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ENHANCED ADJOINT ACTIONS AND
THEIR ORBITS FOR THE GENERAL LINEAR GROUP

KYO NISHIYAMA AND TAKUYA OHTA

We study an enhanced adjoint action of the general linear group on a product
of its Lie algebra and a vector space consisting of several copies of defin-
ing representations and its duals. We determine regular semisimple orbits
(i.e., closed orbits of maximal dimension) and the structure of enhanced null
cone, including its irreducible components and their dimensions.

Introduction

Let G be a reductive algebraic group over the complex number field C, and g

its Lie algebra. The adjoint action of G on g is a basic tool for many aspects
of representation theory, and is also useful for invariant theory, the theory of
singularities, and so on.

Achar, Henderson and Johnson [Achar and Henderson 2008; Achar et al. 2011;
Johnson 2010] considered an enhanced version of nilpotent varieties and classified
the nilpotent orbits (there are only finitely many of them). Kato [2009] considered
an “exotic” nilpotent cone and derived the Deligne–Langlands theory for those
exotic nilpotent orbits. There are many related works based on algebraic geometry,
combinatorial theory, and the theory of character sheaves [Travkin 2009; Finkelberg
et al. 2009; Henderson and Trapa 2012; Fresse and Nishiyama 2016; Rosso 2012].

In these papers, enhancement of the nilpotent cone is only “one-sided” to get a
criterion of finiteness of orbits. However, from the viewpoint of symmetric spaces
and invariant theory, it seems better to enhance all the adjoint orbits in two-sided
directions. In this respect, we already had two results that relate the orbit structure
of two enhanced actions [Ohta 2008; Nishiyama 2014], but we did not know the
explicit orbit structures of individual enhanced adjoint actions.

In this paper, we begin to study (two-sided) “enhanced adjoint action” of G
for G = GLn(C) (type A). The big difference from those one-sided enhanced (or
exotic) ones is that there exist infinitely many nilpotent orbits. So the analysis
becomes more difficult, but involves less combinatorics. In the easiest cases, we can
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describe enhanced adjoint orbits fairly explicitly, but in general, we have obtained
coarser structures, like regular orbits of maximal possible dimensions, the structure
of invariants, irreducible components of nilpotent variety.

To state the main results more explicitly, let us introduce some notation. Let
V = Cn be a vector space of dimension n. We consider a natural action of G =
GL(V )= GLn(C) on

W = (Cn)⊕p
⊕ (C∗n)⊕q

⊕Mn =Mn,p⊕Mq,n ⊕Mn,

with the action of g ∈ G given by

g · (B,C, A)= (gB,Cg−1,Ad(g)A) for (B,C, A) ∈Mn,p⊕Mq,n ⊕Mn.

Thus, the part Mn is considered to be g= gln(C) and the action is the adjoint action.
For the other parts, Mn,p is a p-copy of natural representations and Mq,n is a q-copy
of its dual, i.e., as a representation space we will study

W ' V⊕p
⊕ (V ⊗ V ∗)⊕ (V ∗)⊕q .

The space W is the fully enhanced adjoint representation as we explained. Here
we note that, from the opposite view point, the space W is also considered as an
extension of V⊕p

⊕ (V ∗)⊕q by adding V ⊗V ∗. Hence it is a generalization of what
H. Weyl considered in the course of his study of classical invariant theory [1939].

There are obvious invariants for the action of G = GLn(C) on W. We put

τk := trace Ak (1≤ k ≤ n− 1),

γ `i, j := (C A`B)i, j (0≤ `≤ n− 1, 1≤ i ≤ q, 1≤ j ≤ p).

These invariants are generators of the whole invariant ring C[W ]G, and they seem to
be known to experts in various forms, including in quiver theory (see Theorem 1.1).
Thus, we can define a quotient map πW :W →Cn

× (Mq,p)
n using these invariants

(see (2-3)).
If p = 1 or q = 1, the quotient map has a very good property. Namely, we get:

Theorem 0.1 (Theorem 2.1(2)). If p= 1 or q= 1, the map πW :W→Cn
×(Mq,p)

n

is an affine categorical quotient map (note that Mq,p = Cp or Cq). In particular,
the quotient map πW is coregular, and C[W ]G is a polynomial ring generated by
the fundamental invariants listed above.

For general p ≥ 1 and q ≥ 1, the following theorem gives a generic structure of
enhanced adjoint orbits.

Theorem 0.2 (Theorem 2.1, Corollary 2.2). The dimension of the image dim ImπW

is equal to n(p+ q), and a general fiber of πW is a single G-orbit of dimension n2.
This implies that general orbits for the enhanced adjoint action are closed of
dimension n2.
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These orbits are called regular semisimple orbits. Another extreme case are
nilpotent orbits. We investigate the null cone N(W )⊂W in Section 3, and get the
following results.

Theorem 0.3 (Theorem 3.3). The null cone N(W ) is reducible and it has n + 1
irreducible components Ck ⊂N(W ) (0≤ k≤ n) given in Lemma 3.2. The dimension
of the null cone is n2

− n+ n ·max{p, q} and N(W ) is equidimensional if and only
if p = q.

Finally, we get the structure of general (enhanced) nilpotent orbits contained in
each component Ck in Theorem 3.4.

1. Setting

Let V = Cn be a vector space of dimension n. We consider a natural action of
G = GL(V ) on

W =W (p, q; r) := V⊕p
⊕ (V ∗)⊕q

⊕ (V ⊗ V ∗)⊕r

in the obvious manner. In explicit matrix form, we can identify

W = (Cn)⊕p
⊕ (C∗n)⊕q

⊕ (Mn)
⊕r
=Mn,p⊕Mq,n ⊕Mr

n,

with the action of g ∈ G on

(B,C, (A1, . . . , Ar )) ∈Mn,p⊕Mq,n ⊕Mr
n

given by

g · (B,C, (A1, . . . , Ar ))= (gB,Cg−1, (Ad(g)Ai )
r
i=1).

There are obvious invariants, which we list below. For a multi-index

I = (i1, i2, . . . , i`) (1≤ ik ≤ r),

let us write AI = Ai1 Ai2 · · · Ai` . We denote [n] = {1, 2, . . . , n} as usual; then the
multi-index I above is an element in [r ]`. We put

τI := trace(AI ) (I ∈ [r ]`),

γ K
i, j := (C AK B)i, j (K ∈ [r ]`, 1≤ i ≤ q, 1≤ j ≤ p),

where we allow `= 0 for K, which means AK = 1n (the identity matrix). These
invariants are generators of the whole invariant ring, which is essentially due to
a more general result of Le Bruyn and Procesi [1990, § 3, Theorem 1] (see also
[Le Bruyn and Procesi 1987; Itoh 2013]).
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Theorem 1.1. The invariant ring C[W ]G is generated by the elements τI with
I ∈ [r ]` (`≥ 0) and the elements γ K

i, j with K ∈ [r ]` (`≥ 0), i ∈ [q], j ∈ [p]; that is,

C[W ]G = C
[
τI , γ

K
i, j | I, K ∈ [r ]` (`≥ 0), i ∈ [q], j ∈ [p]

]
.

Proof. We largely follow the notation of [Le Bruyn and Procesi 1990]. We denote a
connected quiver by Q and by α its dimension vector. For a representation space
R(Q, α) of Q, Theorem 1 in [loc. cit.] states that the invariant ring C[Q, α]GL(α)

is generated by traces of oriented cycles. So we will consider a quiver Q of two
vertices Q0 = {1, 2} with arrows

Q1 = {ai | 1≤ i ≤ r} ∪ {bi | 1≤ i ≤ p} ∪ {ci | 1≤ i ≤ q},

where the ai are loops connecting 1 and itself (i.e., h(ai ) = t (ai ) = 1), the bi

are arrows from 2 to 1 (h(bi ) = 2, t (bi ) = 1), and the ci are arrows from 1 to
2 (h(ci ) = 1, t (ci ) = 2). Take a dimension vector α = (α(1), α(2)) = (n, 1), so
that V (1) = Cn and V (2) = C. Then our W = W (p, q, r) coincides with the
representation space R(Q, α).

The invariants are considered with respect to the action of G(α)= GLn ×GL1.
However, the representation image of G(α) on W = R(Q, α) and that of GLn are
the same because the action of the torus GL1 on V (2) = C can be recaptured by
the center of GLn . So both invariant rings for G(α) and GLn are the same.

Let us consider any closed cycles. Since we take traces, we can start from any
vertices contained in the cycle. If it only contains the vertex 1, the traces are τI ’s. If
it contains the vertex 2, we will start from 2 which necessarily ends in 2. Decompose
the cycle into several cycles which start from 2 and end in 2. Since V (2) = C is
1-dimensional, a decomposed cycle starting from 2 represents a scalar being equal
to its trace. Thus the trace of the cycle which we are considering is a product of
various γ K

i, j ’s. �

Let us denote π = πW :W→W//G, an affine quotient map by the action above.
As a set, the quotient W//G corresponds to the set of closed G-orbits in W. It
is known that these closed orbits are precisely the set of equivalence classes of
completely reducible representations of a quiver corresponding to W.

Let N(W )=π−1
W (πW (0)) be the nilpotent variety, which consists of the nilpotent

elements x with the property G · x 3 0. The nilpotent variety N(W ) is the “worst”
fiber. So we are strongly interested in its structure. In particular, we are interested in
dimN(W ), its irreducible components, its orbit structure, and whether it is reduced
or not. For the dimensions and irreducible components, we have a complete result,
which is stated in Section 3 in detail. The problems of orbit structure and reducibility
of N(W ) also seem very interesting but these are our future subjects.
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On the other hand, general fibers are supposed to have “best” properties we can
expect. This will be helpful for studying the quotient space (at least its smooth
part), which we shall do in Section 2.

It would be too ambitious to expect to get a very explicit orbit structure of the
whole space W. Also it seems to be a difficult problem to clarify the structure of
the singularities of the quotient space.

2. Enhanced adjoint action

In the following, we restrict ourselves to the case r = 1, so W =Mn,p⊕Mq,n⊕Mn ,
on which G = GLn acts. In matrix form, g ∈ GLn acts on

(B,C, A) ∈Mn,p⊕Mq,n ⊕Mn

via g · (B,C, A)= (gB,Cg−1,Ad(g)A). We call this action the enhanced adjoint
action.

Now Theorem 1.1 gives a set of generators of G-invariants:

τk := trace(Ak) (1≤ k ≤ n),(2-1)

γ k
i, j := (C Ak B)i, j (0≤ k ≤ n− 1, 1≤ i ≤ q, 1≤ j ≤ p).(2-2)

Note that An is a linear combination of Ak’s (0≤ k ≤ n− 1) thanks to the Cayley–
Hamilton formula, so we don’t need higher powers of A in τk or γ k

i, j . Let us denote
the affine quotient map by

(2-3)
πW :W → Cn

⊕ (Mq,p)
n,

(A, B,C) 7→
(
(τk)

n
k=1; ((γ

k
i, j )i, j )

n−1
k=0

)
=
(
(τk)

n
k=1; (C Ak B)n−1

k=0

)
.

By the general theory of quotients, we know the image ImπW is a closed subvariety
of Cn
⊕(Mq,p)

n . Let us denote by Detr (Mq,p) the determinantal variety consisting of
matrices in Mq,p of rank less than or equal to r . Clearly, if we put m=min{p, q, n},
ImπW is contained in Cn

×Detm(Mq,p)
n . However, it is much smaller, as you can

see from the theorem below.

Theorem 2.1. Under the setting above, the image ImπW is isomorphic to the affine
quotient W//G = Spec (C[W ]G). Moreover:

(1) There is a dominant map

9 : Cn
× (Det1(Mq,p))

n
→ ImπW ,

whose restriction to a dense open subset of Cn
× (Det1(Mq,p))

n gives an affine
quotient map under the diagonal action of Sn (permuting both coordinates) to a
dense open subset of ImπW . Consequently, we get dim W//G = dim ImπW =

n(p+ q), and a general fiber of πW is of dimension n2.
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(2) If p = 1 or q = 1, the quotient map πW is surjective, and

ImπW = Cn
⊕ (Mq,p)

⊕n

is an affine space. In particular, the quotient map πW is coregular, and C[W ]G

is a polynomial ring of the fundamental invariants listed in (2-1) and (2-2).

Proof. Let us fix a generic diagonal matrix A = t = diag(t1, . . . , tn), where ti 6= t j

(i 6= j). For 1≤ r ≤ n, put

X (r)
=


c1,r

c2,r
...

cp,r

 (br,1, br,2, . . . , br,q) ∈ Det1(Mq,p),

where ci, j denotes the (i, j)-element of the matrix C ∈Mq,n and similarly bi, j for
B ∈Mn,p. We get

(2-4) C Ak B = (γ k
i, j )i, j =

( n∑
r=1

ci,r tk
r br, j

)
i, j
=

n∑
r=1

tk
r X (r)

=: 0(k).

Thus, in the matrix expression,

(2-5)


1 1 · · · 1
t1 t2 · · · tn
...

...
. . .

...

tn−1
1 tn−1

2 · · · tn−1
n




X (1)

X (2)
...

X (n)

=

0(0)

0(1)
...

0(n−1)

,
hence

(2-6)


X (1)

X (2)
...

X (n)

= D(t)−1


0(0)

0(1)
...

0(n−1)

,
where D(t) = (t i−1

j )i, j denotes the Vandermonde matrix in (2-5). Bearing this
calculation in mind, we define a map 9 : Cn

× (Det1(Mq,p))
n
→ Cn

⊕ (Mq,p)
n by

(2-7) 9(t; (X (k))nk=1)=

(( n∑
i=1

tk
i

)n

k=1
; (0(k))nk=1 = D(t)(X (k))nk=1

)
.

We will show that Im9⊂ ImπW so that we get a map from U :=Cn
×(Det1(Mq,p))

n

to ImπW , denoted by the same letter 9.
To see Im9⊂ ImπW , take (τ ; (0(k))k)∈ ImπW for which τ is in an image of reg-

ular semisimple A. For this A, we can pick a diagonal matrix t = diag(t1, . . . , tn) in
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the same adjoint orbit of A, which implies τk(A)=
∑n

i=1 tk
i . Using this t , we can re-

cover X (k)’s via (2-6), since ti 6= t j (i 6= j). As we saw above, if (τ ; (0(k))k)∈ ImπW

then rank X (k)
≤ 1. Here we require that those X (k)’s are all exactly rank one

matrices. This is an open condition (in ImπW ) and it does not depend on the choice
of the diagonal representatives of A. We define an open dense set (ImπW )

′
⊂ ImπW

consisting of (τ ; (0(k))k)∈ ImπW for which (i) τ is in an image of regular semisim-
ple A; and (ii) rank X (k)

= 1 for 1≤ k ≤ n. Thus we conclude that 9 is a surjective
map from an open dense subset of U to (ImπW )

′. Consequently, the image Im9

is contained in the closed subvariety ImπW , and we get a well defined map from
U = Cn

× (Det1(Mq,p))
n to ImπW by

(2-8)

9 :U → ImπW ,

(t; (X (k))nk=1) 7→

(( n∑
i=1

tk
i

)n

k=1
; (0(k))nk=1 = D(t)(X (k))nk=1

)
.

The map 9 is generically an n!-fold covering map, and it is invariant under Sn

which acts on U by the diagonal coordinate permutation on both factors.1

Since 9 is a dominant map with generically finite fibers, we conclude that

dim ImπW = dim U = n+ n(p+ q − 1)= n(p+ q),

where we used dim Det1(Mq,p)= p+ q − 1. Comparing the dimension, we know
the dimension of a generic fiber of πW is n2

= dim W − dim ImπW .
Now let us assume p = 1 or q = 1. Then Mq,p = Cq or Cp, and

dim(Cn
⊕ (Mq,p)

⊕n)= n(p+ q)= dim ImπW

(the last equality follows from Theorem 2.1(1)). Since the image ImπW is closed
in Cn

⊕ (Mq,p)
⊕n, we have a surjective quotient map πW : W → Cn

⊕ (Mq,p)
⊕n

so W//G ' Cn
⊕ (Mq,p)

⊕n, an affine space. This means the invariants are alge-
braically independent and C[W ]G is a polynomial ring. �

Corollary 2.2. Let us denote the quotient map by πW : W → Cn
⊕ (Mq,p)

n as
in (2-3). Assume that (τ ;0)= (τ ; (0(k))nk=1) ∈Cn

⊕ (Mq,p)
n satisfies the following

conditions:

(i) There exists a regular diagonal matrix t with τ = (τk(t))nk=1, i.e., τ ∈ Cn with
the k-th coordinate being τk =

∑n
i=1 tk

i , where ti 6= t j if i 6= j .

(ii) 0(k) (0≤ k ≤ n− 1) corresponds to X (k) via (2-6), which are of rank 1.

Then (τ ;0) is in the image ImπW and dimπ−1
W (τ ;0)= n2, i.e., the fiber of (τ ;0)

is generic and of dimension n2. Moreover, it is a single closed G-orbit.

1Unfortunately, 9 may not be a quotient map. See Remark 2.4
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Proof. By condition (i), we can choose a regular diagonal matrix t with τ =
(τk(t))nk=1. Thus we can define (X (k)) = D(t)−10 via (2-6). If X (k) is of rank 1,
then we can write X (k)

= ck
tbk for certain ck ∈Cq and bk ∈Cp. From these vectors,

we can restore tB = (b1, . . . , bn) and C = (c1, . . . , cn). Thus

(τ ;0)= πW (t, B,C) ∈ ImπW .

There is not so much choice for the fiber. We know the fiber over τ of the adjoint
quotient is just the conjugation of t , which is of dimension n2

− n. For B and C ,
since any column of B and C is nonzero, we can only multiply scalars column by
column, which is of dimension n.

It is now clear that any element in the fiber can be obtained from (t, B,C)
through the action of G. Since the stabilizer of the fiber (t, B,C) is trivial, we
again get the right dimension n2. �

Remark 2.3. Let us assume p= 1 or q = 1. In this case, the action of G =GLn(C)

on W is coregular, i.e., the quotient space is an affine space and the generators
listed in (2-1) and (2-2) are algebraically independent.

However, if we consider an action of the simple group SLn(C) instead of GLn(C),
this action is not coregular (coregular actions are classified for simple groups; see
[Schwarz 1978; Adamovich and Golovina 1979]).

To see this, let us assume p = q = 1 for simplicity. Consider two invariants D1

and D2, with respect to the action of SLn defined as follows. For

(u, v, A) ∈ V ⊕ V ∗⊕Mn

(we consider V = Cn as a column vector), we put

D1(u, v, A)= det


v

vA
vA2
...

vAn−1

 , D2(u, v, A)= det(u, Au, A2u, . . . , An−1u).

Both D1 and D2 are clearly SLn-invariants, and they are not GLn-invariants so they
cannot be expressible by using τk and γ k above.2 However, it is easy to see

D1 · D2 = det
(
vAi+ j u

)
i, j = det(γ i+ j )i, j ,

which gives a relation. This shows that the action of SLn is not coregular.
When p > 1 or q > 1, similar arguments lead to the same conclusion.
However, even if it is not coregular, it seems the SLn-orbit structure has good

properties. We will discuss it in the future.

2Note that, since p = q = 1, we do not need subscripts i and j for γ k
i, j
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Remark 2.4. Let us consider a toy model for the map (2-8), as illustrated below.
Assume that V is a vector space and Sn acts on Cn

×V n as the diagonal coordinate
permutation.

Cn
× V n

3 (a1, . . . , an; v1, . . . , vn)

ψ
��

π

**

Cn
× V n

3

(
(
∑n

i=1 ak
i )

n
k=1; (

∑n
i=1 ak

i vi )
n
k=1

)
(Cn
× V n)/Sn

ϕ
oo

Consider a closed set Z ={(a; v) | aivi = u (1≤ i ≤ n)} for a fixed nonzero vector u,
which is stable under the Sn-action. The image ψ(Z) does not contain an element of
the form (0;w), however its closure contains (0; (n u, 0, . . . , 0)). Thus the image
ψ(Z) is not closed, hence ψ is not a quotient map.

Remark 2.5. Let us consider a semidirect sum L = gl(V )n (V ⊕ V ∗) and the
corresponding Lie group S. Then L admits a deformed universal enveloping algebra
called “infinitesimal Cherednik algebra”. The infinitesimal invariant ring C[L∗]S

is isomorphic to the center of the infinitesimal Cherednik algebra, which is a
polynomial ring of n-variables (n = dim V ). Our invariant ring naturally contains it
as a subalgebra if p = q = 1. For details, see [Tikaradze 2010; Panyushev 2007;
Raïs 2009].

3. Structure of the null cone

We will study the structure of the null cone N(W )= π−1
W (πW (0)) in this section.

For this, we follow the strategy of [Popov 2003] and [Kraft and Wallach 2006]. We
briefly recall their theory.

3A. In this subsection, we consider a general situation so that the notation is
independent of those in the former (sub)sections.

Let G be a connected reductive algebraic group G over C, which acts on a vector
space V linearly. Let π : V → V//G be the quotient map, and

NV := π
−1(π(0))= {v ∈ V | Gv 3 0}

be the null cone. For any one parameter subgroup (abbreviated as “1-PSG”) λ :
C×→ G, we define V (λ) := {v ∈ V | limt→0 λ(t)v = 0}. Then v ∈ V is in the null
cone NV if and only if v ∈ V (λ) for a suitable 1-PSG λ (the Hilbert–Mumford
criterion).

Let T ⊂ G be a maximal torus. We fix T once and for all, and denote by X∗(T )
the character group of T. Then V has the weight space decomposition

V =
⊕

γ∈X∗(T )

Vγ , Vγ := {v ∈ V | tv = γ (t)v, t ∈ T }.
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We denote the set of 1-PSGs λ :C×→ T by X∗(T ). Then there is a natural pairing
〈−,−〉 : X∗(T )× X∗(T )→Z determined as follows. For (λ, γ )∈ X∗(T )× X∗(T ),
m = 〈λ, γ 〉 if γ (λ(t))= tm (t ∈ C×).

With these notations, for a 1-PSG λ : C×→ T ⊂ G, we have

V (λ)=
⊕
〈λ,γ 〉>0

Vγ .

Since every 1-PSG of G is conjugate to a certain λ ∈ X∗(T ), we get

NV =
⋃

λ∈X∗(T )

G · V (λ).

In this decomposition, there appear only finitely many different V (λ) 6= 0. Thus, a
maximal V (λ) may contribute to an irreducible component of NV (but not always).
We call such U = V (λ) a maximal unstable subspace, and put

XU := {γ ∈ X∗(T ) | Vγ ⊂U } = {γ | 〈λ, γ 〉> 0},

a maximal unstable subset of weights. Let X1, . . . ,Xs be a complete set of rep-
resentatives of maximal unstable subsets of weights up to the conjugation of the
Weyl group WG(T ), and Ui =

⊕
γ∈Xi

Vγ (1≤ i ≤ s) be the corresponding maximal
unstable subspace.

For a 1-PSG λ, put

P(λ) := {g ∈ G | the limit lim
t→0

Ad(λ(t)) g exists}.

Then P(λ) is a parabolic subgroup which leaves V (λ) stable; see Kempf [1978]. If
U = V (λ) is a maximal unstable subspace, then the stabilizer StabG(U ) contains
P(λ) and hence it is a parabolic subgroup.

Define Pi := StabG(Ui ) for each 1≤ i ≤ s. Thus, we get a natural multiplication
map G ×Pi Ui → Ci ⊂ NV , where Ci = G ·Ui . Since G/Pi is projective, the
image Ci is closed and irreducible. Thus we can choose C1, . . . ,Cr which give
irreducible components of NV , after renumbering if necessary. In this way, we can
determine the irreducible decomposition of NV :

(3-1) NV =

r⋃
k=1

Ck .

Let us apply this theory to our situation of the enhanced adjoint representation.

3B. Now let us return to our original notation, so G = GLn(C) which acts on
W =Mn,p⊕Mq,n ⊕Mn as before. It is easy to see that the set of weights of W is
given by

3=3(W ) := {0} ∪1n ∪ {±εi | 1≤ i ≤ n},

1n = {εi − ε j | 1≤ i 6= j ≤ n}.
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Here, 1n denotes the set of roots of type An−1 and εi denotes the standard basis
in t∗, where t is the Lie algebra of the diagonal torus T ⊂ G. The multiplicity of
α ∈1n is 1, while the multiplicity of α = 0 is n; that of εi is p and that of −εi is q .
We describe a family of maximal unstable subsets of weights up to the Weyl group
conjugation. Take a standard positive system 1+n = {εi − ε j | 1≤ i < j ≤ n} of 1n .

Lemma 3.1. For 0≤ k≤n, put Xk :=1
+
n ∪{εi | 1≤ i ≤ k}∪{−ε j | k< j ≤n}. Then

X0, X1, . . . , Xn gives a complete system of representatives of maximal unstable
subset of weights up to the conjugation of the Weyl group WG(T )= Sn .

Proof. Let X be a maximal unstable subset corresponding to a 1-PSG λ. Taking
conjugation of λ by Sn , we can assume λ= (λ1, . . . , λn), with λ1 > λ2 > · · ·> λn .
Note that, if an equality appears among λi ’s or one of λi ’s is equal to zero, the cor-
responding unstable subset is not maximal. If λk > 0> λk+1, X is given by Xk . �

Let Uk ⊂W be the maximal unstable subspace corresponding to Xk , so that

(3-2) Uk =
⊕
α∈Xk

Wα =
{
(ξ,η,v)∈Mn,p⊕Mq,n⊕Mn |

ξi, j = 0 (i > k),ηi ′, j ′ = 0 ( j ′≤ k),v ∈ n+
}
,

where n+ denotes a maximal nilpotent subalgebra consisting of upper triangular
matrices with 0’s on the diagonal. It is the Lie algebra of the unipotent radical of a
Borel subgroup B of upper triangular matrices in G = GLn . Note that

ξ =
(
ξ1
0

)
(ξ1 ∈Mk,p), while η = (0, η2) (η2 ∈Mq,n−k).

Lemma 3.2. Let Uk (0≤ k ≤ n) be a maximal unstable subspace as above. Then
the stabilizer Pk = StabG(Uk) of Uk is the Borel subgroup B for any k and ψk :

G ×B Uk → Ck ⊂ N(W ) is a resolution of singularity. In particular, Ck is an
irreducible closed subvariety in N(W ) of dimension (n2

− n)+ pk+ q(n− k).

Proof. Since Pk stabilizes n+, it is contained in B. On the other hand, clearly B
stabilizes Uk , hence Pk = B.

Let us show that a generic fiber of the map ψk is a one-point set. Since
Ck ⊃ Uk , we will examine the fiber of (ξ, η, v) ∈ Uk , where v ∈ n+ is a prin-
cipal nilpotent element. Take an element [g, (ξ ′, η′, u)] ∈ ψ−1

k ((ξ, η, v)). Then
(ξ,η,v)=ψk([g, (ξ ′,η′,u)])= (gξ ′,η′g−1,Ad(g)u). In particular, v=Ad(g)u ∈
Ad(g)b=: bg. It is well known that a principal element belongs to a unique Borel
subalgebra. Since v ∈ b, we conclude b = bg, hence g ∈ B. Now we know
[g, (ξ ′, η′, u)] ∼ [1n, (ξ, η, v)], which means the element in the fiber is uniquely
determined.

The set of elements {(ξ, η, v)∈Ck | v is principal nilpotent} is open dense in Ck ,
so the map ψk is generically one-to-one, hence it is birational. Since G×B Uk is a
vector bundle over a projective variety, the map ψk is proper and it is a resolution. �
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Theorem 3.3. Let N(W ) be the null cone, and let Ck ⊂N(W ) (0 ≤ k ≤ n) be as
in Lemma 3.2.

(1) N(W )=
⋃n

k=0 Ck gives the irreducible decomposition. So the null cone has
(n+ 1) components, the number of which is independent of p ≥ 1 and q ≥ 1.
The dimension of N(W ) is n2

− n+ n ·max{p, q}.

(2) The null cone N(W ) is equidimensional if and only if p = q. In this case, the
dimension of N(W ) is n2

− n+ pn.

(3) The dimension of N(W ) is n2 if and only if p = q = 1. If this is the case, any
fiber π−1

W ((τ ;0)) of (τ ;0) ∈ ImπW is of dimension n2.

Proof. From Lemma 3.2, the subvariety Ck is closed and irreducible. The general
theory described in Section 3A gives the irreducible decomposition of N(W )

(cf. (3-1)). Since dim Ck = (n2
− n)+ pk+ q(n− k),

dimN(W )= max
0≤k≤n

{
(n2
− n)+ pk+ q(n− k)

}
= n2
− n+ n ·max{p, q}.

This proves (1). The claim (2) follows immediately from (1).
Let us prove (3). For any (τ ;0)∈ ImπW , the dimension of the fiber π−1

W ((τ ;0))

is greater than or equal to that of a general fiber, which is n2 by Theorem 2.1. On
the other hand, the dimension of the null cone is the greatest among those of the
fibers (see [Popov and Vinberg 1994]). �

3C. Orbits in the null cone. Let us investigate orbits in an irreducible component
Ck = G ·Uk ⊂ N(W ) (cf. (3-2)). So pick w = (ξ, η, v) ∈ Uk , where v ∈ n+ is a
principal nilpotent element. We denote the G orbit through w by O(w).

We compute the stabilizer ZG(w) of w. Up to G conjugacy, we can assume

v = e :=


0 1

0 1
. . .

. . .
0 1

0

.
By direct calculation, we get

(3-3) ZG(e)= exp
({n−1∑

i=0

σi ei
| σi ∈ R

})
3

n∑
j=1

x j e j−1
=: g.

Assume that k ≥ n− k, and denote ξ ∈Mn,p and η ∈Mq,n as

(3-4) ξ =

(
ξ1

0

)
(ξ1 ∈Mk,p) and η = ( 0 | η1 ) (η1 ∈Mq,n−k).
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Here we take

(3-5) ξ1 = (ek, ξ
′

1) (ξ ′1 ∈Mk,p−1),

where ek ∈ Ck is the k-th elementary vector whose k-th coordinate is 1 and whose
other coordinates are 0. Then, the element g in (3-3) stabilizes ξ and η if and only
if x1 = 1, x2 = · · · = xk = 0. Thus we get

ZG(w)=
{

1n +
n∑

j=k+1
x j e j−1

}
.

In particular, we know codim O(w) = n− k. For the orbit O(w), we can take ξ ′1
in (3-5) and η1 in (3-4) freely, and they are uniquely determined by the orbit. So
there is a fibration of orbits O(w)with the base space Mk,p−1×Mq,n−k of dimension

dim O(w)+ dim Mk,p−1×Mq,n−k = n2
− (n− k)+ k(p− 1)+ q(n− k)

= n2
− n+ kp+ (n− k)q = dim Ck .

This means the family of orbits {O(w)} makes up an open dense subset of the
irreducible component Ck . Since the orbits of the largest possible dimension
constitute an open set, dim O(w)= n2

−n+ k is the largest among the orbits in Ck .
For the family parametrized by Mk,p−1×Mq,n−k , there is no reason to specialize
the first column of ξ . So, if the k-th row of ξ does not vanish, we can follow the
same arguments.

This construction also applies to the case of k ≤ n− k, if we take η instead of ξ .

Let us summarize what we have proven here.

Theorem 3.4. Let Ck ⊂N(W ) (0≤ k ≤ n) be an irreducible component of the null
cone N(W ) (see Lemma 3.2). The largest dimension of the nilpotent orbits in Ck

is n2
−min{k, n− k}. Moreover, there exists an open dense subset of Ck which is

fibered over an affine space of dimension kp+ q(n− k)−max{k, n− k} with the
fiber of isomorphic nilpotent orbits O of the largest dimension.

In particular, an irreducible component Ck contains a nilpotent orbit of dimen-
sion n2 if and only if k = 0 or n.

Remark 3.5. Let us considerw= (ξ, η, v)∈Uk as above. Even if v is not principal,
a G-orbit O(w) throughw can attain the largest possible dimension in the irreducible
component Ck . This seems difficult to describe when an orbit O(w) has the largest
dimension.
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