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NONHOLOMORPHIC LEFSCHETZ FIBRATIONS
WITH (−1)-SECTIONS

NORIYUKI HAMADA, RYOMA KOBAYASHI AND NAOYUKI MONDEN

We construct two types of nonholomorphic Lefschetz fibrations over S2 with
(−1)-sections — hence, they are fiber sum indecomposable — by giving the
corresponding positive relators. One type of the two does not satisfy the
slope inequality (a necessary condition for a fibration to be holomorphic)
and has a simply connected total space, and the other has a total space
that cannot admit any complex structure in the first place. These give an
alternative existence proof for nonholomorphic Lefschetz pencils without
Donaldson’s theorem.

1. Introduction

The notion of Lefschetz fibrations in the smooth category was introduced from alge-
braic geometry by Moishezon [1977] to study complex surfaces from a topological
viewpoint. It is therefore natural to ask how far smooth (symplectic) Lefschetz
fibrations are from holomorphic ones. One approach to this question is to construct
various nonholomorphic examples. Motivated by this, we give the following results.

Theorem 1.1. For each g ≥ 3, there is a genus-g nonholomorphic Lefschetz fi-
bration X → S2 with a (−1)-section and π1(X) = 1 such that it does not satisfy
the “slope inequality”.

Theorem 1.2. For each g ≥ 4, there is a family of genus-g nonholomorphic Lef-
schetz fibrations XÛn

→ S2 with two disjoint (−1)-sections (for each positive integer
n) such that XÛn

does not admit any complex structure with either orientation and
is not homotopically equivalent to XÛm

when n 6= m.

Here, a nonholomorphic Lefschetz fibration means that it is not isomorphic to
any holomorphic one. We would like to emphasize that we are able to give explicit
monodromy factorizations of the above fibrations although we only give a procedure
to get such factorizations without explicitly showing them. In the rest of this section,
we give some background on Theorems 1.1 and 1.2.
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1A. Lefschetz fibrations with (−1)-sections. The reason that we focus on Lef-
schetz fibrations that have (−1)-sections is that they play an important role as
follows. Blowing up at the base loci of a genus-g Lefschetz pencil yields a
genus-g Lefschetz fibration with (−1)-sections, and conversely, blowing down
of (−1)-sections of a genus-g Lefschetz fibration gives a genus-g Lefschetz pencil.
Furthermore, a closed 4-manifold admits a symplectic structure if and only if it
admits a Lefschetz pencil (Donaldson [1999] proved the “if” part, and the “only
if” part was shown in [Gompf and Stipsicz 1999]). On the other hand, a Lefschetz
fibration with a (−1)-section is fiber sum indecomposable (see [Stipsicz 2001;
Smith 2001a]); hence, such a fibration can be considered “prime” with respect to
the fiber sum operation. Therefore, as a corollary of Theorems 1.1 and 1.2, we
obtain the following result.

Corollary 1.3. For arbitrary g ≥ 3, there exists a genus-g nonholomorphic Lef-
schetz pencil on a simply connected 4-manifold. For arbitrary g ≥ 4, there exist
infinitely many genus-g nonholomorphic Lefschetz pencils on 4-manifolds that
cannot admit any complex structure with either orientation.

Remark 1.4. Baykur [2015] constructed infinitely many nonholomorphic genus-3
Lefschetz pencils with explicit monodromies. The 4-manifolds obtained as the total
spaces are not simply connected and do not admit any complex structure with either
orientation.

Remark 1.5. Donaldson’s construction of Lefschetz pencils on symplectic 4-
manifolds immediately implies the existence of nonholomorphic Lefschetz pencils
since there are symplectic 4-manifolds that cannot be complex. Yet this does not
tell much about the genera of the resulting pencils. Our result shows the existence
of nonholomorphic Lefschetz pencils for arbitrary genus g ≥ 3.

1B. The slope inequality and simply connected examples. The “slope inequality”
derives from the geography problem of relatively minimal holomorphic fibrations.
Let us consider a relatively minimal genus-g holomorphic fibration f : S→C where
S and C are a complex surface and a complex curve, respectively. Xiao [1987]
defined a certain numerical invariant λ f , called the “slope” of f , determined by the
signature and Euler characteristic of S, the genera of C and a generic fiber. Then
he showed that every relatively minimal genus-g holomorphic fibration f satisfies
4− 4/g ≤ λ f . We call this inequality the slope inequality.

The notion of the slope can be extended for (smooth) Lefschetz fibrations as λ f

is determined by topological invariants (see Section 3D); hence we can also consider
the slope inequality in the smooth category. Note that the slope inequality can
be rewritten as an inequality giving a lower bound on the signatures of Lefschetz
fibrations in terms of the genus of a generic fiber and the number of singular fibers
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(see Remark 3.11). It is known that the slope inequality holds for any hyperelliptic
Lefschetz fibration, especially any genus-2 Lefschetz fibration. Hain conjectured
that every Lefschetz fibration over S2 satisfies the slope inequality as well (see
[Amorós et al. 2000; Endo and Nagami 2005]). This conjecture in fact fails; Monden
[2014, Theorem 3.1] gave examples violating the slope inequality. In particular,
those examples are nonholomorphic by Xiao’s result. However, we do not know
if they are fiber sum indecomposable. Hence, we ask the following question: Is
there a fiber sum indecomposable Lefschetz fibration violating the slope inequality?
Theorem 1.1 together with the above-mentioned work of Stipsicz [2001] and Smith
[2001a] implies that the answer to this question is positive for any g ≥ 3.

Let us consider a genus-g nonholomorphic Lefschetz fibration X→ S2 with a
(−1)-section such that π1(X)= 1. To the best of our knowledge, all known such
fibrations with explicit monodromy factorizations are Fuller’s example (g= 3)1 and
those of Endo and Nagami [2005] (g = 3, 4, 5). Theorem 1.1 gives such examples
with explicit monodromy factorizations for arbitrary g ≥ 3.

Remark 1.6. We do not know whether the examples in [Smith 2001b; Endo and
Nagami 2005] and Theorem 1.1 have noncomplex total spaces or not. On the other
hand, Li [2008] constructed nonholomorphic Lefschetz pencils (fibrations with
(−1)-sections) on complex surfaces. However, their genera are implicit.

1C. Lefschetz fibrations with noncomplex total spaces. Many Lefschetz fibra-
tions with explicit monodromies and noncomplex total spaces have been constructed
using the (twisted) fiber sum operation (see for instance [Smith 1998; Ozbagci
and Stipsicz 2000; Fintushel and Stern 1998; Korkmaz 2001; Akhmedov and
Ozbagci 20172 Akhmedov and Monden 2015; Baykur and Korkmaz 2017]). They
are nonholomorphic, however, they do not have any (−1)-section since they are
decomposable. On the other hand, Stipsicz [2001] and, independently, Smith
[2001a] proved that there are infinitely many fiber sum indecomposable Lefschetz
fibrations with noncomplex total spaces. Since the constructions of these fibrations
are based on Donaldson’s theorem [1999], their monodromy factorizations are not
explicitly given. Theorem 1.2 gives infinitely many fiber sum indecomposable
Lefschetz fibrations with explicit monodromy factorizations and noncomplex total
spaces for any g ≥ 4.

The fundamental group of the total space XÛn
of a genus-g Lefschetz fibration in

the family in Theorem 1.2 is H1(XÛn
)=Z⊕Zn . By improving the work of [Ozbagci

and Stipsicz 2000] (see also [Baykur 2012]) slightly, we see that the 4-manifold
XÛn

does not carry any complex structure with either orientation. For g ≥ 22,

1It was shown by Smith [2001b] that Fuller’s example is nonholomorphic.
2Baykur has informed us that the examples in [Akhmedov and Ozbagci 2017] should be fiber sum

decomposable from Ozbagci’s talk in Turkey a few years ago.
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nonholomorphic Lefschetz fibrations with the same property of Theorem 1.2 were
constructed in [Kobayashi and Monden 2016] based on the technique of this paper.
Theorem 1.2 improves this result.

Remark 1.7. Nonholomorphic genus-2 Lefschetz fibrations with finite cyclic fun-
damental groups and without any (−1)-sections were constructed in [Akhmedov
and Monden 2015] by rationally blowing down a twisted fiber sum of two copies of
Matsumoto’s fibration. However, we do not know whether these are decomposable.

2. Preliminaries

2A. Notation. From now on, we use the same letter for a loop and its homotopy
class and homology class by abuse of notation. Similarly, we use the same letter for
a diffeomorphism and its isotopy class, or for a simple closed curve and its isotopy
class. A simple loop and a simple closed curve are even denoted by the same letter.
It will cause no confusion as it will be clear from the context which one we mean.

For convenience’s sake, we first fix the notation and the symbols for the curves
which we use throughout the paper. Let6g be the closed oriented surface of genus g
standardly embedded in the 3-space and

a1, b1, a2, b2, . . . , ag, bg

be the standard generators of the fundamental group π1(6g) of 6g as shown in
Figure 1. We choose orientations of ai , bi so that i(ai , bi )= 1, where i(ai , bi ) is
the algebraic intersection number of ai and bi . For loops a and b in π1(6g), the
product ab means that we traverse first a then b as usual. Let c1, c2, . . . , cg and
ag+1 be the simple closed curves on 6g as shown in Figure 1. Note that in π1(6g),
cg = 1 and ag+1 = 1. Then, the fundamental group π1(6g) has the presentation

π1(6g)= 〈a1, b1, a2, b2, . . . , ag, bg | cg〉.

Let Bh
0,1, Bh

0,2, Bh
1 , Bh

2 , . . . , Bh
h (h = 1, 2, . . . , g) and a′1, a′2, . . . , a′g be the sim-

ple closed curves on 6g as shown in Figures 2 and 3.

a1 a2 a3 ag−1 ag
ag+1

b1 b2 b3 bg−1 bg

c1 c2 c3 cg−1 cg

Figure 1. The standardly embedded 6g with two indicated disks
on the rightmost position and the generators a j , b j of the funda-
mental group and loops c j .
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Bh
2

Bh
1

cr
Bh

0,1 Bh
0,2 Bg

0,1 Bg
0,2ah+1

a′1 a′2 a′r a′r+1 a′h−1 a′h a′h+1 a′g

Figure 2. The curves Bh
0,1, Bh

0,2, Bh
1 , Bh

2 , . . . , Bh
h , a′1, a′2, . . . , a′g

for h = 2r .
h

ch

Bh
h

Bh
2

Bh
1

ar+1 Bh
0,1 Bh

0,2 Bg
0,1 Bg

0,2ah+1

a′1 a′2 a′r+1 a′h−1 a′h a′h+1 a′g

Figure 3. The curves Bh
0,1, Bh

0,2, Bh
1 , Bh

2 , . . . , Bh
h , a′1, a′2, . . . , a′g

for h = 2r + 1.

Suppose h = 2r . It is easy to check that the following equalities hold in H1(6g):

Bh
0,1 = b1+ b2+ · · ·+ bh, Bh

0,2 = b1+ b2+ · · ·+ bh + ah+1, 1≤ h ≤ g;(1)

Bh
2k−1 = ak + bk + bk+1+ · · ·+ bh+1−k + ah+1−k, 1≤ k ≤ r, 1≤ h ≤ g;(2)

Bh
2k = ak + bk+1+ bk+2+ · · ·+ bh−k + ah+1−k, 1≤ k ≤ r, 1≤ h ≤ g.(3)

In the case of h= 2r+1, the same equalities (1) and (3) hold without change, while
the equality (2) holds for 1≤ k ≤ r + 1, 1≤ h ≤ g.

2B. Substitution technique. In this subsection, we introduce key techniques, called
a substitution and a partial conjugation, for constructing a new word in mapping
class groups from a word and a relator. We will utilize this technique to construct
Lefschetz fibrations with (−1)-section in the later sections.

Let 6b
g be a compact oriented surface of genus g with b boundary components.
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The mapping class group 0b
g of 6b

g is the group of isotopy classes of orientation-
preserving self-diffeomorphisms of 6b

g , where all the maps involved are assumed
to fix ∂6b

g pointwise. For simplicity, we write 6g = 6
0
g and 0g = 0

0
g. For two

elements φ1 and φ2 in 0b
g , the product φ2φ1 means that we first apply φ1 then φ2.

We denote by tc the right-handed Dehn twist along a simple closed curve c on 6b
g .

Definition 2.1. Let v1, v2, . . . , vn be simple closed curves on6b
g . If tεn

vn
· · · tε2

v2
tε1
v1
=1

in 0b
g , where εi =±1, then this factorization is called a relator. In the special case

where εi = 1 for all i , namely, tvn · · · tv2 tv1 = 1 holds in 0g, then this factorization
is called a positive relator.

We introduce a key technique for constructing a new product of right-handed
Dehn twists in 0b

g from old ones.

Definition 2.2. Let v1, v2, . . . , vk and d1, d2, . . . , dl be simple closed curves on6b
g

such that the following product, denoted by R, is a relator in 0b
g :

R := tv1 tv2 · · · tvk t−1
dl
· · · t−1

d2
t−1
d1
,

which equals the identity as a mapping class by definition. If a mapping class
φ in 0b

g satisfies φ(di ) = di , then by the relation tφ(c) = φtcφ−1, we obtain the
following relator, denoted by Rφ, in 0b

g :

Rφ = tφ(v1)tφ(v2) · · · tφ(vk)t
−1
dl
· · · t−1

d2
t−1
d1
.

Let W be a product of right-handed Dehn twists including td1 td2 · · · tdl as a subword:

W =U · td1 td2 · · · tdl · V,

where U and V are products of right-handed Dehn twists. Then, we get a new
product of right-handed Dehn twists, denoted by W ′, as follows:

U · Rφ · td1 td2 · · · tdl · V =U · tφ(v1)tφ(v2) · · · tφ(vk) · V =:W
′,

where the first equality means the equality as a mapping class. Then, W ′ is said to
be obtained by applying a Rφ-substitution to W.

Remark 2.3. A Rφ-substitution is a combination of a substitution technique and
a partial conjugation introduced by Fuller and Auroux [Auroux 2006b; Auroux
2006a], respectively.

2C. Relators in mapping class groups. In this subsection, we introduce some
well-known relators in mapping class groups, called the braid relator B, the lantern
relator L , the chain relators Ck,Ck and certain relators W h

1 ,W h
2 .
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δ1

δ2

δ3

δ4

α β

γ

Figure 4. The curves δ1, δ2, δ3, δ4 and α, β, γ .

Definition 2.4 (braid relator). Let α and β be simple closed curves on 6b
g . If the

geometric intersection number of α and β is equal to 0 (resp. 1), then we have the
braid relator B:

B := tαtβ t−1
α t−1

β (resp. B := tαtβ tαt−1
β t−1

α t−1
β ).

Definition 2.5 (lantern relator). Let δ1, δ2, δ3 and δ4 be the four boundary curves
of 64

0 and let α, β and γ be the interior curves as shown in Figure 4. Then, we
have the lantern relator L in 04

0 :

L := tαtβ tγ t−1
δ4

t−1
δ3

t−1
δ2

t−1
δ1
.

The lantern relator was discovered by Dehn [1938] and was rediscovered by
Johnson [1979].

Definition 2.6 (chain relator). Suppose h ≥ 1. Let α1, α2, . . . , α2h+1 be simple
closed curves on an oriented surface such that αi and αi+1 intersect transversally
at exactly one point for 1 ≤ i ≤ 2h and that αi and α j are disjoint if |i − j | ≥ 2.
Then, a regular neighborhood of α1 ∪ α2 ∪ · · · ∪ α2h (resp. α1 ∪ α2 ∪ · · · ∪ α2h+1)
is a subsurface of genus h with one boundary component (resp. two boundary
components), say d (resp. d1 and d2). We then have the even chain relator C2h and
the odd chain relator C2h+1:

C2h := (tα1 tα2 · · · tα2h )
4h+2t−1

d ,

C2h+1 := (tα1 tα2 · · · tα2h+1)
2h+2t−1

d2
t−1
d1
.

Definition 2.7. Suppose g≥ 2. Let62
g be the surface of genus g with two boundary

components obtained from6g by removing two disjoint open disks (see Figures 1, 2
and 3). Let ag+1 be one of the boundary curves of 62

g as shown in Figure 1, and let
a′g+1 be the other boundary curve of 62

g defined by a′g+1 = cgag+1. We then have
the following two relators W1,h , W2,h in 02

g for each h = 1, 2, . . . , g:

W1,h :=

(tBh
0,1

tBh
1
tBh

2
· · · tBh

h−1
tBh

h
tc`)

2t−1
ch

if h = 2`,

(tBh
0,1

tBh
1
tBh

2
· · · tBh

h−1
tBh

h
t2
a`+1

t2
a′`+1

)2t−1
ch

if h = 2`+ 1,
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W2,h :=

(tBh
0,2

tBh
1
tBh

2
· · · tBh

h−1
tBh

h
tc`)

2t−1
ah+1

t−1
a′h+1

if h = 2`,

(tBh
0,2

tBh
1
tBh

2
· · · tBh

h−1
tBh

h
t2
a`+1

t2
a′`+1

)2t−1
ah+1

t−1
a′h+1

if h = 2`+ 1.

Note that in 0g, the relator W2,g is a positive relator. Matsumoto [1996] discov-
ered this positive relator for g= 2, and Cadavid [1998] and independently Korkmaz
[2001] generalized Matsumoto’s relator to g ≥ 3. W1,g was shown to be a relator
in 01

g by Ozbagci and Stipsicz [2004]. In [Korkmaz 2009], it was claimed without
proof that W2,g is a relator in 02

g. Yet, we can show it to be true by applying the
same argument in Section 2 of [Korkmaz 2001] (for example see Section 6 of
[Kobayashi and Monden 2016]).

3. Lefschetz fibrations

3A. Basics on Lefschetz fibrations. We recall the definition and basic properties
of Lefschetz fibrations. More details can be found in [Gompf and Stipsicz 1999].

Definition 3.1. Let X be a closed, oriented smooth 4-manifold. A smooth map
f : X→ S2 is a Lefschetz fibration if for each critical point p of f and f (p), there
are complex local coordinate charts agreeing with the orientations of X and S2 on
which f is of the form f (z1, z2)= z1z2.

It follows that f has finitely many critical points C = {p1, p2, . . . , pn}. We can
assume that f is injective on C and relatively minimal (i.e., no fiber contains a
sphere with self-intersection number −1). Each fiber which contains a critical point,
called a singular fiber, is obtained by “collapsing” a simple closed curve in the
prescribed regular fiber to a point. We call the simple closed curve in the regular
fiber the vanishing cycle. If the genus of the regular fiber of f is g, then we call f
a genus-g Lefschetz fibration.

The monodromy of the fibration around a singular fiber f −1( f (pi )) is given by
a right-handed Dehn twist along the corresponding vanishing cycle, denoted by vi .
Once we fix an identification of 6g with the fiber over a base point of S2, we can
characterize the Lefschetz fibration f : X→ S2 by its monodromy representation
π1(S2

− f (C)) → 0g. Here, this map is indeed an antihomomorphism. Let
γ1, γ2, . . . , γn be an ordered system of generating loops for π1(S2

− f (C)) such
that each γi encircles only f (pi ) and γ1γ2 · · · γn = 1 in π1(S2

− f (C)). Thus, the
monodromy of f comprises a positive relator

tvn · · · tv2 tv1 = 1 in 0g.

Conversely, for any positive relator P in 0g, one can construct a genus-g Lefschetz
fibration over S2 whose monodromy is P. Therefore, we denote a genus-g Lefschetz
fibration associated with a positive relator P in 0g by fP : X P → S2.
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Two Lefschetz fibrations fPi : X Pi → S2 (i = 1, 2) are said to be isomorphic if
there exist orientation-preserving diffeomorphisms H : X P1→ X P2 and h : S2

→ S2

such that fP2 ◦ H = h ◦ fP1 . According to theorems of Kas [1980] and Matsumoto
[1996], if g ≥ 2, then the isomorphism class of a Lefschetz fibration is determined
by a positive relator modulo simultaneous conjugations

tvn · · · tv2 tv1 ∼ tφ(vn) · · · tφ(v2)tφ(v1) for any φ ∈ 0g

and elementary transformations

tvn · · · tvi+2 tvi+1 tvi tvi−1 tvi−2 · · · tv1 ∼tvn · · · tvi+2 tvi tt−1
vi (vi+1)

tvi−1 tvi−2 · · · tv1,

tvn · · · tvi+2 tvi+1 tvi tvi−1 tvi−2 · · · tv1 ∼tvn · · · tvi+2 tvi+1 ttvi (vi−1)tvi tvi−2 · · · tv1 .

Therefore, if P2 is obtained by applying a series of elementary transformations and
simultaneous conjugations to P1, then

(4) σ(X P1)= σ(X P2) and e(X P1)= e(X P2),

where σ(X) and e(X) stand for the signature and Euler characteristic of a 4-
manifold X, respectively.

3B. Sections of Lefschetz fibrations.

Definition 3.2. Let f : X → S2 be a Lefschetz fibration. A map σ : S2
→ X is

called a k-section of f if it satisfies f ◦ σ = idS2 and the self-intersection number
[σ(S2)]2 = k, where [σ(S2)] is the homology class in H2(X;Z).

If the factorization P = tvn · · · tv2 tv1(= 1) lifts from 0g to 01
g as

tk
δ = tṽn · · · tṽ2 tṽ1 (i.e., 1= tṽn · · · tṽ2 tṽ1 t−k

δ ),

then the Lefschetz fibration fP has a (−k)-section. Here, δ is the boundary curve
of61

g and tṽi is a Dehn twist mapped to tvi under 01
g→0g. Conversely, if a genus-g

Lefschetz fibration admits a (−k)-section, we obtain a relator of the above type
in 01

g. A similar relator holds for b disjoint sections (in which case one has to work
in the mapping class group 0b

g).
A necessary condition for a Lefschetz fibration to admit a (−1)-section was

shown independently by Stipsicz [2001] and Smith [2001a]:

Theorem 3.3 [Stipsicz 2001; Smith 2001a]. Let g ≥ 1. If a genus-g Lefschetz
fibration f : X→ S2 admits a (−1)-section, then f is fiber sum indecomposable.

Here, we recall the definition of fiber sum. Let fi : X i → S2 be a genus-g
Lefschetz fibration for i = 1, 2, and let Di be an open disk on S2 which does
not contain any critical values. Then, the fiber sum f1#F f2 : X1#F X2 → S2 is
obtained by gluing X1− f −1

1 (D1) and X2− f −1
2 (D2) along their boundaries via a
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A1
A2 A3

A4 A5 y
ιA2g–1

A2g

Figure 5. The involution ι of 6 and the curves A1, A2, . . . , A2g on 6g.

fiber-preserving orientation-reversing diffeomorphism and extending f1 and f2 in
a natural way. A Lefschetz fibration is said to be fiber sum indecomposable if it
cannot be decomposed as a fiber sum of two Lefschetz fibrations each of which has
at least one singular point.

For a Lefschetz fibration over S2 with a positive relator and a section, we can
determine the fundamental group of X as follows:

Lemma 3.4 (see [Gompf and Stipsicz 1999]). Let P be a positive relator P =
tvn · · · tv2 tv1 in 0g. Suppose that the corresponding genus-g Lefschetz fibration
f : X P→ S2 admits a section σ . Then, the fundamental group π1(X) is isomorphic
to the quotient of π1(6g) by the normal subgroup generated by the vanishing cycles
v1, v2, . . . , vn . The same holds for the first homology group H1(X).

3C. Signatures of Lefschetz fibrations. This subsection gives two results about
the signatures of Lefschetz fibrations.

Let 1g be the hyperelliptic mapping class group of genus g, i.e., the subgroup
of 0g consisting of those mapping classes commuting with the isotopy class of the
involution ι shown in Figure 5. Note that 1g = 0g for g = 1, 2 and that tc is in 1g

if and only if ι(c)= c.
A genus-g Lefschetz fibration is said to be hyperelliptic if it is associated with

a positive relator P = tv1 · · · tvn such that each tvi is contained in 1g. To compute
the signatures of Lefschetz fibrations, we present Matsumoto and Endo’s signature
formula for hyperelliptic Lefschetz fibrations.

Theorem 3.5 ([Matsumoto 1983; 1996] (g = 1, 2), [Endo 2000] (g ≥ 3)). Let
us consider a genus-g hyperelliptic Lefschetz fibration fP : X P → S2 with n
nonseparating and s =6[g/2]h=1 sh separating vanishing cycles, where sh is the number
of separating vanishing cycles that separate 6g into two surfaces, one of which has
genus h. Then, we have

σ(X P)=−
g+ 1

2g+ 1
n+

[g/2]∑
h=1

(
4h(g− h)

2g+ 1
− 1

)
sh .

By the work of Endo and Nagami [2005], we see the behavior of signatures of
Lefschetz fibrations under a monodromy substitution as follows.

Proposition 3.6 [Endo and Nagami 2005, Theorem 4.3, Definition 3.3, Lemma 3.5
and Propositions 3.9, 3.10 and 3.12]. Let B, L and C2h+1 be the braid relator, the
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lantern relator and the odd chain relator in Definitions 2.4, 2.5 and 2.6, respectively.
We assume that those relators are in 6g.

Let fPi : X Pi → S2 be a genus-g Lefschetz fibration with a positive relator
Pi (i = 1, 2). Suppose that P2 is obtained by applying an Rφ-substitution to P1,
where φ is a mapping class and R is a relator in 0g.

(1) If R = B, then σ(X P2)= σ(X P1).

(2) If R = L , then σ(X P2) = σ(X P1)+ 1. Hence, if R = L−1, then σ(X P2) =

σ(X P1)− 1.

(3) Assume that both d1 and d2 are not nullhomotopic in 6g. If R = C2h+1,
then σ(X P2) = σ(X P1)+ 2h(h + 2). Hence, if R = C−1

2h+1, then σ(X P2) =

σ(X P1)− 2h(h+ 2).

3D. Nonholomorphicity of Lefschetz fibrations.

Definition 3.7. A Lefschetz fibration f : X→ S2 is said to be holomorphic if there
are complex structures on both X and S2 with respect to which f is a holomorphic
projection. We say f is nonholomorphic if it is not isomorphic to any holomorphic
Lefschetz fibration.

Suppose that g ≥ 2. In order to prove Theorems 1.1 and 1.2, we introduce two
sufficient conditions for a Lefschetz fibration to be nonholomorphic.

One comes from the result of Xiao [1987]. For an almost complex 4-manifold X,
we set K 2(X) := 3σ(X)+2e(X) and χh(X) := (σ (X)+e(X))/4. Xiao proved the
following theorem, called the slope inequality:

Theorem 3.8 [Xiao 1987]. Every relatively minimal holomorphic genus-g fibration
f on a complex surface X over a complex curve C of genus k ≥ 0 satisfies the
inequality

4− 4/g ≤ λ f ,

where
λ f :=

K 2(X)− 8(g− 1)(k− 1)
χh(X)− (g− 1)(k− 1)

.

As a consequence of Theorem 3.8, we have:

Proposition 3.9. If a genus-g Lefschetz fibration f : X→ S2 does not satisfy the
slope inequality, namely, λ f < 4− 4/g, then f is nonholomorphic.

The other comes from the result of Ozbagci and Stipsicz [2000]. We present a
slightly improved version of their result where we replace π1 by H1, but this can
be concluded from the proof of Theorem 1.3 in [Ozbagci and Stipsicz 2000]:

Theorem 3.10. If a Lefschetz fibration f : X → S2 satisfies H1(X)= Z⊕Zn for
some positive integer n, then X admits no complex structure with either orientation,
so f is nonholomorphic.
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For the convenience of the readers, we give a proof of this theorem, which is
merely a simplification of that in [Ozbagci and Stipsicz 2000].

Proof. Assume that X carries a complex structure and let X ′ be the minimal model
of X. By the Enriques–Kodaira classification of complex surfaces, together with
the fact that b1(X ′) = 1 and b+2 (X

′) ≥ 1 (since X admits a symplectic structure
and so does X ′), we can observe that X ′ is an elliptic surface. If X ′ is an elliptic
fibration over a Riemann surface 6, we have b1(X ′) ≥ b1(6). Since b1(X ′) = 1,
6 must be S2. Since b1(X ′)= b3(X ′)= 1 and b2(X ′) 6= 0, the Euler characteristic
of X ′ cannot be 0. Now we suppose that X ′ is a minimal elliptic surface over S2

with nonzero Euler characteristic. According to [Gompf 1991], a presentation for
the fundamental group of such an elliptic surface is given as

π1(X ′)= 〈x1, · · · , xk | x
pi
i = 1, i = 1, . . . , k; x1 · · · xk = 1〉.

So it is clear that H1(X ′) has only torsion elements, which contradicts the assumption
H1(X)= Z⊕Zn . �

Remark 3.11. If X admits a genus-g Lefschetz fibration f : X→ S2 with n singular
fibers, then the Euler characteristic of X is e(X)=−4(g− 1)+ n. Using this fact,
the slope λ f of f can be written as

λ f = 12−
4

(σ (X)/n)+ 1
,

where σ(X) is the signature of X. Therefore, we can regard the slope λ f as the
“average signature” σ(X)/n per singular fiber. Moreover, the slope inequality
λ f ≥ 4− 4/g can be rewritten as

σ(X)≥−
g+ 1

2g+ 1
n,

that is, it gives a lower bound on σ in terms of g and n.

Remark 3.12. The work of Xiao [1987] was mainly motivated by the so-called
Severi inequality, stating that every minimal surface of general type of maximal
Albanese dimension satisfies K 2

≥4χh . This is equivalent to stating that if a minimal
complex surface S of general type satisfies K 2 < 4χh , then S admits a relatively
minimal holomorphic fibration over C of genus b1(S)/2. The Severi inequality was
stated in [di Severi 1932] (but the proof was not correct) and independently posed as
a conjecture by Reid [1979] and by Catanese [1983]. Xiao proved it when S admits
a relatively minimal holomorphic fibration over a curve of positive genus, that is, a
complex surface S admitting a holomorphic genus-g fibration f over C of positive
genus k with K 2 < 4χh + 4(g− 1)(k− 1) (i.e., λ f < 4) satisfies k = b1(S)/2. The
Severi inequality has been studied by many authors (for example [di Severi 1932;
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Reid 1979; Catanese 1983; Konno 1996; Manetti 2003; Pardini 2005]) and was
proved by Pardini [2005].

Remark 3.13. We denote by Mg the Deligne–Mumford compactified moduli
space of stable curves of genus g. We can reformulate the slope inequality for
Lefschetz fibrations in terms of Mg as follows. For a genus-g Lefschetz fibration
f : X→ S2 with n singular fibers, there is a symplectic structure on X such that for
all x ∈ S2, f −1(x) is a pseudo-holomorphic curve. Since a 2-dimensional almost-
complex structure is integrable, f −1(x) determines a point in Mg. By defining
φ f (x)=[ f −1(x)]∈Mg for x ∈ S2, we obtain the moduli map φ f : S2

→Mg. Let Hg

be the Hodge bundle on Mg with fiber the determinant line ∧g H 0(C; KC), where C
is the set of critical points of f . Then, by combining the signature formula σ(X)=
〈c1(Hg), [φ f (S2)]〉− n given by Smith [1999] and the slope inequality, we have

(2g+ 1)〈c1(Hg), [φ f (S2)]〉− g · n ≥ 0.

4. Nonholomorphic Lefschetz fibrations admitting (−1)-sections

In this section, we prove Theorem 1.1

Theorem 1.1. For each g ≥ 3, there is a genus-g nonholomorphic Lefschetz fibra-
tion X → S2 with a (−1)-section and π1(X) = 1 such that it does not satisfy the
slope inequality.

To prove this, we need a lemma. Suppose g≥ 3. Let61
g be the surface of genus g

with one boundary component obtained from 6g by removing the open disk whose
boundary curve is ag+1 (see Figure 1). Let us consider A1, A2, . . . , A2g to be the
simple closed curves on 61

g (see Figure 6) defined as follows: A1 = a1, A2 = b1,
A2h−1 = ah−1a−1

h and A2h = bh for h = 2, 3, . . . , g.

Lemma 4.1. (tA1 tA2 · · · tA2g )
2g+1
= (tA1 tA2 · · · tA2g−1)

2gtA2g · · · tA2 tA1 tA1 tA2 · · · tA2g .

Proof. The proof follows from the braid relations tAi tAi+1 tAi = tAi+1 tAi tAi+1 and
tAi tA j = tA j tAi for |i − j |> 1 (i.e., by applying B-substitutions to the left side). �

We now prove Theorem 1.1.

A1
A2 A3

A4 A5 y
A2g–1

A2g

ag+1

Figure 6. The curves A1, A2, . . . , A2g on 61
g .
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a3 a3

A1 A3 A5 A1 A3 A5

a2
e1 e2

Figure 7. The curves that give a Lantern relator.

Proof of Theorem 1.1. Suppose g ≥ 3. Let us consider the following chain relators,
C2g and C2g+1:

C2g = (tA1 tA2 · · · tA2g )
4g+2t−1

ag+1
, C2g−1 = (tA1 tA2 · · · tA2g−1)

2gt−1
ag

t−1
a′g
,

where ag and a′g are the curves as shown in Figures 2 and 3. By Lemma 4.1 and
the even chain relator C2g, we obtain the following relator C ′2g:

C ′2g = {(tA1 tA2 · · · tA2g−1)
2g
· tA2g · · · tA2 tA1 tA1 tA2 · · · tA2g }

2t−1
ag+1

.

By applying C−1
2g−1-substitution to C ′2g twice, we get a new relator H in 01

g:

H = (tag ta′g · tA2g · · · tA2 tA1 tA1 tA2 · · · tA2g )
2t−1

ag+1
.

Consider the curves on61
g in Figure 7. Since A1, a2, e1, and e2 are nonseparating

curves on the subsurface of genus g− 1(≥ 2) with two boundary components ag

and a′g, there are diffeomorphisms ψ1, ψ2 and ψ3 in 01
g such that ψ1(A1) = a2,

ψ2(A1)= e1, ψ3(A1)= e2, and each ψi is identical near ag and a′g. Then, we have
the following relator Hψ1 :

Hψ1 = (tag ta′g · tψ1(A2g) · · · tψ1(A2)ta2 ta2 tψ1(A2) · · · tψ1(A2g))
2
· t−1

ag+1
.

Applying Cψ2
2g−1- and Cψ3

2g−1-substitutions to Hψ1, we get a relator H ′:

H ′ = (te1 tψ2(A2) · · · tψ2(A2g−1))
2gtψ1(A2g) · · · tψ1(A2)ta2 ta2 tψ1(A2) · · · tψ1(A2g)

· (te2 tψ3(A2) · · · tψ3(A2g−1))
2gtψ1(A2g) · · · tψ1(A2)ta2 ta2 tψ1(A2) · · · tψ1(A2g) · t

−1
ag+1

.

Here, let us consider a word tc ·tv1 tv2 · · · tvk . By repeating elementary transformations
on this word, we obtain the word ttc(v1)ttc(v2) · · · ttc(vk) · tc. Therefore, since H ′ is a
positive relator including te1 , ta2 and te2 in this order, we can put them together to
the right side of the word to obtain a relator in the form

H ′′ = T · te1 ta2 te2 · t
−1
ag+1

,

where T is a product of 8g2
+ 4g− 3 right-handed Dehn twists. Let L denote the

lantern relator L = te1 ta2 te2 t−1
A1

t−1
a3

t−1
A5

t−1
A3

. Finally, we do L−1-substitution to H ′′, to
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obtain the following relator I in 01
g:

I = T · tA3 tA5 ta3 tA1 · t
−1
ag+1

.

The relator I reduces to a positive relator Î in 0g. Thus, Î gives a genus-g
Lefschetz fibration f Î : X Î → S2 which admits a (−1)-section.

We see that a genus-g Lefschetz fibration f Î : X Î → S2 has 2g(4g + 2)+ 1
singular fibers. Hence, we have

e(X Î )= 8g2
+ 5.

Here, note that C2g is a positive relator in 0g. This gives a genus-g Lefschetz
fibration fC2g : XC2g → S2 with 2g(4g + 2) nonseparating singular fibers. In
particular, this fibration is hyperelliptic since ι(Ai )= Ai for each i = 1, 2, . . . , 2g
(see Figure 5). Therefore, we have σ(XC2g )=−4g(g+1) by Theorem 3.5. Since I
is obtained from C2g by some B-substitutions, two C−1

2g−1-substitutions, Cψ2
2g−1- and

Cψ3
2g−1-substitutions, several other B-substitutions, and one L−1-substitution, by (4)

and Proposition 3.6, we have

σ(X Î )= σ(XC2g )− 1=−4g(g+ 1)− 1.

This gives λ f Î
= 4− 4/g− 1/g2 < 4− 4/g. By Proposition 3.9, this fibration is

nonholomorphic.
It is easy to check that Î includes the Dehn twist about the curve te1(ψ1(Ai )) for

1≤ i ≤ 2g. Since f Î admits a section, by Lemma 3.4 we have

π1(X Î ) ⊂ π1(6g)/〈te1(ψ1(A1)), . . . , te1(ψ1(A2g))〉.

On the other hand, it is easy to check that

π1(6g)/〈te1(ψ1(A1)), . . . , te1(ψ1(A2g))= π1(6g)/〈A1, . . . , A2g〉 = 1,

hence π1(X Î )= 1. �

Remark 4.2. We do not provide a monodromy factorization of f Î explicitly; how-
ever, we can obtain it by giving explicit ψ j (Ai ) for j = 1, 2, 3 and i = 1, 2, . . . , 2g.

Remark 4.3. All vanishing cycles of the Lefschetz fibration f Î are nonseparating
since all curves of the lantern relator employed in the proof of Theorem 1.1 are
nonseparating. For g ≥ 3, we can consider a lantern relator such that six curves
are nonseparating and one curve, denoted by sh , is separating, which separates
61

g into two subsurfaces 61
h and 62

g−h for h ≥ 2. Then, a similar argument to the
proof of Theorem 1.1 gives a genus-g Lefschetz fibration with a (−1)-section on a
simply connected total space having sh as a vanishing cycle and violating the slope
inequality, for each h = 2, 3, . . . , g− 1. Therefore, we can construct at least g− 1
different genus-g Lefschetz fibrations with the same conditions as in Theorem 1.1.
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Remark 4.4. Miyachi and Shiga [2011] produced genus-g Lefschetz fibrations
over 62m (m ≥ 1) which do not satisfy the slope inequality.

5. Noncomplex Lefschetz fibrations admitting (−1)-sections

In this section, we prove Theorem 1.2.

Theorem 1.2. For each g ≥ 4 and each positive integer n, there is a genus-g
nonholomorphic Lefschetz fibration fÛn

: XÛn
→ S2 with two disjoint (−1)-sections

such that XÛn
does not admit any complex structure with either orientation.

We assume g ≥ 4 and g = 4t, 4t + 1, 4t + 2, 4t + 3 throughout this section. To
prove Theorem 1.2, we construct a relator Un in 02

g by applying substitutions to
the relator W2,g in 02

g, which gives the Lefschetz fibration fÛn
: XÛn

→ S2.
Let a j , a′j , b j and c j ( j = 1, 2, . . . , g) be the simple closed curves on 62

g in
Figures 1, 2 and 3, and let ag+1 and a′g+1 be the boundary curves of 62

g as before.
For a positive integer n, we define a map φn to be

φn = tn
a2

ta3 ta4 · · · tat tb1 tb2 · · · tbt .

Note that φn(cr ) = cr for g = 2r , that φn(ar+1) = ar+1 and φn(a′r+1) = a′r+1 for
g= 2r+1, that φn(ct)= ct for r = 2t , and that φn(at+1)= at+1 and φn(a′t+1)= a′t+1
for r = 2t + 1.

The relator W2,g in 02
g includes Dehn twist tcr twice if g = 2r and the product

tar+1 ta′r+1
of two Dehn twists four times if g = 2r + 1. Therefore, we can apply

W1,r - and W φn
1,r -substitutions to W g

2 if g = 2r and W2,r - and W φn
2,r -substitutions to

W g
2 if g = 2r + 1. Then, for g = 2r (resp. g = 2r + 1), we denote by

Un

a relator which is obtained by applying once trivial and once φn-twisted W1,r -
(resp. W2,r -) substitutions to W2,g. For the convenience of the reader we write the
definition of the relator Un in detail. Let us consider the following word in 02

g
for j = 1, 2:

V j :=

{
(tBr

0, j
tBr

1
tBr

2
· · · tBr

r
tct )

2 if r = 2t,

(tBr
0, j

tBr
1
tBr

2
· · · tBr

r
t2
at+1

t2
a′t+1
)2 if r = 2t + 1.

Note that V1 =W1,r t−1
cr

and V2 =W2,r t−1
a′r+1

t−1
ar+1

. Then, we can write Un as follows:
If g = 2r , and therefore g = 4t, 4t + 2, then

Un := (tBg
0,2

tBg
1
tBg

2
· · · tBg

g
V1)(tBg

0,2
tBg

1
tBg

2
· · · tBg

g
V φn

1 )t−1
ag+1

t−1
a′g+1

,

and if g = 2r + 1, and therefore g = 4t + 1, 4t + 3, then

Un := (tBg
0,2

tBg
1
tBg

2
· · · tBg

g
V2tar+1 ta′r+1

)(tBg
0,2

tBg
1
tBg

2
· · · tBg

g
V φn

2 tar+1 ta′r+1
)t−1

ag+1
t−1
a′g+1

.
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Since the relator Un in 02
g is a product of t−1

ag+1
t−1
a′g+1

and positive Dehn twists, it
reduces to a positive relator of 0g, which is denoted by Ûn . This gives a genus-g
Lefschetz fibration fÛn

: XÛn
→ S2 with two disjoint (−1)-sections.

We prepare the following lemma.

Lemma 5.1. For g = 2r, 2r + 1 and r = 2t, 2t + 1, the following holds in H1(6g):

φn(Br
0, j )= Br

0, j + at · · · + a4+ a3+ na2.

φn(Br
1)= Br

1 − b1+ at + · · ·+ a4+ a3+ na2.

φn(Br
2)= Br

2 − b1+ at + · · ·+ a4+ a3+ na2.

φn(Br
3)= Br

3 − b2+ at + · · ·+ a4+ a3.

φn(Br
4)= Br

4 − b2+ at + · · ·+ a4+ a3− na2.

φn(Br
2k−1)= Br

2k−1− bk + at + · · ·+ ak+2+ ak+1, 3≤ k ≤ t.

φn(Br
2k)= Br

2k − bk + at + · · ·+ ak+2+ ak+1− ak, 3≤ k ≤ t.

If r = 2t + 1, and therefore g = 4t + 2, 4t + 3, then φn(B2t+1
2t+1 )= B2t+1

2t+1 .

Proof. We use the following well-known formula for the action of the N -th power
of the Dehn twist along a simple closed curve c on H1(6g) repeatedly (see [Farb
and Margalit 2012]):

t K
c (d)= d − Ni(d, c)c,

for an element d in H1(6g). Recall that i(ai , ai )= i(bi , bi )= 0, i(ai , b j )= 0 for
i 6= j and i(ai , bi )= 1.

First, we show the equation of φn(Br
2k−1) for 1≤ k ≤ t . From Figures 1–3, we

see that for 1≤ k ≤ t ,

i(Br
2k−1, ai )=

{
0 if 1≤ i ≤ k− 1,
−1 if k ≤ i ≤ t,

i(Br
2k−1, bi )=

{
1 if i = k,
0 if i 6= k.

Using the above mentioned formula, we get

φn(Br
2k−1)= tn

a2
ta3 ta4 · · · tat tb1 tb2 · · · tbt (B

r
2k−1)

= tn
a2

ta3 ta4 · · · tat tb1 tb2 · · · tbk−1(B
r
2k−1−bk)

= tn
a2

ta3 ta4 · · · tat tb1 tb2 · · · tbk−1(B
r
2k−1)−tn

a2
ta3 ta4 · · · tat tb1 tb2 · · · tbk−1(bk)

= tn
a2

ta3 ta4 · · · tat (B
r
2k−1)−tn

a2
ta3 ta4 · · · tat (bk).
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Therefore, from i(bk, ak)=−1 (by i(ak, bk)= 1), we have

φn(Br
2k−1)= tn

a2
ta3 ta4 · · · tat (B

r
2k−1)− tn

a2
ta3 ta4 · · · tat (bk)

= Br
2k−1+ at + · · ·+ ak+1+ ak − (bk + ak)

if 3≤ k, and

φn(Br
3)= tn

a2
ta3 ta4 · · · tat (B

r
3)− tn

a2
ta3 ta4 · · · tat (b2)

= Br
3 + at + · · ·+ a4+ a3+ na2− (b2+ na2),

φn(Br
1)= tn

a2
ta3 ta4 · · · tat (B

r
1)− tn

a2
ta3 ta4 · · · tat (b1)

= Br
1 + at + · · ·+ a4+ a3+ na2− b1.

Therefore, we obtain the required formula of φn(Br
2k−1) for 1≤ k ≤ t .

Next, we show the equation of φn(Br
2k) for 1≤ k ≤ t . From Figures 1–3, we see

that for 1≤ k ≤ t ,

i(B2t
2k, ai )=

{
0 if 1≤ i ≤ k,
−1 (k+ 1≤ i ≤ t),

i(B2t
2k, bi )=

{
1 if i = k,
0 if i 6= k,

where 1≤ i . Using this, a similar argument to φn(Br
2k−1) gives

φn(Br
2k)= tn

a2
ta3 ta4 · · · tat (B

r
2k)− tn

a2
ta3 ta4 · · · tat (bk)

= Br
2k + at + · · · ak+2+ ak+1− (bk + ak)

if 3≤ k and

φn(Br
4)= tn

a2
ta3 ta4 · · · tat (B

r
4)− tn

a2
ta3 ta4 · · · tat (b2)

= Br
4 + at + · · · a4+ a3− (b2+ na1),

φn(Br
2)= tn

a2
ta3 ta4 · · · tat (B

r
2)− tn

a2
ta3 ta4 · · · tat (b1)

= Br
2 + at + · · · a4+ a3+ na2− b1.

Therefore, we obtain the required formula of φn(Br
2k) for 1≤ k ≤ t .

Finally, we show the equation for φn(Br
0, j ). From Figures 1–3, we see that

i(B2t
0, j , ai )=−1 and i(B2t

0, j , bi )= 0. Therefore,

φn(Br
0, j )= tn

a2
ta3 ta4 · · · tat tb1 tb2 · · · tbt (B

r
0, j )= Br

0, j + at + · · ·+ a4+ a3+ na2.

Since i(B2t+1
2t+1 , ai ) = (B2t+1

2t+1 , bi ) = 0 for i = 1, 2, . . . , t , we have φn(B2t+1
2t+1 ) =

B2t+1
2t+1 , and this finishes the proof. �
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Proof of Theorem 1.2. It is sufficient to show that H1(XÛn
) = Z ⊕ Zn from

Theorem 3.10. For a set S, we denote by Z〈S〉 the Z-module generated by S.
Let

Sh
0, j := {B

h
0, j , Bh

1 , Bh
2 , . . . , Bh

h },

T h
0, j := {φn(Bh

0, j ), φn(Bh
1 ), φn(Bh

2 ), . . . , φn(Bh
h )}.

Recall that φn(ct) = ct for r = 2t and φn(at+1) = at+1 and φn(a′t+1) = a′t+1 for
r = 2t + 1. By this fact, ct = 0, a′t+1 = at+1 and a′r+1 = ar+1 in H1(6g) and
Lemma 3.4, we have

H1(XÛn
)=



H1(6g)/Z〈S4t
0,2 ∪ S2t

0,1 ∪ T 2t
0,1〉 if g= 4t,

H1(6g)/Z〈S4t+1
0,2 ∪ {a2t+1} ∪ S2t

0,2 ∪ T 2t
0,2〉 if g= 4t + 1,

H1(6g)/Z〈S4t+2
0,2 ∪ S2t+1

0,1 ∪ {at+1} ∪ T 2t+1
0,1 〉 if g= 4t + 2,

H1(6g)/Z〈S4t+3
0,2 ∪ {a2t+2} ∪ S2t+1

0,2 ∪ {at+1} ∪ T 2t+1
0,2 〉 if g= 4t + 3.

By φn(Br
2k−1) = φ(B

r
2k) = 0 and B2k−1 = B2k = 0 in H1(XÛn

) for 2 ≤ k ≤ t ,
Lemma 5.1 gives

(5) na2 = a3 = a4 = · · · = at = 0.

Using this, Br
2k−1 = 0 and φ(Br

2k−1)= 0 for 1≤ k ≤ t and Lemma 5.1, we have

(6) b1 = b2 = · · · = bt = 0.

By (5), the equation Br
0, j = 0, and Lemma 5.1, we can remove the relation

φn(Br
0, j ) = 0. Moreover, if r = 2t + 1, and therefore g = 4t + 2, 4t + 3, then

by Lemma 5.1 and B2t+1
2t+1 = 0, we can delete the relation φn(B2t+1

2t+1 )= 0.
Suppose that r = 2t (i.e., g = 4t, 4t + 1). Let us consider the equations (1)–(3)

for h = 2t . By B2t
2k−1 = B2t

2k = 0 in H1(XÛn
), we get

bk + b2t+1−k = 0, 1≤ k ≤ t.

By (6), we have

(7) b1 = b2 = · · · b2t = 0.

Using this and B2t
2k−1 = 0 for 1≤ k ≤ t , we have

ak + a2t+1−k = 0, 1≤ k ≤ t.

Therefore, by (5), we have

a1+ a2t = a2+ a2t−1 = 0;(8)

a3 = a4 = · · · = a2t−2 = 0.(9)

Note that B2t
0,1 = b1+ b2+ · · ·+ b2t and B2t

0,2 = b1+ b2+ · · ·+ b2t + a2t+1. By (7)
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(and a2t+1 = 0 if g = 4t + 1), we can delete B2t
0, j = 0 for j = 1, 2.

Suppose that r = 2t + 1 (i.e., g = 4t + 2, 4t + 3). Consider the equations (1)–(3)
for h = 2t + 1. By B2t+1

2k−1 = B2t+1
2k = 0 in H1(XÛn

), we get

bk + b2t+2−k = 0, 1≤ k ≤ t.

In particular, by B2t+1
2t+1 = at+1+ bt+1+ at+1 = 0 and at+1 = 0, we have bt+1 = 0.

By combining this with (6), we have

(10) b1 = b2 = · · · b2t+1 = 0.

Using this and B2t+1
2k−1 = 0 for 1≤ k ≤ t , we have

ak + a2t+2−k = 0, 1≤ k ≤ t.

Therefore, by (5) and the relation at+1 = 0, we have

a1+ a2t+1 = a2+ a2t = 0;(11)

a3 = a4 = · · · = a2t−1 = 0.(12)

For a similar reason to the case r = 2t , we can remove B2t+1
0, j = 0 for j = 1, 2.

Suppose that g = 2r (i.e., g = 4t, r = 2t or g = 4t + 2, r = 2t + 1). Consider
the equations (1)–(3) for h = 2r . By B2r

2k−1 = B2r
2k = 0 in H1(XÛn

), we obtain

bk + b2r+1−k = 0, 1≤ k ≤ r.

If g = 4t (resp. g = 4t + 2), then the relation (7) (resp. the relation (10)) gives

(13) b1 = b2 = · · · = b2r = 0.

Using this and B2r
2k−1 = 0 for 1≤ k ≤ r , we have

ak + a2r+1−k = 0, 1≤ k ≤ r.

By this equations and the equations (8) and (9) (resp. the equations (11) and (12))
if g = 4t (resp. g = 4t + 2), we obtain

a1+ ar = a2+ ar−1 = 0;(14)

a1+ a2r = a2+ a2r−1 = ar−1+ ar+2 = ar + ar+1 = 0;(15)

a3 = a4 = · · · = ar−2 = ar+3 = · · · = a2r−3 = a2r−2 = 0,(16)

and we can delete the relation B2r
0, j = 0 for a similar reason to the case r = 2t .

Since (14) and (15) give a2r = ar = −a1, ar+1 = a1, a2r−1 = ar−1 = −a2 and
ar+2 = a2, by (5), (13) and (16), we obtain

H1(XÛn
)= Z〈{a1, a2}〉/Z〈{na2}〉 = Z⊕Zn,

and the proof of Theorem 1.2 for g = 2r is complete.
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Suppose that g = 2r + 1 (i.e., g = 4t + 1, r = 2t , or g = 4t + 3, r = 2t + 1).
Consider the equations (1)–(3) for h = 2r + 1. By B2r+1

2k−1 = B2r
2k = 0 in H1(XÛn

),

bk + b2r+2−k = 0, 1≤ k ≤ r.

By B2r+1
2r+1 = ar+1+ br+1+ ar+1 = 0 and ar+1 = 0, we have br+1 = 0. Therefore,

if g = 4t + 1 (resp. g = 4t + 3), then the relation (7) (resp. the relation (10)) gives

(17) b1 = b2 = · · · = b2r+1 = 0.

Using this and B2r+1
2k−1 = 0 for 1≤ k ≤ r , we have

ak + a2r+2−k = 0, 1≤ k ≤ r.

By this equations, the equation ar+1 = 0 and the equations (8) and (9) (resp. the
equations (11) and (12)) if g = 4t + 1 (resp. g = 4t + 3), we obtain

a1+ ar = a2+ ar−1 = 0;(18)

a1+ a2r+1 = a2+ a2r = ar−1+ ar+3 = ar + ar+2 = 0;(19)

a3 = a4 = · · · = ar−2 = ar+1 = ar+4 = ar+5 = · · · = a2r−2 = a2r−1 = 0,(20)

and we can delete the relation B2r+1
0, j =0 for a similar reason to the case r =2t . Since

the equations (18) and (19) give a2r+1 = ar =−a1, ar+2 = a1, a2r = ar−1 =−a2

and ar+3 = a2, by (5), (17) and (20), we obtain

H1(XÛn
)= Z〈{a1, a2}〉/Z〈{na2}〉 = Z⊕Zn,

and the proof of Theorem 1.2 for g = 2r + 1 is complete. �
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