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Recently, it was shown that Einstein solvmanifolds have maximal symmetry
in the sense that their isometry groups contain the isometry groups of any
other left-invariant metric on the given Lie group. Such a solvable Lie group
is necessarily nonunimodular. In this work we consider unimodular solv-
able Lie groups and prove that there is always some metric with maximal
symmetry. Further, if the group at hand admits a Ricci soliton, then it is the
isometry group of the Ricci soliton which is maximal.

1. Introduction

In this work, we restrict ourselves to the setting of Lie groups with left-invariant
metrics.

Definition 1.1. Let G be a Lie group. A left-invariant metric g on G is said to
be maximally symmetric if given any other left-invariant metric g′, there exists a
diffeomorphism φ ∈Diff(G) such that

Isom(M, g′)⊂ Isom(M, φ∗g)= φ Isom(M, g)φ−1.

We say G is a maximal symmetry space if it admits a metric of maximal symmetry.

Although our primary interest is in solvable Lie groups with left-invariant metrics,
we briefly discuss the more general setting of Lie groups. For G compact and
simple, we have that Isom(G)0, the connected component of the identity, for any
left-invariant metric, can be embedded into the isometry group of the bi-invariant
metric [Ochiai and Takahashi 1976]. This does not quite say that compact simple
Lie groups are maximal symmetry spaces, but it is close.

In the setting of noncompact semisimple groups, one does not have a bi-invariant
metric, but there is a natural choice which plays the role of the bi-invariant metric
and similar results are known, see [Gordon 1980]; note the work of Gordon actually
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goes beyond the Lie group setting and considers a larger class of homogeneous
spaces with transitive reductive Lie group and studies their isometry groups.

If S is a nilpotent or completely solvable unimodular group, then it is a maximal
symmetry space. Although not stated in this language, this is a result of Gordon
and Wilson [1988]; see Section 2 below for more details. Furthermore, when such
a Lie group admits a Ricci soliton, the soliton metric has the maximal isometry
group [Jablonski 2011].

The nonunimodular setting for completely solvable groups is not as clean. In
special circumstances these groups can and do have maximal symmetry, e.g., if
a solvable group admits an Einstein metric, then it is a maximal symmetry space
and the Einstein metric actually has the largest isometry group; see [Gordon and
Jablonski 2015] for more details. However, it is known that not all nonunimodular,
completely solvable groups can be maximal symmetry spaces, see Example 1.6 of
[Gordon and Jablonski 2015]. For more on the subtleties of the maximal symmetry
question in the nonunimodular setting, see the forthcoming work [Epstein and
Jablonski 2018].

Our main result is for unimodular solvable Lie groups.

Theorem 1.2. Let R be a simply connected, unimodular solvable Lie group. Then R
is a maximal symmetry space.

Corollary 1.3. Let R be a simply connected, unimodular solvable Lie group which
admits a Ricci soliton metric. Then said Ricci soliton has maximal symmetry among
R-invariant metrics.

The strategy for proving both results is to reduce to the setting of completely
solvable groups, where the answer is immediate. To do this, we start with a solvable
group R, we modify a given initial metric until we obtain a metric whose isometry
group contains a transitive solvable S which is completely solvable. Our main
contribution, then, is to prove a uniqueness result for which S can appear; up to
isomorphism only one can and does appear. This uniqueness result is a consequence
of the following, which is of independent interest; see Lemma 4.3. (Here we use
the language of [Gordon and Wilson 1988].)

Lemma. Any modification of a completely solvable group is necessarily a normal
modification.

It seems noteworthy to point out that our work actually shows that any solvable
Lie group is associated to a unique completely solvable group (Theorem 4.7) in the
same way that type R groups have a well defined, unique nilshadow, cf. [Auslander
and Green 1966].

In the last section we give a concrete description of the completely solvable
group associated to any solvable group S in terms of S and the derivations of its
Lie algebra.
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Finally, we observe that the choices made throughout our process allow us
to choose our diffeomorphism φ from Definition 1.1 to be a composition of an
automorphism of R together with an automorphism of its associated completely
solvable group S. In the case that R= S is completely solvable, the diffeomorphism
which conjugates the isometry groups can be chosen to be an automorphism. It
would be interesting to know whether or not this is true in general.

2. Preliminaries

In this section, we recall the basics on isometry groups for (unimodular) solvmani-
folds from the foundational work of Gordon and Wilson [1988]. Throughout, our
standing assumption is that our solvable groups are simply connected. We begin
with a general result for Lie algebras.

Recall that every Lie algebra has a unique, maximal solvable ideal, called the
radical. A (solvable) Lie algebra g is called completely solvable if adX : g→ g has
only real eigenvalues for all X ∈ g. We have the following.

Proposition 2.1. Given any Lie algebra g there exists a unique maximal ideal s
which is completely solvable.

Remark 2.2. This completely solvable ideal is contained in the radical, but gener-
ally they are not equal. Notice that the nilradical of g is contained in s and so, as
with the radical, s is trivial precisely when g is semisimple.

Proof of proposition. As any solvable ideal is a subalgebra of the radical of g, it
suffices to prove the result in the special case that g is solvable. The result follows
upon showing that the sum of two such ideals is again an ideal of the same type. As
the sum of ideals is again an ideal, we only need to check the condition of complete
solvability.

Let g be a solvable Lie algebra and s1 and s2 be completely solvable ideals of g.
We will show that s1+s2 is again completely solvable. Observe that for any ideal s,
the eigenvalues of ad X |s are real if and only if the eigenvalues of ad X |g are real,
as we have only introduced extra zero eigenvalues.

The eigenvalues of ad X : s→ s do not change if we extend ad X to a map on
s⊗C. By Lie’s theorem, we may realize ad s as a subalgebra of upper triangular
matrices and so the eigenvalues of ad(X1+X2) are sums of eigenvalues of ad X1 and
ad X2. Taking X1 ∈ s1 and X2 ∈ s2, we see that s1+ s2 is completely solvable. �

Isometry groups and modifications. In [Gordon and Wilson 1988], the authors set
about the job of giving a description of the full isometry group of any solvmanifold.
Given any Lie group R with left-invariant metric, one can build a group of isometries
as follows: let C denote the set of orthogonal automorphisms of r, then R oC is a
subgroup of the isometry group. We call this group the algebraic isometry group
and denote it by AlgIsom(R, g).



420 MICHAEL JABLONSKI

For R nilpotent, this gives the full isometry group [Gordon and Wilson 1988,
Corollary 4.4]. However, in general, the isometry group Isom(R, g) will be much
more. A good example of this is to look at a symmetric space of noncompact type.

So to understand the general setting, Gordon and Wilson detail a process of
modifying the initial solvable group R to one with a “better” presentation R′ called a
standard modification of R — this is another solvable group of isometries which acts
transitively. The modification process ends after (at most) two normal modifications
with the solvable group R′′ in so-called standard position. See [loc. cit., Section 3]
for details.

To illustrate why this process is nice, we present the following result in the case
of unimodular, solvable Lie groups.

Lemma 2.3. Let R be a unimodular solvable Lie group with left-invariant metric g.
Then Isom(R, g) = AlgIsom(R′′, g) = C n R′′ where R′′ is the solvable group in
standard position inside Isom(R, g) and C consists of orthogonal automorphisms
of r′′.

This follows from the following facts proven in Theorems 3.1, 4.2, and 4.3 of
[Gordon and Wilson 1988].

Proposition 2.4. If there is one transitive solvable Lie group of isometries which is
unimodular, then all transitive solvable groups of isometries are unimodular.

Proposition 2.5. If R is solvable, unimodular, and in standard position, then the
isometry group is the algebraic isometry group.

Proposition 2.6. Any almost simply-transitive solvable group of isometries is a
modification of one in standard position. Completely solvable groups are always in
standard position.

Regarding normal modifications, we record the following useful facts here.

Lemma 2.7. For solvable Lie groups R and S in a common isometry group, R
being a normal modification of S implies S is a normal modification of R.

This follows immediately from the description of normal modifications given
in Proposition 2.4 of [Gordon and Wilson 1988]. This will be used in the sequel
when S is completely solvable. Such S are in standard position in the isometry
group and any modification R is a normal modification (see Lemma 4.3), so we
see that there exists an abelian subalgebra t of the stabilizer subalgebra which
normalizes both r and s such that s⊂ rot and r⊂ sot; cf. Theorem 3.1 of [Gordon
and Wilson 1988]. As such, we have the following.

Lemma 2.8. For s a completely solvable algebra in the isometry algebra and r a
modification of s, we have [s, r] ⊂ s∩ r.
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Transitive groups of isometries. The following technical lemma will be needed later.

Lemma 2.9. Consider a solvable Lie group with left-invariant metric (R1, g).
Let K denote the orthogonal automorphisms of R1; this is a subgroup of the isotropy
group which fixes e ∈ R1. Let R2 be a subgroup of isometries satisfying k+ r2 ⊃ r1,
then R2 acts transitively.

Proof. As K fixes e ∈ R1 and k+ r2 ⊃ r1, we see that the orbit R2 · e has the same
dimension as R1= R1 ·e. But the orbit R2 ·e is then an open, complete submanifold
of the connected manifold R1, hence R2 acts transitively; cf. [Jablonski 2015b,
Lemma 3.8]. �

3. Proof of main result in the special case of
completely solvable and unimodular groups

Our general strategy is to reduce to the case where the group is completely solvable
and so we begin here. Let S be unimodular and completely solvable. For the sake
of consistency throughout the later sections, we write R = S in this section.

Theorem 3.1. Let S be a simply connected, unimodular, completely solvable Lie
group. Then S is a maximal symmetry space.

This theorem is an immediate consequence of the following result of Gordon
and Wilson, as we see below.

Theorem 3.2 (Gordon and Wilson). Let S be a simply connected, unimodular,
completely solvable Lie group with left-invariant metric g. Then Isom(S, g)= SoC ,
where C = Aut(s)∩ O(g).

Remark. In the above, we have abused notation as we are viewing C as a subgroup
of Aut(S). This is okay as S being simply connected gives that the action of C on s

lifts to an action on S.

As C <Aut(S) is a closed subgroup of O(g), it is compact. Choose any maximal
compact subgroup K of Aut(S) containing C and an inner product g′ on s so that K
acts orthogonally. Now we have

Isom(S, g) < Isom(S, g′)

To see that S is indeed a homogeneous maximal symmetry space, we only need to
compare isometry groups where C = K is a maximal compact subgroup of Aut(S).

Let g1 and g2 be two left-invariant metrics with isometry groups S o K1 and
S o K2, respectively, such that K1 and K2 are maximal compact subgroups of
automorphisms. As maximal compact subgroups are all conjugate, there exists
φ ∈ Aut(S) such that K1 = φK2φ

−1 and hence

Isom(S, g1)= φ Isom(S, g2)φ
−1
= Isom(S, φ∗g2).



422 MICHAEL JABLONSKI

This shows that unimodular, completely solvable Lie groups are indeed homoge-
neous maximal symmetry spaces.

4. Proof of main result for general solvable, unimodular groups

To prove this result, we start by adjusting our metric so as to enlarge the isometry
group to one which is the isometry group of a left-invariant metric on a completely
solvable, unimodular group. Then we show that the completely solvable group
obtained is unique up to conjugation and use this to prove that there is one largest
isometry group for R up to conjugation.

Enlarging the isometry group to find some completely solvable group.

Proposition 4.1. Let R be a simply connected, unimodular solvmanifold with left-
invariant metric g. There exists another left-invariant metric g′ such that

(i) Isom(R, g) < Isom(R, g′), and

(ii) Isom(R, g′) contains a transitive, completely solvable group S.

Proof of Proposition 4.1. From the work of Gordon and Wilson (see Lemma 2.3),
we have the existence of a transitive, solvable subgroup R′′ < Isom(R, g) such that

Isom(R, g)= AlgIsom(R′′, g)= C n R′′,

where C consists of orthogonal automorphisms of r′′. Here R′′ is the group in
standard position in Isom(R, g).

There exists a maximal compact subgroup K of Aut(R′′) containing C . Choose
any inner product g′ on r′′ so that K consists of orthogonal automorphisms. Then
we immediately see that Isom(R′′, g′) > K n R′′. Applying Lemma 2.9, we see
that R acts transitively by isometries on (R′′, g′) and so this new left-invariant
metric g′ on R′′ gives rise to a left-invariant metric on R. This choice of g′ satisfies
part (i).

To finish, we show that Isom(R, g′) contains a completely solvable group S
which acts transitively. Consider the group Ad(R′′) as a subgroup of Aut(R′′).
This group is a normal, solvable subgroup and so is a subgroup of the radical
Rad(Aut(R′′)) of Aut(R′′).

As Rad(Aut(R′′)) is an algebraic group, it has an algebraic Levi decomposition

Rad(Aut(R′′))= M n N,

where M is a maximal reductive subgroup and N is the unipotent radical (see
[Mostow 1956]). Furthermore, the group M is abelian and decomposes as M =
MK MP , where MK is a compact torus and MP is a split torus. As maximal compact
subgroups are all conjugate and Rad(Aut(R′′)) does not change under conjugation,
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we may assume, after possibly changing M , that MK < K. So given X ∈ r′′, we
may write

ad X = K X + PX + NX ,

where K X ∈ Lie MK , PX ∈ Lie MP , and NX ∈ n = Lie N. Note, K X has purely
imaginary eigenvalues while PX has real eigenvalues.

Now define the set s⊂ r′′oLie MK ⊂ Lie Isom(R′′, g′) as

s := {X − K X | X ∈ r′′}.

Since the K X all commute, the nilradical of r′′ is contained in s, and derivations
of r′′ are valued in the nilradical, we see that s is a solvable Lie algebra.

Note that s is completely solvable (this follows as in the proof of Proposition 2.1)
and S acts transitively (via Lemma 2.9). �

As completely solvable groups are always in standard position (Proposition 2.6),
we see that R is a modification of the group S and that

Isom(R, g) < Isom(R, g′)= Isom(S, g′)= S oC,

where C is the compact group of orthogonal automorphisms of s, relative to g′.
Let K denote a maximal compact group of automorphisms of s and g′′ an inner
product on s such that Isom(S, g′′)= SoK. As R⊂ SnC ⊂ SnK acts transitively
and isometrically on (S, g′′), it picks up a left-invariant metric g′′ such that

Isom(R, g) < Isom(R, g′′).

In this way, we have found an isometry group Isom(R, g′′) which is a maximal
isometry group for S and so by Theorem 3.1 cannot be any larger.

This is a reasonable candidate for maximal isometry group for R; we verify this
in the sequel.

The uniqueness of S. The group S, constructed above, depends on several choices
made based on various initial and chosen metrics. More precisely, one starts with
metric g, makes two modifications to obtain the group R′′, then changes the metric
to some g′ to extract the group S.

If one were to start with a different metric h on R, then R′′ would certainly be
different and so it is unclear, a priori, how the resulting S for h would compare to
the group S built from the other metric g. Surprisingly, they must be conjugate via
Aut(R).

Proposition 4.2. There exists a maximal compact subalgebra k of Der(r) such
that s is the maximal completely solvable ideal of ro k.

Before proving this proposition, we use it to show that any two groups S con-
structed from R are conjugate via Aut(R).
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Let g and h be two different metrics on R with associated completely solvable
algebras sg and sh , respectively. Let kg and kh be the compact algebras as in
Proposition 4.2 for g and h, respectively. As the maximal compact subgroup of a
group is unique up to conjugation, we have some φ ∈Aut(R) such that kg =φkhφ

−1.
This implies

φshφ
−1
⊂ roφkhφ

−1
= ro kg.

As φshφ
−1 is completely solvable and of the same dimension as the maximal

completely solvable sg, they must be equal; cf. Proposition 2.1.
We now prove Proposition 4.2.

Lemma 4.3. Let s be a completely solvable Lie algebra with inner product. Any
modification of s (in its isometry algebra) is a normal modification.

Remark 4.4. In the special case of nilpotent Lie algebras, this result was already
known [Gordon and Wilson 1988, Theorem 2.5]. Building on that result, we extend
it to all completely solvable groups.

Proof. Let r= (id+φ)s be a modification of s with modification map φ : s→ Nl(s),
where Nl(s) is the set of skew-symmetric derivations of s; cf. [Gordon and Wilson
1988, Proposition 3.3]. To show this is a normal modification, it suffices to show
[s, s] ⊂ Kerφ by Proposition 2.4 of [Gordon and Wilson 1988].

Denote the nilradical of s by n(s). As every derivation of s takes its value in n(s),
we can decompose s= a+ n(s) where a is annihilated by Nl(s). As φ is linear, to
show [s, s] ⊂ Kerφ, it suffices to show [a, a], [a, n(s)], [n(s), n(s)] ⊂ Kerφ.

Take X, Y ∈ a. By the construction of a and Proposition 2.4 (i) of [Gordon and
Wilson 1988], we have

[X, Y ] = φ(X)Y −φ(Y )X + [X, Y ] = [φ(X)+ X, φ(Y )+ Y ] ∈ Kerφ.

Now consider X ∈ a and Y ∈ n(s). As above, the following is contained in Kerφ:

[φ(X)+ X, φ(Y )+ Y ] = φ(X)Y + [X, Y ],

that is, ad(φ(X)+ X) : n(s)→ Kerφ.
Since every derivation of s takes its image in n(s), and r ⊂ Nl(s)n s, we see

that n(s) is stable under D=ad(φ(X)+X)=φ(X)+ad X. Denoting the generalized
eigenspaces of D on n(s)C by Vλ, we have

n(s)=
⊕

(Vλ⊕ Vλ̄)∩ n(s).

Each summand is invariant under both φ(X) and ad X as these commute. Further, if
λ=a+bi , then on Vλ we have φ(X)2=−b2 Id and ad X can be realized as an upper
triangular matrix whose diagonal is a Id. Observe that Ker D=Kerφ(X)∩Ker ad X,
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so if b 6=0, then we see that D is nonsingular on Vλ and Vλ̄. This implies Vλ=D(Vλ)
and Vλ̄ = D(Vλ̄), which implies

Im(ad X |(Vλ⊕Vλ̄)∩n(s))⊂ (Vλ⊕ Vλ̄)∩ n(s)⊂ Im(D|n(s))⊂ Kerφ.

If b = 0, then Vλ = Vλ̄ and D|Vλ = ad X |Vλ , which implies

ad X |Vλ ⊂ Kerφ.

All together, this proves [a, n(s)] ⊂ Kerφ.
To finish, one must show [n(s), n(s)] ⊂Kerφ. However, as every derivation of s

preserves n(s), we may restrict our modification to n(s) and we have a modification

n′ = (id+φ)n(s)⊂ Nl(s)n n(s).

Theorem 2.5 of [Gordon and Wilson 1988] shows that any modification of a nilpotent
subalgebra must be a normal modification. Now [loc. cit., Proposition 2.4 (ii d)]
implies [n(s), n(s)] ⊂ Kerφ. This completes the proof of our lemma. �

Remark 4.5. Not all modifications are normal modifications, even in the case of
starting with an algebra in standard position. An example of this can be found
in Example 3.9 of [Gordon and Wilson 1988]. We warn the reader that there are
some typos in that example, the block diagonal matrices of A and V1 should be
interchanged. And then one should replace A− V1 with A+ V1 throughout the
example.

As explained in the discussion surrounding Lemmas 2.7 and 2.8, r and s are
normal modifications of each other and there is an abelian subalgebra t of the
stabilizer subalgebra which normalizes both r and s satisfying s⊂ ro t. Here s is
an ideal.

The proposition follows immediately from the following lemma.

Lemma 4.6. Let k be any maximal compact subalgebra of Der(r) containing t.
Then s is a maximal completely solvable ideal of ro k (cf. Proposition 2.1).

Proof. By the construction of s, it is clearly a complement of k in ro k. Further,
every element of ad k has purely imaginary eigenvalues on ro k, and so s will be a
maximal completely solvable ideal as soon as we show that it is ideal.

As [s, r] ⊂ s by Lemma 2.8, it suffices to show that s is stable under k. However,
as every derivation of r takes its image in the nilradical, it suffices to show that s
contains the nilradical of r.

As stated above, r being a normal modification of s gives r ⊂ so t where t

consists of skew-symmetric derivations of s and so every element of r may be
written as X + K where X ∈ s and K ∈ t⊂ Der(s)∩ so(s). One can quickly see,
as in the proof of Proposition 2.1, that the eigenvalues of ad(X + K ) are sums
of eigenvalues of ad X and K. Since ad X has real eigenvalues and K has purely
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imaginary eigenvalues, we see that ad(X + K ) having only the zero eigenvalue
implies K = 0. That is, the nilradical of r is contained in s. �

Before moving on with the rest of the proof of our main result, we record a
consequence of the work done above.

Theorem 4.7. Let R be a solvable Lie group. Up to isomorphism, there is a single
completely solvable group S which can be realized as a modification of R.

Maximal symmetry for R. We are now in a position to complete the proof that
for a simply connected, unimodular solvable Lie group, there is a single largest
isometry group up to conjugation by diffeomorphisms. In fact, we will see that
the diffeomorphism can be chosen to be a composition of an automorphism of R
together with an automorphism of S.

Starting with a metric g on R, we first construct another metric g′′ such that

Isom(R, g) < Isom(R, g′′)= Sg o K ,

where S= Sg is a completely solvable group (depending on g) and K is some maxi-
mal compact subgroup of Aut(S). Let h be another metric on R with corresponding
group Sh . From the above, we may replace h with φ∗h for some φ ∈ Aut(R) to
assume that Sh = Sg = S.

Now, as K is unique up to conjugation in Aut(S), we have the desired result.

Proof of Corollary 1.3. As in the above, the strategy is to reduce to the setting of
completely solvable groups. We briefly sketch the argument for doing this.

By Theorem 8.2 of [Jablonski 2015a], any solvable Lie group R admitting a
Ricci soliton metric must be a modification of a completely solvable group S which
admits a Ricci soliton. (In fact, those Ricci soliton metrics are isometric.) From
our work above, the modification is a normal modification and so the group S
is the same as the group we constructed above. Now the problem is reduced to
proving that Ricci soliton metrics on completely solvable Lie groups are maximally
symmetric, but this has been resolved — see Theorem 4.1 of [Jablonski 2011].

5. Constructing S from algebraic data of R

In the above work, we started with a solvable Lie group R and built an associated
completely solvable Lie group S. The group S was unique, up to conjugation by
Aut(R), but it was built by starting with a metric on R, making modifications to R,
changing the metric, making more modifications and then extracting information
from the modification R′′. We now give a straightforward description of the group S.

Let K be some choice of maximal compact subgroup of Aut(R). The group S is
the simply connected Lie group whose Lie algebra is the “orthogonal complement”
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of k in ro k relative to the Killing form of ro k, i.e.,

(5-1) s= {X ∈ ro k | B(X, Y )= 0 for all Y ∈ k},

where B is the Killing form of ro k.
One can see this quickly by showing that the algebra described in (5-1) is also

a maximal completely solvable ideal and then Proposition 2.1 shows that it must
be s. The details of the proof are similar to work done above and so we leave them
to the diligent reader.

References

[Auslander and Green 1966] L. Auslander and L. W. Green, “G-induced flows”, Amer. J. Math. 88
(1966), 43–60. MR Zbl

[Epstein and Jablonski 2018] J. Epstein and M. Jablonski, “Lack of maximal symmetry in non-
unimodular solvmanifolds”, preprint, 2018.

[Gordon 1980] C. Gordon, “Riemannian isometry groups containing transitive reductive subgroups”,
Math. Ann. 248:2 (1980), 185–192. MR Zbl

[Gordon and Jablonski 2015] C. S. Gordon and M. R. Jablonski, “Einstein solvmanifolds have
maximal symmetry”, 2015. To appear in J. Differential Geom. arXiv

[Gordon and Wilson 1988] C. S. Gordon and E. N. Wilson, “Isometry groups of Riemannian solv-
manifolds”, Trans. Amer. Math. Soc. 307:1 (1988), 245–269. MR Zbl

[Jablonski 2011] M. Jablonski, “Concerning the existence of Einstein and Ricci soliton metrics on
solvable Lie groups”, Geom. Topol. 15:2 (2011), 735–764. MR Zbl

[Jablonski 2015a] M. Jablonski, “Homogeneous Ricci solitons”, J. Reine Angew. Math. 699 (2015),
159–182. MR Zbl

[Jablonski 2015b] M. Jablonski, “Strongly solvable spaces”, Duke Math. J. 164:2 (2015), 361–402.
MR Zbl

[Mostow 1956] G. D. Mostow, “Fully reducible subgroups of algebraic groups”, Amer. J. Math. 78
(1956), 200–221. MR Zbl

[Ochiai and Takahashi 1976] T. Ochiai and T. Takahashi, “The group of isometries of a left invariant
Riemannian metric on a Lie group”, Math. Ann. 223:1 (1976), 91–96. MR Zbl

Received March 19, 2018. Revised July 25, 2018.

MICHAEL JABLONSKI

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OKLAHOMA

NORMAN, OK
UNITED STATES

mjablonski@math.ou.edu

http://dx.doi.org/10.2307/2373046
http://msp.org/idx/mr/0199308
http://msp.org/idx/zbl/0149.19903
http://dx.doi.org/10.1007/BF01421956
http://msp.org/idx/mr/573347
http://msp.org/idx/zbl/0412.53026
http://msp.org/idx/arx/1507.08321
http://dx.doi.org/10.2307/2000761
http://dx.doi.org/10.2307/2000761
http://msp.org/idx/mr/936815
http://msp.org/idx/zbl/0664.53022
http://dx.doi.org/10.2140/gt.2011.15.735
http://dx.doi.org/10.2140/gt.2011.15.735
http://msp.org/idx/mr/2800365
http://msp.org/idx/zbl/1217.22005
http://dx.doi.org/10.1515/crelle-2013-0044
http://msp.org/idx/mr/3305924
http://msp.org/idx/zbl/1315.53046
http://dx.doi.org/10.1215/00127094-2861277
http://msp.org/idx/mr/3306558
http://msp.org/idx/zbl/1323.53049
http://dx.doi.org/10.2307/2372490
http://msp.org/idx/mr/0092928
http://msp.org/idx/zbl/0073.01603
http://dx.doi.org/10.1007/BF01360280
http://dx.doi.org/10.1007/BF01360280
http://msp.org/idx/mr/0412354
http://msp.org/idx/zbl/0318.53042
mailto:mjablonski@math.ou.edu




PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2019 is US $490/year for the electronic version, and $665/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 298 No. 2 February 2019

257Uniqueness questions for C∗-norms on group rings
VADIM ALEKSEEV and DAVID KYED

267Expected depth of random walks on groups
KHALID BOU-RABEE, IOAN MANOLESCU and AGLAIA

MYROPOLSKA

285Signature ranks of units in cyclotomic extensions of abelian number
fields

DAVID S. DUMMIT, EVAN P. DUMMIT and HERSHY KISILEVSKY

299Semistable deformation rings in even Hodge–Tate weights
LUCIO GUERBEROFF and CHOL PARK

375Nonholomorphic Lefschetz fibrations with (−1)-sections
NORIYUKI HAMADA, RYOMA KOBAYASHI and NAOYUKI

MONDEN

399Tilting modules over Auslander–Gorenstein algebras
OSAMU IYAMA and XIAOJIN ZHANG

417Maximal symmetry and unimodular solvmanifolds
MICHAEL JABLONSKI

429Concordance of Seifert surfaces
ROBERT MYERS

445Resolutions for twisted tensor products
ANNE SHEPLER and SARAH WITHERSPOON

471Iterated automorphism orbits of bounded convex domains in Cn

JOSHUA STRONG

483Sharp logarithmic Sobolev inequalities along an extended Ricci flow and
applications

GUOQIANG WU and YU ZHENG

0030-8730(201902)298:2;1-Q

Pacific
JournalofM

athem
atics

2019
Vol.298,N

o.2


	1. Introduction
	2. Preliminaries
	Isometry groups and modifications
	Transitive groups of isometries

	3. Proof of main result in the special case of  completely solvable and unimodular groups
	4. Proof of main result for general solvable, unimodular groups
	Enlarging the isometry group to find some completely solvable group
	The uniqueness of S
	Maximal symmetry for R
	Proof of Corollary 1.3

	5. Constructing S from algebraic data of R
	References
	
	

