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We compute different versions of link Floer homology HFL− and ĤFL for
any L-space link with two components. The main approach is to compute
the h-function of the filtered chain complex which is determined by Alexan-
der polynomials of all sublinks of the L-space link. As an application, the
Thurston norm of its complement is explicitly determined by Alexander
polynomials of the link and its components.

1. Introduction

Heegaard Floer homology is an invariant for closed, oriented 3-manifolds, defined
using Heegaard diagrams [Ozsváth and Szabó 2004b]. This construction can be
extended to give an invariant, Heegaard Floer link homology (also called link Floer
homology), for oriented links in S3 [Ozsváth and Szabó 2008a]. In general, it is
very hard to compute the Heegaard Floer link homology HFL− and ĤFL. For any
L-space link with two components (see Definition 2.2), Yajing Liu [2017] computed
the link Floer homology HFL−. Based on his work, we come up with a method to
compute the link Floer homology ĤFL of any L-space link with two components.
By the work of Ozsváth and Szabó [2008b], we compute the Thurston polytope
and the Thurston norm of its complement. For an r -component L-space link with a
given generic admissible multipointed Heegaard diagram, one can associate it with
generalized Floer complexes A−(s) filtered by Alexander gradings [Manolescu and
Ozsváth 2010]. In this article, we work over F= F2 and s ∈ H, where H is some
r -dimensional lattice; see Definition 2.3 and [Manolescu and Ozsváth 2010]. If the
link L is an L-space link, we have the following result for A−(s):

Proposition 1.1 [Liu 2017, Proposition 1.11]. For any L-space link,

H∗(A−(s))= F[[U ]] with s ∈ H.

Here U has homological grading −2. Define −2h(s) as the homological grading
of the generator in H∗(A−(s)). By the work of Gorsky, Némethi and Yajing Liu,
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h(s) is determined by Alexander polynomials 1L(t1, t2), 1L1(t) and 1L2(t) for
any 2-component L-space link and s ∈ H. There is a spectral sequence which
converges to HFL−(L , s) [Gorsky and Némethi 2015]. It collapses at the E2-page,
and h(s) determines its E1-page; see [Gorsky and Némethi 2015, Theorem 2.2.10;
Liu 2017].

The computation of ĤFL(L , s) is more complicated. We introduce a bigraded
“iterated cone” complex (C(s1, s2), d + d1) in Section 3. There exists a spectral
sequence associated with this bigraded complex where the E1-page is defined
by HFL− and E3

= ĤFL(L , s1, s2). Theorem 3.2 shows that the E1-page of this
spectral sequence is

HFL−(s1+ 1, s2+ 1)⊕HFL−(s1, s2+ 1)⊕HFL−(s1+ 1, s2)⊕HFL−(s1, s2),

and the differential d1 is induced by actions of U1 and U2. Lemma 3.3 indicates
how Ui acts on the Heegaard Floer link homology HFL−(L , s) for any s ∈ H and
i = 1, 2. So we can compute the E2-page of the spectral sequence. If d2 = 0,
the spectral sequence collapses at the E2-page. If d2 is nonzero, we need to use
another strategy to compute ĤFL(L , s). We first find all possible cases where d2

may be nontrivial. In order to compute ĤFL(L , s), we use the symmetric property
of Heegaard Floer link homology: ĤFL(L , s)∼= ĤFL(L ,−s), up to some grading
shift [Ozsváth and Szabó 2006, Equation 5]. In Section 3, we find that in all cases
where d2 may be nontrivial, the spectral sequence corresponding to ĤFL(L ,−s)
collapses at its E2-page. Then we can compute ĤFL(L ,−s), and hence ĤFL(L , s).
Therefore, we compute ĤFL for all L-space links with two components and obtain
the main theorem of this paper.

Theorem 1.2. For any L-space link L = L1∪L2 with two components, ĤFL(s1, s2)

is determined by the h-function and hence determined by symmetrized Alexander
polynomials 1L(t1, t2), 1L1(t), 1L2(t), and the linking number lk of L1 and L2.

Remark 1.3. The Heegaard Floer link homology depends on the orientation of the
link. For any L-space link L = L1 ∪ L2, we need to give it an orientation, which
determines the linking number of L1 and L2.

Yajing Liu [2017] showed that rankF(HFL−(L , s)) ≤ 2. We show that 4 is a
bound for the rank of link Floer homology ĤFL for any L-space link with two
components. Then we give examples for all possible ranks from 0 to 4 in Section 3.

Corollary 1.4. For 2-component L-space links L = L1 ∪ L2 and s ∈ H,

rankF(ĤFL(L , s))≤ 4.

In particular, |χ(ĤFL(L , s))| ≤ 4.
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In Section 4, we present an application of Theorem 1.2. It is known from
[Ozsváth and Szabó 2008b] that ĤFL(L) detects the Thurston norm of the link
complement. For any compact, oriented surface with boundary F=

⋃n
i=1 Fi (maybe

disconnected), define its complexity as

χ−(F) =
∑

{Fi |χ(Fi )≤0}

−χ(Fi ).

For any link L ⊆ S3, and any homology class h ∈ H2(S3, L), there exists a compact
oriented surface F with boundary embedded in S3

\ nd(L) which represents this
homology class (i.e., [F] = h). So for any homology class h ∈ H2(S3, L;Z), we
can assign a function

x(h)= min
{F↪→S3\nd(L), [F]=h}

χ−(F).

This function can be naturally extended to a seminorm, the Thurston seminorm,
denoted by x : H2(S3, L;R)→R [Ozsváth and Szabó 2008b]. The unit ball for the
norm x is called the Thurston polytope. Consider the convex hull of lattice points
s ∈H, where ĤFL(L , s) 6= 0, which is also called the link Floer homology polytope.
We can compute the dual Thurston polytope, and thus the Thurston norm by [Ozsváth
and Szabó 2008b]. So for any 2-component L-space link L = L1∪L2, the Thurston
polytope and the Thurston norm are determined by Alexander polynomials of all
sublinks, but in a very nontrivial way.

Theorem 1.5. If L = L1 ∪ L2 is an L-space link with two components in S3, then
the Thurston norm of its complement is determined by Alexander polynomials
1L(t1, t2), 1L1(t), 1L2(t) and the linking number of L1 and L2.

Ozsváth and Szabó pointed out that for any alternating link, up to a scalar, the
Thurston polytope is dual to the Newton polytope of its multivariable Alexander
polynomial [Ozsváth and Szabó 2008b], which is contained in the dual Thurston
polytope by [McMullen 2002]. We compute dual Thurston polytopes of two
nonalternating L-space links with two components in Examples 4.4 and 4.5. They
both agree with Newton polytopes of their Alexander polynomials. A natural
question arises:

Question 1.6. For any 2-component L-space link which is not a split union of
two L-space knots, is the Thurston polytope dual to the Newton polytope of its
multivariable Alexander polynomial?

Remark 1.7. In Example 4.4, we present a 2-component L-space link where the
set supp(ĤFL) = {(s1, s2) ∈ H | ĤFL(s1, s2) 6= 0} is larger than supp(χ(ĤFL)) =
{(s1, s2) ∈ H | χ(ĤFL(s1, s2)) 6= 0}. But the convex hull of supp(ĤFL) is the same
as that of supp(χ(ĤFL)), since lattice points (s1, s2) for which χ(ĤFL(s1, s2))= 0
and ĤFL(s1, s2) 6= 0 are inside the convex hull of supp(χ(ĤFL)).
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For any split L-space link, the answer to Question 1.6 is negative since its Alexan-
der polynomial vanishes, but the dual Thurston polytope is nonempty. Example 5.5
gives the link Floer homology polytope of the split union of two right-handed
trefoils. The split union of two L-space knots is an L-space link [Liu 2017], and
the h-function of the link satisfies h(s1, s2)= h1(s1)+ h2(s2), where h1 and h2 are
h-functions of L1 and L2, respectively. We compute ĤFL for any split union of
two L-space knots. In general, we compute ĤFL for all 2-component L-space links
with Alexander polynomials 1(t1, t2)= 0.

Theorem 1.8. For any 2-component L-space link L = L1 ∪ L2 and (s1, s2) ∈ H, if
1L(t1, t2)= 0, then

ĤFL(L , s1, s2)∼= ĤFL(L1t L2, s1, s2)∼= ĤFL(L1, s1)⊗ ĤFL(L2, s2)⊗ (F⊕F−1),

where L1 t L2 denotes the split union of L1 and L2 .

In this paper, we use L = L1 ∪ L2 to denote L-space links with two components
L1, L2, unless otherwise stated.

2. Heegaard Floer link homology

2A. L-space links. The concept of L-spaces was introduced in [Ozsváth and Szabó
2005].

Definition 2.1. A 3-manifold Y is an L-space if it is a rational homology sphere and
its Heegaard Floer homology has minimal possible rank: for any Spinc-structure s,
ĤF(Y, s)= F has rank 1, and HF−(Y, s) is a free F[U ]-module of rank 1.

Gorsky and Némethi [2016] defined L-space links in terms of large surgeries.

Definition 2.2. An l-component link L⊆ S3 is an L-space link if there exist integers
p1, p2, . . . , pl such that for all integers ni ≥ pi , 1 ≤ i ≤ l, the (n1, n2, . . . , nl)-
surgery S3

n1,n2,...,nl
is an L-space.

The computation of Heegaard Floer link homology is not easy. However, L-space
links have some nice properties which make the computation of Heegaard Floer
link homology easier. In particular, we only consider L-space links L = L1 ∪ L2

with two components in this article.
For a 2-component L-space link L = L1∪L2 in S3, consider a generic admissible

multipointed Heegaard diagram with each component L i having only two basepoints
wi , zi . One can associate a generalized Floer complex A−(s1, s2) with (s1, s2) ∈H,
which is introduced in [Manolescu and Ozsváth 2010, Section 4]. It is a free
F[U1,U2]-module. The operations U1 and U2 are homotopic to each other on each
A−(s1, s2) (see [Ozsváth and Szabó 2008a]), and both have homological degree −2.
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Definition 2.3. For an oriented link L = L1 ∪ L2 with two components, define H

to be an affine lattice over Z2,

H= H1⊕H2, Hi = Z+
lk(L1, L2)

2
(i = 1, 2),

where lk(L1, L2) denotes the linking number of L1 and L2.

By Proposition 1.1, for any L-space link L with two components, we have
H∗(A−(s1, s2)) = F[[U ]], where (s1, s2) ∈ H. Let −2h(s1, s2) denote the homo-
logical grading of the generator in H∗(A−(s1, s2)). The function h(s1, s2) is the
HFL-weight function of an L-space link defined in [Gorsky and Némethi 2015]. In
this article, we call it the h-function. On each A−(s1, s2), the operations U1 and U2

are homotopic, and we denote them by U .

Lemma 2.4 [Gorsky and Némethi 2015, Lemma 2.2.3]. Let e1 = (1, 0) and
e2= (0, 1). For any s= (s1, s2)∈H, there are inclusions j : A−(s1, s2) ↪→ A−(s+ei )

for i = 1, 2 which induce injections on homology as follows:

j∗ : H∗(A−(s1, s2))→ H∗(A−(s+ ei )),

where j∗ =U δ(i)
i and δ(i)= 0 or 1.

Remark 2.5. The actions Ui induce maps Ui : A−(s+ ei )→ A−(s) for i = 1, 2,
and induce maps on homology. By Proposition 1.1, H∗(A−(s)) ∼= F[[U ]] for any
s ∈ H. Assume that a, b are the generators of H∗(A−(s)) and H∗(A−(s + ei )).
Then j∗(a)=U δ(i)b and Ui (b)=U 1−δ(i)a.

Corollary 2.6. For any L-space link with two components and s ∈ H, either
h(s)= h(s+ei ) or h(s)= h(s+ei )+1, where i = 1, 2, e1= (1, 0), and e2= (0, 1).

Proof. By Lemma 2.4, we have −2h(s) = −2h(s+ ei )− 2δ(i), where δ(i) = 0
or 1. So h(s)= h(s+ ei ) or h(s)= h(s+ ei )+ 1. �

Next, we revisit Yajing Liu’s work [2017] about how to use the h-function to
compute HFL−(L) for any 2-component L-space link L = L1 ∪ L2.

Lemma 2.7 [Gorsky and Némethi 2015, Lemma 2.2.9]. For any (s1, s2) ∈ H, the
chain complex CFL−(s1, s2) of the L-space link L = L1 ∪ L2 is quasi-isomorphic
to the “iterated cone” complex

A−(s1− 1, s2) A−(s1, s2)

A−(s1− 1, s2− 1) A−(s1, s2− 1)

i1

i1

i2 i2


where i1 and i2 are inclusion maps in Lemma 2.4.
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Let d denote the differential in the generalized Floer complex A−(s1, s2) and
i = i2− i1. The above “iterated cone” complex has two differentials d and i . The
differential d acts in Floer complexes on vertices of the cube, and i acts between
Floer complexes. Let the cube grading |K | of the upper-right corner of the cube be
0. The differential d decreases the homological grading by 1, and preserves the cube
grading. The differential i preserves the homological grading, and decreases |K | by
1. The total grading is defined as the sum of the homological grading and the cube
grading. Let D = d + i and K(s1, s2) denote the “iterated cone” complex. There
exists a spectral sequence whose E∞-page is the homology of K(s1, s2) under D.

Theorem 2.8 [Gorsky and Némethi 2015, Theorem 2.2.10]. Let L = L1 ∪ L2

be an L-space link with two components. For any (s1, s2) ∈ H, there exists a
spectral sequence which converges to HFL−(s1, s2) and collapses at its E2-page.
Its E2-page is isomorphic to H∗(H∗(A−(s1, s2), d), i).

So HFL−(s1, s2) is isomorphic to H∗(H∗(A−(s1, s2), d), i). By Proposition 1.1,
for any (s1, s2) ∈ H, H∗(A−(s1, s2), d) ∼= F[[U ]][−2h(s1, s2)], where −2h(s1, s2)

is the homological grading of the generator in H∗(A−(s1, s2), d), and U1,U2 act as
U , homotopic to each other on A−(s1, s2) [Ozsváth and Szabó 2008a]. To compute
HFL−(s1, s2), we just need to compute the homology of the mapping cone of i :

F[[U ]][−2h(s1− 1, s2)][b] F[[U ]][−2h(s1, s2)][a]

F[[U ]][−2h(s1− 1, s2− 1)][c] F[[U ]][−2h(s1, s2− 1)][d]

i1

i1

i2 i2

where a, b, c, d denote the generators in F[[U ]][−2h(s1, s2)], F[[U ]][−2h(s1−1, s2)],
F[[U]][−2h(s1−1, s2−1)], and F[[U]][−2h(s1, s2−1)], respectively. Let h=h(s1, s2).
By Corollary 2.6, there are 6 cases for the h-function corresponding to the mapping
cone.

h h

h h

Case (1)

h h

h+ 1 h+ 1

Case (2)

h+ 1 h

h+ 1 h

Case (3)

h h

h+ 1 h

Case (4)

h+ 1 h

h+ 1 h+ 1

Case (5)

h+ 1 h

h+ 2 h+ 1

Case (6)

Figure 1. Possible local behaviors of the h-function.
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According to the h-function in Figure 1, we can compute the corresponding
HFL−(s1, s2) in each case.

Case (1): i(b)= a, i(c)= b− d, i(d)= a and i(a)= 0, so HFL−(s1, s2)= 0.

Case (2): i(b)= a, i(c)=Ub− d, i(d)=Ua and i(a)= 0, so HFL−(s1, s2)= 0.

Case (3): i(b)=Ua, i(c)= b−Ud, i(d)= a and i(a)= 0, so HFL−(s1, s2)= 0.

Case (4): i(b)=a, i(c)=Ub−Ud, i(d)=a and i(a)=0, so HFL−(s1, s2)=〈b−d〉.
Both b and d have homological grading −2h and cube grading 1. The total grading
of b− d is −2h+ 1. Thus HFL−(s1, s2)= F[−2h+ 1].

Case (5): i(b)=Ua, i(c)= b− d, i(d)=Ua and i(a)= 0, so HFL− = 〈a〉 with
total grading −2h . Thus HFL−(s1, s2)= F[−2h].

Case (6): i(b) = Ua, i(c) = Ub−Ud, i(d) = Ua, and i(a) = 0, so in this case
HFL−(s1, s2)=〈a, b−d〉. Here a has total grading−2h and b−d has total grading
−2(h+ 1)+ 1=−2h− 1. Thus HFL−(s1, s2)= F[−2h]⊕ F[−2h− 1].

Moreover, we also determine the Euler characteristics χ(HFL−(s1, s2)) in these
six cases. In Case (1), Case (2), Case (3) and Case (6), χ(HFL−(s1, s2)) = 0. In
Case (4), χ(HFL−(s1, s2))=−1, and in Case (5), χ(HFL−(s1, s2))= 1. Thus for
any L-space link with two components, once the h-function is determined, we can
compute HFL−(s1, s2) for any (s1, s2) ∈ H.

Corollary 2.9. For any 2-component L-space link and (s1, s2) ∈ H, HFL−(s1, s2)

is spanned by a or b− d or both, where a has even grading and b− d has odd
grading.

2B. Alexander polynomials of L-space links. In this section, we mainly introduce
Yajing Liu’s work [2017] about how to determine the h-function of any 2-component
L-space link L= L1∪L2 by Alexander polynomials1L(t1, t2),1L1(t), and1L2(t).
Recall that for any L-space link L = L1 ∪ L2, we have

1L(t1, t2)
.
=

∑
(s1,s2)∈H

χ(HFL−(s1, s2))t
s1
1 t s2

2 ,

1L(t, 1) .=
1− t lk

1− t
1L1(t),(2-1)

where f .
= g means that f and g differ by multiplication by units. Yajing Liu

[2017] defined normalization of Alexander polynomials.

Definition 2.10 [Liu 2017, Definition 5.12]. Let the symmetrized Alexander poly-
nomial of L be 1L(x1, x2) in the form of

1L(t1, t2)=
∑
i, j

aL
i, j · t

i
1 · t

j
2 ,
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where ti corresponds to the link component L i for i = 1, 2. Let the symmetrized
Alexander polynomials of L1 and L2 be 1L1(t),1L2(t) in the form of

t
t−1

1L1(t)=
∑
k∈Z

aL1
k · t

k,
t

t−1
1L2(t)=

∑
k∈Z

aL2
k · t

k .

Let (i0, j0) be such that

j0 =max
{

j ∈ Z+
lk−1

2
∣∣ aL

i, j 6= 0
}
, i0 =max

{
i ∈ Z+

lk−1
2

∣∣ aL
i, j0 6= 0

}
.

Then these Alexander polynomials are called normalized if

(1) the leading coefficient of 1L i (t) is 1 for both i = 1, 2,

(2) if aL2
j0−lk /2+1/2 = 1, then aL

i0, j0 = 1, while if aL2
j0−lk /2+1/2 = 0, then aL

i0, j0 =−1,
where lk is the linking number of L1 and L2.

For the normalized Alexander polynomials of the 2-component L-space link
L = L1 ∪ L2, χ(HFL−)(s1, s2) = aL

s1−1/2,s2−1/2 and χ(HFK−(L i , s)) = aL i
s for

i = 1, 2 [Liu 2017]. Moreover, Yajing Liu gave the following formulas to determine
the h-function in [Liu 2017, (5.8)]:

(2-2) h(s1, s2− 1)− h(s1, s2)= aL2
s2−lk /2−

∞∑
i=1

aL
s1+i−1/2,s2−1/2 = 0 or 1.

Similarly,

(2-3) h(s1− 1, s2)− h(s1, s2)= aL1
s1−lk /2−

∞∑
i=1

aL
s1−1/2,s2+i−1/2 = 0 or 1.

When s1→+∞ or s2→+∞,

h(+∞, s2)= h2(s2− lk /2), h(s1,+∞)= h1(s1− lk /2),(2-4)

h1(s− 1)− h1(s)= aL1
s , h2(s− 1)− h2(s)= aL2

s ,(2-5)

where h1(s1 − lk /2) and h2(s2 − lk /2) are h-functions for link components L1

and L2, and s ∈ Z. For sufficiently large s, h1(s) = h2(s) = 0. By using the
formulas above, we can compute the h-function, and hence HFL−(s1, s2) for any
2-component L-space link L = L1 ∪ L2.

Remark 2.11. The link components L1 and L2 of 2-component L-space links are
both L-space knots [Liu 2017, Lemma 1.10].

Corollary 2.12 [Dawra 2015; Gorsky and Némethi 2015; Liu 2017]. For any L-
space link L = L1∪L2 with two components, HFL−(L) is determined by Alexander
polynomials 1L(t1, t2),1L1(t) and 1L2(t).
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3. Computation of ĤFL for 2-component L-space links

3A. The spectral sequence corresponding to ĤFL. In Section 2, we proved that
for any L-space link L = L1∪ L2 with (s1, s2) ∈H, HFL−(s1, s2) is determined by
the h-function. Now we are going to prove Theorem 1.2 that the Heegaard Floer
link homology ĤFL(s1, s2) is also determined by the h-function.

Let C(s1, s2) denote

CFL−(s1+ 1, s2+ 1)⊕CFL−(s1+ 1, s2)⊕CFL−(s1, s2+ 1)⊕CFL−(s1, s2).

For any (s1, s2) ∈ H, we have maps U1 : CFL−(s1, s2)→ CFL−(s1 − 1, s2) and
U2 : CFL−(s1, s2)→ CFL−(s1, s2 − 1). The action of U1 (or U2) is defined by
the h-function (see Lemma 3.3). Let D = d + d1, where d is the differential in
chain complex CFL−(s1, s2) and d1 =U1−U2. Then we have the “iterated cone”
complex (C(s1, s2), d + d1) in the following form:

CFL−(s1, s2+ 1) CFL−(s1+ 1, s2+ 1)

CFL−(s1, s2) CFL−1(s1+ 1, s2)

U2

U1

U2

U1

Lemma 3.1. Suppose that L = L1 ∪ L2 is an L-space link. Let ĈFL(s1, s2) denote
the chain complex of the hat-version of Heegaard Floer link homology of L with
(s1, s2) ∈H. Then ĈFL(s1, s2) is quasi-isomorphic to the “iterated cone” complex
(C(s1, s2), d + d1).

Proof. We can write ĈFL(s1, s2) as

CFL−(s1, s2)/U1(CFL−(s1+ 1, s2))

U2(CFL−(s1, s2+ 1)/U1(CFL−(s1+ 1, s2+ 1)))
.

The quotient CFL−(s1, s2)/U1(CFL−(s1 + 1, s2)) can be realized as the map-
ping cone of U1 : CFL−(s1 + 1, s2)→ CFL−(s1, s2), and similarly the quotient
CFL−(s1, s2+1)/U1(CFL−(s1+1, s2+1)) can be realized as the mapping cone of
U1 : CFL−(s1+ 1, s2+ 1)→ CFL−(s1, s2+ 1). Thus ĈFL(s1, s2) can be realized
as the cone of the natural map induced by U2 between these two cones. �

Theorem 3.2. Let L = L1 ∪ L2 be an L-space link with two components. For any
(s1, s2) ∈ H, there exists a spectral sequence with the following properties:

(a) Its E2-page is isomorphic (as a graded F-module) to H∗(H∗(C(s1, s2), d), d1).

(b) Its E∞-page is isomorphic (as a graded F-module) to ĤFL(s1, s2).

(c) The spectral sequence collapses at the E3-page.
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Proof. For the “iterated cone” complex C(s1, s2), it is doubly graded. One is the
homological grading ν in the chain complex CFL−(s1, s2) with (s1, s2) ∈ H. We
define cube grading |C | in the cube of the “iterated cone” complex C(s1, s2). Fix
(s1, s2)∈H. The cube grading is defined as (s1+s2)−(v1+v2), where (v1, v2)∈H.
It is equivalent to saying that the cube grading of the lower left corner is 0, and U1

(or U2) increases the cube grading by 1.
The spectral sequence corresponding to the doubly-graded complex C(s1, s2)

with two (anti)commuting differentials d and d1 converges to H∗(C(s1, s2), d+d1).
By Lemma 3.1, its E∞-page is isomorphic to ĤFL(s1, s2). Its E1-page is written
as HFL−(s1 + 1, s2 + 1)⊕HFL−(s1 + 1, s2)⊕HFL−(s1, s2 + 1)⊕HFL−(s1, s2).
Its E2-page is H∗(H∗(C(s1, s2), d), d1). The differential d0 = d preserves the cube
grading |C | and decreases the homological degree ν by 1. The differential d1 in the
E1-page increases |C | by 1 and decreases ν by 2. For any nonnegative integer k, the
differential dk increases |C | by k and decreases ν by k+ 1. The total homological
grading is ν + |C |. By grading reasons, the cube grading is less than or equal
to 2. Thus, for the integer k > 2, dk = 0 and this spectral sequence collapses at the
E3-page. �

By Theorem 3.2, ĤFL(s1, s2) ∼= E3. Then we can compute ĤFL(s1, s2) by
computing the E3-page of the spectral sequence. The following lemma describes
the action of U1 (or U2) on the E1-page.

Lemma 3.3. Consider the map U1 :HFL−(s1+1, s2+1)→HFL−(s1, s2+1). Let
α be a generator of HFL−(s1+1, s2+1) with total homological grading x. If there
exists a generator β in HFL−(s1, s2+1) with total homological grading x−2, then
U1(α)= β.

Proof. As shown in Figure 2, let a1, b1, c1 and d1 denote the generators of
H∗(A−(s1, s2+1)), H∗(A−(s1−1, s2+1)), H∗(A−(s1−1, s2)) and H∗(A−(s1, s2)),
respectively, and likewise a, b, c and d the generators of H∗(A−(s1+ 1, s2+ 1)),
H∗(A−(s1, s2+ 1)), H∗(A−(s1, s2)) and H∗(A−(s1+ 1, s2)). Here a1 and b have
different cube gradings as generators of H∗(A−(s1, s2 + 1)) and d1 and c have
different cube gradings as generators of H∗(A−(s1, s2)). By the computation of
HFL− in Section 2A, h(s1, s2+1)=h(s1+1, s2) if HFL−(s1+1, s2+1) is nonempty.
Similarly, h(s1−1, s2+1)=h(s1, s2) since HFL−(s1, s2) is also nonempty. Assume
that α = b− d. Then it has total homological grading −2h(s1, s2 + 1)+ 1. The
generator a1 has total homological grading −2h(s1, s2+ 1), and b1− d1 has total
homological grading −2h(s1−1, s2+1)+1. By the assumption of this lemma, the
total homological grading of β is −2h(s1, s2+ 1)− 1. So β can only be b1− d1,
and h(s1− 1, s2+ 1)= h(s1, s2+ 1)+ 1.

Now consider the map U1 : H∗(A−(s1, s2 + 1)) → H∗(A−(s1 − 1, s2 + 1)),
where H∗(A−(s1, s2+ 1))= 〈b〉 and H∗(A−(s1− 1, s2+ 1))= 〈b1〉. Since U1 has
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A−(s1− 1, s2+ 1)[b1] A−(s1, s2+ 1)[a1]

A−(s1− 1, s2)[c1] A−(s1, s2)[d1]

HFL−(s1, s2+ 1)

A−(s1, s2+ 1)[b] A−(s1+ 1, s2+ 1)[a]

A−(s1, s2)[c] A−(s1+ 1, s2)[d]

HFL−(s1+ 1, s2+ 1)

Figure 2. Generators for Lemma 3.3.

homological degree −2, U1(d) = d1 by Lemma 2.4 and Remark 2.5. Similarly,
U1(c) = c1. Then U1(α) = U1(b− d) = b1− d1 = β. If α = a, then β = a1, and
we can use a similar argument to prove U1(α)= β in this case. �

Remark 3.4. The map U2 : HFL−(s1 + 1, s2 + 1) → HFL−(s1 + 1, s2) can be
described similarly to Lemma 3.3.

3B. Proof of the main theorem. In this subsection, we prove Theorem 1.2, and
show that 4 is an upper bound for the rank of link Floer homology ĤFL(s1, s2) for
any 2-component L-space link and (s1, s2) ∈ H. Example 3.8 gives a 2-component
L-space link where the rank of ĤFL(s1, s2) ranges from 0 to 4.

In order to prove Theorem 1.2, we need the symmetric property of Heegaard
Floer link homology.

Lemma 3.5 [Ozsváth and Szabó 2006, Equation 5]. For an oriented L-space link
L = L1 ∪ L2 with two components and s = (s1, s2) ∈ H, there exists a relatively
graded isomorphism

ĤFL(L , s)∼= ĤFL(L ,−s).

Remark 3.6. In particular, the h-functions satisfy h(−s)= h(s)+ |s|, [Liu 2017,
Lemma 5.5], where |s| = s1+ s2.

Proof of Theorem 1.2. Let h= h(s1+1, s2+1). If d2= 0, then the spectral sequence
in Theorem 3.2 collapses at its E2-page. We can use the computation of HFL− in
Section 2A and Lemma 3.3 to compute ĤFL(s1, s2). For example, suppose that the
h-function corresponding to ĤFL(s1, s2) is the following:

h+ 1 h h

h+ 1 h+ 1 h

h+ 2 h+ 1 h+ 1
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Then the E2-page of the spectral sequence is:

F[−2h] F[−2h+ 1]

F[−2h− 1] F[−2h]

U2

U1

U2

U1

Since U1 and U2 both have homological grading−2, U1=U2= 0. By Theorem 3.2,
d2 = 0 since it increases the cube grading by 2, and decreases the homological grad-
ing ν by 3. Thus ĤFL(s1, s2)∼=F[−2h−1]⊕F[−2h−1]⊕F[−2h−1]⊕F[−2h−1].
Here the cube grading for the generator in F[−2h−1] is 0. We can use this method
to compute ĤFL in all cases where d2 = 0. Now it suffices to consider cases where
d2 may be nontrivial.

If d2 6= 0, then HFL−(s1 + 1, s2 + 1) and HFL−(s1, s2) are both nonzero and
contain generators such that their homological grading difference is 3. For nonzero
HFL−(s1+1, s2+1), we have the following three possibilities for the corresponding
h-function:

h h

h+ 1 h

Case (1)

h+ 1 h

h+ 1 h+ 1

Case (2)

h+ 1 h

h+ 2 h+ 1

Case (3)

In Case (1), HFL−(s1+ 1, s2+ 1)= F[−2h+ 1]. In order to have nontrivial d2,
HFL−(s1, s2) must contain a generator with homological grading −2h− 2. So the
h-function corresponding to HFL−(s1, s2) can only have the pattern as in Case (2)
or Case (3). Once the h-function in HFL−(s1, s2) is determined, its values in
HFL−(s1, s2+1) and HFL−(s1+1, s2) are also determined by Corollary 2.6. Thus
there are two possibilities for the h-function corresponding to ĤFL(s1, s2):

h+ 1 h h

h+ 2 h+ 1 h

h+ 2 h+ 2 h+ 1

Case (1a)

h+ 1 h h

h+ 2 h+ 1 h

h+ 3 h+ 2 h+ 1

Case (1b)

In both cases, we have HFL−(s1+1, s2+1)= F[−2h+1], HFL−(s1, s2+1)=
F[−2h]⊕F[−2h−1] and HFL−(s1+1, s2)=F[−2h]⊕F[−2h−1]. By Lemma 3.3,
U1a = b and U2a = c, where a is the generator in HFL−(s1 + 1, s2 + 1), and b
and c are generators with homological grading −2h− 1 in HFL−(s1, s2+ 1) and
HFL−(s1 + 1, s2), respectively. So the image of a under the differential d1 is
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nonzero, and a does not survive in the E2-page. Thus d2 is trivial in both Case (1a)
and Case (1b).

In Case (2), HFL−(s1 + 1, s2 + 1) = F[−2h]. In order to have nontrivial d2,
HFL−(s1, s2) must contain a generator with homological grading [−2h−3]. So the
h-function in HFL−(s1, s2) must have the pattern in Case (3). Then HFL−(s1, s2)∼=

F[−2h− 2]⊕ F[−2h− 3]. Corresponding to this case, there are four possibilities
for the h-function in ĤFL(s1, s2):

h+ 1 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 3 h+ 2 h+ 1

Case (2a)

h+ 2 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 3 h+ 2 h+ 2

Case (2b)

h+ 2 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 3 h+ 2 h+ 1

Case (2c)

h+ 1 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 3 h+ 2 h+ 2

Case (2d)

We use the symmetric property of Heegaard Floer link homology to compute
ĤFL(s1, s2). Let h∗ = h(−s1,−s2). By Remark 3.6,

h(−s1,−s2− 1)− h(−s1,−s2)= 1− (h(s1, s2)− h(s1, s2+ 1))
and

h(−s1− 1,−s2)− h(−s1,−s2)= 1− (h(s1, s2)− h(s1+ 1, s2)).

So the h-function in ĤFL(−s1,−s2) corresponding to these four subcases are

h∗ h∗ h∗

h∗+1 h∗ h∗

h∗+1 h∗+1 h∗

dual-h (2a)

h∗+1 h∗ h∗

h∗+1 h∗ h∗

h∗+1 h∗+1 h∗+1

dual-h (2b)

h∗ h∗ h∗

h∗+1 h∗ h∗

h∗+1 h∗+1 h∗+1

dual-h (2c)

h∗+1 h∗ h∗

h∗+1 h∗ h∗

h∗+1 h∗+1 h∗

dual-h (2d)

Note that in all these four cases for ĤFL(−s1,−s2), HFL−(−s1+1,−s2+1)= 0.
So d2 = 0 in the spectral sequence corresponding to ĤFL(−s1,−s2). Now the
computation of ĤFL(−s1,−s2) is quite straightforward.
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In dual-h (2a),

ĤFL(−s1,−s2)∼=


F[−2h∗+ 1] 0

F[−2h∗] F[−2h∗+ 1]

U2

U1

U2

U1


By grading reasons, d2 =U1 =U2 = 0. Then it is easy to obtain ĤFL(−s1,−s2)∼=

F[−2h∗]⊕F[−2h∗]⊕F[−2h∗], and the Euler characteristic χ = 3. By Lemma 3.5,
ĤFL(s1, s2) contains 3 generators with the same total grading. Observe that
HFL−(s1, s2)= F[−2h− 2]⊕ F[−2h− 3]. Then the generator with total grading
−2h− 2 survives in ĤFL(s1, s2). Thus

ĤFL(s1, s2)∼= F[−2h− 2]⊕ F[−2h− 2]⊕ F[−2h− 2],

and the Euler characteristic χ is 3.
In dual-h (2b),

ĤFL(−s1,−s2)∼=


0 0

F[−2h∗] 0

U2

U1

U2

U1


In this case, ĤFL(−s1,−s2)∼= F[−2h∗]. By an argument similar to the one in dual-
h (2a), we obtain that ĤFL(L)(s1, s2)∼= F[−2h−2], and the Euler characteristic χ
is 1.

In dual-h (2c),

ĤFL(−s1,−s2)∼=


F[−2h∗+ 1] 0

F[−2h∗] 0

U2

U1

U2

U1


By grading reasons, d2=U1=U2= 0. Then ĤFL(−s1,−s2)∼=F[−2h∗]⊕F[−2h∗].
So ĤFL(s1, s2)∼= F[−2h− 2]⊕ F[−2h− 2], and the Euler characteristic is χ = 2.

In dual-h (2d),

ĤFL(−s1,−s2)∼=


0 0

F[−2h∗] F[−2h∗+ 1]

U2

U1

U2

U1


Hence, ĤFL(L)(s1, s2)∼= F[−2h− 2]⊕F[−2h− 2], and the Euler characteristic is
χ = 2.
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Now we consider Case (3). In this case, we have HFL−(s1 + 1, s2 + 1) ∼=
F[−2h] ⊕ F[−2h − 1]. Then there are three possibilities for HFL−(s1, s2) if d2

is nontrivial: HFL−(s1, s2) is either F[−2h − 4] or F[−2h − 4] ⊕ F[−2h − 5] or
F[−2h−3]. If HFL−(s1, s2)=F[−2h−4], its h-function is shown in Case (3a), and
if HFL−(s1, s2)∼= F[−2h− 4]⊕ F[−2h− 5], its h-function is shown in Case (3b):

h+ 2 h+ 1 h
h+ 3 h+ 2 h+ 1
h+ 3 h+ 3 h+ 2

Case (3a)

h+ 2 h+ 1 h
h+ 3 h+ 2 h+ 1
h+ 4 h+ 3 h+ 2

Case (3b)

In Case (3a) and Case (3b), we observe that both generators in HFL−(s1+1, s2+1)
have nontrivial images in HFL−(s1, s2+ 1) and HFL−(s1+ 1, s2) by Lemma 3.3.
So these two generators have nontrivial images under the differential d1, and cannot
survive in the E2-page. Thus d2 is trivial in both cases.

If HFL−(s1, s2) ∼= F[−2h − 3], there are four possibilities for the h-function
corresponding to ĤFL(s1, s2):

h+ 1 h+ 1 h
h+ 2 h+ 2 h+ 1
h+ 3 h+ 2 h+ 1

Case (3c)

h+ 2 h+ 1 h
h+ 2 h+ 2 h+ 1
h+ 3 h+ 2 h+ 2

Case (3d)

h+ 1 h+ 1 h
h+ 2 h+ 2 h+ 1
h+ 3 h+ 2 h+ 2

Case (3e)

h+ 2 h+ 1 h
h+ 2 h+ 2 h+ 1
h+ 3 h+ 2 h+ 1

Case (3f)

Let h∗=h(−s1,−s2)=h(s1, s2)+s1+s2. By Remark 3.6, we find the h-function
in ĤFL(−s1,−s2) corresponding to each case:

h∗−1 h∗−1 h∗−1
h∗ h∗ h∗−1
h∗ h∗ h∗−1

dual-h (3c)

h∗ h∗−1 h∗−1
h∗ h∗ h∗−1
h∗ h∗ h∗

dual-h (3d)

h∗ h∗−1 h∗−1
h∗ h∗ h∗−1
h∗ h∗ h∗−2

dual-h (3e)

h∗−1 h∗−1 h∗−1
h∗ h∗ h∗−1
h∗ h∗ h∗

dual-h (3f)
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Observe that in these four cases, HFL−(−s1,−s2) = 0. So d2 is trivial in the
spectral sequence corresponding to ĤFL(−s1,−s2). We compute ĤFL(−s1,−s2),
and hence ĤFL(s1, s2).

In dual-h (3c), ĤFL(−s1,−s2)∼= F[−2h∗+ 1]. By Lemma 3.5, ĤFL(s1, s2)∼=

F[−2h− 3] with the Euler characteristic χ =−1.
In Case (3d), ĤFL(L)(s1, s2)∼= F[−2h−3]⊕F[−2h−3]⊕F[−2h−3], and the

Euler characteristic is χ =−3 by a similar computation.
In Case (3e), ĤFL(L)(s1, s2)∼= F[−2h− 3]⊕F[−2h− 3], and the Euler charac-

teristic is χ =−2.
In Case (3f), ĤFL(L)(s1, s2)∼= F[−2h− 3]⊕ F[−2h− 3], and the Euler charac-

teristic is χ =−2.
Thus we conclude that for any L-space link L = L1 ∪ L2 with two components,

if the h-function is determined, we can compute ĤFL(s1, s2) with any (s1, s2) ∈ H.
By equations in Section 2B, the h-function is determined by Alexander polynomials
1L(x1, x2), 1L1(t), 1L2(t) and the linking number lk(L1, L2). �

Furthermore, we also get a bound for rankF(ĤFL(s1, s2)) and the Euler charac-
teristic χ(ĤFL(s1, s2)) with any (s1, s2) ∈ H.

Proof of Corollary 1.4. Consider the short exact sequence

(3-1) 0→ CFL−(s1+ 1, s2+ 1)
U1
−→ CFL−(s1, s2+ 1)→ C1(s1, s2+ 1)→ 0,

where C1(s1, s2+1) is the quotient complex with (s1, s2+1) ∈H. By Lemma 3.1,

(3-2) ĈFL(s1, s2)∼= C1(s1, s2)/U2(C1(s1, s2+ 1)).

Now we claim that rankF(H∗(C1(s1, s2+ 1))) ≤ 2 for any (s1, s2) ∈ H. From the
short exact sequence (3-1), we have

(3-3) rankF(H∗(C1(s1, s2+ 1)))
≤ rankF(HFL−(s1+ 1, s2+ 1))+ rankF(HFL−(s1, s2+ 1)).

If rankF(H∗(C1(s1, s2 + 1))) ≥ 3, then at least one of HFL−(s1 + 1, s2 + 1) and
HFL−(s1, s2+ 1) should have rank at least 2, and the other one should have rank
at least 1. By the computation in Section 2A, the h-functions corresponding to
HFL−(s1+ 1, s2+ 1) and HFL−(s1, s2+ 1) have the following possibilities:

h+ 1 h h− 1
h+ 1 h+ 1 h

Case (1)

h+ 1 h h
h+ 2 h+ 1 h

Case (2)

h+ 1 h h− 1
h+ 2 h+ 1 h

Case (3)



HEEGAARD FLOER HOMOLOGY OF L -SPACE LINKS WITH TWO COMPONENTS 99

Here we assume that the generator of H∗(A−(s1, s2 + 1)) has homological
grading −2h. In Case (1), we have U1 : F[−2h + 2] ⊕ F[−2h + 1] → F[−2h].
Let α denote the generator of F[−2h + 2] ⊆ HFL−(s1 + 1, s2 + 1), and β the
generator of F[−2h] ∼= HFL−(s1, s2 + 1). By Lemma 3.3, U (α) = β. Then
H∗(C1(s1))∼= F[−2h+ 1], and the rank in this case is 1.

In Case (2), we have U1 : F[−2h + 1] → F[−2h] ⊕ F[−2h − 1]. Similarly
H∗(C1(s1, s2+ 1))∼= F[−2h], and it has rank 1.

In Case (3), we have U1 : F[−2h+ 2] ⊕ F[−2h+ 1] → F[−2h] ⊕ F[−2h− 1].
By Lemma 3.3, H∗(C1(s1, s2+ 1))= 0.

Thus for any (s1, s2) ∈ H, rankF(H∗(C1(s1, s2+ 1)))≤ 2. By (3-2),

rankF(ĤFL(s1, s2))≤ rankF(H∗(C1(s1, s2+1)))+rankF(H∗(C1(s1, s2)))≤2+2=4

for any (s1, s2) ∈ H. Therefore, −4≤ χ(ĤFL(L , s1, s2))≤ 4. �

In fact, we construct an example with χ(ĤFL(L , s1, s2)) = −4, given in the
proof of Theorem 1.2, where d2 = 0. Similarly, we construct an example with
χ(ĤFL(L , s1, s2))= 4.

Example 3.7. Assume that the h-function corresponding to ĤFL(s1, s2) is the
following:

h+ 1 h+ 1 h

h+ 2 h+ 1 h+ 1

h+ 2 h+ 2 h+ 1

In this case, ĤFL(s1, s2)∼= F[−2h− 2]⊕ F[−2h− 2]⊕ F[−2h− 2]⊕ F[−2h− 2],
and hence χ(ĤFL(s1, s2))= 4.

Example 3.8. Figure 3 depicts the two-bridge link b(20,−3).

Figure 3. b(20,−3).
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Figure 4. The h-function for b(20,−3).

Yajing Liu proved that b(20,−3) is an L-space link [2017, Theorem 3.8]. Its
two components are both unknots with linking number 2. By [Dawra 2015], its
normalized multivariable Alexander polynomial is

(3-4) 1L(t1, t2)= t1/2
1 t3/2

2 + t3/2
1 t1/2

2 + t1/2
1 t−1/2

2 + t−1/2
1 t1/2

2 + t−3/2
1 t−1/2

2

+ t−1/2
1 t−3/2

2 − t3/2
1 t3/2

2 − t1/2
1 t1/2

2 − t−1/2
1 t−1/2

2 − t−3/2
1 t−3/2

2 .

Let L1 and L2 denote the unknot components. We obtain normalized Alexander
polynomials of L1 and L2:

t
t−1

1L1(t)=
t

t−1
1L2(t)= 1+ t−1

+ t−2
+ t−3

+ t−4
+ · · · .

Using results of Section 2B, we compute the h-function for ĤFL(s1, s2) with any
(s1, s2) ∈H by Alexander polynomials. The h-function is shown in Figure 4, where
numbers denote h(s1, s2) for any (s1, s2)∈H. For example, h(0, 0)= h(−1, 0)= 2.
The black dots • denote the lattice points (s1, s2)∈H where ĤFL(s1, s2) is nonzero.
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Figure 5. ĤFL(b(20,−3)).

By an explicit computation, the link Floer homology ĤFL(s1, s2) is shown in
Figure 5. We observe that |χ(s1, s2)| = rankF(ĤFL(s1, s2)), and the rank of
ĤFL(s1, s2) ranges from 0 to 4. This indicates that the bound for the rank in
Corollary 1.4 can be realized by some L-space link with some (s1, s2) ∈ H. More
precisely, rankF(ĤFL(2, 2)) = 1, rankF(ĤFL(2, 1)) = 2, rankF(ĤFL(1, 0)) = 3,
rankF(ĤFL(0, 0))= 4 and rankF(ĤFL(3, 0))= 0.

4. An application of ĤFL to the Thurston norm

The Thurston norm was studied by many people, and some lower bounds were
obtained in [McMullen 2002; Friedl and Kim 2008; Friedl and Vidussi 2015;
Agol and Dunfield 2015]. Ozsváth and Szabó [2008b] showed that the link Floer
homology detects the Thurston norm of the link complement. In Section 3, for any
2-component L-space link L = L1 ∪ L2 and s ∈ H, we computed ĤFL(L , s) by
using Alexander polynomials 1L(t1, t2), 1L1(t), 1L2(t) and the linking number
lk(L1, L2). Thus we can compute the link Floer homology polytope for L , and also
compute the dual Thurston polytope and the Thurston (semi)norm [Ozsváth and
Szabó 2008b, Theorem 1.1].

In Section 1, we introduced complexity χ−(F) for any compact oriented surface
F with boundary. To any link L ⊆ S3, and any homology class h ∈ H2(S3, L), we
can assign a function

x(h)= min
{F↪→S3\nd(L), [F]=h}

χ−(F).

This function can be naturally extended to a seminorm, the Thurston seminorm,
denoted by x : H2(S3, L;R)→ R.
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Theorem 4.1 [Thurston 1986, Theorem 1]. The function x : H2(S3, L;R)→ R is
a seminorm that vanishes exactly on the subspace spanned by embedded surfaces of
nonnegative Euler characteristic.

Assume that L ⊆ S3 is a link with l components in S3. Let ui denote the meridian
of the i-th component L i of L . Recall that every lattice point s ∈ H can be written
as l∑

i=1

si · [ui ],

where si ∈Q satisfies the property that

2si + lk(L i , L − L i )

is an even integer for i = 1, . . . , l.
In [Ozsváth and Szabó 2008b], the Heegaard Floer link homology provides a

function y : H 1(S3
− L;R)→ R defined by the formula

y(h)= max
{s∈H⊆H1(S3−L;R) | ĤFL(L ,s) 6=0}

|〈s, h〉|.

Ozsváth and Szabó proved the following formula for the link Floer homology and
the Thurston norm.

Theorem 4.2 [Ozsváth and Szabó 2008b, Theorem 1.1]. For an oriented link
L ⊆ S3 with no trivial components, the Heegaard Floer link homology detects the
Thurston (semi)norm of its complement. For each h ∈ H 1(S3

− L;R), we have

x(PD[h])+
l∑

i=1

|〈h, ui 〉| = 2y(h),

where ui is the meridian of the i-th component of L and |〈h, ui 〉| denotes the absolute
value of the Kronecker pairing of h ∈ H 1(S3

− L;R) and ui ∈ H1(S3
− L;R).

Remark 4.3. A trivial component of a link L is an unknot component which is
also unlinked from the rest of the link.

The unit ball for the norm x is called the Thurston polytope, and the unit ball for
the norm y is called the link Floer homology polytope, which is also the convex
hull of those s ∈H for which ĤFL(L , s) 6= 0. The unit ball for the dual norm x∗ of
x in H1(S3

− L;R) is called the dual Thurston polytope. By Theorem 4.2, twice
the link Floer homology polytope can be written as the sum of the dual Thurston
polytope and an element of the symmetric hypercube in H 1(S3

− L) with edge-
length two [Ozsváth and Szabó 2008b]. We give some examples of L-space links
with two components, and compute their link Floer homology polytopes by using
Alexander polynomials and linking numbers in detail. Moreover, we compute the
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Figure 6. L7n1.

dual Thurston polytopes and Thurston norms of their complements by Theorem 4.2.
We also compare the link Floer homology polytope and the convex hull of those
s ∈ H for which χ(ĤFL(L , s)) 6= 0.

Example 4.4 (the dual Thurston polytope for the L-space link L7n1). The link
L7n1 in Figure 6 is an L-space link [Liu 2017, Example 3.17]. The link component
L1 is an unknot and the other link component L2 is a right-handed trefoil. The
linking number is 2 and its multivariable Alexander polynomial is

1L(t1, t2)= t1/2
1 t3/2

2 + t−1/2
1 t−3/2

2 .

Normalized Alexander polynomials of L1 and L2 are

t
t−1

1L1(t)= 1+ t−1
+ t−2

+ t−3
+ t−4

+ · · · ,

t
t−1

1L2(t)= t + t−1
+ t−2

+ t−3
+ t−4

+ · · · .

The h-function in ĤFL(s1, s2) is shown in Figure 7. In this figure, the numbers
denote the h-function, and • denotes the lattice points (s1, s2)∈H where ĤFL(s1, s2)

is nonzero. By an explicit computation, the link Floer homology ĤFL(s1, s2) is
shown in Figure 8. Moreover, ĤFL(0, 0) ∼= F[−2] ⊕ F[−3], so χ(ĤFL(0, 0)) is
zero. For any other lattice point (s1, s2) labeled by • except (0, 0), ĤFL(s1, s2)

has rank one and χ(ĤFL(s1, s2)) is also nonzero. Thus in this example, the link
Floer homology polytope is the same as the convex hull of those (s1, s2) ∈ H for
which χ(ĤFL(s1, s2)) are nonzero. By Theorem 4.2, the dual Thurston polytope in
H1(S3

− L;R) is shown in Figure 9.
In Figure 9, the thick red line is the dual Thurston polytope for L7n1. It is

the same as the Newton polytope of the Alexander polynomial 1L(t1, t2). The
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Figure 7. The h-function for L7n1.

s1

s2

F

F

F2

F

F

F

F

F

F

Figure 8. The link Floer homology polytope for L7n1.

unknot component of L7n1 bounds a surface FL1 with Euler characteristic −1,
and the right-handed trefoil link component L2 bounds a surface FL2 with Euler
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Figure 9. The dual Thurston polytope for L7n1.

Figure 10. b(−2, 3, 8).

characteristic −3. The surfaces FL1 and FL2 have maximal Euler characteristic in
their respective homology classes.

Example 4.5 (the dual Thurston polytope for the pretzel link L = b(−2, 3, 8)). We
claim that the pretzel link b(−2, 3, 8) is an L-space link with two components. The
link component L1 is an unknot and the other link component L2 is a right-handed
trefoil as shown in Figure 10. The linking number of L1 and L2 is 5. Let P1 be the
knot obtained from b(−2, 3, 8) by 1-Dehn surgery on L1. It is the twisted torus
knot K (5, 6; 2, 1) [Remigio-Juárez and Rieck 2012, Proposition 3.1], and it is an
L-space knot as proved by F. Vafaee [2015, Theorem 1]. Then for sufficiently
large d, S3

1,d(L)= S3
d−25(P1) is an L-space. The link components L1 and L2 are
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s1

s2

F

F

F

F

F

FF

F2
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F

F

F

F

FF

F

Figure 11. The link Floer homology polytope for b(−2, 3, 8).

L-space knots, so S3
1(L1) and S3

d(L2) are both L-spaces. Observe that d − 25> 0,
so the pretzel link b(−2, 3, 8) is an L-space link by L-space surgery criterion [Liu
2017, Lemma 2.6]. The symmetrized Alexander polynomial of b(−2, 3, 8) is

1L(t1, t2)= t−2
1 t−3

2 + t−1
1 t−2

2 + 1+ t1t2+ t2
1 t3

2 .

The h-function corresponding to ĤFL(s1, s2) with (s1, s2) ∈ H is shown in
Figure 13. By an explicit computation, the link Floer homology ĤFL(s1, s2) is
as shown in Figure 11. We have rankF(ĤFL(1/2, 1/2))= χ(ĤFL(1/2, 1/2))= 2,
and rankF(ĤFL(−1/2,−1/2))= χ(ĤFL(−1/2,−1/2))= 2. Observe that the link
Floer homology polytope is the same as the convex hull of those (s1, s2) ∈ H for
which χ(ĤFL(s1, s2)) are nonzero. By Theorem 4.2, the dual Thurston polytope is
the shaded area in Figure 12.

Remark 4.6. For L-space links L7n1 and b(−2, 3, 8), the Thurston polytopes
are both dual to Newton polytopes of their symmetrized Alexander polynomials
1L(t1, t2). Ozsváth and Szabó [2008b] pointed out that the Thurston polytope of
an alternating link is dual to the Newton polytope of its multivariable Alexander
polynomial. This is also true for L-space knots. A natural question is whether the
Thurston polytope of an L-space link with two components (which is not a split
union of two L-space knots) is dual to the Newton polytope of its symmetrized
Alexander polynomial.
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Figure 12. The dual Thurston polytope for b(−2, 3, 8).
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Figure 13. The h-function for b(−2, 3, 8).

5. Two-component L-space links with vanishing Alexander polynomials

In Section 4, we have given examples of L-space links where Thurston polytopes
are dual to Newton polytopes of their symmetrized Alexander polynomials. In this
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section, we mainly discuss 2-component L-space links with vanishing Alexander
polynomials, especially split L-space links. Recall that multivariable Alexander
polynomials for split links are 0. So Newton polytopes for split L-space links are
empty, but link Floer homology polytopes may be nontrivial. To see this in detail,
we need some lemmas first.

Lemma 5.1 [Liu 2017, Example 1.13(A)]. Split disjoint unions of L-space knots
are L-space links.

Lemma 5.2 [Borodzik and Gorsky 2016, Proposition 3.11]. For a split L-space link
L = L1 t L2 with two components which are both L-space knots and (s1, s2) ∈ H,
the h-function h(s1, s2) satisfies

h(s1, s2)= h1(s1)+ h2(s2),

where h1(s1) and h2(s2) are h-functions of L1 and L2, respectively.

Remark 5.3. L-space knots can be regarded as special L-space links with just one
component. For any L-space knot K ⊆ S3, we can associate it with a chain complex
A−(s1) filtered by the Alexander grading, and H∗(A−(s1)) has a unique generator
for any s1. Let −2h(s1) be the homological grading of the generator.

Proposition 5.4. Let L = L1 t L2 be a split union of two L-space knots L1 and L2.
Then ĤFL(L , s1, s2)∼= ĤFL(L1, s1)⊗ĤFL(L2, s2)⊗(F⊕F(−1)) for any (s1, s2)∈H.

Proof. The proof is quite straightforward using our computation of ĤFL(s1, s2) in
Section 3. For any (s1, s2) ∈ H, the h-function corresponding to ĤFK(L1, s1) has
the following possibilities:

•
x

s1− 1
•
x

s1
•
x

s1+ 1

Case (1)

•
x + 1

s1− 1
•
x

s1
•
x

s1+ 1

Case (2)

•
x

s1− 1
•
x

s1
•

x − 1

s1+ 1

Case (3)

•
x + 1

s1− 1
•
x

s1
•

x − 1

s1+ 1

Case (4)

Here h1(s1)= x and x is any positive integer. Observe that

H∗(A−(s1)/A−(s1− 1))∼= HFK−(L1, s1),

· · · → HFK−i+2(s1+ 1)
U
−→ HFK−i (s1)→ ĤFKi (s1)

→ HFK−i+1(s1+ 1)
U
−→ HFK−i−1(s1) · · · .
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The long exact sequence is induced by the short exact sequence

0→ CFK−(s1+ 1)
U
−→ CFK−(s1)→ ĈFK(s1)→ 0.

By the long exact sequence, we compute ĤFL(L1, s1) as follows:

Case (1) ĤFK(L1, s1)∼= 0.

Case (2) ĤFK(L1, s1)∼= F[−2x].

Case (3) ĤFK(L1, s1)∼= F[−2x + 1].

Case (4) ĤFK(L1, s1)∼= 0.

Similarly, for the link component L2, we assume that h2(s2)= y. There are also
four possibilities for the h-function corresponding to ĤFK(L2, s2). By Lemma 5.2,
h(s1, s2) = h1(s1)+ h2(s2). We find that there are only four possibilities for the
h-function such that ĤFL(L , s1, s2) 6= 0:

h+ 1 h h

h+ 1 h h

h+ 2 h+ 1 h+ 1

Case (a)

h+ 1 h h

h+ 2 h+ 1 h+ 1

h+ 2 h+ 1 h+ 1

Case (b)

h+ 1 h+ 1 h

h+ 1 h+ 1 h

h+ 2 h+ 2 h+ 1

Case (c)

h+ 1 h+ 1 h

h+ 2 h+ 2 h+ 1

h+ 2 h+ 2 h+ 1

Case (d)

In Case (a), h-functions for L1 and L2 are both like Case (2): (x + 1) x x
and (y + 1) y y. Then ĤFL(s1, s2) ∼= F[−2(x + y)] ⊕ F[−2(x + y) − 1],
ĤFK(L1, s1)∼= F[−2x] and ĤFK(L2, s2)∼= F[−2y]. So

(5-1) ĤFL(s1, s2)∼= ĤFK(L1, s1)⊗ ĤFK(L2, s2)⊗ (F⊕ F(−1)).

In Case (b), the h-function for L1 is like Case (2): (x + 1) x x , and the
h-function for L2 is like Case (3): y y y− 1. In Case (c), the h-function for L1

is like Case (3), and for L2, the h-function is like Case (2). In Case (d), h-functions
for L1 and L2 are like Case (3). Thus we can compute (5-1) in these cases as well.

If the h-function corresponding to ĤFL(s1, s2) is not in these four cases, then
ĤFL(s1, s2) = 0, and at least one of ĤFK(L1, s1) and ĤFK(L2, s2) is zero. Thus
the conclusion also holds. �
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Proof of Theorem 1.8. Let L = L1∪L2 be an L-space link with vanishing Alexander
polynomial. The linking number of L1 and L2 is 0 by (2-1). By Theorem 1.2,
the Heegaard Floer link homology ĤFL(s1, s2) is determined by 1L(t1, t2), 1L1(t)
and 1L2(t). So

ĤFL(L , s1, s2)∼= ĤFL(L1tL2, s1, s2)∼= ĤFK(L1, s1)⊗ĤFK(L2, s2)⊗(F⊕F(−1))

for any (s1, s2) ∈ H. �

Example 5.5 (the link Floer homology polytope for the split disjoint union of
two right-handed trefoils). Let L = L1 t L2 be the split disjoint union of two
right-handed trefoils. Recall that the right-handed trefoil is an L-space knot with
Alexander polynomial 1L1(t)= t − 1+ t−1, and∑

s1∈Z

χ(HFK−(L1, s1))t s1 =
1L1

1− t−1 = t + t−1
+ t−2

+ t−3
+ t−4

+ · · · .

Observe the short exact sequence 0→ A−(s1− 1)→ A−(s1)→ CFK−(s1)→ 0.
We have

HFK−(L1, s1)= H∗(A−(s1)/A−(s1− 1)),

χ(HFK−(L1, s1))= h1(s1− 1)− h1(s1),

which is also the coefficient of t s1 in1L1(t)/(1− t−1). Since L1 is an L-space knot,
h1(s1)= 0 for sufficiently large s1� 0. So the h-function h1(s1) can be determined
as follows:

. . . , 7, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, . . . ,

where h1(0)= h1(−1)= 1, h1(s)= 0 if s ≥ 1, and h1(s)=−s if s ≤−1. Similarly,
for another right-handed trefoil L2, the h-function h2(s2) is the same as h1(s1). By
Proposition 5.4, we can find all (s1, s2) ∈ H where ĤFL(L , s1, s2) are nonzero. So

ĤFL(L , 1, 1)= F[0]⊕ F[−1],

ĤFL(L , 0, 1)= ĤFL(L , 1, 0)= F[−1]⊕ F[−2],

ĤFL(L ,−1, 1)= ĤFL(L , 0, 0)= ĤFL(L , 1,−1)= F[−2]⊕ F[−3],

ĤFL(L ,−1, 0)= ĤFL(L , 0,−1)= F[−3]⊕ F[−4],

ĤFL(L ,−1,−1)= F[−4]⊕ F[−5].

For other lattice points (s1, s2) ∈ H, ĤFL(L , s1, s2) = 0. Thus the link Floer
homology polytope is the shaded square in Figure 14.

Remark 5.6. In general, let L = L1 t L2 be the split union of any two L-space
knots. The genus of a knot K is defined as

g(K )=min{genus(F) | F ⊆ S3 is an oriented, embedded surface with ∂F = K }.
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Figure 14. The link Floer homology polytope for L .

Observe that g(L i ) = max{s ≥ 0 | ĤFK∗(L i , s) 6= 0} for i = 1, 2 [Ozsváth and
Szabó 2004a, Theorem 1.2], and ĤFK(L1, g(L1)) ∼= Z, ĤFK(L2, g(L2)) ∼= Z,
[Ozsváth and Szabó 2005, Theorem 1.2]. The link Floer homology polytope
of L i is the interval [−g(L i ), g(L i )], where i = 1, 2. By Proposition 5.4, the
link Floer homology polytope for L is a rectangle with vertices (g(L1), g(L2)),
(g(L1),−g(L2)), (−g(L1), g(L2)) and (−g(L1),−g(L2)) (see Figure 14).
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