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RESOLUTIONS FOR TWISTED TENSOR PRODUCTS

ANNE SHEPLER AND SARAH WITHERSPOON

We build resolutions for general twisted tensor products of algebras. These
bimodule and module resolutions unify many constructions in the literature
and are suitable for computing Hochschild (co)homology and more generally
Ext and Tor for (bi)modules. We analyze in detail the case of Ore exten-
sions, consequently obtaining Chevalley–Eilenberg resolutions for universal
enveloping algebras of Lie algebras (defining the cohomology of Lie groups
and Lie algebras). Other examples include semidirect products, crossed
products, Weyl algebras, Sridharan enveloping algebras, and Koszul pairs.

1. Introduction

Motivated by questions in noncommutative geometry, Čap, Schichl, and Vanžura
[Čap et al. 1995] introduced a very general twisted tensor product of algebras to
replace the (commutative) tensor product. Their examples included noncommutative
2-tori and crossed products of C∗-algebras with groups. Many other algebras
of interest arise as twisted tensor product algebras: crossed products with Hopf
algebras, algebras with triangular decomposition (e.g., universal enveloping algebras
of Lie algebras and quantum groups), braided tensor products defined by R-matrices,
and other biproduct constructions. In fact, twisted tensor product algebras are
abundant: If an algebra is isomorphic to A⊗ B as a vector space for two of its
subalgebras A and B under the canonical inclusion maps, then it must be isomorphic
to a twisted tensor product A⊗τ B for some twisting map τ : B ⊗ A→ A⊗ B
(see [Čap et al. 1995]).

Modules over a twisted tensor product algebra arise from tensoring together
modules for the individual algebras: If M and N are modules over algebras A and B,
respectively, compatible with a twisting map τ , then M⊗ N adopts the structure of
a module over A⊗τ B. We describe in this note a general method to twist together
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resolutions of A-modules and B-modules in order to construct resolutions for the cor-
responding modules over the twisted tensor product A⊗τB. A similar method works
for bimodules. In particular, we twist together resolutions of algebras over a field
to obtain a resolution for a twisted tensor product algebra as a bimodule over itself.

We are motivated by a desire to understand deformations of twisted tensor
products and to describe the homology theory in terms of the homology of the
original factor algebras. For example, under some finiteness assumptions, the
Hochschild cohomology of a tensor product of algebras is the tensor product of
their Hochschild cohomology rings. A similar statement is true of the cohomology
of augmented algebras. Both results hold because the tensor product of projective
resolutions for the factor algebras is a projective resolution for the tensor product
of the algebras.

In some particular settings, similar homological constructions have appeared for
modified versions of the tensor product of algebras. We mention just a few examples.
Gopalakrishnan and Sridharan [1966] constructed resolutions for modules of Ore
extensions. Bergh and Oppermann [2008] twisted resolutions when the twisting
arises from a bicharacter on grading groups. Jara, López Peña, and Ştefan [Jara
et al. 2017] worked with Koszul pairs. Guccione and Guccione [1999; 2002] built
resolutions for twisted tensor products, in particular crossed products with Hopf
algebras, out of bar and Koszul resolutions of the factor algebras. We adapted
this last construction in [Shepler and Witherspoon 2014] to handle more general
resolutions for the case of skew group algebras in order to understand deformations.
Walton and the second author generalized these resolutions to smash products with
Hopf algebras in [Walton and Witherspoon 2014].

In this paper, we unify many of these previous constructions and provide methods
useful in new settings for finding resolutions of modules over twisted tensor product
algebras: We show very generally that projective resolutions for bimodules of
two factor algebras can be twisted together to construct a projective resolution for
the resulting bimodule for the twisted tensor product given some compatibility
conditions. This twisting of resolutions provides an efficient means for computing
and handling Hochschild (co)homology in particular. A similar construction applies
to projective (left) module resolutions used, for example, to compute (co)homology
of augmented algebras.

We verify that many known resolutions may be viewed as twisted resolutions
in this way, including some of those mentioned above. We give details in the case
of Ore extensions. In particular, the bimodule Koszul resolution of a universal
enveloping algebra U(g) is a twisted resolution when g is a finite-dimensional
supersolvable Lie algebra. More general Lie algebras can be handled via triangular
decomposition. Our method also leads to standard resolutions for Weyl algebras
and some Sridharan enveloping algebras. For an Ore extension, we adapt results of
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Gopalakrishnan and Sridharan [1966] to construct twisted product resolutions of
modules. We thus regard the Chevalley–Eilenberg complex of U(g) as a twisted
product resolution. This defines Lie algebra and Lie group cohomology in terms of
an iterative twisting of resolutions.

In Section 2, we give definitions and some preliminary results. Bimodule twisted
tensor product complexes are constructed in Section 3 and we show they give
projective resolutions in Theorem 3.10. Section 4 gives applications to some types
of Ore extensions. We construct twisted tensor product complexes for resolving
modules in Section 5, and we show these complexes are projective resolutions in
Theorem 5.12. Applications to Ore extensions appear in Section 6.

We fix a field k of arbitrary characteristic throughout. All tensor products are
over k unless otherwise indicated, i.e., ⊗ = ⊗k , and all algebras are k-algebras.
Modules are left modules unless otherwise described.

2. Twisted tensor product algebras and compatible resolutions

In this section, we recall twisted tensor product algebras from [Čap et al. 1995]
and define a compatibility condition necessary for twisting resolutions together.
Examples include skew group algebras and crossed products with Hopf algebras
[Montgomery 1993], twisted tensor products given by bicharacters of grading
groups [Bergh and Oppermann 2008], braided products arising from R-matrices
[Manin 1988], two-cocycle twists of Hopf algebras [Radford and Schneider 2008],
and more.

Let A and B be associative algebras over k with multiplication maps m A :

A⊗A→ A and m B : B⊗B→ B and multiplicative identities 1A and 1B , respectively.
We write 1 for the identity map on any set.

Twisted tensor products. A twisting map

τ : B⊗ A→ A⊗ B

is a bijective k-linear map for which τ(1B ⊗ a)= a⊗ 1B and τ(b⊗ 1A)= 1A⊗ b
for all a ∈ A and b ∈ B, and

(2.1) τ ◦ (m B ⊗m A)= (m A⊗m B) ◦ (1⊗ τ ⊗ 1) ◦ (τ ⊗ τ) ◦ (1⊗ τ ⊗ 1)

as maps B⊗B⊗ A⊗ A→ A⊗B. The twisted tensor product algebra A⊗τB is the
vector space A⊗ B together with multiplication mτ given by such a twisting map τ .
By [Čap et al. 1995, Proposition/Definition 2.3], the algebra A⊗τ B is associative.

Note that the left-right distinction in a twisted tensor product algebra is artificial
since A⊗τ B ∼= B ⊗τ−1 A. Indeed, one might identify A⊗τ B with the algebra
generated by A and B (so that A and B are subalgebras) with relations given by (2.1).
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If A and B are N-graded algebras, we take the standard N-grading on A⊗ B and
B⊗ A and say a twisting map τ is strongly graded if it takes B j ⊗ Ai to Ai ⊗ B j

for all i, j following Conner and Goetz [2018]. (Note that [Jara et al. 2017] leave
off the adjective strongly.) In this case, the twisted tensor product algebra A⊗τ B
is N-graded.

Example 2.2. The Weyl algebra W = k〈x, y〉/(xy − yx − 1) is isomorphic to
the twisted tensor product A⊗τ B of A = k[x] and B = k[y] with twisting map
τ : B ⊗ A→ A⊗ B defined by τ(y ⊗ x) = x ⊗ y − 1⊗ 1. Likewise, the Weyl
algebra Wn on 2n indeterminates, which is equal to

k〈x1, . . . , xn, y1, . . . , yn〉/(xi x j−x j xi , yi y j−y j yi , xi y j−y j xi−δi, j :1≤ i, j≤n),

is isomorphic to a twisted tensor product. These are examples of (iterated) Ore
extensions, which we consider in detail in Section 4.

Example 2.3. A skew group algebra S o G for a finite group G acting on an
algebra S by automorphisms is isomorphic to the twisted tensor product kG⊗τ S
of the group algebra kG and of S. The twisting map τ is defined by τ(s ⊗ g) =
g⊗ g−1(s) for s ∈ S and g ∈ G. We consider the special case where S is a Koszul
algebra at the end of Section 3.

Bimodules over twisted tensor products. We fix a twisting map τ : B⊗A→ A⊗B
for k-algebras A and B.

Definition 2.4. An A-bimodule M is compatible with τ if there is a bijective k-
linear map τB,M : B⊗M→ M ⊗ B commuting with the bimodule structure of M
and multiplication in B, i.e., as maps on B ⊗ B ⊗ M and on B ⊗ A ⊗ M ⊗ A,
respectively,

τB,M(m B ⊗ 1)= (1⊗m B)(τB,M ⊗ 1)(1⊗ τB,M), and(2.5)

τB,M(1⊗ ρA,M)= (ρA,M ⊗ 1)(1⊗ 1⊗ τ)(1⊗ τB,M ⊗ 1)(τ ⊗ 1⊗ 1),(2.6)

where ρA,M : A ⊗ M ⊗ A→ M is the bimodule structure map. If A is graded
and M is a graded A-bimodule, we say that M is compatible with a strongly graded
twisting map τ if there is a map τB,M as above that takes Bi ⊗M j to M j ⊗ Bi for
all i, j.

Remark 2.7. Note that the above definition applies to B-bimodules as well as A-
bimodules by reversing the roles of A and B. Indeed, we apply the definition to the
algebra B, the twisted tensor product B⊗τ−1 A, and the twisting map τ−1 to obtain
conditions for a B-bimodule N to be compatible with τ−1. We may rewrite these
conditions using the convenient notation τN ,A = (τ

−1
A,N )

−1. We obtain an equivalent
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right version of the above definition: A given B-bimodule N is compatible with
τ−1 when there is some bijective k-linear map τN ,A : N ⊗ A→ A⊗ N satisfying

τN ,A(1⊗m A)= (m A⊗ 1)(1⊗ τN ,A)(τN ,A⊗ 1) and(2.8)

τN ,A(ρB,N ⊗ 1)= (1⊗ ρB,N )(τ ⊗ 1⊗ 1)(1⊗ τN ,A⊗ 1)(1⊗ 1⊗ τ),(2.9)

as maps on N ⊗ A⊗ A and on B⊗ N ⊗ B⊗ A, respectively, where

ρB,N : B⊗ N ⊗ B→ N

is the bimodule structure map.

In light of the last remark, we will say a bimodule is compatible with τ when it
is either an A-bimodule compatible with τ or a B-bimodule compatible with τ−1,
since one often identifies A⊗τ B and the isomorphic algebra B⊗τ−1 A in practice.

Remark 2.10. An A-bimodule M is compatible with the twisting map τ exactly
when there is a bijective k-linear map

τB,M : B⊗M→ M ⊗ B

making the following diagram commute:

(2.11)

B⊗M⊗B

τB,M⊗1

((

B⊗B⊗M

1⊗τB,M

66

m B⊗1
##

M⊗B⊗B

1⊗m B
{{

B⊗M
τB,M

// M⊗B

B⊗A⊗M⊗A

τ⊗1⊗1
##

1⊗ρA,M

;;

A⊗M⊗A⊗B

ρA,M⊗1
cc

A⊗B⊗M⊗A
1⊗ τB,M⊗1

// A⊗M⊗B⊗A

1⊗1⊗τ

;;

A similar diagram expresses compatibility of a B-bimodule N with τ .

Example 2.12. Let M= A, an A-bimodule via multiplication. Then A is compatible
with τ via τB,A = τ . Similarly N = B is compatible with τ .
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Bimodule structure. When M and N are compatible with τ , the tensor product
M ⊗ N is naturally an A⊗τ B-bimodule via the following composition of maps:

(2.13) A⊗τ B⊗M⊗N⊗A⊗τ B 1⊗ τB,M⊗ τN ,A⊗1
−−−−−−−−−→ A⊗M⊗B⊗A⊗N⊗B

1⊗1⊗ τ ⊗1⊗1
−−−−−−−−−→ A⊗M⊗A⊗B⊗N⊗B

ρA,M⊗ ρB,N−−−−−−−−−→M⊗N .

Bimodule resolutions. For any k-algebra A, let Ae
= A⊗ Aop be its enveloping

algebra, with Aop the opposite algebra to A. We view an A-bimodule M as a left
Ae-module. In Lemma 3.1 below, we will construct a projective resolution of an
(A⊗τ B)e-module M ⊗ N from individual resolutions of M and N using some
compatibility conditions. Let Pq(M) be an Ae-projective resolution of M and let
Pq(N ) be a Be-projective resolution of N :

· · · → P2(M)→ P1(M)→ P0(M)→ M→ 0,(2.14)

· · · → P2(N ) → P1(N ) → P0(N ) → N → 0.(2.15)

Bar and reduced bar resolutions. For example, M could be A itself and Pq(A)
could be the bar resolution Bar q(A) given by Barn(A)= A⊗(n+2) with differential

a0⊗ a1⊗ · · ·⊗ an+1 7→

n∑
i=0

(−1)i a0⊗ · · ·⊗ ai ai+1⊗ · · ·⊗ an+1

for all n ≥ 0 and a0, a1, . . . , an+1 ∈ A. We also use the reduced bar resolution
Bar q(A) with Barn(A) = A⊗ A⊗n

⊗ A for A = A/k1A and differential given by
the same formula.

Compatibility conditions. We now define what it means for resolutions to be com-
patible with the twisting map τ . We tensor arbitrary resolutions (2.14) and (2.15)
with A and B on the right and left to obtain complexes

Pq(N )⊗ A, A⊗ Pq(N ), Pq(M)⊗ B, and B⊗ Pq(M).
Viewing these simply as exact sequences of vector spaces, we note that any k-linear
maps τN ,A : N ⊗ A→ A⊗ N and τB,M : B⊗M→ M⊗ B can be lifted to k-linear
chain maps

(2.16) τPq(N ),A : Pq(N )⊗A→ A⊗Pq(N ) and τB,Pq(M) : B⊗Pq(M)→ Pq(M)⊗B.

For simplicity in the sequel, we will write τi,A = τPi (N ),A and τB,i = τB,Pi (M), for
each i , when no confusion will arise. We will use such maps to glue the two
resolutions together provided they satisfy the following compatibility conditions.
These conditions just state that the chain maps commute with multiplication and
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with bimodule structure maps. There are many settings in which compatible chain
maps do exist, as we will see.

Definition 2.17. Let M be an A-bimodule that is compatible with τ . A projective
A-bimodule resolution Pq(M) is compatible with the twisting map τ if each Pi (M)
is compatible with τ via a map

τB,i : B⊗ Pi (M)→ Pi (M)⊗ B,

with τB, q a chain map lifting τB,M . Suppose A is graded, M is a graded A-bimodule,
and Pq(M) is a graded projective A-bimodule resolution; we say that Pq(M) is
compatible with a strongly graded twisting map τ if there are maps τB,i as above
taking B j ⊗ (Pi (M))l to (Pi (M))l ⊗ B j for all j, l.

Remark 2.18. The above definition applies to B-bimodule resolutions as well as
A-bimodule resolutions by reversing the roles of A and B in the definition, again as
A⊗τ B = B⊗τ−1 A. For a B-bimodule N that is compatible with τ , the definition
implies that a projective B-bimodule resolution Pq(N ) of N is compatible with the
twisting map τ when each Pi (N ) is compatible with τ via a map

τi,A : Pi (N )⊗ A→ A⊗ Pi (N ),

with τ q,A a chain map lifting τN ,A. Thus we say a resolution is compatible with τ if
it is either an A-bimodule resolution or a B-bimodule resolution compatible with τ .

We provide some small examples later: Example 2.21 (Weyl algebra) and
Example 3.13 (skew group algebra). First, a remark on embedding resolutions and
some general results.

Remark 2.19. Note that compatibility is preserved under embedding of resolutions
so long as the extensions of the twisting map τ preserve the embedding. Specifically,
assume

φ q : Q q(A) ↪→ Pq(A)
is an embedding of resolutions of the algebra A, and Pq(A) is compatible with a
twisting map τ : B⊗ A→ A⊗ B via chain maps

τB,i : B⊗ Pi (A)→ Pi (A)⊗ B.

If the maps τB,i preserve the embedding in the obvious sense that each τB,i restricts
to a surjective map B⊗ Im(φ)� Im(φ)⊗ B, then Q q(A) is compatible with τ via
these restrictions.

Compatibility of bar and Koszul resolutions. If A and B are both Koszul algebras
and τ is a strongly graded twisting map, then the algebra A⊗τ B is known to be
Koszul (see [Polishchuk and Positselski 2005, Example 4.7.3], [Jara et al. 2017,
Corollary 4.1.9], or [Walton and Witherspoon 2018, Proposition 1.8]). Conner
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and Goetz [2018] examine the situation when τ is not strongly graded. We show
next that both bar and Koszul resolutions are compatible with twisting maps. We
always assume our Koszul algebras are connected graded algebras, so that they are
quotients of tensor algebras on generating vector spaces in degree 1. Note that the
roles of A and B may be exchanged in the next proposition.

Proposition 2.20. Let τ be a twisting map for some k-algebras A and B.

(1) The bar resolution Bar q(A) is compatible with τ .

(2) The reduced bar resolution Bar q(A) is compatible with τ .

(3) If A is a Koszul algebra, B is a graded algebra, and τ is strongly graded, then
the Koszul resolution Kos q(A) is compatible with τ .

Proof. (i) The bar resolution of A may be twisted by repeated application of the
map τ , i.e., define

τB,i : B⊗ A⊗(i+2)
→ A⊗(i+2)

⊗ B

by applying τ to the first two tensor factors on the left, then applying τ to next two
tensor factors, and so on:

τB,i = (1⊗· · ·⊗1⊗τ)(1⊗· · ·⊗1⊗τ⊗1) · · · (1⊗τ⊗1⊗· · ·⊗1)(τ⊗1⊗· · ·⊗1).

Then Bar q(A) is compatible with τ via τB,i , as may be verified directly by repeated
use of (2.1).

(ii) Write the terms in the bar complex Bar q(A) as Pi = A⊗(i+2) for each i , and define
the terms in the reduced bar complex Bar q(A) by P i = A⊗ A⊗i

⊗ A. For each i , let
Ti be the kernel of the quotient map Bari (A)→ Bari (A). Then Tq is a subcomplex
of Bar q(A) and Bar q(A) ∼= Bar q(A)/Tq. By definition of the twisting map τ , the
multiplicative identity 1A commutes with elements of B under τ , implying that τB,i

of part (i) takes B⊗Ti onto Ti⊗B for each i . Let τ B,i : B⊗Bari (A)→Bari (A)⊗B
be the corresponding map on quotients. Then Bar q(A) is compatible with τ via the
maps τ B,i .

(iii) The proof of [Walton and Witherspoon 2018, Proposition 1.8] shows that the
embedding Kos q(A) ↪→Bar q(A) of bimodule resolutions is preserved by the iterated
twisting in part (i) above (see Remark 2.19). Thus Kos q(A) satisfies compatibility. �

We next give an example showing how Proposition 2.20 can be used for Koszul
resolutions even when the twisting map τ is not strongly graded.

Example 2.21. As in Example 2.2, let W be the Weyl algebra on x, y with A= k[x]
and B = k[y]. Let Kos q(A) be the Koszul resolution of A as an A-bimodule,

0→ A⊗ V ⊗ A d1
−→ A⊗ A m

−→ A→ 0,
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where V = Spank{x} ⊂ A, d1(1⊗ x ⊗ 1)= x ⊗ 1− 1⊗ x , and m is multiplication.
Let τ : B⊗ V → V ⊗ B be the swap map b⊗ v 7→ v⊗ b for all b in B and v in V,
and define

τ B, q : B⊗Kos q(A)→ Kos q(A)⊗ B

by iterations of τ and τ :

τ B,0 : B⊗ A⊗ A τ⊗1
−−−−−→ A⊗ B⊗ A 1⊗τ

−−−−−→ A⊗ A⊗ B, and

τ B,1 : B⊗ A⊗ V ⊗ A τ⊗1⊗1
−−−−−→ A⊗ B⊗ V ⊗ A

1⊗τ⊗1
−−−−−→ A⊗ V ⊗ B⊗ A 1⊗1⊗τ

−−−−−→ A⊗ V ⊗ A⊗ B.

Define τ q,A : Kos q(B)⊗ A → A ⊗ Kos q(B) similarly for the Koszul resolution
Kos q(B) of B. Note that τ is not strongly graded, so part (iii) of Proposition 2.20
does not apply even though both A and B are Koszul algebras. Instead, we appeal
to part (ii) and Remark 2.19 after taking canonical embeddings Kos q(A) ↪→Bar q(A)
and Kos q(B) ↪→Bar q(B). (For example, view A⊗V⊗A as a subspace of A⊗A⊗A;
the terms in other degrees are either 0 or the same as in the bar resolution.) The
maps τ B, q and τ q,A above are the restrictions to B⊗Kos q(A) and Kos q(B)⊗ A of
the maps of the same name in the proof of Proposition 2.20(ii) (after identifying V
with its image under the quotient map A→ A). In this way, we see that the Koszul
resolutions Kos q(A) and Kos q(B) are compatible with the twisting map τ via τ B, q
and τ q,A. We extend these ideas in Theorem 4.2.

3. Twisted product resolutions for Bimodules

Again, we fix k-algebras A and B with a twisting map τ : B ⊗ A→ A⊗ B and
consider an A-bimodule M and B-bimodule N. We build a projective resolution of
M ⊗ N as a bimodule over A⊗τ B from resolutions Pq(M) and Pq(N ) under our
compatibility assumptions. We give the construction in Lemma 3.1, prove exactness
in Lemma 3.5, and show in Lemma 3.9 that the modules in the construction are
indeed projective under an additional assumption.

Lemma 3.1. Let M be an A-bimodule and let N be a B-bimodule, both compatible
with a twisting map τ . Let Pq(M) and Pq(N ) be projective A- and B-bimodule
resolutions of M and N, respectively, that are compatible with τ . For each i, j ≥ 0,
let

(3.2) X i, j = Pi (M)⊗ Pj (N ),

an A⊗τ B-bimodule via diagram (2.13). Then X q, q is a bicomplex of A⊗τ B-
bimodules with horizontal and vertical differentials given by dh

i, j = di ⊗ 1 and
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dvi, j = (−1)i ⊗ d j , where di and d j denote the differentials of the appropriate
resolutions:

...

��

...

��

...

��

X0,2

dv0,2
��

X1,2
dh

1,2
oo

dv1,2
��

X2,2
dh

2,2
oo

dv2,2
��

· · ·oo

X0,1

dv0,1
��

X1,1
dh

1,1
oo

dv1,1
��

X2,1
dh

2,1
oo

dv2,1
��

· · ·oo

X0,0 X1,0
dh

1,0
oo X2,0

dh
2,0

oo · · ·oo

Proof. The k-vector spaces X i, j form a tensor product bicomplex with differentials
as stated. The bimodule action of A⊗τ B on X i, j commutes with the horizontal
and vertical differentials since τ q,B and τA, q are chain maps. Therefore this is an
A⊗τ B-bimodule bicomplex. �

Definition 3.3. The twisted product complex X q is the total complex of X q, q, i.e.,
when augmented by M ⊗ N, it is the complex

(3.4) · · · → X2→ X1→ X0→ M ⊗ N → 0

with Xn =
⊕

i+ j=n X i, j , and n-th differential
∑

i+ j=n di, j where

di, j = di ⊗ 1+ (−1)i ⊗ d j .

Lemma 3.5. The twisted product complex (3.4) is exact.

Proof. By the Künneth theorem [Weibel 1994, Theorem 3.6.3], for each n there is
an exact sequence

0→
⊕

i+ j=n

Hi (Pq(M))⊗H j (Pq(N ))→ Hn(Pq(M)⊗ Pq(N ))
→

⊕
i+ j=n−1

Tork
1
(
Hi (Pq(M)),H j (Pq(N )))→ 0.

Now Pq(M) and Pq(N ) are exact other than in degree 0, where they have homology
M and N, respectively. Therefore

Hi (Pq(M))= 0 for all i > 0 and H j (P(N ))= 0 for all j > 0.

The Tor term is 0 since k is a field. Thus for all n> 0, Hn(Pq(M)⊗Pq(N ))= 0, and

H0(Pq(M)⊗ Pq(N ))∼= H0(Pq(M))⊗H0(Pq(N ))∼= M ⊗ N

as vector spaces. Thus the complex (3.4) is exact. �
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In practice, one often can show directly that each X i, j is projective as an A⊗τ B-
bimodule, for example, when working with bar resolutions and/or Koszul resolutions.
For the general case, we need an extra compatibility assumption, which we explain
next. As each Pi (N ) is a projective B-bimodule, it embeds into a free Be-module
(Be)⊕J for some indexing set J. In the following definition, we use the map
(τ ⊗ 1)(1⊗ τ) : Be

⊗ A→ A⊗ Be.

Definition 3.6. A chain map τi,A : Pi (N )⊗ A→ A⊗ Pi (N ) is compatible with a
chosen embedding Pi (N ) ↪→ (Be)⊕J (for some indexing set J ) if the corresponding
diagram is commutative:

Pi (N )⊗A ↪ //

τi,A

��

(Be)⊕J
⊗A

((τ⊗1)(1⊗τ))⊕J

��

A⊗Pi (N ) ↪ // A⊗(Be)⊕J

Similarly, the map τB,i of (2.16) is compatible with a chosen embedding of Pi (M)
into a free Ae-module (Ae)⊕I (for some indexing set I ) if the corresponding
diagram is commutative, i.e., if τB,i is the restriction of the map ((1⊗ τ)(τ ⊗1))⊕I

to B⊗ Pi (M).

Remark 3.7. In many settings, one sees directly that each X i, j is projective, in
which case one need not consider this extra compatibility condition, as the next
lemma is not needed. This is the case, for example, when twisting by a bicharacter
on grading groups (see [Bergh and Oppermann 2008, Lemma 3.3]). In other
settings, τi,A and τB,i are automatically compatible with chosen embeddings into
free modules, for example if A and B are Koszul algebras and the embeddings
are standard embeddings into bar resolutions (see [Walton and Witherspoon 2018,
Proposition 1.8]).

Example 3.8. As in Examples 2.2 and 2.21, let W ∼= A⊗τ B be the Weyl algebra
on x, y, A = k[x], and B = k[y]. By construction, each map τ i,A is compatible
with the canonical embedding Kosi (A) ↪→ Bari (A) and likewise τ B,i is compatible
with Kosi (B) ↪→ Bari (B).

Lemma 3.9. If τB,i and τ j,A are compatible with chosen embeddings of Pi (M)
and Pj (N ) into free modules, then X i, j = Pi (M)⊗ Pj (N ) is a projective A⊗τ B-
bimodule.

Proof. First we verify the lemma in the case where Pi (M)= Ae, Pj (N )= Be, and
the chosen embeddings are the identity maps. In this case,

X i, j = Ae
⊗ Be

= A⊗ Aop
⊗ B⊗ Bop.
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One checks that the map

1⊗ τ ⊗ 1 : A⊗ B⊗ (A⊗ B)op
→ A⊗ Aop

⊗ B⊗ Bop

is an isomorphism of (A⊗τ B)e-modules by (2.1) and the definition of the action
given in the proof of Lemma 3.1. If Pi (M) and Pj (N ) are arbitrary free modules,
and the chosen embeddings are identity maps, we apply the above map to each
summand Ae

⊗ Be of Pi (M)⊗ Pj (N ) to see that X i, j is a free (A⊗τ B)e-module.
Now we consider the general case, including the possibility that at least one of

Pi (M), Pj (N ) is free but the corresponding chosen embedding into a (possibly
different) free module is not the identity map. The first part of the proof together
with the compatibility hypothesis implies that the embedding of k-vector spaces
Pi (M) ⊗ Pj (N ) ↪→ (Ae)⊕I

⊗ (Be)⊕J given by the tensor product of the two
embedding maps is a map of (A⊗τ B)e-modules. �

We combine the lemmas to obtain the following theorem.

Theorem 3.10. Let A and B be k-algebras, and let τ : B ⊗ A → A ⊗ B be a
twisting map. Let M be an A-bimodule and N a B-bimodule with projective A- and
B-bimodule resolutions Pq(M) and Pq(N ), respectively. Assume that M, N, Pq(M),
and Pq(N ) are compatible with τ and the corresponding maps τB,i and τ j,A are
compatible with chosen embeddings of Pi (M) and Pj (N ) into free modules. Then
the twisted product complex with

Xn =
⊕

i+ j=n

X i, j for X i, j = Pi (M)⊗ Pj (N )

gives a projective resolution of M ⊗ N as a A⊗τ B-bimodule:

· · · → X2→ X1→ X0→ M ⊗ N → 0.

Proof. The result follows from Lemmas 3.1, 3.5, and 3.9. �

Remark 3.11. The theorem generally unifies known constructions of resolutions in
several different contexts, for example, twisted tensor products given by bicharacters
of grading groups [Bergh and Oppermann 2008], crossed products [Guccione and
Guccione 2002], skew group algebras (semidirect products) of Koszul algebras
and finite groups [Shepler and Witherspoon 2014], and smash products of Koszul
algebras with Hopf algebras [Walton and Witherspoon 2014].

Theorem 3.10 combined with Proposition 2.20 and Remark 3.7 implies that
a twisted product resolution of A⊗τ B as a bimodule always exists, since bar
resolutions may always be twisted (and likewise Koszul resolutions, when one or
both of the algebras is Koszul; see also [Jara et al. 2017; Polishchuk and Positselski
2005; Walton and Witherspoon 2018]):
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Corollary 3.12. Let A and B be k-algebras with twisting map τ : B⊗ A→ B⊗ A.
The following are projective resolutions of A⊗τ B as a bimodule over itself.

• The twisted product complex of two bar resolutions.

• The twisted product complex of two Koszul resolutions when A and B are
Koszul algebras and τ is strongly graded.

• The twisted product complex of one bar resolution and one Koszul resolution in
the case where one of A or B is Koszul and the other is graded, for τ strongly
graded.

Moreover, bar resolutions may be replaced by reduced bar resolutions in the above
statements.

Examples: skew group algebras. We give some details for a class of examples
introduced in Example 2.3. The resolutions in [Shepler and Witherspoon 2014]
for S oG, where G is a finite group acting by graded automorphisms on a Koszul
algebra S, appear different from but are equivalent to (3.4) when M = kG (the
group algebra) and N = S. Note that kG⊗ S is isomorphic to SoG as an (SoG)-
bimodule via the twisting map τ . In [Shepler and Witherspoon 2014], the modules
X i, j are given as

(S oG)⊗C ′i ⊗ D′j ⊗ (S oG),

where Pi (kG)= kG⊗C ′i⊗kG, Pj (S)= S⊗D′j⊗S are free (kG)e- and Se-modules
determined by vector spaces C ′i , D′j , respectively. We assume Pi (kG) is G-graded
and the grading is compatible with the kG-bimodule action. We assume Pj (S) is a
kG-module in such a way that the differentials are kG-module homomorphisms,
and this action is compatible with that of S, so that Pj (S) becomes an SoG-module.
Compatibility with τ follows from these assumptions. There is an isomorphism of
S oG-bimodules,

(kG⊗C ′i ⊗ kG)⊗ (S⊗ D′j ⊗ S)−→∼ (S oG)⊗C ′i ⊗ D′j ⊗ (S oG),

similar to that used in the proof of [Shepler and Witherspoon 2014, Theorem 4.3],
given by

g⊗ x ⊗ g′⊗ s⊗ y⊗ s ′ 7→ g((hg′)s)⊗ x ⊗ (g′y)⊗ g′s ′

for all g, g′ ∈ G, s, s ′ ∈ S, x in the h-component of C ′i, and y ∈ D′j.

Example 3.13. In particular, [Shepler and Witherspoon 2014, Example 4.6] in-
volves a resolution that is neither a Koszul resolution nor a bar resolution and yet
satisfies compatibility. In that example, k is a field of positive characteristic p,
S= k[x, y], and G=〈g〉 is a group of order p acting on S by g ·x = x , g · y= x+ y.
The resolution Pq(S) is the Koszul resolution Kos q(S) of S,

0→ S⊗
∧2V ⊗ S→ S⊗

∧1V ⊗ S→ S⊗ S→ S→ 0,
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where V = Spank{x, y}. The resolution Pq(kG) is the bimodule resolution of kG,

(3.14) · · · η·−→kG⊗kG γ ·
−→kG⊗kG η·

−→kG⊗kG γ ·
−→kG⊗kG m

−→kG −→ 0,

where γ = g⊗ 1− 1⊗ g, η = g p−1
⊗ 1+ g p−2

⊗ g+ · · · + 1⊗ g p−1, and m is
multiplication. Compatibility follows from Proposition 2.20(i) using Remark 2.19
after taking the standard embedding Kos q(S) ↪→Bar q(S) and embedding (3.14) into
Bar q(kG) (see, e.g., [Guccione et al. 1991]).

4. Bimodule resolutions of Ore extensions

Many algebras of interest are Ore extensions of other algebras. We show how to
twist bimodule resolutions for such extensions in this section.

Ore extensions as twisted tensor products. Let R be a k-algebra and fix a k-algebra
automorphism σ of R. Let δ : R→ R be a left σ -derivation of R, that is,

(4.1) δ(rs)= δ(r)s+ σ(r)δ(s) for all r, s ∈ R.

The Ore extension R[x; σ, δ] is the algebra with underlying vector space R[x] and
multiplication determined by that of R and of k[x] and the additional Ore relation

xr = σ(r)x + δ(r) for all r ∈ R.

An Ore extension R[x; σ, δ] is thus isomorphic to a twisted tensor product A⊗τ B
where A = R, B = k[x], and the twisting map τ : B⊗ A→ A⊗ B satisfies

τ(x ⊗ r)= σ(r)⊗ x + δ(r)⊗ 1 for all r ∈ R.

Free resolutions for iterated Ore extensions. We will work with general Ore
extensions in Section 6. Here for simplicity we restrict to the case where the
automorphism on R is the identity, σ = 1R , so the Ore relation sets commutators
xr − r x equal to elements in R. In this case, the Ore extension is also known
as a ring of formal differential operators. We consider an iterated Ore extension
S = (· · · (k[x1][x2; 1, δ2]) · · · )[xt ; 1, δt ], which we abbreviate as

S= k[x1, . . . , xt ; δ2, . . . , δt ] = k〈x1, . . . , xt 〉/(x j xi−xi x j−δ j (xi ) : 1≤ i < j ≤ t)

with S ∼= k[x1, . . . , xt ] as a k-vector space. We assume that S is a filtered algebra
with deg(xi )= 1 for all i . Then each δ j is a filtered map, i.e.,

δ j (xi ) ∈ k⊕Spank{x1, . . . , x j−1}

for i < j. This setting includes Weyl algebras and universal enveloping algebras of
supersolvable Lie algebras.
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Theorem 4.2. Consider an iterated Ore extension S = k[x1, . . . , xt ; δ2, . . . , δt ]

with identity automorphisms σi = 1 and filtered derivations δi . There is an iterated
twisted product resolution K q that is a free resolution of S as a bimodule over itself :

Kn = S⊗
∧nV ⊗ S

for V = Spank{x1, . . . , xt } with differentials given by ( for 1≤ l1 < · · ·< ln ≤ t)

dn(1⊗xl1∧·· ·∧xln⊗1)

=

∑
1≤i≤n

(−1)i+1(xli⊗xl1∧·· ·∧x̂li∧·· ·∧xln⊗1−1⊗xl1∧·· ·∧x̂li∧·· ·∧xln⊗xli
)

+

∑
1≤i< j≤n

(−1) j
⊗xl1∧·· ·∧xli−1∧δl j (xli )∧xli+1∧·· ·∧x̂l j∧·· ·∧xln⊗1,

where δl j (xli ) is the image of δl j (xli ) under the projection k⊕ V � V.

Proof. We induct on t . For each i , the Koszul resolution of k[xi ] is embedded in
the (reduced) bar resolution of k[xi ] as

(4.3) 0→ k[xi ]⊗Spank{xi }⊗ k[xi ]
d1
−→ k[xi ]⊗ k[xi ]

m
−→ k[xi ] → 0,

where d1(1⊗ xi ⊗ 1)= xi ⊗ 1− 1⊗ xi and m is multiplication. For t = i = 1, the
complex (4.3) is a resolution of S satisfying the statement of the theorem.

Now assume t ≥ 2 and that the iterated Ore extension

A = k[x1, . . . , xt−1; δ2, . . . , δt−1]

has a free bimodule resolution Pq(A) as in the theorem. Let B = k[xt ] and let Pq(B)
be the Koszul resolution (4.3) for i = t . Then S = A⊗τ B where

τ(xt ⊗ a)= a⊗ xt + δt(a)⊗ 1 for all a ∈ A.

Embedding into the reduced bar resolution. We embed Pq(A) into the reduced
bar resolution Bar q(A) and then define twisting maps for Pq(A) via this embedding:
Let φn : Pn(A)→ A⊗(n+2) be the standard antisymmetrization map defined by

φn(1⊗ xl1 ∧ · · · ∧ xln ⊗ 1)=
∑

σ∈Symn

sgn σ ⊗ xlσ(1) ⊗ · · ·⊗ xlσ(n) ⊗ 1

for all 1 ≤ l1 < · · · < ln ≤ t − 1. This is a chain map from Pq(A) to Bar q(A).
Compose with the quotient map Bar q(A)→ Bar q(A) to obtain a chain map

φ q : Pq(A)→ Bar q(A).
Note that the image of Pq(A) in the bar resolution Bar q(A), under φ q, intersects the
kernel of this quotient map trivially. Thus the induced map φ q is injective.
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Iterated twisting. The reduced bar resolution is compatible with τ via the map

τ B, q : B⊗Bar q(A)→ Bar q(A)⊗ B

from the proof of Proposition 2.20(ii). We argue that τ B, q restricts to a surjective map

τ̃B, q : B⊗ Pq(A)→ Pq(A)⊗ B

by verifying that it preserves the image of φ q, i.e., τ B,n takes B ⊗ Im(φn) onto
Im(φn)⊗ B for all n. We apply τ B,n to

xt⊗φn(a0⊗y1∧· · ·∧yn⊗an+1)=
∑

π∈Symn

sgnπ (xt⊗a0⊗yπ(1)⊗· · ·⊗yπ(n)⊗an+1),

for some a0, an+1 in A, in order to move xt to the far right, obtaining( ∑
π∈Symn

(sgnπ) a0⊗ yπ(1)⊗ · · ·⊗ yπ(n)⊗ an+1

)
⊗ xt ∈ Im(φn)⊗ B

plus additional terms that arise from the relation

τ(xt ⊗ yπ(i))= yπ(i)⊗ xt + δt(yπ(i))⊗ 1.

(We use the same notation for elements of A and their images under the quotient
map A→ A in cases where no confusion can arise.) Since τ(1⊗ y j )= y j ⊗ 1 for
all j, these additional terms sum to∑
π∈Symn

(sgnπ) δt(a0)⊗yπ(1)⊗·· ·⊗yπ(n)⊗an+1⊗1

+

∑
π∈Symn

∑
1≤i≤n

(sgnπ) a0⊗yπ(1)⊗·· ·⊗δt(yπ(i))⊗yπ(i+1)⊗·· ·⊗yπ(n)⊗an+1⊗1

+

∑
π∈Symn

(sgnπ)a0⊗yπ(1)⊗·· ·⊗yπ(n)⊗δt(an+1)⊗1

=φn(δt(a0)⊗y1∧·· ·∧yn⊗an+1)⊗1 + φn
(
a0⊗y1∧·· ·∧yn⊗δt(an+1)

)
⊗1

+

∑
1≤i≤n

φn
(
a0⊗y1∧·· ·∧δt(yi )∧yi+1∧·· ·∧yn⊗an+1

)
⊗1 ∈ Im(φn)⊗B.

We may replace xt by xm
t in the above computation using induction after noting

that τ(xm
t ⊗ xi )= (1⊗m B)τ (xt ⊗ (τ (xm−1

t ⊗ xi )) for i < t . The above arguments
can be modified to apply to τ−1

B,i as well. Thus the chain map τ B, q preserves the
image of φ q and restricts to a surjective chain map τ̃B, q : B⊗ Pq(A)→ Pq(A)⊗ B
as claimed.
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Compatibility on one side. The complex Pq(A) inherits compatibility with τ from
the compatibility of the reduced bar complex Bar q(A) with τ . Indeed, since Bar q(A)
is compatible with τ via a map τ B, q which preserves the embedding

φ q : Pq(A) ↪→ Bar q(A),
the complex Pq(A) is compatible with τ via the restriction τ̃B, q of τ B, q to B⊗ Pq(A).
(See Proposition 2.20(ii) and its proof and Remark 2.19.)

Compatibility on the other side. Define a chain map

τ q,A : Pq(B)⊗ A→ A⊗ Pq(B)
by setting τ0,A = (τ ⊗ 1)(1⊗ τ) and

τ1,A((1⊗ xt ⊗ 1)⊗ xi )= xi ⊗ (1⊗ xt ⊗ 1)

and then extending (uniquely) to P1(B)⊗ A by requiring that compatibility con-
ditions (2.8) and (2.9) hold. A calculation shows that τ q,A is a chain map and that
Pq(B) is compatible with τ . By their definitions, τ0,A and τ1,A are compatible with
the embeddings of P0(B) and P1(B) into corresponding terms of the (reduced) bar
resolution.

Twisted product resolution. By construction, the twisted product resolution K q
arising from Pq(A) and Pq(B) in degree n is isomorphic to

S⊗
∧nV ⊗ S

as an S-bimodule via the isomorphisms

A⊗
∧i Spank{x1, . . . , xt−1}⊗ A⊗ B⊗

∧j Spank{xt }⊗ B

−→∼ A⊗ B⊗
∧i Spank{x1, . . . , xt−1}⊗

∧j Spank{xt }⊗ A⊗ B,

for j = 0, 1, given by applying τ−1 (properly interpreted for each factor) to the
innermost tensor factors A and B. We check the differentials: On Xn,0, the differ-
ential is just that arising from the factor Pn(A). Now consider the differential on
Xn−1,1, again writing xli = yi for some indices 1≤ l1 < · · ·< ln ≤ t − 1:

dn(1⊗y1∧·· ·∧yn−1⊗1⊗1⊗xt⊗1)

=

( ∑
1≤i≤n−1

(−1)i+1(yi⊗y1∧· · · ŷi∧· · ·∧yn−1⊗1−1⊗y1∧· · ·∧ŷi∧· · ·∧yn−1⊗yi
)

+

∑
1≤i< j≤n−1

(−1) j
⊗ y1∧· · ·∧δ j (yi )∧· · ·∧ ŷ j∧· · ·∧ yn−1⊗1

)
⊗(1⊗xt⊗1)

+ (−1)n−1(1⊗ y1 ∧ · · · ∧ yn−1⊗ 1)⊗ (xt ⊗ 1− 1⊗ xt),
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which may be rewritten, under the above isomorphism, as∑
1≤i≤n−1

(−1)i+1 yi ⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn−1⊗ xt ⊗ 1

−

∑
1≤i≤n−1

(−1)i+1
⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn−1⊗ xt ⊗ yi

+

∑
1≤i< j≤n−1

(−1) j
⊗ y1 ∧ · · · ∧ δ j (yi )∧ · · · ∧ ŷ j ∧ · · · ∧ yn−1⊗ xt ⊗ 1

+ (−1)n−1xt ⊗ y1 ∧ · · · ∧ yn−1⊗ 1+ (−1)n ⊗ y1 ∧ · · · ∧ yn−1⊗ xt

+ (−1)n
∑

1≤i≤n−1

1⊗ y1 ∧ · · · ∧ δt(yi )∧ · · · ∧ yn−1⊗ 1.

Once we set yn = xt , identify y1∧· · ·∧ yn−1⊗xt with y1∧· · ·∧ yn−1∧xt , and make
other similar identifications, this agrees with the differential in the statement. �

Examples. The theorem applies in particular to the universal enveloping algebra
U(g) of a finite-dimensional solvable Lie algebra g. Here, we assume the underlying
field k is algebraically closed, else g should be supersolvable; see [Dixmier 1977,
1.3.14] and [Brown et al. 2015, Section 3]. The theorem gives a bimodule Koszul
resolution of U(g). Semisimple Lie algebras can then be handled via triangular
decomposition. Other examples include Weyl algebras and Sridharan enveloping
algebras [Sridharan 1961].

5. Twisted product resolutions for (left) modules

We now consider a twisted product resolution of left modules instead of bimodules.
We give the one-sided version of bimodule constructions in Sections 2 and 3. Again,
we fix k-algebras A and B with a twisting map τ : B ⊗ A → A ⊗ B. In the
constructions below, we consider compatible A-modules, but note that we as easily
could have started with compatible B-modules instead of A-modules using the
inverse twisting map τ−1 instead of τ in order to lift (left) modules of A and B to
(left) modules of A⊗τ B ∼= B⊗τ−1 A.

Let M be an A-module with module structure map ρA,M : A⊗ M → M and
recall the multiplication map m B : B⊗ B→ B.

Definition 5.1. The A-module M is compatible with the twisting map τ if there is
a bijective k-linear map τB,M : B⊗M→ M ⊗ B such that

τB,M(m B ⊗ 1)= (1⊗m B)(τB,M ⊗ 1)(1⊗ τB,M) and(5.2)

τB,M(1⊗ ρA,M)= (ρA,M ⊗ 1)(1⊗ τB,M)(τ ⊗ 1)(5.3)

as maps on B⊗ B⊗M and on B⊗ A⊗M, respectively.
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Note that this definition is equivalent to the commutativity of a diagram similar
to (2.11), where ρA,M is replaced by a one-sided module structure map.

Let N be a B-module with module structure map ρB,N : B⊗ N → N. If M is
compatible with τ , the tensor product M ⊗ N may be given the structure of an
A⊗τ B-module via the following composition of maps:

(5.4) A⊗τ B⊗M⊗N 1⊗ τB,M⊗1
−−−−−−→ A⊗M ⊗B⊗N ρA,M⊗ρB,N−−−−−−→M ⊗ N .

Let Pq(M) be an A-projective resolution of M and Pq(N ) be a B-projective
resolution of N :

· · · → P2(M)→ P1(M)→ P0(M)→ k→ 0,

· · · → P2(N ) → P1(N ) → P0(N ) → k→ 0.

Definition 5.5. Let M be an A-module that is compatible with τ . The projective
module resolution Pq(M) of the A-module M is compatible with the twisting map τ
if each Pi (M) is compatible with τ via maps τB,i for which

τB, q : B⊗ Pq(M)→ Pq(M)⊗ B

is a k-linear chain map lifting τB,M : B⊗M→ M ⊗ B.

Under the assumption of compatibility, we make the following definition.

Definition 5.6. Let M be an A-module compatible with τ and Pq(M) a projective
resolution of M that is compatible with τ . Let N be a B-module. The twisted
product complex Y q is the total complex of the bicomplex Y q, q defined by

(5.7) Yi, j = Pi (M)⊗ Pj (N ),

with A⊗τ B-module structure given by the maps τB, q as in (5.4) and with vertical
and horizontal differentials given by dh

i, j = di ⊗ 1 and dvi, j = (−1)i ⊗ d j . In other
words, Yn =

⊕
i+ j=n Yi, j with dn =

∑
i+ j=n di, j where di, j = dh

i, j + dvi, j .

Lemma 5.8. Assume M and Pq(M) are compatible with τ . Then the twisted product
complex Y q is a complex of A⊗τ B-modules.

Proof. Each space Yi, j is given the structure of an A⊗τ B-module via (5.4). The
differentials are module homomorphisms since τB, q is a chain map. �

Lemma 5.9. The twisted product complex · · · → Y2→ Y1→ Y0→ M⊗ N→ 0 is
exact.

Proof. As in the proof of Lemma 3.5, apply the Künneth theorem to obtain
Hn(Y q)= 0 for all n > 0 and H0(Y q)∼= M ⊗ N. �

We wish to prove in general that the modules Yi, j are projective, so we make an
additional assumption in the next lemma. Since Pq(M) is a projective resolution
of M as an A-module, each Pi (M) embeds in a free A-module A⊕I.
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Definition 5.10. For each i ≥ 0, the map τB,i is compatible with a chosen embed-
ding Pi (M) ↪→ A⊕I (for some indexing set I ) if the corresponding diagram is
commutative:

B⊗Pi (M) ↪ //

τB,i

��

B⊗A⊕I

τ⊕I

��

Pi (M)⊗B ↪ // A⊕I
⊗B

In many settings, one proves directly that the modules Yi, j are projective (e.g.,
the Ore extensions in the next section) and so one does not need this additional
compatibility assumption, nor the next lemma.

Lemma 5.11. For i ≥ 0, if τB,i is compatible with a chosen embedding of Pi (M)
into a free A-module, then Yi, j = Pi (M)⊗ Pj (N ) is a projective A⊗τ B-module.

Proof. By the hypothesis, it suffices to prove the lemma when Pi (A) = A and
Pj (B)= B. In that case, A⊗ B is the right regular module A⊗τ B by definition,
and so is free. �

Combining Lemmas 5.8, 5.9, and 5.11, we obtain the following theorem.

Theorem 5.12. Let A and B be k-algebras with twisting map τ : B⊗ A→ A⊗ B.
Let Pq(M) and Pq(N ) be projective A- and B-module resolutions of M and N, re-
spectively. Assume M and Pq(M) are compatible with τ and that the corresponding
maps τB,i are compatible with chosen embeddings of Pi (M) into free A-modules.
Then the twisted product complex with

Yn =
⊕

i+ j=n

Yi, j for Yi, j = Pi (M)⊗ Pj (N )

gives a projective resolution of M ⊗ N as a module over the twisted tensor product
A⊗τ B:

· · · → Y2→ Y1→ Y0→ M ⊗ N → 0.

Examples. Resolutions that may be constructed in this way include the Koszul
resolution of k for a twisted tensor product of two Koszul algebras (see the proof
of [Walton and Witherspoon 2018, Proposition 1.8]) and a resolution for a twisted
tensor product of algebras whose twisting map is given by a bicharacter on grading
groups (see [Bergh and Oppermann 2008]). We give another class of examples in
the next section.

6. Resolutions for Ore extensions

In Section 4, we considered resolutions of an Ore extension algebra as a bimodule
over itself. Here, we consider (left) modules over an Ore extension and show how to
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construct projective resolutions of these modules by regarding the Ore extension as a
twisted tensor product. Gopalakrishnan and Sridharan [1966] studied Ore extensions
R[x; σ, δ] in the case where σ is the identity automorphism. They showed that if M
is a (left) module over R[x; 1, δ], then an R-projective resolution of M lifts to an
R[x; 1, δ]-projective resolution. Here we allow arbitrary automorphisms σ of R and
give conditions under which an R-projective resolution of an R[x; σ, δ]-module M
lifts to an R[x; σ, δ]-projective resolution.

Again, let R be a k-algebra and σ be a k-algebra automorphism of R. Let δ be a
left σ -derivation of R (see (4.1)) and consider the Ore extension R[x; σ, δ]. Let
A = R, B = k[x], and τ : B ⊗ A→ A⊗ B be the twisting map determined by
τ(x ⊗ r)= σ(r)⊗ x + δ(r)⊗ 1 for all r ∈ R, as in Section 4, so that R[x; σ, δ] is
the twisted tensor product A⊗τ B.

Modules over Ore extensions. Consider an R[x; σ, δ]-module M. Assume that on
restriction to R, there is an isomorphism of R-modules, φ : M −→∼ Mσ, where Mσ

is the vector space M with R-module action given by r ·σ m = σ(r) ·m for all r ∈ R
and m ∈ M. Then M is compatible with τ : We define τB,M : B⊗M→ M ⊗ B by
setting, for all m ∈ M,

τB,M(1⊗m)= m⊗ 1,

τB,M(x ⊗m)= φ(m)⊗ x + xm⊗ 1

and extending by applying compatibility condition (5.2). That is, since the algebra
B = k[x] is free on the generator x , for each element m of M, we may define
τB,M(x

n
⊗m) by applying (5.2) to x ⊗ xn−1

⊗m. We check that (5.3) holds for
elements of the form x ⊗ r ⊗m, where r ∈ R and m ∈ M. Then a careful induction
on the power of x shows that (5.3) holds for all elements of the form xn

⊗ r ⊗m.
For example, if R[x; σ, δ] is an augmented algebra with augmentation ε :

R[x; σ, δ] → k for which εσ = ε, then εδ = 0 and the field k as a module over
R[x; σ, δ] via ε has the property that k ∼= kσ, and so k is compatible with τ .

Projective resolutions. Let Pq(M) be a projective resolution of M as an R-module:

· · ·
d2
−→ P1(M)

d1
−→ P0(M)

µ
−→M→ 0.

For each i , set Pσi (M)= (Pi (M))σ. Then

· · ·
d2
−→ Pσ1 (M)

d2
−→ Pσ0 (M)

φ−1µ
−−→M→ 0

is also a projective resolution of M as an R-module. By the comparison theorem,
there is an R-module chain map from Pq(M) to Pσq (M) lifting the identity map
M→ M, which we view as a k-linear chain map

(6.1) σ q : Pq(M)→ Pq(M)
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with σi (r z)= σ(r)σi (z) for all i ≥ 0, r ∈ R, and z ∈ Pi (M). We will assume for
Theorem 6.6 below that each σi is bijective. Let Pq(B) be the Koszul resolution
of k for B = k[x],

(6.2) 0→ k[x] x ·
−→ k[x] ε

−→ k→ 0,

where ε(x)= 0. The following two lemmas are proven as in [Gopalakrishnan and
Sridharan 1966] (where the authors proved the special case σ = 1). We include
details for completeness.

Lemma 6.3. Let P be a projective R-module. There is an R[x; σ, δ]-module
structure on P that extends the action of R.

Proof. First consider the case that P = R, the left regular module. Let x act on R by
x ·r = δ(r) for all r ∈ R. One checks that the action of xr in R[x; σ, δ] agrees with
that of σ(r)x + δ(r) on P, for all r ∈ R. Next, if P is a free module, it is a direct
sum of copies of R, and x acts on each copy in this way. Finally, in general, P is a
direct summand of a free R-module F. Let ι : P→ F and π : F→ P be R-module
homomorphisms for which πι is the identity map. Define x · p = π(x · ι(p)) for
all p ∈ P, where the action of x on ι(p) is as given previously for a free module.
Again one checks that the actions of xr and of σ(r)x + δ(r) agree, and so P is an
R[x; σ, δ]-module as claimed. �

Compatibility requirements. We will use the next lemma to show that the resolution
Pq(M) of M as an R-module is compatible with the twisting map τ (see Lemma 6.5).
Let f :M→M be the function given by the action of x on the R[x; σ, δ]-module M.

Lemma 6.4. There is a k-linear chain map δ q : Pq(M)→ Pq(M) lifting f :M→M
such that for each i ≥ 0, δi (r z)= σ(r)δi (z)+ δ(r)z for all r ∈ R and z ∈ Pi (M).

Proof. If i = 0, let δ′0 be the action of x on P0(M) given by Lemma 6.3. Then

δ′0(r z)− σ(r)δ′0(z)= δ(r)z

for r ∈ R, z ∈ P0(M). One checks that µδ′0 − f µ : P0(M) → Mσ is an R-
module homomorphism. As P0(M) is a projective R-module, there is an R-module
homomorphism δ′′0 : P0(M)→ Pσ0 (M) such that µδ′0− f µ=µδ′′0 . Let δ0 = δ

′

0−δ
′′

0.
One may check this satisfies the equation in the lemma.

Now fix i > 0 and assume there are k-linear maps δ j : Pj (M)→ Pj (M) such
that δ j (r z) = σ(r)δ j (z) + δ(r)z and d jδ j = δ j−1d j for all j, 0 ≤ j < i , and
r ∈ R, z ∈ Pj (M). Let δ′i : Pi (M)→ Pi (M) be the action of x on Pi (M) given in
Lemma 6.3, so that δ′i (r z)= σ(r)δ′i (z)+ δ(r)z for all r ∈ R, z ∈ Pi (M). Consider
the map

diδ
′

i − δi−1di : Pi (M)→ Pσi−1(M).
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A calculation shows that it is an R-module homomorphism. Since δi−1 is a chain
map,

di−1(diδ
′

i − δi−1di )= 0,

and so the image of diδ
′

i − δi−1di lies in Ker (di−1) = Im(di ). Since Pi (M) is
projective as an R-module, there is an R-homomorphism δ′′i : Pi (M)→ Pσi (M)
such that diδ

′

i−δi−1di = diδ
′′

i . Let δi = δ
′

i−δ
′′

i , so that diδi = δi−1di by construction.
One checks that for all r ∈ R and z ∈ Pi (M),

δi (r z)= δ′i (r z)−δ′′i (r z)= σ(r)δ′i (z)+δ(r)z−σ(r)δ
′′

i (z)= σ(r)δi (z)+δ(r)z. �

Lemma 6.5. The resolution Pq(M) is compatible with the twisting map τ .

Proof. Define τB,i : B⊗ Pi (M)→ Pi (M)⊗ B by

τB,i (1⊗ z)= z⊗ 1,

τB,i (x ⊗ z)= σi (z)⊗ x + δi (z)⊗ 1

for all z ∈ Pi (M), where σ q is the chain map of (6.1), δ q is the chain map of
Lemma 6.4, and we extend τB,i to B⊗ Pi (M) as before by requiring that compati-
bility conditions (5.2) and (5.3) hold. We check condition (5.3) in one case as an
example:

τB,i (x⊗r z)= σi (r z)⊗x+δi (r z)⊗1= σ(r)σi (z)⊗x+σ(r)δi (z)⊗1+δ(r)z⊗1,

for all r ∈ R, and z ∈ Pi (M), while on the other hand,

(ρA,i ⊗ 1)(1⊗ τB,i )(τ ⊗ 1)(x ⊗ r ⊗ z)

= (ρA,i ⊗ 1)(1⊗ τB,i )(σ (r)⊗ x ⊗ z+ δ(r)⊗ 1⊗ z)

= (ρA,i ⊗ 1)(σ (r)⊗ σi (z)⊗ x + σ(r)⊗ δi (z)⊗ 1+ δ(r)⊗ z⊗ 1)

= σ(r)σi (z)⊗ x + σ(r)δi (z)⊗ 1+ δ(r)z⊗ 1.

Condition (5.3) holds for all xn
⊗ r z by induction on n. �

Twisting resolutions for an Ore extension. We now construct a projective resolu-
tion of M as an R[x; σ, δ]-module from a projective resolution of M as an R-module.
We take the twisted product of two resolutions: the R-projective resolution of M
and the Koszul resolution (6.2) of k as a module over B = k[x].

Theorem 6.6. Let R[x; σ, δ] be an Ore extension. Let M be an R[x; σ, δ]-module
for which Mσ ∼= M as R-modules. Consider a projective resolution Pq(M) of M as
an R-module and suppose that each map σi : Pi (M)→ Pi (M) of (6.1) is bijective.
For each i ≥ 0, set

Yi,0 = Yi,1 = Pi (M)⊗ k[x] and Yi, j = 0 for all j > 1

as in Lemma 5.8. Then Y q is a projective resolution of M as an R[x; σ, δ]-module.
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Proof. By Lemma 6.5, Pq(M) is compatible with τ , and so by Lemmas 5.8 and 5.9,
the complex · · · → Y1→ Y0→ M→ 0 is an exact complex of R[x; σ, δ]-modules.
We verify directly that each Yi, j is a projective module: For each i ≥ 0 and j = 0, 1,

(6.7) Yi, j ∼= R[x; σ, δ]⊗R Pi (M)

via the R[x; σ, δ]-homomorphism given by

R[x; σ, δ]⊗R Pi (M)→ Yi, j , x ⊗ z 7→ σi (z)⊗ x + δi (z)⊗ 1,

with inverse map given by

z⊗ x 7→ x ⊗ σ−1
i (z)− 1⊗ δi (σ

−1
i (z)) .

Then R[x; σ, δ] ⊗R Pi (M) is projective since it is a tensor-induced module and
R[x; σ, δ] is flat over R. �

Remark 6.8. When σ is the identity, the complex Y q is precisely that of Gopalakr-
ishnan and Sridharan [1966, Theorem 1], under the isomorphism (6.7) above. As
a specific class of examples, we obtain in this way, via iterated Ore extension,
the Chevalley–Eilenberg resolution of the U(g)-module k for a finite-dimensional
supersolvable Lie algebra g.
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