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SHARP LOGARITHMIC SOBOLEV INEQUALITIES ALONG
AN EXTENDED RICCI FLOW AND APPLICATIONS

GUOQIANG WU AND YU ZHENG

We prove a sharp Logarithmic Sobolev inequality along an extended Ricci
flow. As applications, we derive an integral bound for the conjugate heat
kernel and also obtain Lipschitz continuity of the pointed Nash entropy.
Finally, based on these results, we prove an e-regularity theorem for this
extended Ricci flow.

1. Introduction

In this paper we study an extended Ricci flow as follows:
a .
7,80 = —2Ric(g(1) +2d¢ (1) @de (1),

(1-1) %qb(t) = Ay (D),
g(0) = go, ¢(0) = ¢y,

where t € [—T, 0], g(t) are metrics, and ¢ (¢) : (M, g) — R are smooth functions.
This flow was introduced in [List 2008], where the author proved short time existence
and long time existence if ¢ is a smooth function from M to R. Later, R. Miiller
[2012] considered ¢ as a smooth map from (M, g) to (N, h) and proved some
fundamental results for flow equation (1-1). The flow equations (1-1) come from
static Einstein vacuum equations arising in the general relativity, and also arise as
dimensional reductions of Ricci flow in higher dimensions. For more work on this
flow, see [Fang and Zheng 2016b; 2016a; Guo et al. 2015a; 2015b; 2013; Li 2018;
Liu and Wang 2017; Yang and Shen 2012]. Before stating our main results, we
want to introduce some notation. Suppose (M", g(t), ¢ (t))|:e[-T.0] 1 an extended
Ricci flow, fix x, y € M; we use d;(x, y) to denote the distance between x and y
at time #. We use B, (x, t) to denote the geodesic ball with radius r centered at x.
We use Rm to denote the Riemannian curvature operator of the metric g, Ric the
Ricci curvature, and R the scalar curvature. For the extended Ricci flow, we denote

Sic(g(1)) = Ric(g(1) —d¢(1) ® d¢ (1) and S(g(1)) = R(g(1) — Vo (D)I3
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Given (xg9,0) € M x [—T, 0], we denote

Hy (v, s) = H(x0,0:y,s) = (d]s]) "2 exp(— fi, (3. 5))

as the conjugate heat kernel based at (xg, 0), and

dvy, (v, s) = Hy (y, s)dvolgs ()
as the associated probability measure. See Definition 2.2.

Definition 1.1. Let (M, g) be a smooth Riemannian manifold and ¢ and f be
smooth functions. Given 7 > 0, we define the associated W entropy as

Wig g, £.0) = [ (25 +IVFP)+ £ ~nitar)Ee ! dvol,
M
where S = R — |V¢|% Moreover, the 1 entropy can also be defined:

;L(g,qb,t):inf{W(g,d),f, t)‘/M(4nr)_ge_fdvolg:1}.

Next we state the Poincaré inequality and log-Sobolev inequality along the
extended Ricci flow (1-1); previous work on Ricci flow was given in Hein and
Naber [2014].

Theorem 1.2. Let (M", g(t), ¢ (t))|ie[-1.01 be an extended Ricci flow (1-1). Fix a
point xg € M in the final time slice and let s € [T, 0].

(1) Forallu € C§°(M) with fM udvy(s) =0,

(1-2) /Muzdvx()(s)§2|s|/M|Vu|§,(s)dva(s).

Equality holds if and only if u = 0.
(2) Forallu € C*(M) with [y, u® dvy,(s) =1,

(1-3) /Muzloguzdvxo(s)54|s|/M|W|§(s)dvxo(s).

Equality holds if and only if u = 1.

Remark. Following [Perelman 2002], Ni [2004] defined entropy for the linear
heat equation on a complete Riemannian manifold. Under the Ricci nonnegativity
assumption, he proved the monotonicity, and as an application, he characterized
the Euclidean space using the sharp log-Sobolev inequality.

Next we state one important application of Theorem 1.2.
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Theorem 1.3. Let (M", g(t), ¢ (1))|ic[—T.01 be an extended Ricci flow and dv =
dvy, (s) be a heat kernel measure. Then the Gaussian concentration inequality

dy(s)(A, B)?
U(A)V(B) S exp _M
8ls|
holds for A, B C M.
Corollary 1.4. For any C > 0 there exists a C' = C'(n, C) > 0 such that the
following holds: Let (M", g(t), ¢(t)) be an extended Ricci flow such that

C .
sup [|S(g(t)llooc < — and  inf w(g(s),d(s), 1) > —C,
t€[5.0] Is| 7€(0,2ls1)

for some s € [T, 0). Let x1, xo € M and r*> = |s|, then

1
(1-4) H(x2,0;y, s)dvoly(s)(y)

Vol(B,(x1,0)) JB,(x,.0)
_dg(s)(Br (x1,0), B, (x2, 0))2
C'|s| .

<C exp(—
Moreover, we have the following distance distortion estimate:
(1-5) dg(sy(Br(x1,8), Br(x2,8)) < C'dg(0y(x1, x2).
Definition 1.5. The pointed W entropy at scale |s| based at xq is defined by
Wiy (s) = W(g(s), ¢ (s), fro(s), Is]).
The pointed Nash entropy at (xo, s) € M x [T, 0] is defined as

0
Mo =k [ Wy = [ g0~

Now we can state the Lipschitz continuity of the pointed Nash entropy.
Theorem 1.6. For each C > 0, there exists a C' = C'(n, C) > 0 such that the
following holds: Let (M, g(t), ¢(t)) be an extended Ricci flow (1-1) such that

(1-6) SN =—= and  inf p(g(s).$(s) 1) = —C
Is| 7€(0,2|s])

for some s € [T, 0], then the map
x € (M, 8(0)) = fe(s)Hx(s) € L' (M, dvoly)

is globally C’ |s|_% Lipschitz. In particular, this means that

_1
INy, (8) — Ny, ()| < C's|” 2dg(0y (x1, X2).
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Definition 1.7. For an extended Ricci flow (1-1):
(1) Given (x,t) e M x [T, 0] and r > 0, we define the parabolic ball

P,(x,1) = B, (x,1) x [t —r?%, 1].

(2) Given (x,t) € M x [T, 0] and r > 0, we define the regularity scale

r|Rm| (X, 1) = SUP{r >0: sup |[Rm| < r—z}.
Pr(x,1)

Now we can state our main e-regularity theorem.

Theorem 1.8. For each C > 0, there exists ¢ = e(n, C) > 0 such that the following
holds: Let (M, g(t), ¢ (t)) be an extended Ricci flow (1-1) such that

C
(I-7)  S(g(s) = ——, inf u(g(s),d(s), 1) >—-C, 9| =<C,
|s| 7€(0,2|s])

for some s € [—T, 0]. If the pointed entropy satisfies
Wi (s) > —¢
for some point xq in the zero time slice, then we have
7 |Rm|(X0, 0)% > &ls].

Remark. Xu [2017] considered the short time asymptotics of Nash entropy on
a complete Riemannian manifold with Ricci lower bound and gave interesting
applications.

The paper is organized as follows. In Section 2 we review some background and
preliminaries for the conjugate heat kernel, and we also prove a Bochner formula
for any space-time function along the extended Ricci flow. In Section 3 we define
the W entropy and obtain its monotonicity. As an application, we derive the «
noncollapsing property for the extended Ricci flow. We also clarify the relation
between the pointed W entropy and the pointed Nash entropy. In Section 4 we
derive various estimates. First, we derive a gradient estimate for the positive solution
to the extended Ricci flow. Together with the monotonicity of W entropy, we prove
the upper bound for the heat kernel. Second, we generalize Perelman’s Harnack
inequality to the extended Ricci flow, and based on this we prove the lower bound for
the conjugate heat kernel. In Section 5, based on the results from previous sections,
we prove the Poincaré inequality and the log-Sobolev inequality along the extended
Ricci flow. As one application, we prove the Gaussian concentration inequality and
then obtain an integral bound for the conjugate heat kernel. In Section 6, using the
Poincaré inequality, we prove the Lipschitz continuity of the pointed Nash entropy.
In Section 7, we derive the e- regularity theorem; the key ingredients are the point
picking argument and the Lipschitz continuity of the pointed Nash entropy.
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2. Background and preliminary

Letting (M", g(t), ¢ (¢)) be an extended Ricci flow (1-1), we give the following
definitions.

Definition 2.1. The heat operator and its conjugate are defined by

9 9
2.8 O="_A and O*=—2L _A+S.
2-8) o1 an TR

Definition 2.2. For x,y e M and s <t in [—T, 0], we let H(x, t; y, s) denote the
conjugate heat kernel based at (x, ¢), i.e, the unique minimal positive solution with
limg—,, H(x,t;y,s) =3¢(y) of the conjugate heat equation

29) O, H@x, 15y,s5) = (_i

55~ D) 50 S)>H(x, t;y,s)=0.

Lemma 2.3. The conjugate heat equation satisfies the following properties:

(1) [, Hx, 13y, 5)dvoly (y) = 1.
(2) [y H(x,t; y,5) dvolg (x) < exp(p(t —s)), where p = ||S(g(=T)) " || -

Proof. (1) Taking the derivative with respect to s, we get
d

— H(x,t;y,s)dvolgq(y)

ds M

0
:/ (8—H(x, t;y,8)—H(x,t;y,8)S(y, s)) dvolgs (y)
y \0S

0
_ / (4 Agtons = 8) HOx, 15 3. 5) dvol () = 0.
M

Due to limg_,, H(x, t; y,s) = 8,(y), we have fM H(x,t;y,s)dvolyy(y) =1.

(2) Taking the derivative with respect to ¢,
d
o y H(x,t;y,s)dvolg)(x)
0
=/ (EH(X’ 1;y,s)—H(x, t;y,5)S(x, t)) dvolg () (x)
M
=/ (AgiyxH(x,t;y,5) —H(x,t;y,5)S(x, 1)) dvolg (x)
M

<o [ Hxr s dvoly ).
M

In the last inequality we need to use the evolution equation of S along the extended
Ricci flow %S = AS +2]|Sic |> 4+ 2(A¢)% Applying the maximum principle, we
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know the minimum of § is increasing along the flow. Due to

lim/ H(x,t;y,s)dvolgs(x) =1,
M

—s
we have
/ H(x,1;y,s)dvolgs(x) <exp(p(t —s)). O
M
Lemma 2.4. We have the following Bochner formula for all space-time functions u:
(2-10) 10IVul> = —|V2ul* + (VOu, Vu) — (Vu, Vo)?.

Proof. Using the extended Ricci flow equation and the Bochner formula for function,

%%|Vu|2 = %(%gijviuvju>
= 2 ¢*gi" L g ViV u+ gV 2 v
= Sic(Vu, Vu) + V%—I: -Vu,
and
%A|Vu|2 = |Vul® + (VAu, Vu) + Ric(Vu, Vu),
SO

%Dqulz = —|V2u)? + (VOu, Vu) + Sic(Vu, Vu) — Ric(Vu, Vu)
= —|V2ul®> + (VOu, Vu) — (Vu, V¢)>. a

3. Monotonicity of entropy

Theorem 3.1. Along the extended Ricci flow

%8(1) = —2Sic(g(1)) = —2Ric(g(?)) +2d¢ (1) ® do (1),
Lp1) = B ),

L —AFHIVIP = SGa0) + .

dt
— =-1 -T
dt 9 te[ 9 0]’

we have
d
EW(g(t), d(@), f(1), T(1))

=27 /M<| Sic+V2f — %gﬁ +(Ap— (V] v¢>)2) (4rt) 2t dvolg ).
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Define j1(g, ¢, ) =inf{ W (g, ¢, f, D) [,,d77)"2¢/ dvol, = 1}; by the above
theorem, we have the following monotonicity fact.

Corollary 3.2. For any fixed ty € R, the quantity u(g(t), ¢(t),to — t) is non-
decreasing in t. It is constant if and only if the flow is isometric to the gradient Ricci
harmonic soliton with potential f(t).

Corollary 3.3. Given tg € R, put uo = u(g(—=T),¢p(=T),to+T) andt =1ty — 1.
Then,

/ u? logu? dvolg) <t / (4| Vul? + Su®) dvoly(,) — glog(4m) —n— W
M M

for any u € C*(M) with [y, u* dvolg) = 1.

Proof. Recall W(g, ¢, f, 1) = [,,[T(S+|VfI?) + f —nl(drt)~ e~/ dvol,, let
u> = (47n)*%e_f, then

W(g, ¢, f, r)=/ [r(Su2—|—4|Vu|2)—uzloguz]dvolg—glog(4nr)—n.
M

By Theorem 3.1, we have

W@(=T),p(=T), f(=T),t(=T)) = W(g(0), ¢ (1), f(1), =(1))

fort € [—T, ty]. Hence
Mo = / [t (Su® +4|Vu|*) — u*log u?] dvolg() — glog(47rr) —n. |
M

Next we prove the « noncollapsed property for the extended Ricci flow (1-1).

Theorem 3.4. Fixtye[—T,0], x € M and r > 0, and assume

inf u(g(~T),¢p(—T),t10+T +p*)>—C and sup S(g(ty)) <Cr>
0e(0,r) B, (x,t)

Define k = exp(—(2”Jr4 +2C)), then Vol(B,(x, t9)) > kr'".
Proof. Given p € (0, r), define the function i as follows,

v=1 on By (x, 1),
v =0 outside B, (x, 1),
Y is linear on B,(x, fp) \ Bg (x, t9).

Denoting po = u(g(=T), ¢(=T), 1o+ T + p*) and 7(1) = tg — t + p? applying
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the previous corollary to u = ¥/||¥ |2, we have

/02/ (4| Vu|? + Su?) dvolg ) — %log(4np2) —n— o
M

4|V |? 2
5/)2/ ( | ‘//2| +S v 2>dvolg(t0)—Qlog(47rp2)—n+C
m\ 1¥l3 112 2

(Vol(B,(x, 1)) — Vol(B; (x, 10))) +2C — % log(4mp?) —n.

< 16
- Vol(Bg (x, 1))

In the above calculation we use |Vi/| < % on B,(x, t) \ Bg(x, tp) and ||1//||§ >
Vol(Bg (x, 19)).
On the other hand,

/ 2 2 ¥ Y2
u”logu” dvol (,)=/ log —— dvol )
M SO Sy W3 I

2 2
1
Zlog/ (—) dvoly,) > log ———————,
B, (e.0) \ V|12 gl Vol(B, (x, 10))

where in the first inequality we use the following Cauchy—Schwarz inequality:

2
( / wzdvolg(,o)) < ( / w4dvolg(t0)) Vol(B,(x, 19)).
B, (x,t9) B, (x,t0)

So
Vol(B,(x, t)) B

n
log—— < 1 2C — = log(4mp?) — n.
& Vol(B, (x. 10)) (Vo1<B;<x,ro>> )+ g oemp

It is easy to get the implication
n
Vol(By (x, 1)) = (5) = VOI(B, (x, 10)) = kp"

for k = exp(—(2"t* +2C)). Then the claim follows by induction on p. ([l

Remark. Miiller [2010] considered more general geometric flows which include
Ricci flow, extended Ricci flow and Harmonic Ricci flow as special cases. In the
same paper, he introduced more general reduced volume in analogy to Perelman’s
[2002] and proved its monotonicity. In [Miiller 2012], he systematically studied the
harmonic Ricci flow and proved some important fundamental estimates, in particular,
he proved the x noncollapsing result along harmonic Ricci flow. The W entropy
for general geometric flow was discussed by Guo, Philipowski and Thalmaier [Guo
et al. 2013], and they also proved the monotonicity of W entropy.

Proposition 3.5. The following hold for x € M and s € [T, 0].
(1) limg_,o W, (s) =0.
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(2) n(g(=T),¢(=T),T) < Wy(s) <O0.
(3) Wa(s) == [220r|(fyy I Sic +V2f — 52+ (A — (V. V f))) dv, (r) dr.

Proof. Recall W, (s) = W(g(s), d(s), fr(x), |s]); (1) follows from the asymptotic
expansion of the heat kernel at x. For (2) and (3),

Dy (s)=21s] / (| Sic +V2 i — 5P 1 (A — (V4 fo>)2) dvy(s),
ds M 2|s|

SO
pn@(="),¢(=T7),T) <WE=T), ¢(=T), fx(=T),T)

= W(g(s), ¢(s), fe(s), IsD) = Wi (s).

After integrating, we get

0
Wx(s>=—f 2|r|/ (
s M

Proposition 3.6. The following hold for x e M and s € [T, 0].

2

. 8
S VZf -2
eV e

+(Ap—(V, fo»z) dv,(r)dr. O

(1) Wx(s) < N,(s) <O0.

@ LN () = L (Ve (s) — Wels)) = 0.
ds |s]

(3) Nuls) = — / log Hy (s) dvy(s) — " (log(dr[s]) + 1) = f Fuls) dve(s) — 2.

o Nx<s>=—/02|r|(1—§)fM()Sic+v2fx—ﬁ

Proof. (1) By the definition of N, (s) and the monotonicity of W, (s),

2
H(AG—(V$, VL)) dv (r)dr.

0
Ni(s) — Wi(s) = I%I/ (Wi (r) = Wx(s))dr = 0.

(2) By direct calculation,

< yer= (L [ W
50 =5 [ o)

1 [ 1 1
= —2/ Wi(r)dr + =Wy (s) = — (N (s) — Wy (s)).
se Jg N Is|

(3) Suppose u(y,l) = H(x,0; y,[), then u solves the conjugate heat equation
%—7 +Agyu(y, ) —S(y, Du(y,l) =0. Let t(I) = —I; by direct calculation,

d

—(-l/ Mlogudvol) = W(gl), ¢ (1), f(D), 1) +n+ Zlogdnll]).
dl y 2
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Integrating from s to O,
0 0 n

s/ H,(s) log H, (s) dvol = f W, () dl +/ (n +2 10g(4n|l|)) di
M s s
hence
New) == [ 1og Hi(9) v ) = §ogtarlsh+ 1 = [ fi0dui) =5,
M

where in the last equahty we use H,(s) = (4m|s |)_fe_fx
(4) Due to Nx(l) =1 (Nx(l) W, ()), we have < 21 (UNx (1)) = Wy (). Integrating
from s to 0, we get

2

8
Sic+ V2 fi— =
ic+V=fy 3]

=[] (
=—/Soz|r|<r—s>fM(

Ni(s) =

—£02|r|<1—§)/;‘4<

At first we prove a gradient estimate for the heat equation along the extended Ricci
flow (1-1).

+(Ap—(V fr, V¢>>2) dvy(t)dtdr

Sic +V2fx -

+<A¢ (V fe, V¢>>2) dvy (r)dr

SO

2

Sic+V?2 f——=—
ic+V~fy 2||

+(Ap— fo,Vqﬁ))z)dvx(r)dr. 0

4. Heat kernel estimate

Lemma 4.1. Suppose u is a positive solution to the forward heat equation with a
family of metrics evolving under the extended Ricci flow on [0, T, then

|Vu(x, 0] \[
u(x 1) u(x 1)

Jor A =supy o.rjuand (x,t) € M x [0, T].

Proof. By direct calculation,

0 A ou A du
2 (utog Ay = W jog A 21
ot u ot u ot
2
A(ulogé> :Aulogé—Au—M,
u u u
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which, combined with the heat equation, gives

2
D(ulog 3) = %

Using the flow equation (1-1), we get
9 [Vul®>  28Sic(Vu, Vu) +2V3. vy L. |Vul?

ot u u uz
IVul>  AlVul>  4V2u(Vu, Vu) 5 2|Vul>—u-Au
A = — > +|Vu)? ————.
u u u u
Combined with the Bochner formula, this gives
- |Vul>  =2(Vu,V$)? 2 du ® du 2

|V
u u u

. . Vu? A
Consider the quantity t% —ulog <,

Vul? A —2(V¢,Vu)> 2 du®d
D(tl ul _ulog_)zt(u__w%_wF)50‘
u

u u u u
By the maximum principle,

|Vu|?
t

—ulog— <0,
u

so [Vul?/u* < 1log 4. O

Now based on Corollary 3.3, we can use Davies’s method to derive the L™
estimate for the heat kernel.

Theorem 4.2. Define p = ||S(g(—T))™ |0 and

n= Te}(r){gT) n(g(=1),¢(=T), 7).

Suppose u : M x [t1, 1] — RT with [t1, 1] C [T, 0] is a positive solution to

g—'s’ = Ag(s)U, then we have

lu(s)lloe < (s — 1)) 2 exp(p (s — 1) — W llu(r) 1.

Proof. Given the flow and heat equation

%8 — ~2Sic(g(1) = ~2Ric(g (1)) +2d(1) @A (1),
Lp1) = 2gy9 1),
Zu(t) = Agyu(@),

and letting p(t) = (s —11)/(s — 1), t € [t1, s], with p(¢;) = 1 and p(s) = oo,
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d
27 1O llpa

I
d P
= (/M u(t)r® dvolg(,))

1
40, 1 !
—Wllu(t)llp(t)log /M u(t)”(t)dvolg(t)—i-m( /M u(z)P@dvolg(,))

x[ f u(®)P® p' (1) logu(t) dvoly()+ / u(t)l’“)—l(p(t)Au—sM)dvolg(,)].
M M

Integrating by parts and multiplying by p(#)?|u(t) ||§g§ gives

p(r)znu(r)niﬁi%||u(z>||pm
=P O og fM u(t)® dvoly
FPOIO 0 ©) | a0 ogu(t)dvoly
—p@®*(pO=Du®)l pay fM u()?O 2| Vu 2 dvoly,
—pOllu®llper) /M Su(t)P® dvoly).
Dividing by ||u(?)|| 5y on both sides,
PO @5 - 2 og 4@l
— —p Ol log /M u(t)"® dvolyg,
+p@)p' ) /M u(t)P® logu(t) dvoly(
—4(p(t)—1) /M|Vup(”/2|2dvolg(t)— p(1) fM SuP D722 dvolyy.

Define v = u?®/2/|uP®/2|,, then |v|l; = 1 and v?logv? = p(t)v>logu —
2v2% log ||u”(1)/2|)2. So

0
p(®)* 5 Tog ()l

=p/(t)/ vzlogvzdvolg(t)—4(p(t)—1)/ (IVv]? + 1Sv*) dvolg()
M M

—/ szdVOIg(,)
M
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=p'(t) |:f v? log v? dvolg() — p@—1 / 4|Vv|> + Sv?) dvolg(,)]
M M

p'()
- / Sv? dvoly
M
< p’(r)[—% log<4n>% —n— u] +p.

Observe p/(t)/p(t)> = 1/(s — 1), hence

p) L [n =6 _, ]
57 0g IOl < — [ =5 logm) E= 82D —n— ] 4.

Integrating from #; to s with respect to ¢, we get

M) loe 7400 s — 1)) — o+ s — 1),
Gl — 2
SO
() lloo < (A (s — 1)) "2 exp(p(s — 11) — ) Ju(t) 1. 0

Corollary 4.3. Given any C > 0, there exists a C' = C'(n, C) > 0 such that if
S(8(=9)) = — and infre(o 2i5)) (g (s), ¢ (), T) = C, if we denote H(x, 0; y, s) =

(@ ls) 2 exp(—fi(y, )), then
2 Cl /
|vxfx| fm(c +fx)

at (x,0).

Proof. Fix y, sand letu(x,t)=H(x, t; y, s), then u satisfies % = Ag(u. Applying

Theorem 4.2 we get ;
A= sup u<C'ls| 2,
[5,01xM

then by Lemma 4.1 with [, 2] = [§, 0],

5 |Vul? 1
|vxfx| = l/t2

< log 2 2(1 A—logu)
<——log—=—(logA—logu
Isl/2° " u s

2 /
<7 (logC'~2 logs|+2 log(dlsD+1.) < E—|(C/+fx). 0

Based on Perelman’s Harnack inequality [Perelman 2002], Zhang [2012] obtained
the lower bound for the heat kernel along Ricci flow, which can be used to derive
the « noninflating property for Ricci flow. Next we generalize Perelman’s Harnack
inequality to the extended Ricci flow.
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Theorem 4.4. Let u = u(y,s) = H(x,t;y,s), s <t,and f be defined by u =
A (t— s))_%e*f. Denote T =t — s and let P = P (u) be defined as

P=[tQAf—|VfI*+8+f—nlu
2
= ‘L’(—ZAM—l—% —|—Su) —ulogu —%log(47rt) — nu;

then P < 0. Moreover, for any smooth curve ¢ = c(s) on M,

1
2(t—s)
Proof. By Lemma 6 in [Guo et al. 2015a], we know P <0, so

(t —$)QAf —|VfI*+S)+ f—n<0.

— L Fe(),5) = 20, ) +ICEP) = 5 Fe(s), 9).

Since u solves the conjugate heat equation, we have

9
%:—Af+|Vf|2—S+

Combining the above two equations, we get

2(t—s)

f ¢ ligea_ f
as T25 VI =505 20

On the other hand,

d aof / af |1 2, 1052

= - < 2L - -

T ). ) = =20 = (VL) = = S-SV 216
The desired inequality follows from adding the last two inequalities. U
Remark. In [Cao et al. 2015], the authors considered the Harnack estimate for the
conjugate heat kernel of general geometric flow, and our Theorem 4.4 is a special
case of [Cao et al. 2015, Theorem 1.2]. This kind of estimate is used to derive
smooth convergence of the conjugate heat kernel for our particular flow; for general

geometric flow in [Cao et al. 2015], we don’t even know the convergence of the
flow.

Next we introduce the reduced length and prove a bound of the heat kernel which
will be used in the following sections. Let x, y € M, 0 <s <t < T and consider
a smooth curve y : [s,t] — M connecting (y, s) and (x, t), i.e., y(s) = y and
y(t) = x. Its L length is defined as

t
L(y) =f V=17 @), + S (), o) do

The reduced distance between (x, t) and (y, s) is defined as

len(y,s)= 3 inf{L(y):y :[s,t] > M between (v, s) and (x, 1)}.
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Choose y (o) : [s,t] = M to be the L geodesic between (y, s) and (x, t); from
Theorem 4.4 we know

d 1 1
— (=) (7 (©0).0) = 5t =) S (@), 0) + 1V @),

Integrating from s to ¢, we have

. t
(=9 o0 23 [ VImasw©.0+ 1y @) do

hence
FOys) <lxny(y, ),
1.e.,
4-11) H(x,t;y,s) > @r(t —s)) 2 len®9),

Now we are in a position to prove the lower bound of the heat kernel.

Theorem 4.5. Define p = ||S(g(—=T)) " lloo, 1 =infre 21y n(g(=T), 9 (=T), 7).
Denote t =t —s fors <t in[—T, 0], then we have

" 4d(x,y,0)> 1 ('
H(x,t;y,s>z<8m)—zexp(—’—y’—f/w—oS(y,wda—pwu).

T

Proof. Letu(y,s)=H(y,t;y,s), s <t, then u solves the conjugate heat equation
— % Agsyut + Su = 0. Define a function f by u(y,s) = (@drt) 2~/ 0); we
need to use Theorem 4.4. Picking the curve c(s) to be the fixed point, we have

_% < %S(y, s) — %f()% 5).

For any sp < 51 < t, we integrate the above inequality to get
1"
POV = fousoViTsi+ ] [ VT=oseado.
52

When s; approaches 7, f(y,s;) stays bounded because H(y,t; y,s)(t —s)?2 is
bounded between two positive constants. Hence for s < ¢, we have

1 t
FOns) < ﬁf Ji=oS(y. 0)do,

S0,
e—ﬁ f; Jt—0S(y,0)do

H( ’t; 5S)Z n
Yy (4rt)2

Next we will use the gradient estimate from Lemma 4.1 to get the lower bound
for H(x,t; y,s). Define v(x,!) = H(x,; y, s), then v satisfies ‘(?,—’l’ = Agpyv(l). On
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the interval [£*, 1], applying Theorem 4.2 , we get

[l < (47 552) Pert9-1 = 4,
A 1

V,/log ‘ < :
l v(x, 1) \/ﬁ

A A d(x,y,1)

logs—— < [lo + .

\/ gv(x,t) _\/ gv(y,t) \/ﬁ

2

By Lemma 4.1, we have

hence

Using Cauchy—Schwarz,

<l
v(x,t) — ©

2 2
Jog g( A )+4d(x,y,t)'

v(y, 1) r—s

So

4 ) _4d(x;y,t)2
v(x, )= A" v(y, )% TS

n 1 " Jt=0S(y,0)do 4d(x,y,0)?
> Qr(t—s) te Pt ey e Vi b e

n 4d(x,y, 0> 1 !
=(87‘[‘L’)26Xp<— t’_);’ —m/\/t—aS(y,o)da—pr—i-u). O

5. Log-Sobolev inequality and Gaussian concentration

Consider a smooth metric probability space (M, g, dv), where dv = e~ "d vg. If the
so-called Bakry—Emery condition,

Ric + V2h > %g,

is satisfied, a celebrated theorem [Bakry and Emery 1985] asserts that (M, g, dv)
satisfies a logarithmic Sobolev inequality with a definite constant. More precisely,
this means that for every smooth function v with compact support and || M v2dv=1,

/vzlogvzdv§4/ |Vv|2dv.
M M

Since the work of [Bakry and Emery 1985] there has been plenty of work on the
characterization of the Ricci curvature bound using the log-Sobolev inequality; see
[Bakry and Ledoux 2006; Cheng and Thalmaier 2018; Naber 2013]. The above
log-Sobolev inequality has many important applications, for example, see [Carrillo
and Ni 2009; Munteanu and Wang 2012; Wu and Zhang 2017].
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With the same spirit, in this section we will prove Theorem 1.2, i.e., the Poincaré
inequality (1-2) and the log-Sobolev inequality (1-3). As applications, we obtain
Theorem 1.3 and Corollary 1.4.

In the following argument, for simplicity, we use dv to denote dv,,(y, s). We
can rewrite the Poincaré inequality (1-2) and the log-Sobolev inequality (1-3) in
the following way. For any u € C;°(M) with u > 0 in the second case,

2
(5-12) /u%z’v—(f udv) §2|s|/ IVulzdv,
M M M
|Vul?
(5-13) ulogudv — udv)log udv) <|s| dv.
M M M M U

Theorem 1.2 can be derived using a similar idea to that in [Hein and Naber 2014],
where the gradient estimate can be obtained by applying the “heat kernel homotopy”
principle [Bakry and Ledoux 2006]. Given s < ¢ in [—T, 0], we define Py,u as

Psiu(x) = /M u(y)H (x, t; y,s)dvolg) (y).

Note that when s is fixed, Ps;u satisfies the heat equation.

Lemma 5.1. If U(t) are smooth functions on M x [—T, 0], then

d
EPtOU(t) = Pl U(2).

Proof. When x, ¢ are fixed, H (x, t; y, s) satisfies the conjugate heat equation.

d d
—PoU (1) =/ —U(y,t)H(x,0; y,t)dvolgq (y)
dt M 0t

d
+fM Uy, 0(5 - S, t)>H(x,0; ¥, 1) dvolg( (y)
9
:f a—U(y,t)H(X,O;y,l‘)dVOIg(z)(y)
M 0t
_f Uy, t)AyH(x,0; y, 1) dvolg)(y)
M

)
_ / (a—U(y, N — AUy, t))H(x, 0; y, 1) dvolg (»)
M t

Z/ LUy, DH (x, 05 y, 1) dvolg (y) = Pl U (1). O
M

Lemma 5.2. Letu € Cj°(M) and u(t) = Py;u so that Uyu(t) = 0. Suppose h and
are two smooth functions from R to R.

(1) IfU@) =hu)), then J,U(t) = —h”(u)qu(t)lé(t).
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Q) FU@) =y @) Vu@)[2,, then
O,U (1) = =29 )| V2u)> =29 ) (V, Vu)> =" ) | Vu|* =44 (u) V2u(Vu, Vi),

Proof. (1) QUt) = (£ — Mh(u(t)) = '3 — (h"|Vul? + 1 Au) = —h" )| Vu|>
(2) Using the Bochner formula (2-10), we get
O Vul? = =2|V2u|*> = 2(Vu, V)2
So
O, (W )| Vul?) = 0,9 @) [Vul® + ¥ )0, Vul* = 2{V ), V|Vul?)
= =29 W) |V?ul> = 29 (u)(Ve, Vu)?
— " )| Vul* = 4y’ @) V>u(Vu, Vu). O

Now we are going to prove the Poincaré inequality and the log-Sobolev inequality.
Note that

0
(5-14) f h(u) dv —h(/ udv) = —/ iP,o(h(Ps,u)) dt
M M s dt

0
Zf PIO(h//(PSlu)|VPslu|§(t))dt-
N

Proof of the Poincaré inequality (5-12). Pick h = x% by (5-14) we have

2 0
/uzdv—(f udv) =2f P,0(|VPS,u|§(t))dt.
M M s

Using Lemma 5.1 and Lemma 5.2,

3
o v (|V Pyrtly) = Pr0r(IV Pl )
= Put(=2IV2 Pyl — 2V, V Poru)?).
Integrating from s to ¢ with respect to r,

t

t
IV Py = Pu1 )= [ V2Rl dr=2 [ (999 Py
S S

SO
0

2 0
/uzdv—</ udv) =2/ P,0(|VPstu|§,(,))dt§2/ Pio Py (IVuly,) dt
M M s s
0
:2/ PSO|VM|§(S)dt:2|s|/M|Vu|§(s)dvx0(s).
s

It is easy to see that equality holds if and only if VZP;,u =0, i.e., u is constant. U
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Proof of the log-Sobolev inequality (5-13). Pick h = x log x; by (5-14), we obtain

0 |VPst”| g0
ulogudv — udv ) log udv )= Po|l ———— ) dt
M M M s Psiu

Using Lemmas 5.1 and 5.2,

d
a_r vt (Psru|V 1og Psr”lé(r)) = P00, (Ps,u|V log Psrulé(r))
VP..ul? i Ve,V Pgu)?
= P00, VEyul”) _ —2P,| Pyul|V?log Pyul* + No. VPyru)® :
sri | (Psru)2

and integrating from s to ¢ with respect to r,

|V Pyul; Vul T Ve,V Pyu)?
— 0 Pst< g(”) -2 / Py Psru(wﬁog Pyup O )} dr.

Pstu s L (Psru)

So

0 |VPst”|g(t)
ulogudv— udv|)log udv) = Po| ————— ) dt
M M M s Psiu
0 |Vul? 0 |Vul?
5/ P,OPH<_g(~‘)> d[=/ PSO( g“’) =s |/ g“’d Vo (5).
N u S

One sees that equality holds if and only if V2 log P;,u =0, i.e., u is constant. [

Next we will use the log-Sobolev inequality to derive Theorem 1.3, where the
proof follows from standard theory in the metric measure space.

Proof of Theorem 1.3. Choose any F € C*°(M) with

(5-15) / Fdv=0, |VF|<I1.
M

Define U(A) = %log [y, €*F dv, then

. fM M F dy
llmU(k)_llm—zf Fdv=0.
A—0 =0 [, e*F dv M

AF

Applying the log-Sobolev inequality to u? = W,
oM F oM F _eAF|VF|2
J G oe gy Jov =4 v o a
SO

fe”dv/ e““<xF—log/ e““)dvgmz/ e”|VF|2dv§|s|)\2/ M dy,
M M M M M
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/ e”(kF—logf e”) dv < |s|K2.
M M
Hence,

d d (1 ~1 1/, e Fd
—U =— —log/ v ) = —log/ e'\de—i-—M
d)\. d)\. A M )\.2 M A fMe’\de

1 1 AF AF va
:ﬁm(_ﬁle dvlog/Me du+k/ﬁ4e Fdv ) <|s|.

In the last inequality we use [, e*" dv > 1 because log [,, e*" dv > [, AF dv=0.
Combining %U <|s| and limy_.o U (A) = 0, we obtain

2
/ AF dy < el
M

because any F satisfies (5-15).
Define G (y) =dy(s)(y, B) and F =G — [,, G dv, then

/emyl)dv(yl)f/ AFOD gy < o512,
A

1.€.,

M
and
/ e 0D qu(yy) Sf e 02 gy < ol
B M
So
ekdg(s>(A,B)1)(A)v(B) < / / M EOD=F () dv(y)dv(yy) < 62|5|)\2’
BJA
ie.,
D(A)W(B) < 1o (4B

Because

IOIGE B))z_ dy(s) (A, B)? _ dy(s) (A, B)®

21s|A% = Ady (A, B) =2|s|[ A ,
sl s (4, B) 's'( 415 sisl — 8is|

we get

dg(s) (A» B)2 )

V(A)v(B) Sexp<— 8[s|
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Remark. Given x|, x, € M, take A = B,(x1, s) and B = B, (x2, s), where r2 = |s|.
Applying the above theorem to dv = dv,,,

(5-16) H(x2,0; y,s)dvolg)(y)
B, (x1,s) 9
< 1 ex (_dg(s)(Br(xlvs)» B, (x2,5)) >’
Vy, (B (x2, 5)) 8s|
due to
dg(s)(x1, X2) < dg(5)(By(x1,5), (Br(x2,5))) +2r,

hence

Tdg(s)(x1, X2)* < dyg(s)(Br(x1,5), Br(x2,5))* +4s].
So

C ( dg(s)(x1, xz)z)
——exp| —————— ).
sz(Br(XZas)) Cls|
Together with Perelman’s « noncollapsing property, this can be used to derive
certain upper bounds of the heat kernel [Wu > 2019].

/ H(x2,0; y,s)dvolg) (y) <
Br()C],S)

Proof of Corollary 1.4. Apply Theorem 1.3 with xg = x2, A = B,(x1,s) and
B = B,(x3, s). Using Theorem 4.5, we obtain

1 n
5-17 inf H(x,0;y,s)> —]|s| 2.
(5-17) B,l(ilz,s) (x2,05 y,5) C,ISI

Due to the evolution equation of volume along (1-1),

d
& Noly (B, (x2, 0)) = f

C
S(y, t) dvolg (y) < — Volg(1) (B (x2, 0)),
B, (x2,0) |

and integrating from s to 0 with respect to ¢, by Theorem 3.4 we have
1 1
(5-18) Vol (Br (32, 0)) 2 = Volgo) (B, (x2. 0)) = 7"

Combining (5-17), (5-18) and Volg ) (B (x1, 0)) > %rn, we get
1
Volg(5)(By(x1,0)) JB, (x,,0)

H(x2s O’ y’ S) dVOlg(s)()’)

n desy(Br(x1,0), B (x2,0
SC/|S|—§ exp(— 8( )( (xl ) (XZ )))

C'|s|
From Theorem 4.5 again, we have

dg(0)(x1, X2)2>

. 1,
1nf)H(xz,0;y,S)ZE|s| Zexp(— C'|s|

B (x1,0

and combining this with (1-4), (1-5) follows.
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6. Lipschitz continuity of pointed Nash entropy

Recall the pointed Nash entropy at (xg, s) € M x [—T, 0] is defined as

1 0 n
Mo (s) = / Wey(r) dr = /M Fals) dvig ()~ 5.

Based on the Poincaré inequality (1-2) in Theorem 1.2, we can prove the Lipschitz
continuity of the pointed Nash entropy.

Proof of Theorem 1.6. Define F(x) = f,(s)H,(s), then
I1F(x1) = Fx)ll = |1 fx, () Hy, () — fr, () Hy, (5) ]

- / oy (), () — fun () iy (5)] dvolys) ()
M
dg(0)(x1,x2)
5// IVy o) (fy @) Hy 1)) dt dvolgs ()
M JO

dg(0)(x1,x2)
= / / IVy @) (fy 0 Hy 1)) dvolg(s) (y)dt
0 M

< SUP/ |V (fx Hy)| dvolgs) - dg(oy (X1, X2),
xeM JM

where y (¢) is a unit speed geodesic connecting x; and x; with respect to g(0). All
we need to do is to estimate the integral,

/ Vo (foHo)l dvolyge) (7) = / Ve fuHy — foHoVy fo] dvolgge) ()
M M

= /M IV fx =[xV fel dve(s) < [[Ve fell2(0+ 1 fxll2).

From the gradient estimate in Corollary 4.3, we know

C/
Vi fil? < —(C'+ fo).

~ sl
Hence
_1 _1
/ IV (fe Ho)l dvolgy (y) < C'ls| 72 (14 [ £ll3) < C'ls| 2,
M
where in the last inequality we use (3) from Theorem 6.1. (]

Theorem 6.1. Under the assumption (1-6), the following holds for f,(s).
(1) fyy fedvels—C.2)

@) [y IVAlPdv<(G+0);.

3) fM | fel>dv < (n+2+ C)% here we use dv to denote dv,(y, s).
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Proof. (1) Applying Propositions 3.5 and 3.6, we have
—C = n(g(s), @ (s), Is]) = Wi(s) < Nx(s),

so [y, frdvel[s—C. 5]
(2) Recall Wy(s) = [, (Is|(S+IV fx|)+ fr—n) dv and Ny (s) = [}, fc(s) dv—4,s0

W (s) — Ny (s) =/ Is|(S+ |V £ dv -2 <0,
M 2

hence [, (S+|V f|>) dv < -

(3) Applying the Poincaré inequality (1-2), we have

2
/ffdv52|s|/ |fo|2dv+</ fxdv)
M M M
n 1 n 2 /n\? 2
§2|s|(§+c>m+max{(§—C) (5) }S(n—i—C—i—Z) . O

7. Proof of e-regularity theorem

In this section we prove the e-regularity theorem. In order to do that, we quote the
derivative estimate to be used.

Lemma 7.1 [List 2008]. Let (M", g(t), ¢ (t)) be an extended Ricci flow (1-1) on
M x [0, T) with initial data (go, ¢o), and assume sup |¢o| < C, then for all t > 0,
inf ¢o(x) < P(x, 1) < sup ¢o(x),

xeM xXeM
sup [Ve[*(x,1) < C*r~.
xeM
Proposition 7.2 [List 2008]. Let (M", g(t), ¢(t)) be an extended Ricci flow (1-1).
Fixxoe M andr > 0, if
sup r2|Rm| < C.
By (x0,5)
Denote ® = (Rm, V2¢), then the derivatives of ® satisfy the inequality for all
m >0, and for all t € (0, s] the estimate

sup  |[V"®> < C(n,m)C(r—2+1Hymt?
By j2(x0,1)

holds, where C = C(n, m) is a constant only depending on n and m.

Next we prove a more restricted version of Theorem 1.8, whose proof is based on
the point picking argument as in [Anderson 1990]. Once we have this, Theorem 1.8
can be derived using the Lipschitz continuity of the pointed Nash entropy in
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Theorem 1.6. In the following argument, for simplicity, we define
t(y) = = min{T, rirm| (v, 0)%}.
Theorem 7.3. There exists an € = ¢(n, C) > 0 such that if
Ny(t(y)) = —¢, forally € Bs(x,0),
where 0 < 8§ < /T, then
FIRm|(y,0) > €-dg0)(y, 0Bs(x,0)), forally e Bs(x,0).

Proof. Without loss of generality, we assume § = 1 < 7. Suppose the contrary, then
we have a sequence of the extended Ricci flow (M;, g;(¢), ¢:(t)) satisfying (1-7)
and x; € M; such that

(7-19) Ny () = —F, forally € Bi(x;,0),

but any point y; minimizing the quantity

"1Rm|(y, 0)
dg0)(y, 9B1(x;, 0))

w(y) =

satisfies 0 < w(y;) < ll
Choose any such y; and denote r; = r|rm|(yi, 0). Consider the rescaled extended
Ricci flow (M;, g;(t), ¢;(t)), where

gi(t) = r—zgi(ri D, ¢i(t)=¢i(rjt), te r2,0 )
Clearly rjrm|(yi, g:(0)) = 1 and

di =3 g,«»(yl,aB (x;, 2:(0))) > ’5

Because y; minimizes w,

~ 1 ~
(7-20) MRm (. 8i(M) = 5. forall y € By, (yi, 8i(0)).

This curvature bound, together with the assumption above and the ¥ noncollapsing
property, implies that
Volz, 0)(B1(y, 0)) = k(n, C).

So we have a uniform curvature bound on P;/4(y, g;(0)) for any y € By, (y;, i (0)).
Then we have the smooth convergence

(Miv gi (t)’ ()’i, 0)) - (M009 goo(t)a (y007 0))

The limit is completely defined on [—+, 0] and is of bounded curvature.

16’
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Now we have the heat kernel bound
@m(t) ™2 exp(—LG.0 (v, 1) < HG:, 05y, 1) < C'(n, O)|t| 3.

The lower bound is due to (4-11) and the upper bound is due to Theorem 4.2.

As before, we write H(y;,0; y, 1) = (4n|t|)*% exp(— fi(y,t)). By Lemma 4.1,
the gradient of H (y;, 0; y, t) is uniformly bounded on any compact domain; (7-20)
implies higher order derivatives of H(y;, 0; y, t) are also bounded, so the f;(y, t)
converge to foo(y,t) smoothly on any compact subset. Because |$i| < C, by
Lemma 7.1 and Proposition 7.2 we know the various order derivatives of ¢; are
uniformly bounded. Equation (7-19) together with (4) in Proposition 3.6 gives

0
/12|t|(1 16]¢]) (

Letting i — 00, we see foo satisfies

~

~ 1
Sic(8)+V2f; —m +(A¢z (Vfi, V¢i))2) dvy,dt < I

(7-21)

{slc<goo)+v foo = 525 =0,
Ao = (V. V fuc).

Because |$l- | < C, after blowing up, $,~ — (oo =const, so (7-21) can be simplified to

R V2 foo — 22 =0,
lc(goo)+ foo 2|t|

which is nonflat and of bounded curvature on [_B’ 0]. This is impossible, because
the curvature at time ¢ is %Itl times the curvature at time —11—6, and hence tends to
infinity as t — 0. (]
Proof of Theorem 1.8. Define ¢ = min{%sm, 2C,} and § = '“226?,7 3 where C’ is the
constant from Theorem 1.6 and &7 3 is the constant from Theorem 7.3. Assume

Wy, (s) > —¢, so Ny, (s) > —e. By Theorem 1.6, we have for any x € B;(xo, 0),
Ny(s) 2 Ny (s) = C'ls|"2d (x0, x) = —e73.

Then we can apply Theorem 7.3 to get | rm (X0, 0) > £738 > g|s|%_ O
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