))= 4 and rankF(ĤFL(3, 0))= 0.

4. An application of ĤFL to the Thurston norm

The Thurston norm was studied by many people, and some lower bounds were
obtained in [McMullen 2002; Friedl and Kim 2008; Friedl and Vidussi 2015;
Agol and Dunfield 2015]. Ozsváth and Szabó [2008b] showed that the link Floer
homology detects the Thurston norm of the link complement. In Section 3, for any
2-component L-space link L = L1 ∪ L2 and s ∈ H, we computed ĤFL(L , s) by
using Alexander polynomials 1L(t1, t2), 1L1(t), 1L2(t) and the linking number
lk(L1, L2). Thus we can compute the link Floer homology polytope for L , and also
compute the dual Thurston polytope and the Thurston (semi)norm [Ozsváth and
Szabó 2008b, Theorem 1.1].

In Section 1, we introduced complexity χ−(F) for any compact oriented surface
F with boundary. To any link L ⊆ S3, and any homology class h ∈ H2(S3, L), we
can assign a function

x(h)= min
{F↪→S3\nd(L), [F]=h}

χ−(F).

This function can be naturally extended to a seminorm, the Thurston seminorm,
denoted by x : H2(S3, L;R)→ R.
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Theorem 4.1 [Thurston 1986, Theorem 1]. The function x : H2(S3, L;R)→ R is
a seminorm that vanishes exactly on the subspace spanned by embedded surfaces of
nonnegative Euler characteristic.

Assume that L ⊆ S3 is a link with l components in S3. Let ui denote the meridian
of the i-th component L i of L . Recall that every lattice point s ∈ H can be written
as l∑

i=1

si · [ui ],

where si ∈Q satisfies the property that

2si + lk(L i , L − L i )

is an even integer for i = 1, . . . , l.
In [Ozsváth and Szabó 2008b], the Heegaard Floer link homology provides a

function y : H 1(S3
− L;R)→ R defined by the formula

y(h)= max
{s∈H⊆H1(S3−L;R) | ĤFL(L ,s) 6=0}

|〈s, h〉|.

Ozsváth and Szabó proved the following formula for the link Floer homology and
the Thurston norm.

Theorem 4.2 [Ozsváth and Szabó 2008b, Theorem 1.1]. For an oriented link
L ⊆ S3 with no trivial components, the Heegaard Floer link homology detects the
Thurston (semi)norm of its complement. For each h ∈ H 1(S3

− L;R), we have

x(PD[h])+
l∑

i=1

|〈h, ui 〉| = 2y(h),

where ui is the meridian of the i-th component of L and |〈h, ui 〉| denotes the absolute
value of the Kronecker pairing of h ∈ H 1(S3

− L;R) and ui ∈ H1(S3
− L;R).

Remark 4.3. A trivial component of a link L is an unknot component which is
also unlinked from the rest of the link.

The unit ball for the norm x is called the Thurston polytope, and the unit ball for
the norm y is called the link Floer homology polytope, which is also the convex
hull of those s ∈H for which ĤFL(L , s) 6= 0. The unit ball for the dual norm x∗ of
x in H1(S3

− L;R) is called the dual Thurston polytope. By Theorem 4.2, twice
the link Floer homology polytope can be written as the sum of the dual Thurston
polytope and an element of the symmetric hypercube in H 1(S3

− L) with edge-
length two [Ozsváth and Szabó 2008b]. We give some examples of L-space links
with two components, and compute their link Floer homology polytopes by using
Alexander polynomials and linking numbers in detail. Moreover, we compute the
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Figure 6. L7n1.

dual Thurston polytopes and Thurston norms of their complements by Theorem 4.2.
We also compare the link Floer homology polytope and the convex hull of those
s ∈ H for which χ(ĤFL(L , s)) 6= 0.

Example 4.4 (the dual Thurston polytope for the L-space link L7n1). The link
L7n1 in Figure 6 is an L-space link [Liu 2017, Example 3.17]. The link component
L1 is an unknot and the other link component L2 is a right-handed trefoil. The
linking number is 2 and its multivariable Alexander polynomial is

1L(t1, t2)= t1/2
1 t3/2

2 + t−1/2
1 t−3/2

2 .

Normalized Alexander polynomials of L1 and L2 are

t
t−1

1L1(t)= 1+ t−1
+ t−2

+ t−3
+ t−4

+ · · · ,

t
t−1

1L2(t)= t + t−1
+ t−2

+ t−3
+ t−4

+ · · · .

The h-function in ĤFL(s1, s2) is shown in Figure 7. In this figure, the numbers
denote the h-function, and • denotes the lattice points (s1, s2)∈H where ĤFL(s1, s2)

is nonzero. By an explicit computation, the link Floer homology ĤFL(s1, s2) is
shown in Figure 8. Moreover, ĤFL(0, 0) ∼= F[−2] ⊕ F[−3], so χ(ĤFL(0, 0)) is
zero. For any other lattice point (s1, s2) labeled by • except (0, 0), ĤFL(s1, s2)

has rank one and χ(ĤFL(s1, s2)) is also nonzero. Thus in this example, the link
Floer homology polytope is the same as the convex hull of those (s1, s2) ∈ H for
which χ(ĤFL(s1, s2)) are nonzero. By Theorem 4.2, the dual Thurston polytope in
H1(S3

− L;R) is shown in Figure 9.
In Figure 9, the thick red line is the dual Thurston polytope for L7n1. It is

the same as the Newton polytope of the Alexander polynomial 1L(t1, t2). The
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Figure 7. The h-function for L7n1.
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F
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F

F

Figure 8. The link Floer homology polytope for L7n1.

unknot component of L7n1 bounds a surface FL1 with Euler characteristic −1,
and the right-handed trefoil link component L2 bounds a surface FL2 with Euler
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Figure 9. The dual Thurston polytope for L7n1.

Figure 10. b(−2, 3, 8).

characteristic −3. The surfaces FL1 and FL2 have maximal Euler characteristic in
their respective homology classes.

Example 4.5 (the dual Thurston polytope for the pretzel link L = b(−2, 3, 8)). We
claim that the pretzel link b(−2, 3, 8) is an L-space link with two components. The
link component L1 is an unknot and the other link component L2 is a right-handed
trefoil as shown in Figure 10. The linking number of L1 and L2 is 5. Let P1 be the
knot obtained from b(−2, 3, 8) by 1-Dehn surgery on L1. It is the twisted torus
knot K (5, 6; 2, 1) [Remigio-Juárez and Rieck 2012, Proposition 3.1], and it is an
L-space knot as proved by F. Vafaee [2015, Theorem 1]. Then for sufficiently
large d, S3

1,d(L)= S3
d−25(P1) is an L-space. The link components L1 and L2 are
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s1

s2

F

F

F

F

F

FF

F2

F

F

F2

F

F

F

F

FF

F

Figure 11. The link Floer homology polytope for b(−2, 3, 8).

L-space knots, so S3
1(L1) and S3

d(L2) are both L-spaces. Observe that d − 25> 0,
so the pretzel link b(−2, 3, 8) is an L-space link by L-space surgery criterion [Liu
2017, Lemma 2.6]. The symmetrized Alexander polynomial of b(−2, 3, 8) is

1L(t1, t2)= t−2
1 t−3

2 + t−1
1 t−2

2 + 1+ t1t2+ t2
1 t3

2 .

The h-function corresponding to ĤFL(s1, s2) with (s1, s2) ∈ H is shown in
Figure 13. By an explicit computation, the link Floer homology ĤFL(s1, s2) is
as shown in Figure 11. We have rankF(ĤFL(1/2, 1/2))= χ(ĤFL(1/2, 1/2))= 2,
and rankF(ĤFL(−1/2,−1/2))= χ(ĤFL(−1/2,−1/2))= 2. Observe that the link
Floer homology polytope is the same as the convex hull of those (s1, s2) ∈ H for
which χ(ĤFL(s1, s2)) are nonzero. By Theorem 4.2, the dual Thurston polytope is
the shaded area in Figure 12.

Remark 4.6. For L-space links L7n1 and b(−2, 3, 8), the Thurston polytopes
are both dual to Newton polytopes of their symmetrized Alexander polynomials
1L(t1, t2). Ozsváth and Szabó [2008b] pointed out that the Thurston polytope of
an alternating link is dual to the Newton polytope of its multivariable Alexander
polynomial. This is also true for L-space knots. A natural question is whether the
Thurston polytope of an L-space link with two components (which is not a split
union of two L-space knots) is dual to the Newton polytope of its symmetrized
Alexander polynomial.
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Figure 12. The dual Thurston polytope for b(−2, 3, 8).
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Figure 13. The h-function for b(−2, 3, 8).

5. Two-component L-space links with vanishing Alexander polynomials

In Section 4, we have given examples of L-space links where Thurston polytopes
are dual to Newton polytopes of their symmetrized Alexander polynomials. In this
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section, we mainly discuss 2-component L-space links with vanishing Alexander
polynomials, especially split L-space links. Recall that multivariable Alexander
polynomials for split links are 0. So Newton polytopes for split L-space links are
empty, but link Floer homology polytopes may be nontrivial. To see this in detail,
we need some lemmas first.

Lemma 5.1 [Liu 2017, Example 1.13(A)]. Split disjoint unions of L-space knots
are L-space links.

Lemma 5.2 [Borodzik and Gorsky 2016, Proposition 3.11]. For a split L-space link
L = L1 t L2 with two components which are both L-space knots and (s1, s2) ∈ H,
the h-function h(s1, s2) satisfies

h(s1, s2)= h1(s1)+ h2(s2),

where h1(s1) and h2(s2) are h-functions of L1 and L2, respectively.

Remark 5.3. L-space knots can be regarded as special L-space links with just one
component. For any L-space knot K ⊆ S3, we can associate it with a chain complex
A−(s1) filtered by the Alexander grading, and H∗(A−(s1)) has a unique generator
for any s1. Let −2h(s1) be the homological grading of the generator.

Proposition 5.4. Let L = L1 t L2 be a split union of two L-space knots L1 and L2.
Then ĤFL(L , s1, s2)∼= ĤFL(L1, s1)⊗ĤFL(L2, s2)⊗(F⊕F(−1)) for any (s1, s2)∈H.

Proof. The proof is quite straightforward using our computation of ĤFL(s1, s2) in
Section 3. For any (s1, s2) ∈ H, the h-function corresponding to ĤFK(L1, s1) has
the following possibilities:

•
x

s1− 1
•
x

s1
•
x

s1+ 1

Case (1)

•
x + 1

s1− 1
•
x

s1
•
x

s1+ 1

Case (2)

•
x

s1− 1
•
x

s1
•

x − 1

s1+ 1

Case (3)

•
x + 1

s1− 1
•
x

s1
•

x − 1

s1+ 1

Case (4)

Here h1(s1)= x and x is any positive integer. Observe that

H∗(A−(s1)/A−(s1− 1))∼= HFK−(L1, s1),

· · · → HFK−i+2(s1+ 1)
U
−→ HFK−i (s1)→ ĤFKi (s1)

→ HFK−i+1(s1+ 1)
U
−→ HFK−i−1(s1) · · · .



HEEGAARD FLOER HOMOLOGY OF L -SPACE LINKS WITH TWO COMPONENTS 109

The long exact sequence is induced by the short exact sequence

0→ CFK−(s1+ 1)
U
−→ CFK−(s1)→ ĈFK(s1)→ 0.

By the long exact sequence, we compute ĤFL(L1, s1) as follows:

Case (1) ĤFK(L1, s1)∼= 0.

Case (2) ĤFK(L1, s1)∼= F[−2x].

Case (3) ĤFK(L1, s1)∼= F[−2x + 1].

Case (4) ĤFK(L1, s1)∼= 0.

Similarly, for the link component L2, we assume that h2(s2)= y. There are also
four possibilities for the h-function corresponding to ĤFK(L2, s2). By Lemma 5.2,
h(s1, s2) = h1(s1)+ h2(s2). We find that there are only four possibilities for the
h-function such that ĤFL(L , s1, s2) 6= 0:

h+ 1 h h

h+ 1 h h

h+ 2 h+ 1 h+ 1

Case (a)

h+ 1 h h

h+ 2 h+ 1 h+ 1

h+ 2 h+ 1 h+ 1

Case (b)

h+ 1 h+ 1 h

h+ 1 h+ 1 h

h+ 2 h+ 2 h+ 1

Case (c)

h+ 1 h+ 1 h

h+ 2 h+ 2 h+ 1

h+ 2 h+ 2 h+ 1

Case (d)

In Case (a), h-functions for L1 and L2 are both like Case (2): (x + 1) x x
and (y + 1) y y. Then ĤFL(s1, s2) ∼= F[−2(x + y)] ⊕ F[−2(x + y) − 1],
ĤFK(L1, s1)∼= F[−2x] and ĤFK(L2, s2)∼= F[−2y]. So

(5-1) ĤFL(s1, s2)∼= ĤFK(L1, s1)⊗ ĤFK(L2, s2)⊗ (F⊕ F(−1)).

In Case (b), the h-function for L1 is like Case (2): (x + 1) x x , and the
h-function for L2 is like Case (3): y y y− 1. In Case (c), the h-function for L1

is like Case (3), and for L2, the h-function is like Case (2). In Case (d), h-functions
for L1 and L2 are like Case (3). Thus we can compute (5-1) in these cases as well.

If the h-function corresponding to ĤFL(s1, s2) is not in these four cases, then
ĤFL(s1, s2) = 0, and at least one of ĤFK(L1, s1) and ĤFK(L2, s2) is zero. Thus
the conclusion also holds. �
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Proof of Theorem 1.8. Let L = L1∪L2 be an L-space link with vanishing Alexander
polynomial. The linking number of L1 and L2 is 0 by (2-1). By Theorem 1.2,
the Heegaard Floer link homology ĤFL(s1, s2) is determined by 1L(t1, t2), 1L1(t)
and 1L2(t). So

ĤFL(L , s1, s2)∼= ĤFL(L1tL2, s1, s2)∼= ĤFK(L1, s1)⊗ĤFK(L2, s2)⊗(F⊕F(−1))

for any (s1, s2) ∈ H. �

Example 5.5 (the link Floer homology polytope for the split disjoint union of
two right-handed trefoils). Let L = L1 t L2 be the split disjoint union of two
right-handed trefoils. Recall that the right-handed trefoil is an L-space knot with
Alexander polynomial 1L1(t)= t − 1+ t−1, and∑

s1∈Z

χ(HFK−(L1, s1))t s1 =
1L1

1− t−1 = t + t−1
+ t−2

+ t−3
+ t−4

+ · · · .

Observe the short exact sequence 0→ A−(s1− 1)→ A−(s1)→ CFK−(s1)→ 0.
We have

HFK−(L1, s1)= H∗(A−(s1)/A−(s1− 1)),

χ(HFK−(L1, s1))= h1(s1− 1)− h1(s1),

which is also the coefficient of t s1 in1L1(t)/(1− t−1). Since L1 is an L-space knot,
h1(s1)= 0 for sufficiently large s1� 0. So the h-function h1(s1) can be determined
as follows:

. . . , 7, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, . . . ,

where h1(0)= h1(−1)= 1, h1(s)= 0 if s ≥ 1, and h1(s)=−s if s ≤−1. Similarly,
for another right-handed trefoil L2, the h-function h2(s2) is the same as h1(s1). By
Proposition 5.4, we can find all (s1, s2) ∈ H where ĤFL(L , s1, s2) are nonzero. So

ĤFL(L , 1, 1)= F[0]⊕ F[−1],

ĤFL(L , 0, 1)= ĤFL(L , 1, 0)= F[−1]⊕ F[−2],

ĤFL(L ,−1, 1)= ĤFL(L , 0, 0)= ĤFL(L , 1,−1)= F[−2]⊕ F[−3],

ĤFL(L ,−1, 0)= ĤFL(L , 0,−1)= F[−3]⊕ F[−4],

ĤFL(L ,−1,−1)= F[−4]⊕ F[−5].

For other lattice points (s1, s2) ∈ H, ĤFL(L , s1, s2) = 0. Thus the link Floer
homology polytope is the shaded square in Figure 14.

Remark 5.6. In general, let L = L1 t L2 be the split union of any two L-space
knots. The genus of a knot K is defined as

g(K )=min{genus(F) | F ⊆ S3 is an oriented, embedded surface with ∂F = K }.
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Figure 14. The link Floer homology polytope for L .

Observe that g(L i ) = max{s ≥ 0 | ĤFK∗(L i , s) 6= 0} for i = 1, 2 [Ozsváth and
Szabó 2004a, Theorem 1.2], and ĤFK(L1, g(L1)) ∼= Z, ĤFK(L2, g(L2)) ∼= Z,
[Ozsváth and Szabó 2005, Theorem 1.2]. The link Floer homology polytope
of L i is the interval [−g(L i ), g(L i )], where i = 1, 2. By Proposition 5.4, the
link Floer homology polytope for L is a rectangle with vertices (g(L1), g(L2)),
(g(L1),−g(L2)), (−g(L1), g(L2)) and (−g(L1),−g(L2)) (see Figure 14).

Acknowledgements

I deeply appreciate Eugene Gorsky for introducing this interesting topic to me and
his patient teaching on Heegaard Floer homology, and also for his constant guidance
and discussions during the project. I am also grateful to Allison Moore, Yi Ni and
Jacob Rasmussen for useful discussions on L-space links. I especially wish to thank
the referee for helpful suggestions and corrections. The paper is inspired by the
work of Yajing Liu, and the project is partially supported by NSF-1559338.

References

[Agol and Dunfield 2015] I. Agol and N. M. Dunfield, “Certifying the Thurston norm via SL(2,C)-
twisted homology”, 2015. To appear in Thurston memorial conference proceedings, Princeton Univ.
Press. arXiv

[Borodzik and Gorsky 2016] M. Borodzik and E. Gorsky, “Immersed concordances of links and
Heegaard Floer homology”, preprint, 2016. arXiv

[Dawra 2015] N. Dawra, “On the link Floer homology of L-space links”, preprint, 2015. arXiv

[Friedl and Kim 2008] S. Friedl and T. Kim, “Twisted Alexander norms give lower bounds on the
Thurston norm”, Trans. Amer. Math. Soc. 360:9 (2008), 4597–4618. MR Zbl

[Friedl and Vidussi 2015] S. Friedl and S. Vidussi, “The Thurston norm and twisted Alexander
polynomials”, J. Reine Angew. Math. 707 (2015), 87–102. MR Zbl

[Gorsky and Némethi 2015] E. Gorsky and A. Némethi, “Lattice and Heegaard Floer homologies of
algebraic links”, Int. Math. Res. Not. 2015:23 (2015), 12737–12780. MR Zbl

[Gorsky and Némethi 2016] E. Gorsky and A. Némethi, “Links of plane curve singularities are
L-space links”, Algebr. Geom. Topol. 16:4 (2016), 1905–1912. MR Zbl

[Liu 2017] Y. Liu, “L-space surgeries on links”, Quantum Topol. 8:3 (2017), 505–570. MR Zbl

[Manolescu and Ozsváth 2010] C. Manolescu and P. Ozsváth, “Heegaard Floer homology and integer
surgeries on links”, preprint, 2010. arXiv

http://msp.org/idx/arx/1501.02136
http://msp.org/idx/arx/1601.07507
http://msp.org/idx/arx/1505.01100
http://dx.doi.org/10.1090/S0002-9947-08-04455-3
http://dx.doi.org/10.1090/S0002-9947-08-04455-3
http://msp.org/idx/mr/2403698
http://msp.org/idx/zbl/1152.57011
http://dx.doi.org/10.1515/crelle-2013-0087
http://dx.doi.org/10.1515/crelle-2013-0087
http://msp.org/idx/mr/3403454
http://msp.org/idx/zbl/1331.57017
http://dx.doi.org/10.1093/imrn/rnv075
http://dx.doi.org/10.1093/imrn/rnv075
http://msp.org/idx/mr/3431635
http://msp.org/idx/zbl/1342.57005
http://dx.doi.org/10.2140/agt.2016.16.1905
http://dx.doi.org/10.2140/agt.2016.16.1905
http://msp.org/idx/mr/3546454
http://msp.org/idx/zbl/1364.14022
http://dx.doi.org/10.4171/QT/96
http://msp.org/idx/mr/3692910
http://msp.org/idx/zbl/1381.57019
http://msp.org/idx/arx/1011.1317


112 BEIBEI LIU

[McMullen 2002] C. T. McMullen, “The Alexander polynomial of a 3-manifold and the Thurston
norm on cohomology”, Ann. Sci. École Norm. Sup. (4) 35:2 (2002), 153–171. MR Zbl

[Ozsváth and Szabó 2004a] P. Ozsváth and Z. Szabó, “Holomorphic disks and genus bounds”, Geom.
Topol. 8 (2004), 311–334. MR Zbl

[Ozsváth and Szabó 2004b] P. Ozsváth and Z. Szabó, “Holomorphic disks and topological invariants
for closed three-manifolds”, Ann. of Math. (2) 159:3 (2004), 1027–1158. MR Zbl

[Ozsváth and Szabó 2005] P. Ozsváth and Z. Szabó, “On knot Floer homology and lens space
surgeries”, Topology 44:6 (2005), 1281–1300. MR Zbl

[Ozsváth and Szabó 2006] P. Ozsváth and Z. Szabó, “Heegaard diagrams and Floer homology”, pp.
1083–1099 in International Congress of Mathematicians, II, edited by M. Sanz-Solé et al., Eur. Math.
Soc., Zürich, 2006. MR Zbl arXiv

[Ozsváth and Szabó 2008a] P. Ozsváth and Z. Szabó, “Holomorphic disks, link invariants and the
multi-variable Alexander polynomial”, Algebr. Geom. Topol. 8:2 (2008), 615–692. MR Zbl

[Ozsváth and Szabó 2008b] P. Ozsváth and Z. Szabó, “Link Floer homology and the Thurston norm”,
J. Amer. Math. Soc. 21:3 (2008), 671–709. MR Zbl

[Remigio-Juárez and Rieck 2012] J. Remigio-Juárez and Y. Rieck, “The link volumes of some prism
manifolds”, Algebr. Geom. Topol. 12:3 (2012), 1649–1665. MR Zbl

[Thurston 1986] W. P. Thurston, “A norm for the homology of 3-manifolds”, pp. 99–130 in Mem.
Amer. Math. Soc. 339, Amer. Math. Soc., Providence, RI, 1986. MR Zbl

[Vafaee 2015] F. Vafaee, “On the knot Floer homology of twisted torus knots”, Int. Math. Res. Not.
2015:15 (2015), 6516–6537. MR Zbl

Received May 9, 2017. Revised February 9, 2018.

BEIBEI LIU

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA

DAVIS, CA
UNITED STATES

bxliu@math.ucdavis.edu

http://dx.doi.org/10.1016/S0012-9593(02)01086-8
http://dx.doi.org/10.1016/S0012-9593(02)01086-8
http://msp.org/idx/mr/1914929
http://msp.org/idx/zbl/1009.57021
http://dx.doi.org/10.2140/gt.2004.8.311
http://msp.org/idx/mr/2023281
http://msp.org/idx/zbl/1056.57020
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://msp.org/idx/mr/2113019
http://msp.org/idx/zbl/1073.57009
http://dx.doi.org/10.1016/j.top.2005.05.001
http://dx.doi.org/10.1016/j.top.2005.05.001
http://msp.org/idx/mr/2168576
http://msp.org/idx/zbl/1077.57012
http://msp.org/idx/mr/2275636
http://msp.org/idx/zbl/1116.53062
http://msp.org/idx/arx/math/0602232
http://dx.doi.org/10.2140/agt.2008.8.615
http://dx.doi.org/10.2140/agt.2008.8.615
http://msp.org/idx/mr/2443092
http://msp.org/idx/zbl/1144.57011
http://dx.doi.org/10.1090/S0894-0347-08-00586-9
http://msp.org/idx/mr/2393424
http://msp.org/idx/zbl/1235.53090
http://dx.doi.org/10.2140/agt.2012.12.1649
http://dx.doi.org/10.2140/agt.2012.12.1649
http://msp.org/idx/mr/2966698
http://msp.org/idx/zbl/1270.57047
http://dx.doi.org/10.1090/memo/0339
http://msp.org/idx/mr/823443
http://msp.org/idx/zbl/0585.57006
http://dx.doi.org/10.1093/imrn/rnu130
http://msp.org/idx/mr/3384486
http://msp.org/idx/zbl/1354.57018
mailto:bxliu@math.ucdavis.edu


PACIFIC JOURNAL OF MATHEMATICS
Vol. 298, No. 1, 2019

dx.doi.org/10.2140/pjm.2019.298.113

ON THE 6-INVARIANTS OF WREATH PRODUCTS

LUIS AUGUSTO DE MENDONÇA

We present a full description of the Bieri–Neumann–Strebel invariant of
restricted permutational wreath products of groups. We also give partial re-
sults about the 2-dimensional homotopical invariant of such groups. These
results may be turned into a full picture of these invariants when the abelian-
ization of the basis group is infinite. We apply these descriptions to the study
of the Reidemeister number of automorphisms of wreath products in some
specific cases.

1. Introduction

In this paper we study the so called 6-invariants of restricted permutational wreath
products of groups. The 6-invariants of a group are some subsets of its character
sphere and contain a lot of information on finiteness properties of its subgroups.
Their definitions and most general results appeared in a series of papers by Bieri,
Neumann, Strebel, Renz ([Bieri et al. 1987; Bieri and Renz 1988; Bieri and Strebel
1980]) and others.

Let 0 be a finitely generated group. The character sphere S(0) is the set of
nonzero homomorphisms χ : 0→ R (these homomorphisms are called characters)
modulo the equivalence relation given by χ1 ∼ χ2 if there is some r ∈ R>0 such
that χ2 = rχ1. The class of χ will be denoted by [χ ]. The character sphere may
be seen as the (n−1)-sphere in the vector space Hom(0,R)' Rn, where n is the
torsion-free rank of the abelianization of 0.

In this paper we deal with the homotopical invariants in low dimension, that
is, those denoted by 61(0) and 62(0), the second defined when 0 is finitely
presented. They are defined as certain subsets of S(0); we leave the details to
Section 2. Their most important feature is that they classify the properties of being
finitely generated and being finitely presented for subgroups of 0 containing the
derived subgroup [0,0] (see Theorem 2.1).

Recall that a group 0 is of type Fn if there is a K (0, 1)-complex with compact
n-skeleton. A group is of type F1 (respectively, F2) if and only if it is finitely

MSC2010: primary 20E22, 20F65; secondary 20E45.
Keywords: sigma theory, wreath product, twisted conjugacy.
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generated (respectively, finitely presented). The homological version of the property
Fn is the property FPn: a group 0 is of type FPn if the trivial Z0-module Z admits
a projective resolution

P : · · · → Pn→ Pn−1→ · · · → P1→ P0→ Z→ 0

with Pj finitely generated for all j ≤ n. Again a group is of type FP1 if and only if
it is finitely generated, but the properties Fn are in general stronger than FPn . In
particular, FP2 is strictly weaker than finite presentability ([Bestvina and Brady
1997; Bieri 1976]).

There are some higher homotopical invariants, denoted by 6n(0), which are
defined for groups of type Fn and fit in a decreasing sequence

S(0)⊇61(0)⊇62(0)⊇ · · · ⊇6n(0)⊇ · · ·

whenever defined. They classify the property Fn for subgroups above the derived
subgroup. Similarly, the homological invariants 6n(0;Z) are defined for groups
of type FPn and classify this same property for subgroups containing the derived
subgroup. In general 61(0) = 61(0;Z) if 0 is finitely generated and 6n(0) ⊆

6n(0;Z) if 0 has type Fn ([Bieri and Renz 1988]).
All these invariants are in general hard to describe for specific groups, and this

has been done only for a few classes of groups. For right-angled Artin groups, for
example, the invariant61 was computed first by Meier and VanWyk [1995] and then
generalized for higher dimensions (for both homotopical and homological versions)
by the same authors and Meinert [1998]. This is connected with the existence of
subgroups of these groups having a wide variety of finiteness properties, as shown
by Bestvina and Brady [1997]. Another line of generalization was followed by
Meinert [1995], who computed the invariants in dimension 1 for graph products.

Another interesting group for which the invariants are known is Thompson’s
group F. Both homological and homotopical invariants have been computed in
all dimensions by Bieri, Geoghegan and Kochloukova [Bieri et al. 2010]. The
62-invariants of the generalized Thompson groups Fn,∞ were then computed by
Kochloukova [2012] and recently Zaremsky [2017] extended it to higher dimensions.

We considered the homotopical invariants 61 and 62 of wreath products. Recall
that given H and G groups and a G-set X, the wreath product H oX G is defined as
the semidirect product M oG, where M =

⊕
x∈X Hx is the direct sum (that is, the

restricted direct product) of copies of H indexed by X and G acts by permuting
these copies according to the action on X. We shall always assume that X 6= ∅
and H 6= 1, to avoid trivial cases. The finiteness properties for these groups were
studied by de Cornulier [2006] (finite generation and finite presentability) and
more recently by Bartholdi, de Cornulier and Kochloukova [Bartholdi et al. 2015]
(properties FPn and Fn).
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Remark 1.1. By Hx we always mean the copy of H associated to the element
x ∈ X. On the other hand, Gx denotes the stabilizer of x ∈ X in the action of G. To
avoid confusion, we will always denote by G the group that acts.

Our first result is the full description of 61.

Theorem A. Let 0 = H oX G be a finitely generated wreath product and let χ :
0→ R be a nontrivial character. We set M =

⊕
x∈X Hx ⊆ 0.

(1) If χ |M = 0, then [χ ] ∈61(0) if and only if [χ |G] ∈61(G) and χ |Gx 6= 0 for
all x ∈ X.

(2) If χ |M 6= 0, then [χ ] ∈ 61(0) if and only if at least one of the following
conditions holds:
(a) There exist x, y ∈ X with x 6= y, χ |Hx 6= 0 and χ |Hy 6= 0.
(b) There exists x ∈ X with χ |Hx 6= 0 and [χ |Hx ] ∈6

1(H).
(c) χ |G 6= 0.

Part (1) of the above theorem generalizes Theorem 8.1 in [Bartholdi et al. 2015]
in dimension 1, where H has infinite abelianization by hypothesis. For regular
wreath products, that is, 0 = H oG G, the action being by multiplication on the left,
the 61-invariant was already computed by Strebel [2012, Proposition C1.18].

For the invariant 62 we consider two cases, the same as in the theorem above.
For characters χ : H oX G→ R such that χ |M 6= 0 the criteria developed by Renz
[1989] are especially powerful, and have allowed us to prove part (2) of Theorem A
and a similar result for 62.

Theorem B. Let 0=H oX G be a finitely presented wreath product and let χ :0→R

be a nontrivial character. If the set

T = {x ∈ X | χ |Hx 6= 0}

has at least 3 elements, then [χ ] ∈62(0).

The cases where T is nonempty but has less than 3 elements can be dealt
with using the direct product formula (see Theorem 2.2) and the results on the
61-invariant (see Theorem 6.5 and the comment right before it).

For the characters χ :0→R with χ |M = 0 we were not able to obtain a complete
result, for lack of a general method to study necessary conditions for [χ ] ∈62(0).
By the results of Bartholdi, de Cornulier and Kochloukova on homological invariants,
the most general theorem we can enunciate is the following, where G(x,y) denotes
the stabilizer subgroup associated to an element (x, y) of X2, which is equipped
with the diagonal G-action.

Theorem C. Let0=H oX G be a finitely presented wreath product and let χ :0→R

be a nonzero character such that χ |M = 0. Then [χ ] ∈62(0) if

(1) [χ |G] ∈62(G),
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(2) [χ |Gx ] ∈6
1(Gx) for all x ∈ X , and

(3) χ |G(x,y) 6= 0 for all (x, y) ∈ X2.

In general, conditions (1) and (3) are necessary for [χ ] ∈ 62(0). If we assume
further that the abelianization of H is infinite, then condition (2) is necessary
as well.

Restrictions on the abelianization of the basis group H have been recurrent in the
study of finiteness properties of wreath products and related constructions. Besides
appearing in the work of Bartholdi, de Cornulier and Kochloukova [2015], they
also pop up in the paper by Kropholler and Martino [2016], which deals with the
wider class of graph-wreath products (see Section 5) from a more homotopical
point of view.

Finally, we consider some applications to twisted conjugacy. Recall that given
an automorphism ϕ of a group G, the Reidemeister number R(ϕ) is defined as the
number of orbits of the twisted conjugacy action, which is given by g·h :=ghϕ(g−1),
for g, h ∈ G.

Exploring the connections between 6-theory and Reidemeister numbers, as
found out by Koban and Wong [2011] and Gonçalves and Kochloukova [2010], we
obtain some results about the Reidemeister numbers of automorphisms contained
in some subgroups of finite index of Aut(H oX G), under some relatively strong
restrictions. For precise statements, see Corollaries 9.3 and 9.5.

2. Background on the 6-invariants

Let us start by recalling the definition of the invariant 61. For a finitely gener-
ated group 0 and a finite generating set X ⊆ 0, we consider the Cayley graph
Cay(0;X ). Its vertex set is 0 and two vertices γ1 and γ2 are connected by an edge
if and only if there is some x ∈X ±1 such that γ2 = γ1x (therefore 0 acts on the
left). This graph is always connected. Given a nonzero character χ : 0→ R we
can define the submonoid

0χ = {γ ∈ 0 | χ(γ )≥ 0}.

Notice that 0χ1 = 0χ2 if and only if χ1 and χ2 represent the same class in the
character sphere S(0). The full subgraph spanned by 0χ , which we denote by
Cay(0;X )χ , may not be connected. We put:

61(0)= {[χ ] ∈ S(0) | Cay(0;X )χ is connected}.

It can be shown that this definition does not depend on the (finite) generating
set X . This invariant is known as the Bieri–Neumann–Strebel invariant (or simply
BNS-invariant), in reference to the authors who studied it first [Bieri et al. 1987].

The invariant 62 is defined similarly. If 0 is finitely presented and 〈X |R〉 is a
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finite presentation, we consider the Cayley complex Cay(0; 〈X |R〉). This complex
is obtained from the Cayley graph by gluing 2-dimensional cells with boundary
determined by the loops defined by the relations r ∈ R, for each base point in 0.
The resulting complex is always 1-connected. Again we define Cay(0; 〈X |R〉)χ
to be the full subcomplex spanned by 0χ . The 1-connectedness of this complex
depends on the choice of the presentation. We define 62(0) as the subset of S(0)
containing exactly all the classes [χ ] of characters such that Cay(0; 〈X |R〉)χ
is 1-connected for some finite presentation 〈X |R〉 of 0. More details on these
definitions may be found in [Meinert 1997].

The main feature of these invariants is that they classify the related finiteness
properties for subgroups containing the derived subgroup. For the invariants 61

and 62, this can be stated as follows.

Theorem 2.1 [Bieri et al. 1987; Renz 1988]. Suppose that 0 is finitely generated
and let N ⊆ 0 be a subgroup such that [0,0] ⊆ N. Then N is finitely generated if
and only if

61(0)⊇ {[χ ] ∈ S(0) | χ |N = 0}.

Similarly, if 0 is further finitely presented then N is finitely presented if and only if

62(0)⊇ {[χ ] ∈ S(0) | χ |N = 0}.

The homological invariants can be defined by means of the monoid ring Z0χ .
This is of course the subring of Z0 containing exactly all elements

∑
aγ γ ∈ Z0

such that aγ 6= 0 only if γ ∈ 0χ . We put

6m(0;Z)= {[χ ] ∈ S(0) | Z is of type FPm over Z0χ }.

As observed by Bieri and Renz [1988] if 6m(0;Z) 6=∅ then 0 is of type FPm . All
we need about these homological invariants is that 62(0)⊆62(0;Z) whenever 0
is finitely presented. Details may be found in [Bieri and Renz 1988; Renz 1988].

Some of the general results we will need about these invariants concern direct
products of groups, subgroups of finite index and retracts.

Theorem 2.2 (direct product formulas [Gehrke 1998]). Let G1 and G2 be finitely
generated groups and let χ = (χ1, χ2) :G1×G2→R be a nonzero character. Then
[χ ] ∈61(G1×G2) if and only if at least one of the following conditions holds:

(1) χi 6= 0 for i = 1, 2.

(2) [χi ] ∈6
1(Gi ) for some i ∈ {1, 2}.

Similarly, if G1 and G2 are finitely presented, then [χ ] ∈62(G1×G2) if and only
if at least one of the following conditions holds:

(1) [χ1] ∈6
1(G1) and χ2 6= 0.



118 LUIS AUGUSTO DE MENDONÇA

(2) [χ2] ∈6
1(G2) and χ1 6= 0.

(3) [χi ] ∈6
2(Gi ) for some i ∈ {1, 2}.

There was a conjecture suggesting how to compute the 6-invariants of direct
products in higher dimensions, but it turned out to be false. Counterexamples were
found by Meier, Meinert and VanWyk [Meier et al. 2001] for the homotopical
invariants and by Schütz [2008] in the homological case. For precise statements
see [Bieri and Geoghegan 2010], which also brings a proof of the homological
conjecture if coefficients are taken in a field (rather than Z).

Theorem 2.3 (finite index subgroups [Meinert 1997]). Let G be a finitely presented
group and let H 6 G be a subgroup of finite index. Let χ : G→ R be a nonzero
character and denote by χ0 its restriction to H. Then [χ ] ∈ 62(G) if and only if
[χ0] ∈6

2(H).

Theorem 2.4 (retracts [Meinert 1997]). Let G be a finitely presented group and
suppose that H is a retract, that is, there are homomorphisms p : G → H and
j : H → G such that p ◦ j = idH . Suppose that χ : H → R is a nonzero character.
Then

[χ ◦ p] ∈62(G)⇒ [χ ] ∈62(H).

Theorem 2.5 [Kochloukova 2001, Theorem C]. Suppose that G is a group of type
FPm (respectively, Fm) and N is a normal subgroup of G that is locally nilpotent-
by-finite. Then

{[χ ] ∈ S(G) | χ(N ) 6= 0} ⊆6m(G;Z) (respectively, 6m(G)).

As pointed out to me by D. Kochloukova, in [Kochloukova 2001] the result is
stated for N locally polycyclic-by-finite, but actually the proof works for nilpotent-
by-finite. We will use it with N being abelian. The case m = 1, with N abelian,
can also be found as Lemma C1.20 in Strebel’s notes [2012].

3. The 61-invariant of wreath products

Let 0 = H oX G be a finitely generated wreath product. As shown by de Cornulier
[2006], both G and H are finitely generated and G acts on X with finitely many
orbits. Denote M =

⊕
x∈X Hx ⊆0. We start working with the characters χ :0→R

such that χ |M =0, for which there are some partial results by Bartholdi, de Cornulier
and Kochloukova. We quote their result in its most general form, which deals with
the higher homological invariants.

Theorem 3.1 [Bartholdi et al. 2015, Theorem 8.1]. Let 0 = H oX G be a wreath
product of type FPm and let M =

⊕
x∈X Hx ⊆ 0. Let χ : 0 → R be a nonzero

character such that χ |M = 0. The following conditions are sufficient for [χ ] ∈
6m(0;Z):
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(1) [χ |G] ∈6m(G;Z).

(2) [χ |Gα
] ∈ 6m−i (Gα;Z) for all stabilizers Gα of the diagonal action of G on

X i and for all 1≤ i ≤ m.

Moreover, if the abelianization of H is infinite, such conditions are also necessary.

Notice that item (2) contains a statement about invariants in dimension 0. For any
finitely generated group V and χ : V → R, the condition [χ ] ∈60(V ;Z) amounts
to saying that χ is a nonzero homomorphism.

Recall that the homological and homotopical invariants coincide in dimension 1,
that is, 61(V ;Z)=61(V ) whenever V is a finitely generated group (see [Strebel
2012, Corollary C1.5], for instance). It is worth mentioning that if we consider the
original definitions of the invariants in [Bieri et al. 1987] and [Bieri and Renz 1988],
we get that actually the sets 61(V ) and 61(V ;Z) are antipodal in S(V ), that is,
61(V ;Z)=−61(V ). This happens because in [Bieri and Renz 1988] the authors
chose to work with left group actions, while in [Bieri et al. 1987] the actions are on
the right. The sign disappears if the choice is consistent.

We can now extract from Theorem 3.1 a set of sufficient conditions for [χ ] ∈
61(0). Namely:

Proposition 3.2. Let 0 = H oX G be a finitely generated wreath product and let
χ : 0→ R be a nonzero character such that χ |M = 0. If [χ |G] ∈ 61(G) and if
χ |Gx 6= 0 for all stabilizers Gx of the action of G on X, then [χ ] ∈61(0).

Remark 3.3. These conditions could also be obtained by considering an action
of 0 on a sufficiently nice complex. We shall apply this reasoning in the study of
the invariant 62(H oX G).

This set of conditions is in fact necessary. First, if χ :0→R and M⊆ker(χ), then

[χ ] ∈61(0)⇒ [χ |G] ∈6
1(G),

since χ |G coincides with the character χ induced on the quotient 0/M ' G (see
[Strebel 2012, Propoisiton A4.5]).

It suffices then to analyze the restriction of χ to the stabilizer subgroups under
the hypothesis that [χ ] ∈61(0).

Proposition 3.4. If [χ ] ∈61(0) and χ |M = 0, then χ |Gx 6= 0 for all x ∈ X.

Proof. Let X = G · x1 t · · · tG · xn . We only need to show that χ |Gxi
6= 0 for all i .

By taking the quotient by M ′ =
⊕

x∈XrG·xi
Hx , we may assume that n = 1, that is,

we consider wreath products of the form 0 = H oX G with X = G · x1.
Let Y and Z be finite generating sets for H and G, respectively. Since X =G · x1

it is clear that Y ∪ Z is a finite generating set for 0 (we see Y as a subset of
the copy Hx1). Then Cay(0; Y ∪ Z)χ must be connected, since [χ ] ∈ 61(0) by
hypothesis.
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First, we show that M can be generated by the left conjugates of elements of Y±1

by elements of Gχ . Indeed if m ∈M there is a path in Cay(0; Y ∪ Z)χ connecting 1
to m, since m ∈ M ⊆ ker(χ)⊆ 0χ . Such a path has as its label a word with letters
in Y±1

∪ Z±1, so we can write

m = w1v1w2v2 · · ·wkvk,

where each w j is a word in Y±1 and each v j is a word in Z±1 (possibly trivial).
We rewrite:

m = w1(
v1w2)(

v1v2w3) · · · (
v1···vk−1wk)(v1 · · · vk).

Now, w1(
v1w2)(

v1v2w3) · · · (
v1···vk−1wk)∈M and v1 · · · vk ∈G. But m ∈M and 0=

M oG, so v1 · · · vk = 1G . Moreover, since χ |M = 0, it is clear that χ(v1 · · · v j )≥ 0
for all 1≤ j ≤ k, so

m = w1(
v1w2)(

v1v2w3) · · · (
v1···vk−1wk) ∈ 〈

Gχ(Y±1)〉,

as we wanted.
But then

M = 〈Gχ(Y )〉 ⊆ 〈Gχ(Hx1)〉 =
⊕

x∈Gχ ·x1

Hx1,

that is, X = Gχ · x1. Finally, as χ |G 6= 0 there is some g1 ∈ G such that χ(g1) < 0.
On the other hand, there must be some g0 ∈ Gχ such that g0 · x1= g1 · x1. It follows
that g−1

1 g0 ∈ Gx1 , with χ(g−1
1 g0)=−χ(g1)+χ(g0) > 0, hence χ |Gx1

6= 0. �

We obtain part (1) of Theorem A by combining Propositions 3.2 and 3.4.

4. The 61-invariant and Renz’s criterion

We shall use the results of Renz [1989] to consider the characters χ : H oX G→ R

such that χ |M 6= 0. Let 0 be any finitely generated group and let X ⊆ 0 be a finite
generating set. For a nonzero character χ : 0→ R and for any word w = x1 · · · xn ,
with xi ∈X ±1, we denote

vχ (w) :=min{χ(x1 · · · x j ) | 1≤ j ≤ n}.

Theorem 4.1 [Renz 1989, Theorem 1]. With the notation above, [χ ] ∈61(0) if and
only if there exists t ∈X ±1 with χ(t) > 0 and such that for all x ∈X ±1 r {t, t−1

}

the conjugate t−1xt can be represented by a word wx in X ±1 such that

vχ (t−1xt) < vχ (wx).

Proposition 4.2. Let 0 = H oX G be a finitely generated wreath product and let
[χ ] ∈ S(0). Suppose that there is some x1 ∈ X such that G ·x1 6= {x1} and χ |Hx1

6= 0.
Then [χ ] ∈61(0).

Proof. Let Y and Z be finite generating sets for H and G, respectively, and choose
x1, . . . , xn ∈ X such that X =

⊔n
j=1 G · x j (the element x1 is already chosen to
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satisfy the hypotheses). For each 1≤ j ≤ n let Y j be a copy of Y inside Hx j . It is
clear that 0 is generated by Y1 ∪ · · · ∪ Yn ∪ Z .

Now, since G ·x1 6= {x1}we can choose g1 ∈G such that g1 ·x1 6= x1. Furthermore,
since χ |Hx1

6= 0, we can choose a generator h ∈ Y1 such that χ(h) 6= 0. We may
assume without loss of generality that χ(h) > 0. Define t := g1h ∈ Hg1·x1 . We
take X = Y1 ∪ · · · ∪ Yn ∪ Z ∪ {t} as a generating set for 0 and we show that the
conditions of Theorem 4.1 are satisfied.

If y ∈ (Y1 ∪ · · · ∪ Yn)
±1 then t and y commute in 0, hence wy := y is word that

represents t−1 yt . Also, vχ (wy)= χ(y) and

vχ (t−1 yt)≤ χ(t−1 y)= χ(y)−χ(t) < χ(y),

so vχ (t−1 yt) < vχ (wy).
If z ∈ Z±1, there are two cases: z ∈ Gg1·x1 or z /∈ Gg1·x1 . In the first case z and t

commute in 0, so we may proceed as in the previous paragraph: we take the word
wz := z, which represents t−1zt and satisfies vχ (t−1zt) < vχ (wz). If z /∈ Gg1·x1

notice that zt and t−1 lie in different copies of H in 0, therefore they commute, so

t−1zt = t−1(zt)z = (zt)t−1z = ztz−1t−1z.

In this case, define wz := ztz−1t−1z. Observe that vχ (wz) = min{0, χ(z)}. If
this minimum is 0 then χ(z) ≥ 0, and so vχ (t−1zt) = −χ(t) < 0. Otherwise
vχ (wz) = χ(z) < 0 and so vχ (t−1zt) ≤ χ(t−1z) = χ(z)− χ(t) < χ(z). In both
cases, vχ (t−1zt) < vχ (wz).

Thus [χ ] ∈61(0) by Theorem 4.1. �

In order to complete the proof of Theorem A, we only need to consider the cases
where the restriction of χ to the copies of H is nonzero only for copies associated
to orbits that are composed by only one element, and this is done by use of the
direct product formula, as follows.

Theorem 4.3. Let 0 = H oX G be a finitely generated wreath product and set
M =

⊕
x∈X Hx ⊆ 0. Let χ : 0→ R be a nonzero character such that χ |M 6= 0.

Then [χ ] ∈61(0) if and only if at least one the following conditions holds:

(1) The set T = {x ∈ X | χ |Hx 6= 0} has at least two elements.

(2) T = {x1} and χ |G 6= 0.

(3) T = {x1} and [χ |Hx1
] ∈61(H).

Proof. By Proposition 4.2 it is enough to consider the case where G · x = {x} for
all x ∈ T. Notice that in this case T must be finite, since each of its elements is an
entire orbit of G on X, and there are finitely many of those. Let P =

∏
x∈T Hx and

X ′ = X r T. Then,
0 = H oX G ' P × (H oX ′ G).
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If T has at least two elements, then [χ |P ] ∈ 61(P) and hence [χ ] ∈ 61(0), by
two applications of the direct product formula for 61. If T = {x1}, the formula
gives us exactly that [χ ] ∈61(0) if and only if one of conditions (2) or (3) holds,
since χ |G 6= 0 if and only if χ |H oX ′G 6= 0. �

5. Graph-wreath products

We now digress a bit and obtain a generalization of the results of Section 3 to a
wider class of groups. Besides being interesting in its own right, this will be useful
in the analysis of the 62-invariants of wreath products.

Given two groups G and H , and K a G-graph, the graph-wreath product
H ∞ K G is defined by Kropholler and Martino [2016] as the semidirect product
H 〈K 〉oG, where H 〈K 〉 is the graph product of H with respect to the graph K (that
is, H is the group associated to every vertex of K ). The action of G is given by
permutation of the copies of H according to the G-action on the vertex set of K.
When K is the complete graph, H ∞ K G is simply H oX G, where X is the vertex
set of K.

Kropholler and Martino showed that H ∞ K G is finitely generated if and only
if G and H are finitely generated and G acts with finitely many orbits of vertices
on K, that is, H ∞ K G is finitely generated under the same conditions as H oX G
is, where X is the vertex set of K.

In what follows we fix 0 = H ∞ K G and M = H 〈K 〉 ⊆ 0. We assume that 0 is
finitely generated and we decompose X in orbits as X=G ·x1t· · ·tG ·xn . Moreover,
we choose finite generating sets Z for G and Yi for Hxi for all i = 1, . . . , n and we
denote X =

(⋃n
i=1 Yi

)
∪ Z , which is seen as a generating set for 0.

Theorem 5.1. Let χ : H ∞ K G→ R be a nonzero character such that χ |M = 0.
Then [χ ] ∈61(H ∞ K G) if and only if [χ |G] ∈61(G) and χ |Gx 6= 0 for all x ∈ X.

Proof. Let NK be the kernel of the obvious homomorphism M �
⊕

x∈X Hx . Note
that NK ⊆ ker(χ) and that 0 := 0/NK ' H oX G. It follows that χ induces a
character χ : 0→ R. For an element γ ∈ 0, we denote by γ its image in 0.

If [χ ] ∈61(0), then [χ ] ∈61(0) (again by Proposition A4.5 in [Strebel 2012]).
Thus [χ |G] ∈61(G) and χ |Gx 6= 0 for all x ∈ X by Theorem A.

Conversely, suppose that [χ |G] ∈61(G) and that χ |Gx 6= 0 for all x ∈ X. Then
[χ ] ∈61(0). We will show that this implies that Cay(0;X )χ is connected.

We need to show that for all γ ∈0χ , there is a path in Cay(0;X )χ connecting 1
and γ . Given such a γ , notice that γ ∈ 0χ , so there must be a path from 1 to γ
in Cay(0;X )χ . Its obvious lift to Cay(0;X ) with 1 as initial vertex is a path
in Cay(0;X )χ that ends at an element of the form γ n, with n ∈ NK . If we can
connect γ to γ n inside Cay(0;X )χ we are done. For that it suffices to find a path
in Cay(0;X )χ connecting 1 and n, and then act with γ on the left.
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Since NK ⊆ M, each n ∈ NK can be written as

(5-1) n = (g1h1)(
g2h2) · · · (

gk hk),

with h j ∈
⋃n

i=1 Y±1
i and g j ∈ G for all j. Even more, we may assume that each

χ(g j )≥ 0. Indeed, since χ |Gx 6= 0 for all x , we can always pick t j ∈ G such that
χ(t j ) > 0 and t j h j = h j . Then we may change g j for g j t

k j
j in (5-1), where k j is

some integer such that k jχ(t j )≥−χ(g j ).
But if χ(g j ) ≥ 0 then g j ∈ Gχ |G , and since [χ |G] ∈ 61(G), we can choose

words w j in Z±1 representing g j and such that vχ (w j )≥ 0. Finally, the word

w = (w1h1w
−1
1 )(w2h2w

−1
2 ) · · · (wkhkw

−1
k )

is the label for a path connecting 1 and n in Cay(0;X )χ , by the choice of each w j

together with the fact that χ(h j )= 0 for all j by hypothesis. �

The above result will be needed only in a special case, namely when K is a
graph without edges, so that 0 ' (∗x∈X Hx)oG.

6. The 62-invariant

Renz’s paper [1989] also brings a criterion for the invariant 62. In order to state
it, we need to introduce the concept of a diagram over a group presentation, for
which we follow [Bridson 2002]. Fix an orientation on R2. Define a diagram to be
a subset M ⊆ R2 endowed with the structure of a finite combinatorial 2-complex.
Thus to each 1-cell of M correspond two opposite directed edges. If 〈X |R〉 is
a presentation for a group 0, a labeled diagram over 〈X |R〉 is a diagram M
endowed with an edge labeling satisfying:

(1) The edges of M are labeled by elements of X ±1.

(2) If an edge e has label x , then its opposite edge has label x−1.

(3) The boundary of each face of M, read as a word in X ±1, beginning at any
vertex and proceeding with either orientation, is either a cyclic permutation of
some r ∈R±1, or a word of the form t t−1t−1t for some t ∈X ±1.

A labeled diagram M is said to be simple if it is connected and simply connected.

Remark 6.1. This is a weakening of the definition of the usual van Kampen dia-
grams. In fact, a simple diagram M, with a vertex chosen as a base point, differs
from a van Kampen diagram only by the fact that it can have what we call trivial
faces, that is, those labeled by t t−1t−1t for some t ∈X ±1. This weakening has the
effect of simplifying the drawing of some diagrams that we will consider in the
sequence (see [Renz 1989, Section 3.3]).



124 LUIS AUGUSTO DE MENDONÇA

Suppose that we are given a simple diagram M with a base point u (a vertex in the
boundary of M) and an element γ ∈ 0. Then to each vertex u′ of M corresponds a
unique element of 0, given by γ η, where η is the image in 0 of the label of any path
connecting u and u′ inside M. In particular, the given group element γ corresponds
to the base point u. For any character χ : 0→ R we define the χ-valuation of
M with respect to u and γ , denoted by vχ (M), to be the minimum value of χ(g)
when g runs over the elements of 0 corresponding to the vertices of M.

Now, suppose that 0 is finitely presented (with 〈X |R〉 a finite presentation) and
assume [χ ] ∈61(0). Then we can distinguish an element t ∈X ±1 with χ(t) > 0
with which we can apply Renz’s criterion for 61: for each x ∈X ±1 r {t, t−1

} we
can associate a word wx in X ±1 that represents t−1xt and for which vχ (t−1xt) <
vχ (wx). Additionally, we put wt := t and wt−1 := t−1. If r = x1 · · · xn ∈ R±1,
we define

r̂ := wx1 · · ·wxn .

We are now ready to state the criterion for 62.

Theorem 6.2 [Renz 1989, Theorem 3]. Let 0, X and t be as above. Suppose
that the set R of defining relations contains some cyclic permutation of the words
t−1xtw−1

x , for all x ∈ X ±1. Then [χ ] ∈ 62(0) if and only if for each r ∈ R±1

there exist a simple diagram Mr̂ and vertex u in its boundary, such that both the
following conditions hold:

(1) The boundary path of Mr̂ , read from u, has as label the word r̂ .

(2) vχ (r) < vχ (Mr̂ ), where the valuation of Mr̂ is taken with respect to the base
point u and the element t ∈ 0.

Now, recall that a wreath product H oX G is finitely presented if and only if G
and H are finitely presented, G acts diagonally on X2 with finitely many orbits
and the stabilizers of the G-action on X are finitely generated. This is the result by
de Cornulier [2006].

We will apply Theorem 6.2 to show that if 0 = H oX G is finitely presented and
if χ : 0→ R is a character such that χ |Hx1

6= 0 for some x1 ∈ X with |G · x1| =∞,
then [χ ] ∈62(0).

We start by assuming that G acts transitively on X, with X = G · x1. Let 〈Y | R〉
and 〈Z | S〉 be finite presentations for H and G, respectively. We may assume that
Z contains a generating set E for the stabilizer subgroup Gx1 and a set J of repre-
sentatives for the nontrivial double cosets of (Gx1,Gx1) in G, since both E and J
can be taken to be finite by the proof of the main theorem in [de Cornulier 2006].

We think of 0 = H oX G with the presentation considered by de Cornulier. So 0
is generated by the set Y ∪ Z , subject to the defining relations

(1) r , for all r ∈ R (defining relations for H );
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(2) s, for all s ∈ S (defining relations for G);

(3) [g y1, y2], for g ∈ J, y1, y2 ∈ Y ;

(4) [e, y], for e ∈ E and y ∈ Y.

Let us adapt this presentation a bit. We are under the hypothesis that χ |Hx1
6= 0 and

|G · x1| =∞. We may assume without loss of generality that χ(h) > 0 for some
h ∈ Y. Choose gi ∈ Z , for 1 ≤ i ≤ 5, such that {x1} ∪ {gi · x1 | 1 ≤ i ≤ 5} is a set
with exactly six elements (of course we may assume that Z contains elements gi

with this property). Define
ti := gi h,

for i = 1, . . . , 5. Then 0 is generated by Y ∪ Z ∪ {ti | 1 ≤ i ≤ 5}, subject to the
defining relations

(1) r , for all r ∈ R (defining relations for H );

(2) s, for all s ∈ S (defining relations for G);

(3) [g y1,
g′ y2], for all y1, y2 ∈ Y ∪ {ti | 1 ≤ i ≤ 5} and g, g′ ∈ Z ∪ {1} whenever

the commutator [g y1,
g′ y2] is indeed a relation in 0;

(4) [e, y], for e ∈ E and y ∈ Y and [z, t1], for z ∈ Z ∩Gg1·x1 ;

(5) gi hg−1
i t−1

i , for 1≤ i ≤ 5.

Remark 6.3. We could write the conditions of item (3) in a more precise way,
but it would require writing many cases. If y1 ∈ Y and y2 = t1, for example, then
[
g y1,

g′ y2] is a defining relation if g · x1 6= (g′g1) · x1.

Note that we have added a few relations of types (3) and (4), but clearly they are
consequences of the others. Furthermore, the set of relations is clearly still finite.

Set t = t1. We will continue using the notation of Proposition 4.2. Thus for
y ∈ Y±1 we have chosen wy = y. If z ∈ Z±1, then wz = z if z ∈ Gg1·x1 and
wz = ztz−1t−1z otherwise. Moreover, since ti and t commute in 0 for all 1≤ i ≤ 5,
we can define wti := ti and wt−1

i
:= t−1

i .
Let us check that the chosen presentation satisfies the conditions of Theorem 6.2.

First, the set of defining relations contains the relations t−1xtw−1
x . Indeed if

y ∈ Y±1
∪ {ti | 1< i ≤ 5}±1 then t−1 ytw−1

y is a relation of type (3), since wy = y.
If z ∈ Z±1

∩Gg1·x1 , then wz = z and t−1ztz−1 is a relation of type (4). Finally, if
z ∈ Z±1 but z /∈ Gg1·x1 , then wz = ztz−1t−1z and

t−1ztw−1
z = t−1ztz−1t zt−1z−1

= t−1(zt)t (zt)−1,

which is a cyclic permutation of [zt, t], a relation of type (3).
According to Theorem 6.2, now we need to apply the transformation r 7→ r̂

to each defining relation and then find a simple diagram Mr̂ satisfying the stated
conditions. The following subsections are devoted to the verification of the existence
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Figure 1. Diagram for a relation of type (1), r = r̂ = y1 y2 y3 y4

of these diagrams. Observe that we do not need to consider the inverses of defining
relations, since any simple diagram for r̂ is a simple diagram for the inverse of r̂ if
we read its boundary backwards.

Relations of type (1). Note that the relations of type (1) involve only generators
in Y±1. But wy = y for all y ∈ Y±1, so r̂ = r whenever r is a relation of type (1).
Thus the one-faced diagram M that represents the relation r , with base point
corresponding to t , is already a choice for Mr̂ , since its χ-value is increased
by χ(t) > 0.

In Figure 1 we represent the diagram Mr̂ , for r = r̂ = y1 y2 y3 y4, as the internal
square of the figure. The external boundary represents the path beginning at the
base point 1 ∈ 0 and with label the original relation r . The edges labeled by t
indicate that r̂ is obtained from r by conjugation by t .

Relations of type (2). Since χ(h) 6= 0, the order of h in 0 is infinite. Consider the
subgroup

00 := 〈h,G〉6 0.

Notice 00 ' Z oX G. Let χ0 be the restriction of χ to 00. The group 00 is an
extension of an abelian group A =

⊕
x∈X Z by G, so it follows from Theorem 2.5

that [χ0] ∈6
2(0), as χ0|A 6= 0. Now choose a presentation for 00 that is compatible

with the chosen presentation for 0: write the same presentation with Y = {h} and
discard the relations of type (1). Naturally, this presentation satisfies the hypothesis
of Theorem 6.2.

Let r = z1 · · · zn be a relation of type (2). We can see r as a relation in 00. By
Theorem 6.2 there is a simple diagram Mr̂ , with respect to the presentation of 00,
whose base point corresponds to t and such that ∂Mr̂ = r̂ and vχ (r) < vχ (Mr̂ ). But
all the relations in the chosen presentation of 00 are also relations in the original
presentation of 0, after identifying the generating sets. Then Mr̂ , if seen as a
diagram over the presentation of 0, is the diagram we wanted.
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Figure 2. Diagram for relations of type (5)

Relations of the types (4) or (5). All cases are similar: we can obtain simple
diagrams whose only vertices are those of the boundary, that is, those that are defined
by the word r̂ . In this case, the diagram automatically satisfies the hypothesis about
its χ -value, exactly as in the case of the relations of type (1). See the diagram for
the relation g1hg−1

1 t−1 in Figure 2. As before, the external boundary represents
r = g1hg−1

1 t−1, and the diagram Mr̂ itself is the internal diagram composed by the
five squares. Again, the edges labeled by t and with origin at some point in the
external path indicate conjugation by t and represent the growth of vχ from r to r̂ .

Figure 2 is an illustration of the case when g = g1 /∈ Gg1·x , when the word wg is
more complicated. If the letter representing an element of G is an element of Gg1·x ,
the argument is simpler: all the letters involved in the relation commute with t , so
r = r̂ and the argument follows as in the case of the relations of type (1).

Relations of type (3). Let y ∈ Y ∪ {ti | 1≤ i ≤ 5} and g ∈ Z . Let ηg,y be the word
obtained from gyg−1 by applying the transformation that takes each letter α to wα:

(6-1) ηg,y = (
gt)t−1(g y)t (gt)−1,

if g /∈ Gg1·x1 , or

(6-2) ηg,y =
g y,

if g ∈ Gg1·x1 . If g = 1, put η1,y := y. In all cases we see that ηg,y is a product
of subwords representing elements of at most 3 copies of H in 0. Indeed, gt and
(gt)−1 are elements of Hgg1·x1 , while t and t−1 are elements of Hg1·x1 and, finally,
g y is an element of Hg·x1 or Hggi ·x1 for some 1≤ i ≤ 5, depending on y.

Consider r = [gy1,
g′y2], a relation of type (3). The word r̂ = [ηg,y1, ηg′,y2]

is a relation in 0, so we can always find a simple diagram M1 with some base
point corresponding to t and such that ∂M1 = r̂ . If vχ (M1) > vχ (r) we are done.
Otherwise there is a vertex p of M1 such that χ(p)≤ vχ (r). Notice that this vertex
cannot lie on the boundary of M1, since vχ (r̂) > vχ (t−1r t).
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Now, the commutator between the words ηg,y1 and ηg′,y2 is a product of elements
of the form z y, with z ∈ Z ∪{1} and y ∈ Y±1

∪{t1, . . . , t5}±1. By the remarks above,
these elements lie in at most five different copies of H, one of them being indexed
by g1 · x1 when five copies do pop up. It follows that for some u ∈ {h, t2, t3, t4, t5},
the words [z y, u] are defining relations for all the subwords z y appearing in r̂ =
[ηg,y1, ηg′,y2] (we consider the subwords z y that appear when ηg,y1 and ηg′,y2 are
written exactly as in (6-1) or (6-2)). Observe that χ(u) = χ(h) > 0 in all cases.
So we can build a diagram M2 by surrounding M1 with faces representing the
commutators [z y, u], for all these subwords z y.

Clearly the boundary of M2 is also labeled by r̂ . If we set as base point the
vertex on the new boundary corresponding to the base point of M1 (that is, the
one joined to it by an edge with label u), then the χ-value of the interior points
(including p) is increased by χ(u) > 0, so that vχ (M2) > vχ (M1). Repeating
this process finitely many times, we obtain a simple diagram Mn satisfying the
conditions of the theorem.

We record what we have proved in the following proposition.

Proposition 6.4. Let 0 = H oX G be a finitely presented wreath product and let
M =

⊕
x∈X Hx ⊆ 0. Suppose that G acts transitively on the infinite set X. If

χ : 0→ R is a character with χ |M 6= 0, then [χ ] ∈62(0).

The arguments above essentially contain what we need when G · x is infinite for
some x ∈ X such that χ |Hx 6= 0 (but the G-action on X is not necessarily transitive),
so in the proof of Theorem 6.5 we will only indicate how to deal with this case.

Recall that we denote by T the set of elements x ∈ X such that χ |Hx 6= 0. Notice
that if T = {x1}, then 0 is a direct product

0 ' Hx1 × (H oX ′ G),

where X ′ = X r {x1}. Then the direct product formula and the results on the
61-invariants of wreath products already contain all the information we need. The
remaining cases are all part of the following theorem, which includes Theorem B.

Theorem 6.5. Let 0 = H oX G be a finitely presented wreath product and let
M =

⊕
x∈X Hx ⊆ 0. Suppose that the set

T = {x ∈ X | χ |Hx 6= 0}

has at least two elements. Then [χ ] ∈ 62(0) if and only if at least one of the
following conditions holds:

(1) [χ |Hx ] ∈6
1(H) for some x ∈ T .

(2) χ |G 6= 0.

(3) T has at least three elements.
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Proof. Suppose first that T is a finite set and consider the subgroup B=∩x∈T Gx 6G.
It is of finite index in G, so 01 = H oX B is of finite index in 0. Notice that

01 '

(∏
x∈T

Hx

)
× (H oX ′ B).

Denote P =
∏

x∈T Hx and Q = H oX ′ B. The fact that T has at least two elements
implies [χ |P ] ∈ 61(P), by the direct product formula. By applying the formula
again, now to the product 01 = P × Q, we get that [χ |01] ∈ 6

2(01) if and only
if [χ |P ] ∈ 62(P) or χ |Q 6= 0. The former happens if and only if at least one of
conditions (1) or (3) is satisfied (once again, by the direct product formula), while
the latter clearly happens if and only if χ |B 6= 0, which in turn is equivalent to
χ |G 6= 0, since B is a subgroup of finite index. Finally, since the index of 01 in 0
is finite, we are done, by Theorem 2.3.

We are left with the case where T is infinite and we want to show that [χ ]∈62(0).
Since G acts on X with finitely many orbits, there must be some x1 ∈ T such that
|G · x1| = ∞. We adapt the proof of Proposition 6.4 putting the orbit of x1 in a
distinguished position.

Choose x2, . . . , xn ∈ X such that X =
⊔n

j=1 G · x j . For each j choose a finite
generating set E j for the stabilizer subgroup Gx j . For each pair par (i, j), with
1≤ i, j ≤ n, choose a finite set Ji, j of representatives of the nontrivial double cosets
of (Gxi ,Gx j ) in G. Finally, choose finite presentations 〈Y | R〉 and 〈Z | S〉 for H
and G respectively. We may assume that Z contains E j and Ji, j for all 1≤ i, j ≤ n.

A finite presentation for 0, adapted from the presentation given by de Cornulier
[2006], can be given as follows. For each 1≤ i ≤ n we associate a copy 〈Yi | Ri 〉 of
the presentation for H and, as before, we define ti := gi h for some gi ∈ Z and h ∈ Y1

with χ(h) > 0 and |{x1} ∪ {gi · x1 | 1≤ i ≤ 5}| = 6. We think of 0 as generated by(⋃n
i=1 Yi

)
∪ Z ∪ {ti | 1≤ i ≤ 5} and subject to the defining relations given by

(1) r , for all r ∈
⋃n

i=1 Ri (defining relations for the copies of H );

(2) s, for all s ∈ S (defining relations for G);

(3) [gy1,
g′y2], for y1, y2 ∈

(⋃n
i=1 Yi

)
∪{ti | 1≤ i ≤ 5} and g, g′ ∈ Z∪{1} whenever

[
gy1,

g′y2] is indeed a relation in 0;

(4) [ei , yi ], for all ei ∈ Ei , yi ∈ Yi and 1≤ i ≤ n and [z, t1], for all z ∈ Z ∩Gg1·x1 ;

(5) gi hg−1
i t−1

i , for 1≤ i ≤ 5.

Set t = t1. We use again the notation of Proposition 4.2. So we use the same
words wz if z ∈ Z±1, and wy = y for all other generators y. It is clear that the
set of defining relations above still satisfies the hypothesis of Theorem 6.2. The
construction of the diagrams associated to each defining relation can be done exactly
as in the case where the action is transitive, as we will argue below. The key fact
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is that the generators coming from copies of H associated to all other orbits of G
(other than G · x1) commute with t = t1.

First, notice that the construction of the diagrams associated to the relations
of types (1) or (4) in the case of a transitive action depends only on the fact that
[t, y] is a defining relation for all y ∈ Y = Y1. But t1 commutes also with all
elements of Y2 ∪ · · · ∪ Yn , so the construction can be carried out in the same way.
For the case of relations of type (3), it was only necessary that for any generators
g, g′ ∈ Z ∪{1} and y, y′ ∈ Y1, we could find some u ∈ {h, t2, . . . , t5} that commutes
with all the following elements: t , gt , g′t , gy and g′y′. If we allow y to be an element
of Y2∪· · ·∪Yn , then any u that commutes with t , gt , g′t and g′y′ will do it, since gy
commutes any choice of u. Thus the five options for u, coming from different
copies of H, are enough to let us repeat the argument. Similar considerations cover
the cases where either only y′, or both y and y′ are elements of Y2 ∪ · · · ∪ Yn .

This is all we needed to check, since relations of types (2) and (5) do not involve
any of the new generators. �

7. Some observations about 62

Let 0 be a finitely presented group and let [χ ] ∈ S(0). Let 〈X |R 〉 be a finite
presentation for 0. Denote by C =Cay(0; 〈X |R〉) the associated Cayley complex
and by Cχ the full subcomplex of C spanned by 0χ . The canonical action of 0
on C restricts to an action by the monoid 0χ on Cχ .

Remark 7.1. If a monoid K acts on some set X we still say that the sets K · x
are orbits. By “K has finitely many orbits on X” we mean that there are elements
x1, . . . , xn ∈ X such that X =

⋃n
j=1 K · x j .

The following lemma can be found in Renz’s thesis [1988].

Lemma 7.2. Cχ has finitely many 0χ -orbits of k-cells for k ≤ 2.

Proof. Denote by D and Dχ the sets of k-cells of C and Cχ , respectively, (for
a fixed k ≤ 2). We know that 0 acts on D with finitely many orbits. Choose
representatives d1, . . . , dn for these orbits so that d j ∈ Dχ but γ · d j /∈ Dχ for all j
and for all γ ∈ 0 with χ(γ ) < 0. For this it suffices to take any representatives
d̃1, . . . , d̃n and then put d j := γ

−1
j · d̃ j , where γ j ∈ 0 is the vertex of d̃ j with lowest

χ -value. Thus if d ∈ Dχ , then d = γ · d j for some j and, by choice of d j , we have
that χ(γ )≥ 0. So Dχ =

⋃n
j=1 0χ · d j . �

Denote by F(X , χ) the submonoid of F(X ) consisting of the classes of reduced
words w with vχ (w)≥ 0. Note that F(X , χ) is indeed closed under the product,
since w1, w2 ∈ F(X , χ) implies vχ (w1w2) ≥ 0, and this property is preserved
by elementary reductions (that is, canceling out terms of the form xx−1 or x−1x).
Let R(χ) be the subgroup of F(X ) consisting of the classes of reduced words w
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that represent relations (that is, w ∈ 〈R〉F(X )) and such that vχ (w)≥ 0. Observe
that R(χ)⊆ F(X , χ) and notice that R(χ) is indeed a subgroup, since vχ (w)≥ 0
implies vχ (w−1)≥ 0 whenever w is a relation. Finally, observe that R(χ) admits
an action by the monoid F(X , χ) via left conjugation.

Now, let r be a reduced word in X ±1 representing a relation in 0, that is,
r ∈ 〈R〉F(X ). Suppose that M is a van Kampen diagram over 〈X |R〉 whose
boundary, read in some orientation from some base point p, is exactly r . Then it
holds in F(X ) that

(7-1) r = w1r1 · · ·
wnrn,

where each ri is a word read on the boundary of some face of M and wi is the label
for a path in M connecting p to a base point of the face associated to ri . Both the
facts that such a diagram exists and that r can be written as above are consequences
of van Kampen’s lemma (see Proposition 4.1.2 and Theorem 4.2.2 in [Bridson
2002], for instance).

Lemma 7.3. If χ : 0 → R is a character such that Cχ = Cay(G, 〈X |R〉)χ is
1-connected, then R(χ) is finitely generated over F(X , χ).

Remark 7.4. By “R(χ) is finitely generated over F(X , χ)” we mean that every
element of R(χ) can be written as a product of elements of the form ws, where
w ∈ F(X , χ) and s ∈ S for some finite set S ⊆ R(χ).

Proof. Let r ∈ R(χ) and consider the path ρ in C beginning at 1 and with label r .
Notice that this path runs inside Cχ , since vχ (r)≥ 0. Also, ρ is clearly a loop and
it must be nullhomotopic in Cχ , since Cχ is 1-connected. A homotopy from ρ to
the trivial path can then be realized by a van Kampen diagram M with vχ (M)≥ 0
(the valuation is taken with respect to 1, seen both as a base point in C and a group
element). This is made precise by Theorem 2 in [Renz 1989].

Write r as in (7-1). Thus r is a product of relations corresponding to the faces
of M conjugated on the left by elements of F(X , χ). Since vχ (M)≥ 0, such faces
are faces of Cχ , so by Lemma 7.2 and using that every element of 0χ can be written
as a word in F(X , χ), each w j r j can be rewritten as u j s j where u j ∈ F(X , χ) and
each s j is a word read on the boundary of a face in a finite set S of representatives
of 0χ -orbits of faces of Cχ . It follows that S is a finite generating set for R(χ)
modulo the action of F(X , χ). �

8. 62 for characters with χ |M = 0

We get back to a finitely presented wreath product 0 = H oX G = M o G. We
consider now the nonzero characters χ : 0→ R such that χ |M = 0.

In order to find sufficient conditions for [χ ] ∈62(0), we consider a nice action
of 0 on a complex. We will briefly describe the construction in the proof of
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Theorem A in [Kropholler and Martino 2016], with the simplifications allowed by
the fact that our situation is less general than what is considered in that paper.

We are assuming that 0 = H oX G is finitely presented, so H is also finitely
presented. Choose a K (H, 1)-complex Y, with base point ∗ , having a single 0-cell
and finitely many 1-cells and 2-cells. Let Z =

⊕
x∈X Yx be the finitary product of

copies of Y indexed by X, that is, Z is the subset of the cartesian product
∏

x∈X Yx

consisting on the families (yx)x∈X such that yx is not the base point ∗ only for
finitely many indices x ∈ X. It follows by the results in [Davis 2012] that Z is an
Eilenberg–MacLane space for M =

⊕
x∈X Hx . Notice that Z has a natural cell

structure. There is a single 0-cell, given by the family (yx)x∈X with yx =∗ for all x .
For n ≥ 1, an n-cell can be seen as a product c1× · · ·× ck of cells of Y, supported
by some tuple (x1, . . . , xk) ∈ X k, such that dim(c1)+ · · ·+ dim(ck)= n.

There is an obvious action of G on Z . On the other hand, M acts freely on the
universal cover E of Z . By putting together these two actions, we get an action of
0 = M oG on E . Notice that, since we are assuming that 0 is finitely presented
(in particular G acts on X2 with finitely many orbits by de Cornulier’s results),
the 2-skeleton of E has finitely many 0-orbits of cells. Moreover, since the action
of M is free, the stabilizer subgroups are all conjugate to subgroups of G, and can
be described as follows:

(1) The stabilizer subgroup of any 0-cell is a conjugate of G.

(2) For n ≥ 1, the stabilizer subgroup of each n-cell contains a conjugate of the
stabilizer G(x1,...,xn) of some (x1, . . . , xn) ∈ Xn as a finite index subgroup.

We make stabilizers of n-cells correspond to stabilizers of n-tuples (rather than
k-tuples, for k ≤ n) by repeating some indices if necessary. Also, the reason why
we need to pass to a finite index subgroup is that cells of Z written as products of
cells of Y may contain some repetition. For instance, a cell of Z that arises as a
product c×c, supported by (x1, x2), is also fixed by elements of G that interchange
x1 and x2. This will also happen in the 0-action on the universal cover E .

For groups admitting sufficiently nice actions on complexes, there is a criterion
for the 6-invariants.

Theorem 8.1 [Meinert 1997, Theorem B]. Let E ′ be a 2-dimensional 1-connected
complex. Suppose that a group 0 acts on E ′ with finitely many orbits of cells. If
χ : 0→ R is a character such that [χ |0c ] ∈6

2−dim(c)(0c) for all cells c in E ′, then
[χ ] ∈62(0).

We apply the theorem above with E ′ being the 2-skeleton of E . We obtain:

Proposition 8.2. Suppose that 0 = H oX G is finitely presented and let χ : 0→ R

be a nonzero character such that χ |M = 0. Suppose also that

(1) [χ |G] ∈62(G),
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(2) [χ |Gx ] ∈6
1(Gx) for all x ∈ X , and

(3) χ |G(x,y) 6= 0 for all (x, y) ∈ X2.

Then [χ ] ∈62(0).

The fact that we can state the proposition above with reference only to the
stabilizers contained in G follows from the invariance of the 61-invariants under
isomorphisms (Proposition B1.5 in [Strebel 2012]). It is also clear that item (3) is
equivalent to requiring that the restriction of χ to the actual stabilizers is nonzero.

By Theorem 2.4, if [χ ] ∈ 62(0) and χ |M = 0, then [χ |G] ∈ 62(G). We can
also show that condition (3) of Proposition 8.2 is necessary.

Lemma 8.3. If χ |G(x,y) = 0, then the monoid Gχ cannot have finitely many orbits
on G · (x, y).

Proof. Suppose that G · (x, y) =
⋃n

j=1 Gχ · (x j , y j ) and choose g1, . . . , gn ∈ G
such that (x j , y j )= g j · (x, y). Choose g ∈ G such that

χ(g) <min{χ(g j ) | 1≤ j ≤ n}.

Since g · (x, y) ∈
⋃n

j=1 Gχ · (x j , y j ), there must be some g0 ∈ Gχ and 1≤ j ≤ n
such that g · (x, y)= g0 · (x j , y j )= g0g j (x, y). But then g−1g0g j ∈ G(x,y), with

χ(g−1g0g j )= χ(g0)+ (χ(g j )−χ(g)) > 0,

so χ |G(x,y) 6= 0. �

Proposition 8.4. Let 0 = H oX G be a finitely presented wreath product and let
χ : 0 → R be a nonzero character. Let M =

⊕
x∈X Hx ⊆ 0 and suppose that

χ |M = 0. If χ |G(x,y) = 0 for some (x, y) ∈ X2, then [χ ] /∈62(0).

Proof. We may assume that [χ ] ∈ 61(0), otherwise there is nothing to do. Thus
[χ |G] ∈6

1(G) and χ |Gx 6= 0 for all x ∈ X by Proposition 3.4.
Let 00 = (∗x∈X Hx)oG and let X ⊆ 00 be a finite generating set. Note that 0

is a quotient of 00, so we can consider the following diagram:

F(X )
π0
// //

π
## ##

00

����

0

The homomorphism π defines presentations for 0 with generating set X . We first
show that for finite presentations of type 0 = 〈X |R〉 (with ker(π) = 〈R〉F(X ))
the complex Cay(0; 〈X |R〉)χ cannot be 1-connected.

Fix 〈X |R〉 to be such a presentation. We use the notation F(X , χ) and R(χ)
defined in Section 7. We want to show that R(χ) is not finitely generated over
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F(X , χ), from which it follows that Cay(0; 〈X |R〉)χ is not 1-connected by
Lemma 7.3.

If χ |G(x,y) = 0 then by Lemma 8.3 we can build a strictly increasing sequence

I1 ( I2 ( · · ·( I j ( · · ·

of Gχ -invariant subsets of X2 such that X2
=
⋃

j I j .
Let N be the normal subgroup of ∗x∈X Hx such that M = (∗x∈X Hx)/N. Note

that N admits an action by (∗x∈X Hx)oG (which defines the wreath product H oX G).
Let N j be the normal subgroup of ∗x∈x Hx generated by the commutators [Hx , Hy]

with (x, y) ∈ I j . Note that N1 ( N2 ( . . ., that N =
⋃

j N j and that each N j is
(∗x∈X Hx)oGχ -invariant.

Put
0 j,χ =

∗x∈X Hx

N j
oGχ .

This is a well defined monoid under the operation we use to define the semidirect
product. This defines a sequence {0 j,χ } j of monoids that converges to 0χ .

Now, remember we have chosen X so that the projection π0 : F(X )� 00 is
well defined. Passing to monoids, we obtain a homomorphism

p0 : F(X , χ)→ (00)χ0,

where χ0 is the obvious lift of χ to 00. From p0 we define

p j : F(X , χ)→ 0 j,χ

for each j ≥ 1. Let
R j = p−1

j ({1}).

Notice that R j ( R(χ) for all j. Indeed, it is clear that χ0 and χ restrict to the
same homomorphisms on G and Gx , for all x ∈ X. Also, χ0 restricts to zero
on ∗x∈X Hx by construction. So it follows from Theorem 5.1 that [χ0] ∈ 6

1(00),
since we are assuming that [χ ] ∈61(0). Thus p0 is surjective and any n ∈ N r N j

defines an element in R(χ)r R j . Observe further that each that R j is actually a
F(X , χ)-invariant subgroup of R(χ) and that

⋃
j R j = R(χ). The existence of

the sequence {R j } j implies that R(χ) cannot be finitely generated over F(X , χ).
For the general case, let 〈X |R〉 be any finite presentation for 0 and suppose

by contradiction that Cay(0; 〈X |R〉)χ is 1-connected. From 〈X |R〉 we build
another finite presentation 〈X ′

|R′〉 for 0 with X ⊆X ′, R⊆R′ and satisfying the
previous hypothesis (that is, X ′ is actually a generating set for 00). For this, it suf-
fices to add the necessary generators and include the relations that define them in 0
in terms of the previous generating set X . It may be the case that Cay(0; 〈X ′

|R′〉)χ
is not 1-connected anymore, but by Lemma 3 in [Renz 1989], we can always enlarge
R′ to a (still finite) set R′′ so that Cay(0; 〈X ′

|R′′〉)χ is indeed 1-connected. This
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is done by adding the relations of the form t−1xtw−1
x , as in Theorem 6.2. We arrive

at a contradiction with the first part of the proof, since X ′ satisfies the previous
hypothesis, that is, X ′ can be lifted to a generating set for 00. �

The above proposition completes the proof of Theorem C as stated in the intro-
duction, since its last assertion (when we assume that H has infinite abelianization)
follows from Theorem 3.1.

9. Applications to twisted conjugacy

We now derive some consequences of the previous results to twisted conjugacy,
more specifically to the study of Reidemeister numbers of automorphisms of wreath
products. For this we start by considering the Koban invariant �1.

Given a finitely generated group 0, endow Hom(0,R) with an inner product
structure, so that it makes sense to talk about angles in S(0). Denote by Nπ/2([χ ])
the open neighborhood of angle π/2 and centered at [χ ] ∈ S(0). Following Koban
[2006], we can define the invariant �1(0) in terms of 61(0):

�1(0)= {[χ ] ∈ S(0) | Nπ/2([χ ])⊆61(0)}.

A proof of the fact that this does not depend on the inner product can be found in
the above-mentioned paper, which contains the original definition of the invariant.

Let 0= H oX G be a finitely generated wreath product. With some restrictions on
the action by G on X, we can obtain nice descriptions of �1(0). Notice that, since
the invariant does not depend on the choice of inner product, we can assume that
characters [χ ], [η] ∈ S(0) such that χ |G = 0 and η|M = 0 are always orthogonal,
and this will be done in the proposition below.

Proposition 9.1. Let 0 = H oX G be a finitely generated wreath product. Suppose

61(0)= {[χ ] ∈ S(0) | χ |M 6= 0},

where M =
⊕

x∈x Hx ⊆ 0. Then

�1(0)= {[χ ] ∈ S(0) | χ |G = 0}.

Proof. Let [χ ]∈ S(0)with χ |G =0. Clearly χ |M 6=0, so [χ ]∈61(0). Furthermore,
if [η] ∈ Nπ/2([χ ]), then η|M 6= 0, otherwise χ and η would be orthogonal. So
Nπ/2([χ ]) ⊆ 61(0) whenever χ |G = 0. On the other hand, if there were some
[χ ] ∈ �1(0) with χ |G 6= 0, then by taking η : 0 → R defined by η|M = 0 and
η|G = χ |G , we would have that [η] ∈ Nπ/2([χ ]), but [η] /∈61(0). �

For any group V, we denote by V ab its abelianization. By Theorem A, if the
G-action on X does not contain orbits composed by only one element, then many
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conditions imply the hypothesis on the description of 61(0), such as

(1) (Gx)
ab is finite for some x ∈ X, or

(2) the set {[χ ] ∈61(G) | χ |Gx 6= 0} is empty for some x ∈ X.

This includes the cases where the G-action is free (in particular the regular wreath
products 0 = H oG) and the case where 61(G)=∅.

Recall that the Reidemeister number R(ϕ), for a group isomorphism ϕ : V → V,
is defined as the number of orbits of the ϕ-twisted conjugacy action of V on itself.
A connection between the invariant �1 and Reidemeister numbers was studied by
Koban and Wong [2011]. Recall that a character χ is discrete if its image is infinite
cyclic.

Theorem 9.2 [Koban and Wong 2011, Theorem 4.3]. Let G be a finitely generated
group and suppose that �1(G) contains only discrete characters.

(1) If �1(G) contains only one element, then G is of type R∞, that is, R(ϕ)=∞
for all ϕ ∈ Aut (G).

(2) If�1(G) has exactly two elements, then there is a subgroup N ⊆ Aut (G), with
[Aut (G) : N ] = 2, such that R(ϕ)=∞ for all ϕ ∈ N.

Corollary 9.3. Let 0 = H oX G be a finitely generated wreath product and suppose
that the G-action on X is transitive. Suppose further that 61(0) is as described
in Proposition 9.1 and that H ab has torsion-free rank 1. Then there is a subgroup
N ⊆ Aut (0), with [Aut (0) : N ] = 2, such that R(ϕ)=∞ for all ϕ ∈ N.

Proof. By the hypothesis on H ab we have that

�1(0)= {[ν1], [ν2]},

where ν j (G)= 0, ν1(h)= 1 and ν2(h)=−1 for some lift h ∈ H of a generator for
the infinite cyclic factor of H ab. It suffices then to apply part (2) of Theorem 9.2. �

The applications that we keep in mind are the finitely generated regular wreath
products of the form Z oG.

Gonçalves and Kochloukova [2010] exhibited other connections between the
6-theory and the property R∞. Below we denote by 61(G)c the complement of
61(G) in S(G), that is, 61(G)c = S(G)r61(G).

Theorem 9.4 [Gonçalves and Kochloukova 2010, Corollary 3.4]. Let G be a finitely
generated group and suppose that

61(G)c = {[χ1], . . . , [χn]},

where n ≥ 1 and each χ j is a discrete character. Then there is a subgroup of finite
index N ⊆ Aut (G) such that R(ϕ)=∞ for all ϕ ∈ N.
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Corollary 9.5. Let 0 = H oX G be a finitely generated wreath product. Once again,
suppose that 61(0) is as described in Proposition 9.1. Suppose further that Gab

has torsion-free rank 1. Then there is a subgroup of finite index N ⊆ Aut (0) such
that R(ϕ)=∞ for all ϕ ∈ N.

Proof. Under the hypothesis above, we have

61(0)c = {[χ1], [χ2]},

where χ j |M = 0 and χ1(g)= 1 and χ2(g)=−1 for some g ∈ G whose image in
Gab is a generator of the infinite cyclic factor. Then Theorem 9.4 applies. �

This time we can take as an example the regular wreath product 0 = H oZ.
We note that Gonçalves and Wong [2006] and Taback and Wong [2011] had

already obtained some results about the property R∞ for regular wreath products
of the form H oZ, with H abelian or finite. Our results complement theirs in the
sense that they consider other basis groups H and nonregular actions, but here
we were limited to talk about Reidemeister numbers of automorphisms contained
in subgroups of finite index in the automorphism group. In the above-mentioned
papers, on the other hand, the authors were able to determine positively the property
R∞ for some choices of H.
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ENHANCED ADJOINT ACTIONS AND
THEIR ORBITS FOR THE GENERAL LINEAR GROUP

KYO NISHIYAMA AND TAKUYA OHTA

We study an enhanced adjoint action of the general linear group on a product
of its Lie algebra and a vector space consisting of several copies of defin-
ing representations and its duals. We determine regular semisimple orbits
(i.e., closed orbits of maximal dimension) and the structure of enhanced null
cone, including its irreducible components and their dimensions.

Introduction

Let G be a reductive algebraic group over the complex number field C, and g

its Lie algebra. The adjoint action of G on g is a basic tool for many aspects
of representation theory, and is also useful for invariant theory, the theory of
singularities, and so on.

Achar, Henderson and Johnson [Achar and Henderson 2008; Achar et al. 2011;
Johnson 2010] considered an enhanced version of nilpotent varieties and classified
the nilpotent orbits (there are only finitely many of them). Kato [2009] considered
an “exotic” nilpotent cone and derived the Deligne–Langlands theory for those
exotic nilpotent orbits. There are many related works based on algebraic geometry,
combinatorial theory, and the theory of character sheaves [Travkin 2009; Finkelberg
et al. 2009; Henderson and Trapa 2012; Fresse and Nishiyama 2016; Rosso 2012].

In these papers, enhancement of the nilpotent cone is only “one-sided” to get a
criterion of finiteness of orbits. However, from the viewpoint of symmetric spaces
and invariant theory, it seems better to enhance all the adjoint orbits in two-sided
directions. In this respect, we already had two results that relate the orbit structure
of two enhanced actions [Ohta 2008; Nishiyama 2014], but we did not know the
explicit orbit structures of individual enhanced adjoint actions.

In this paper, we begin to study (two-sided) “enhanced adjoint action” of G
for G = GLn(C) (type A). The big difference from those one-sided enhanced (or
exotic) ones is that there exist infinitely many nilpotent orbits. So the analysis
becomes more difficult, but involves less combinatorics. In the easiest cases, we can
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describe enhanced adjoint orbits fairly explicitly, but in general, we have obtained
coarser structures, like regular orbits of maximal possible dimensions, the structure
of invariants, irreducible components of nilpotent variety.

To state the main results more explicitly, let us introduce some notation. Let
V = Cn be a vector space of dimension n. We consider a natural action of G =
GL(V )= GLn(C) on

W = (Cn)⊕p
⊕ (C∗n)⊕q

⊕Mn =Mn,p⊕Mq,n ⊕Mn,

with the action of g ∈ G given by

g · (B,C, A)= (gB,Cg−1,Ad(g)A) for (B,C, A) ∈Mn,p⊕Mq,n ⊕Mn.

Thus, the part Mn is considered to be g= gln(C) and the action is the adjoint action.
For the other parts, Mn,p is a p-copy of natural representations and Mq,n is a q-copy
of its dual, i.e., as a representation space we will study

W ' V⊕p
⊕ (V ⊗ V ∗)⊕ (V ∗)⊕q .

The space W is the fully enhanced adjoint representation as we explained. Here
we note that, from the opposite view point, the space W is also considered as an
extension of V⊕p

⊕ (V ∗)⊕q by adding V ⊗V ∗. Hence it is a generalization of what
H. Weyl considered in the course of his study of classical invariant theory [1939].

There are obvious invariants for the action of G = GLn(C) on W. We put

τk := trace Ak (1≤ k ≤ n− 1),

γ `i, j := (C A`B)i, j (0≤ `≤ n− 1, 1≤ i ≤ q, 1≤ j ≤ p).

These invariants are generators of the whole invariant ring C[W ]G, and they seem to
be known to experts in various forms, including in quiver theory (see Theorem 1.1).
Thus, we can define a quotient map πW :W →Cn

× (Mq,p)
n using these invariants

(see (2-3)).
If p = 1 or q = 1, the quotient map has a very good property. Namely, we get:

Theorem 0.1 (Theorem 2.1(2)). If p= 1 or q= 1, the map πW :W→Cn
×(Mq,p)

n

is an affine categorical quotient map (note that Mq,p = Cp or Cq). In particular,
the quotient map πW is coregular, and C[W ]G is a polynomial ring generated by
the fundamental invariants listed above.

For general p ≥ 1 and q ≥ 1, the following theorem gives a generic structure of
enhanced adjoint orbits.

Theorem 0.2 (Theorem 2.1, Corollary 2.2). The dimension of the image dim ImπW

is equal to n(p+ q), and a general fiber of πW is a single G-orbit of dimension n2.
This implies that general orbits for the enhanced adjoint action are closed of
dimension n2.
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These orbits are called regular semisimple orbits. Another extreme case are
nilpotent orbits. We investigate the null cone N(W )⊂W in Section 3, and get the
following results.

Theorem 0.3 (Theorem 3.3). The null cone N(W ) is reducible and it has n + 1
irreducible components Ck ⊂N(W ) (0≤ k≤ n) given in Lemma 3.2. The dimension
of the null cone is n2

− n+ n ·max{p, q} and N(W ) is equidimensional if and only
if p = q.

Finally, we get the structure of general (enhanced) nilpotent orbits contained in
each component Ck in Theorem 3.4.

1. Setting

Let V = Cn be a vector space of dimension n. We consider a natural action of
G = GL(V ) on

W =W (p, q; r) := V⊕p
⊕ (V ∗)⊕q

⊕ (V ⊗ V ∗)⊕r

in the obvious manner. In explicit matrix form, we can identify

W = (Cn)⊕p
⊕ (C∗n)⊕q

⊕ (Mn)
⊕r
=Mn,p⊕Mq,n ⊕Mr

n,

with the action of g ∈ G on

(B,C, (A1, . . . , Ar )) ∈Mn,p⊕Mq,n ⊕Mr
n

given by

g · (B,C, (A1, . . . , Ar ))= (gB,Cg−1, (Ad(g)Ai )
r
i=1).

There are obvious invariants, which we list below. For a multi-index

I = (i1, i2, . . . , i`) (1≤ ik ≤ r),

let us write AI = Ai1 Ai2 · · · Ai` . We denote [n] = {1, 2, . . . , n} as usual; then the
multi-index I above is an element in [r ]`. We put

τI := trace(AI ) (I ∈ [r ]`),

γ K
i, j := (C AK B)i, j (K ∈ [r ]`, 1≤ i ≤ q, 1≤ j ≤ p),

where we allow `= 0 for K, which means AK = 1n (the identity matrix). These
invariants are generators of the whole invariant ring, which is essentially due to
a more general result of Le Bruyn and Procesi [1990, § 3, Theorem 1] (see also
[Le Bruyn and Procesi 1987; Itoh 2013]).
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Theorem 1.1. The invariant ring C[W ]G is generated by the elements τI with
I ∈ [r ]` (`≥ 0) and the elements γ K

i, j with K ∈ [r ]` (`≥ 0), i ∈ [q], j ∈ [p]; that is,

C[W ]G = C
[
τI , γ

K
i, j | I, K ∈ [r ]` (`≥ 0), i ∈ [q], j ∈ [p]

]
.

Proof. We largely follow the notation of [Le Bruyn and Procesi 1990]. We denote a
connected quiver by Q and by α its dimension vector. For a representation space
R(Q, α) of Q, Theorem 1 in [loc. cit.] states that the invariant ring C[Q, α]GL(α)

is generated by traces of oriented cycles. So we will consider a quiver Q of two
vertices Q0 = {1, 2} with arrows

Q1 = {ai | 1≤ i ≤ r} ∪ {bi | 1≤ i ≤ p} ∪ {ci | 1≤ i ≤ q},

where the ai are loops connecting 1 and itself (i.e., h(ai ) = t (ai ) = 1), the bi

are arrows from 2 to 1 (h(bi ) = 2, t (bi ) = 1), and the ci are arrows from 1 to
2 (h(ci ) = 1, t (ci ) = 2). Take a dimension vector α = (α(1), α(2)) = (n, 1), so
that V (1) = Cn and V (2) = C. Then our W = W (p, q, r) coincides with the
representation space R(Q, α).

The invariants are considered with respect to the action of G(α)= GLn ×GL1.
However, the representation image of G(α) on W = R(Q, α) and that of GLn are
the same because the action of the torus GL1 on V (2) = C can be recaptured by
the center of GLn . So both invariant rings for G(α) and GLn are the same.

Let us consider any closed cycles. Since we take traces, we can start from any
vertices contained in the cycle. If it only contains the vertex 1, the traces are τI ’s. If
it contains the vertex 2, we will start from 2 which necessarily ends in 2. Decompose
the cycle into several cycles which start from 2 and end in 2. Since V (2) = C is
1-dimensional, a decomposed cycle starting from 2 represents a scalar being equal
to its trace. Thus the trace of the cycle which we are considering is a product of
various γ K

i, j ’s. �

Let us denote π = πW :W→W//G, an affine quotient map by the action above.
As a set, the quotient W//G corresponds to the set of closed G-orbits in W. It
is known that these closed orbits are precisely the set of equivalence classes of
completely reducible representations of a quiver corresponding to W.

Let N(W )=π−1
W (πW (0)) be the nilpotent variety, which consists of the nilpotent

elements x with the property G · x 3 0. The nilpotent variety N(W ) is the “worst”
fiber. So we are strongly interested in its structure. In particular, we are interested in
dimN(W ), its irreducible components, its orbit structure, and whether it is reduced
or not. For the dimensions and irreducible components, we have a complete result,
which is stated in Section 3 in detail. The problems of orbit structure and reducibility
of N(W ) also seem very interesting but these are our future subjects.
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On the other hand, general fibers are supposed to have “best” properties we can
expect. This will be helpful for studying the quotient space (at least its smooth
part), which we shall do in Section 2.

It would be too ambitious to expect to get a very explicit orbit structure of the
whole space W. Also it seems to be a difficult problem to clarify the structure of
the singularities of the quotient space.

2. Enhanced adjoint action

In the following, we restrict ourselves to the case r = 1, so W =Mn,p⊕Mq,n⊕Mn ,
on which G = GLn acts. In matrix form, g ∈ GLn acts on

(B,C, A) ∈Mn,p⊕Mq,n ⊕Mn

via g · (B,C, A)= (gB,Cg−1,Ad(g)A). We call this action the enhanced adjoint
action.

Now Theorem 1.1 gives a set of generators of G-invariants:

τk := trace(Ak) (1≤ k ≤ n),(2-1)

γ k
i, j := (C Ak B)i, j (0≤ k ≤ n− 1, 1≤ i ≤ q, 1≤ j ≤ p).(2-2)

Note that An is a linear combination of Ak’s (0≤ k ≤ n− 1) thanks to the Cayley–
Hamilton formula, so we don’t need higher powers of A in τk or γ k

i, j . Let us denote
the affine quotient map by

(2-3)
πW :W → Cn

⊕ (Mq,p)
n,

(A, B,C) 7→
(
(τk)

n
k=1; ((γ

k
i, j )i, j )

n−1
k=0

)
=
(
(τk)

n
k=1; (C Ak B)n−1

k=0

)
.

By the general theory of quotients, we know the image ImπW is a closed subvariety
of Cn
⊕(Mq,p)

n . Let us denote by Detr (Mq,p) the determinantal variety consisting of
matrices in Mq,p of rank less than or equal to r . Clearly, if we put m=min{p, q, n},
ImπW is contained in Cn

×Detm(Mq,p)
n . However, it is much smaller, as you can

see from the theorem below.

Theorem 2.1. Under the setting above, the image ImπW is isomorphic to the affine
quotient W//G = Spec (C[W ]G). Moreover:

(1) There is a dominant map

9 : Cn
× (Det1(Mq,p))

n
→ ImπW ,

whose restriction to a dense open subset of Cn
× (Det1(Mq,p))

n gives an affine
quotient map under the diagonal action of Sn (permuting both coordinates) to a
dense open subset of ImπW . Consequently, we get dim W//G = dim ImπW =

n(p+ q), and a general fiber of πW is of dimension n2.
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(2) If p = 1 or q = 1, the quotient map πW is surjective, and

ImπW = Cn
⊕ (Mq,p)

⊕n

is an affine space. In particular, the quotient map πW is coregular, and C[W ]G

is a polynomial ring of the fundamental invariants listed in (2-1) and (2-2).

Proof. Let us fix a generic diagonal matrix A = t = diag(t1, . . . , tn), where ti 6= t j

(i 6= j). For 1≤ r ≤ n, put

X (r)
=


c1,r

c2,r
...

cp,r

 (br,1, br,2, . . . , br,q) ∈ Det1(Mq,p),

where ci, j denotes the (i, j)-element of the matrix C ∈Mq,n and similarly bi, j for
B ∈Mn,p. We get

(2-4) C Ak B = (γ k
i, j )i, j =

( n∑
r=1

ci,r tk
r br, j

)
i, j
=

n∑
r=1

tk
r X (r)

=: 0(k).

Thus, in the matrix expression,

(2-5)


1 1 · · · 1
t1 t2 · · · tn
...

...
. . .

...

tn−1
1 tn−1

2 · · · tn−1
n




X (1)

X (2)
...

X (n)

=

0(0)

0(1)
...

0(n−1)

,
hence

(2-6)


X (1)

X (2)
...

X (n)

= D(t)−1


0(0)

0(1)
...

0(n−1)

,
where D(t) = (t i−1

j )i, j denotes the Vandermonde matrix in (2-5). Bearing this
calculation in mind, we define a map 9 : Cn

× (Det1(Mq,p))
n
→ Cn

⊕ (Mq,p)
n by

(2-7) 9(t; (X (k))nk=1)=

(( n∑
i=1

tk
i

)n

k=1
; (0(k))nk=1 = D(t)(X (k))nk=1

)
.

We will show that Im9⊂ ImπW so that we get a map from U :=Cn
×(Det1(Mq,p))

n

to ImπW , denoted by the same letter 9.
To see Im9⊂ ImπW , take (τ ; (0(k))k)∈ ImπW for which τ is in an image of reg-

ular semisimple A. For this A, we can pick a diagonal matrix t = diag(t1, . . . , tn) in
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the same adjoint orbit of A, which implies τk(A)=
∑n

i=1 tk
i . Using this t , we can re-

cover X (k)’s via (2-6), since ti 6= t j (i 6= j). As we saw above, if (τ ; (0(k))k)∈ ImπW

then rank X (k)
≤ 1. Here we require that those X (k)’s are all exactly rank one

matrices. This is an open condition (in ImπW ) and it does not depend on the choice
of the diagonal representatives of A. We define an open dense set (ImπW )

′
⊂ ImπW

consisting of (τ ; (0(k))k)∈ ImπW for which (i) τ is in an image of regular semisim-
ple A; and (ii) rank X (k)

= 1 for 1≤ k ≤ n. Thus we conclude that 9 is a surjective
map from an open dense subset of U to (ImπW )

′. Consequently, the image Im9

is contained in the closed subvariety ImπW , and we get a well defined map from
U = Cn

× (Det1(Mq,p))
n to ImπW by

(2-8)

9 :U → ImπW ,

(t; (X (k))nk=1) 7→

(( n∑
i=1

tk
i

)n

k=1
; (0(k))nk=1 = D(t)(X (k))nk=1

)
.

The map 9 is generically an n!-fold covering map, and it is invariant under Sn

which acts on U by the diagonal coordinate permutation on both factors.1

Since 9 is a dominant map with generically finite fibers, we conclude that

dim ImπW = dim U = n+ n(p+ q − 1)= n(p+ q),

where we used dim Det1(Mq,p)= p+ q − 1. Comparing the dimension, we know
the dimension of a generic fiber of πW is n2

= dim W − dim ImπW .
Now let us assume p = 1 or q = 1. Then Mq,p = Cq or Cp, and

dim(Cn
⊕ (Mq,p)

⊕n)= n(p+ q)= dim ImπW

(the last equality follows from Theorem 2.1(1)). Since the image ImπW is closed
in Cn

⊕ (Mq,p)
⊕n, we have a surjective quotient map πW : W → Cn

⊕ (Mq,p)
⊕n

so W//G ' Cn
⊕ (Mq,p)

⊕n, an affine space. This means the invariants are alge-
braically independent and C[W ]G is a polynomial ring. �

Corollary 2.2. Let us denote the quotient map by πW : W → Cn
⊕ (Mq,p)

n as
in (2-3). Assume that (τ ;0)= (τ ; (0(k))nk=1) ∈Cn

⊕ (Mq,p)
n satisfies the following

conditions:

(i) There exists a regular diagonal matrix t with τ = (τk(t))nk=1, i.e., τ ∈ Cn with
the k-th coordinate being τk =

∑n
i=1 tk

i , where ti 6= t j if i 6= j .

(ii) 0(k) (0≤ k ≤ n− 1) corresponds to X (k) via (2-6), which are of rank 1.

Then (τ ;0) is in the image ImπW and dimπ−1
W (τ ;0)= n2, i.e., the fiber of (τ ;0)

is generic and of dimension n2. Moreover, it is a single closed G-orbit.

1Unfortunately, 9 may not be a quotient map. See Remark 2.4
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Proof. By condition (i), we can choose a regular diagonal matrix t with τ =
(τk(t))nk=1. Thus we can define (X (k)) = D(t)−10 via (2-6). If X (k) is of rank 1,
then we can write X (k)

= ck
tbk for certain ck ∈Cq and bk ∈Cp. From these vectors,

we can restore tB = (b1, . . . , bn) and C = (c1, . . . , cn). Thus

(τ ;0)= πW (t, B,C) ∈ ImπW .

There is not so much choice for the fiber. We know the fiber over τ of the adjoint
quotient is just the conjugation of t , which is of dimension n2

− n. For B and C ,
since any column of B and C is nonzero, we can only multiply scalars column by
column, which is of dimension n.

It is now clear that any element in the fiber can be obtained from (t, B,C)
through the action of G. Since the stabilizer of the fiber (t, B,C) is trivial, we
again get the right dimension n2. �

Remark 2.3. Let us assume p= 1 or q = 1. In this case, the action of G =GLn(C)

on W is coregular, i.e., the quotient space is an affine space and the generators
listed in (2-1) and (2-2) are algebraically independent.

However, if we consider an action of the simple group SLn(C) instead of GLn(C),
this action is not coregular (coregular actions are classified for simple groups; see
[Schwarz 1978; Adamovich and Golovina 1979]).

To see this, let us assume p = q = 1 for simplicity. Consider two invariants D1

and D2, with respect to the action of SLn defined as follows. For

(u, v, A) ∈ V ⊕ V ∗⊕Mn

(we consider V = Cn as a column vector), we put

D1(u, v, A)= det


v

vA
vA2
...

vAn−1

 , D2(u, v, A)= det(u, Au, A2u, . . . , An−1u).

Both D1 and D2 are clearly SLn-invariants, and they are not GLn-invariants so they
cannot be expressible by using τk and γ k above.2 However, it is easy to see

D1 · D2 = det
(
vAi+ j u

)
i, j = det(γ i+ j )i, j ,

which gives a relation. This shows that the action of SLn is not coregular.
When p > 1 or q > 1, similar arguments lead to the same conclusion.
However, even if it is not coregular, it seems the SLn-orbit structure has good

properties. We will discuss it in the future.

2Note that, since p = q = 1, we do not need subscripts i and j for γ k
i, j
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Remark 2.4. Let us consider a toy model for the map (2-8), as illustrated below.
Assume that V is a vector space and Sn acts on Cn

×V n as the diagonal coordinate
permutation.

Cn
× V n

3 (a1, . . . , an; v1, . . . , vn)

ψ
��

π

**

Cn
× V n

3

(
(
∑n

i=1 ak
i )

n
k=1; (

∑n
i=1 ak

i vi )
n
k=1

)
(Cn
× V n)/Sn

ϕ
oo

Consider a closed set Z ={(a; v) | aivi = u (1≤ i ≤ n)} for a fixed nonzero vector u,
which is stable under the Sn-action. The image ψ(Z) does not contain an element of
the form (0;w), however its closure contains (0; (n u, 0, . . . , 0)). Thus the image
ψ(Z) is not closed, hence ψ is not a quotient map.

Remark 2.5. Let us consider a semidirect sum L = gl(V )n (V ⊕ V ∗) and the
corresponding Lie group S. Then L admits a deformed universal enveloping algebra
called “infinitesimal Cherednik algebra”. The infinitesimal invariant ring C[L∗]S

is isomorphic to the center of the infinitesimal Cherednik algebra, which is a
polynomial ring of n-variables (n = dim V ). Our invariant ring naturally contains it
as a subalgebra if p = q = 1. For details, see [Tikaradze 2010; Panyushev 2007;
Raïs 2009].

3. Structure of the null cone

We will study the structure of the null cone N(W )= π−1
W (πW (0)) in this section.

For this, we follow the strategy of [Popov 2003] and [Kraft and Wallach 2006]. We
briefly recall their theory.

3A. In this subsection, we consider a general situation so that the notation is
independent of those in the former (sub)sections.

Let G be a connected reductive algebraic group G over C, which acts on a vector
space V linearly. Let π : V → V//G be the quotient map, and

NV := π
−1(π(0))= {v ∈ V | Gv 3 0}

be the null cone. For any one parameter subgroup (abbreviated as “1-PSG”) λ :
C×→ G, we define V (λ) := {v ∈ V | limt→0 λ(t)v = 0}. Then v ∈ V is in the null
cone NV if and only if v ∈ V (λ) for a suitable 1-PSG λ (the Hilbert–Mumford
criterion).

Let T ⊂ G be a maximal torus. We fix T once and for all, and denote by X∗(T )
the character group of T. Then V has the weight space decomposition

V =
⊕

γ∈X∗(T )

Vγ , Vγ := {v ∈ V | tv = γ (t)v, t ∈ T }.
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We denote the set of 1-PSGs λ :C×→ T by X∗(T ). Then there is a natural pairing
〈−,−〉 : X∗(T )× X∗(T )→Z determined as follows. For (λ, γ )∈ X∗(T )× X∗(T ),
m = 〈λ, γ 〉 if γ (λ(t))= tm (t ∈ C×).

With these notations, for a 1-PSG λ : C×→ T ⊂ G, we have

V (λ)=
⊕
〈λ,γ 〉>0

Vγ .

Since every 1-PSG of G is conjugate to a certain λ ∈ X∗(T ), we get

NV =
⋃

λ∈X∗(T )

G · V (λ).

In this decomposition, there appear only finitely many different V (λ) 6= 0. Thus, a
maximal V (λ) may contribute to an irreducible component of NV (but not always).
We call such U = V (λ) a maximal unstable subspace, and put

XU := {γ ∈ X∗(T ) | Vγ ⊂U } = {γ | 〈λ, γ 〉> 0},

a maximal unstable subset of weights. Let X1, . . . ,Xs be a complete set of rep-
resentatives of maximal unstable subsets of weights up to the conjugation of the
Weyl group WG(T ), and Ui =

⊕
γ∈Xi

Vγ (1≤ i ≤ s) be the corresponding maximal
unstable subspace.

For a 1-PSG λ, put

P(λ) := {g ∈ G | the limit lim
t→0

Ad(λ(t)) g exists}.

Then P(λ) is a parabolic subgroup which leaves V (λ) stable; see Kempf [1978]. If
U = V (λ) is a maximal unstable subspace, then the stabilizer StabG(U ) contains
P(λ) and hence it is a parabolic subgroup.

Define Pi := StabG(Ui ) for each 1≤ i ≤ s. Thus, we get a natural multiplication
map G ×Pi Ui → Ci ⊂ NV , where Ci = G ·Ui . Since G/Pi is projective, the
image Ci is closed and irreducible. Thus we can choose C1, . . . ,Cr which give
irreducible components of NV , after renumbering if necessary. In this way, we can
determine the irreducible decomposition of NV :

(3-1) NV =

r⋃
k=1

Ck .

Let us apply this theory to our situation of the enhanced adjoint representation.

3B. Now let us return to our original notation, so G = GLn(C) which acts on
W =Mn,p⊕Mq,n ⊕Mn as before. It is easy to see that the set of weights of W is
given by

3=3(W ) := {0} ∪1n ∪ {±εi | 1≤ i ≤ n},

1n = {εi − ε j | 1≤ i 6= j ≤ n}.
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Here, 1n denotes the set of roots of type An−1 and εi denotes the standard basis
in t∗, where t is the Lie algebra of the diagonal torus T ⊂ G. The multiplicity of
α ∈1n is 1, while the multiplicity of α = 0 is n; that of εi is p and that of −εi is q .
We describe a family of maximal unstable subsets of weights up to the Weyl group
conjugation. Take a standard positive system 1+n = {εi − ε j | 1≤ i < j ≤ n} of 1n .

Lemma 3.1. For 0≤ k≤n, put Xk :=1
+
n ∪{εi | 1≤ i ≤ k}∪{−ε j | k< j ≤n}. Then

X0, X1, . . . , Xn gives a complete system of representatives of maximal unstable
subset of weights up to the conjugation of the Weyl group WG(T )= Sn .

Proof. Let X be a maximal unstable subset corresponding to a 1-PSG λ. Taking
conjugation of λ by Sn , we can assume λ= (λ1, . . . , λn), with λ1 > λ2 > · · ·> λn .
Note that, if an equality appears among λi ’s or one of λi ’s is equal to zero, the cor-
responding unstable subset is not maximal. If λk > 0> λk+1, X is given by Xk . �

Let Uk ⊂W be the maximal unstable subspace corresponding to Xk , so that

(3-2) Uk =
⊕
α∈Xk

Wα =
{
(ξ,η,v)∈Mn,p⊕Mq,n⊕Mn |

ξi, j = 0 (i > k),ηi ′, j ′ = 0 ( j ′≤ k),v ∈ n+
}
,

where n+ denotes a maximal nilpotent subalgebra consisting of upper triangular
matrices with 0’s on the diagonal. It is the Lie algebra of the unipotent radical of a
Borel subgroup B of upper triangular matrices in G = GLn . Note that

ξ =
(
ξ1
0

)
(ξ1 ∈Mk,p), while η = (0, η2) (η2 ∈Mq,n−k).

Lemma 3.2. Let Uk (0≤ k ≤ n) be a maximal unstable subspace as above. Then
the stabilizer Pk = StabG(Uk) of Uk is the Borel subgroup B for any k and ψk :

G ×B Uk → Ck ⊂ N(W ) is a resolution of singularity. In particular, Ck is an
irreducible closed subvariety in N(W ) of dimension (n2

− n)+ pk+ q(n− k).

Proof. Since Pk stabilizes n+, it is contained in B. On the other hand, clearly B
stabilizes Uk , hence Pk = B.

Let us show that a generic fiber of the map ψk is a one-point set. Since
Ck ⊃ Uk , we will examine the fiber of (ξ, η, v) ∈ Uk , where v ∈ n+ is a prin-
cipal nilpotent element. Take an element [g, (ξ ′, η′, u)] ∈ ψ−1

k ((ξ, η, v)). Then
(ξ,η,v)=ψk([g, (ξ ′,η′,u)])= (gξ ′,η′g−1,Ad(g)u). In particular, v=Ad(g)u ∈
Ad(g)b=: bg. It is well known that a principal element belongs to a unique Borel
subalgebra. Since v ∈ b, we conclude b = bg, hence g ∈ B. Now we know
[g, (ξ ′, η′, u)] ∼ [1n, (ξ, η, v)], which means the element in the fiber is uniquely
determined.

The set of elements {(ξ, η, v)∈Ck | v is principal nilpotent} is open dense in Ck ,
so the map ψk is generically one-to-one, hence it is birational. Since G×B Uk is a
vector bundle over a projective variety, the map ψk is proper and it is a resolution. �
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Theorem 3.3. Let N(W ) be the null cone, and let Ck ⊂N(W ) (0 ≤ k ≤ n) be as
in Lemma 3.2.

(1) N(W )=
⋃n

k=0 Ck gives the irreducible decomposition. So the null cone has
(n+ 1) components, the number of which is independent of p ≥ 1 and q ≥ 1.
The dimension of N(W ) is n2

− n+ n ·max{p, q}.

(2) The null cone N(W ) is equidimensional if and only if p = q. In this case, the
dimension of N(W ) is n2

− n+ pn.

(3) The dimension of N(W ) is n2 if and only if p = q = 1. If this is the case, any
fiber π−1

W ((τ ;0)) of (τ ;0) ∈ ImπW is of dimension n2.

Proof. From Lemma 3.2, the subvariety Ck is closed and irreducible. The general
theory described in Section 3A gives the irreducible decomposition of N(W )

(cf. (3-1)). Since dim Ck = (n2
− n)+ pk+ q(n− k),

dimN(W )= max
0≤k≤n

{
(n2
− n)+ pk+ q(n− k)

}
= n2
− n+ n ·max{p, q}.

This proves (1). The claim (2) follows immediately from (1).
Let us prove (3). For any (τ ;0)∈ ImπW , the dimension of the fiber π−1

W ((τ ;0))

is greater than or equal to that of a general fiber, which is n2 by Theorem 2.1. On
the other hand, the dimension of the null cone is the greatest among those of the
fibers (see [Popov and Vinberg 1994]). �

3C. Orbits in the null cone. Let us investigate orbits in an irreducible component
Ck = G ·Uk ⊂ N(W ) (cf. (3-2)). So pick w = (ξ, η, v) ∈ Uk , where v ∈ n+ is a
principal nilpotent element. We denote the G orbit through w by O(w).

We compute the stabilizer ZG(w) of w. Up to G conjugacy, we can assume

v = e :=


0 1

0 1
. . .

. . .
0 1

0

.
By direct calculation, we get

(3-3) ZG(e)= exp
({n−1∑

i=0

σi ei
| σi ∈ R

})
3

n∑
j=1

x j e j−1
=: g.

Assume that k ≥ n− k, and denote ξ ∈Mn,p and η ∈Mq,n as

(3-4) ξ =

(
ξ1

0

)
(ξ1 ∈Mk,p) and η = ( 0 | η1 ) (η1 ∈Mq,n−k).
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Here we take

(3-5) ξ1 = (ek, ξ
′

1) (ξ ′1 ∈Mk,p−1),

where ek ∈ Ck is the k-th elementary vector whose k-th coordinate is 1 and whose
other coordinates are 0. Then, the element g in (3-3) stabilizes ξ and η if and only
if x1 = 1, x2 = · · · = xk = 0. Thus we get

ZG(w)=
{

1n +
n∑

j=k+1
x j e j−1

}
.

In particular, we know codim O(w) = n− k. For the orbit O(w), we can take ξ ′1
in (3-5) and η1 in (3-4) freely, and they are uniquely determined by the orbit. So
there is a fibration of orbits O(w)with the base space Mk,p−1×Mq,n−k of dimension

dim O(w)+ dim Mk,p−1×Mq,n−k = n2
− (n− k)+ k(p− 1)+ q(n− k)

= n2
− n+ kp+ (n− k)q = dim Ck .

This means the family of orbits {O(w)} makes up an open dense subset of the
irreducible component Ck . Since the orbits of the largest possible dimension
constitute an open set, dim O(w)= n2

−n+ k is the largest among the orbits in Ck .
For the family parametrized by Mk,p−1×Mq,n−k , there is no reason to specialize
the first column of ξ . So, if the k-th row of ξ does not vanish, we can follow the
same arguments.

This construction also applies to the case of k ≤ n− k, if we take η instead of ξ .

Let us summarize what we have proven here.

Theorem 3.4. Let Ck ⊂N(W ) (0≤ k ≤ n) be an irreducible component of the null
cone N(W ) (see Lemma 3.2). The largest dimension of the nilpotent orbits in Ck

is n2
−min{k, n− k}. Moreover, there exists an open dense subset of Ck which is

fibered over an affine space of dimension kp+ q(n− k)−max{k, n− k} with the
fiber of isomorphic nilpotent orbits O of the largest dimension.

In particular, an irreducible component Ck contains a nilpotent orbit of dimen-
sion n2 if and only if k = 0 or n.

Remark 3.5. Let us considerw= (ξ, η, v)∈Uk as above. Even if v is not principal,
a G-orbit O(w) throughw can attain the largest possible dimension in the irreducible
component Ck . This seems difficult to describe when an orbit O(w) has the largest
dimension.
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REVISITING THE SADDLE-POINT METHOD OF PERRON

CORMAC O’SULLIVAN

Perron’s saddle-point method gives a way to find the complete asymptotic
expansion of certain integrals that depend on a parameter going to infinity.
We give two proofs of the key result. The first is a reworking of Perron’s
original proof, showing the clarity and simplicity that has been lost in some
subsequent treatments. The second proof extends the approach of Olver
which is based on Laplace’s method. New results include more precise error
terms and bounds for the expansion coefficients. We also treat Perron’s orig-
inal examples in greater detail and give a new application to the asymptotics
of Sylvester waves.

1. Introduction

The main problem under consideration here is the accurate estimation of

(1-1)
∫
C

eN ·p(z)q(z) dz

as N →∞, where p and q are holomorphic functions and integration is along
a contour C. If the contour can be moved to pass through a saddle-point of p(z)
so that Re p(z) achieves its maximum on C there, then the complete asymptotic
expansion of (1-1) may be given quite explicitly. This was established one hundred
years ago by Perron in a groundbreaking paper [1917].

Unfortunately, this paper is now difficult to obtain. There seem to be two detailed
accounts of the method that are more recent. Wong [1989, Part II, Section 5]
refers to Perron’s method and gives a statement and proof based on [Wyman 1964].
These include an extra condition that does not appear in [Perron 1917]. The second
account, by Olver [1974, Theorem 6.1, p. 125], refers only to the saddle-point
method and does not include this extra condition. However it also does not include
Perron’s formula for the asymptotic expansion coefficients, nor give Perron’s clear
description of how the result is affected by the behavior of the contour C near the
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saddle-point. Olver refers to [Wyman 1964] but his proof is different and more
similar to Laplace’s method.

To resolve these discrepancies, our first aim is to produce a clear proof of the
asymptotic expansion of (1-1) based closely on Perron’s original ideas. We see
that the result may be stated simply and is easy to apply. We also give a second
proof that extends the work of Olver mentioned above. In two innovations, the
dependence of the error on q(z) is made explicit, as required by our new application
to the asymptotics of Sylvester waves in Section 9, and we show a bound for the
expansion coefficients with Proposition 7.3.

As a simple example of the asymptotics that Perron’s method produces, we see
in Section 8A that∫ 3/2

1/2
eN (−z+log z) dz =

√
2π

N 1/2eN

(
1+

1
12N
+

1
288N 2 −

139
51840N 3 + O

(
1

N 4

))
as N →∞. Perron’s original motivation was in finding the asymptotics of the
integral

(1-2)
∫ π

−π

eNi(z−ε sin z)

1− ε cos z
dz,

which occurs in Kepler’s theory when relating the true anomaly to the mean anomaly
for a body orbiting in an ellipse with eccentricity ε. As described in [Burkhardt
1914], the initial terms of the asymptotic expansion of (1-2) had already been found
by Jacobi, Cauchy and Debye, for example, with difficult methods. Burkhardt
[1914] outlined a simpler approach and Perron was able to extend Burkhardt’s ideas
and make them rigorous. In [Perron 1917, Section 5] it is shown how to calculate
as many terms as one wishes in the expansion of (1-2) and several related integrals.
We complete these examples in Section 8 by giving explicit formulas for all their
expansion coefficients.

Perron’s method has many other applications, for example to the asymptotics
of special functions used in pure and applied mathematics [Copson 1965; Olver
1974, Chapter 4; López et al. 2009; López and Pagola 2011], to statistics and
probability [Small 2010, Chapter 7], and to results in combinatorics and number
theory [de Bruijn 1958, Chapter 6; Flajolet and Sedgewick 2009, Section VIII]. The
author’s interest in this area began with [O’Sullivan 2015; 2016], where Perron’s
method was key in obtaining the asymptotics of Rademacher’s coefficients and
disproving Rademacher’s conjecture about them. The results described in Section 9
on Sylvester waves are an extension of the work in [O’Sullivan 2016].

1A. Main results. The usual convention that the principal branch of log has argu-
ments in (−π, π] is used. As in (1-7), powers of nonzero complex numbers take
the corresponding principal value zτ := eτ log z for τ ∈ C. This convention will be
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C

B

z0

b

b

b

Figure 1. Neighborhood B and path of integration C.

in place throughout the paper, however in some cases we will specify different
branches of the power.

Our contours of integration C will lie in a bounded region of C and be parametrized
by a continuous function c : [0, 1] → C that has a continuous derivative except at a
finite number of points. For any appropriate f , integration along the corresponding
contour C is defined as

∫
C f (z) dz :=

∫ 1
0 f (c(t))c′(t) dt in the normal way.

The notation f (z) = O(g(z)), or equivalently f (z)� g(z), means that there
exists a C such that | f (z)|6 C · g(z) for all z in a specified range. The number C
is called the implied constant.

In our main results we make the following assumptions and definitions.

Assumptions 1.1. We have B a neighborhood of z0 ∈ C. Let C be a contour as
described above, with z0 a point on it (see Figure 1 for an example). Suppose p(z)
and q(z) are holomorphic functions on a domain containing B∪C. We assume p(z)
is not constant and hence there must exist µ ∈ Z>1 and p0 ∈ C 6=0 so that

(1-3) p(z)= p(z0)− p0(z− z0)
µ(1−φ(z)) (z ∈ B)

with φ holomorphic on B and φ(z0)= 0. Let ω0 := arg(p0) and we will need the
steepest-descent angles

(1-4) θ` := −
ω0

µ
+

2π`
µ

(` ∈ Z).

For later results we require a ∈ C. We also assume that B, C, p(z), q(z), z0 and a
are independent of N > 0. Finally, let Kq be a bound for |q(z)| on B∪ C.

The following is a slight restatement of Perron’s key result in [Perron 1917,
p. 202]. It may be compared with [Wong 1989, Theorem 4, p. 105] and [Olver
1974, Theorem 6.1, p. 125].

Theorem 1.2 (Perron’s method for a holomorphic integrand with contour starting
at a maximum). Suppose that Assumptions 1.1 hold, with C a contour from z0 to z1

in C, where z0 6= z1. Suppose that

(1-5) Re p(z) < Re p(z0) for all z ∈ C, z 6= z0.

We may choose k ∈ Z so that the initial part of C lies in the sector of angular width
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2π/µ about z0 with bisecting angle θk . Then for every S ∈ Z>0, we have

(1-6)
∫
C

eN ·p(z)q(z)dz=eN ·p(z0)

( S−1∑
s=0

0

(
s+1
µ

)
αs ·e2π ik(s+1)/µ

N (s+1)/µ +O
(

Kq

N (S+1)/µ

))
as N →∞, where the implied constant in (1-6) is independent of N and q. The
numbers αs are given by

(1-7) αs =
1

µ · s!
p−(s+1)/µ

0
ds

dzs {q(z) · (1−φ(z))
−(s+1)/µ

}z=z0 .

To understand the geometry of the condition (1-5) we first write

(1-8) p(z)− p(z0)=−

∞∑
s=0

ps(z− z0)
µ+s (z ∈ B).

By Taylor’s theorem, for each S there exists K p,S such that

(1-9)
∣∣∣∣p(z)− p(z0)+

S−1∑
s=0

ps(z− z0)
µ+s

∣∣∣∣6 K p,S|z− z0|
µ+S

for all z ∈ B. Write

(1-10) ps = |ps |eiωs and z = z0+ r · eiθ

so that we obtain

(1-11) Re(p(z)− p(z0))=−rµ
∞∑

s=0

|ps |r s cos(ωs + (µ+ s)θ).

Then (1-9) and (1-11) imply that Re(p(z)− p(z0)) ≈ −rµ|p0| cos(ω0 +µθ) for
small r . Thus, in a small neighborhood of z0, the regions where Re(p(z)−p(z0))<0
correspond approximately to µ sectors of angular width π/µ. These “valleys”
alternate with µ “hill” sectors, of the same size, where Re(p(z)− p(z0)) > 0. The
exact boundaries where Re(p(z)− p(z0))= 0 will be differentiable curves, as we
see in Section 2. See Figure 2 for an example with µ= 3. In Proposition 2.1 we
show it is possible to choose Rp > 0 and small enough so that these boundary
curves behave nicely in the disk of radius Rp about z0, approximating 2µ regularly
spaced spokes in a wheel.

The bisecting lines of the valley sectors are clearly given by z0+ reiθ for r > 0
and θ satisfying cos(ω0 + µθ) = 1. These bisecting angles are the θ` defined
in (1-4) and correspond to the directions of greatest decrease (steepest descent) of
Re(p(z)− p(z0)).

The condition (1-5) means that the initial part of C must lie in one of the valley
regions. To specify which one, we use the fact that the part of this region within
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Figure 2. Hills and valleys near z0 = 0 for p(z)= i(z− sin z).

a distance Rp from z0 must lie inside the sector of angular width 2π/µ about z0

with bisecting angle θk for some k ∈ Z. For the details of this see Section 2.
The proofs of Theorem 1.2 we give in Sections 3 and 4 rely on the important

simplification of Perron stated next and proved in Section 2.

Proposition 1.3. Suppose all the assumptions of Theorem 1.2 are true. Let b be
the point on the bisecting line with angle θk that is a distance Rp from z0. Then
there exists ε > 0 so that

(1-12)
∫
C

eN ·p(z)q(z) dz = eN ·p(z0)

(∫ b

z0

eN (p(z)−p(z0))q(z) dz+ O(Kqe−εN )

)
as N→∞, where ε and the implied constant in (1-12) are independent of N and q.

The point b is shown in Figure 3. It is clear from Proposition 1.3 that most
details of the contour C are irrelevant for our asymptotic results; we only need to
know which sector the contour starts off in.

As a simple corollary to Theorem 1.2, the next result is obtained by breaking
the contour of integration into

∫
C =

∫ z2
z0
−
∫ z1

z0
. This may also be compared with

Theorem 1 of [López et al. 2009].

Corollary 1.4 (Perron’s method for a holomorphic integrand with contour passing
through a maximum). Suppose Assumptions 1.1 hold. Let C be a contour starting
at z1, passing through z0 and ending at z2, with these three points all distinct.
Suppose that

(1-13) Re p(z) < Re p(z0) for all z ∈ C, z 6= z0.

Let C approach z0 in the sector of angular width 2π/µ about z0 with bisecting
angle θk1 and leave z0 in a sector of the same size with bisecting angle θk2 . Then for
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every S ∈ Z>0, we have

(1-14)
∫
C

eN ·p(z)q(z)dz=

eN ·p(z0)

( S−1∑
s=0

0

(
s+1
µ

)
αs(e2π ik2(s+1)/µ

−e2π ik1(s+1)/µ)

N (s+1)/µ +O
(

Kq

N (S+1)/µ

))
as N→∞, where the implied constant is independent of N and q. The numbers αs

are given by (1-7).

We will see generalizations of these results in Section 6. In Section 7, more
explicit formulas for the numbers αs are given.

Prior to [Burkhardt 1914] and [Perron 1917], different techniques to estimate
integrals by moving the path of integration to a saddle-point were pioneered by
Cauchy, Stokes, Riemann, Nekrasov, Kelvin and Debye. See, for example, [Olver
1970; 1974, pp. 104–105; Petrova and Solov’ev 1997; Temme 2013] where their
contributions are described. These techniques include the method of steepest
descent, and an advantage of Corollary 1.4 is that it does not require computing
steepest descent paths.

1B. Burkhardt’s heuristic. Before proving the above results, we give Burkhardt’s
heuristic and show how the form of (1-14) arises. Suppose p′(z0)=0 and p′′(z0)<0.
For simplicity we take C = [−1, 1] and z0 = 0. Expanding p(z) as in (1-8) with
p(z)= p(0)− p0z2

− p1z3
− · · · and q(z)= q0+ q1z+ · · · yields∫ 1

−1
eN ·p(z)q(z) dz = eN ·p(0)

∫ 1

−1
e−N p0z2

e−N z2(p1z+p2z2
+··· )(q0+ q1z+ · · · ) dz,

where we may write

e−N z2(p1z+p2z2
+··· )
=1−N z2(p1z+ p2z2

+· · · )+
(N z2)2

2
(p1z+ p2z2

+· · · )2+· · · .

Since p0 > 0 and N > 0, the term e−N p0z2
will have exponential decay and so

extending the path of integration to R should not affect the result. Let w = N p0z2

to obtain

(1-15) eN ·p(0)
∫
∞

−∞

e−w
(

1−
w

p0
(p1z+p2z2

+· · · )+
w2

2p2
0
(p1z+p2z2

+· · · )2+· · ·

)
× (q0+ q1z+ · · · ) dz.

By symmetry, the contributions from the odd powers of z will cancel. From the z0

term of (1-15) we get the first term of the asymptotic expansion:

(1-16) 2eN ·p(0)
∫
∞

0
e−wq0

dw
2(N p0)1/2w1/2 = eN ·p(0)0(1/2)q0

(N p0)1/2
.
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From the z2 term of (1-15) we get the next term of the expansion:

(1-17) 2eN ·p(0)
∫
∞

0
e−w

(
q2−

w(p1q1+ p2q0)

p0
+
w2 p2

1q0

2p2
0

)
z2 dw

2(N p0)1/2w1/2

=
eN ·p(0)

(N p0)3/2

∫
∞

0
e−w

(
wq2−

w2(p1q1+ p2q0)

p0
+
w3 p2

1q0

2p2
0

)
dw
w1/2

=
eN ·p(0)

(N p0)3/2

(
0(3/2)q2−

0(5/2)(p1q1+ p2q0)

p0
+
0(7/2)p2

1q0

2p2
0

)
.

The formulas (1-16) and (1-17) will reappear in Section 7.

2. Preliminary results

This section is an elaboration of the paragraph in [Perron 1917] before equation (11)
and gives a detailed description of p(z) for z near z0.

Proposition 2.1. Suppose p(z) is holomorphic in a neighborhood B of z0. As in
Assumptions 1.1, we assume p(z) is not constant and hence there must exist µ∈Z>1

and p0 ∈ C 6=0 so that

(2-1) p(z)= p(z0)− p0(z− z0)
µ(1−φ(z)) (z ∈ B)

with φ holomorphic on B and φ(z0) = 0. Then there exists Rp > 0 so that the
closed disk centered at z0 of radius Rp is contained in B and we have the following
additional properties.

(i) All solutions to Re(p(z0+reiθ )− p(z0))/rµ= 0 for r ∈ [0, Rp] have the form
(r, θ)= (r, f`(r)) for functions f`(r) with ` ∈ Z.

(ii) These functions f`(r) are all defined on an interval containing [0, Rp] and are
differentiable.

(iii) We have

(2-2) f`(0)= δ` for δ` := −
ω0

µ
+
π(`+ 1/2)

µ
.

(iv) Also | f`(r)− δ`|6 π/(4µ) for r ∈ [0, Rp].

Proof. Set H(r, θ) := −Re
(

p(z0+ reiθ )− p(z0)
)
/rµ. By (1-11)

H(r, θ)=
∞∑

s=0

|ps |r s cos(ωs + (µ+ s)θ)

and so H(0, θ)= |p0| cos(ω0+µθ). Then the solutions to H(0, θ)= 0 are θ = δ`
for ` ∈ Z with δ` defined in (2-2).



164 CORMAC O’SULLIVAN

For (r, θ) in a neighborhood of (0, δ`) the partial derivatives of H(r, θ) exist and
are continuous. Also

∂H
∂θ

∣∣∣∣
(r,θ)=(0,δ`)

=−|p0|µ sin(ω0+µδ`)= (−1)`+1
|p0|µ 6= 0.

Therefore, by the implicit function theorem, all the solutions to H(r, θ)=0 for (r, θ)
in some neighborhood of (0, δ`) take the form (r, θ)= (r, f`(r)) for differentiable
functions f`. Note that H(r, θ + 2π)= H(r, θ) so that, for all ` ∈ Z,

(2-3) f`+2µ(r)= f`(r)+ 2π.

We choose Rp> 0 small enough so that the interval [0, Rp] is contained in the above
neighborhoods for all ` ∈ Z. By (2-3), this choice involves only 2µ conditions. We
have proved parts (i), (ii) and (iii).

Suppose ε > 0 is given. Since f`(r) is continuous at r = 0 we may decrease Rp

again, if necessary, to ensure that | f`(r)− f`(0)|6 ε for r ∈ [0, Rp]. We do this
for each ` mod 2µ and with ε = π/(4µ). This proves part (iv). �

Corollary 2.2. Suppose all the assumptions of Proposition 2.1 hold. Then

(2-4) f2`−1(r) < θ` < f2`(r) for all r ∈ [0, Rp], ` ∈ Z.

Also

(2-5) Re(p(z0+ reiθ`)− p(z0)) < 0 for all r ∈ (0, Rp], ` ∈ Z.

Inequalities (2-4) and (2-5) are special cases of the following. For every r ∈ (0, Rp]

we have

(2-6) Re(p(z0+ reiθ )− p(z0)) < 0

if and only if θ satisfies f2`−1(r) < θ < f2`(r) for some ` ∈ Z.

Proof. By Proposition 2.1 part (iii), we have

f2`−1(0)+
π

2µ
= θ` = f2`(0)−

π

2µ
.

Hence, with part (iv), it is clear that (2-4) holds. Therefore Re(p(z0+reiθ`)− p(z0))

does not change sign for r ∈ (0, Rp]. Since

Re(p(z0+ reiθ`)− p(z0))≈−rµ|p0| cos(ω0+µθ`)=−rµ|p0|< 0

for small r we obtain (2-5). Similarly, along the directions of steepest ascent,

(2-7) Re(p(z0+ rei(θ`+π/µ))− p(z0)) > 0 for all r ∈ (0, Rp], ` ∈ Z.

For fixed r ∈ (0, Rp], consider Re(p(z0+reiθ )− p(z0)) as a continuous function
of θ with zeros only at θ = f`(r) for `∈Z. Thus Re(p(z0+reiθ )− p(z0)) is always
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Figure 3. Replacing C by the line from z0 to b.

positive or always negative for f2`−1(r) < θ < f2`(r). By (2-4) and (2-5) it must
be negative. Similarly, with (2-7), it must be positive for f2`(r) < θ < f2`+1(r). �

Proof of Proposition 1.3. If the contour C is not contained in the disk of radius Rp

about z0 then let b1 be the first point of C that is a distance Rp from z0, as shown
in Figure 3. Let C′ be the contour from b to z1 that follows the circular arc about z0

from b to b1. From b1 the contour now follows C to z1. (If C is contained in the
disk of radius Rp about z0 then C′ could move from b to a point b0 on the line
between z0 and b that is the same distance as z1 from z0. It then follows the circular
arc about z0 from b0 to z1.)

Since the integrand is holomorphic, Cauchy’s theorem tells us that∫
C

eN ·p(z)q(z) dz =
(∫ b

z0

+

∫
C′

)
eN ·p(z)q(z) dz.

It is clear from Corollary 2.2 and (1-5) that Re(p(z)− p(z0)) < 0 for z ∈ C′. Hence
there exists ε > 0, depending only on C, p(z) and Rp, such that Re(p(z)− p(z0))6
−ε for all z ∈ C′. Therefore

(2-8)
∣∣∣∣∫

C′
eN (p(z)−p(z0))q(z) dz

∣∣∣∣6 e−εN
∫
C′
|q(z)| |dz|6 Kq |C′|e−εN ,

where |C′| is the length of C′ which is less than Rp+Rp(π/µ)+|C|. This completes
the proof of Proposition 1.3. �

Therefore Perron shows us that in finding the asymptotic expansion of (1-1), we
may replace C by the line from z0 to b as shown in Figure 3. This important step is
emphasized in [López et al. 2009]. Theorem 4 on page 105 of [Wong 1989] (based
on the corresponding result of [Wyman 1964]) is similar to Theorem 1.2 but has
the extra condition that there exists δ > 0 so that | arg(p(z0)− p(z))|6 π/2− δ for
all z ∈ C. This condition seems to be caused by missing the step of Proposition 1.3.
Olver [1970] also comments that this condition is unnecessary. (There are two
further unnecessary conditions in [Wong 1989]: that the initial part of C may be
deformed into a straight line and that the path C leaves z0 at a well-defined angle.)
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3. First proof of Theorem 1.2

This proof of Theorem 1.2 is based closely on the original in [Perron 1917] though
including more detail. We follow Wyman [1964] in bounding Ps(w) in Lemma 3.1
using Cauchy’s inequality. We also depart from Perron by bounding Qs(z) in
Lemma 3.2 using the integral form of the remainder from Taylor’s theorem.

Proof of Theorem 1.2. Let

D := {z ∈ C : |z− z0|6 ρ}

for ρ = Rp initially. Since φ(z0)= 0, there exists Kφ > 0 such that

(3-1) |φ(z)|6 Kφ|z− z0| for all z ∈ D.

Looking ahead to Lemma 3.2, we decrease ρ, if necessary, to ensure that

(3-2) 0< ρ 6 1/(2Kφ).

By Proposition 1.3 we only need to estimate the integral∫ b

z0

eN (p(z)−p(z0))q(z) dz,

where b is on the bisecting line with angle θk and a distance Rp from z0. It is
convenient to change the end point to b′, on the same bisecting line and a distance ρ/2
from z0. See Figure 4. By (2-5) there exists ε′> 0 such that Re(p(z)− p(z0))6−ε′

for z on the line between b′ and b. Hence

(3-3)
∫ b′

z0

eN (p(z)−p(z0))q(z) dz =
∫ b

z0

eN (p(z)−p(z0))q(z) dz+ O(Kqe−ε
′N ).

b

b

b

�k

D
b

b0

z0

radius Rp radius �

Figure 4. The line from z0 to b′ is the new path of integration.
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For any w ∈ C we have the Taylor expansion

q(z)ewφ(z) =
∞∑

s=0

Ps(w)(z− z0)
s (z ∈ D).

Since
q(z)ewφ(z) = q(z)(1+wφ(z)+w2φ(z)2/2! + · · · )

and φ(z0)= 0, it follows that Ps(w) is a polynomial and

(3-4) Ps(w)=

s∑
`=0

cs,` ·w
`,

where cs,` is the coefficient of (z−z0)
s in the Taylor expansion of q(z)φ(z)`/`! about

z0. The following bound for Ps(w) will be needed for the proof of Proposition 3.5.

Lemma 3.1. For all w ∈ C,

|Ps(w)|6 KqeKφ (|w|s + ρ−s).

Proof. Starting with Cauchy’s inequality [Ahlfors 1978, p. 120], we find that for
every r with 0< r 6 ρ,

(3-5) |Ps(w)|6 r−s max
|z−z0|=r

|q(z)ewφ(z)|

6 Kqr−s max
|z−z0|=r

eRe(wφ(z))

6 Kqr−seKφ |w|r .

If |w|6 1/ρ then letting r = ρ in (3-5) shows |Ps(w)|6 KqeKφρ−s. If |w|> 1/ρ
then letting r = 1/|w| in (3-5) shows |Ps(w)|6 KqeKφ |w|s. �

Now we take

(3-6) w = N p0(z− z0)
µ.

It is an easy exercise to check that w > 0 when z is on the line between z0 and b′.
For these z values,

(3-7) w1/µ
= (N |p0|)

1/µ
|z− z0|.

Lemma 3.2. With w given by (3-6), and z on the line between z0 and b′, we have

(3-8) eN (p(z)−p(z0))q(z)=
S−1∑
s=0

e−wPs(w)(z− z0)
s
+ QS(z),

where

(3-9) |QS(z)|6
2Kq

ρS |z− z0|
Se−w/2.
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Proof. By Taylor’s theorem, see [Ahlfors 1978, pp. 125–126],

q(z)ewφ(z) =
S−1∑
s=0

Ps(w)(z− z0)
s
+
(z− z0)

S

2π i

∫
γ

q(τ )ewφ(τ)

(τ − z0)S(τ − z)
dτ,

where γ is the positively oriented circle of radius ρ about z0. For τ ∈ γ we have

|q(τ )ewφ(τ)|6 KqeKφwρ.

Also |τ − z|> ρ/2 since |z− z0|6 ρ/2 by our choice of b′. The identity

eN (p(z)−p(z0))q(z)= e−w · q(z)ewφ(z)

proves (3-8) with

|QS(z)|6
2Kq

ρS |z− z0|
Se−w+Kφwρ .

The inequality (3-2) implies exp(−w+ Kφwρ)6 exp(−w/2) and we get (3-9). �

With Proposition 1.3, (3-3) and Lemma 3.2 we may write

(3-10)
∫
C

eN ·p(z)q(z) dz = eN ·p(z0)

( S−1∑
s=0

Is(N )+
∫ b′

z0

QS(z) dz+ O(Kqe−εN )

)
for

(3-11) Is(N ) :=
∫ b′

z0

e−wPs(w)(z− z0)
s dz

(with w given by (3-6)) and where ε > 0 is independent of N and q .

Lemma 3.3. We have ∫ b′

z0

QS(z) dz = O
(

Kq

N (S+1)/µ

)
.

Proof. The absolute value of the left side is

(3-12)
∣∣∣∣∫ ρ/2

0
QS(teiθk + z0)eiθk dt

∣∣∣∣6 ∫ ρ/2

0
|QS(teiθk + z0)| dt

6
2Kq

ρS

∫ ρ/2

0
exp(−N |p0|tµ/2) · t S dt.

We used inequality (3-9) in (3-12) and that w= N |p0|tµ when z = teiθk + z0. With
the change of variables u = N |p0|tµ/2 and extending the range of integration to∞
we obtain ∣∣∣∣∫ b′

z0

QS(z) dz
∣∣∣∣6 [ 20((S+ 1)/µ)

µ · ρS(|p0|/2)(S+1)/µ

]
Kq

N (S+1)/µ . �
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Combining the errors from (3-10) and Lemma 3.3 shows

(3-13)
∫
C

eN ·p(z)q(z) dz = eN ·p(z0)

( S−1∑
s=0

Is(N )+ O
(

Kq

N (S+1)/µ

))
for an implied constant independent of N and q.

Lemma 3.4. We have

Is(N )=
e2π ik(s+1)/µ

µ · (N p0)(s+1)/µ

∫ N |p0|(ρ/2)µ

0
e−wPs(w)w

(s+1)/µ−1 dw.

Proof. Recall (3-6). First we claim that

(3-14) z− z0 = w
1/µ(N p0)

−1/µe2π ik/µ

for z on the line between z0 and b′. This follows from the definitions

p0 = |p0|eiω0, θk =−
ω0

µ
+

2πk
µ
, z− z0 = |z− z0|eiθk

and the relation (3-7). The proof is completed by using (3-14) in (3-11) to change
the variable of integration to w. �

Proposition 3.5. There exists ε′′ > 0 so that

(3-15)
∫ N |p0|(ρ/2)µ

0
e−wPs(w)w

(s+1)/µ−1 dw

=
0((s+ 1)/µ)

s!
ds

dzs {q(z)(1−φ(z))
−(s+1)/µ)

}z=z0 + O(Kqe−ε
′′N ).

Proof. Put T := N |p0|(ρ/2)µ and write the integral in (3-15) as
∫ T

0 =
∫
∞

0 −
∫
∞

T .
Employing Lemma 3.1, we find

(3-16)
∣∣∣∣∫ ∞

T
e−wPs(w)w

(s+1)/µ−1 dw
∣∣∣∣

6 KqeKφ

∫
∞

T
e−w(ws

+ ρ−s)w(s+1)/µ−1 dw

= KqeKφ

(∫
∞

T
e−wwd−1 dw+ ρ−s

∫
∞

T
e−wwd ′−1 dw

)
for d := (s+ 1)/µ+ s and d ′ := (s+ 1)/µ. The estimate

(3-17)
∫
∞

T
e−wwd−1 dw 6 2d0(d)e−T/2 (T > 0, d > 0)

follows from bounding e−w in the integrand by e−T/2e−w/2. (More accurate esti-
mates of the incomplete gamma function are possible; see for example [Olver 1974,
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Equation (2.02), p. 110].) Hence (3-16) is bounded by

KqeKφ (2d0(d)+ ρ−s2d ′0(d ′))e−T/2.

We have shown that ∣∣∣∣∫ ∞
T

∣∣∣∣= O(Kqe−ε
′′N )

for ε′′ = |p0|(ρ/2)µ/2 and an implied constant independent of N and q.
Lastly, we calculate

∫
∞

0 . Recalling (3-4),

(3-18)
∫
∞

0
e−wPs(w)w

(s+1)/µ−1 dw =
s∑
`=0

cs,`0

(
s+ 1
µ
+ `

)
,

where cs,` is the coefficient of (z− z0)
s in the Taylor expansion of q(z)φ(z)`/`!.

Therefore (3-18) is the coefficient of (z− z0)
s in

(3-19) q(z)
s∑
`=0

0

(
s+ 1
µ
+ `

)
φ(z)`

`!

= q(z)0
(

s+ 1
µ

) s∑
`=0

0

(
s+1
µ
+ `

)
0

(
s+1
µ

)
`!

(−1)`(−φ(z))`

= q(z)0
(

s+ 1
µ

) s∑
`=0

(
−(s+ 1)/µ

`

)
(−φ(z))`.

Extending this sum to infinity will not affect the coefficient of (z− z0)
s and so we

may replace (3-19) by

q(z)0
(

s+ 1
µ

) ∞∑
`=0

(
−(s+ 1)/µ

`

)
(−φ(z))` = q(z)0

(
s+ 1
µ

)
(1−φ(z))−(s+1)/µ.

This completes the proof of Proposition 3.5. �

Theorem 1.2 now follows from (3-13), Lemma 3.4 and Proposition 3.5. �

4. Second proof of Theorem 1.2

This proof of Theorem 1.2 is based on [Olver 1970, Theorem I] or, equivalently,
[Olver 1974, Theorem 6.1, p. 125]. Instead of employing the substitution w =
N p0(z − z0)

µ, Olver uses v = p(z0)− p(z) as in the usual proofs of Laplace’s
method (see Section 6C).

To get the result to match the statement of Theorem 1.2, we have to treat the
branch factor e2π ik/µ more explicitly than in [Olver 1974, Theorem 6.1, p. 125].
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The coefficients αs naturally appear in a power series in this proof and we use a
method inspired by the application of Cauchy’s differentiation formula in [Campbell
et al. 1987] to obtain Perron’s expression for them.

Second proof of Theorem 1.2. Let

D := {z ∈ C : |z− z0|6 ρ}

for ρ = Rp, initially. As in (3-1) and (3-2) we may decrease ρ to ensure that

(4-1) |φ(z)|6 1/2 for all z ∈ D.

By Proposition 1.3 we only need to estimate the integral

(4-2)
∫ b

z0

eN (p(z)−p(z0))q(z) dz,

where b is on the bisecting line with angle θk and a distance Rp from z0. We will
use the change of variables v := p(z0)− p(z) and, to prepare for this, set

(4-3) τ = τ(z) := p1/µ
0 (z− z0)(1−φ(z))1/µ

with all roots principal. By (1-3) it is clear that τ is some µ-th root of p(z0)− p(z).
We also see by (4-1) that τ is a holomorphic function of z for z in D. We have
dτ
dz

∣∣
z=z0
= p1/µ

0 6= 0 and consequently, by the inverse function theorem for holo-
morphic functions, there exists a neighborhood Dτ of 0 so that z is a holomorphic
function of τ there:

z− z0 = g(τ ) :=
∞∑

s=1

csτ
s (τ ∈ Dτ ).

Choose Dτ to be a disk centered at 0 and small enough that the image Dz :=

z0 + g(Dτ ) is contained in D. See Figure 5 (Dz may not be a disk). From the

b

b

b

bb

b

�k

D b

b0

z

z0

radius Rp

radius �

0

�

z D z0 C g.�/

� D �.z/
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Figure 5. The regions Dz and Dτ .
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equality

p′(z)=−
∞∑

s=0

(s+µ)ps(z− z0)
s+µ−1,

we obtain

(4-4) −
q(z)
p′(z)

=−
q(z0+ g(τ ))
p′(z0+ g(τ ))

=: F(τ )=
∞∑

s=0

βsτ
s−µ+1 (z ∈Dz, τ ∈Dτ ).

Shrink Dτ (and correspondingly Dz) if necessary so that τµ−1 F(τ ) is holomorphic
on Dτ ; we are avoiding any zeros of p′(z) away from z = z0. Taylor’s theorem
implies there exist constants KF,S such that

(4-5)
∣∣∣∣τµ−1 F(τ )−

S−1∑
s=0

βsτ
s
∣∣∣∣6 KF,S|τ |

S (τ ∈ Dτ , S ∈ Z>0).

To understand the dependence of KF,S on q we may write the remainder term
explicitly as

τµ−1 F(τ )=
S−1∑
s=0

βsτ
s
+
τ S

2π i

∫
C0

wµ−1 F(w)
wS(w− τ)

dw

with C0 the boundary of Dτ , oriented positively. Since

(4-6)
1

2π i

∫
C0

wµ−1 F(w)
wS(w− τ)

dw =−
1

2π i

∫
C0

q(z0+ g(w))
p′(z0+ g(w)) ·wS−µ+1(w− τ)

dw

and |q(z0+g(w))|6 Kq on the right of (4-6), we may write KF,S = K ∗F,S ·Kq with
K ∗F,S independent of q . For these estimates we have shrunk Dτ (and Dz) again, for
example to half their size, so that w− τ in (4-6) is bounded away from zero for
w ∈ C0 and τ ∈ Dτ .

Lemma 4.1. For all z ∈ Dz with z also on the line between z0 and b, we have

(4-7) τ(z)= e2π ik/µ(p(z0)− p(z)
)1/µ

.

Proof. Recall that arg(p0)= ω0 and arg(z− z0)= θk . Hence arg(p0(z− z0)
µ)= 0

and so

τ(z) := p1/µ
0 (z− z0)(1−φ(z))1/µ

= p1/µ
0 (z− z0)(p0(z− z0)

µ)−1/µ(p(z0)− p(z))1/µ

= eiω0/µ · eiθk
∣∣p1/µ

0 (z− z0)(p0(z− z0)
µ)−1/µ∣∣(p(z0)− p(z))1/µ

= e2π ik/µ(p(z0)− p(z))1/µ

as desired. �
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Fix b′ on the line between z0 and b so that the segment from z0 to b′ is contained
in Dz . Hence Lemma 4.1 shows that we have

v := p(z0)− p(z), τ = e2π ik/µv1/µ, v = τµ

for all z and τ(z) where z is on the line between z0 and b′.
To estimate (4-2) we see first that

∫ b
b′ is O(Kqe−ε

′N ) as in (3-3). Using the
equality dv/dz =−p′(z) and (4-4) we find

(4-8)
∫ b′

z0

eN (p(z)−p(z0))q(z) dz =
∫ p(z0)−p(b′)

0
e−Nvq(z) ·

dz
dv

dv

=−

∫ p(z0)−p(b′)

0
e−Nv q(z)

p′(z)
dv

=

∫ p(z0)−p(b′)

0
e−NvF(e2π ik/µv1/µ) dv.

The contour of integration in (4-8) is the image of the line between z0 and b′ in
the v-plane. Except for the starting point, this contour is contained in the half-
plane with positive real part by (1-5). The principal root v1/µ is holomorphic in
this half-plane and therefore the integrand in (4-8) is holomorphic there too. Set
w := p(z0)− p(b′). By Cauchy’s theorem we may change the contour of integration
to the straight line from 0 to w. (The integrand may have a singularity at v = 0, but
it is� |v|1/µ−1 for |v| small, and so moving the path of integration near 0 may be
justified.) Employing (4-5) yields

(4-9)
∫ w

0
e−NvF(e2π ik/µv1/µ)dv=

S−1∑
s=0

βse2π ik(s+1)/µ
∫ w

0
e−Nvv(s+1)/µ−1 dv+ES

with

(4-10) |ES|6 KF,S

∫ w

0
|e−Nv

||v|(S+1)/µ−1
|dv|

= KF,S

∫
|w|

0
e−N Re(w/|w|)t t (S+1)/µ−1 dt

6 KF,S0

(
S+ 1
µ

)(
N Re

w

|w|

)−(S+1)/µ

upon extending the limit of integration to infinity. The next lemma estimates the
integral in (4-9).

Lemma 4.2. Suppose N, r , ε > 0 and Rew> ε. For an implied constant depending
only on r and w we have∫ w

0
e−Nvvr−1 dv = N−r (0(r)+ O(e−εN/2)).
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Proof. Continue the line of integration to w∞ and write
∫ w

0 =
∫ w∞

0 −
∫ w∞
w

. The
integral

∫ w∞
0 is computed by rotating the line of integration to R>0 which is

straightforward to justify:∫ w∞

0
e−Nvvr−1 dv = N−r0(r).

The absolute value of
∫ w∞
w

is bounded by

|w|r
∣∣∣∣∫ ∞

1
e−Nwt tr−1 dt

∣∣∣∣6 |w|r ∫ ∞
1

e−Nεt tr−1 dt

=
|w|r

(Nε)r

∫
∞

Nε
e−uur−1 du

6

(
2|w|
ε

)r

0(r)N−r e−εN/2,

where the last line used (3-17). �

We have shown so far, with (4-8), (4-9), (4-10) and with Lemma 4.2 applied
to (4-9), that∫ b′

z0

eN (p(z)−p(z0))q(z) dz =
S−1∑
s=0

βse2π ik(s+1)/µ0((s+ 1)/µ)
N (s+1)/µ + E∗S,

where

(4-11) E∗S �
KF,S

N (S+1)/µ +

( S−1∑
s=0

|βs |

)
e−εN/2

for an implied constant independent of N and q. A similar argument to the one
after (4-6), showing that KF,S/Kq may be bounded independently of q , shows that
|βs |/Kq is also independent of q since

(4-12) βs =
1

2π i

∫
C0

τµ−1 F(τ )
τ s+1 dτ

=−
1

2π i

∫
C0

q(z0+ g(τ ))
p′(z0+ g(τ )) · τ s−µ+2 dτ.

We have already seen that integral
∫ b

b′ has exponential decay in N, and so may be
included in the error term (4-11). Consequently

(4-13)
∫
C

eN ·p(z)q(z) dz

= eN ·p(z0)

(S−1∑
s=0

0

(
s+ 1
µ

)
βs · e2π ik(s+1)/µ

N (s+1)/µ + O
(

Kq

N (S+1)/µ

))
as desired.
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It only remains to compute the numbers βs . A change of variables in (4-12) shows

βs =−
1

2π i

∫
Cz0

q(z)
p′(z) · τ s−µ+2

dτ
dz

dz

for Cz0 ⊂Dz a positively oriented circle centered at z0. Use (1-3) and (4-3) to show

dτ
dz
=−

1
µ
τ 1−µ p′(z).

Hence

βs =
1

2π i ·µ

∫
Cz0

q(z)
τ s+1 dz

=
1

2π i ·µ
p−(s+1)/µ

0

∫
Cz0

q(z) · (1−φ(z))−(s+1)/µ

(z− z0)s+1 dz(4-14)

=
1

µ · s!
p−(s+1)/µ

0
ds

dzs {q(z)(1−φ(z))
−(s+1)/µ)

}z=z0,(4-15)

where (4-14) is related to (4-15) by Cauchy’s differentiation formula. Thus βs is
recognized as αs from (1-7). Combining (4-13) and (4-15) completes the second
proof of Theorem 1.2. �

5. An important case

A case of Corollary 1.4 that often arises is when C passes through the saddle-point
z0 in a straight line or in a curve with a well-defined tangent at z0. If µ is even then
these paths will pass through opposite valley sectors, for example with θk2 = θk1±π .
In this case the terms in (1-14) with s odd vanish:

Corollary 5.1 (Perron’s method for a holomorphic integrand with contour passing
through a maximum between opposite sectors). Suppose Assumptions 1.1 hold
and µ is even. Let C be a contour beginning at z1, passing through z0 and ending
at z2, with these points all distinct. Suppose

Re p(z) < Re p(z0) for all z ∈ C, z 6= z0.

Let C approach z0 in a sector of angular width 2π/µ about z0 with bisecting angle
θk + (2n+ 1)π for some n ∈ Z, and initially leave z0 in a sector of the same size
with bisecting angle θk . Then for every M ∈ Z>0,∫
C
eN ·p(z)q(z)dz=eN ·p(z0)

(M−1∑
m=0

0
(2m+1

µ

)2α2m ·e2π ik(2m+1)/µ

N (2m+1)/µ +O
(

Kq

N (2M+1)/µ

))
as N→∞, where the implied constant is independent of N and q. The numbers αs

are given by (1-7).
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Proof. Apply Corollary 1.4 with k2 = k and k1 = k + (2n + 1)µ/2. Then the
difference of exponentials in (1-14) is

e2π ik(s+1)/µ
− e2π i(k+(2n+1)µ/2)(s+1)/µ

= e2π ik(s+1)/µ(1− e2π i(µ/2)(s+1)/µ)

= e2π ik(s+1)/µ(1− (−1)s+1)

and the corollary follows on writing s = 2m. �

The above result corresponds to [Olver 1974, Theorem 7.1, p. 127] when µ= 2,
giving a clearer description of how the result depends on C near z0. Olver does
not give the formula (1-7) for the coefficients and perhaps he was not aware of
Perron’s paper [1917]. It does not appear in the references of [Olver 1974], though
[Burkhardt 1914] is listed. Perron’s paper [1917] is not cited by the classic works
[de Bruijn 1958; Copson 1965; Dingle 1973] either. It is briefly mentioned, along
with [Burkhardt 1914], in Section 2.4 of Erdélyi’s book [1956], though in a way
which seems to imply that Perron only gives the main term of the asymptotic
expansions.

6. Generalizations

6A. Including a factor (z− z0)
a−1 with Re a > 0. The results in [Perron 1917]

cover a more general situation where we have (z − z0)
a−1q(z) in the integrand,

instead of just q(z). Unlike Perron, we do not assume that q(z0) 6= 0. The number a
is in C and so we must pay attention to which branch of (z − z0)

a−1 is meant.
For example, if z is on the bisecting line with angle θk (recall (1-4)) then possible
branches are

(6-1) (z− z0)
a−1
= |z− z0|

a−1
· eiθ`(a−1)

for ` ∈ Z with `≡ k mod µ. The principal value of the power (6-1) has the unique
such ` for which θ` is in (−π, π].

The standard method for integrating a multivalued function such as (6-1) along
a contour C is to begin with a specified branch, and as z moves along C the branch
is determined by continuity. In particular, if z− z0 crosses the negative real axis
then (z− z0)

a−1 enters another branch.

Theorem 6.1 (Perron’s method for an integrand containing a factor (z− z0)
a−1 for

Re a > 0 and with contour starting at a maximum). Suppose Assumptions 1.1 hold.
Let C be a contour from z0 to z1, with z0 6= z1, that initially runs along the bisecting
line with angle θk for some k ∈ Z. Suppose Re a > 0 and that

(6-2) Re p(z) < Re p(z0) for all z ∈ C, z 6= z0.

On the initial part of C we take

(6-3) (z− z0)
a−1
= |z− z0|

a−1
· eiθk(a−1).
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Then for any S ∈ Z>0,

(6-4)
∫
C

eN ·p(z)(z− z0)
a−1q(z) dz

= eN ·p(z0)

( S−1∑
s=0

0

(
s+ a
µ

)
αs · e2π ik(s+a)/µ

N (s+a)/µ + O
(

Kq

N (S+Re a)/µ

))
,

where the implied constant in (6-4) is independent of N and q. The numbers αs are
given by

(6-5) αs =
1

µ · s!
p−(s+a)/µ

0
ds

dzs {q(z) · (1−φ(z))
−(s+a)/µ

}z=z0 .

The condition in Theorem 6.1 that C initially runs along the bisecting line with
angle θk is not really necessary and just included for convenience. The theorem is
true if C begins in the sector of angular width 2π/µ about z0 with this bisecting
line, and the branch of (z − z0)

a−1 is consistent with (6-3). The a = 1 case of
Theorem 6.1 is Theorem 1.2 and, in particular, (6-5) reduces to (1-7) when a = 1.

Proof of Theorem 6.1. We may use a straightforward extension of the first proof of
Theorem 1.2 given in Section 3. The key step is in Lemma 3.4, where we need to
express (z− z0)

a+n in terms of w for any n ∈ Z and z on the bisecting line with
angle θk . Here, (z− z0)

a+n
= (z− z0)

a−1
· (z− z0)

1+n where (z− z0)
a−1 is given

by (6-3) and (z− z0)
1+n is unambiguous. Then

(6-6) (z− z0)
a+n
= |z− z0|

a+n
· eiθk(a+n)

=

(
w

N |p0|

)(a+n)/µ

e−iω0(a+n)/µe2π ik(a+n)/µ

= w(a+n)/µ(N p0)
−(a+n)/µe2π ik(a+n)/µ,

with the powers in (6-6) taking the principal values. Therefore

Is(N ) :=
∫ b′

z0

e−wPs(w)(z− z0)
s+a−1 dz

=
e2π ik(s+a)/µ

µ · (N p0)(s+a)/µ

∫ N |p0|(ρ/2)µ

0
e−wPs(w)w

(s+a)/µ−1 dw.

The rest of the proof continues as in Section 3 to obtain the result. �

The second proof given in Section 4 may also be adapted to Theorem 6.1. The
series F(τ ) has a more complicated construction as described next. Define τ as
in (4-3) and choose the branch of τ a−1 so that

(6-7) τ a−1
= τ(z)a−1

:= p(a−1)/µ
0 (z− z0)

a−1(1−φ(z))(a−1)/µ,
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where (z − z0)
a−1 is consistent with (6-3) and the two other powers in (6-7) are

principal. Then

−
(z− z0)

a−1

τ a−1 q(z)
τµ−1

p′(z)
=−

q(z)

p(a−1)/µ
0 (1−φ(z))(a−1)/µ

τµ−1

p′(z)
= h(z)

for h(z) holomorphic on Dz . As in (4-4) we may write

h(z0+ g(τ ))=: τµ−1 F(τ )=
∞∑

s=0

βsτ
s (z ∈ Dz, τ ∈ Dτ ),

implying the identity

−(z− z0)
a−1 q(z)

p′(z)
= τ a−1 F(τ ) (z ∈ Dz, τ ∈ Dτ ).

A calculation similar to Lemma 4.1 shows that

τ a−1
= e2π ik(a−1)/µv(a−1)/µ

when z in Dz is on the line from z0 to b.
With the above results in place, the rest of the proof of Section 4 goes through

easily. Of particular interest is the computation of βs , as in the equations leading to
(4-12) and (4-15):

(6-8) βs =
1

2π i

∫
C0

τµ−1 F(τ )
τ s+1 dτ

=−
1

2π i

∫
C0

q(z0+g(τ ))

p(a−1)/µ
0 (1−φ(z0+g(τ )))(a−1)/µ·p′(z0+g(τ ))·τ s−µ+2

dτ

=−
1

2π i ·µ·p(a−1)/µ
0

∫
Cz0

q(z)
(1−φ(z))(a−1)/µ·τ s+1 dz

=−
1

2π i ·µ·p(s+a)/µ
0

∫
Cz0

q(z)(1−φ(z))−(s+a)/µ

(z−z0)s+1 dz=αs .

Formula (6-8) will be used in Proposition 7.3. When a = 1, (6-8) reduces to (4-12).

6B. Including a factor (z − z0)
a−1 with arbitrary a ∈ C. Two applications of

Theorem 6.1 give the following corollary.

Corollary 6.2 (Perron’s method for an integrand containing a factor (z− z0)
a−1 for

Re a > 0 and with contour passing through a maximum). Suppose Assumptions 1.1
hold. Let C be a contour starting at z1, passing through z0 and ending at z2, with
these three points all distinct. Suppose there are k1, k2∈Z so that, in a neighborhood
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of z0, C runs along the bisecting line with angle θk1 as C approaches z0 and C runs
along the bisecting line with angle θk2 leaving z0. Assume Re a > 0 and

(6-9) Re p(z) < Re p(z0) for all z ∈ C, z 6= z0.

On the part of C approaching z0 we take

(6-10) (z− z0)
a−1
= |z− z0|

a−1
· eiθk1 (a−1)

and on the part of C leaving z0,

(6-11) (z− z0)
a−1
= |z− z0|

a−1
· eiθk2 (a−1).

Then for any S ∈ Z>0,

(6-12)
∫
C

eN ·p(z)(z−z0)
a−1q(z)dz=

eN ·p(z0)

(S−1∑
s=0

0
(s+a
µ

)
αs(e2π ik2(s+a)/µ

−e2π ik1(s+a)/µ)

N (s+a)/µ +O
( Kq

N (S+Re a)/µ

))
,

where the implied constant in (6-12) is independent of N and q. The numbers αs

are given by (6-5).

The next result is an elegant extension of Corollary 6.2, where Perron shows that
the condition Re a > 0 may be dropped provided that the contour of integration is
adjusted to make sure it avoids z0. We will need this extension for the examples in
Sections 8C and 8D.

Theorem 6.3 (Perron’s method for an integrand containing a factor (z− z0)
a−1 for

arbitrary a ∈ C). Suppose Assumptions 1.1 hold. Let C be the following contour.
Starting at z1 it runs to the point z′1 which is a distance Rp from z0 and on the
bisecting line with angle θk1 . Then the contour circles z0 to arrive at the point z′2
which is a distance Rp from z0 and on the bisecting line with angle θk2 . Finally,
the contour ends at z2. The integers k1 and k2 keep track of how C rotates about z0

between z′1 and z′2; the angle of rotation is 2π(k2− k1)/µ.
Suppose that Re p(z) < Re p(z0) for all z in the segments of C between z1 and

z′1 and between z′2 and z2 (including endpoints). Let a ∈ C. For z ∈ C, the branch of
(z− z0)

a−1 is specified by requiring

(6-13) (z′1− z0)
a−1
= |z′1− z0|

a−1
· eiθk1 (a−1)

when z= z′1 and by continuity at the other points of C. Then for any S ∈Z>0, (6-12)
holds with an implied constant independent of N and q. If (s+ a)/µ ∈ Z60 then

0((s+ a)/µ)(e2π ik2(s+a)/µ
− e2π ik1(s+a)/µ)



180 CORMAC O’SULLIVAN

in (6-12) is not defined and must be replaced by

2π i(k2− k1)(−1)(s+a)/µ/|(s+ a)/µ|!.

Proof. We will follow [Perron 1917, Section 4] and the first proof of Theorem 1.2
given in Section 3. It is convenient to move z′1, z′2 and the circular path of integration
to the smaller radius ρ/2 with ρ satisfying (3-2). The points z′1 and z′2 are kept on
their bisecting lines.

There exists ε > 0 so that Re(p(z) − p(z0)) 6 −ε for all z in the segment
of C between z1 and z′1 (using (2-5) for the new part). It also follows that on this
segment z is bounded away from z0. Hence∣∣∣∣∫ z′1

z1

eN (p(z)−p(z0))(z− z0)
a−1q(z) dz

∣∣∣∣6Kqe−εN
∫ z′1

z1

|(z−z0)
a−1
| |dz|�Kqe−εN .

We obtain a similar bound for the integral between z′2 and z2. The integral around
the circular path from z′1 to z′2 remains to be estimated.

Following Lemma 3.2, write the integrand in the form

(6-14) eN (p(z)−p(z0))(z− z0)
a−1q(z)

=

S−1∑
s=0

e−wPs(w)(z− z0)
s+a−1

+ (z− z0)
a−1 QS(z)

with w = N p0(z − z0)
µ as in (3-6). The integer S should satisfy S > 0 and

S+Re a > 0.

Lemma 6.4. With this choice of S,∫ z′2

z′1

(z− z0)
a−1 QS(z) dz = O

(
Kq

N (S+Re a)/µ

)
.

Proof. We may change the path of integration, moving the circular part closer to z0

as follows. From z′1 the new path follows the bisecting line with angle θk1 to a
point ζ1 close to z0. Then it circles z0 until reaching ζ2 on the bisecting line with
angle θk2 . This bisecting line is followed to z′2.

As in Lemma 3.2,

QS(z)=
(z− z0)

S

2π i

∫
γ

q(τ )e−w+wφ(τ)

(τ − z0)S(τ − z)
dτ,

where γ is the positively oriented circle of radius ρ about z0. Note

Re(−w+wφ(τ))6 |w|(1+ |φ(τ)|)6 3|w|/26 2N |p0| |z− z0|
µ.

Hence, for z with |z− z0|6 ρ/2,

(z− z0)
a−1 QS(z)� Kq |z− z0|

S+Re a−1e2N |p0| |z−z0|
µ

.
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Suppose ζ1, ζ2 and the circular path of integration between them are at a distance r
from z0. Then

(6-15)
∫ ζ2

ζ1

(z− z0)
a−1 QS(z) dz = O(Kq · r S+Re ae2N |p0|rµ).

Choosing any r 6 N−1/µ shows that (6-15) satisfies the lemma’s bound. The
remaining integrals along the bisecting lines may now be bounded using (3-9) as in
Lemma 3.3, completing the proof. �

Our work so far has shown

(6-16)
∫
C

eN ·p(z)(z− z0)
a−1q(z) dz = eN ·p(z0)

(S−1∑
s=0

I ∗s (N )+ O
(

Kq

N (S+Re a)/µ

))
for

(6-17) I ∗s (N ) :=
∫ z′2

z′1

e−wPs(w)(z− z0)
s+a−1 dz.

As in Lemma 3.4, and using (6-6), we change variables to w in (6-17) to produce

(6-18) I ∗s (N )=
e2π ik1(s+a)/µ

µ · (N p0)(s+a)/µ

∫ N |p0|(ρ/2)µ

N |p0|(ρ/2)µ
e−wPs(w)w

(s+a)/µ−1 dw.

The path of integration in (6-18) starts and ends at the positive real number T :=
N |p0|(ρ/2)µ, circling the origin k2− k1 times. The value of w(s+a)/µ−1 in (6-18)
is the principal power value at the beginning of the integration path and this value
times exp(2π i(k2− k1)(s+ a)/µ) at the end of the integration path.

Lemma 6.5. If (s+ a)/µ ∈ Z60 then

I ∗s (N )= 2π i(k2− k1)
(−1)(s+a)/µ

|(s+ a)/µ|!
αs

N (s+a)/µ .

Proof. Letting m := (s+ a)/µ, the integral in (6-18) is

(6-19)
∫ T

T
e−wPs(w)w

m−1 dw.

When m ∈ Z60, the integrand has a pole with residue

|m|∑
`=0

cs,`
(−1)|m|−`

(|m| − `)!
,

where cs,` is the coefficient of (z− z0)
s in the Taylor expansion of q(z)φ(z)`/`!
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about z0 as in (3-4). Therefore (6-19) equals the coefficient of (z− z0)
s in

(6-20) 2π i(k2− k1)q(z)
|m|∑
`=0

(−1)|m|−`

(|m| − `)!
φ(z)`

`!

= 2π i(k2− k1)
(−1)|m|

|m|!
q(z)

|m|∑
`=0

(
|m|
`

)
(−φ(z))`

= 2π i(k2− k1)
(−1)m

|m|!
q(z)(1−φ(z))−m .

Putting this value into (6-18) and comparing with (6-5) completes the proof. �

Lemma 6.6. If (s+ a)/µ 6∈ Z60 then, for ε′′ > 0,

I ∗s (N )= 0
(

s+ a
µ

)
αs(e2π ik2(s+a)/µ

− e2π ik1(s+a)/µ)

N (s+a)/µ + O(Kqe−ε
′′N ).

Proof. Let HT be the path that starts at infinity, follows the positive real line to T,
circles the origin k2 − k1 times and then returns from T to its starting point at
infinity. We need the simple extension of (3-17) given by

(6-21)
∫
∞

T
e−wwd−1 dw 6 e−T/2

×

{
2d0(d) if d > 1,
2T d−1 if d 6 1,

for T > 0. Then arguing as at the start of Proposition 3.5 shows that the integral in
(6-18) satisfies∫ T

T
e−wPs(w)w

(s+a)/µ−1 dw =
∫
HT

e−wPs(w)w
(s+a)/µ−1 dw+ O(Kqe−ε

′′N )

for T = N |p0|(ρ/2)µ and ε′′ = |p0|(ρ/2)µ/2.
Now we claim that

(6-22)
e2π ik1(s+a)/µ

µ · (N p0)(s+a)/µ

∫
HT

e−wPs(w)w
(s+a)/µ−1 dw

= 0

(
s+ a
µ

)
αs(e2π ik2(s+a)/µ

− e2π ik1(s+a)/µ)

N (s+a)/µ

for all T > 0 and for all a ∈C with (s+a)/µ 6∈Z60. If s+Re a> 0 then we may let
T → 0 and evaluate the integrals along R>0 as in the second half of Proposition 3.5.
This proves (6-22) for a in a right half plane. However, the left side of (6-22) is a
holomorphic function of a for all a ∈C. The right side of (6-22) is also holomorphic
for all a ∈C except that the 0 function has poles at the nonpositive integers. Hence,
the holomorphic functions on each side (6-22) must agree for all a ∈ C, except for
the nonpositive integers, and the lemma follows. �
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We note that, since the left side of (6-22) is holomorphic in a, taking a limit in a
so that (s+ a)/µ approaches a nonpositive integer on the right side of (6-22) can
also be used to prove Lemma 6.5.

With (6-16) and Lemmas 6.5 and 6.6, we have proved Theorem 6.3 at least for S
sufficiently large to satisfy the conditions before Lemma 6.4. The terms αs/N (s+a)/µ

are O(Kq/N (s+Re a)/µ), (see Proposition 7.3 below), and so we obtain the theorem
for all S ∈ Z>0. �

6C. Further generalizations. The main results of Theorems 1.2, 6.1 and 6.3 may
be extended in different directions:
• The case where the contour of integration C has an endpoint at infinity can

easily be handled if the part of the integral near infinity has a bound such
as O(e−εN ).

• It is possible to let µ in (1-3) be a positive real number instead of just a positive
integer — see, for example, [Olver 1974, Theorem 6.1, p. 125]. Of course p(z)
will no longer be holomorphic in a neighborhood of z0 if µ is not an integer.

• With extra conditions, as described in [Wong 1989, Theorem 4, p. 105] or
[Olver 1974, Theorem 6.1, p. 125], we may allow N to approach infinity in a
sector in C

• Laplace’s method, originating with Laplace in the 18th century, gives the main
term of the asymptotics of (1-1) where C is an interval on the real line and p(z)
and q(z) are real-valued. It is assumed that there exists a unique maximum
of p(z) on C (at z = z0, say) along with the weak conditions that p(z) is
differentiable with p′(z) and q(z) continuous; see, for example, [Olver 1974,
Theorem 7.1, p. 81] for the precise statement. When p(z) and q(z) have series
expansions in a neighborhood of z0 then as in [Olver 1974, Theorem 8.1, p. 86],
the full asymptotic expansion of (1-1) can be given. If p(z) and q(z) are
restrictions of holomorphic functions on a domain containing C, then Perron’s
method may be applied to obtain the same result since z0 is necessarily a
saddle-point with steepest descent angles lying on the real line.

• In Section VIII of [Flajolet and Sedgewick 2009], a general type of saddle-
point algorithm is provided to attempt to find the asymptotics as N →∞ of
integrals

∫
C F(z) dz where F(z) depends in some way on N.

7. More formulas for αs

If we know the order of vanishing of q(z) at z = z0 then we can say which of the
first numbers α0, α1, . . . in Theorems 1.2 or 6.1 are zero.

Proposition 7.1. Let the order of vanishing of q(z) at z = z0 be m and write
q(z)= (z− z0)

mψ(z), where ψ(z0) 6= 0. Then we have α0 = α1 = · · · = αm−1 = 0
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and αm 6= 0. Also, for s ∈ Z>0,

(7-1) αs+m =
1

µ · s!
p−(s+m+a)/µ

0
ds

dzs {ψ(z) · (1−φ(z))
−(s+m+a)/µ)

}z=z0 .

Proof. Replace q(z) by (z − z0)
mψ(z) in (6-5), and evaluate the derivative with

Leibniz’s rule and the fact that

ds

dzs (z− z0)
m
∣∣∣∣
z=z0

=

{
m! if s = m,
0 if s 6= m.

It follows easily that αs = 0 for s 6 m− 1 and that (7-1) holds. Also (7-1) implies
that αm takes the nonzero value p−(m+a)/µ

0 ψ(z0)/µ. �

Therefore, in Theorems 1.2 and 6.1 where C starts at z0, the main term of the
asymptotic expansion has s = m, where m is the order of vanishing of q(z).

In Corollaries 1.4 and 6.2 and Theorem 6.3 where C passes through z0, the main
term of the asymptotic expansion may not be s =m, since the factor e2π ik2(s+a)/µ

−

e2π ik1(s+a)/µ vanishes when (k2−k1)(s+a)/µ ∈ Z, and a calculation is required to
find the first nonzero term. In some cases, the terms αs(e2π ik2(s+a)/µ

−e2π ik1(s+a)/µ)

vanish for all s and we do not obtain exact asymptotics with these results. This
happens for example when µ= 1 and a ∈ Z, or when q(z)= p′(z).

As before, write

p(z)− p(z0)=−

∞∑
s=0

ps(z− z0)
s+µ, q(z)=

∞∑
s=0

qs(z− z0)
s .

The next result is due to Campbell, Fröman and Walles [Campbell et al. 1987,
pp. 157–158] and expresses αs in terms of the coefficients ps and qs . It requires
the partial ordinary Bell polynomials which may be defined with the generating
function

(7-2) (p1x + p2x2
+ p3x3

+ · · · ) j
=

∞∑
i= j

B̂i, j (p1, p2, p3, . . .)x i .

It is straightforward to see they may also be given as

(7-3) B̂i, j (p1, p2, p3, . . .)=
∑

1`1+2`2+3`3+···=i
`1+`2+`3+···= j

j !
`1!`2!`3! · · ·

p`1
1 p`2

2 p`3
3 · · ·

from [Comtet 1974, Section 3.3] where the sum is over all possible `1, `2, . . .∈Z>0,
or as

(7-4) B̂i, j (p1, p2, p3, . . .)=
∑

n1+n2+···+n j=i

pn1 pn2 · · · pn j

for j > 1 from [Campbell et al. 1987, p. 156] where the sum is over all possible
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n1, n2, . . . ∈ Z>1. See [Comtet 1974, Section 3.3] for more information on Bell
polynomials, including their recurrence relations.

Proposition 7.2. For αs defined in (6-5),

(7-5) αs =
1
µ

p−(s+a)/µ
0

s∑
i=0

qs−i

i∑
j=0

(
−(s+ a)/µ

j

)
B̂i, j

(
p1

p0
,

p2

p0
, . . .

)
.

Proof. We have

(7-6) (1−φ(z))−(s+a)/µ
=

(
1+

∞∑
s=1

ps

p0
(z−z0)

s
)−(s+a)/µ

=

∞∑
j=0

(
−(s+a)/µ

j

)( ∞∑
s=1

ps

p0
(z−z0)

s
) j

=

∞∑
j=0

(
−(s+a)/µ

j

) ∞∑
i= j

B̂i, j

(
p1

p0
,

p2

p0
, . . .

)
(z−z0)

i .

Therefore the coefficient of (z− z0)
s in q(z)(1−φ(z))−(s+a)/µ is

s∑
i=0

qs−i

i∑
j=0

(
−(s+ a)/µ

j

)
B̂i, j

(
p1

p0
,

p2

p0
, . . .

)
and the result follows. �

With a = 1, the first cases are

α0 = p−1/µ
0 q0/µ,

α1 =
1
µ

p−2/µ
0

(
−

2p1q0

µp0
+ q1

)
,

α2 =
1
µ

p−3/µ
0

(
3(1+ 3/µ)p2

1q0

2µp2
0

−
3(p2q0+ p1q1)

µp0
+ q2

)
.

Moving p0 out of the sum in (7-6) gives the slightly different formulation

(7-7) αs =
1
µ

p−(s+a)/µ
0

s∑
i=0

qs−i

i∑
j=0

p− j
0

(
−(s+ a)/µ

j

)
B̂i, j (p1, p2, . . .).

Wojdylo [2006] rediscovered the formula (7-5) in the context of Laplace’s method,
though his proof seems incomplete; the form of [Wojdylo 2006, Equation (2.34)]
needs to be justified. A comparison of the schemes to give αs explicitly in [Perron
1917; de Bruijn 1958; Dingle 1973; Campbell et al. 1987; Wojdylo 2006] is
discussed in the appendix of [López and Pagola 2011]. See also [Nemes 2013].
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We finish this section with a new bound for these expansion coefficients.

Proposition 7.3. With Assumptions 1.1 and αs defined in (6-5),

(7-8) αs = O
(
K ∗q ·C

s) for s ∈ Z>0,

where K ∗q is a bound for |q(z)| on B. The positive constant C and the implied
constant in (7-8) are both independent of q and s.

Proof. The result follows from (6-8) with C taken as the reciprocal of the radius
of Dτ . �

8. Applications

The next examples illustrate how to apply Perron’s method. Given an integral
depending on a parameter N going to infinity, the first task is to try to get it into
the form (1-1), perhaps with a change of variables. We are free to move the path of
integration C continuously wherever the integrand is holomorphic. If we can ensure
that Re p(z) is maximized at an endpoint then Theorems 1.2 or 6.1 may be applied.
Otherwise we move C to pass through saddle-points and employ Corollaries 1.4,
5.1, 6.2 or Theorem 6.3.

8A. Gamma function asymptotics. The standard example, see, e.g., [Perron 1917,
Section 5], is the important gamma function. For N > 0 we have

0(N + 1)=
∫
∞

0
e−t t N dt = N N+1

∫
∞

0
eN (−z+log z) dz

with the change of variables t = N z. Fitting the last integral into (1-1) and
Assumptions 1.1, write q(z) = 1 and p(z) = −z + log z with p′(z) = −1+ 1/z.
This shows there is a saddle-point at z0 = 1. Close to z = 1 we have the expansion

− log z = (1− z)+ (1− z)2/2+ (1− z)3/3+ · · · ,

so the range of integration can be restricted to [1/2, 3/2], say, and it is easy to see
that the remaining integral will be too small to affect the result.

Hence, for |z− 1|6 1/2, p(z) equals

p(1)− p0(z− 1)µ(1−φ(z))=−1− 1
2(z− 1)2

(
1− 2

3(z− 1)+ 2
4(z− 1)2+ · · ·

)
so that p0= 1/2, ω0= 0, µ= 2 and ps/p0= (−1)s2/(s+2). The steepest descent
angles are θ` = π`. The assumptions of Corollary 5.1 hold (with k = 0) and on
simplifying it shows

0(N + 1)=
√

2πN
(

N
e

)N(
1+

γ1

N
+
γ2

N 2 + · · ·+
γk−1

N k−1 + O
(

1
N k

))
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for, by Proposition 7.2 (with a = 1),

(8-1) γm =
(2m)!
m!2m

2m∑
j=0

(
−m−1/2

j

)
B̂2m, j

(
−

2
3 ,

2
4 ,−

2
5 ,

2
6 ,−

2
7 , . . .

)
.

The first coefficients are γ1 = 1/12, γ2 = 1/288, γ3 = −139/51840 as Laplace
already knew. See [Nemes 2013, Example 1] for different treatments of (8-1).
Approximations to the gamma function are still an interesting and active area of
research as shown in [Chen 2013].

8B. The equation of the center. In Kepler’s theory of motion, the planets orbit
the sun in ellipses of eccentricity ε with the sun at one focus. The true anomaly ν is
the angle made from this focus and may be compared with the angle M (the mean
anomaly) made if the planet were in uniform circular motion, with the same period,
about the mid point of the foci. These quantities are related by Kepler’s equations

cos ν =
cos E − ε

1− ε cos E
, M = E − ε sin E

for an intermediate quantity E , called the eccentric anomaly. The equation of the
center refers to different ways to relate ν to M directly. An important way is through
the Fourier expansion

(8-2) ν−M =
∞∑

n=1

Cn sin(nM) for Cn =

√
1− ε2

πn

∫ π

−π

eni(z−ε sin z)

1− ε cos z
dz,

as derived in [Battin 1999, pp. 210–212], for example. The integral appearing
in (8-2) is the one from the introduction, (1-2). Before working on the asymptotics
of (1-2) we take a simpler case.

The integral

(8-3)
∫ π

−π

eNi(z−sin z) dz (N ∈ Z>1)

is studied in [Burkhardt 1914] and [Perron 1917]. Fitting it to the assumptions of
Corollary 1.4, we have q(z)= 1 and p(z)= i(z− sin z) with p′(z)= i(1− cos z).
This shows there is a saddle-point at z0 = 0 and writing

p(z)= 0− p0zµ(1−φ(z))=−
(
−i
3!

)
z3
(

1−
3!
5!

z2
+ · · ·

)
means that p0 = −i/6, ω0 = −π/2, µ = 3 and 1− φ(z) = 6(z − sin z)/z3. The
steepest descent angles are

θ` = π/6+ 2π`/3
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as shown in Figure 2. We change the path of integration to

(8-4)
∫
−π+π i/

√
3

−π

+

∫ 0

−π+π i/
√

3
+

∫ π+π i/
√

3

0
+

∫ π

π+π i/
√

3

so that 0 is approached along the line with angle θk1 for k1 = 1 and, on leaving 0,
the line with angle θk2 for k2 = 0 is followed. The integrals along the vertical lines
cancel since the integrand has period 2π . We have

Re p(teiθ0)= Re p(teiθ1)= f (t) for f (t) := cos(
√

3t/2) sinh(t/2)− t/2

with f (0) = 0. To confirm condition (1-13) we need to show that f (t) < 0 for
0< t 6 2π/

√
3. One approach is to first note that

f ′′′(t)=− cos(
√

3t/2) cosh(t/2).

Hence f ′′(t) is decreasing on [0, π/
√

3) and increasing on [π/
√

3, 2π/
√

3]. As
f ′′(0) = 0 and f ′′(2π/

√
3) is positive, this means that f ′′(t) is negative on an

interval (0, c) and positive on (c, 2π/
√

3] for some c. We see that f ′(t) decreases
from f ′(0)= 0 and then increases from t = c to f ′(2π/

√
3) which is< 0. Therefore

f ′(t) is negative on (0, 2π/
√

3] and so f (t) is decreasing in this range as we wanted.
Write

αs =
eπ i(s+1)/6

· 6(s+1)/3
· d(s)

3
for d(s)=

1
s!

ds

dzs

{(
6(z− sin z)

z3

)−(s+1)/3}
z=0
.

Also, by Proposition 7.2,

(8-5) d(s)=
s∑

j=0

(
−(s+ 1)/3

j

)
B̂s, j

(
0,−

3!
5!
, 0,

3!
7!
, 0,−

3!
9!
, . . .

)
and computations yield, for example,

d(0)= 1, d(2)= 1
20 , d(4)= 1

280 , d(6)= 1
3600 , d(8)= 387

17248000

with d(s)= 0 for s odd. Then by Corollary 1.4, for an implied constant depending
only on S,

(8-6)
∫ π

−π

eNi(z−sin z) dz

=

S−1∑
s=0

0

(
s+1

3

)
αs(1−e2π i(s+1)/3)

N (s+1)/3 +O
(

1
N (S+1)/3

)

=
2
3

S−1∑
s=0

cos
(
π(s+1)

6

)
0

(
s+1

3

)
d(s)

(
6
N

)(s+1)/3

+O
(

1
N (S+1)/3

)
.
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We can obtain nonzero terms in the sum only for s ≡ 0, 4 mod 6. Formulas (8-5)
and (8-6) give the complete asymptotic expansion of the integral (8-3). With S= 10
for example,

(8-7)
∫ π

−π

eNi(z−sin z) dz= 2
3

cos
(
π

6

)
0
(

1
3

)(
6
N

)1/3
+

1
420

cos
(

5π
6

)
0
(

5
3

)(
6
N

)5/3

+
1

5400
cos
(

7π
6

)
0
(

7
3

)(
6
N

)7/3
+O

(
1

N 11/3

)
which is equivalent to [Perron 1917, Equation (53)]. When N = 50, for instance,
the integral in (8-7) is approximately 0.762835382546 with the underlined digits
indicating the agreement with the right side of (8-7). All the numerical calculations
in this paper were carried out using Mathematica.

8C. Asymptotics of the true anomaly Fourier coefficient CN . We now turn to the
integral

(8-8)
∫ π

−π

eNi(z−ε sin z)

1− ε cos z
dz (N ∈ Z>1, 0< ε < 1),

appearing in the equation of the center (8-2), and the main motivation of the papers
[Burkhardt 1914; Perron 1917]. We initially follow [Perron 1917, pp. 210–214]
and then go more deeply into the combinatorics of the expansion coefficients.

Set p(z)= i(z− ε sin z) and so p′(z)= i(1− ε cos z). It is convenient to define

γ :=
1+
√

1− ε2

ε
> 1.

Then p′(z)= 0 for z taking the two values ±i log γ and we choose z0 to be i log γ .
Our computations will show that this is the correct choice. Expanding about this
saddle-point gives

(8-9)
ε sin(z+ z0)= sin z+ i

√
1− ε2 cos z,

ε cos(z+ z0)= cos z− i
√

1− ε2 sin z,

as in [Perron 1917, p. 212]. Hence

(8-10) p(z)−p(z0)= i(z−z0)−i sin(z−z0)+
√

1−ε2(−1+cos(z−z0))

=−

√
1−ε2

2
(z−z0)

2
(

1− 2i
3!
√

1−ε2
(z−z0)−

2
4!
(z−z0)

2
+·· ·

)
which implies that p0 =

√
1− ε2/2, µ = 2 and the steepest descent angles are

θ` = π`. Clearly, 1/(1− ε cos z) has a simple pole at z = z0, so we let q(z) =
(z− z0)/(1− ε cos z) with a = 0 and will be applying Theorem 6.3.

The contour of integration should therefore be moved from the real line and go
vertically from −π to −π+ i log γ . The path then approaches z0 along the steepest
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descent angle θk1 for k1 = 1, circles below z0 and leaves along the angle θk2 for
k2 = 2. After reaching π + i log γ it then moves vertically to π . The integrals on
the vertical paths cancel since the integrand has period 2π . For t ∈ R we see by
(8-10) that Re(p(t+z0)− p(z0))=

√
1− ε2(−1+cos t) and so Re p(z)<Re p(z0)

for z on the horizontal part of the contour and the conditions for Theorem 6.3 are
satisfied. (The other saddle-point, −i log γ , has vertical steepest descent lines and
so we cannot use it in a similar treatment.)

Writing w for z− z0 we obtain, by (8-9),

q(z)=
w

1− cosw+ i
√

1− ε2 sinw
=

2γ
ε
·

w

(eiw − 1)
·

1
(γ 2e−iw − 1)

.

We have the expansions

(8-11)
z

ez − 1
=

∞∑
m=0

Bm

m!
zm,

1
ξez − 1

=

∞∑
m=0

βm+1(ξ)

(m+ 1)!
zm (ξ 6= 1)

for the Bernoulli numbers Bm and the coefficients

(8-12) βm(ξ)= (−1)m−1m
m∑

j=1

{
m
j

}
( j − 1)!
(ξ − 1) j (ξ 6= 1),

where
{m

j

}
is the Stirling number, denoting the number of ways to partition a set

of size m into j nonempty subsets. See [O’Sullivan 2015, Proposition 3.2] for the
formula (8-12) which is similar to a result of Glaisher. Then

q(z)=
∞∑

s=0

qsw
s
=
−2γ · i
ε

( ∞∑
m=0

Bm

m!
(iw)m

)( ∞∑
n=0

βn+1(γ
2)

(n+ 1)!
(−iw)n

)
and we obtain the expression

(8-13) qs =
−2γ · i s+1

ε

s∑
n=0

(−1)n
βn+1(γ

2)Bs−n

(n+ 1)!(s− n)!
.

With Proposition 7.2 we may write αs = d(s)/(2ps/2
0 ) for

(8-14) d(s)=
s∑

i=0

qs−i

i∑
j=0

(
−s/2

j

)
B̂i, j

(
−

2i
3!
√

1−ε2
,−

2
4!
,

2i
5!
√

1−ε2
,

2
6!
, . . .

)
,

where the arguments in the above Bell polynomial are

ps

p0
=

2 · i s

(s+ 2)!
×

{
1 if s is even,
−1/
√

1− ε2 if s is odd.
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A short calculation with (8-9) shows

ep(z0) = e
√

1−ε2
/γ < 1.

Putting everything together, and using the last line in the statement of Theorem 6.3
for the s = 0 term, we obtain

(8-15)
∫ π

−π

eNi(z−ε sin z)

1−ε cos z
dz=

(
e
√

1−ε2

γ

)N(
π

√
1−ε2

+

∑
16s6S−1, s odd

0(s/2)·d(s)
(

2
√

1−ε2 N

)s/2

+O
(

1
N S/2

))
which, along with (8-13) and (8-14), gives the complete asymptotic expansion.
Computing the first values of d(s), for s odd, we observe that they take the form
fs(ε

2)/(1− ε2)(s+1)/2 for fs a polynomial with rational coefficients and degree
(s− 1)/2. For instance

f1(x)=2/3, f3(x)=−(46+189x)/540, f5(x)= (92+6228x+4887x2)/36288.

It would be interesting to prove that this form always holds. With S = 5 we find

(8-16)
∫ π

−π

eNi(z−ε sin z)

1− ε cos z
dz =

(
e
√

1−ε2

γ

)N(
π

√
1− ε2

+0(1/2)
2

3(1− ε2)

(
2

√
1− ε2 N

)1/2

−0(3/2)
46+ 189ε2

540(1− ε2)2

(
2

√
1− ε2 N

)3/2

+ O
(

1
N 5/2

))
which is equivalent to [Perron 1917, Equation (45)]. When N = 50 and ε = 2/5,
for example, the integral in (8-16) is ≈ 2.8171413884× 10−14 with the underlined
digits indicating the agreement with the right side of (8-16). Taking S = 13,
i.e., using the first seven terms in the expansion (8-15), yields the agreement
2.8171413884× 10−14.

As a referee noted, the method of steepest descent for this example requires
moving the contour of integration to a more complicated path near z0 than the
horizontal line above. It requires part of the path described by the equation cosh(y)=
x/(ε sin(x)) for z = x + iy. This is where Im(p(z)− p(z0))= 0.

8D. The case ε = 1. Taking ε = 1 in (8-8) produces the integral

(8-17)
∫ π

−π

eNi(z−sin z)

1− cos z
dz (N ∈ Z>1)

which is studied in Example 4 of [Perron 1917]. This would correspond to a
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parabolic orbit if (8-2) were valid for ε = 1. The path of integration in (8-17) must
avoid the double pole at z = 0 in order to converge. The expansion of the integrand
at z = 0 begins 2/z2

+1/6+ (Niz)/3+ z2/120+· · · , implying the residue at z = 0
is zero. Since the integrand has period 2π , all the residues are zero and so the
integral is completely independent of any pole-avoiding path of integration from
−π to π .

The function p(z) is the same as in Section 8B, but now q(z)= z2/(1− cos z)
and a =−1. We will use Theorem 6.3 and so the path of integration (8-4) must be
adjusted to circle at a small radius about the pole at z0 = 0. Then

αs =
1
3

eπ i(s−1)/6
· 6(s−1)/3

· d∗(s)

for d∗(s)=
1
s!

ds

dzs

{
z2

1− cos z

(
6(z− sin z)

z3

)−(s−1)/3}
z=0
.

We have
∞∑

s=0

qszs
=

z2

1−cos z
= 2 i z

ei z−1
−i z

e−i z−1
= 2

( ∞∑
m=0

Bm
m!
(i z)m

)( ∞∑
n=0

Bn
n!
(−i z)n

)
.

It follows that qs is 0 for odd s, and for s even,

(8-18) qs = 2(−1)s/2
s∑

n=0

(−1)n
Bn Bs−n

n!(s− n)!
.

Proposition 7.2 tells us

(8-19) d∗(s)=
s∑

i=0

qs−i

i∑
j=0

(
−(s− 1)/3

j

)
B̂i, j

(
0,−3!

5!
, 0, 3!

7!
, 0,−3!

9!
, . . .

)
and computations yield, for example,

d∗(0)= 2, d∗(2)= 1
5 , d∗(4)= 27

1400 , d∗(6)= 23
12600 , d∗(8)= 947

5544000

with d∗(s)= 0 for s odd. Then, for an implied constant depending only on S,

(8-20)
∫ π

−π

eNi(z−sin z)

1− cos z
dz

=
2
3

S−1∑
s=0

cos
(
π(s−1)

6

)
0
(s−1

3

)
d∗(s)

( 6
N

)(s−1)/3
+ O

( 1
N (S−1)/3

)
.

We can obtain nonzero terms in the sum only for s ≡ 0, 2 mod 6. The term with
s = 1 needs the formula from the last line of the statement of Theorem 6.3, but
in any case vanishes since d∗(1)= 0. Formulas (8-18), (8-19) and (8-20) give the
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complete asymptotic expansion of the integral (8-17). Taking S = 8 for example,

(8-21)
∫ π

−π

eNi(z−sin z)

1−cos z
dz= 4

3
cos
(
−π

6

)
0
(
−1
3

)(
N
6

)1/3
+

2
15

cos
(
π

6

)
0
(

1
3

)(
6
N

)1/3

+
23

18900
cos
(

5π
6

)
0
(

5
3

)(
6
N

)5/3
+ O

(
1

N 7/3

)
with the first two terms of this expansion given in [Perron 1917, Equation (50)].
When N = 50 the integral in (8-21) is ≈ −9.357585773084 and the underlined
digits show the agreement with the right-hand side.

9. The asymptotics of Sylvester waves

In this section we give an application of Perron’s method to number theory. Let p(n)
be the number of partitions of the positive integer n. This is the number of ways
to write n as a sum of nonincreasing positive integers. Also let pN (n) count the
partitions of n with at most N summands. Since the work of Cayley and Sylvester
in the 19th century, we know that

pN (n)=
N∑

k=1

Wk(N , n),

where each Wk(N , n) may be expressed in terms of a sequence of k polynomials
wk,m(N , x) ∈Q[x] for 06 m 6 k− 1. Write

(9-1) Wk(N , n)= [wk,0(N , n), wk,1(N , n), . . . , wk,k−1(N , n)],

where the notation in (9-1) indicates that the value of Wk(N , n) is given by one
of the polynomials on the right and we select wk, j (N , n) when n ≡ j mod k. The
degrees of the polynomials on the right of (9-1) are at most bN/kc− 1.

For example, with N = 3 we have p3(n) = W1(3, n)+W2(3, n)+W3(3, n),
where

W1(3, n)= [6n2
+ 36n+ 47]/72,

W2(3, n)= [1, −1]/8,

W3(3, n)= [2, −1, −1]/9.

Sylvester called Wk(N , n) the k-th wave and provided the formula

(9-2) Wk(N , n)= Res
z=0

∑
ρ

ρnenz

(1− ρ−1e−z)(1− ρ−2e−2z) · · · (1− ρ−N e−N z)

in [Sylvester 1882], where Resz=0 indicates the coefficient of 1/z in the Laurent
expansion about 0, and the sum is over all primitive k-th roots of unity ρ. For a
more detailed discussion of the above results with references, see Sections 1 and 2
of [O’Sullivan 2018].
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When N = 3 it is clear that the first wave W1(3, n) will make the largest contribu-
tion to p3(n) for large n. Similarly, pN (n)∼W1(N , n) for any fixed N as n→∞.
A more difficult question, which we answer for the first time in [O’Sullivan 2018],
is how the first waves W1(N , n)+W2(N , n)+· · · compare with pN (n) as N and n
both go to ∞. The answer, perhaps surprisingly, is that when N and n grow at
approximately the same rate, the first waves quickly become much larger than pN (n)
(in absolute value, since these waves also oscillate like a sine with period ≈ 31.963
in N ).

The asymptotics of the first 100 waves is given in [O’Sullivan 2018] as follows,
in terms of two uniquely defined complex numbers with approximations w0 ≈

0.916198− 0.182459i and z0 ≈ 1.181475+ 0.255528i .

Theorem 9.1. Let λ+ be a positive real number. Suppose N ∈ Z>1 and λN ∈ Z for
λ satisfying |λ|6 λ+. Then there are explicit coefficients a0(λ), a1(λ), . . . so that

(9-3)
100∑
k=1

Wk(N ,λN )=Re
[
w−N

0

N 2

(
a0(λ)+

a1(λ)

N
+·· ·+

am−1(λ)

N m−1

)]
+O

(
|w0|

−N

N m+2

)
as N →∞, where a0(λ)= 2z0e−π i z0(1+2λ) and the implied constant depends only
on λ+ and m.

In the rest of this section we briefly sketch the proof of Theorem 9.1, highlighting
the role of Perron’s method in the form of Corollary 5.1. We require the dilogarithm,
which is initially defined as

Li2(z) :=
∞∑

n=1

zn

n2 for |z|6 1,

with an analytic continuation given by −
∫ z

0 log(1− u)/u du.

Sketch of proof of Theorem 9.1. In [O’Sullivan 2018, Equation (3.6)], it is shown
that the left side of (9-3) may be expressed as a sum of three parts. As in the proof
of [O’Sullivan 2018, Theorem 1.2], two of these parts are O(e0.055N ). The third part
may be expressed as an integral (see [O’Sullivan 2018, Equation (5.13)]) to obtain

(9-4)
100∑
k=1

Wk(N ,λN )=
2

N 3/2 Im
∫ 1.49

1.01
eN ·p(z) fλ(z)·exp(v(z;N ))dz+O(e0.055N ),

for an implied constant depending only on λ+, where

p(z) :=
Li2(e2π i z)−Li2(1)

2π i z
,

fλ(z) :=
(

z
2 sin(π(z− 1))

)1/2

exp
(
−π i z(2λ+ 1/2)

)
.
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(In [O’Sullivan 2018], the function p(z) is used with the opposite sign.) To describe
a useful approximation to the function exp(v(z; N )), we first define

g`(z) := −
B2`

(2`)!
(π z)2`−1 cot(2`−2)(π z),

u j (z) :=
∑

m1+3m2+5m3+···= j

g1(z)m1

m1!

g2(z)m2

m2!
· · ·

g j (z)m j

m j !

with u0 := 1. Also define the box

B1 := {z ∈ C : 1.016 Re z 6 1.49, −16 Im z 6 1}.

Then there are functions u j (z) (defined above) and ζd(z; N ) which are holomorphic
on a domain containing the box B1 and have the following property. For all z ∈B1,

(9-5) exp(v(z; N ))=
d−1∑
j=0

u j (z)
N j + ζd(z; N ) for ζd(z; N )= O

( 1
N d

)
with an implied constant depending only on d, where 1 6 d 6 2L − 1 and
L = b0.006πe · Nc.

Since | exp(−2π iλz)|6 exp(λ+2π |z|) it follows that

(9-6) fλ(z)� 1 for z ∈ B1,

with an implied constant depending only on λ+.
To apply Corollary 5.1 we need the relevant saddle-point of p(z) and this

turns out to be z0 := 1 + log(1 − w0)/(2π i), where w0 is the unique solution
to Li2(w)−2π i logw= 0. Both z0 and w0 may be found to any precision and their
approximations were given before Theorem 9.1. (It is straightforward to compute
the size of the error introduced into (9-3) by using approximations to z0 and w0.)
We find µ= 2, p0 ≈ 0.504−0.241i and the steepest-descent angles are θ0 ≈ 0.223
and θ1 = π + θ0.

Let c := 1+ i Im(z0)/Re(z0). We move the path of integration in (9-4) to the
path P through z0 consisting of the straight line segments joining the points 1.01,
1.01c, 1.49c and 1.49. Since the integrand in (9-4) is holomorphic on a domain
containing B1, Cauchy’s theorem ensures that the integral remains the same under
this change of path. It is proved in [O’Sullivan 2016, Theorem 5.2] that

(9-7) Re(p(z)− p(z0)) < 0 for all z ∈ P, z 6= z0.

We also need from [O’Sullivan 2018, Equation (5.16)] that

ep(z0) = w−1
0 and eRe p(z0) = |w0|

−1
≈ e0.068.
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Using (9-5) in (9-4) implies

(9-8)
100∑
k=1

Wk(N ,λN )=

Im

[
d−1∑
j=0

2
N 3/2+ j

∫
P

eN ·p(z)
· fλ(z)·u j (z)dz+

2
N 3/2

∫
P

eN ·p(z)
· fλ(z)·ζd(z;N )dz

]
+O(e0.055N ),

where, by (9-5), (9-6) and (9-7), the last term in parentheses in (9-8) is

�
1

N 3/2

∫
P
|eN ·p(z)

| · 1 ·
1

N d dz�
1

N d+3/2 eN Re p(z0) =
|w0|

−N

N d+3/2 ,

for an implied constant depending only on λ+. Applying Corollary 5.1 to each
integral in the first part of (9-8) we obtain, since k = 0,

(9-9)
∫
P

eN ·p(z)
· fλ(z) · u j (z) dz

= eN ·p(z0)

(M−1∑
m=0

0
(

m+ 1
2

)2α2m( fλ · u j )

N m+1/2 + O
(

K ( fλ · u j )

N M+1/2

))
.

We have written α2m(q), to show the dependence of α2m on q = fλ · u j , and
also K (q) instead of Kq . The error term in (9-9) corresponds to an error in
(9-8) of size O(|w0|

−N/N M+ j+2). Choose M = d so that this error is less than
O(|w0|

−N/N d+3/2) for all j > 0. Therefore

100∑
k=1

Wk(N , λN )

= Im
[d−1∑

j=0

4
N j+3/2 eN ·p(z0)

d−1∑
m=0

0
(

m+ 1
2

)α2m( fλ · u j )

N m+1/2

]
+ O

(
|w0|

−N

N d+3/2

)

= Im
[
w−N

0

2d−2∑
t=0

4
N t+2

min(t,d−1)∑
m=max(0,t−d+1)

0
(

m+ 1
2

)
α2m( fλ · ut−m)

]
(9-10)

+O
(
|w0|

−N

N d+3/2

)

= Re
[
w−N

0

d−2∑
t=0

−4i
N t+2

t∑
m=0

0
(

m+ 1
2

)
α2m( fλ · ut−m)

]
+ O

(
|w0|

−N

N d+1

)
(9-11)

for implied constants depending only on λ+ and d. (In going from (9-10) to
(9-11) we used that |α2m( fλ · u j )| has a bound depending only on λ+ and d, by



REVISITING THE SADDLE-POINT METHOD OF PERRON 197

Proposition 7.3, when m, j 6 d − 1.) Hence, with

(9-12) at(λ) := −4i
t∑

m=0

0
(

m+ 1
2

)
α2m( fλ · ut−m),

we obtain (9-3) in the statement of the theorem.
The first coefficient is

(9-13) a0(λ)=−4i0(1/2)α0( fλ · u0,0)=−4i
√
πα0( fλ)=−2i

√
π p1/2

0 fλ(z0),

using our formula for α0 from Section 7. The calculations [O’Sullivan 2018,
Equations (5.24) and (5.26)] show

(9-14) p1/2
0 =−

√
πe−π i/4eπ i z0

z1/2
0 w

1/2
0

, fλ(z0)=−
eπ i/4z1/2

0

w
1/2
0

e−2π iλz0 .

The formula for a0(λ) in the theorem’s statement follows from (9-13) and (9-14). �

We may take N = 2000 and λ = 1 as an example of Theorem 9.1. The first
wave W1(N , N ) is ≈ 4.37× 1053 with the next waves much smaller: W2(N , N )≈
4.98× 1023, W3(N , N ) ≈ −8.22× 1013, etc. We find that the main term on the
right of (9-3) is ≈ 4.56× 1053. Taking the first three terms on the right of (9-3)
gives the more accurate 4.37× 1053. By comparison, the corresponding partition
number p(N ) (= pN (N )) is a lot smaller and approximately 4.72× 1045.

See [O’Sullivan 2018] for the detailed proof of Theorem 9.1 as well as more
extensive discussion and numerical work. We expect, as in [O’Sullivan 2018,
Conjecture 9.1], that Theorem 9.1 is true with the sum of the first 100 waves on the
left of (9-3) replaced by just the first wave W1(N , λN ).

References

[Ahlfors 1978] L. V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill, New York, 1978. MR Zbl

[Battin 1999] R. H. Battin, An introduction to the mathematics and methods of astrodynamics, revised
ed., Amer. Inst. Aeronautics Astronautics, Reston, VA, 1999. MR Zbl

[de Bruijn 1958] N. G. de Bruijn, Asymptotic methods in analysis, Bibliotheca Mathematica 4,
North-Holland, Amsterdam, 1958. MR Zbl

[Burkhardt 1914] H. Burkhardt, “Über Funktionen großer Zahlen, insbesondere über die näherung-
sweise Bestimmung entfernter Glieder in den Reihenentwicklungen der Theorie der Keplerschen
Bewegung”, Sitzungsberichte Bayer. Akad. Wissensch. 1914:1 (1914), 1–11. Zbl

[Campbell et al. 1987] J. A. Campbell, P. O. Fröman, and E. Walles, “Explicit series formulae for the
evaluation of integrals by the method of steepest descents”, Stud. Appl. Math. 77:2 (1987), 151–172.
MR Zbl

[Chen 2013] C.-P. Chen, “Unified treatment of several asymptotic formulas for the gamma function”,
Numer. Algorithms 64:2 (2013), 311–319. MR Zbl

http://msp.org/idx/mr/510197
http://msp.org/idx/zbl/0395.30001
http://dx.doi.org/10.2514/4.861543
http://msp.org/idx/mr/1755760
http://msp.org/idx/zbl/0972.70001
http://msp.org/idx/mr/0099564
http://msp.org/idx/zbl/0082.04202
http://publikationen.badw.de/en/003395141
http://publikationen.badw.de/en/003395141
http://publikationen.badw.de/en/003395141
http://msp.org/idx/zbl/45.0457.02
http://dx.doi.org/10.1002/sapm1987772151
http://dx.doi.org/10.1002/sapm1987772151
http://msp.org/idx/mr/1002288
http://msp.org/idx/zbl/0635.65019
http://dx.doi.org/10.1007/s11075-012-9667-6
http://msp.org/idx/mr/3101883
http://msp.org/idx/zbl/1280.33003


198 CORMAC O’SULLIVAN

[Comtet 1974] L. Comtet, Advanced combinatorics, revised ed., Reidel, Dordrecht, 1974. MR Zbl

[Copson 1965] E. T. Copson, Asymptotic expansions, Cambridge Tracts in Math. and Mathematical
Phys. 55, Cambridge Univ. Press, 1965. MR Zbl

[Dingle 1973] R. B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic
Press, London, 1973. MR Zbl

[Erdélyi 1956] A. Erdélyi, Asymptotic expansions, Dover, New York, 1956. MR Zbl

[Flajolet and Sedgewick 2009] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge
Univ. Press, 2009. MR Zbl

[López and Pagola 2011] J. L. López and P. J. Pagola, “An explicit formula for the coefficients of the
saddle point method”, Constr. Approx. 33:2 (2011), 145–162. MR Zbl

[López et al. 2009] J. L. López, P. Pagola, and E. Pérez Sinusía, “A systematization of the saddle
point method: application to the Airy and Hankel functions”, J. Math. Anal. Appl. 354:1 (2009),
347–359. MR Zbl

[Nemes 2013] G. Nemes, “An explicit formula for the coefficients in Laplace’s method”, Constr.
Approx. 38:3 (2013), 471–487. MR Zbl

[Olver 1970] F. W. J. Olver, “Why steepest descents?”, SIAM Rev. 12 (1970), 228–247. MR Zbl

[Olver 1974] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974.
MR Zbl

[O’Sullivan 2015] C. O’Sullivan, “On the partial fraction decomposition of the restricted partition
generating function”, Forum Math. 27:2 (2015), 735–766. MR Zbl

[O’Sullivan 2016] C. O’Sullivan, “Asymptotics for the partial fractions of the restricted partition
generating function, I”, Int. J. Number Theory 12:6 (2016), 1421–1474. MR Zbl

[O’Sullivan 2018] C. O’Sullivan, “Partitions and Sylvester waves”, Ramanujan J. 47:2 (2018),
339–381. MR Zbl

[Perron 1917] O. Perron, “Über die näherungsweise Berechnung von Funktionen großer Zahlen”,
Sitzungsberichte Bayer. Akad. Wissensch. 1917:11 (1917), 191–220. Zbl

[Petrova and Solov’ev 1997] S. S. Petrova and A. D. Solov’ev, “The origin of the method of steepest
descent”, Historia Math. 24:4 (1997), 361–375. MR Zbl

[Small 2010] C. G. Small, Expansions and asymptotics for statistics, Monographs Stat. Appl. Probab.
115, CRC Press, Boca Raton, FL, 2010. MR Zbl

[Sylvester 1882] J. J. Sylvester, “On subvariants; i.e., semi-invariants to binary quantics of an
unlimited order”, Amer. J. Math. 5:1 (1882), 79–136. MR Zbl

[Temme 2013] N. M. Temme, “Uniform asymptotic methods for integrals”, Indag. Math. (N.S.) 24:4
(2013), 739–765. MR Zbl

[Wojdylo 2006] J. Wojdylo, “On the coefficients that arise from Laplace’s method”, J. Comput. Appl.
Math. 196:1 (2006), 241–266. MR Zbl

[Wong 1989] R. Wong, Asymptotic approximations of integrals, Academic Press, Boston, 1989. MR
Zbl

[Wyman 1964] M. Wyman, “The method of Laplace”, Trans. Roy. Soc. Canada (4) 2 (1964), 227–256.
MR

Received June 14, 2017. Revised February 23, 2018.

http://msp.org/idx/mr/0460128
http://msp.org/idx/zbl/0283.05001
http://dx.doi.org/10.1017/CBO9780511526121
http://msp.org/idx/mr/0168979
http://msp.org/idx/zbl/0123.26001
https://michaelberryphysics.files.wordpress.com/2013/07/dingle.pdf
http://msp.org/idx/mr/0499926
http://msp.org/idx/zbl/0279.41030
http://msp.org/idx/mr/0078494
http://msp.org/idx/zbl/0070.29002
http://dx.doi.org/10.1017/CBO9780511801655
http://msp.org/idx/mr/2483235
http://msp.org/idx/zbl/1165.05001
http://dx.doi.org/10.1007/s00365-010-9089-4
http://dx.doi.org/10.1007/s00365-010-9089-4
http://msp.org/idx/mr/2770529
http://msp.org/idx/zbl/1211.41008
http://dx.doi.org/10.1016/j.jmaa.2008.12.032
http://dx.doi.org/10.1016/j.jmaa.2008.12.032
http://msp.org/idx/mr/2510445
http://msp.org/idx/zbl/1163.65013
http://dx.doi.org/10.1007/s00365-013-9202-6
http://msp.org/idx/mr/3122279
http://msp.org/idx/zbl/1292.41012
http://dx.doi.org/10.1137/1012044
http://msp.org/idx/mr/0259456
http://msp.org/idx/zbl/0219.65053
http://dx.doi.org/10.1016/C2013-0-11254-8
http://msp.org/idx/mr/0435697
http://msp.org/idx/zbl/0303.41035
http://dx.doi.org/10.1515/forum-2012-0073
http://dx.doi.org/10.1515/forum-2012-0073
http://msp.org/idx/mr/3334080
http://msp.org/idx/zbl/06413136
http://dx.doi.org/10.1142/S1793042116500895
http://dx.doi.org/10.1142/S1793042116500895
http://msp.org/idx/mr/3529875
http://msp.org/idx/zbl/06618753
http://dx.doi.org/10.1007/s11139-017-9939-9
http://msp.org/idx/mr/3863645
http://msp.org/idx/zbl/06979684
http://publikationen.badw.de/en/003395569
http://msp.org/idx/zbl/46.0538.03
http://dx.doi.org/10.1006/hmat.1996.2146
http://dx.doi.org/10.1006/hmat.1996.2146
http://msp.org/idx/mr/1488796
http://msp.org/idx/zbl/0894.01006
http://dx.doi.org/10.1201/9781420011029
http://msp.org/idx/mr/2681183
http://msp.org/idx/zbl/1196.62002
http://dx.doi.org/10.2307/2369536
http://dx.doi.org/10.2307/2369536
http://msp.org/idx/mr/1505319
http://msp.org/idx/zbl/14.0072.02
http://dx.doi.org/10.1016/j.indag.2013.08.001
http://msp.org/idx/mr/3124804
http://msp.org/idx/zbl/1296.41028
http://dx.doi.org/10.1016/j.cam.2005.09.004
http://msp.org/idx/mr/2241588
http://msp.org/idx/zbl/1096.41008
http://dx.doi.org/10.1137/1.9780898719260
http://msp.org/idx/mr/1016818
http://msp.org/idx/zbl/0679.41001
http://msp.org/idx/mr/0238009


REVISITING THE SADDLE-POINT METHOD OF PERRON 199

CORMAC O’SULLIVAN

DEPARTMENT OF MATHEMATICS

CUNY - GRADUATE CENTER

NEW YORK, NY
UNITED STATES

cosullivan@gc.cuny.edu

mailto:cosullivan@gc.cuny.edu




PACIFIC JOURNAL OF MATHEMATICS
Vol. 298, No. 1, 2019

dx.doi.org/10.2140/pjm.2019.298.201

THE GAUSS–BONNET–CHERN MASS
OF HIGHER-CODIMENSION GRAPHS

ALEXANDRE DE SOUSA AND FREDERICO GIRÃO

We give an explicit formula for the Gauss–Bonnet–Chern mass of an
asymptotically flat graph of arbitrary codimension and use it to prove
the positive mass theorem and the Penrose inequality for graphs with flat
normal bundle.

1. Introduction

A complete Riemannian manifold (Mn, g), n ≥ 3, is said to be asymptotically
flat of order τ (with one end) if there exists a compact subset K of M and a
diffeomorphism 9 : M \ K → Rn

\ B1(0), introducing coordinates in M \ K, say
x = (x1, . . . , xn), such that, in these coordinates,

(1) gi j = δi j + σi j

and

(2) |σi j | + |x | |σi j,k | + |x |2 |σi j,kl | = O(|x |−τ ),

where the σi j ’s are the coefficients of σ with respect to x , σi j,k = ∂σi j/∂xk , σi j,kl =

∂2σi j/∂xk∂xl , and | · | is the standard Euclidean norm. The ADM mass of (M, g),
introduced by Arnowitt, Deser and Misner in [Arnowitt et al. 1961] (see also
[Jaramillo and Gourgoulhon 2011]) is defined by

(3) mADM =
1

2(n−1)ωn−1
lim

r→∞

∫
Sr

(gi j,i − gi i, j )ν
j d Sr ,

where ωn−1 is the volume of the (n−1)-dimensional unit sphere, Sr is the Euclidean
coordinate sphere of radius r , d Sr is the volume form of Sr induced by the Euclidean
metric, and ν= r−1x is the outward unit normal to Sr (with respect to the Euclidean
metric).

Alexandre de Sousa was a CAPES/Brazil doctoral fellow at Universidade Federal do Ceará. Frederico
Girão was partially supported by CNPq/Brazil, grants number 483844/2013-6 and 306196/2016-6.
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theorem, Penrose inequality.
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It is known that if τ > (n−2)/2 and the scalar curvature of (M, g) is integrable,
then the limit (3) exists, is finite, and is a geometric invariant, that is, two coordinate
systems satisfying (1) and (2) yield the same value for it [Bartnik 1986; Chruściel
1986].

One of the most important conjectures in mathematical general relativity is the
famous positive mass conjecture (PMC):

Conjecture 1. If (Mn, g), n ≥ 3, is an asymptotically flat Riemannian manifold of
order τ > (n− 2)/2 whose scalar curvature is nonnegative and integrable, then the
ADM mass of (M, g) is nonnegative. Moreover, if the mass is zero, then (M, g) is
isometric to the Euclidean space (Rn, δ).

The PMC was settled for n≤7 in [Schoen and Yau 1979], for (M, g) conformally
flat in [Schoen and Yau 1988], and for M spin in [Witten 1981] (see also [Parker
and Taubes 1982] and [Choquet-Bruhat 1984]). Very elegant proofs for the case
when (M, g) is a Euclidean graph were given in [Lam 2011] (see also [de Lima and
Girão 2015]) for graphs of codimension one and in [Mirandola and Vitório 2015]
for graphs of arbitrary codimension with flat normal bundle (notice that the case
of graphs also follows from Witten’s argument, since a Euclidean graph is spin).
The case of Euclidean hypersurfaces (not necessarily graphs), including the rigidity
statement, was treated in [Huang and Wu 2013], under appropriate decay conditions.

The Penrose inequality (PI) is a conjectured sharpening of the PMC when (M, g)
has a compact boundary 0 which is an outermost minimal hypersurface.

Conjecture 2. If (Mn, g), n ≥ 3, is an asymptotically flat Riemannian manifold of
order τ > (n− 2)/2 whose scalar curvature is nonnegative (and integrable), and 0
is a (possibly disconnected) outermost minimal hypersurface of area A, then

mADM ≥
1
2

( A
ωn−1

) n−2
n−1
.

Furthermore, if the equality holds, then (M, g) is isometric to the Riemannian
Schwarzschild manifold.

The PI was proved by Huisken and Ilmanen [2001] for n = 3 and 0 connected,
and by Bray [2001] for n = 3 and general 0. Bray and Lee [2009] established the
conjecture for n ≤ 7, with the extra requirement that M be spin for the rigidity
statement. The case of Euclidean graphs of codimension one was treated by
Lam [2011] (see also [de Lima and Girão 2015]) and generalized by Mirandola and
Vitório for graphs of arbitrary codimension with flat normal bundle [2015]. The
equality case for graphs of codimension one was treated in [Huang and Wu 2015a].

In [Ge et al. 2014b], a new mass for asymptotically flat Riemannian manifolds,
named Gauss–Bonnet–Chern mass, was introduced. For a positive integer q < n/2,
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consider the q-th Gauss–Bonnet curvature, denoted L(q), and defined by

(4) L(q) =
1
2q δ

a1a2···a2q
b1b2···b2q

( q∏
s=1

R b2s−1b2s
a2s−1a2s

)
= P i jkl

(q) Ri jkl,

where R is the Riemann curvature tensor of (M, g) and P(q), which has the same
symmetries of the Riemann tensor (see [Ge et al. 2014b, Section 3]), is given by

(5) P i jkl
(q) =

1
2q δ

a1a2···a2q−3a2q−2i j
b1b2···b2q−3b2q−2b2q−1b2q

(q−1∏
s=1

R b2s−1b2s
a2s−1a2s

)
gb2q−1k gb2q l .

Remark 3. One can considerably simplify this complicated tensorial expression
by rewriting it in the language of double forms, which are a special type of vector
valued forms (see [Labbi 2007], for example).

The q-th Gauss–Bonnet–Chern mass (GBC mass) of (M, g) is defined by

(6) mq = cq(n) lim
r→∞

∫
Sr

P i jkl
(q) g jk,lνi d Sr ,

where

(7) cq(n)=
(n− 2q)!

2q−1(n− 1)!ωn−1

and Sr , d Sr , ν and ωn−1 are as in the definition of the ADM mass.
As observed in [Ge et al. 2014b], m1 coincides with the ADM mass. In the same

article, the authors show that, if τ > (n− 2q)/(q + 1) and L(q) is integrable, then
the limit (6) exists, is finite, and is a geometric invariant. Next, we state versions of
the PMC and PI for the GBC mass. We start with the version of the PMC.

Conjecture 4. Let n and q be integers such that n ≥ 3 and 1≤ q < n/2. If (Mn, g)
is an asymptotically flat Riemannian manifold of order τ > (n−2q)/(q+1) whose
q-th Gauss–Bonnet curvature L(q) is nonnegative and integrable, then the q-th
GBC mass of (M, g) is nonnegative. Moreover, if the mass is zero, then (M, g) is
isometric to the Euclidean space (Rn, δ).

Before we state the analogue of the PI, we recall the Riemannian manifold
known as the q-th Riemannian Schwarzschild [Ge et al. 2014b, Section 6], which
is (R×Sn−1, gq

Sch) with

gq
Sch =

(
1+

m

2r
n
q−2

) 4q
n−2q

(dr2
+ r2dθ2),

where dθ2 is the round metric on Sn−1 and m ∈ R is the mass parameter. Let
r0 = (2m)q/(n−2q). The hypersurface r = r0 is an outermost minimal hypersurface
of area A = ωn−1rn−1

0 , and the q-th GBC mass of (R×Sn−1, gq
Sch) is mq = mq.
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Thus, for the q-th Riemannian Schwarzschild manifold, one has

mq =
1
2q

( A
ωn−1

)n−2q
n−1

.

We can now state the version of the PI for the GBC mass.

Conjecture 5. Let n and q be integers such that n ≥ 3 and 1≤ q < n/2. If (Mn, g)
is an asymptotically flat Riemannian manifold of order τ > (n − 2q)/(q + 1)
whose q-th Gauss–Bonnet curvature L(q) is nonnegative and integrable, and 0 is a
(possibly disconnected) outermost minimal hypersurface of area A, then

mq ≥
1
2q

( A
ωn−1

)n−2q
n−1

,

where mq is the q-th GBC mass. Moreover, if the equality holds, then (M, g) is
isometric to the q-th Riemannian Schwarzschild manifold.

We now turn to the special case of graphs. Let � be a (possibly empty) bounded
open subset of Rn such that 6= ∂� is the union of finitely many smooth connected
hypersurfaces. Let f : Rn

\�→ Rm be a continuous map such that its restriction
to Rn

\� is smooth. Let f α, 1≤ α ≤ m, be the components of f and let f αi , f αi j
and f αi jk denote the first, second and third partial derivatives of f α on Rn

\�, where
1≤ i, j, k ≤ n. The map f is said to be asymptotically flat of order τ if

(8) | f αi (x)| + | f
α
i j (x)| |x | + | f

α
i jk(x)| |x |

2
= O(|x |−τ/2),

for each α ∈ {1, . . . ,m} and each triple (i, j, k) with 1≤ i, j, k ≤ n.
We assume throughout the paper that

M = {(x, f (x)) : x ∈ Rn
\�, f (x) ∈ Rm

},

the graph of f , is a smooth submanifold with (possibly empty) boundary and that
gi j = δi j + f αi f αj , the metric induced by the Euclidean metric on Rn+m, extends
to a smooth metric on M. Notice that if f is asymptotically flat of order τ , then
from (8) we get that (M, g) is asymptotically flat of order τ .

Conjectures 4 and 5 have been proved for graphs of codimension one [Ge et al.
2014b]. When q = 2, Li, Wei and Xiong proved these conjectures for graphs of
higher codimension with flat normal bundle [Li et al. 2014]. Conjecture 4 is also
known to be true for conformally flat manifolds [Ge et al. 2014a].

The purpose of the present article is to prove Conjectures 4 and 5 for a family of
higher-codimension Euclidean graphs (without the rigidity statements). This family
includes the graphs with flat normal bundle. The exposition follows closely the
ones given in [Lam 2011; Mirandola and Vitório 2015; Ge et al. 2014b; Li et al.
2014]. Before stating our main results, we need to introduce some notation.
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Denote by {ei }
n
i=1 the standard basis of Rn and by {eα}mα=1 the standard basis

of Rm. The coordinate vector fields on M are given by ∂i = (ei , f αi eα), and the
vector fields ηα = (−D f α, eα), where D f α denotes the Euclidean gradient of f α,
give us a (global) frame field for the normal bundle of M. We denote by B the
second fundamental form of M, by Bα its α-th component with respect to the frame
{ηα}

m
α=1, and by Aα the shape operator with respect to ηα . Also, let U = (Uαβ) be

the metric on the normal bundle induced by the Euclidean metric 〈 · , · 〉 on Rn+m.
The components of U are given by

Uαβ = δαβ +〈D f α, D f β〉.

The inverse of U is denoted by (Uαβ).
Recall the Gauss and the Ricci equations, which are, respectively, given by

(9) Ri jkl = 〈Bik, B jl〉− 〈Bil, B jk〉

and
(10) 〈R⊥αβ(X), Y 〉 = 〈[Aβ, Aα](X), Y 〉,

where 〈 · , · 〉 is the Euclidean metric on Rn+m, R⊥ is the normal curvature operator
and

[Aβ, Aα] = Aα ◦ Aβ − Aβ ◦ Aα.

We denote by T(2q−1) the Newton tensor of order (2q−1) and denote by T(2q−1)α

its α-th component with respect to the frame {ηα}mα=1 (see [Grosjean 2002] and
[Cao and Li 2007]). The expression for T(2q−1) in coordinates is

(11) T j
(2q−1)i =

1
(2q − 1)!

δ
a1···a2q−1 j
b1···b2q−1i

( q−1∏
s=1

〈Bb2s−1
a2s−1

, Bb2s
a2s
〉

)
Bb2q−1

a2q−1 ,

where 〈 · , · 〉 denotes the Euclidean metric on Rn+m. As we will see in Section 2,
if M has flat normal bundle, then T(2q−1)α commutes with Aβ , for 1≤ α, β ≤ m.

We can now state the main results of the article. The first of them is this:

Theorem 6. Let n and q be integers such that n≥3 and 1≤q<n/2, and let (M, g)
be the graph of an asymptotically flat map f :Rn

→Rm of order τ >(n−2q)/(q+1).
If the q-th Gauss–Bonnet curvature L(q) of (M, g) is integrable, then the q-th Gauss–
Bonnet–Chern mass mq satisfies

(12) mq =
1
2

cq(n)
∫

M

(
L(q)+ (2q − 1)!

〈[
T(2q−1)α, Aβ

]
· e>α , e>β

〉) 1
√

G
d M,

where cq(n) is the constant (7), G is the determinant of (gi j ),

[T(2q−1)α, Aβ] = T(2q−1)α ◦ Aβ − Aβ ◦ T(2q−1)α

is the commutator of the operators T(2q−1)α and Aβ , and e>α is the tangent part
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(along the graph M) of the canonical lift to Rn+m
≡ Rn

×Rm of the standard frame
field on Rm. Moreover, if M has flat normal bundle and L(q) is nonnegative, then
mq is nonnegative.

Remark 7. Notice that, since the graph structure is used in the definition of the
vector fields ηα , the tensor [T(2q−1)α, Aβ] is defined only for graphs. It is desirable to
find an expression similar to (12) that holds for any asymptotically flat submanifold
(not necessarily a graph), but we were unable to do it. One strategy in order to do this
is to rewrite [T(2q−1)α, Aβ] in such a way that it also makes sense for submanifolds
which are not necessarily graphs and try proving that (12) also holds in this case.
Another strategy is to find a similar expression for the mass by considering, instead
of the vector field (25) used to get (12), one which is defined for any submanifold
(compare, for example, the vector fields considered in [Lam 2011] and [de Lima
and Girão 2015]).

Let 6 ⊂ Rn be an orientable hypersurface and let ξ be a unit normal vector field
along 6 (chosen to point outwards, whenever this makes sense). The r-th mean
curvature of 6 is defined as the r -th elementary symmetric function on the principal
curvatures of 6. Alternatively, if K is the second fundamental form of 6⊂Rn, then

(13) Hr =
1
r !
δ

a1···ar
b1···br

r∏
s=1

K bs
as
.

The hypersurface 6 ⊂ Rn is called strictly p-mean convex, 1 ≤ p ≤ n − 1, if
Hr > 0 for all 1≤ r ≤ p. Our second main result is the following:

Theorem 8. Let n and q be integers such that n ≥ 3 and 1 ≤ q < n/2. Let � be
a bounded and open subset of Rn such that 6 = ∂� is the union of finitely many
smooth connected hypersurfaces. Let f : Rn

\�→ Rm be an asymptotically flat
map of order τ > (n − 2q)/(q + 1), and let (M, g) be the graph of f . Assume
that f extends smoothly to an open set containing Rn

\� and that f is constant
along each connected component of 6. If the q-th Gauss–Bonnet curvature L(q) is
integrable, then the q-th Gauss–Bonnet–Chern mass mq satisfies

mq =
1
2

cq(n)
∫

M

(
L(q)+ (2q − 1)!

〈[
T(2q−1)α, Aβ

]
· e>α , e>β

〉) 1
√

G
d M

+
1
2
(2q − 1)!cq(n)

∫
6

(
|D f |2

1+ |D f |2

)q

H(2q−1) d6,

where
|D f |2 =

m∑
α=1

|D f α|2

and H(2q−1) is the (2q−1)-th mean curvature of 6.
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Our third main result is the following:

Theorem 9. Let n and q be integers such that n ≥ 3 and 1 ≤ q < n/2. Let � be
a bounded and open subset of Rn such that 6 = ∂� is the union of finitely many
smooth hypersurfaces. Let

f : Rn
\�→ Rm

be an asymptotically flat map of order
τ > (n− 2q)/(q + 1),

and let (M, g) be the graph of f . Assume that f is constant along each connected
component of 6 and that

|D f | →∞ as x→6.

If the q-th Gauss–Bonnet curvature L(q) is integrable, then the q-th Gauss–Bonnet–
Chern mass mq satisfies

(14) mq =
1
2

cq(n)
∫

M

(
L(q)+ (2q − 1)!

〈[
T(2q−1)α, Aβ

]
· e>α , e>β

〉) 1
√

G
d M

+
1
2
(2q − 1)!cq(n)

∫
6

H(2q−1) d6,

where H(2q−1) is the (2q−1)-th mean curvature of 6. Furthermore, if M has flat
normal bundle, L(q) is nonnegative and each component of 6 is star-shaped and
strictly (2q−1)-mean convex, then

(15) mq ≥
1
2q

( A
ωn−1

)n−2q
n−1

.

Remark 10. As explained in [Ge et al. 2014b, Remark 5.1], when 6 ⊂ Rn is
strictly mean convex, the condition
(16) |D f | →∞ as x→ ∂�

holds if and only if 0 = ∂M is an outermost minimal hypersurface. Therefore, this
is a natural assumption.

Remark 11. Geometrically, condition (16) is equivalent to saying that along each
connected component of ∂M, the graph M meets orthogonally the hyperplane that
contains that component (see [de Sousa 2016]).

2. Auxiliary results

Let n and q be positive integers such that n ≥ 3 and 1≤ q < n/2. Throughout this
section, the tensors P(q) and T(2q−1) are defined by (5) and (11), respectively. Also,
unless stated otherwise, we will follow the notation introduced in Section 1.

If � is not empty, we assume, throughout this section, that f extends smoothly
to an open set containing Rn

\�.
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Lemma 12. Under the notation introduced above, the following identities hold:

g jk,l = f αjl f αk + f αj f αkl(17)

e>α = ∇ f α = gi j f αj ∂i =Uαβ f βi ∂i(18)

Aα∂i = f αik gk j∂ j(19)

B(∂i , ∂ j )= f αi j U
αβηβ(20)

(Bα)i j = f αi j(21)

0k
i j = gkl f αl f αi j(22)

∇e>α = 〈B, eα〉(23)

Proof. Identities (17) to (22) are proven in [Mirandola and Vitório 2015] and [Li et al.
2014] and identity (23) is proved in [Palais and Terng 1988, Proposition 4.1.1]. �

On an open set that contains Rn
\�, consider the vector field X(q) given by

(24) X(q) = X i
(q)∂i = P i jkl

(q) g jk,l∂i .

Proposition 13. It holds that

(25) X(q) =
1
2
(2q − 1)! T(2q−1)α · e>α .

Proof. By (24) and (17) we have

X i
(q) = P i jkl

(q) ( f αjl f αk + f αj f αkl).

Using the antisymmetry of P i jkl
(q) with respect to the indices k and l, we have

X i
(q) = P i jkl

(q) f αjl f αk .

Combining this identity with (5), (19) and (18), we find

X i
(q) =

1
2q δ

a1a2···a2q−3a2q−2i j
b1b2···b2q−3b2q−2cd

(q−1∏
s=1

R b2s−1b2s
a2s−1a2s

)
gck gdl f αjl f αk

=
1
2q δ

a1a2···a2q−3a2q−2i j
b1b2···b2q−3b2q−2cd

(q−1∏
s=1

R b2s−1b2s
a2s−1a2s

)
gdl f αjl g

ck f αk

=
1
2q δ

a1a2···a2q−3a2q−2i j
b1b2···b2q−3b2q−2cd

(q−1∏
s=1

R b2s−1b2s
a2s−1a2s

)
(Aα)dj gck f αk

=
1
2q δ

a1a2···a2q−3a2q−2i j
b1b2···b2q−3b2q−2cd

(q−1∏
s=1

R b2s−1b2s
a2s−1a2s

)
(Aα)dj (∇ f α)c.
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Hence, using (9), (11), (18) and switching i with j and c with d, we find

X i
(q) =

2q−1

2q δ
a1a2···a2q−3a2q−2i j
b1b2···b2q−3b2q−2cd

(q−1∏
s=1

〈Bb2s−1
a2s−1

, Bb2s
a2s
〉

)
(Aα)dj (∇ f α)c

=
1
2
δ

a1a2···a2q−3a2q−2 j i
b1b2···b2q−3b2q−2dc

(q−1∏
s=1

〈Bb2s−1
a2s−1

, Bb2s
a2s
〉

)
(Aα)dj (∇ f α)c

=
1
2
(2q − 1)!(T(2q−1)α)

i
c(∇ f α)c

=
1
2
(2q − 1)!(T(2q−1)α · ∇ f α)i

=
1
2
(2q − 1)!(T(2q−1)α · e>α )

i . �

The next identity is a higher-codimensional version of Proposition 3.5(b) in
[Reilly 1973] (see also [Alías et al. 2006, Section 8]).

Proposition 14. It holds that

dive X = 1
2 L(q)+ 1

2(2q − 1)!
〈[

T(2q−1)α, Aβ
]
· e>α , e>β

〉
,

where dive denotes the Euclidean divergence.

Proof. Using the identity
dive X(q) = ∂i X i

(q)

and the identities (18), (21) and (22), we have

divg X(q) =∇i X i
(q) = ∂i X i

(q)+0
i
i j X j

(q)

= dive X(q)+ (e>β )
i (Bβ)i j X j

(q)

= dive X(q)+〈Aβ · X(q), e>β 〉

= dive X(q)+ 1
2(2q − 1)!〈(Aβ ◦ T(2q−1)α) · e>α , e>β 〉.

By the expression for the vector field X(q) established in the previous proposition,
it follows that

divg X(q) = 1
2(2q − 1)! divg(T(2q−1)β · e>β )

=
1
2(2q − 1)!

[
divg(T(2q−1)β) · e>β + T(2q−1)β · ∇e>β

]
.

By (18) and (23), the identities

∇e>β = 〈B, eβ〉 =U γα
〈ηγ , eβ〉Bα =UβαBα

hold. Therefore, the Gauss equation together with identities (11) and (4) give

T(2q−1)β · ∇e>β =UβαT(2q−1)β · Bα =
1

(2q − 1)!
L(q).
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Thus,

dive X(q) = 1
2 L(q)+ 1

2(2q − 1)!
[
divg(T(2q−1)β) · e>β −

〈
(Aβ ◦ T(2q−1)α) · e>α , e>β

〉]
.

Recall that the Newton tensors of a submanifold of Euclidean space are divergence
free (see, for example, Lemmata 3.1 and 3.2 of [Cao and Li 2007]) and that each of
the fields in the normal frame is given by the expression ηβ = (−D f β, eβ). Hence,
using identity (18), we have

(divg T(2q−1)β) j =∇i (T(2q−1)β)
i

j =∇i
〈
(T(2q−1))

i
j , ηβ

〉
=
〈
∇
⊥

i (T(2q−1))
i

j , ηβ
〉
+
〈
(T(2q−1))

i
j ,∇
⊥

i ηβ
〉

=
〈
(div T(2q−1)) j , ηβ

〉
+U γα(T(2q−1)α)

i
j
〈
ηγ , Diηβ

〉
= (T(2q−1)α)

i
jU

γα f γk f βik = (T(2q−1)α)
i

j (e
>

α )
k(Bβ)ik

=
(
(T(2q−1)α ◦ Aβ) · e>α

)
j ,

where D is the Levi-Civita connection of the ambient space Rn+m
≡ Rn

× Rm.
Therefore,

dive X(q) = 1
2 L(q)+ 1

2(2q − 1)!
〈(

T(2q−1)α ◦ Aβ − Aβ ◦ T(2q−1)α
)
· e>α , e>β

〉
=

1
2 L(q)+ 1

2(2q − 1)!
〈
[T(2q−1)α, Aβ] · e>α , e>β

〉
. �

Proposition 15. For a level set 6 ⊂ Rn in the domain of a Euclidean graph, the
identity

〈X(q), ξ〉 = −
1
2
(2q − 1)!

(
|D f |2

1+ |D f |2

)q

H(2q−1)

holds, where ξ denotes a unit normal vector field along6 (chosen to point outwards,
whenever this makes sense).

Proof. We have
〈X(q), ξ〉 = 1

2(2q − 1)!(T(2q−1)α · e>α )
iξi .

Let x ∈ 6. Rotate the coordinates such that, at x , e1 = ξ and {eA}
n
A=2 is an

orthonormal frame for the tangent space of 6 at x . With respect to this new frame
{ei }

n
i=1 on Rn,

ξi = δ
1
i ,

for i = 1, . . . , n. Thus,

〈X(q), ξ〉 = 1
2(2q − 1)!(T(2q−1)α · e>α )

1.

As in [Li et al. 2014, Section 4], we find that the inverse of g is given by

g11
=

1
1+|D f |2

,

g A1
= 0,

g AB
= δAB .
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It follows that

e>α =
f α1

1+ |D f |2
∂1 =

〈D f α, ξ〉
1+ |D f |2

∂1.

Therefore,

〈X(q), ξ〉 =
1
2
(2q − 1)!

〈D f α, ξ〉
1+ |D f |2

(T(2q−1)α)
1
1.

Since, by (9) and (11),

(T(2q−1)α)
1
1 =

1
2q−1

1
(2q − 1)!

δ
a1···a2q−11
b1···b2q−11

(q−1∏
s=1

R b2s−1b2s
a2s−1a2s

)
(Aα)

b2q−1
a2q−1,

using the antisymmetry of δa1···a2q−11
b1···b2q−11 we find that

(T(2q−1)α)
1
1 =

1

2q−1

1
(2q − 1)!

δ
A1···A2q−11
B1···B2q−11

(q−1∏
s=1

R B2s−1 B2s
A2s−1 A2s

)
(Aα)

B2q−1
A2q−1

.

Recall that the generalized Kronecker delta is a determinant. Using the 2q-th
column to expand it, we find

δ
A1···A2q−11
B1···B2q−11 = δ

A1···A2q−1
B1···B2q−1

.

Hence,

(T(2q−1)α)
1
1 =

1
2q−1

1
(2q − 1)!

δ
A1···A2q−1
B1···B2q−1

(q−1∏
s=1

R B2s−1 B2s
A2s−1 A2s

)
(Aα)

B2q−1
A2q−1

.

Let R̂ denote the Riemann curvature tensor of 6, and denote by K and K̃ ,
respectively, the second fundamental form of 6 as a hypersurface of Rn and the
second fundamental form of f (6) as a hypersurface of (M, g). By equations (4.3)
and (4.4) of [Li et al. 2014], we have

K̃ =
K√

1+ |D f |2

and

R C D
AB =

|D f |2

1+ |D f |2
R̂ C D

AB .

Plugging this into the expression for (T(2q−1)α)
1
1, we find

(
T(2q−1)α

)1
1 =

1
2q−1

1
(2q − 1)!

(
|D f |2

1+ |D f |2

)q−1

× δ
A1···A2q−1
B1···B2q−1

(q−1∏
s=1

R̂ B2s−1 B2s
A2s−1 A2s

)
(Aα)

B2q−1
A2q−1

.
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From
ηα = eα − D f α = eα −〈D f α, ξ〉ξ,

it follows that
(Aα)B

A =−〈D f α, ξ〉K B
A .

Also, the Gauss equation applied to 6 ⊂ Rn yields

R̂ C D
AB = K C

A K D
B − K D

A K C
B .

We then conclude that

(T(2q−1)α)
1
1 =−

1
2q−1

1
(2q − 1)!

〈D f α, ξ〉
(
|D f |2

1+ |D f |2

)q−1

× δ
A1···A2q−1
B1···B2q−1

(q−1∏
s=1

R̂ B2s−1 B2s
A2s−1 A2s

)
(K )B2q−1

A2q−1

=−
1

(2q − 1)!
〈D f α, ξ〉

(
|D f |2

1+ |D f |2

)q−1

× δ
A1···A2q−1
B1···B2q−1

(q−1∏
s=1

K B2s−1
A2s−1

K B2s
A2s

)
K B2q−1

A2q−1

= −〈D f α, ξ〉
(
|D f |2

1+ |D f |2

)q−1

H(2q−1),

where we have used the expression (13) to obtain the last equality. It follows that

〈X(q), ξ〉 =
1
2
(2q − 1)!

〈D f α, ξ〉
1+ |D f |2

(T(2q−1)α)
1
1

=−
1
2
(2q − 1)!

〈D f α, ξ〉2

1+ |D f |2

(
|D f |2

1+ |D f |2

)q−1

H(2q−1)

=−
1
2
(2q − 1)!

(
|D f |2

1+ |D f |2

)q

H(2q−1),

where, to obtain the last equality, we have used that

D f α = 〈D f α, ξ〉ξ

implies
|D f |2 =

∑
α

〈D f α, ξ〉2. �

Remark 16. In Proposition 15, the expression |D f |2/(1+ |D f |2) is the cosine
of the angle between the graph and the hyperplane containing its boundary (see
[de Sousa 2016]).
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3. Proof of the theorems

Suppose first that M has no boundary. Let Sr be an Euclidean coordinate sphere of
radius r . By (6), (24) and the divergence theorem, we have

mq = cq(n) lim
r→∞

∫
Sr

X i
(q)ξi d Sr

= cq(n)
∫

Rn
dive X(q) dV,

where dV denotes the Euclidean volume form. Thus, invoking Proposition 14 and
using that

(26) dV =
1
√

G
d M,

we find

mq =
1
2

cq(n)
∫

M

(
L(q)+ (2q − 1)!〈

[
T(2q−1)α, Aβ

]
· e>α , e>β 〉

) 1
√

G
d M,

which is exactly the first part of Theorem 6.
To prove the second part of Theorem 6, notice that, from equations (3) and (6)

of [Andrzejewski et al. 2016], the tensor T(2q−1)α can be written as a polynomial
on the Aα’s. Also, if M has flat normal bundle, then the Ricci equation (10) yields

(27) [Aα, Aβ] = 0,

for all α, β ∈ {1, . . . ,m}. Thus, using (27) several times, we find

[T(2q−1)α, Aβ] = 0,

for all α, β ∈ {1, . . . ,m}. Hence, (12) becomes

mq =
1
2

cq(n)
∫

M
L(q)

1
√

G
d M.

Therefore, if L(q) is nonnegative, then mq is nonnegative. This finishes the proof of
Theorem 6.

Suppose now that ∂M is not empty and that f can be extended to a smooth map
on some open set containing Rn

\�. This assumption allows us to use the results
of Section 2. Equations (6), (24) and the divergence theorem yield

mq = cq(n) lim
r→∞

∫
Sr

X i
(q)νi d Sr

= cq(n)
∫

Rn\�

dive X(q) dV − cq(n)
∫
6

〈X(q), ξ〉 d6.
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Invoking Propositions 14 and 15 and (26), we get

(28) mq =
1
2

cq(n)
∫

M

(
L(q)+ (2q − 1)!

〈[
T(2q−1)α, Aβ

]
· e>α , e>β

〉) 1
√

G
d M

+
1
2
(2q − 1)!cq(n)

∫
6

(
|D f |2

1+ |D f |2

)q

H(2q−1) d6.

This finishes the proof of Theorem 8.

Let us now prove Theorem 9. We cannot use (28) directly, since, by hypothesis,

|D f | →∞ as x→6,

and hence, it is not possible to extend f to a smooth function on some open set
containing Rn

\�. To circumvent this problem, we proceed as in the last section of
[Mirandola and Vitório 2015]. Namely, we consider an approximating sequence

Fk
= ( f 1,k, . . . , f m,k) : Rn

\�→ Rm,

k ∈ N, of smooth maps such that each Fk extends to a smooth map on some open
set containing Rn

\�. We then apply (28) to each Fk and take the limit as k→∞,
reaching (14).

It remains to prove inequality (15). If 6 has only one component then, by a
result of Guan and Li [2009], it holds that

(29) 1
2
(2q − 1)!cq(n)

∫
6

H(2q−1) d6 ≥ 1
2q

(
|6|

ωn−1

)n−2q
n−1

,

with equality holding if and only if 6 is a round sphere.
Suppose now that 6 has more than one component. Recall that if x1, . . . , x j are

nonnegative real numbers and 0≤ s < 1 then

(30)
j∑

i=1

x s
i ≥

( j∑
i=1

xi

)s

,

with equality holding if and only if at most one of the xi ’s is positive (see [Huang and
Wu 2015b, Proposition 5.2]). Inequality (15) then follows by combining inequalities
(29) and (30).

Remark 17. Unfortunately our methods are not suitable to deal with the equality
cases, that is, to prove the rigidity statements contained in Conjectures 4 and 5. If
equality holds in Theorem 6, then we can only conclude that the Gauss–Bonnet
curvature L(q) is identically zero. If equality holds in Theorem 9, then we can only
conclude that L(q) is zero on M and that 6 has only one component which is a
round sphere.
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THE ASYMPTOTIC BOUNDS OF
VISCOSITY SOLUTIONS OF THE CAUCHY PROBLEM FOR

HAMILTON–JACOBI EQUATIONS

KAIZHI WANG

We study the Cauchy problem for time-periodic Hamilton–Jacobi equations
with Tonelli Hamiltonians. It is well known that the Cauchy problem admits a
unique bounded viscosity solution. We provide a more precise description of
the boundedness of the viscosity solution. We introduce the notion of asymp-
totic bounds of the viscosity solution of the Cauchy problem. An asymptotic
bound is a 1-periodic viscosity solution of the Hamilton–Jacobi equation. We
show how to obtain the optimal asymptotic bounds, i.e., minimal asymptotic
upper bound and maximal asymptotic lower bound. Our method relies upon
Mather theory and weak KAM theory on Lagrangian dynamics.

1. Introduction and main result

Consider the Hamilton–Jacobi equation

(1-1) ut + H(x, ux , t)= c(H), x ∈ M, t ∈ [0,+∞),

where H is a Tonelli Hamiltonian, the constant c(H) is the Mañé critical value
of H [Mañé 1997], and M is a compact and connected smooth manifold without
boundary. We choose, once and for all, a C∞ Riemannian metric g on M. A C2

function H : T ∗M ×R1
→ R1 is called a Tonelli Hamiltonian if:

• (periodicity) H is 1-periodic in t .

• (strict convexity) For each (x, p, t) ∈ T ∗M ×R1, the second partial derivative
∂2 H/∂p2(x, p, t) is positive definite.

• (superlinear growth) lim‖p‖x→+∞ H(x, p, t)/‖p‖x =+∞ uniformly on x ∈M,
t ∈ R1, where ‖ · ‖x denotes the norm on T ∗x M induced by g.

• (completeness of the Hamiltonian vector field) Each integral curve of the
Hamiltonian vector field is defined on all of R1.

MSC2010: 35B40, 35F25, 37J99.
Keywords: Hamilton–Jacobi equations, viscosity solutions, Cauchy problem, asymptotic bounds,

weak KAM theory.
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For the Hamiltonian H, we can define the associated Lagrangian as its Fenchel–
Legendre transform:

L : T M ×R1
→ R1, (x, v, t) 7→ sup

p∈T ∗x M
{〈p, v〉x − H(x, p, t)},

where 〈 · , · 〉x represents the canonical pairing between the tangent and cotangent
space. Since H is a Tonelli Hamiltonian, one can easily prove that L is finite
everywhere, a C2 function, 1-periodic in t , superlinear and strictly convex in v,
and that the Euler–Lagrange flow is complete. Such a Lagrangian will be called a
Tonelli Lagrangian.

The Cauchy problem for (1-1) with Tonelli Hamiltonian H is well posed in the
viscosity sense: given a continuous function ϕ : M→ R1, (1-1) admits a unique
viscosity solution u : M ×[0,+∞)→ R1 with u|t=0 = ϕ; see, e.g., [Lions 1982].
The notion of viscosity solutions was introduced by Crandall and Lions [1983] in
the study of Hamilton–Jacobi equations.

Let H̃ = H − c(H). Then (1-1) can be rewritten as

ut + H̃(x, ux , t)= 0.

Since H̃ is still a Tonelli Hamiltonian and the Mañé critical value of H̃ is 0 (see
Section 2A), then in the following we always assume that c(H)= 0 and consider
the Hamilton–Jacobi equation

(1-2) ut + H(x, ux , t)= 0, x ∈ M, t ∈ [0,+∞).

There exist viscosity solutions of (1-2) which are 1-periodic in time; see, e.g.,
[Wang and Yan 2012]. More precisely, Wang and Yan [2012] introduced a new kind
of Lax–Oleinik type operators in the context of weak KAM theory [Fathi 2005].
The family of the new operators with an arbitrary continuous function ϕ on M as
initial condition converges to a 1-periodic viscosity solution of (1-2). Moreover,
using this method one can obtain all the 1-periodic viscosity solutions of (1-2).
There is a nice representation formula for 1-periodic viscosity solutions: u(x, t)=
infy∈M(ϕ(y)+ h0,[t](y, x)), where h is the Peierls barrier and [t] = t mod 1; see
Section 2 for details. In addition, Wang and Yan also showed [2012] that weak
KAM solutions and 1-periodic viscosity solutions of (1-2) are the same.

All the viscosity solutions of (1-2) are bounded; see Proposition 2.1. In general, it
is not true that the viscosity solution converges, as t→+∞, to a 1-periodic viscosity
solution; see [Barles and Souganidis 2000; Fathi and Mather 2000]. Roquejoffre
[2001] and Bernard and Roquejoffre [2004] proved that the viscosity solution
converges to a T -periodic viscosity solution in several nontrivial special cases,
where T may be greater than 1.

In the present paper we aim to give a more precise description of the boundedness
of the viscosity solution of (1-2). Denote by uϕ(x, t) the unique viscosity solution
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of the Cauchy problem

(1-3)
{

ut + H(x, ux , t)= 0 in M × (0,+∞),
u(x, 0)= ϕ(x) on M,

where ϕ : M→ R1 is a continuous function.

Definition 1.1 (asymptotic bounds). (i)We say that a 1-periodic viscosity solution v
of (1-2) is an asymptotic upper bound (AUB) of uϕ , if for each ε > 0 there exists
T > 0 such that

(1-4) uϕ(x, t)≤ v(x, t)+ ε, ∀(x, t) ∈ M ×[T,+∞).

Furthermore, a function v̄ : M ×[0,+∞)→ R1 is called the minimal asymptotic
upper bound (min AUB) of uϕ , if it is an AUB and for each AUB v, we have

v̄(x, t)≤ v(x, t), ∀(x, t) ∈ M ×[0,+∞).

(ii) We say that a 1-periodic viscosity solution w of (1-2) is an asymptotic lower
bound (ALB) of uϕ , if for each ε > 0 there exists T > 0 such that

(1-5) uϕ(x, t)≥ w(x, t)− ε, ∀(x, t) ∈ M ×[T,+∞).

Furthermore, a function w : M ×[0,+∞)→ R1 is called the maximal asymptotic
lower bound (max ALB) of uϕ , if it is an ALB and for each ALB w, we have

w(x, t)≥ w(x, t), ∀(x, t) ∈ M ×[0,+∞).

Remark 1.1. (i) The existence of the AUB and the ALB of uϕ follows immediately
from the existence of 1-periodic viscosity solutions of (1-2) and the boundedness
of uϕ .

(ii) We assert that if the min AUB v̄ and the max ALB w of uϕ exist, then for each
ε > 0 and each T > 0, there exist (x̄, t̄), (x, t) ∈ M ×[T,+∞) such that

uϕ(x̄, t̄) > v̄(x̄, t̄)− ε, uϕ(x, t) < w(x, t)+ ε.

To show the first assertion, we argue by contradiction. For, otherwise, there
would be ε0 > 0 and T0 > 0 such that

uϕ(x, t)≤ v̄(x, t)− ε0 =: v
′(x, t), ∀(x, t) ∈ M ×[T0,+∞).

Note that v′ is a 1-periodic viscosity solution of (1-2) and that for each ε > 0,

uϕ(x, t)≤ v′(x, t)≤ v′(x, t)+ ε, ∀(x, t) ∈ M ×[T0,+∞).

By definition, v′ is an AUB of uϕ . Recall that v′(x, t) := v̄(x, t)− ε0. Thus, we
obtain a contradiction to the assumption that v̄ is the min AUB of uϕ . By a similar
argument, one can prove the second assertion.
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The major result of the paper is as follows:

Theorem 1.1. For every continuous function ϕ :M→R1, both the min AUB and the
max ALB of uϕ exist. Let ϕ̄ and ϕ denote the min AUB and the max ALB respectively.
Then there is a constant C > 0 such that

(1-6) |ϕ̄(x, t)−ϕ(x, t)| ≤ C, ∀M ×[0,+∞),

where C is independent of ϕ.

For a given ϕ ∈ C(M,R1), we will show how to obtain ϕ̄ and ϕ in Section 3.
An outline of this paper is as follows. Section 2 includes some basic definitions
and preliminary results. Section 3 is devoted to the proof of Theorem 1.1.

In recent years, many convergence results on the asymptotic behavior of viscosity
solutions of Hamilton–Jacobi equations with the Hamiltonian independent of t have
been obtained by various authors since the pioneering work of Lions [1982] and
Barles [1985]. Among them, it is worth mentioning in particular that dynamical
techniques were used first by Fathi [1998] and Roquejoffre [2001] to attack such
problems. See [Ishii 2006] for more details.

2. Preliminaries

In this section we introduce the notation used in the sequel and review some
definitions and results of Mather theory and weak KAM theory [Fathi 2005; Mañé
1997; Mather 1991; 1993]. We view S1 as a fundamental domain in R1

: Ī = [0, 1]
with the two endpoints identified. The standard universal covering projection
π : R1

→ S1 takes the form π(t)= [t], where [t] = t mod 1 denotes the fractional
part of t .

The L-action of a continuous and piecewise C1 curve γ : [a, b]→M is defined by

AL(γ )=

∫ b

a
L(dγ (σ ), σ ) dσ,

where dγ : [a, b] → T M denotes the differential of γ .

2A. Mañé critical value. The notion of the critical value of autonomous Tonelli
Hamiltonians (or Lagrangians) was introduced by Mañé [1997]; see also [Contreras
et al. 1997]. We can define the critical value of time-periodic Tonelli Hamiltonians
(or Lagrangians) in a similar way. Contreras et al. [2013] gave the following
property of the critical value for time-periodic case, which can also be regarded as
equivalent definitions of the critical value.

c(H):= inf {k ∈R1
: AL+k(γ )≥ 0 for all absolutely continuous closed curves γ}

= sup{k ∈R1
: AL+k(γ )< 0 for some absolutely continuous closed curve γ},

where L(x, v, t) = supp∈T ∗x M{〈p, v〉x − H(x, p, t)} and a curve γ : [a, b] → M
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will be called closed if γ (a)= γ (b) and b− a is an integer. It is straightforward to
verify that the critical value of H − c(H) is 0.

2B. Lax–Oleinik semigroup and viscosity solutions. For each t ≥ 0 and each
ϕ ∈ C(M,R1), let

Ttϕ(x)= inf
y∈M

{
ϕ(y)+ inf

γ
AL(γ )

}
for all x ∈ M, where the second infimum is taken among the continuous and
piecewise C1 paths γ : [0, t] → M with γ (0) = y and γ (t) = x . For each t ≥ 0,
Tt is an operator from C(M,R1) to itself. Since L is time-periodic, {Tn}n∈N is a
one-parameter semigroup of operators, called the Lax–Oleinik semigroup associated
with L , where N= {0, 1, 2, . . .}. By the definition of Tt , one can easily verify the
following properties:

(i) Tn+tϕ(x)= Tt ◦ Tnϕ(x), ∀n ∈ N, ∀t ≥ 0.

(ii) The function (x, t) 7→ Ttϕ(x) is continuous on M × [0,+∞), for each ϕ ∈
C(M,R1).

(iii) For each ϕ1, ϕ2 ∈ C(M,R1) and each t ≥ 0, we have

ϕ1 ≤ ϕ2⇒ Ttϕ1 ≤ Ttϕ2. (monotonicity)

(iv) For each ϕ1, ϕ2 ∈ C(M,R1) and each t ≥ 0, we have

‖Ttϕ1− Ttϕ2‖∞ ≤ ‖ϕ1−ϕ2‖∞, (nonexpansiveness)

where ‖ · ‖∞ denotes the supremum norm in the space C(M,R1).

As mentioned in Section 1, the Cauchy problem (1-3) is well posed in the
viscosity sense. Furthermore, uϕ(x, t) = Ttϕ(x), for all (x, t) ∈ M × [0,+∞),
which means that T·ϕ( · ) is the unique viscosity solution of (1-3); see, e.g., [Fathi
and Mather 2000].

2C. Peierls barrier. As in [Mather 1993], it is convenient to introduce, for all
t < t ′ ∈ R1 and x , x ′ ∈ M, the quantity

Ft,t ′(x, x ′)= inf
γ

AL(γ ),

where the infimum is taken over the continuous and piecewise C1 paths γ :
[t, t ′] → M such that γ (t)= x and γ (t ′)= x ′. For all t < t ′ ∈ R and all x , x ′ ∈ M,
AL takes a finite minimum value over the set of continuous and piecewise C1 paths
γ : [t, t ′] → M such that γ (t)= x and γ (t ′)= x ′ [Mather 1991]. For each t ≥ 0,
each ϕ ∈ C(M,R1) and each x ∈ M, it is easy to see that

(2-1) Ttϕ(x)= inf
y∈M

{
ϕ(y)+ F0,t(y, x)

}
.
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The following lemma [Bernard 2002] will be useful later. Recall that the critical
value of the Lagrangian is 0. Such a Lagrangian is called critical in [Bernard 2002].

Lemma 2.1. The function

F : R1
×R1

×M ×M→ R1, (t, t ′, x, x ′) 7→ Ft,t ′(x, x ′)

is Lipschitz and bounded on {t ′ ≥ t + 1}.

In light of (ii) in Section 2B, (2-1) and Lemma 2.1, we have the following
proposition.

Proposition 2.1. All the viscosity solutions of (1-2) are bounded on M ×[0,+∞).

Recall the notion of Peierls barrier introduced in [Mather 1993], which is the
main ingredient in Mather’s approach. Define the Peierls barrier as

hs,s′(x, x ′)= lim inf
t ′−t→+∞

Ft,t ′(x, x ′), s, s ′ ∈ S1, x, x ′ ∈ M,

where the lim inf is restricted to the set of (t, t ′) ∈ R2 such that s = [t], s ′ = [t ′].
In view of Lemma 2.1, the lim inf in the definition exists. It is clear that

hs,s′(x, x ′)= lim inf
n→+∞

Fs,s′+n(x, x ′)= lim
n→+∞

inf
k≥n

Fs,s′+k(x, x ′).

Again by Lemma 2.1, the family of functions {infk≥n Fs,s′+k(x, x ′)}n is equi-
Lipschitz and thus

(2-2) hs,s′(x, x ′)= lim
n→+∞

inf
k≥n

Fs,s′+k(x, x ′)

uniformly on S1
×S1

× M × M. An important property of the Peierls barrier is
that it is Lipschitz; see [Contreras et al. 2013].

Lemma 2.2. Given any s ∈ S1, t ∈ R1 with [t] = s and any x , y ∈ M,

(i) h0,s(x, y)= infz∈M(h0,0(x, z)+ F0,t(z, y)),

(ii) h0,s(x, y)= infz∈M(F0,t(x, z)+ h0,0(z, y)).

Proof. (i) The inequality∣∣ inf
z∈M

(
inf
k≥n

F0,k(x, z)+ F0,t(z, y)
)
− inf

z∈M
(h0,0(x, z)+ F0,t(z, y))

∣∣
≤ sup

z∈M

∣∣ inf
k≥n

F0,k(x, z)− h0,0(x, z)
∣∣,

together with (2-2) implies that

lim
n→+∞

inf
z∈M

(
inf
k≥n

F0,k(x, z)+ F0,t(z, y)
)
= inf

z∈M
(h0,0(x, z)+ F0,t(z, y)).
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This equality can be rewritten as

inf
z∈M

(h0,0(x, z)+ F0,t(z, y))= lim
n→+∞

inf
z∈M

(
inf
k≥n

F0,k(x, z)+ F0,t(z, y)
)

= lim
n→+∞

inf
z∈M

(
inf
k≥n
(F0,k(x, z)+ Fk,k+t(z, y))

)
= lim

n→+∞
inf
k≥n

(
inf

z∈M
(F0,k(x, z)+ Fk,k+t(z, y))

)
= lim

n→+∞
inf
k≥n

F0,k+t(x, y)

= h0,s(x, y),

and therefore (i) holds.
The proof of (ii) follows in a similar manner. �

2D. Mañé potential and 1-periodic viscosity subsolutions. For each (s, s ′)∈S1
×S1,

let
8s,s′(x, x ′)= inf Ft,t ′(x, x ′)

for all (x, x ′) ∈ M ×M, where the infimum is taken on the set of (t, t ′) ∈ R2 such
that s = [t], s ′ = [t ′] and t ′ ≥ t + 1. This quantity is commonly called Mañé
potential [Mañé 1997].

Lemma 2.3. A continuous function u : M ×S1
→ R1 is a viscosity subsolution

of (1-2) only if

u(x ′, s ′)− u(x, s)≤8s,s′(x, x ′), ∀(x, s), (x ′, s ′) ∈ M ×S1.

See, e.g., [Fathi 2005] for a proof.

2E. Weak KAM solutions and 1-periodic viscosity solutions. A function u :M×S1

→R1 is called a weak KAM solution of (1-2) if u is a viscosity subsolution of (1-2)
and if, for every (x, s) ∈ M × S1 there exists a curve γ : (−∞, s] → M with
γ (s)= x such that

w(x, s)−w(γ (t), [t])=
∫ s

t
L(dγ (σ ), σ ) dσ, ∀t ∈ (−∞, s].

Denote by S the set of weak KAM solutions.
Let us recall two elementary results [Contreras et al. 2013] about weak KAM

solutions.

(i) Given (x0, s0) ∈ M ×S1, define u∗(x, s) := hs0,s(x0, x). Then u∗ ∈ S.

(ii) If U ⊂ S, let u∗(x, s) := infu∈U u(x, s), then either u∗ ≡−∞ or u∗ ∈ S.

In view of (i) and (ii), it is clear that for each ϕ ∈ C(M,R1),

(2-3) ϕ(x, s) := inf
y∈M

(ϕ(y)+ h0,s(y, x)) ∈ S.

In Section 3, we will show that ϕ is the max ALB of uϕ .
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The following result was proved in [Wang and Yan 2012].

Proposition 2.2. Weak KAM solutions and 1-periodic viscosity solutions of (1-2)
are the same.

2F. Projected Aubry sets and weak KAM solutions. Recall the definition of the
projected Aubry set A0:

A0 := {(x, s) ∈ M ×S1
| hs,s(x, x)= 0}.

Define an equivalence relation on A0 by saying that (x, s) and (x ′, s ′) are equivalent
if and only if

hs,s′(x, x ′)+ hs′,s(x ′, x)= 0.

The equivalent classes of this relation are called static classes. Let A be the set of
static classes. For each static class 0 ∈ A choose a point (x, 0) ∈ 0 and let A0 be
the set of such points.

The following result in [Contreras et al. 2013] characterizes weak KAM solutions
of (1-2) in terms of their values at each static class and the Peierls barrier.

Proposition 2.3. Let u be a weak KAM solution of (1-2). Then we have

(2-4) u(x, [t])= min
(p,0)∈A0

(u(p, 0)+ h0,[t](p, x)), ∀(x, t) ∈ M ×[0,+∞).

3. Proof of Theorem 1.1

To prove the main result, we need some more auxiliary results.

Proposition 3.1. Given a continuous function ϕ : M→ R1, we have

(i) lim infn→+∞ Tn+tϕ(x)= infy∈M(ϕ(y)+h0,[t](y, x))=ϕ(x, [t]), for all (x, t)∈
M ×[0,+∞), where ϕ denotes the function we have defined in (2-3).

(ii) liminfn→+∞ Tn+tϕ(x)=Tt(liminfn→+∞ Tnϕ)(x), for all (x, t)∈M×[0,+∞).

Proof. (i) Note that∣∣ inf
k≥n

Tk+tϕ(x)− inf
y∈M

(ϕ(y)+ h0,[t](y, x))
∣∣

=
∣∣ inf
k≥n

inf
y∈M

(ϕ(y)+ F0,k+t(y, x))− inf
y∈M

(ϕ(y)+ h0,[t](y, x))
∣∣

=
∣∣ inf

y∈M
(ϕ(y)+ inf

k≥n
F0,k+t(y, x))− inf

y∈M
(ϕ(y)+ h0,[t](y, x))

∣∣
≤ sup

y∈M

∣∣ inf
k≥n

F0,k+t(y, x)− h0,[t](y, x)
∣∣.

Taking (2-2) into consideration, we have

lim inf
n→+∞

Tn+tϕ(x)= lim
n→+∞

inf
k≥n

Tk+tϕ(x)= inf
y∈M

(ϕ(y)+ h0,[t](y, x)).
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(ii) Let
ψ(x)= ϕ(x, 0), ∀x ∈ M.

Then by (i), we have

ψ(x)= inf
y∈M

(ϕ(y)+ h0,0(y, x))= lim inf
n→+∞

Tnϕ(x),

and thus it suffices to show that Ttψ(x)= infy∈M(ϕ(y)+h0,[t](y, x)), for all x ∈M,
for all t ≥ 0. It is clear that

(3-1) Ttψ(x)= inf
y∈M

(ψ(y)+ F0,t(y, x))

= inf
y∈M

(
inf

z∈M
(ϕ(z)+ h0,0(z, y))+ F0,t(y, x)

)
= inf

z∈M

(
ϕ(z)+ inf

y∈M
(h0,0(z, y)+ F0,t(y, x))

)
.

Combining (3-1) and (i) of Lemma 2.2, we get

Ttψ(x)= inf
z∈M

(ϕ(z)+ h0,[t](z, x)). �

Proposition 3.2. Given a continuous function ϕ :M→R1, lim supn→+∞ Tn+tϕ(x)
exists for all (x, t) ∈ M ×[0,+∞). Let

ϕ̃(x, t)= lim sup
n→+∞

Tn+tϕ(x), ∀(x, t) ∈ M ×[0,+∞).

Then ϕ̃ is a 1-periodic viscosity subsolution of (1-2).

Proof. It is apparent from Lemma 2.1 that lim supn→+∞ Tn+tϕ(x) exists for all
(x, t) ∈ M ×[0,+∞). Since

ϕ̃(x, t + 1)= lim
n→+∞

sup
k≥n

Tk+t+1ϕ(x)= lim
n→+∞

sup
k≥n+1

Tk+tϕ(x)

= lim
n→+∞

sup
k≥n

Tk+tϕ(x)= ϕ̃(x, t)

for all (x, t) ∈ M × [0,+∞), then ϕ̃ is 1-periodic in t . Therefore, in order to
complete the proof, by Lemma 2.3 we only need to show that

ϕ̃(x ′, s ′)− ϕ̃(x, s)≤8s,s′(x, x ′), ∀(x, s), (x ′, s ′) ∈ M ×S1.

For any positive integer m, we have

sup
k≥n

inf
y∈M

(ϕ(y)+ F0,k+m+s′(y, x ′))− sup
k≥n

inf
y∈M

(ϕ(y)+ F0,k+s(y, x))

≤ sup
k≥n

(
inf

y∈M
(ϕ(y)+ F0,k+m+s′(y, x ′))− inf

y∈M
(ϕ(y)+ F0,k+s(y, x))

)
≤ sup

k≥n
sup
y∈M

(F0,k+m+s′(y, x ′)− F0,k+s(y, x))

≤ sup
k≥n

Fk+s,k+m+s′(x, x ′)= Fs,m+s′(x, x ′).
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By taking the limit for n→+∞, we find

ϕ̃(x ′,m+ s ′)− ϕ̃(x, s)≤ Fs,m+s′(x, x ′).

Since m is an arbitrary positive integer and ϕ̃ is 1-periodic in t, by the definition of
Mañé potential, we have

ϕ̃(x ′, s ′)− ϕ̃(x, s)≤8s,s′(x, x ′). �

Proposition 3.3. Let ϕ∈C(M,R1) and ϕ̂(x)= lim supn→+∞ Tnϕ(x), for all x ∈M.
Then

(3-2) ϕ̂(x)≤ T1ϕ̂(x)≤ · · · ≤ Tnϕ̂(x)≤ · · · , ∀x ∈ M,

and the uniform limit limn→+∞ Tnϕ̂(x) exists. Let ϕ∞(x)= limn→+∞ Tnϕ̂(x) and
ϕ̄(x, t) = Ttϕ∞(x), for all x ∈ M, for all t ≥ 0. Then ϕ∞ is a fixed point of T1

and ϕ̄ is a 1-periodic viscosity solution of (1-2).

Remark 3.1. It is easy to check that

ϕ̄(x, t)= lim
n→+∞

Tn+t ϕ̂(x), ∀x ∈ M, ∀t ≥ 0.

Proof of Proposition 3.3. By Proposition 3.2, ϕ̂ is well defined. In view of the
definition of ϕ̂, for any ε > 0, there exists N0 ∈ N such that

Tnϕ(x)≤ ϕ̂(x)+ ε,

for all x ∈ M and all n ≥ N0. Using the monotonicity of the Lax–Oleinik operator,
we see that

T1 ◦ Tn(x)≤ T1ϕ̂(x)+ ε,

for all x ∈ M and all n ≥ N0. Combining the above inequality, (i) in Section 2B
and the definition of ϕ̂, we have

ϕ̂(x)= lim
n→+∞

sup
k≥n+1

Tkϕ(x)= lim sup
n→+∞

Tn+1ϕ(x)≤ T1ϕ̂(x)+ ε, ∀x ∈ M.

It follows that
ϕ̂(x)≤ T1ϕ̂(x), ∀x ∈ M,

since ε may be taken arbitrarily small. Again by the monotonicity of the Lax–Oleinik
operator, we get that

ϕ̂(x)≤ T1ϕ̂(x)≤ · · · ≤ Tnϕ̂(x)≤ · · · , ∀x ∈ M.

From Lemma 2.1, it is easy to see that {Tnϕ̂}n is uniformly bounded and equi-
Lipschitz. Therefore, the uniform limit limn→+∞ Tnϕ̂(x) exists, i.e.,

(3-3) ϕ∞(x) := lim
n→+∞

Tnϕ̂(x),

uniformly on x ∈ M.
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The following inequality which comes from the nonexpansiveness of the Lax–
Oleinik semigroup;

‖Tnϕ̂− T1ϕ∞‖∞ ≤ ‖Tn−1ϕ̂−ϕ∞‖∞,

together with (3-3), implies that

(3-4) ϕ∞(x)= lim
n→+∞

Tnϕ̂(x)= T1ϕ∞(x), ∀x ∈ M,

namely ϕ∞ is a fixed point of T1.
Finally we prove that ϕ̄(x, t) := Ttϕ∞(x) is a 1-periodic viscosity solution

of (1-2). As mentioned in Section 2B, Ttϕ∞(x) is a viscosity solution of (1-2).
Thus, it suffices to show that ϕ̄(x, t) is 1-periodic in t . By (i) in Section 2B and (3-4),

ϕ̄(x, t + 1)= Tt+1ϕ∞(x)= Tt ◦ T1ϕ∞(x)= Ttϕ∞(x)= ϕ̄(x, t), ∀x ∈ M, ∀t ≥ 0.

The proof of the proposition is now complete. �

Lemma 3.1. For ϕ̄ and ϕ̂ defined in Proposition 3.3, we have ϕ̄(x, 0)= ϕ̂(x), for
all (x, 0) ∈ A0.

Proof. By (3-2), we have ϕ̂(x)≤ Tnϕ̂(x) for all x ∈ M and all n ∈N, which implies

ϕ̂(x)≤ lim
n→+∞

Tnϕ̂(x)= ϕ̄(x, 0), ∀x ∈ M.

On the other hand, for each (x, 0) ∈ A0, we have

ϕ̄(x, 0)= lim
n→+∞

Tnϕ̂(x)

= lim
n→+∞

inf
y∈M

(ϕ̂(y)+ F0,n(y, x))≤ ϕ̂(x)+ lim inf
n→+∞

F0,n(x, x)

= ϕ̂(x)+ h0,0(x, x)= ϕ̂(x). �

Proof of Theorem 1.1. We divide our proof in three steps. First, we show that ϕ̄
in Proposition 3.3 is an AUB of uϕ and that ϕ in (2-3) is an ALB of uϕ . Since we
have shown that ϕ̄ and ϕ are 1-periodic viscosity solutions of (1-2), it suffices to
prove that ϕ̄ and ϕ satisfy (1-4) and (1-5), respectively. Next, we prove that ϕ̄ is
the min AUB of uϕ and that ϕ is the max ALB of uϕ . Finally, we need to show
that (1-6) holds for some constant C > 0 which depends only on L .

Step 1. Our task now is to verify that ϕ̄ and ϕ are AUB and ALB of uϕ , respectively.
First, we show that ϕ̄ satisfies (1-4), which implies that ϕ̄ is an AUB of uϕ . From

the definition of ϕ̂, for every ε > 0, there exists N1 ∈ N such that

(3-5) Tnϕ(x)− ϕ̂(x)≤ sup
k≥n

Tkϕ(x)− ϕ̂(x)≤ ε, ∀x ∈ M, ∀n ≥ N1.

Combining (3-2) and (3-5), we have

Tnϕ(x)−ϕ∞(x)≤ ε, ∀x ∈ M, ∀n ≥ N1.
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Again by the monotonicity of the Lax–Oleinik operator, we get

Tτ ◦ Tnϕ(x)≤ Tτϕ∞(x)+ ε, ∀x ∈ M, ∀τ ∈ [0, 1], ∀n ≥ N1.

In view of (i) in Section 2B and the definition of ϕ̄, the above inequality implies

Tn+τϕ(x)≤ ϕ̄(x, τ )+ ε, ∀x ∈ M, ∀τ ∈ [0, 1], ∀n ≥ N1.

Since uϕ(x, t)= Ttϕ(x) and ϕ̄(x, t) is 1-periodic in t , we have

uϕ(x, n+ τ)≤ ϕ̄(x, n+ τ)+ ε, ∀x ∈ M, ∀τ ∈ [0, 1], ∀n ≥ N1,

i.e.,
uϕ(x, t)≤ ϕ̄(x, t)+ ε, ∀(x, t) ∈ M ×[N1,+∞).

Hence, ϕ̄ is an AUB of uϕ .
Then, we show that ϕ satisfies (1-5), which implies that ϕ is an ALB of uϕ . For

each ε > 0, by (2-2) there exists N2 ∈ N such that

(3-6) inf
k≥n

F0,k+τ (y, x)− h0,[τ ](y, x)≥−ε, ∀x, y ∈ M, ∀τ ∈ [0, 1],

if n ≥ N2. Since

inf
y∈M

(ϕ(y)+ h0,[τ ](y, x))− inf
y∈M

(ϕ(y)+ F0,n+τ (y, x))

≤ sup
y∈M

(h0,[τ ](y, x)− F0,n+τ (y, x)),

then by (3-6), we have

(3-7) inf
y∈M

(ϕ(y)+ h0,[τ ](y, x))

− inf
y∈M

(ϕ(y)+ F0,n+τ (y, x))≤ ε, ∀x ∈ M, ∀τ ∈ [0, 1], ∀n ≥ N2.

From the definition of ϕ, (2-1) and uϕ(x, t)= Ttϕ(x), (3-7) becomes

ϕ(x, τ )− uϕ(x, n+ τ)≤ ε, ∀x ∈ M, ∀τ ∈ [0, 1], ∀n ≥ N2.

Since ϕ is 1-periodic in t , we get

ϕ(x, n+ τ)− uϕ(x, n+ τ)≤ ε, ∀x ∈ M, ∀τ ∈ [0, 1], ∀n ≥ N2,

i.e.,
uϕ(x, t)≥ ϕ(x, t)− ε, ∀(x, t) ∈ M ×[N2,+∞).

Hence, ϕ is an ALB of uϕ .

Step 2. We are now in a position to show that ϕ̄ is the min AUB of uϕ and that ϕ
is the max ALB of uϕ .

First, we prove that ϕ̄ is the min AUB of uϕ , by contradiction. Otherwise, there
would be an AUB v and a point (x0, t0) ∈ M ×[0,+∞) such that

(3-8) v(x0, t0) < ϕ̄(x0, t0).
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Note that v and ϕ̄ are both 1-periodic viscosity solutions of (1-2). In view of
Propositions 2.2 and 2.3, we have

(3-9)
v(x, t)= min

(p,0)∈A0
(v(p, 0)+ h0,[t](p, x)),

ϕ̄(x, t)= min
(p,0)∈A0

(ϕ̄(p, 0)+ h0,[t](p, x)),

for all (x, t) ∈ M × [0,+∞). We assert that there exists a point (p0, 0) ∈ A0

such that

(3-10) v(p0, 0) < ϕ̄(p0, 0).

Suppose otherwise. Then

v(p, 0)≥ ϕ̄(p, 0), ∀(p, 0) ∈ A0.

Therefore, we have

min
(p,0)∈A0

(v(p, 0)+ h0,[t](p, x))≥ min
(p,0)∈A0

(ϕ̄(p, 0)+ h0,[t](p, x))

for all (x, t) ∈ M ×[0,+∞). The above inequality and (3-9) imply that

v(x, t)≥ ϕ̄(x, t), ∀(x, t) ∈ M ×[0,+∞),

which contradicts (3-8). Hence (3-10) holds. Let δ0 = ϕ̄(p0, 0)− v(p0, 0). Then
δ0 > 0 and by Lemma 3.1, we have

(3-11) v(p0, 0)= ϕ̂(p0)− δ0.

Since ϕ̂(p0) = lim supn→+∞ Tnϕ(p0), then for the above δ0, there exists N3 ∈ N

such that supk≥n Tkϕ(p0) > ϕ̂(p0)−
δ0
2 , if n ≥ N3, which implies that there exists

kn ≥ n such that

Tknϕ(p0) > ϕ̂(p0)−
δ0

2
.

From the above inequality and (3-11), we deduce that

Tknϕ(p0) > ϕ̂(p0)−
δ0

2
= v(p0, 0)+

δ0

2
.

It follows that there exist {kn}n ⊂ N with kn→+∞ as n→+∞ such that

uϕ(p0, kn) > v(p0, kn)+
δ0

2
,

which contradicts the assumption that v is an AUB of uϕ .
Next, we show that ϕ is the max ALB of uϕ . Suppose not. There exist an ALB w

of uϕ and a point (x1, t1) ∈ M ×[0,+∞) such that

w(x1, t1) > ϕ(x1, t1).
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Let δ1 = w(x1, t1)−ϕ(x1, t1). From Proposition 3.1, we have

ϕ(x1, t1)= lim inf
n→+∞

Tn+t1ϕ(x1).

Thus, there exists N4 ∈N such that inf j≥n T j+t1ϕ(x1) < ϕ(x1, t1)+ δ1
2 if n ≥ N4. It

follows that there exists jn ≥ n such that

T jn+t1ϕ(x1) < ϕ(x1, t1)+
δ1

2
.

This inequality and the definition of δ1 imply that

T jn+t1ϕ(x1) < ϕ(x1, t1)+
δ1

2
= w(x1, t1)−

δ1

2
,

which means that there exist { jn}n ⊂ N with jn→+∞ as n→+∞ such that

uϕ(x1, jn + t1) < w(x1, jn + t1)−
δ1

2
,

and we have a contradiction to the assumption that w is an ALB of uϕ .

Step 3. It remains to show that (1-6) holds. Note that

(3-12) ϕ(x, 0)− ϕ̄(x, 0)

= inf
y∈M

(ϕ(y)+ h0,0(y, x))− lim
n→+∞

Tn
(
lim sup
n→+∞

Tnϕ
)
(x)

≤ inf
y∈M

(ϕ(y)+ h0,0(y, x))− lim sup
n→+∞

Tnϕ(x)

= inf
y∈M

(ϕ(y)+ h0,0(y, x))− lim
n→+∞

sup
k≥n

inf
y∈M

(ϕ(y)+ F0,k(y, x))

= lim
n→+∞

sup
k≥n
( inf

y∈M
(ϕ(y)+ h0,0(y, x))− inf

y∈M
(ϕ(y)+ F0,k(y, x)))

≤ lim
n→+∞

sup
k≥n

sup
y∈M

(h0,0(y, x)− F0,k(y, x))

for all x ∈ M, where for the first inequality we have used (3-2). In view of (2-2),

lim
n→+∞

inf
k≥n

F0,k(y, x)= h0,0(y, x), uniformly on (y, x) ∈ M ×M.

Therefore, for any ε > 0, there exists N5 ∈ N such that whenever n ≥ N5 it
follows that

inf
k≥n

F0,k(y, x)≥ h0,0(y, x)− ε,

for all x , y ∈ M, which implies that

(3-13) ε ≥ h0,0(y, x)− F0,k(y, x),

for all k ≥ N5 and all x , y ∈ M. Combining (3-12) and (3-13), we have

(3-14) ϕ(x, 0)− ϕ̄(x, 0)≤ 0, ∀x ∈ M,

since ε may be taken arbitrarily small.
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On the other hand, we have
ϕ̄(x,0)−ϕ(x,0)= lim

n→+∞
Tn
(
limsup
n→+∞

Tnϕ
)
(x)− inf

y∈M
(ϕ(y)+h0,0(y, x))

= lim
n→+∞

Tnϕ̂(x)− inf
y∈M

(ϕ(y)+h0,0(y, x))

= lim
n→+∞

(
inf

y∈M
(ϕ̂(y)+F0,n(y, x))− inf

y∈M
(ϕ(y)+h0,0(y, x))

)
≤ limsup

n→+∞
sup
y∈M

(ϕ̂(y)−ϕ(y)+F0,n(y, x)−h0,0(y, x))

= limsup
n→+∞

sup
y∈M

(
limsup
m→+∞

Tmϕ(y)−ϕ(y)+F0,n(y, x)−h0,0(y, x)
)

= limsup
n→+∞

sup
y∈M

(
lim

m→+∞
sup
k≥m

Tkϕ(y)−ϕ(y)+F0,n(y, x)−h0,0(y, x)
)

= limsup
n→+∞

sup
y∈M

(
lim

m→+∞
sup
k≥m

inf
z∈M

(ϕ(z)+F0,k(z, y))

−ϕ(y)+F0,n(y, x)−h0,0(y, x)
)

≤ limsup
n→+∞

sup
y∈M

(
lim

m→+∞
sup
k≥m

F0,k(y, y)+F0,n(y, x)−h0,0(y, x)
)

for all x ∈ M. From Lemma 2.1, we get

(3-15) ϕ̄(x, 0)−ϕ(x, 0)≤ C, ∀x ∈ M,

where C > 0 depends only on L .
Combining (3-14) and (3-15), we obtain

ϕ(x, 0)≤ ϕ̄(x, 0)≤ ϕ(x, 0)+C, ∀x ∈ M.

By the monotonicity of the Lax–Oleinik operator, we have

Ttϕ(x, 0)≤ Tt ϕ̄(x, 0)≤ Ttϕ(x, 0)+C, ∀x ∈ M, ∀t ≥ 0.

In view of Propositions 3.1 and 3.3, we have

|ϕ̄(x, t)−ϕ(x, t)| ≤ C, ∀(x, t) ∈ M ×[0,+∞),

which means that (1-6) holds true, and the proof is complete. �
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GLOBAL WELL-POSEDNESS FOR THE 2D FRACTIONAL
BOUSSINESQ EQUATIONS IN THE SUBCRITICAL CASE

DAOGUO ZHOU, ZILAI LI, HAIFENG SHANG,
JIAHONG WU, BAOQUAN YUAN AND JIEFENG ZHAO

We study the global regularity of solutions to the 2D Boussinesq equations
with fractional dissipation, given by (−1)α/2u in the velocity equation and
by (−1)β/2θ in the temperature equation. We establish the global regularity
for 2

3 <α<1, α+β >1 and α> 1
1+β . This result is for the subcritical regime

α+β > 1 and the point here is to obtain the global regularity for the largest
possible range of α.

1. Introduction

This paper examines the global (in time) well-posedness problem on the 2D Boussi-
nesq equations with fractional dissipation. The Boussinesq equations concerned
here model large scale atmospheric and oceanic flows that are responsible for cold
fronts and the jet stream (see the books by Gill [1982], Majda [2003], Pedlosky
[1979]). In addition, the Boussinesq equations also play an important role in the
study of Rayleigh–Benard convection [Constantin and Doering 1999]. The standard
2D Boussinesq equations with Laplacian dissipation can be written

(1-1)


ut + u · ∇u+∇ p = ν 1u+ θe2,

θt + u · ∇θ = κ 1θ,

∇ · u = 0,

where u denotes the 2D velocity field, p the pressure, θ the temperature in the
context of thermal convection and the density in the modeling of geophysical fluids,
ν the viscosity, κ the thermal diffusivity, and e2 = (0, 1) is the unit vector in the
vertical direction.

The 2D Boussinesq equations have recently attracted considerable attention in the
community of mathematical fluid mechanics due to their mathematical significance.
Mathematically the 2D Boussinesq equations serve as a lower-dimensional model
of the 3D hydrodynamics equations. In fact, the 2D Boussinesq equations retain

MSC2010: primary 35B65, 35Q35; secondary 76B03, 76A10.
Keywords: Boussinesq equations, fractional dissipation, global regularity.
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some key features of the 3D Euler and Navier–Stokes equations such as the vortex
stretching mechanism. The inviscid 2D Boussinesq equations are identical to the
Euler equations for the 3D axisymmetric swirling flows (away from the symmetry
axis) (see, e.g., [Majda and Bertozzi 2001]).

Our attention will be focused on the 2D Boussinesq equations with fractional
dissipation

(1-2)


ut + u · ∇u+3αu+∇ p = θe2,

θt + u · ∇θ +3βθ = 0,
∇ · u = 0,
u(x, 0)= u0(x), θ(x, 0)= θ0(x),

where3= (−1)1/2 and the general fractional Laplacian operator3α can be defined
via the Fourier transform

3̂α f (ξ)= |ξ |α f̂ (ξ).

This generalization allows us to study a family of equations simultaneously and
may be physically relevant. In fact, there are geophysical circumstances in which
the Boussinesq equations with fractional Laplacian may arise. Flows in the middle
atmosphere traveling upward undergo changes due to the changes of atmospheric
properties, although the incompressibility and Boussinesq approximations are appli-
cable. The effect of kinematic and thermal diffusion is attenuated by the thinning
of atmosphere. This anomalous attenuation can be modeled by using the space
fractional Laplacian (see [Gill 1982; Caputo 1967]).

One of the fundamental problems concerning the Boussinesq system is whether
or not its solutions remain smooth for all time or they blow up in a finite time.
This problem could be extremely difficult. A standard approach to the global
regularity problem is to first obtain the local existence and regularity and then
extend the local solution to a global one by establishing global a priori bounds for
the solution. Due to the divergence-free condition ∇ ·u= 0, any solution (u, θ) with
sufficiently smooth data admits a global L2-bound for u and a global Lq-bound
for θ (q ∈ [1,∞]). However, when the dissipation or the thermal diffusion is
not sufficient, it can be extremely difficult to obtain global bounds for suitable
derivatives of u or θ . When the Boussinesq equations are inviscid (no velocity
dissipation or thermal diffusion), the equations of ω =∇ × u and ∇⊥θ ,{

∂tω+ (u · ∇)ω = ∂x1θ,

∂t∇
⊥θ + (u · ∇)∇⊥θ = (∇⊥θ · ∇)u,

resemble the 3D Euler vorticity equation

∂tω
E
+ (uE

· ∇)ωE
= (ωE

· ∇)uE ,

where ∇⊥ = (−∂x2, ∂x1), and uE and ωE denote the 3D Euler velocity and the
corresponding vorticity, respectively.
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When 1u and 1θ are present, the global regularity can then be established
following a similar proof as that for the 2D Navier–Stokes equations. The issue that
arises naturally is how much dissipation is really needed for the global regularity.
This problem has attracted considerable interest recently and important progress
has been made (see, e.g., [Adhikari et al. 2010; 2011; 2014; Cao and Wu 2013;
Constantin and Vicol 2012; Danchin and Paicu 2011; Hmidi et al. 2010; 2011; Hou
and Li 2005; KC et al. 2014; Lai et al. 2011; Larios et al. 2013; Li et al. 2016; Li
and Titi 2016; Miao and Xue 2011; Ohkitani 2001; Stefanov and Wu 2018; Wu and
Xu 2014; Wu et al. 2016; 2015; Yang et al. 2014; Ye 2017; Ye and Xu 2016; Zhao
2010; Zhou 2018; Zhou and Li 2017]). Various approaches and techniques have
been developed to obtain the global regularity for (1-2) with smaller and smaller
α ∈ (0, 2) and β ∈ (0, 2).

As pointed out in [Jiu et al. 2014], it is useful to classify α and β into three
categories: the subcritical case when α+β > 1, the critical case when α+β = 1
and the supercritical case when α+β < 1. This classification gives us a sense of the
level of difficulty for different parameter ranges. The global regularity problem for
the supercritical regime α+β < 1 appears to be out of reach at this moment. Current
results for this regime address the eventual regularity of weak solutions [Yang et al.
2014; Wu et al. 2016]. There are exciting developments for the critical regime. Two
special critical cases, α = 1, β = 0 and β = 1, α = 0, were studied and resolved in
[Hmidi et al. 2010; 2011]. More general critical cases with α+β = 1 and α ∈ (0, 1)
were dealt with by Jiu, Miao, Wu and Zhang [Jiu et al. 2014], who established
the global regularity for (1-2) with α+β = 1 and 1> α > α0 ≡

23−
√

145
12 ≈ 0.9132.

Stefanov and Wu improved the result of Jiu, Miao, Wu and Zhang by further
enlarging the range of α with α+β = 1 and 1> α >

√
1777−23

24 ≈ 0.7981 [2018]. A
very recent work of Wu, Xu, Xue and Ye assesses the global regularity for α+β = 1
and α ∈ (0.7692, 1) [Wu et al. 2016].

This paper focuses on the subcritical regime α+ β > 1. The global regularity
problem, even in this regime, can be difficult, and there are ranges of subcritical
regime for which the global regularity of (1-2) remains unknown. To give an
accurate account of current results, we further divide the subcritical regime into two
cases: α ≥ β and α < β. We refer to the first case as velocity dissipation dominated
and the second case as thermal diffusion dominated. For the velocity dominated
case, Miao and Xue [2011] was able to establish the global regularity of (1-2) with

α ∈
(

6−
√

6
4

, 1
)
, β ∈

(
1−α, min

{
(7+2

√
6)α

5
− 2, α(1−α)√

6−2α
, 2− 2α

})
.

Note that 6−
√

6
4 ≈ 0.8876. Ye [2017] was able to enlarge the range to

0.7351< α < 1, β ∈
(

1−α, min
{

3− 3α, α
2
,

3α2
+4α−4

8(1−α)

})
.
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For the thermal diffusion dominated case, Constantin and Vicol obtained as a
consequence of their nonlinear maximum principle for fractional Laplacian operators
the global regularity of (1-2) with β > 2

2+α . In addition, Yang, Jiu and Wu [Yang
et al. 2014] obtained the global regularity for a larger range of β, and Ye and Xu
[2016] made further improvements on the range of β.

This paper focuses on the velocity dissipation dominated case, α ≥ β. Our
primary goal has been to obtain the global regularity for the smallest possible
α ∈ (0, 1) with α+β > 1 and α > β > 0. Our main result is stated in Theorem 1.2.
A slightly weaker result with a smaller range of α is stated in Theorem 1.1. The
main reason for keeping Theorem 1.1 is that Theorem 1.2 is built upon Theorem 1.1
and its proof.

Theorem 1.1. Let s> 2. Assume that u0 ∈ H s(R2) and ∇·u0= 0, and θ0 ∈ H s(R2).
Consider the fractional Boussinesq equations (1-2) with α and β satisfying

(1-3) 0< α, β < 1, α >
2

β+2
,

then (1-2) has a unique global (in time) solution (u, θ) satisfying

(u, θ) ∈ C([0, T ]; H s(R2)).

Theorem 1.2. Let s> 2. Assume that u0 ∈ H s(R2) and ∇·u0= 0, and θ0 ∈ H s(R2).
Consider the fractional Boussinesq equations (1-2) with α and β satisfying

(1-4) 2
3
< α < 1, 0< β < 1, α >

1
β+1

,

then (1-2) has a unique global (in time) solution (u, θ) satisfying

(u, θ) ∈ C([0, T ]; H s(R2)).

The proof of Theorem 1.1 relies on the equation for a combined quantity and
the nonlinear maximum principle for fractional Laplacian operators developed by
Córdoba and Córdoba [2004] and by Constantin and Vicol [2012]. Due to the
presence of the “vortex stretching” term ∂x1θ , energy estimates on the vorticity
equation

∂tω+ (u · ∇)ω+3αω = ∂x1θ

with α ∈ (0, 1) would not yield any global bound on ω. A well-known practice is
to eliminate ∂x1θ by considering the combined quantity

G = ω−Rαθ with Rα = ∂13
−α,

which satisfies

G t + u · ∇G+3αG = [Rα, u · ∇]θ +3β−α∂1θ,

where [Rα, u · ∇]θ denotes the standard commutator. Combining this equation
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with that of ∇θ , applying the nonlinear maximum principle for fractional Laplacian
operators and invoking commutator estimates, one derives differential inequalities
for ‖G(t)‖L∞ and ‖∇θ(t)‖L∞ , which yields Theorem 1.1. Theorem 1.2 involves
improved arguments. Its proof makes use of the global L2 bound for G whenever
α > 2

3 and α+β > 1, and the pointwise lower bound

f (x) ·3α f (x)≥ 1
2
3α| f (x)|2+

| f (x)|2+pα/d

c‖ f ‖pα/d
L p

.

This lower bound is in terms of the L p-norms of the functions instead of the L p-
norm of the antiderivative of f , and thus has a higher power than the corresponding
lower bound in terms of the L p-norm of the antiderivative.

The rest of this paper is divided into two sections. Section 2 proves Theorem 1.1
while Section 3 proves Theorem 1.2. Two appendices are also attached. The first
one provides the frequency localization operators and Besov spaces, and related
facts. Appendix B supplies the proofs for some of the facts used in Sections 2 and 3.

2. Proof of Theorem 1.1

This section proves Theorem 1.1. To do so, we make several preparations. The first
is a pointwise inequality for fractional Laplacian operators in [Constantin and Vicol
2012; Córdoba and Córdoba 2004].

Lemma 2.1. Let α ∈ (0, 2) and q ∈ [1,∞]. There exists C = C(d, α, q) such that,
for any function f = f (x) with x ∈ Rd that is sufficiently smooth and decays at
infinity,

∇ f (x) ·3α∇ f (x)≥ 1
2
3α|∇ f (x)|2+

|∇ f (x)|2+qα/(d+q)

C ‖ f ‖qα/d+q
Lq

, x ∈ Rd .

The next lemma states an interpolation inequality between Besov spaces (see,
e.g., [Bahouri et al. 2011; Miao et al. 2012; Hajaiej et al. 2011]). The definition of
Besov spaces is provided in Appendix A.

Lemma 2.2. Let s1 < s2 be real numbers and let γ ∈ (0, 1). Let p ∈ [1,∞]. Then,
there exists a constant C = C(s1, s2, γ ) such that

‖ f ‖
Ḃ
γ s1+(1−γ )s2
p,1

≤ C ‖ f ‖γ
Ḃ

s1
p,∞
‖ f ‖1−γ

Ḃ
s2
p,∞
.

In particular, for any σ ∈ (0, 1) and p ∈ [1,∞],

‖3σ f ‖L p ≤ ‖ f ‖Ḃσp,1
≤ C ‖ f ‖1−σB0

p,∞
‖ f ‖σB1

p,∞
≤ C ‖ f ‖1−σL p ‖∇ f ‖σL p .

We will also need the commutator estimates stated in the following lemma. This
lemma is taken from [Li et al. 2016, Lemma 2.2].
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Lemma 2.3. Let j ≥ 0 be an integer. Let α ∈ (0, 2). Assume q ∈ [2,∞] and
q1, q2 ∈ [2,∞] satisfy 1

q =
1
q1
+

1
q2

. Assume ∇ · u = 0. Then

(2-1) ‖1 j [Rα, u · ∇]θ‖Lq ≤ C 2(1−α) j
‖∇u‖Lq1 ‖1 jθ‖Lq2

+ C ‖∇u‖Lq1

∑
k≤ j−1

2k− j 2(1−α)k ‖1kθ‖Lq2

+ C ‖∇u‖Lq1

∑
k≥ j−1

2(2−α)( j−k)2(1−α)k‖1kθ‖Lq2

+ C ‖∇u‖Lq1

∑
k≥ j−1

2 j−k 2(1−α)k‖1kθ‖Lq2 ,

where C’s are constants. In addition, (2-1) still holds if Rα is replaced by 31−α. A
special consequence of (2-1) is the bound

(2-2) ‖[Rα, u · ∇]θ‖Lq ≤ C ‖∇u‖Lq1‖θ‖B1−α
q2,1
.

Similarly,
‖[31−α, u · ∇]θ‖Lq ≤ C ‖∇u‖Lq1‖θ‖B1−α

q2,1
.

Alternatively, the commutator can also be bounded as follows. A proof is
provided in Appendix B.

Lemma 2.4. Let α ∈ (0, 1). Then,

‖[∂13
−α, u · ∇]θ‖B0

∞,1
≤ C(‖ω‖2+‖ω‖∞)‖θ‖B1−α+ε

∞,1
+C‖u‖2‖θ‖2.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. . It suffices to establish a global a priori bound on ‖(u, θ)‖H s .
As we know, if one of the global bounds, for any t > 0,

(2-3)
∫ t

0
‖∇ω(τ)‖L∞ dτ <∞ or

∫ t

0
‖∇θ(τ )‖L∞ dτ <∞

holds, then ‖(u, θ)(t)‖H s is globally bounded. The rest of the proof verifies the
bounds in (2-3).

The following global bounds follow easily from (1-2):

‖θ(t)‖Lq ≤ ‖θ0‖Lq for any q ∈ [1,∞],

‖u(t)‖2L2 +

∫ t

0
‖3

α
2 u(τ )‖2L2 dτ ≤ (‖u0‖L2 + t ‖θ0‖L2)2.

However, direct energy estimates on (1-2) or on the equation of the vorticity
ω =∇ × u, {

ωt + u · ∇ω+3αω = ∂1θ,

θt + u · ∇θ +3βθ = 0,
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would not yield the desired global bound in (2-3), due to the vortex stretching
term ∂1θ . As in [Hmidi et al. 2010; 2011; Miao and Xue 2011; Jiu et al. 2014], the
idea is to eliminate ∂1θ and work with the combined quantity

(2-4) G = ω−Rαθ with Rα = ∂13
−α,

which satisfies

(2-5) G t + u · ∇G+3αG = [Rα, u · ∇]θ +3β−α∂1θ,

where we have used the standard commutator notation

[Rα, u · ∇]θ =Rα(u · ∇θ)− u · ∇Rαθ.

Following the idea of [Constantin and Vicol 2012], we obtain the differential
inequality for ‖G(t)‖L∞ ,

(2-6) d
dt
‖G‖L∞+C

‖G‖1+α/2L∞

(‖u‖L2+‖3−αθ‖L2)α/2
≤‖[Rα,u·∇]θ‖L∞+‖3

β−α∂1θ‖L∞

and for ‖∇θ‖L∞ ,

(2-7) d
dt
‖∇θ‖L∞ + C

‖∇θ‖
1+β
L∞

‖θ‖
β

L∞
≤ ‖∇u‖L∞‖∇θ‖L∞ .

We briefly explain the derivation of (2-6). Without loss of generality, we assume G
is smooth and decays to zero at infinity. Multiplying (2-5) by G and applying
Lemma 2.1 with q = 2, we have

(2-8) ∂t |G|2+ u · ∇|G|2+3α|G|2+C
|G|1+α/2

(‖u‖L2 +‖3−αθ‖L2)α/2

≤ 2(‖[Rα, u · ∇]θ‖L∞ +‖3
β−α∂1θ‖L∞)|G|.

For each t > 0, there exists x̄ = x̄(t) ∈ R2 such that

G(x̄(t), t)= ‖G(t)‖L∞ =max
x∈R2
|G(x, t)|.

As explained in [Córdoba and Córdoba 2004] and [Constantin et al. 2015, Appen-
dix B],

(∂t |G|)(x̄(t), t)= d
dt

G(x̄(t), t)= d
dt
‖G(t)‖L∞ .

In addition, we recall the facts that (u ·∇)|G|(x̄(t), t)= 0 and (3α|G|2)(x̄(t), t)≥ 0.
Therefore, setting x= x̄(t) in (2-8) and invoking the aforementioned facts yields (2-6).
The inequality (2-7) is obtained in a similar fashion.

The terms in (2-6) can be further bounded as follows:

‖u(t)‖L2 ≤ ‖u0‖L2 + t ‖θ0‖L2, ‖3−αθ‖L2 ≤ C ‖θ‖L2/(1+α) ≤ C ‖θ0‖L2/(1+α) .
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By (2-2) of Lemma 2.3 and Lemma 2.2,

‖[Rα, u · ∇]θ‖L∞ ≤ C ‖∇u‖L∞ ‖θ‖B1−α
∞,1

≤ C ‖∇u‖L∞ ‖θ‖
α
B0
∞,∞
‖θ‖1−αB1

∞,∞

≤ C ‖∇u‖L∞ ‖θ‖
α
L∞ ‖∇θ‖

1−α
L∞

and
‖3β−α∂1θ‖L∞ ≤ ‖3

β−α∂1θ‖Ḃ0
∞,1
≤ C ‖θ‖α−βL∞ ‖∇θ‖

1+β−α
L∞ .

Inserting the bounds above in (2-6) yields

d
dt
‖G‖L∞ +C1(t) ‖G‖

1+α/2
L∞ ≤ C ‖∇u‖L∞ ‖∇θ‖

1−α
L∞ + C ‖∇θ‖1+β−αL∞ ,

d
dt
‖∇θ‖L∞ +C2 ‖∇θ‖

1+β
L∞ ≤ ‖∇u‖L∞‖∇θ‖L∞,

where

C1(t)=
1

(‖u0‖L2 + t ‖θ0‖L2 +‖θ0‖L2/(1+α))α/2
.

Furthermore, according to Constantin and Vicol [2012],

(2-9) ‖∇u(t)‖L∞ ≤ C (1+‖ω(t)‖L∞)+ C ‖ω(t)‖L∞)

log
(

1+
∫ t

0
(1+‖u(τ )‖L2 +‖ω(τ)‖L∞ +‖∇θ(τ )‖L2)γ (α,β) dτ

)
,

where γ (α, β) > 0 is a constant depending on α and β. Due to

(2-10) ‖ω‖L∞ ≤ ‖G‖L∞ +‖Rαθ‖L∞ ≤ ‖G‖L∞ +C ‖θ‖αL∞ ‖∇θ‖
1−α
L∞ ,

we obtain
d
dt
‖G‖L∞ +C1‖G‖

1+α/2
L∞ ≤ C2‖G‖L∞ ‖∇θ‖

1−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞)(2-11)

+C3 ‖∇θ‖
2−2α
L∞ L(‖G‖L∞, ‖∇θ‖L∞)+C4‖∇θ‖

1+β−α
L∞ ,

d
dt
‖∇θ‖L∞ +C5 ‖∇θ‖

1+β
L∞ ≤ C6 ‖G‖L∞ ‖∇θ‖L∞ L(‖G‖L∞, ‖∇θ‖L∞)(2-12)

+C7‖∇θ‖
2−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞),

where, for notational convenience, we have written

(2-13) L(‖G‖L∞, ‖∇θ‖L∞)= 1+ log
(

1+
∫ t

0
(1+‖G‖L∞+‖∇θ‖L∞)

γ (α,β)ds
)
.

We combine (2-11) and (2-12) to prove the global bound (2-3). The argument is as
follows. For each t ≥ 0, we consider two cases:

(2-14) 1
2C5‖∇θ‖

β

L∞ > C6 ‖G‖L∞ L(‖G‖L∞, ‖∇θ‖L∞)
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and

(2-15) 1
2C5‖∇θ‖

β

L∞ ≤ C6 ‖G‖L∞ L(‖G‖L∞, ‖∇θ‖L∞).

We start with the first case when (2-14) holds. We split this case into two cases,
either

(2-16) C7 ‖∇θ‖
2−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞)≤

1
2C5 ‖∇θ‖

1+β
L∞

or

(2-17) C7 ‖∇θ‖
2−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞) >

1
2C5 ‖∇θ‖

1+β
L∞ .

When (2-16) is valid, then (2-12) becomes

d
dt
‖∇θ‖L∞ +

( 1
2C5 ‖∇θ‖

1+β
L∞ −C6 ‖G‖L∞ ‖∇θ‖L∞ L(‖G‖L∞, ‖∇θ‖L∞)

)
< 0,

which, due to (2-14), implies that ‖∇θ‖L∞ <∞. Then (2-11) implies ‖G‖L∞ <∞.
When (2-17) is valid,

C7 L(‖G‖L∞, ‖∇θ‖L∞) >
1
2C5 ‖∇θ‖

1+β−(2−α)
L∞ .

Since 1+β − (2−α)= α+β − 1> 0, we have

(2-18) ‖∇θ‖
1+β−(2−α)
L∞ ≤ 2C−1

5 L(‖G‖L∞, ‖∇θ‖L∞).

Due to (2-14), L only grows logarithmically in ‖∇θ‖L∞ and thus (2-18) implies
that ‖∇θ‖L∞ <∞. Then (2-11) implies ‖G‖L∞ <∞. We now turn to the second
case when (2-15) holds. We also split this case into two cases: either

(2-19) L(‖G‖L∞, ‖∇θ‖L∞)≤ C ‖G‖εL∞

or

(2-20) L(‖G‖L∞, ‖∇θ‖L∞) > C ‖G‖εL∞,

where ε > 0 is small such that (2-22) below holds. When (2-19) holds, (2-11)
becomes

(2-21) d
dt
‖G‖L∞ +C1‖G‖

1+α/2
L∞

≤ C̃2 ‖G‖
1+(1−α/β)+ε̃
L∞ + C̃3 ‖G‖

(2−2α/β)+ε̃
L∞ + C̃4‖G‖

(1+β−α/β)+ε̃
L∞ ,

where C̃2, C̃3 and C̃4 are constants, and

ε̃ = ε max
{

1+ 1−α
β

, 1+ 2−2α
β

,
1+β−α

β

}
.

Due to (1-3) or α > 2
2+β , we can choose ε > 0 small such that

(2-22) 1+ α
2
>max

{
1+ 1−α

β
,

2−2α
β

,
1+β−α

β

}
+ ε̃.
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Then (2-21) implies ‖G‖L∞ <∞ and (2-19) implies ‖∇θ‖L∞ <∞. When (2-20)
holds, (2-15) and the logarithmic growth of L in ‖G‖L∞ implies ‖G‖L∞ < ∞.
Therefore, for each case, the global bounds in (2-3) hold. This argument here can
also be understood as a continuation argument. One starts with initial data that falls
into one of the cases. Obviously, the corresponding solution can be continued as
long as the solution remains in the same case. If, at a certain time, the solution
evolves into the opposite case, the solution can also be continued. That is, the
solution can be continued forever. The proof of Theorem 1.1 is complete. �

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. We first prove a proposition
stating the global L2-bound for G. This result was obtained by Ye [2017], but we
provide a slightly simpler and more transparent proof.

Proposition 3.1. Consider the equation of G in (2-5). Assume that α and β satisfy
2
3 < α < 1, 0< β < 1, α+β > 1.

Then we have the following global bounds, for any t > 0,

‖G(t)‖L2 <∞,

∫ t

0
‖3α/2G(τ )‖2L2 dτ <∞,

sup
j≥−1

∫ t

0
22β j
‖1 jθ(τ )‖

2 dτ <∞, especially,
∫ t

0
‖3σ θ(τ )‖2L2 dτ <∞,

where 0< σ < β.

In order to prove Proposition 3.1, we state a lemma and its corollary first.

Lemma 3.2. Assume β > 0. Assume θ solves

θt + u · ∇θ +3βθ = 0, θ(x, 0)= θ0(x).

Then,

(3-1) sup
j≥−1

∫ t

0
22β j
‖1 jθ(τ )‖

2 dτ ≤ C ‖θ0‖
2
Bβ/22,∞
+ C̃

∫ t

0
‖ω(τ)‖2L2 dτ,

where ω denotes the vorticity, and C , C̃ are constants depending on the initial data.

A special consequence of Lemma 3.2 is the following corollary.

Corollary 3.3. Assume that α and β satisfy

0< α, β < 1, α+β > 1.

Then

(3-2) sup
j≥−1

∫ t

0
22β j
‖1 jθ(τ )‖

2 dτ ≤ C(t, ‖(u0, θ0)‖H1)+C
∫ t

0
‖G(τ )‖2L2 dτ.
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In particular, for any 0< σ < β,

(3-3)
∫ t

0
‖3σ θ(τ )‖2L2 dτ ≤ C(t, ‖(u0, θ0)‖H1)+C

∫ t

0
‖G(τ )‖2L2 dτ.

We provide the proof of Lemma 3.2 and Corollary 3.3.

Proof of Lemma 3.2 and Corollary 3.3. Applying the Fourier localization operator
1 j with j ∈ Z and j ≥ −1 to the equation of θ and then dotting the resulting
equation with 1 jθ yields

1
2

d
dt
‖1 jθ‖

2
L2+22β j

‖1 jθ‖
2
L2=−

∫
1 jθ [1 j ,u·∇θ ]dx≤‖1 jθ‖L2 ‖[1 j ,u·∇θ ]‖L2 .

Applying a standard commutator estimate (see, e.g, [Hmidi et al. 2011, p. 443])

‖[1 j , u · ∇]θ‖L2 ≤ C ‖θ‖B0
∞,∞
‖∇u‖L2,

we obtain
d
dt
‖1 jθ‖L2 + 2β j

‖1 jθ‖L2 ≤ C ‖θ0‖L∞ ‖ω‖L2 .

Integrating in time yields

‖1 jθ(t)‖L2 ≤ C e−2β j t
‖1 jθ0‖L2 +C

∫ t

0
e−2β j (t−τ)

‖ω(τ)‖L2 dτ.

Taking the L2-norm in time and applying Young’s inequality for convolution, we
have[∫ t

0
‖1 jθ(τ )‖

2
L2 dτ

] 1
2

≤ C 2−
1
2β j
‖1 jθ0‖L2 +C 2−β j

[∫ t

0
‖ω(τ)‖2L2 dτ

] 1
2

.

Multiplying each side by 2β j and then squaring each side yields∫ t

0
22β j
‖1 jθ(τ )‖

2
L2 dτ ≤ C 2β j

‖1 jθ0‖
2
L2 +C0

∫ t

0
‖ω(τ)‖2L2 dτ.

Taking the supremum with respect to j yields (3-1). To show (3-2), we note that

(3-4) ‖ω‖L2 ≤ ‖G‖L2 +‖31−αθ‖L2 .

For any σ < β, we choose a large integer j0 such that∑
j≥ j0+1

22(σ−β) j <
1

4C̃
.
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Then

(3-5) ‖3σ θ‖2L2 =

∑
j≤ j0

22σ j
‖1 jθ‖

2
L2 +

∑
j≥ j0+1

22(σ−β) j 22β j
‖1 jθ‖

2
L2

≤ C( j0, ‖θ0‖L2)+
1

4C̃
sup
j≥−1

22β j
‖1 jθ‖

2
L2 .

Inserting (3-4) and (3-5) in (3-1) yields (3-2), and (3-3) follows from (3-5). This
completes the proof of Lemma 3.2 and Corollary 3.3. �

We also need the following lemma (see [Stefanov and Wu 2018]).

Lemma 3.4. Let 1> α > 1
2 , 1< p2 <∞, 1< p1 <∞, and 1< p3 ≤∞, so that

1
p1
+

1
p2
+

1
p3
= 1. For every s1 (0 ≤ s1 < 1− α) and s2 (s2 > 1− α− s1), there

exists a C = C(p1, p2, p3, s1, s2), such that

(3-6)
∣∣∣∣∫

Rd
F[Rα, uG · ∇]θ dx

∣∣∣∣≤ C‖3s1θ‖L p1‖F‖W s2,p2‖G‖L p3 .

Similarly, for every s1 (0≤ s1 < 1−α) and s2 (s2 > 2− 2α− s1), we have

(3-7)
∣∣∣∣∫

Rd
F[Rα, uθ · ∇]ψ dx

∣∣∣∣≤ C‖3s1θ‖L p1‖F‖W s2,p2‖ψ‖L p3 .

Here uG denotes the velocity associated with G, namely uG = ∇
⊥(−1)−1G, and

uθ =∇⊥(−1)−1∂13
−αθ . The definition of G implies that u = uG + uθ .

We now prove Proposition 3.1.

Proof of Proposition 3.1. This proof is obtained by modifying that for the global
L2 bound of G in Stefanov and Wu [2018]. Dotting (2-5) with G and integrating
by parts yields

(3-8) 1
2

d
dt
‖G‖2L2 +‖3

α/2G‖2L2 = J1+ J2,

where

J1 =

∫
G3β−α∂1θ dx, J2 =

∫
G [Rα, u · ∇]θ dx .

By Hölder’s inequality and Corollary 3.3 with σ =β+1− 3
2α
(
σ < β since α > 2

3

)
,

|J1| ≤ ‖3
α/2G‖L2 ‖3β+1−3α/2θ‖L2 ≤

1
4‖3

α/2G‖2L2 +‖3
β+1−3α/2θ‖2L2 .

As in [Jiu et al. 2014] and [Stefanov and Wu 2018], we write

u =∇⊥1−1ω =∇⊥1−1G+∇⊥1−1Rαθ ≡ uG + uθ .
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J2 is then split into two parts accordingly. The term with uG part is estimated
as in [Stefanov and Wu 2018]. For α > 2

3 , we choose 1− α < s < α
2 and apply

Lemma 3.4,∣∣∣∣∫ G [Rα, uG · ∇]θ dx
∣∣∣∣≤ C ‖θ0‖L∞ ‖G‖L2 ‖G‖Hα/2 ≤

1
4‖3

α/2G‖2L2 +C ‖G‖2L2 .

To bound the term associated with uθ , we apply Lemma 3.4 with s1 = β + 1− 3
2α

and s2 =
1
2(1− β). Since α > 2

3 and α+ β > 1, we have s1 < β and s2 <
α
2 , and

s1+ s2 > 2− 2α. Therefore∣∣∣∣∫ G [Rα, uθ · ∇]θ dx
∣∣∣∣≤ C ‖3s1θ‖L2 ‖θ‖L∞ ‖G‖H s2

≤ C ‖θ0‖L∞ ‖3
β+1−3α/2θ‖L2 ‖G‖Hα/2

≤
1
4 ‖3

α/2G‖2L2 +C ‖3β+1−3α/2θ‖2L2 .

Inserting the bounds above in (3-8), and applying Corollary 3.3 with σ =β+1− 3
2α

and Gronwall’s inequality yields the desired global bound. �

In order to prove Theorem 1.2, we also need the following lower bound for
the fractional Laplacian operator. The proof of this lemma follows the lines of
Constantin and Vicol [2012] and will be provided in Appendix B.

Lemma 3.5. Let α ∈ (0, 2). For any smooth function f that decays sufficiently fast
at infinity, suppose that x̄ ∈R2 is a point at which | f (x)| attains its maximum. Then,

f 3α f ≥ C
| f (x̄)|2+α

‖ f ‖αL2

for a constant C = C(α).

Proof of Theorem 1.2. Making use of Lemma 3.5, we obtain, as in the derivation
of (2-6),

d
dt
‖G‖L∞ +C

‖G‖1+αL∞

‖G‖αL2

≤ C ‖∇u‖L∞ ‖∇θ‖
1−α
L∞ +C ‖∇θ‖β+1−α

L∞ ,

d
dt
‖∇θ‖L∞ +C

‖∇θ‖
1+β
L∞

‖θ‖
β

L∞
≤ ‖∇u‖L∞‖∇θ‖L∞ .

We further use (2-9) and (2-10) to obtain

d
dt
‖G‖L∞+C1(t)‖G‖1+αL∞ ≤C2 ‖G‖L∞ ‖∇θ‖

1−α
L∞ L(‖G‖L∞,‖∇θ‖L∞)

+C3 ‖∇θ‖
2(1−α)
L∞ L(‖G‖L∞,‖∇θ‖L∞)+C4 ‖∇θ‖

1+β−α
L∞ ,
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d
dt
‖∇θ‖L∞ + C5 ‖∇θ‖

1+β
L∞ ≤ C6 ‖G‖L∞ ‖∇θ‖L∞ L(‖G‖L∞, ‖∇θ‖L∞)

+C7 ‖∇θ‖
2−α
L∞ L(‖G‖L∞, ‖∇θ‖L∞),

where C1(t)= C (‖G(t)‖L2)−1, C5 = C (‖θ‖L∞)
−1, and L is as defined in (2-13).

We can then argue in a similar fashion as in the proof of Theorem 1.1 that the global
bounds ‖G‖L∞ <∞ and ‖∇θ‖L∞ <∞ hold if α and β satisfy (1-4). In fact, if
2
3 < α < 1 and α > 1

1+β , then

α >
1−α
β

, 1+α >
2− 2α
β

, 1+α >
1+β −α

β

and the argument in the proof of Theorem 1.1 works here. This completes the proof
of Theorem 1.2. �

Appendix A. Frequency localization and Besov spaces

This appendix provides the definition of the Littlewood–Paley decomposition and
the definition of Besov spaces. Some related facts used in the previous sections
are also included. The material presented in this appendix can be found in several
books and many papers (see, e.g., [Bahouri et al. 2011; Bergh and Löfström 1976;
Miao et al. 2012; Runst and Sickel 1996; Triebel 1992]).

We start with several notational conventions. S denotes the usual Schwarz class
and S ′ its dual, the space of tempered distributions. To introduce the Littlewood–
Paley decomposition, we write for each j ∈ Z,

A j = {ξ ∈ Rd
: 2 j−1

≤ |ξ |< 2 j+1
}.

The Littlewood–Paley decomposition asserts the existence of a sequence of functions
{8 j } j∈Z ∈ S such that

supp 8̂ j ⊂ A j , 8̂ j (ξ)= 8̂0(2− jξ) or 8 j (x)= 2 jd80(2 j x),

and
∞∑

j=−∞

8̂ j (ξ)=

{
1 if ξ ∈ Rd

\ {0},
0 if ξ = 0.

Therefore, for a general function ψ ∈ S, we have
∞∑

j=−∞

8̂ j (ξ)ψ̂(ξ)= ψ̂(ξ) for ξ ∈ Rd
\ {0}.

We now choose 9 ∈ S such that

9̂(ξ)= 1−
∞∑
j=0

8̂ j (ξ), ξ ∈ Rd .
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Then, for any ψ ∈ S,

9 ∗ψ +

∞∑
j=0

8 j ∗ψ = ψ

and hence

(A-1) 9 ∗ f +
∞∑
j=0

8 j ∗ f = f

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

(A-2) 1 j f =


0 if j ≤−2,

9 ∗ f if j =−1,

8 j ∗ f if j = 0, 1, 2, · · · .

Besides the Fourier localization operators 1 j , the partial sum S j is also a useful
notation. For an integer j,

S j ≡

j−1∑
k=−1

1k .

For any f ∈ S ′, the Fourier transform of S j f is supported on the ball of radius 2 j. It
is clear from (A-1) that S j → Id as j→∞ in the distributional sense. In addition,
the notation 1̃k , defined by

1̃k =1k−1+1k +1k+1,

is also useful and has been used in the previous sections.

Definition A.1. The inhomogeneous Besov space Bs
p,q with s ∈R and p, q ∈[1,∞]

consists of f ∈ S ′ satisfying

‖ f ‖Bs
p,q
≡ ‖2 js

‖1 j f ‖L p‖lq <∞,

where 1 j f is as defined in (A-2).

Many frequently used function spaces are special cases of Besov spaces. The
following proposition lists some useful equivalence and embedding relations.

Proposition A.2. For any s ∈ R,

H s
∼ Bs

2,2.

For any s ∈ R and 1< q <∞,

Bs
q,min{q,2} ↪→W s

q ↪→ Bs
q,max{q,2}.

For any noninteger s > 0, the Hölder space C s is equivalent to Bs
∞,∞.
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Bernstein’s inequalities are useful tools in dealing with Fourier localized functions.
These inequalities trade integrability for derivatives. The following proposition
provides Bernstein type inequalities for fractional derivatives. The upper bounds
also hold when the fractional operators are replaced by partial derivatives.

Proposition A.3. Let α ≥ 0. Let 1≤ p ≤ q ≤∞.

(1) If f satisfies
supp f̂ ⊂ {ξ ∈ Rd

: |ξ | ≤ K 2 j
},

for some integer j and a constant K > 0, then

‖(−1)α f ‖Lq (Rd ) ≤ C1 22α j+ jd(1/p−1/q)
‖ f ‖L p(Rd ).

(2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd
: K12 j

≤ |ξ | ≤ K22 j
}

for some integer j and constants 0< K1 ≤ K2, then

C1 22α j
‖ f ‖Lq (Rd ) ≤ ‖(−1)

α f ‖Lq (Rd ) ≤ C2 22α j+ jd(1/p−1/q)
‖ f ‖L p(Rd ),

where C1 and C2 are constants depending on α, p and q only.

Appendix B. Proofs of facts used in the previous sections

This appendix provides the proofs of several facts used in Sections 2 and 3.
We first provide several pointwise inequalities involving fractional Laplacian

operators. These lower bounds here are in terms of the L p-norms of the functions
instead of the L p-norms of the antiderivatives. Therefore, these lower bounds have
higher powers than the corresponding lower bounds in terms of the antiderivatives.
The proofs of these lower bounds follow the ideas of Constantin and Vicol [2012].

Lemma B.1. Let p∈[1,∞). Assume f ≥0, f ∈ L p(Rd) and f ∈C1(Rd). Suppose
that f attains its maximum value at the point x̄ . Then,

(B-1) 3α f (x̄)≥
f (x̄)1+αp/d

c‖ f ‖αp/d
L p

for some constant c = c(d, α, p).

Proof. Let χ be a radially nondecreasing smooth cut-off function, which vanishes
on |x | ≤ 1 and is identically 1 on |x | ≥ 2, and |∇χ | ≤ 4. Let R > 0 be a number to
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be specified later. We estimate

3α f (x̄)= cd,α

∫
Rd

f (x̄)− f (x̄ − y)
|y|d+α

dy

≥ cd,α f (x̄)
∫

Rd

χ(y/R)
|y|d+α

dy− cd,α

∣∣∣∣∫
Rd

f (x̄ − y)
χ(y/R)
|y|d+α

dy
∣∣∣∣

≥ cd,α f (x̄)
∫
|y|≥2R

1
|y|d+α

dy− cd,α‖ f ‖L p

(∫
Rd

∣∣∣∣χ(y/R)
|y|d+α

∣∣∣∣p′

dy
)1/p′

≥ c1
f (x̄)
Rα
− c2
‖ f ‖L p

Rα+d/p ,

where c1 = c1(d, α), and c2 = c2(d, α, δ) are positive constants, which may be
computed explicitly. Letting Rd/p

= 2c2‖ f ‖L p/(c1 f (x̄)) concludes the proof. �

Lemma B.2. Let α∈(0, 2) and let p∈[1,∞). Assume f ∈ L p(Rd) and f ∈C1(Rd).
Then we have the pointwise bound

(B-2) f (x) ·3α f (x)≥ 1
23

α
| f (x)|2+

| f (x)|2+pα/d

c‖ f ‖pα/d
L p

for some positive constant c = c(d, α, p).

Proof. Recall the pointwise identity (see [Constantin and Vicol 2012])

(B-3) f (x) ·3α f (x)= 1
23

α(| f |2)(x)+ 1
2 D,

where

(B-4) D = cd,αPV
∫

Rd

| f (x)− f (x + y)|2

|y|d+α
dy.

For χ defined as in the previous proof,

D ≥ cd,α

∫
Rd

| f (x)− f (x + y)|2

|y|d+α
χ(y/R)dy

≥ cd,α| f (x)|2
∫

Rd

χ(y/R)
|y|d+α

dy− 2cd,α | f (x)|
∣∣∣∣∫

Rd
f (x + y)

χ(y/R)
|y|d+α

dy
∣∣∣∣

≥ cd,α| f (x)|2
∫
|y|≥R

1
|y|d+α

dy− 2 cd,α| f (x)| ‖ f ‖L p

(∫
Rd

∣∣∣∣χ(y/R)
|y|d+α

∣∣∣∣p′

dy
)1/p′

≥ c1
| f (x)|2

Rα
− c2
| f (x)| ‖ f ‖L p

Rα+d/p ,
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for some positive constants c1 and c2 which depend only on d, α, and p. Letting

Rd/p
=

c2‖ f ‖L p

2c1| f (x)|

concludes the proof of this lemma. �

A special consequence is the following lower bound.

Corollary B.3. Let α ∈ (0, 2). Assume f is smooth and decays sufficiently fast
at infinity. Assume that x̄ ∈ Rd is a maximum point at which | f (x)| attains its
maximum. Then,

f (x̄) ·3α f (x̄)≥
| f (x̄)|2+pα/d

c‖ f ‖pα/d
L p

where c = c(d, α, p).

Next we provide the proof of Lemma 2.4.

Proof. Write Rα = ∂x13
−α, then 1kRα = 2(1−α)khk , where hk(x) = 2dkh0(2k x)

and h0(x) ∈ C∞0 (R
d). By the notion of paraproducts,

(B-5) 1k[Rα,u·∇]θ=
∑
| j−k|≤2

1k[Rα, S j−1u·∇]1 jθ+
∑
| j−k|≤2

1k[Rα,1 j u·∇]S j−1θ

+

∑
j≥k−4

[Rα,1 j u·∇]1̃ jθ := J1+J2+J3.

We estimate the L∞-norm of the terms on the right.

‖J1‖L∞ ≤ C2(1−α)k‖|x |2kdh0(2k x)‖L1 ‖∇Sk−1u‖L∞ ‖1k∇θ‖L∞

≤ C2−αk
‖∇1kθ‖L∞

(
‖∇1−1‖L∞ +

k−2∑
j=0

‖1 j∇u‖L∞

)
≤ C2−αk

‖∇1kθ‖∞(‖u‖L2 + k‖ω‖L∞).

For J2 and J3, we have

‖J2‖L∞ ≤ C‖1kRα(1ku · ∇Sk−1θ)−1k(1ku · ∇Rα(Sk−1θ −1−1))‖L∞

+‖1k(1ku · ∇Rα1−1θ)‖L∞

≤ C2(1−α)k‖|x |2dkh0(2k x)‖L1‖∇1ku‖L∞‖∇Sk−1θ‖L∞

+C‖1ku‖L∞‖∇Rα1−1θ‖L∞

≤ C2−kα
‖1kω‖L∞

( k−2∑
j=−1

‖∇1 jθ‖L∞

)
+C‖θ‖L2‖1ku‖L∞ .
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‖J3‖L∞ ≤
∑
j≤1

‖∇ ·1kRα(1 j u1̃ jθ)‖L∞ +‖∇ ·1k(1 j uRα1̃ jθ)‖L∞

+

∑
j≥max(2,k−4)

‖1kRα(1 j u ·∇1̃ jθ)‖L∞+‖1k∇·(1 j u ·Rα1̃ jθ)‖L∞

≤ C‖u‖L2‖θ‖L2 +

∑
j≥max(2,k−1)

2(1−α)k‖1 j u‖L∞‖∇1̃ jθ‖L∞

+ 2k
‖1 j u‖L∞‖Rα1̃ jθ‖L∞ .

Therefore,

‖[Rα, u · ∇]θ‖B0
∞,1
≤

∑
k≥−1

‖J1‖L∞ +
∑

k≥−1

‖J2‖L∞ +
∑

k≥−1

‖J3‖L∞ := I1+ I2+ I3

and

I1≤C(‖ω‖L2+‖ω‖L∞)
∑

k≥−1

2(1−α)+εk‖1kθ‖L∞ ≤C(‖ω‖L2+‖ω‖L∞)‖θ‖B1−α+ε
∞,1

,

I2≤C
∑

k≥−1

‖1kω‖L∞

k−2∑
j=−1

2α( j−k)2−α j
‖∇1 jθ‖L∞+C‖θ‖L2

∑
k≥0

2−k
‖1kω‖L∞+C

≤C‖ω‖L∞‖θ‖B1−α+ε
∞,1
+C‖ω‖L∞,

I3≤C‖u||L2‖θ‖L2+C
∑

k≥−1

∑
j≥max(2,k−1)

2(1−α)(k− j)
‖1 j∇u‖L∞2−α j

‖∇1̃ jθ‖L∞

+C
∑

k≥−1

∑
j≥max(2,k−1)

2k− j
‖∇1 j u‖L∞2(1−α) j

‖1̃ jθ‖L∞

≤C‖u‖L2‖θ‖L2+C‖ω‖L∞‖θ‖B1−α
∞,1
.

Combining these estimates, we have

‖[Rα, u · ∇]θ‖B0
∞,1
≤C(‖ω‖L2 +‖ω‖L∞)‖θ‖B1−α+ε

∞,1
+C‖u‖L2‖θ‖L2

for any ε > 0. �
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