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UNIQUENESS QUESTIONS FOR C∗-NORMS ON GROUP RINGS

VADIM ALEKSEEV AND DAVID KYED

We provide a large class of discrete amenable groups for which the complex
group ring has several C*-completions, thus providing partial evidence to-
wards a positive answer to a question raised by Rostislav Grigorchuk, Mag-
dalena Musat and Mikael Rørdam.

1. Introduction

The interplay between group theory and operator algebras dates back to the seminal
papers by Murray and von Neumann [1936] and by choosing different completions
of a discrete countable group 0 one obtains interesting analytic objects; for instance
the Banach algebra `1(0), the full and reduced C*-algebras C*(0) and C*

r (0), and
the group von Neumann algebra L0. In general there are many norms on, say,
`1(0) such that the completion with respect to this norm gives a C*-algebra, and
the question of when the C*-completion is unique (in which case 0 is said to be
C*-unique) has been studied by various authors [Leung and Ng 2004; Boidol 1984;
Barnes 1983]. A C*-unique discrete group is evidently amenable and it is, to the
best of the authors’ knowledge, an open question whether the converse is true,
although it is known to be false in the more general context of locally compact
groups [Leung and Ng 2004]. More recently, the paper [Grigorchuk et al. 2018]
put emphasis on the question of when the complex group algebra C0 has a unique
C*-completion. As is easily seen [Grigorchuk et al. 2018, Proposition 6.7], if 0
is locally finite (i.e., if every finitely generated subgroup is finite) then C0 has
a unique C*-completion, and [Grigorchuk et al. 2018, Question 6.8] asks if the
converse is true. The present paper provides partial evidence towards a positive
answer to this, in that we prove that the following classes of nonlocally finite groups
have several C*-completions.

Theorem A (see Proposition 2.4 and Corollary 3.7). The class of countable groups 0
for which C0 does not have a unique C*-norm includes the following:

(i) Infinite groups of polynomial growth.

MSC2010: 16S34, 46L05, 46L10.
Keywords: group rings, C*-norms, the Atiyah conjecture.
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(ii) Torsion free, elementary amenable groups with a nontrivial, finite conjugacy
class.

(iii) Groups with a central element of infinite order.

The key to the proof of (i) and (ii) is the so-called strong Atiyah conjecture (see
Section 3A), which predicts a concrete restriction on the von Neumann dimension
of kernels of elements in the complex group algebra under the left regular represen-
tation — notably these are predicted to be either zero or one if the group in question
is torsion free.

2. Basic results on C*-uniqueness

In what follows, all discrete groups are implicitly assumed to be at most countable.
We will use several operator algebras associated to a discrete group 0: the maximal
C*-algebra C*(0), the reduced C*-algebra C*

r (0) and the von Neumann algebra L0.
For more information on these, we refer to [Brown and Ozawa 2008, §2.5]. We
recall that L0 = (λ(C0))′′ ⊂ B(`20) is generated by the left regular representation
λ : C0→ B(`20) and carries a canonical, faithful, normal trace given by τ(x)=
〈xδe, δe〉. In what follows, tr will denote the normalized trace on Mn(C) while Tr
will denote the nonnormalized trace.

We begin by formally introducing the notion of C*-uniqueness. In order to avoid
a notational conflict with the already existing notions studied in [Leung and Ng
2004; Boidol 1984], we emphasize that we are investigating the uniqueness of
C*-norms on the complex group algebra in contrast to the `1-algebra.

Definition 2.1. Let 0 be a discrete group. C0 is said to be

(i) C*-unique if it carries a unique C*-norm;

(ii) C*
r -unique if no C*-norm on C0 is properly majorised by the reduced C*-norm.

0 is said to be algebraically C*-unique if C0 is C*-unique, and it is said to be
C*

r -unique if C0 is C*
r -unique.

Amenable groups are characterized by the property that the maximal and reduced
C*-algebras coincide, and thus a nonamenable group is never algebraically C*-
unique; on the other hand, for amenable groups the above notions coincide. Note
also that the class of C*-simple groups, which has recently received a lot of attention
[Breuillard et al. 2017; Le Boudec 2017], falls within the class of algebraically C*

r -
unique groups. As already mentioned in the introduction, algebraic C*-uniqueness
appeared in the recent paper [Grigorchuk et al. 2018] in which the authors observed
that locally finite groups have this property and asked if this characterizes the class
of locally finite groups. Below we prove a few basic permanence results regarding
algebraic C*-uniqueness, but before doing so we give an alternative characterization,
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which is a straightforward algebraic adaptation of the similar result for `1-algebras
[Barnes 1983, Proposition 2.4].

Lemma 2.2. Let 0 be a discrete group. Then C0 is C*-unique (respectively, C*
r -

unique) if and only if every nontrivial closed, two-sided ideal in C*(0) (respectively,
C*

r (0)) intersects C0 nontrivially.

Proof. We give the proof for the statement about algebraic C*-uniqueness; the
other case is obtained by replacing C*(0) by C*

r (0) throughout the proof. Assume
that there is a nontrivial ideal J P C*(0) intersecting C0 trivially and denote
by q : C*(0) → C*(0)/J the quotient map. Composing q with the inclusion
C0 ↪→ C*(0) yields a faithful representation of C0 and it defines a C*-norm on it
that is properly majorised by the maximal norm by nontriviality of J. Conversely,
if there is a C*-norm on C0 which is properly majorised by the norm coming from
C*(0), then C*(0) surjects onto the corresponding quotient, and the kernel of this
surjection is a nontrivial ideal intersecting C0 trivially. �

Corollary 2.3. Let 0 and 3 be discrete groups. If C(0×3) is C*-unique (respec-
tively, C*

r -unique), then so are C0 and C3.

Proof. Let J P C*
r (0) be a nontrivial ideal intersecting C0 trivially. Then

J ⊗max C*
r (3)P C*(0)⊗max C*(3)= C*(0×3)

is a nontrivial ideal intersecting C(0×3)= C0⊗alg C3 trivially. The same proof
with C* replaced by C*

r and ⊗max replaced by ⊗min works for the reduced case. �

Proposition 2.4. If 0 is a discrete group with a central element of infinite order
then C0 is not C*

r -unique.

Proof. Denote by Z the subgroup in 0 generated by a central element of infinite
order. Then C*

r (Z) ∼= C(S1) and L Z ∼= L∞(S1) via the Fourier transform and
we denote by p ∈ L Z the projection corresponding to the characteristic function
of the upper half-circle {eiθ

: θ ∈ [0, π]}. Define π := λ0 p; i.e., the left regular
representation of 0 restricted to the invariant subspace p`2(0). Choosing a nonzero
function f ∈ C(S1) supported in the lower half-circle we obtain a nonzero element
x ∈ C*

r (Z)⊂ C*
r (0) with xp= 0 and hence the norm on C*

r (0) induced by π is not
the one induced by λ0 . We now only need to show that π is faithful on C0. To this
end, consider the trace-preserving conditional expectation E : L0→ L Z [Brown
and Ozawa 2008, Lemma 1.5.11] and assume that a ∈ C0 is in the kernel of π .
Then a∗a is also in the kernel of π and since E is an L Z-bimodule map [Brown
and Ozawa 2008, Proposition 1.5.7], we get

0= E(λ0(a∗a)p)= E(λ0(a∗a))p.

However, E(C0) ⊂ CZ ' Pol(z, z̄) ⊂ C(S1) and therefore E(λ0(a∗a)) = 0 and
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since E is trace-preserving and the trace on L0 is faithful we conclude that a∗a,
and hence a, is zero. �

Corollary 2.5. An abelian group is algebraically C*-unique if and only if it is
locally finite (i.e., pure torsion).

Remark 2.6. The result in Corollary 2.5 was also observed, independently and with
different proofs, by Rostislav Grigorchuk, Magdalena Musat and Mikael Rørdam
(unpublished).

Remark 2.7. The class of locally finite groups has many stability properties — for
instance it is closed under subgroups, quotients and extensions and, moreover, being
virtually locally finite is the same as being locally finite. However, verifying these
properties for the class of C*-unique groups seems to be a much bigger challenge.

3. The strong Atiyah conjecture and C*
r-uniqueness

3A. The strong Atiyah conjecture. The key to our main result is the so-called
strong Atiyah conjecture which is briefly described in the following. A good
general reference is [Lück 2002, Chapter 10] where all of the results below can be
found, and to which we also refer for the original references. Let 0 be a discrete
group and denote by 1/|FIN(0)|Z the additive subgroup in Q generated by the set{ 1

|3|
:36 0 a finite subgroup

}
.

Given a matrix A ∈ Mn(C0) we denote by L A ∈ L0 ⊗Mn(C)⊂ B(`2(0)n) the
bounded operator given by left multiplication with A (via the left regular represen-
tation of 0). The strong Atiyah conjecture then predicts that

dimL0 ker(L A) := (τ ⊗Tr)(Pker L A) ∈
1

|FIN(0)|
Z.

Here dimL0(−) denotes the von Neumann dimension of the (right) Hilbert L0-
module ker(L A) defined as the nonnormalized trace of the kernel projection Pker L A ;
see [Lück 2002] for details on this. It should be noted that the strong Atiyah con-
jecture is false in general [Lück 2002, Theorem 10.23], but is known to hold for all
groups which have a bound on the order of finite subgroups and belong to Linnell’s
class C [Lück 2002, Theorem 10.19], the latter being the smallest class of groups
which contain all free groups, and is closed under directed unions and extensions
by elementary amenable groups (i.e., if 3 P 0, 3 ∈C and 0/3 is elementary
amenable, then 0 ∈ C). The above discussion motivates the following notion.

Definition 3.1. Let 0 be a countable group. The torsion multiplier of 0 is defined as

θ(0)=
1

lcm{|H | : H 6 0 finite}
∈ [0, 1].
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In this definition, and in what follows, we use the convention that the least
common multiple (lcm) of an infinite set of natural numbers is infinity and that
1
∞
= 0. Note that if 0 has an upper bound on the set of finite subgroups, then

1
|FIN(G)|

Z= {nθ(0) : n ∈ Z},

and 1/|FIN(G)|Z has 0 as an accumulation point otherwise. In view of this, the
strong Atiyah conjecture for a group 0 with θ(0) > 0 implies that the possible
kernel dimensions are properly quantized in the sense that they can only take values
in the discrete set {nθ(0) : n ∈ N} ⊂ R. Theorem A (i) and (ii) will follow directly
from our main technical result, Theorem 3.6. The key idea in the proof is to play
the aforementioned “quantization” of the kernel dimensions against an abundance
of central projections in L0 with small traces which provide representations of
C*

r (0) with nontrivial kernels. To quantify this, we need the following definition.

Definition 3.2. The central granularity of 0 is defined as

σ(0)= inf{τ(p) : p ∈ Proj(Z(L0)), p 6= 0} ∈ [0, 1].

We note that σ(0) < 1 if and only if Z(L0) is nontrivial which is equivalent
to 0 not being icc.1 The next proposition computes the central granularity of 0 in
group-theoretic terms. Recall that the FC-centre 0fc is the normal subgroup of 0
consisting of all elements with finite conjugacy classes.

Proposition 3.3. Let 0fc P 0 be the FC-centre of 0. Then

σ(0)=
1
|0fc|

,

where the right-hand side is interpreted as 0 if |0fc| =∞.

Proof. 0fc is an increasing union of a sequence of finitely generated normal
subgroups 3n P 0; to see this, note that 0fc is clearly an increasing union of
a sequence of finitely generated subgroups 3′n , and defining 3n to be generated by
the 0-conjugacy classes of a finite system of generators for 3′n yields the desired
sequence of finitely generated subgroups which are normal in 0. We now have two
cases to consider:

(i) All 3n are finite (equivalently, 0fc is a torsion group),

(ii) 3n is infinite for some n.

In case (i), setting pn := 1/|3n|
∑

g∈3n
g, we get a projection pn ∈ L0fc with

τ(pn)= 1/|3n|; moreover, pn is central in L0 since3n is normal in 0. This proves
that σ(0)= 0 if 0fc is an infinite torsion group (in this case |3n| →∞). If 0fc is

1Recall that a group is icc if all nontrivial conjugacy classes are infinite
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finite, then the sequence stabilizes, and therefore we get a central projection p in
L0 with trace 1/|0fc|. The centre of L0 consists of elements whose associated
Fourier series in `2(0) = L2(L0, τ) are supported only on 0fc and are constant
along conjugacy classes, and is therefore contained in the centre of L0fc; hence we
get 1/|0fc|>σ(0)>σ(0fc). But we also have L0fc=C0fc which by representation
theory of finite groups is isomorphic to a direct sum of matrix algebras

⊕
π Mdπ (C)

with the trace given by
⊕

π d2
π/|0fc| tr; thus, the minimal central projection has

trace 1/|0fc| = σ(0fc); this proves the claim.
In case (ii) we fix an n ∈N such that 3n =:3 is infinite and note that since 3 is

generated by a finite number of elements with finite conjugacy classes, its centralizer
C0(3) is of finite index in 0. We now claim that L3 has a diffuse von Neumann
subalgebra and thus projections of arbitrarily small trace. This can be seen as
follows: if L3 has a direct summand of type II1, it is clear because such von
Neumann algebras are diffuse. Otherwise L3 is of type I, but then 3 is virtually
abelian [Lück 1997, Lemma 3.3], and hence, being infinite by assumption and
finitely generated by construction, contains a copy of Z which generates a diffuse
von Neumann algebra LZ∼= L∞(S1). In view of the above, for an arbitrary ε > 0,
there is a projection p ∈ L3⊂ L0fc of trace τ(p) < ε/[0 : C0(3)]. Now let

q :=
∨
g∈0

gp,

where gp :=gpg−1. Then q is a central projection in L0. Moreover, p is invariant un-
der the centralizer C0(3) and upon choosing coset representatives g1, . . . , g[0:C0(3)]
for 0/C0(3) we obtain

q =
[0:C0(3)]∨

i=1

gi p

and hence τ(q)6 [0 : C0(3)] · τ(p) < ε. Thus σ(0)= 0. �

Lemma 3.4. Let 0 be a discrete non-icc group. For every ε > 0 there exists
a nonzero projection p ∈ Z(L0) with τ(p) < σ(0)+ ε and a nonzero, central
element x ∈ C*

r (0) with xp⊥ = 0.

Proof. Since 0 is non-icc, Z(L0) 6= C1 so σ(0) < 1. Let ε > 0 be given
and assume, without loss of generality, that σ(0)+ ε < 1. One has Z(L0) =
Z(C*

r (0))
′′
= Z(C0)′′, as can be seen for instance by using Kaplansky’s density

theorem together with the centre valued trace, and noting that Z(C0) consists of
the elements whose coefficients are constant along conjugacy classes. By Gelfand
duality, Z(C*

r (0)) is isomorphic to the C*-algebra C(Z) of continuous functions
on its Gelfand spectrum Z , which is a compact Hausdorff space; it is metrizable
because C*

r (0) is separable. The canonical trace τ thus gives a regular Borel
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probability measure µ on Z [Rudin 1966, Theorem 2.14] and an isomorphism
Z(L0) = Z(C*

r (0))
′′ ∼= L∞(Z , µ) compatible with the natural inclusions. Pro-

jections in Z(L0) correspond via this isomorphism to measurable subsets of Z
(up to null sets), and we therefore obtain a measurable subset A ⊂ Z such that
0< µ(A) < σ(0)+ ε/2. By regularity of µ, there exists U ⊇ A open such that

0< µ(A)6 µ(U ) < σ(0)+ ε < 1.

Now, there is a nonzero element x ∈C(Z) vanishing on the compact set K := Z \U
(for instance, the distance function to K ); letting p be the projection corresponding
to U finishes the proof. �

The following lemma gives a concrete description of the decomposition of the
left regular representation of a discrete group 0 over the cosets of a finite index
normal subgroup 3.

Lemma 3.5. Let 3P 0 be a normal subgroup of finite index. For every choice of
coset representatives g1, . . . , g[0:3] ∈ 0 there exists a trace-preserving inclusion
of von Neumann algebras π : (L0, τ) ↪→ (M[0:3](L3), τ ⊗ tr) which restricts to
corresponding inclusions at the level of reduced C*-algebras and complex group
rings, and which for x ∈ L3 is given by

(3-1) π(x)= diag(g1 x, g2 x, . . . , g[0:3]x),

where gx = gxg−1 is the conjugation action of g ∈ 0 on L3.

Proof. Choose coset representatives g1, g2, . . . , g[0:3] of 0/3 and consider the
isomorphisms of Hilbert spaces

`2(0)∼=

[0:3]⊕
i=1

`2(g−1
i 3)∼=

[0:3]⊕
i=1

`2(3).

These induce a ∗-isomorphism π : B(`20)
∼=
−→Mn(B(`

2(3))). It is routine to
check that π restricts to a trace-preserving inclusion of C0 into M[0:3](C3) which
automatically implies the corresponding results for the reduced C*-algebras and
von Neumann algebras. Finally, for h ∈3 we have

π(h)= diag(λ(h), . . . , λ(h)) ∈
[0:3]⊕
i=1

B(`2(g−1
i 3)),

and thus formula (3-1) follows in view of the identity

hg−1
i h′ = g−1

i (gi h)h′, h, h′ ∈3. �
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Theorem 3.6. Let 3 be a discrete group satisfying the strong Atiyah conjecture
and let 3P 0 be a finite index inclusion of 3 into a group 0 as a normal subgroup.
If [0 :3]2 · σ(3) < θ(3) then C0 is not C*

r -unique.

Proof. The assumption [0 :3]2 ·σ(3) < θ(3) forces 3 to be non-icc and applying
Lemma 3.4 we get a projection p ∈ Z(L3) with τ(p) < θ(3)/[0 :3]2 and a
nonzero central element x ∈ C*

r (3) with xp⊥ = 0. We are going to construct a
representation of C*

r (0) which is injective on C0 but with x in the kernel. To
this end, consider a set of coset representatives g1, . . . , g[0:3] for 0/3 and the
∗-homomorphism π : L0 → M[0:3](L3) provided by Lemma 3.5. From this
we obtain a central projection q :=

∨
[0:3]
i=1

gi p ∈ Z(L3), and cutting π with the
complement of q̃ := diag(q, . . . , q) ∈ Z(M[0:3](L3)), we get a representation

πq : C*
r (0)→ B

(
`2(3)[0:3]q̃⊥

)
, a 7→ π(a)q̃⊥.

As q⊥ =
∧
[0:3]
i=1

gi (p⊥) and xp⊥ = 0, it follows that x ∈ kerπq in view of (3-1).
Let a ∈ C0∩kerπq . This means that π(a)q̃⊥ = 0, and thus the kernel projection r
of π(a) satisfies r > q̃⊥. Therefore

(τ ⊗Tr)(r)> (τ ⊗Tr)(q̃⊥)> [0 :3](1− [0 :3]τ(p)) > [0 :3] − θ(3).

On the other hand, the assumption [0 :3]2 · σ(3) < θ(3) forces an upper bound
on the order of finite subgroups in 3, i.e., θ(3) > 0, and since 3 is furthermore
assumed to satisfy the strong Atiyah conjecture we obtain (using the notation of
Section 3A) that

dimL3(ker(L A))= (τ ⊗Tr)(Pker L A) ∈ {nθ(3) : n ∈ Z}

for any matrix A∈M[0:3](C3). Thus (τ⊗Tr)(r)6 [0 :3]−θ(3) unless π(a)= 0.
This proves that πq is injective on C0 and hence completes the proof. �

As a corollary, we deduce that some important families of groups are not C*
r -

unique. In particular, this includes the groups mentioned in Theorem A (i) and (ii),
and together with Proposition 2.4 this completes the proof of Theorem A.

Corollary 3.7. All groups in following classes are not C*
r -unique:

(i) Torsion free, non-icc groups satisfying the strong Atiyah conjecture; in particu-
lar all elementary amenable, non-icc, torsion free groups.

(ii) Virtually polycyclic groups with infinite FC-centre; in particular, all infinite
groups of polynomial growth.

Proof. To see (i), note that the existence of a nontrivial finite conjugacy class implies
the existence of a nontrivial central element in C0 (namely the sum of the elements
in the finite conjugacy class) and hence a nontrivial projection in Z(L0); thus
σ(0) < 1. Moreover, since 0 is torsion free, θ(0)= 1 and since 0 is assumed to
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satisfy the strong Atiyah conjecture it follows that it is C*
r -unique by Theorem 3.6.

The last statement in (i) follows directly from this since the elementary amenable
groups are contained in Linnell’s class C (see Section 3A) for which the strong
Atiyah conjecture is known to hold in the presence of a bound on the order of finite
subgroups [Lück 2002, Theorem 10.19].
To see (ii), let 3 P 0 be a normal finite index polycyclic subgroup of 0. As 0
has infinite FC-centre, so does 3 and the FC-centre of 3 is moreover finitely
generated by polycyclicity. A classical result by Hirsch [1946, Theorem 3.21]
implies that the orders of finite subgroups of 3 are bounded; thus θ(3)> 0. On the
other hand, σ(3)= 0 by Proposition 3.3(ii). Moreover, polycyclic groups, being
elementary amenable, satisfy the strong Atiyah conjecture. Thus, it follows that C0

is non-C*
r -unique by Theorem 3.6.

Finally, the claim about infinite groups of polynomial growth follows by first
observing that by Gromov’s theorem [1981], these are exactly finitely generated
virtually nilpotent groups. As finitely generated nilpotent groups are polycyclic,
the claim follows once we argue that virtually nilpotent groups automatically have
infinite FC-centre. To see this, recall that a finitely generated virtually nilpotent
group 0 contains a finite index torsion free nilpotent normal subgroup 3 (by
polycyclicity and [Hirsch 1946, Theorem 3.21]). Now it follows that the centre
of 3 is infinite, and therefore so is the FC-centre 3fc; but as 3P 0 is a finite index
inclusion, 3fc ⊆ 0fc. Thus, 0fc is infinite. �
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EXPECTED DEPTH OF RANDOM WALKS ON GROUPS

KHALID BOU-RABEE, IOAN MANOLESCU AND AGLAIA MYROPOLSKA

For G a finitely generated group and g∈G, we say g is detected by a normal
subgroup N C G if g /∈ N. The depth DG(g) of g is the lowest index of a
normal, finite index subgroup N that detects g. In this paper we study the
expected depth, E[DG(Xn)], where Xn is a random walk on G. We give
several criteria that imply that

E[DG(Xn)] −−−→n→∞
2+

∑
k≥2

1
[G :3k]

,

where 3k is the intersection of all normal subgroups of index at most k. In
particular, the equality holds in the class of all nilpotent groups and in the
class of all linear groups satisfying Kazhdan’s property (T ). We explain
how the right-hand side above appears as a natural limit and also give an
example where the convergence does not hold.

1. Introduction

Let G be a finitely generated group. The depth of an element in G encodes how well
approximated that element is by finite quotients of the group. The goal of this article
is to find the average depth of an element of G. As such, this question is ill-posed,
and a more precise one is: what is the asymptotic expected depth of a random walk
on the Cayley graph of G? This question arises naturally when quantifying residual
finiteness, or in other words, when studying statistics surrounding the depth function.

For g ∈ G and N a normal subgroup of G, we say g is detected by N if g /∈ N
(in other words, if g is mapped onto a nontrivial element of G/N ). The depth of g
is the lowest index of a normal, finite index subgroup N that detects g. Formally,
for g ∈ G, g 6= e, set

DG(g) :=min{|G/N | : N Cfinite index G and g /∈ N }.

For g = e, the above definition would produce a depth equal to min∅ =∞. In
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the context of random walks, this singularity would produce trivial results. To
circumvent this triviality, we instead define DG(e) := 0. With this definition, G is
residually finite if and only if DG(g) <∞ for all elements g ∈ G.

Let G be residually finite and S be a finite generating set, which will be always
considered symmetric. Then the residual finiteness growth function is

F S
G(n)= max

g∈BS
G(n)

DG(g),

where BS
G(n) is the ball of radius n in the Cayley graph Cay(G, S). This notion

was introduced in [Bou-Rabee 2010] and has been studied for various classes of
groups; the relevant results to this paper are listed in Section 2A.

While the residual finiteness growth function reflects the largest depth of an
element in the ball of radius n, the question of interest in this paper is what we can say
about the “average” depth of a “uniform” element of the group. If G is discrete but
infinite, there is no natural definition of a uniform probability measure on G, hence
no good notion of a uniform element. However, we may try to approach the desired
“average” by averages of well defined measures. Two approaches come to mind:

• For n ≥ 0, let Zn be a uniform element in BS
G(n), and let

an = E[DG(Zn)] =
1

|BS
G(n)|

∑
g∈BS

G(n)

DG(g).

We could then say that the average depth of an element of G is limn an , provided
that this limit exists.

• Alternatively, one may define a random walk (Xn)n∈N on a Cayley graph
Cay(G, S) of G, starting from the neutral element e, and set

bn = E[DG(Xn)].

Then define the average depth as limn bn , again under the condition that the
limit exist.

One expects that for compliant groups, both limits exist and are equal. We will focus
on the second situation, but will make reference to the first to stress similarities.
The exact definition of (Xn)n≥0 as well as a discussion on random walks on groups
is deferred to Section 2B. We mention here only that (Xn)n≥0 is a lazy random
walk, that is a process that at every step remains unchanged with probability 1/2
and takes a step otherwise.

It is a general fact that for an integer valued nonnegative random variable Y,

E(Y )=
∑
k≥0

P(Y > k).

It may therefore be interesting to study P[DG(Xn) > k] for (Xn)n≥0 as above.
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For k ≥ 2, let 3k be the intersection of all normal subgroups of G of index at
most k. (For k = 0, 1, set 3k = G). Then, for g ∈ G \ {e}, DG(g) > k if and only
if g ∈3k . Thus,

(1) E[DG(Xn)] =
∑
k≥0

P(Xn ∈3k \ {e}).

As we will see in Corollary 2.5,

P(Xn ∈3k \ {e})−−−→
n→∞

1
[G :3k]

.

One may therefore expect that

(2) E[DG(Xn)] −−−→
n→∞

2+
∑
k≥2

1
[G :3k]

,

where the factor 2 appears since [G : 31] = [G : 30] = [G : G] = 1. For this
reason, we call the right-hand side of the above the presumed limit. However, the
convergence above is far from obvious. The main goal of this paper is to provide
criteria for G under which (2) holds. We will also provide an example where this is
not valid.

The finiteness of
∑

k≥2 1/|G :3k | in (2) depends on the group G and is related
to the intersection growth iG(k) = [G : 3k] of G. It follows from Equation (7)
and Theorem 3.2 that

∑
k≥2 1/|G :3k | <∞ for finitely generated linear groups.

Moreover, finitely generated nilpotent groups enjoy this property as it is a classical
result that they are linear (see [Segal 1983, Chapter 5, §B, Theorem 2] or [Hall
1969, p. 56, Theorem 7.5]).

Our two results ensuring (2) are the following:

Theorem 1.1. Let G be a linear group with Kazhdan’s property (T ). Then

lim
n→∞

E[DG(Xn)] = 2+
∑
k≥2

1
[G :3k]

<∞

for any finite generating set S of G. In particular, limn→∞ E[DG(Xn)] is finite for
the special linear groups SLk(Z) with k ≥ 3.

Theorem 1.2. Let G be a finitely generated nilpotent group. Then

lim
n→∞

E[DG(Xn)] = 2+
∑
k≥2

1
[G :3k]

<∞

for any finite generating set S of G.

In Section 4A, it will also be shown that the convergence holds whenever the
presumed limit is infinite. Considering these examples, one may think that the
convergence in (2) is always valid. However, in Proposition 4.8, we exhibit a 3-
generated group for which the presumed limit is finite but limn→∞ E[DG(Xn)]=∞.
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Henceforth, when no ambiguity is possible, we drop the index G from the
notation DG(·).

2. Preliminaries

2A. Depth function and residual finiteness growth. This short subsection includes
some results on the residual finiteness growth function that we will use in the sequel.

Theorem 2.1 [Bou-Rabee 2010]. Let G be a finitely generated nilpotent group with
a generating set S. Then

F S
G(n)≤ C log(n)h(G), for all n ≥ 2,

where h(G) is the Hirsch length of G and C = C(G, S) is a constant independent
of n.

The prime number theorem and Hall’s embedding theorem play key roles in the
proof of Theorem 2.1. In [Bou-Rabee and McReynolds 2015], the following is
proved using Gauss’s counting lemma to help quantify Mal’cev’s classical proof of
residual finiteness of finitely generated linear groups.

Theorem 2.2 [Bou-Rabee and McReynolds 2015]. Let K be a field. Let G be a
finitely generated subgroup of GL(m, K ) with a generating set S. Then there exists
a positive integer b such that

F S
G(n)≤ Cnb, for all n ≥ 1,

where C = C(G, S) is a constant independent of n.

The above results bound from above the residual finiteness growth. Conversely,
the following states that there exist groups with arbitrary large residual finiteness
growth.

Theorem 2.3 [Bou-Rabee and Seward 2016]. For any function f : N→ N, there
exists a residually finite group G and a two element generating set S for G, such
that F S

G(n)≥ f (n) for all n ≥ 8.

The proof of Theorem 2.3 in [Bou-Rabee and Seward 2016] involves an explicit
construction of a finitely generated group embedded in an infinite product of finite
simple groups.

2B. Random walks on groups. Let G be a finitely generated group with a finite
symmetric generating set

S = {s1, . . . , sk},

i.e., such that S−1
= S. A random walk (Xn)n≥0 on G is a Markov chain with state

space G and such that X0 = eG and Xn+1 = Xn ·Yn for n ≥ 0 where Y0, Y1, . . . are
independent and uniform in {s1, . . . , sk}.
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If G is finite with |G| = m, one may consider the transition matrix P of the
random walk (Xn)n≥0 on G defined by

P(x, y)= 1
|S|

∑
s∈S

1{y=xs},

where 1{y=xs} = 1 if y = xs and 0 otherwise. It is simply the adjacency matrix of
the Cayley graph Cay(G, S), normalized by 1/|S|. The generating set is considered
symmetric so as to have an unoriented Cayley graph, or equivalently to have P
symmetric.

Let 1 = λ1 ≥ · · · ≥ λm ≥ −1 be the eigenvalues of P and x1, . . . , xm be a
basis of orthonormal eigenvectors of P (such a basis necessarily exists since P is
real and symmetric). Let σ be an initial distribution on G seen as a probability
vector of dimension m, and let pu =

( 1
m , . . . ,

1
m

)
be the uniform distribution on G.

It is well known that the distribution of such a random walk converges to the
uniform distribution whenever the graph is assumed to not be bipartite. For a
general convergence statement one considers a lazy random walk instead; that
is a walk with transition matrix L = 1

2 I + 1
2 P. The lazy random walk at time n

takes a step of the original random walk with probability 1
2 and stays at the current

vertex with probability 1
2 . Notice that the eigenvectors of L are x1, . . . , xm and the

corresponding eigenvalues are all nonnegative:

µ1 =
1
2 +

1
2λ1 = 1> µ2 =

1
2 +

1
2λ2 ≥ · · · ≥ µm =

1
2 +

1
2λm ≥ 0.

Lemma 2.4. Let G be a finite group with a finite symmetric generating set S. With
the above notation, ‖σ Ln

− pu‖2 ≤ µ
n
2 . In particular,

∣∣σ Ln(g)− 1
m

∣∣ ≤ µn
2 for

every g ∈ G.

Proof. For n ≥ 1, the matrix σ · Ln is a probability distribution and it represents the
distribution of the n-th step of the lazy random walk on G that starts at a random
vertex selected according to σ .

We write σ = α1x1+α2x2+· · ·+αm xm , with α1, . . . , αm ∈R. Since x1, . . . , xm

are eigenvectors, we have σ Ln
= α1µ

n
1x1 + α2µ

n
2x2 + · · · + αmµ

n
m xm . Notice

that µ1 = 1, x1 = 1/
√

m(1, . . . , 1) and α1 = σ · xT
1 = 1/

√
m which implies that

α1x1 =
( 1

m , . . . ,
1
m

)
= pu . We deduce that

‖σ Ln
−pu‖2=‖α2µ

n
2x2+·· ·+αmµ

n
m xm‖2≤ max

i=2,...,m
|µi |

n
·

√
α2

2+·· ·+α
2
m≤µ

n
2·‖σ‖2.

In the last line we used the orthonormality of the base x1, . . . , xm . Finally, ‖σ‖2 ≤∑m
i=1 σi = 1, which shows that the above is bounded by µn

2 as required. �

Corollary 2.5. Let G be a finitely generated infinite group with a finite symmetric
generating set S and let N be a normal subgroup of G of finite index. Consider the
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lazy random walk (Xn)n≥0 on Cay(G, S). Then

(3)
∣∣∣∣P(Xn ∈ N )− 1

|G : N |

∣∣∣∣≤ µn,

where µ is the second-largest eigenvalue of the transition matrix of X̃n , the lazy
random walk on Cay(G/N , S) induced by (Xn)n≥0. Moreover,

(4) P(Xn ∈ N \ {e})−−−→
n→∞

1
|G : N |

.

Proof. To prove (3) it suffices to observe that P(Xn ∈ N ) = P(X̃n = eN ) and
conclude by Lemma 2.4. Let us now show (4).

It is a standard fact (see for instance [Varopoulos et al. 1992, Theorems VI.3.3
and VI.5.1]) that, since G is infinite,

P(Xn = e)→ 0, as n→∞.

Moreover, as discussed above, the eigenvalue µ appearing in (3) is strictly smaller
than 1. These two facts, together with (3), imply (4). �

In the rest of the paper, we will always consider lazy random walks as described
above. Straightforward generalizations are possible, such as to random walks
with nonuniform symmetric transition probabilities — that is, walks taking steps
according to a finitely supported, symmetric probability on G, with e having a
positive probability (which is to say that the walk has, at any given step, a positive
probability of staying at the same place). Certain transition probabilities with infinite
support (but finite first moment) may also be treated, but small complications arise
in specific parts of the proof. For the sake of readability, we limit ourselves to the
simple framework of uniform probabilities on symmetric generating sets.

2C. Asymptotic density. For a given infinite group G generated by a finite set S,
consider the so-called asymptotic density (as defined in [Burillo and Ventura 2002])
of a subset X in G defined as

(5) ρS(X)= lim sup
n→∞

|X ∩ BS
G(n)|

|BS
G(n)|

.

If G satisfies

(6) lim
n→∞

|BS
G(n+ 1)|

|BS
G(n)|

= 1,

then by [Burillo and Ventura 2002], ρS is left- and right-invariant; and in particular,
ρ(H)= 1/|G : H | for a finite index subgroup H. Moreover, if (6) holds, the lim sup
in (5) is actually a limit.
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Condition (6) holds for groups of polynomial growth (as a consequence of [Pansu
1983]). Thus, for all k ≥ 2, recalling the random variables Xn and Zn defined in
the introduction,

lim
n→∞

P(Xn ∈3k \ {e})= lim
n→∞

P(Zn ∈3k \ {e})= 1
|G :3k |

.

For groups with exponential growth, however, condition (6) fails, and the second
limit in the above display does not necessarily exist. We give next an example
for G = F{a,b}, the free group generated by two elements {a, b} and for a normal
subgroup N CF{a,b}. Take

S = {a, b, a−1, b−1
}.

For g ∈ F{a,b}, let ‖g‖ be the word-length of g, that is, the graph distance from g to
e in Cay(F{a,b}, S). Set

N =
{
g ∈ F{a,b} : ‖g‖ ∈ 2N

}
.

It is straightforward to check that N is a normal subgroup of F{a,b} of index 2.
However,

|N ∩ BF{a,b},S(n)|
|BF{a,b},S(n)|

=


3n+1
−1

4·3n−2
for n even,

3n
−1

4·3n−2
for n odd.

It is immediate from the above that P(Zn ∈ N ) does not converge when n→∞.
The above example, together with Corollary 2.5, explains the choice of the

random walk (Xn)n≥0 rather than of the uniform variables (Zn)n≥0 on BS
G(n).

Another reason for this choice relates to sampling. Suppose we have sampled
an instance of the variable Zn for some n ≥ 0. In order to then obtain a sample of
Zn+1, one needs to restart the relatively costly process of sampling a uniform point
in BS

G(n+ 1). For the random walk, however, if Xn is simulated for some n ≥ 0,
Xn+1 is easily obtained by multiplying Xn with a random element in S. This
makes the sampling of a sequence (X1, X2, . . .) much easier than that of a sequence
(Z1, Z2, . . .).

3. Residual average

We mentioned in the introduction that our goal is to compute the “average” depth
of an element in G. In addition to the two methods proposed above, that is, taking
the limit of E[DG(Xn)] or E[DG(Zn)], one may compactify G so that it has a Haar
probability measure and take the average depth with respect to it. The natural
way to render G compact is by considering its profinite completion, which we will
denote by Ĝ. It is a compact group, with a unique uniform Haar measure which we
denote by µ. The depth function DG may be extended by continuity to Ĝ, and we
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call DĜ this extension. Then the residual average of G, denoted by Ave(G), is

Ave(G) :=
∫

Ĝ
DĜ dµ.

For details of the profinite completion construction, see [Wilson 1998]. For further
details of the residual average construction, see [Bou-Rabee and McReynolds 2010].

Lemma 3.1. For any linear group G,

(7) Ave(G)= 2+
∞∑

k=2

1
|G :3k |

.

Note that Ave(G) in (7) is equal to the limit in (2).

Proof. Recall the fact that we have conveniently defined30=31=G and therefore
that µ(30)= µ(31)= 1. The residual average is then

Ave(G)=
∞∑

k=1

k · [µ(3k−1)−µ(3k)] =
∑
k≥1

k−1∑
`=0

[µ(3k−1)−µ(3k)]

=

∑
`≥0

∑
k>`

[µ(3k−1)−µ(3k)]

=

∑
`≥0

µ(3`)

We are authorized to change the order of summation in the third equality, since
all the terms in the sum are nonnegative. In the last equality, we have used the
telescoping sum and the fact that µ(3k)→ 0 as k→∞. The latter convergence is
due to G being residually finite.

The first two terms in the last sum above are equal to 1; for ` ≥ 2, µ(3`) =
1/|G :3`|. The lemma follows immediately. �

The following theorem, taken from [Bou-Rabee and McReynolds 2010], will be
necessary when proving Theorem 1.1.

Theorem 3.2 [Bou-Rabee and McReynolds 2010, Theorem 1.4]. Let 0 be any
finitely generated linear group. Then the residual average of 0 is finite.

For completeness, we give a proof of the above. The present proof is based on
the one in the original paper, with some adjustments meant to correct certain points.
The main difference with the original proof is that here we focus on the connection
to intersection growth. One has to be especially careful in proving this result, as
the residual finiteness growth may vary when passing to subgroups of finite index
(see [Bou-Rabee and Kaletha 2012, Example 2.5]).
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Proof. We follow the proof [Bou-Rabee and McReynolds 2010, Theorem 1.4], with
some changes and expansions. According to [Bou-Rabee and McReynolds 2010,
Proposition 5.2], there exists an infinite representation

ρ : 0→ GL(n, K )

for some n and K/Q finite. By [Bou-Rabee and McReynolds 2010, Lemma 2.5], it
suffices to show that the normal residual average of ρ(0) is finite. Set 3= ρ(0)
and set S to be the coefficient ring of 3.

For each δ > 0, from the proof of [Bou-Rabee and McReynolds 2010, Proposi-
tion 5.1], there exists a normal residual system Fδ on 3 given by 1 j =3∩ ker r j ,
where

r j : GL(n, S)→ GL(n, S/pk j
S, j ),

and [3 :1 j ] ≤ [3 :1 j+1] ≤ [3 :1 j ]
1+δ. In addition, we have

|r j (3)| = Oj p` j
j ,

where

(8) 1≤ Oj < pn2

j .

We also have for constants N > (n2)! and C > 4 that

(9) ` j > N +C jn2

and
` j +Cn2 < ` j+1 ≤ ` j + (C + 1)n2.

For each i < j, we claim that the largest power of p j that divides [3 :1i ] is pn2

j .
To see this claim, note that if pm

j divides Oi p`i
i , since pi , p j are distinct primes,

pm
j must divide Oi , however Oi < pn2

i and pi < p j . The claim follows. Since

[1i :1i ∩1 j ] = [3 :1 j ][1 j :1i ∩1 j ]/[3 :1i ] = O j p` j
j [1 j :1i ∩1 j ]/[3 :1i ],

the aforementioned claim implies that

[1i :1i ∩1 j ] ≥ p` j−n2

j .

Set 3i := ∩
i
n=11n , then

[3 j−1 :3 j ] = O j p` j
j [1 j :3 j ]/[3 :3 j−1],

and [3 : 3 j−1] divides [3 : 11] · · · [3 : 1 j−1] for which p( j−1)n2

j is the largest
power of p j that appears as a factor. Hence, we obtain

[3 j−1 :3 j ] ≥ p` j−( j−1)n2

j .
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From this, we obtain the important inequality

(10) [3 :3k] ≥

k∏
j=1

p` j−( j−1)n2

j .

To employ (10), we need a comparison function. This is where we deviate from
the proof in [Bou-Rabee and McReynolds 2010]. Define, for g ∈3 \ {1},

M(g)=min{[3 :1i ] : g /∈1i }.

Let M̂ be the unique continuous extension of M to 0̂. Then clearly, D0(g)≤M(g),
and so ∫

D̂0(g) dµ≤
∫

M̂(g) dµ.

By studying the partial sums that define
∫

M̂(g) dµ, we obtain, for any n,

n∑
k=1

[3 :1k]µ(3k−1 \3k)=

n∑
k=1

[3 :1k]

(
1

[3 :3k−1]
−

1
[3 :3k]

)

=
[3 :11]

[3 :30]
−
[3 :1n]

[3 :3n]
+

n−1∑
k=1

[3 :1k+1] − [3 :1k]

[3 :3k]

<
[3 :11]

[3 :30]
+

n∑
k=1

[3 :1k]
1+δ

[3 :3k]
.

The last inequality follows from the conclusion of [Bou-Rabee and McReynolds
2010, Proposition 5.1] that [3 :1k+1] ≤ [3 :1k]

1+δ. Applying (8) and (10) while
plugging in the value for [3 :3k] yields

n∑
k=1

[3 :1k]
1+δ

[3 :3k]
≤

n∑
k=1

O1+δ
k p(1+δ)`k

k∏k
j=1 p` j−( j−1)n2

j

≤

n∑
k=1

p(1+δ)(n
2
+`k)

k∏k
j=1 p` j−( j−1)n2

j

=

n∑
k=1

p(k+δ)n
2
+(δ)`k

k∏k−1
j=1 p` j−( j−1)n2

j

.

We compute the ratio (k-th term)/((k+1)-th term) of the series above:

p
(k+δ)n2

+(δ)`k
k∏k−1

j=1 p
` j−( j−1)n2

j

p
(k+δ+1)n2+(δ)`k+1
k+1∏k

j=1 p
` j−( j−1)n2

j

=
p(1+δ)n

2
+(δ+1)`k

k

p(k+δ+1)n2+δ`k+1
k+1

≤
p(1+δ)n

2
+(δ+1)`k

k

p(k+δ+1)n2+δ`k+1
k

= p−kn2
+δ(`k−`k+1)+`k

k .

Thus, if δ is sufficiently small and k is sufficiently large, we have that the exponent
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above is greater than 1, by (9). Hence, as pk is an increasing sequence of integers,
the ratio test implies that the resulting series above converges, and

∫
M̂(g) dµ is

finite. We conclude that the normal residual average of 3 is finite, as desired. �

4. Expected depth of random walks on groups

Fix for the whole section a finitely generated residually finite group G and a finite
symmetric generating set S. Consider the simple lazy random walk (Xn)n≥0 on the
Cayley graph Cay(G, S), as defined in Section 2B. Recall that we are interested in

E[DG(Xn)] =
∑
k≥2

kP[D(Xn)= k] =
∑
k≥0

P[D(Xn) > k] =
∑
k≥0

P(Xn ∈3k \ {e}).

The second equality is obtained through the same double-sum argument as in the
proof of (7).

4A. First estimates.

Proposition 4.1. We have

lim inf
n→∞

E[D(Xn)] ≥ 2+
∑
k≥2

1
|G :3k |

.

Proof. Recall the expression (1) for E[D(Xn)]:

E[D(Xn)] =
∑
k≥0

P(Xn ∈3k \ {e}).

Also recall from Corollary 2.5 that

P(Xn ∈3k \ {e})−−−→
n→∞


1

[G :3k]
if k ≥ 2,

1 if k = 0, 1.

The result follows from Fatou’s lemma. �

Corollary 4.2. Suppose G is such that
∑

k≥2 1/|G :3k | diverges. Then

lim
n→∞

E(D(Xn))=∞.

Proof. This is a direct consequence of Proposition 4.1. �

Proposition 4.3. Suppose there exists a sequence of positive numbers {pk}k≥2 with

•
∑

k≥2 pk <∞;

• P(Xn ∈3k \ {e})≤ pk for all n ≥ 1 and k ≥ 2.

Then
lim

n→∞
E[D(Xn)] = 2+

∑
k≥2

1
|G :3k |

<∞.
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Proof. Fix a sequence (pk)k≥2 as above, and set p0= p1= 1. Then the convergence
of P(Xn ∈ 3k \ {e}) to 1/[G :3k] is dominated by pk . Since pk is summable, the
dominated convergence theorem implies the desired result. �

Below, when applying Proposition 4.3, we will do so using the sequence

pk = sup
n≥0

P(Xn ∈3k \ {e}), for k ≥ 2.

This sequence obviously satisfies the domination criterion; one needs to show it is
summable in order to apply the proposition.

4B. Sufficient condition using spectral properties.

Proof of Theorem 1.1. Fix a linear group G with property (T ). We will apply
Proposition 4.3 to show the desired convergence. Fix some k ≥ 2 and let us bound
P(Xn ∈3k \ {e}) for arbitrary n.

First, notice that Xn ∈ BS
G(n) and therefore DG(Xn)≤ F S

G(n). It follows that

P(Xn ∈3k \ {e})= 0 if F S
G(n)≤ k.

Suppose now that n is such that F S
G(n) > k. Recall from Corollary 2.5 that∣∣∣∣P(Xn ∈3k)−

1
|G :3k |

∣∣∣∣≤ µn
k ,

where µk is the second largest eigenvalue of the transition matrix of the induced
lazy random walk on Cay(G/3k, S). Now, since G has property (T ), there exists
a constant 0< θ < 1 such that, for any normal finite index subgroup N CG, the
second largest eigenvalue of the Cayley graph of G/N is bounded above by θ < 1
(see [Bekka et al. 2008]; the exact value of θ does depend on the generating set S
of G). In particular,

P(Xn ∈3k \ {e})≤ P(Xn ∈3k)≤
1

|G :3k |
+µn

k ≤
1

|G :3k |
+ θn.

Observe that the right-hand side above is decreasing in n, and therefore is maximal
when n is minimal. Set Nk = inf{n ≥ 1 : F S

G(n) > k}. Then, by the above two cases,
we deduce that

P(Xn ∈3k \ {e})≤ 1
|G :3k |

+ θ Nk =: pk for all n ≥ 1 and k ≥ 2.

The values (pk)k≥2 defined above satisfy the second property of Proposition 4.3;
we will show now that they also satisfy the first.

By [Bou-Rabee and McReynolds 2015], there exist b ∈ N and C > 0 such that
F S

G(n) ≤ Cnb for all n ≥ 1. In particular, for any k ≥ 2, Nk ≥ C ′k1/b for some
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constant C ′ > 0 that does not depend on k. Moreover,
∑

k≥2 1/|G :3k | is finite by
Equation (7) and Theorem 3.2. Thus∑

k≥2

pk ≤
∑
k≥2

1
|G :3k |

+

∑
k≥2

θC ′k1/b
<∞.

Applying Proposition 4.3 yields the desired result. �

4C. Sufficient condition: abelian groups.

Lemma 4.4. Let (Xn)n≥0 be a lazy random walk on Z (that is on a Cayley graph of
Z, as in Section 2B). Then there exists a constant C > 0 such that, for all m ≥ 1,

(11) sup
n≥0

P(Xn ∈ mZ \ {0})≤ C
√

m
.

In particular, there exists c > 0 such that, for k ≥ 2,

(12) sup
n≥0

P(Xn ∈3k(Z) \ {0})≤ e−ck .

Proof. We start with the proof of (11). Let c0 > 0 be such that |X1| < 1/(2c0)

almost surely. Below, write c0m for the integer part of c0m so as not to overburden
notation. Then, for n ≤ c0m, P(Xn ∈ mZ \ {0})= 0. For n ≥ c0m, write

(13) P(Xn ∈ mZ \ {0})=
∑
`∈Z

P(Xn ∈ mZ \ {0} | Xn−c0m = `)P(Xn−c0m = `).

Now notice that, due to the choice of c0, |Xn − Xn−c0m | < m/2 almost surely.
However, for any fixed ` ∈ Z, there exists at most one element m(`) ∈ mZ with
|`−m(`)|< m/2. If no such element exists, choose m(`) ∈ mZ arbitrarily. Thus

P(Xn ∈ mZ \ {0} | |Xn−c0m = `)≤ P(Xn = m(`) | |Xn−c0m = `)

= P(Xc0m = m(`)− `)≤ C
√

c0m
,

where the last inequality is due to [Varopoulos et al. 1992, Theorem VI.5.1] and
C > 0 is some fixed constant depending only on the transition probability of the
random walk. When injecting the above in (13), we find

P(Xn ∈ mZ \ {0})≤
∑
`∈Z

C
√

c0m
P(Xn−c0m = `)=

C
√

c0m
.

Since the right-hand side does not depend on n, this implies (11) with an adjusted
value of C .

We move on to proving (12). The (normal) subgroups of Z are of the form kZ,
with k being their index. Thus, for k ≥ 2,

3k(Z)= mkZ,
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where mk is the least common multiple of 1, . . . , k (see [Biringer et al. 2017]). It
follows from the prime number theorem that there exists a constant c > 0 such that

mk ≥ exp(ck), for all k ≥ 2.

The above bound, together with (11), implies (12) with an adjusted value of c. �

Corollary 4.5 (expected depth for Z). Let (Xn)n≥0 be a lazy random walk on Z

(that is, on a Cayley graph of Z, as in Section 2B). Then

(14) E[DZ(Xn)] −−−→
n→∞

2+
∑
k≥2

1
|Z :3k |

<∞.

Proof. For k≥2, set pk=supn≥0 P(Xn∈3k(Z)\{0}). By Lemma 4.4,
∑

k≥2 pk<∞.
Further, the sequence (pk)k≥2 dominates the convergence of P(Xn ∈3k(Z)\{0}),

as required in Proposition 4.3. The conclusion follows. �

Proposition 4.6. Let G and H be two finitely generated residually finite groups.
Let (Xn)n≥0 be a random walk on a Cayley graph of G× H, as in Section 2B. Then

P[DG×H (Xn) > k] ≤ P[DG(Yn) > k] +P[DH (Zn) > k] for all k ≥ 0,

where (Yn)n≥0 and (Zn)n≥0 are the random walks on G and H, respectively, induced
by (Xn)n≥0.

Proof. Notice that for g = (g1, g2) ∈ G× H , we have estimates

DG×H (g)≤ DG(g1) if g1 6= e,

DG×H (g)≤ DG(g2) if g2 6= e.

Therefore P[DG×H (Xn) > k] ≤ P[DG(Yn) > k] +P[DH (Zn) > k]. �

Corollary 4.7. Let G be a finitely generated abelian group and let (Xn)n≥0 be a
lazy random walk on its Cayley graph, as in Section 2B. Then

E[DG(Xn)] −−−→
n→∞

2+
∑
k≥2

1
|G :3k |

<∞,

for any finite generating set S of G.

Proof. Let G be a finitely generated abelian group. Then it may be written as
G = Z× · · ·×Z× H, where the product contains j copies of Z and H is a finite
abelian group. The depth of elements of H is bounded by |H |. By Proposition 4.6
and Lemma 4.4, there exists c > 0 such that

P(Xn ∈3k(G) \ {0})≤ je−ck, for all k > |H |.

We conclude using the same domination argument as in the proof of (14). �
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4D. Nilpotent groups: proof of Theorem 1.2.

Torsion free case. Suppose first that G is a finitely generated and torsion free
nilpotent group, different from Z. Observe that G is a poly-C∞ group, and in
particular, G = Zn H where H is a nontrivial finitely generated nilpotent group.
Let S be a system of generators of G and consider the lazy random walk on G with
steps taken uniformly in S. We will write it in the product form (Xn, Yn)n≥0, where
Xn ∈ Z and Yn ∈ H, for all n ≥ 0. Notice then that (Xn)n≥0 is a lazy random walk
on Z, as treated in Lemma 4.4. This is not true on the second coordinate: (Yn)n≥0

is not a random walk on H, it is not even a Markov process.
For k ≥ 2, let

(15) pk(G)= sup
n≥0

P[DG(Xn, Yn) > k],

and recall from Proposition 4.3 (and the commentary below it) that our goal is to
prove that

∑
k pk <∞.

One may easily check that, for any m ∈N, mZn H is a normal subgroup of G.
Thus, for all x ∈ Z \ {0} and y ∈ H,

DG(x, y)≤ DZ(x).

We may therefore bound pk by

pk(G)≤ sup
n≥0

P[DG(Xn) > k] +P[Xn = 0 and DG(0, Yn) > k]

≤ pk(Z)+ sup
n≥0

P[Xn = 0 and DG(0, Yn) > k].

In the above, pk(Z)= supn≥0 P[DZ(Xn) > k]. We have shown in Lemma 4.4 that∑
k pk(Z) <∞, and we may focus on whether the second supremum is summable.
Fix k ≥ 2. Since G is nilpotent, there exists c > 0 such that

F S
G(n)≤ c(log n)h(G),

where h(G) is the Hirsch length of G (see Theorem 2.1). This should be understood
as follows. In order for an element g ∈ G to have DG(g)≥ k, it is necessary that
‖g‖S ≥ exp(Ck1/h(G)), where ‖g‖S denotes the length of g with respect to the
generating set S and C > 0 is a constant independent of g.

In particular, we conclude that

P[Xn = 0 and DG(0, Yn) > k] = 0 if n < exp(Ck1/h(G));

P[Xn = 0 and DG(0, Yn) > k] ≤ P(Xn = 0) if n ≥ exp(Ck1/h(G)).

In treating the second case, observe that, since (Xn)n≥0 is a random walk on Z,

P(Xn = 0)≤ c0n−1/2,
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for some constant c0 > 0 (see [Varopoulos et al. 1992, Theorem VI.5.1]). Thus

P[Xn = 0 and DG(0, Yn) > k] ≤ c0 exp
(
−

C
2

k1/(h(G))
)
, for all n ∈ N.

We conclude that ∑
k≥2

sup
n≥0

P[Xn = 0 and DG(0, Yn) > k]<∞,

and therefore that
∑

k≥0 pk(G) <∞.

General nilpotent case. Let now G be a finitely generated nilpotent group. Con-
sider the set T (G) of all torsion elements of G. Since G is nilpotent, the set T (G) is
a finite normal subgroup in G. Consider an epimorphism π : G→G/T (G). Denote
by H the quotient G/T (G) and notice that H is a finitely generated torsion-free
nilpotent group.

Observe that for any nontrivial element in H detected by a normal subgroup
in H of index k there exists a normal subgroup in G of index at most k that detects
its preimage. In other words, for all g ∈ G \ T (G),

DG(g)≤ DH (π(g)).

The random walk (Xn)n≥0 on G induces a random walk (π(Xn))n≥0 on H. Let

d =max{DG(g), g ∈ T (G)}.

Due to the observation above, for all k > d ,

P[DG(Xn)≥ k] ≤ P[DH (π(Xn))≥ k].

We deduce from the case of torsion free nilpotent groups that∑
k>d

sup
n≥0

P[DG(Xn)≥ k]<∞.

Then the second point of Proposition 4.3 applies and the proof is concluded. �

4E. A counter example.

Proposition 4.8 (groups with infinite expected depth). There exists a finitely gener-
ated residually finite group G such that

lim
n→∞

E(D(Xn))=∞,

but for which the “presumed” limit
∑

k≥2 1/|G :3k | is finite.

Proof. The existence of finitely generated residually finite groups with arbitrary
large residual finiteness growth was shown in [Bou-Rabee and Seward 2016].
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Let H be a two-generated group (with generators a, b) such that, for any n ≥ 8,
there exists an element hn in the ball of radius n of H with DH (hn) ≥ 24n. Let
(Xn)n≥0 be a lazy simple random walk on the Cayley graph of G = H ×Z with
the natural choice of 3 generators (that is, (a, 0), (b, 0) and (eH , 1), where a and b
are the two generators of H mentioned above) and their inverses.

Then, for any n ≥ 1, P[Xn = (hn, 0)] ≥ 12−n. Therefore

E[DG(Xn)] ≥ P[Xn = (hn, 0)] · DG[(hn, 0)] = P[Xn = (hn, 0)] · DH (hn)≥ 2n.

Hence the expectation of the depth of Xn tends to infinity.
Furthermore, observe that 3k(G) is a subgroup of H ×3k(Z) and hence

|G :3k(G)| ≥ |Z :3k(Z)|.

It follows that
∑

k≥2 1/|G :3k(G)| ≤
∑

k≥2 1/|Z :3k(Z)|<∞. �
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SIGNATURE RANKS OF UNITS IN
CYCLOTOMIC EXTENSIONS OF ABELIAN NUMBER FIELDS

DAVID S. DUMMIT, EVAN P. DUMMIT AND HERSHY KISILEVSKY

We prove the rank of the group of signatures of the circular units (hence
also the full group of units) of Q(ζm)

+ tends to infinity with m. We also show
the signature rank of the units differs from its maximum possible value by
a bounded amount for all the real subfields of the composite of an abelian
field with finitely many odd prime-power cyclotomic towers. In particular,
for any prime p the signature rank of the units of Q(ζ pn)+ differs from
ϕ( pn)/2 by an amount that is bounded independent of n. Finally, we show
conditionally that for general cyclotomic fields the unit signature rank can
differ from its maximum possible value by an arbitrarily large amount.

1. Introduction

For any positive integer m with m odd or m divisible by 4, let ζm be a primitive m-th
root of unity, Q(ζm) the corresponding cyclotomic field and Q(ζm)

+
=Q(ζm+ζ

−1
m )

its maximal totally real subfield. The units in Q(ζm)
+ together with ζm are a

subgroup of finite index in the group of units of Q(ζm) (this index is 1 when m is a
prime power and 2 otherwise; see [Washington 1982, Corollary 4.13]).

Under the various ϕ(m)/2 real embeddings of Q(ζm)
+, each unit ε of Q(ζm)

+ has
a sign, and the collection of these signs is called the signature of ε. The collection
of all such unit signatures is an elementary abelian 2-group, whose rank is called
the unit signature rank of Q(ζm)

+ (or, by abuse, of Q(ζm)). The signature rank
measures how many different possible signs arise from the units and determines
the difference between the class number and the strict class number.

The purpose of this paper is to prove that the unit signature rank of Q(ζm)
+ tends

to infinity with m. We do this by demonstrating an explicit lower bound for the
signature rank of the subgroup of cyclotomic units of Q(ζm)

+. We then show that
the difference between the signature rank of the units in the maximal real subfield
of the cyclotomic field of mpn1

1 · · · p
ns
s -th roots of unity (with all pi odd) and its

maximum possible value is bounded independent of n1, . . . , ns (and is constant if
all the ni are sufficiently large). This in particular provides infinitely many families

MSC2010: primary 11R18; secondary 11R27.
Keywords: signature rank of units, cyclotomic fields, abelian extensions, circular units.
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of cyclotomic fields whose unit signature ranks are “nearly maximal”. Finally,
we show this difference can be arbitrarily large, conditional on the existence of
infinitely many cyclic cubic fields with totally positive fundamental units.

2. Signatures

For any totally real field F of degree n over Q let FR = F ⊗Q R'
∏
v real R where

the product is taken over the real embeddings v of F. Define the archimedean
signature space V∞,F of F to be

V∞,F = F∗R/F∗2R '

∏
v real

{±1} ' Fn
2,

where by identifying {±1} with the finite field F2 of two elements, we view the
multiplicative group V∞,F as a vector space over F2, written additively.

For any α ∈ F∗ and v : F ↪→ R a real place of F, let αv = v(α) and define the
sign of αv as usual by sign(αv)= αv/|αv| ∈ {±1}. Write sgn(αv) ∈ F2 for sign(αv)
when viewed in the additive group F2, i.e., sgn(αv)= 0 if αv > 0 and sgn(αv)= 1
if αv < 0. The (archimedean) signature map of F is the homomorphism

sgn∞,F : F
∗
→ V∞,F , α 7→ (sgn(αv))v.

In the case when F/Q is Galois and one real embedding of F is fixed, we can
index the real embeddings of F by the elements σ in Gal(F/Q), and

sgn∞,F (α)= (sgn(σ (α)))σ∈Gal(F/Q),

where sgn is the sign (viewed as an element of F2) in the fixed real embedding. The
element sgn∞,F (α) is called the signature of α.

The collection of all the signatures sgn∞,F (ε) where ε varies over the units of F
is called the unit signature group of F ; the rank of this subspace of V∞,F is called
the (unit) signature rank of F and, as previously mentioned, is a measure of how
many different possible sign configurations arise from the units of F.

Define the (unit signature rank) “deficiency” of F , denoted δ(F), to be the corank
of the unit signature group of F in V∞,F , i.e., [F :Q] minus the signature rank of
the units of F. The deficiency of F is just the nonnegative difference between the
unit signature rank of F and its maximum possible value — the deficiency is 0 if
and only if there are units of every possible signature type. The deficiency is also
the rank of the group of totally positive units of F modulo squares.

Remark 1. For any finite extension L/F of totally real fields, we have δ(F)≤ δ(L),
a result due to Edgar, Mollin and Peterson [Edgar et al. 1986, Theorem 2.1]. We
briefly recall the reason: the intersection of the Hilbert class field HL of L with the
strict (or narrow) Hilbert class field H st

F of F is easily seen to be the Hilbert class
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H st
L

HL H st
F

HL

L H st
F

HF (= HL ∩ H st
F )

F

field HF of F since L is totally real. The composite field HL H st
F is a subfield of

the strict Hilbert class field, H st
L , of L and has degree over HL equal to [H st

F : HF ]

because HF = HL ∩ H st
F . Since [H st

F : HF ] = 2δ(F) and [H st
L : HL ] = 2δ(L) (see

[Dummit and Voight 2018, §2] for details), the result follows.

3. Circular units and signatures in cyclotomic fields

Suppose now that F =Q(ζm)
+ is the maximal (totally) real subfield of the cyclo-

tomic field Q(ζm) of m-th roots of unity (with m odd or divisible by 4), which is of
degree ϕ(m)/2 over Q.

We can fix an embedding of Q(ζm) into C by mapping ζm to e2π i/m, which also
fixes an embedding of Q(ζm)

+ into R.
The Galois group Gal(Q(ζm)/Q) consists of the automorphisms σa that map ζm

to ζ a
m for integers a, 1≤ a<m, relatively prime to m. We identify Gal(Q(ζm)

+/Q)

with Gal(Q(ζm)/Q)/{1, σ−1} and take the elements σa ∈ Gal(Q(ζm)
+/Q) with

1≤ a < m/2 relatively prime to m as representatives.
To get information on the unit signature rank of Q(ζm)

+, we consider the sig-
natures of the subgroup of circular (or cyclotomic) units, denoted CQ(ζm), which
when m is a prime power has a set of generators given by −1 and the ϕ(m)/2− 1
independent elements

(1) ζ (1−a)/2
m

1− ζ a
m

1− ζm

for 1< a <m/2 and a relatively prime to m [Washington 1982, Lemma 8.1] (for m
not a prime power the definition of CQ(ζm) is more complicated; see [Washington
1982, Chapter 8]).

The group CQ(ζm) is contained in Q(ζm)
+ and, when m is a prime power, is

isomorphic (as an additive abelian group) to Z/2Z×Zϕ(m)/2−1, with −1 and the
elements in (1) serving as independent generators over Z.

If we choose an ordering of the elements of Gal(Q(ζm)
+/Q) and an ordering

of a set of generators for the cyclotomic units, their corresponding signatures in
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F
ϕ(m)/2
2 define the rows of a ϕ(m)/2× ϕ(m)/2 matrix over F2, whose rank is the

rank of the subgroup sgn∞,Q(ζm)+
(CQ(ζm)) of signatures of the cyclotomic units.

We first consider the case where m is an odd prime power.

The case m = pn for an odd prime p. When m = pn for an odd prime p, every
primitive m-th root of unity is the square of another primitive m-th root of unity, so
the circular units in (1) can be written in the form

(2)
ζ a

m − ζ
−a
m

ζm − ζ
−1
m

for 1 < a < m/2 and a relatively prime to m. If we order the elements in
Gal(Q(ζm)

+/Q) by σb with 1≤ b < m/2 relatively prime to m, then the signature
of the element in (2) is given by the signs of the elements

σb

(
ζ a

m − ζ
−a
m

ζm − ζ
−1
m

)
=
ζ ab

m − ζ
−ab
m

ζ b
m − ζ

−b
m

, 1≤ b < m/2, (b,m)= 1.

Under the embedding ζm = e2π i/m we have

(3)
ζ ab

m − ζ
−ab
m

ζ b
m − ζ

−b
m
=

sin(2πab/m)
sin(2πb/m)

.

Since 1≤ b < m/2, the denominator sin(2πb/m) is positive. Hence,

σb((ζ
a
m − ζ

−a
m )/(ζm − ζ

−1
m ))

is positive if and only if sin(2πab/m) is positive, which happens precisely when
the least positive residue of ab modulo m is in (0,m/2).

It follows that the rank of the subspace sgn∞,Q(ζm)
+(CQ(ζm)) of V∞,Q(ζm)+ is

equal to the rank of a ϕ(m)/2× ϕ(m)/2 matrix C = (ca,b) over F2 (referred to
as the circular unit signature matrix) whose rows are indexed by the elements a
relatively prime to m with 1 ≤ a < m/2 and whose columns are indexed by the
elements b relatively prime to m with 1≤ b < m/2, as follows. The first row of C
is (1, 1, . . . , 1), corresponding to the signs (−1,−1, . . . ,−1) of the element −1,
viewed in the additive group F2, so

c1,b = 1,

for 1 ≤ b < m/2, with b relatively prime to m. For 2 ≤ a < m/2, 1 ≤ b < m/2,
with a and b relatively prime to m, we have

ca,b =

{
0 if ab (mod m) ∈ (0,m/2),
1 if ab (mod m) ∈ (m/2,m),

where ab (mod m) is taken to be the least positive residue of ab modulo m.
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For computational purposes, it is useful to note the row indexed by a is the
i-th row of the matrix where i = a−b(a− 1)/pc and the i-th row is indexed by
a = i +b(i − 1)/(p− 1)c (and similarly for the numbering of the columns).

If we add the first row of C to the remaining rows (which does not affect the rank
of the matrix), we obtain the modified circular unit signature matrix M = (c′a,b) with

c′a,b =
{

1 if ab (mod m) ∈ (0,m/2),
0 if ab (mod m) ∈ (m/2,m),

for 1≤ a<m/2 and 1≤ b<m/2, with a and b relatively prime to m and as before
ab (mod m) is taken to be the least positive residue of ab modulo m (this matrix
appears in [Davis 1969] in the case when m is an odd prime).

The entry c′2d ,b of the matrix M in the column indexed by b (b=1, . . . ,m/2, with
b prime to m) and the row indexed by 2d (1≤ 2d < m/2 ) is 1 if the least positive
residue of 2db modulo m lies in (0,m/2) and is 0 if the least positive residue lies in
(m/2,m). Writing 2db = Am+ r with an integer A and least positive remainder r
with 0≤ r <m, i.e., 2d+1b/m = 2A+ (2r/m), it follows that r ∈ (0,m/2) implies
b2d+1b/mc=2A and r ∈ (m/2,m) implies b2d+1b/mc=2A+1. As a consequence,
the entry of M in the row indexed by 2d and column indexed by b is 0 if b2d+1b/mc
is odd and is 1 if b2d+1b/mc is even.

Lemma. Suppose m = pn where p is an odd prime and n ≥ 1. Let k ≥ 1 be any
integer with m > 2k+2. If

b0(k)=
⌊
(2k
− 2)m

2k+1

⌋
+ 1 and b1(k)=

⌊
(2k
− 2)m

2k+1

⌋
+ 2,

then b2d+1b0(k)/mc and b2d+1b1(k)/mc are both odd for d = 1, 2, . . . , k− 1 and
both even for d = k.

Proof. Write
(2k
− 2)m

2k+1 =

⌊
(2k
− 2)m

2k+1

⌋
+ θ

where 0≤ θ < 1. Then

b0(k)=
2k
− 2

2k+1 m+ (1− θ) and b1(k)=
2k
− 2

2k+1 m+ (2− θ),

so

2d+1b0(k)
m

= 2d
−

2
2k−d +

2d+1

m
(1−θ) and

2d+1b1(k)
m

= 2d
−

2
2k−d +

2d+1

m
(2−θ).

Since 0< 1− θ ≤ 1, 1< 2− θ ≤ 2, and m > 2k+2, when d = k this gives

b2k+1b0(k)/mc = b2k+1b1(k)/mc = 2k
− 2,



290 DAVID S. DUMMIT, EVAN P. DUMMIT AND HERSHY KISILEVSKY

so b2k+1b0(k)/mc and b2k+1b1(k)/mc are both even. For 1≤ d < k, we have

2d
− 1< 2d

−
2

2k−d +
2d+1

m
(1− θ) < 2d

−
2

2k−d +
2d+1

m
(2− θ) < 2d ,

so that
b2d+1b0(k)/mc = b2d+1b1(k)/mc = 2d

− 1,

and b2d+1b0(k)/mc and b2d+1b1(k)/mc are both odd, completing the proof of the
lemma. �

We can use the lemma to give the following lower bound for the number of
independent signatures for the circular units in this case.

Proposition 2. Suppose p is an odd prime and n ≥ 1. Then the rank of the group
of signatures of the circular units in Q(ζpn )+ is at least blog2(p

n)c− 2.

Proof. Since b0(k) and b1(k) in the lemma differ by 1 and m = pn, at least one
is relatively prime to m. It then follows from the lemma that for each k ≥ 1 with
2k+2 < m there is a B(k), relatively prime to m and satisfying 1 ≤ B(k) < m/2,
such that b2d+1 B(k)/mc is odd for d = 1, 2, . . . , k− 1 and even for d = k.

By the remarks before the lemma, it follows that for each k ≥ 1 with 2k+2 < m,
the entries of the matrix M in the column indexed by B(k) and belonging to the
rows indexed by 2, 4, 8, . . . , 2k are 0, 0, . . . , 0, 1, respectively. In particular, this
shows that the row of M indexed by 2k is not in the span of the rows indexed by
2, 4, . . . , 2k−1. Applying this successively for k = 1, 2, . . . , blog2 mc − 2 shows
that all these rows are linearly independent, implying that the rank of M is at least
blog2 mc− 2, which proves the proposition. �

The case m = 2n, n ≥ 2. In this case let ζ2n+1 be a 2n+1-st root of unity with
ζ2n = ζ 2

2n+1 . Fix an embedding into C mapping ζ2n+1 to e2π i/2n+1
and order the

elements of Gal(Q(ζm)
+/Q) as σb with odd b = 3, 5, . . . , 2n−1

− 1. Then the
conjugates of the elements in (1) are given by

(4)
ζ ab

2n+1 − ζ
−ab
2n+1

ζ b
2n+1 − ζ

−b
2n+1

=
sin(πab/2n)

sin(πb/2n)

for 1<a<2n−1, 1≤b<2n−1, with a and b both odd. The sign of the unit in (4)
is +1 if the least positive residue of ab modulo 2n+1 lies in (0, 2n) and is −1 if the
least positive residue lies in (2n, 2n+1).

In this case the circular unit signature matrix has first row consisting of all 1’s
and the entry in the row indexed by a and column indexed by b is given by

(5) c1,b = 1
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for b odd, 1< b < 2n−1, and

(6) ca,b =

{
0 if ab (mod 2n+1) ∈ (0, 2n),
1 if ab (mod 2n+1) ∈ (2n, 2n+1),

for a and b odd, 1< a < 2n−1 and 1≤ b < 2n−2, where ab (mod 2n+1) is taken to
be the least positive residue of ab modulo 2n+1.

An argument similar to that for odd prime powers (here for the rows indexed by
2d
− 1 and column indexed by 2n

− 2n−k+1
+ 1) shows the rank of the circular unit

signature matrix is at least n− 2 = blog2 mc− 2, but for this case Weber proved
the following definitive result.

Proposition 3 [Weber 1899, B, p. 821]. Suppose n ≥ 2. Then the rank of the
group of signatures of the circular units in the maximal totally real subfield of the
cyclotomic field of 2n-th roots of unity is maximal, i.e., equal to 2n−2.

This result was generalized by Hasse [1952], whose simpler and more conceptual
proof used the fact that the circular unit (ζ 5

2n+1 − ζ
−5
2n+1)/(ζ2n+1 − ζ−1

2n+1) in Q(ζ2n )+

has norm −1 and showed the signatures of its Galois conjugates generate a group of
maximal signature rank (see [Hasse 1952, pp. 28–29]). A nice proof of this, using
the fact that over F2 the only irreducible representation of a 2-group is the trivial
representation, can be found in [Garbanati 1976]. Another nice proof of Weber’s
result (due to Iwasawa) can be found in [Dummit 2018].

Remark 4. Unlike the situation for the 2-power cyclotomic fields, not every possible
signature type occurs for the circular units in general cyclotomic fields, even for
m= p an odd prime (for example, in the case p=29 the circular unit signature group
has rank 11, not the maximal possible rank of 14 [Davis 1969, Appendix I, p. 70]).

4. Signatures in composites of extensions

Propositions 2 and 3 already imply that the signature rank of the units of Q(ζm)
+

tends to infinity with m (since Q(ζpn )+ ⊂Q(ζm)
+ if pn divides m and the largest

prime power divisor of m tends to infinity as m tends to infinity), but this can be
made more precise using the following result, which may be of independent interest.

Suppose F/Q and F ′/Q are two totally real Galois extensions of Q with
F ∩ F ′ =Q. Then the composite field F F ′ has Galois group

Gal(F F ′/Q)= Gal(F/Q)×Gal(F ′/Q),

and independent signatures in F and F ′ produce essentially independent signatures
in F F ′:

Proposition 5. With F and F ′ as above, suppose α1, . . . , αr are nonzero elements
of F whose signatures sgn∞,F (αi ), i = 1, . . . , r , are linearly independent in the
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F2-vector space V∞,F . Suppose similarly that β1, . . . , βs are nonzero elements of F ′

whose signatures sgn∞,F ′(β j ), j = 1, . . . , s, are linearly independent in the F2-
vector space V∞,F ′ . Then the dimension of the space generated by the signatures of
α1, . . . , αr , β1, . . . , βs in the F2-vector space V∞,F F ′ is r + s unless the subgroups
generated by α1, . . . , αr and by β1, . . . , βs both contain totally negative elements,
in which case the dimension is r + s− 1.

Proof. If the signatures in V∞,F F ′ of α1, . . . , αr , β1, . . . , βs are linearly dependent,
then there is an element α1

a1 · · ·αr
arβ1

b1 · · ·βs
bs in F F ′ with a1, . . . ,ar ,b1, . . . ,bs ∈

{0,1}, not all 0, that is totally positive. Assume without loss that at least one of
a1, . . . , ar is not 0, and let α = α1

a1 · · ·αr
ar and β = β1

b1 · · ·βs
bs. Then στ(αβ)=

σ(α)τ(β) is positive for every σ ∈ Gal(F/Q) and every τ ∈ Gal(F ′/Q). Since
the signatures sgn∞,F (αi ), i = 1, . . . , r , are linearly independent and some ai is
nonzero, there exists a σ0 such that σ0(α) is negative. This implies τ(β) is negative
for every τ , i.e., β is totally negative. Then, since there is a τ0 with τ0(β) negative, it
follows that also σ(α) is negative for every σ , i.e., α is totally negative. Hence there
is at most one nontrivial relation among the signatures of α1, . . . , αr , β1, . . . , βs in
V∞,F F ′ — this nontrivial relation occurs if and only if (1, 1, . . . , 1) ∈ V∞,F is in
the F2-space spanned by sgn∞,F (αi ), i = 1, . . . , r , and (1, 1, . . . , 1) ∈ V∞,F ′ is in
the F2-space spanned by sgn∞,F ′(β j ), j = 1, . . . , s, completing the proof. �

5. The signature rank of the units in Q(ζm) for general m

If we combine Propositions 2 and 3 on the signature ranks in the prime power case
with Proposition 5 we obtain the following result.

Theorem 6. Suppose the positive integer m is odd or is divisible by 4. Then the
rank of the group of signatures of the group of circular units in Q(ζm)

+ is at least
log2(m)− 4ω(m)+ 1, where ω(m) is the number of distinct prime factors of m. In
particular, the signature rank of the units in Q(ζm)

+ tends to infinity with m.

Proof. Write m = pa1
1 . . . pak

k . Then Q(ζm)
+ contains the composite of the totally

real fields Q(ζpi
ai )+, i = 1, . . . , k. By Propositions 2 and 3, the signature rank of

the circular units in these latter fields is at least blog2(pi
ai )c− 2 (and much better

when p= 2). Applying the previous proposition repeatedly shows that the signature
rank of the group generated by the circular units is at least

k∑
i=1

(blog2(pi
ai )c− 2)− (k− 1).

Since blog2(pi
ai )c> log2(pi

ai )− 1, the lower bound in the theorem follows. The
final statement in the theorem follows from standard bounds on the growth of ω(m)
(see, for example, [Hardy and Wright 2008, Section 22.10]). �
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Corollary 7. With the exception of m = 12, no maximal real subfield of any cy-
clotomic field of m-th roots of unity has a fundamental system of units that are all
totally positive.

Proof. The signature rank of the circular units is at least 2 for m=23, 32, 5, 7, 11, 13
by direct computation and for all m = p for primes p ≥ 17 by Proposition 2. It
follows that the signature rank of the circular units is at least 2 for all m divisible
by 23, 32 or any odd prime p ≥ 5. The only remaining possible values for m are
m = 3, 4, 12. The first two have no units of infinite order, and the third has maximal
real subfield Q(

√
3) with totally positive fundamental unit 2+

√
3. �

6. Signatures in cyclotomic towers over cyclotomic fields

Computations suggest that the signature rank of the units in the real subfield of
the cyclotomic field of m-th roots of unity is in fact always close to the maximal
possible rank of ϕ(m)/2 (equivalently, the unit signature rank deficiency for these
fields should be close to 0), i.e., nearly all possible signature types arise for units.
This is in keeping with the heuristics in [Dummit and Voight 2018] suggesting that
“most” totally real fields have nearly maximal unit signature rank (although these
abelian extensions are hardly “typical”).

In this section we prove that for infinitely many different families of cyclotomic
fields the units do indeed have nearly maximal signature rank. We do this by showing
the unit signature rank deficiency is bounded in (finitely many composites of) prime
power cyclotomic towers over cyclotomic fields.

Theorem 8. Suppose p1, . . . , ps (s ≥ 1) are distinct odd primes and suppose m is
any positive integer that is either odd or divisible by 4 and that is relatively prime
to p1, . . . , ps .

Let δ(m;n1, . . . ,ns)= δ(Q(ζmp
n1
1 ···p

ns
s
)+)≥ 0 denote the unit signature rank defi-

ciency of the maximal real subfield of the cyclotomic field of mpn1
1 · · · p

ns
s -th roots of

unity defined in Section 2, i.e., the nonnegative difference between the signature rank
of the units of Q(ζmp

n1
1 ···p

ns
s
)+ and its maximum possible value ϕ(mpn1

1 · · · p
ns
s )/2.

Then:

(a) δ(m;n1, . . . ,ns)≤ δ(m;n′1, . . . ,n
′
s) if ni ≤ n′i for all 1≤ i ≤ s.

(b) δ(m;n1, . . . ,ns) is bounded independent of n1, . . . ,ns .

(c) δ(m;n1, . . . ,ns) is constant (depending on m) if n1, . . . ,ns are all large enough.

Proof. The maximal real subfield of the cyclotomic field of mpn1
1 · · · p

ns
s -th roots

of unity is a subfield of the maximal real subfield of the cyclotomic field of
mp

n′1
1 · · · p

n′s
s -th roots of unity if ni ≤ n′i , i = 1, . . . , s, so (a) follows immediately

from Remark 1.
Suppose that ni ≥ 1 for 1 ≤ i ≤ s and let L denote the cyclotomic field
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Q(ζmp
n1
1 ···p

ns
s
), with maximal real subfield L+ =Q(ζmp

n1
1 ···p

ns
s
)+. Then the strict

class number of L+ divides twice the class number of L , as follows. The quadratic
extension L/L+ is ramified at a finite prime (if m = s = 1) or is ramified only
at infinity (otherwise). Hence, if H st

L+ is the strict Hilbert class field of L+, then
the degree over L of the composite L H st

L+ is either the strict class number of L+

(if m = s = 1) or half that (otherwise). Since L H st
L+ is an abelian extension of L

that is unramified at finite primes, it is contained in the Hilbert class field of the
complex field L , so [L H st

L+ : L] divides the class number of L , which gives the
desired divisibility.

Next observe that the cyclotomic fields Q(ζmp
n1
1 ···p

ns
s
) with ni ≥ 1 for 1≤ i ≤ s

are the subfields of the composite of the cyclotomic Zpi -extensions of Q(ζmp1···ps )

for 1 ≤ i ≤ s. Hence the 2-primary part of the class number of Q(ζmp
n1
1 ···p

ns
s
) is

bounded for all s-tuples (n1, . . . , ns) and is constant if n1, . . . , ns are all sufficiently
large by a theorem of Friedman [1981/82] extending a result of Washington. By the
previous observation, the strict class number of L+ =Q(ζmp

n1
1 ···p

ns
s
)+ is therefore

bounded for all s-tuples (n1, . . . , ns) (and is in fact constant if n1, . . . , ns are all
sufficiently large).

Finally, since the strict class number of L+ is the product of the usual class
number of L+ with 2δ(L

+), we obtain (b). Then by (a), we obtain (c). �

Corollary 9. With notation as in Theorem 8, the unit signature rank deficiencies
for all totally real abelian fields F whose conductor is a product of a divisor of m
with an integer whose prime divisors are among the set {p1, . . . , ps}, are uniformly
bounded.

Proof. Any totally real abelian field F having conductor dpn1
1 · · · p

ns
s where d is a

divisor of m and with ni ≥ 0 for 1≤ i ≤ s is contained in Q(ζmp
n1
1 ···p

ns
s
)+. Hence,

δ(F) ≤ δ(m; n1, . . . , ns) by Remark 1, and the result follows immediately from
Theorem 8. �

Remark 10. Corollary 9 shows that among all the abelian fields whose conductors
are supported in a fixed finite set of primes, almost all have nearly maximal unit
signature rank (in the precise sense that the signature rank deficiencies are uniformly
bounded by a constant depending only on the set of primes chosen).

We highlight some particular special cases:

Corollary 11. Let k be a finite totally real abelian extension of Q. For p an odd
prime, let k p,∞ denote the cyclotomic Zp-extension of k. If kn is the subfield of k p,∞

of degree pn over k, then the signature rank of the units of kn differs from [kn :Q]

by a constant amount for kn sufficiently far up the tower.

Applying Corollary 11 to k =Q(ζp)
+ for p odd, together with Weber’s result in

Proposition 3, gives the following.
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Corollary 12. For any prime p, the difference between the signature rank of the
units of Q(ζpn )+ and ϕ(pn)/2 is constant for n sufficiently large (the constant
depending on p).

Corollary 12 gives another proof of the results in Section 3 that the signature ranks
of the units in the fields Q(ζpn )+ tend to infinity as n tends to infinity. Corollary 12
is far superior, asymptotically, to the results in Section 3 for the cyclotomic fields of
odd prime power conductor since it shows the signature rank is “nearly” maximal.
The result yields relatively little information for any specific Q(ζpN )+, however,
since the unit signature rank deficiency for this field could conceivably be close
to ϕ(pN )/2 (although, as mentioned, this is not expected to happen). The only
explicit lower bounds for the unit signature rank for Q(ζpn ) for odd p and, more
significantly, for general Q(ζm) (for example if m is the product of distinct primes,
for which the results in this section have little to say), are those in Section 3.

Remark 13. We have done some computations of the signature ranks for the
subgroup of circular units in towers of prime power cyclotomic fields. While the
computations are somewhat modest (since ϕ(pn) grows rapidly with n), these
computations have exhibited the following behavior: if the signature rank of the
circular units in Q(ζp)

+ is 1
2ϕ(p)− δ, (δ ≥ 0), then the signature rank of the

circular units in the fields Q(ζpn )+ is 1
2ϕ(p

n)− δ, i.e., the circular unit signature
rank deficiency is constant and equal to its value in the first layer. Whether this
behavior persists in general is an extremely interesting question.

We also note that the deficiency of the circular units is at least the deficiency
for the full group of units, but may be strictly larger: for the field Q(ζ163)

+ the
circular unit deficiency is 2, while the deficiency for the full group of units is 0 (see
[Dummit 2018]).

7. Unit signature rank deficiencies in cyclotomic fields

In this section we show that the signature rank deficiency in the maximal real
subfields of cyclotomic fields can be arbitrarily large, under the assumption that
there exist infinitely many cyclic cubic extensions having a system of totally positive
fundamental units.

Suppose k is a cyclic cubic extension of Q with totally positive fundamental
units ε1, ε2. If Ek is the unit group of k, then Ek ={±1}×〈ε1, ε2〉 and the subgroup
〈ε1, ε2〉 consists of the totally positive units in k.

If the Galois group G of k is generated by σ , then 〈ε1, ε2〉 is a module for
the quotient Z[G]/(σ 2

+ σ + 1) of the group ring Z[G] of G since ε1 and ε2

both have norm +1. This quotient of the group ring is isomorphic to the ring
of integers in Q(

√
−3), which is a principal ideal domain, and it follows that

〈ε1, ε2〉'Z[G]/(σ 2
+ σ + 1) as G-modules (and not just as abelian groups).
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Modulo squares, 〈ε1, ε2〉 is therefore isomorphic to F2[G]/(σ 2
+ σ + 1) as a

module over the group ring F2[G], and hence affords the unique irreducible 2-
dimensional representation of F2[G]. In particular, G acts irreducibly and with no
nontrivial fixed points on 〈ε1, ε2〉 modulo squares.

With these preliminaries, we consider the composite of cyclic cubic fields having
a system of totally positive fundamental units:

Proposition 14. Suppose k1, . . . , kn are linearly disjoint cyclic cubic fields, each
with a totally positive system of fundamental units, i.e., with unit signature rank
deficiency δ(ki ) equal to 2, i = 1, . . . , n. Then the unit signature rank deficiency
δ(k1 · · · kn) for the composite field k1 · · · kn is at least 2n.

Proof. We need to prove there are at least 2n totally positive units in k1 · · · kn that are
multiplicatively independent modulo squares (in k1 · · · kn). We proceed by induction
on n, the case n = 1 being trivial. Suppose by induction that the composite k1 · · · ks

contains 2s totally positive units ε′1, . . . , ε
′

2s that are multiplicatively independent
modulo squares in k1 · · · ks . By assumption, the field ks+1 contains two totally
positive units ε1, ε2 that are multiplicatively independent modulo squares in ks+1.

Suppose ε ∈ 〈ε1, ε2〉 and ε′ ∈ 〈ε′1, . . . , ε
′

2s〉 with εε′ = α2 for some α in the
composite field F = k1 · · · ksks+1.

Let σ ∈Gal(F/Q) be a lift of a generator for the cyclic group Gal(ks+1/Q) that
is the identity on k1 · · · ks . Then σ(ε)ε′= σ(α)2, so σ(ε)/ε= (σ (α)/α)2 is a square
in F, hence ks+1(

√
σ(ε)/ε) is a subfield of F. Since F has degree 3s over ks+1,

ks+1(
√
σ(ε)/ε) cannot be a quadratic extension, so σ(ε)/ε is in fact a square in

ks+1. Since σ acting on 〈ε1, ε2〉 modulo squares in ks+1 has no nontrivial fixed
point, it follows that ε is the square of a unit in ks+1. Then ε′ = α2/ε would be a
square in F, a cubic extension of k1 · · · ks , and, as before, this implies that ε′ would
be a square in k1 · · · ks .

This shows that the totally positive units ε1, ε2, ε
′

1, . . . , ε
′

2s are multiplicatively
independent modulo squares in F, completing the proof by induction. �

For a cyclic cubic field, either there is a totally positive system of fundamental
units or the units have all possible signatures. Heuristics, supported by computations,
in [Breen et al. ≥ 2019] suggest that, when counted by discriminant, there is a
positive proportion of cyclic cubic fields of either type. Roughly 3% of cyclic cubic
fields (see [Breen et al. ≥ 2019] for the precise value) are predicted to have unit
signature rank deficiency 2, so in particular there should exist infinitely many such
cubic fields that are linearly disjoint.

Theorem 15. Suppose, as expected, that there exist infinitely many cyclic cubic
fields having a totally positive system of fundamental units. Then the difference
between ϕ(m)/2 and the unit signature rank of Q(ζm)

+ can be arbitrarily large.
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Proof. By Proposition 14 and Remark 1, to obtain a unit signature rank deficiency
at least 2n it suffices to take the cyclotomic field whose conductor is the product of
the distinct primes (which are congruent to 1 mod 3) dividing the conductors of n
linearly disjoint cyclic cubic fields having totally positive fundamental units. �

Remark 16. The same sort of arguments could be applied to composites of other
abelian fields of, for example, odd prime degree. As in the case for cubic fields, it
is expected that there are infinitely many such cyclic extensions of Q with nonzero
deficiencies (see [Breen et al. ≥ 2019] for specific predictions). This suggests that
the unit signature rank deficiency can increase without bound as one moves “horizon-
tally” among cyclotomic fields, that is, over fields Q(ζm)

+ where m is the product of
an increasing number of distinct primes, as opposed to the results of Section 6 which
show the deficiency is bounded as one moves “vertically” among cyclotomic fields.

8. Remarks on 2-adic unit signature rank deficiencies

The results above have implications for analogous deficiencies for the “2-adic
signatures” of units in the sense of [Dummit and Voight 2018, Section 4], which
we now very briefly outline. We use the notation of [Dummit and Voight 2018].

If F is a totally real field with [F :Q] = n then there is a structure theorem for
the image of the 2-Selmer group, Sel2(F), under the 2-Selmer signature map ϕ
[Dummit and Voight 2018, Theorem A.13]. The space ϕ(Sel2(F)) is n-dimensional
over F2 and is an orthogonal direct sum U ⊥ S ⊥U ′, where U is the subspace of
elements whose 2-adic signature is trivial, U ′ is the subspace of elements whose
archimedean signature is trivial, and S is a diagonal subspace. Since F is totally
real, the dimension of U ′ is the same as the dimension of U [Dummit and Voight
2018, Theorem A.13(a)] and so S has dimension n− 2 dim(U ).

Suppose now that the unit signature rank deficiency of F is δ(F). Then the
set of signatures of units is a subspace of dimension n− δ(F). It follows that the
dimension of U is at most δ(F) (so S has dimension at least n− 2δ(F)) and that
the dimension of the image ϕ(EF ) of the units EF of F is at least n− δ(F). Then
dim(ϕ(EF )+ S) is at most dimϕ(Sel2(F))= n and

dim(ϕ(EF )∩ S)= dimϕ(EF )+ dim S− dim(ϕ(EF )+ S)

≥ (n− δ(F))+ (n− 2δ(F))− n = n− 3δ(F).

Since S is a diagonal subspace, it follows that the dimension of the subspace of
2-adic signatures of the units of F is at least n−3δ(F). Hence the 2-adic signature
deficiency of the units of F is at most 3δ(F).

As a consequence, Theorem 8(b) and Corollaries 9, 11, and 12 remain true if the
(archimedean) signature rank of the units is replaced by the 2-adic signature rank
of the units.
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1. Introduction

Let p be a prime number and r a positive even integer less than p− 1. Our goal
in this paper is to construct the irreducible components of deformation spaces
whose characteristic 0 closed points give rise to the semistable lifts with Hodge–
Tate weights (0, r) of a fixed irreducible representation ρ̄ : GQp → GL2(Fp). The
existence of these deformation rings was proved by Kisin [2008]. The geometric
structure of these local deformation spaces is described by a conjecture of Breuil–
Mézard [2002] as well as a refinement due to Emerton–Gee [2014]. Thanks to
the work of Kisin [2009], this conjecture is known for GL2 over Qp. Gee and
Kisin [2014] have recently proved the Breuil–Mézard conjecture for 2-dimensional
potentially Barsotti–Tate representations of G K , where K is a finite extension of Qp.

The Breuil–Mézard conjecture, however, does not predict the whole structure of
deformation rings. Moreover, for a given (potentially) semistable representation, the
conjecture rarely gives information about what the mod p reduction of the original
representation is. It measures how far the special fibers of deformation rings is
to be smooth. Breuil and Mézard [2002] describe the irreducible components of
the semistable deformation rings in Hodge–Tate weights (0, r) for r a positive odd
integer less than p− 1. In this paper, the case that r is a positive even integer less
than p − 1 is treated, following the basic strategy in [Breuil and Mézard 2002;
Savitt 2005]. We construct strongly divisible modules to find Galois stable lattices,
and compute Breuil modules to determine mod p reductions.

Constructing strongly divisible modules is often very difficult. We find that
a phenomenon, which didn’t occur in the case r is odd, occurs in the case r is
even. More precisely, if we write D for the admissible filtered (φ, N )-modules, that
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exhaust all the 2-dimensional semistable noncrystalline representations of GQp with
Hodge–Tate weights (0, r) (see Example 3.1.1), then D is parameterized by λ and L,
where λ is a Frobenius eigenvalue of D and L is the L-invariant in the filtration of D.
By (weakly) admissible condition, the valuation of λ∈Qp should be 1

2(r−1), while
L varies over the whole Qp-line. The coefficients of the strongly divisible modules
in [Breuil and Mézard 2002] are rational functions of λ and L, while some of those
in this paper are limits of sequences of rational functions of λ and L. These limits
satisfy polynomial equations of degree 2. A similar phenomenon was observed
in an earlier work of the second author [Park 2017]. In fact, the situation in this
paper is more complicated than the one in [Park 2017], since in [Park 2017] the
author only considers Hodge–Tate weights (0, 1, 2) while in this paper we consider
Hodge–Tate weights (0, r) for positive even integers r less than p− 1, so that we
should construct those sequences for each such r (which is more or less equivalent
to constructing those polynomial equations of degree 2; see Remark 4.2.4).

Once we finish constructing strongly divisible modules, we compute the Breuil
modules corresponding to the mod p reductions of the strongly divisible modules.
By using a result of Caruso [2006], we compute the semisimplification of the mod p
reduction corresponding to the Breuil modules. In particular, we determine which
semistable representations have absolutely irreducible mod p reductions.

The following is our main results on mod p reduction:

Theorem 5.0.5. Let r = 2m be a positive even integer less than p− 1 and write
a(r) for a rational number depending on r , which is explicitly defined in (4.2.1).

The mod p reduction of ρ := Vr
st(D) is absolutely irreducible if and only if one

of the following cases holds:

(1) − 1
2 − ` < vp(L− a(r)) < 1

2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2}, in which case

ρ̄|IQp
∼= ω

m−`−1+p(m+`+1)
2 ⊕ω

m+`+1+p(m−`−1)
2 ;

(2) vp(L− a(r)) < 3
2 −m, in which case

ρ̄|IQp
∼= ω

r
2⊕ω

pr
2 .

Moreover,

ρ̄ss
|IQp

∼=

{
ωm−`−1

⊕ωm+`+1 if vp(L− a(r))=− 1
2 − ` for ` ∈ {0, 1, . . . ,m− 2};

ωm
⊕ωm if vp(L− a(r))≥ 1

2 .

We use our construction of Galois stable lattices and their mod p reductions
to construct the semistable deformation spaces in Hodge–Tate weights (0, r) for
absolutely irreducible residual representations ρ̄ by making use of the parame-
terization of our families of strongly divisible modules. From our computations
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of Breuil modules, we can readily figure out which semistable representations
have the same absolutely irreducible mod p reductions. Once we fix an absolutely
irreducible residual representation of GQp , we parameterize the lifts of the fixed
residual representation to determine the irreducible components of the semistable
deformation rings. We state our main results on semistable deformation rings.

Theorem 9.0.1. Let r = 2m be a positive even integer less than p− 1 and R(0,r)
ρ̄0

the semistable deformation ring in Hodge–Tate weights (0, r) of the 2-dimensional
absolutely irreducible residual representation ρ̄0.

(1) If ρ̄0|IQp
∼=ω

m−`−1+p(m+`+1)
2 ⊕ω

m+`+1+p(m−`−1)
2 for `∈ {0, 1, 2, . . . ,m−2},

then

R(0,r)
ρ̄0
∼

O[[D, X, Y ]]
(XY − p)

×
O[[D, X, Y ]]
(XY − p)

;

(2) If ρ̄0|IQp
∼= ωr

2⊕ω
pr
2 , then

R(0,r)
ρ̄0
∼
′ O[[D1, D2]]×O[[D, X ]]×O[[D, X ]].

Let R,R1, . . . ,Rn be complete Noetherian local rings. By R∼′
∏n

i=1 Ri we
mean that Ri ’s are the irreducible components of R, and for R ∼

∏n
i=1 Ri we

follow the notation in [Breuil and Mézard 2002] (see (9.0.2)). Note that the case (2)
in the preceding theorem gives rise to examples of deformation rings whose generic
fibers are not formally smooth, while the ones in case (1) have smooth generic fibers
(see Remark 9.3.15). It is known that the generic fibers of potentially crystalline
deformation rings are formally smooth. We also note that the deformation rings
in case (1) parameterize only semistable noncrystalline representations, while the
residual representations in case (2) have crystalline lifts with Hodge–Tate weights
(0, r).

This paper is organized as follows. In Section 2, we quickly review necessary
integral p-adic Hodge theory, and introduce the notation that will be used throughout
the paper. In Section 3, we recall the family of (weakly) admissible filtered (φ, N )-
modules of rank 2 that parameterize all the 2-dimensional semistable noncrystalline
representations of GQp , and we also recall the corresponding S-modules. Then
we introduce examples of Breuil modules of rank 2, which will appear as mod p
reductions of the semistable representations of GQp . In Section 4, we construct
certain elements in SO, denoted by δ• for • ∈ {∞, 0, 1, . . . ,m−2,−∞}, which will
appear in the coefficients of our strongly divisible modules. To construct these δ•,
we first study various properties of certain matrices, which are elementary but
nontrivial. We give a special attention to δ0: to define δ0, we construct a sequence
for each r and the limit of the sequence appears in the coefficients of δ0. In Section 5,
we state our main results, Theorem 5.0.1 on Galois stable lattices and Theorem 5.0.5
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on their mod p reductions. To prove these theorems, we divide the proofs into three
cases, according to the valuation vp(L− a(r)), as follows:

•
1
2 ≤ vp(L− a(r));

• −
1
2 − `≤ vp(L− a(r)) < 1

2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2};

• vp(L− a(r)) < 3
2 −m.

The proof for each case are in Section 6, Section 7, and Section 8, respectively. In
the last section, Section 9, we use our construction of strongly divisible modules and
computation of Breuil modules to construct the irreducible components of semistable
deformation rings in Hodge–Tate weights (0, r) of the absolutely irreducible residual
representations of GQp .

2. Review of integral p-adic Hodge theory

In this section, we quickly review filtered (φ, N )-modules, strongly divisible mod-
ules, and Breuil modules, which correspond to representations of GQp . We note that
all of the results in this section are already known. We closely follow the exposition
of [Park 2017], and we refer the reader to [Breuil and Mézard 2002; Emerton et al.
2013] for more detail.

Let E be a finite extension of Qp with the ring of integers O, maximal ideal m, a
uniformizer π , and residue field F.

2.1. Filtered (φ, N)-modules over E. We fix a prime number p ∈ Qp, thereby
fixing an embedding Bst ↪→ BdR. (See [Fontaine 1994] for detail.) A filtered
(φ, N )-module over E is a finite dimensional E-vector space D together with a
triple (φ, N , {Fili D}i∈Z) where

• the Frobenius map φ : D→ D is an E-linear automorphism;

• the monodromy operator N : D→ D is a (nilpotent) E-linear endomorphism
such that Nφ = pφN ;

• the Hodge filtration {Fili D}i∈Z is a decreasing filtration on D such that an
E-subspace Fili D is D if i � 0 and 0 if i � 0.

A filtered (φ, N )-module D is said to be admissible if it is in the sense of [Breuil
and Mézard 2002]. The Hodge–Tate weights of a filtered (φ, N )-module D
are the integers r such that Filr D 6= Filr+1 D, each counted with multiplicity
dimE(Filr D/Filr+1 D).

Let V be a finite-dimensional continuous E-representation of GQp , and define

Dst(V ) := (Bst⊗Qp V )GQp .

Then dimE Dst(V )≤ dimE V in general. If the equality holds, then we say that V
is semistable, in which case Dst(V ) inherits from Bst the structure of an admissible
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filtered (φ, N )-module. We say that V is crystalline if V is semistable and the
monodromy operator N on Dst(V ) is 0. Thanks to Colmez and Fontaine [2000],
the functor Dst provides an equivalence between the category of semistable E-
representations of GQp and the category of admissible filtered (φ, N )-modules
over E .

If V is a finite dimensional continuous E-representations of GQp , we let V∨ be
the dual representation of GQp . It is known that V is semistable (resp. crystalline)
if and only if so is V∨. If we denote D∗st(V ) := Dst(V∨), then the functor D∗st gives
rise to an antiequivalence between the category of semistable E-representations
of GQp and the category of admissible filtered (φ, N )-modules over E , whose
quasi-inverse is given by

V∗st(D) := Homφ,N ,Fil∗(D, Bst).

If V is semistable, then when we refer to the Hodge–Tate weights of V , we
mean those of D∗st(V ). Our normalization implies that the cyclotomic character
ε : GQp → E× has Hodge–Tate weight 1. Twisting V by a power εn of the
cyclotomic character has the effect of shifting all the Hodge–Tate weights of V
by n, so that we are therefore free to assume that the lowest Hodge–Tate weight is
0 after a suitable twist.

2.2. Strongly divisible modules. We fix the uniformizer p in Qp, and let E(u) :=
u− p ∈ Zp[u]. We also let S be the p-adic completion of Zp[ui/i !]i∈N. We endow
S with the following structure:

• a continuous Frobenius-semilinear map φ : S→ S with φ(u)= u p;

• a continuous Zp-linear derivation N : S→ S with N (ui/ i !)=−iui/ i !;

• a decreasing filtration {Fili S}i∈Z≥0 where Fili S is the p-adic completion of∑
j≥i E(u) j/ j ! S.

Note that Nφ = pφN and φ(Fili S)⊂ pi S for 0≤ i ≤ p− 1.
We also let SO := S⊗Zp O and SE := SO⊗Zp Qp, and extend the definitions of

Fil , φ, and N to SO and SE O-linearly and E-linearly, respectively. Let MF(φ, N )
be the category whose objects are finite free SE -modules D with

• a φ-semilinear and E-linear morphism φ :D→D such that the determinant
of φ with respect to some choice of SQp -basis is invertible in SQp (which does
not depend on the choice of basis);

• a decreasing filtration of D by SE -submodules Fili D, i ∈ Z, with Fili D= D

for i ≤ 0 and Fili SE ·Fil j D⊂ Fili+ j D for all j and all i ≥ 0;

• a E-linear map N : D→ D such that

– N (sx)= N (s)x + s N (x) for all s ∈ SE and x ∈ D,
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– Nφ = pφN ,
– N (Fili D)⊂ Fili−1 D for all i .

For a filtered (φ, N )-module D with Fil0 D = D, one can associate an object
D ∈MF(φ, N ) by the following:

• D := S⊗W (k) D;

• φ := φ⊗φ : D→ D;

• N := N ⊗ Id+ Id⊗N : D→ D;

• Fil0 D := D and, by induction,

Fili+1 D := {x ∈ D | N (x) ∈ Fili D and f p(x) ∈ Fili+1 D},

where f p : D→ D is defined by s(u)⊗ x 7→ s(p)x .

By a result of Breuil [1997], the functor D : D 7→ S ⊗W (k) D gives rise to an
equivalence between the category of filtered (φ, N )-modules with Fil0 D = D and
the category MF(φ, N ).

Fix a positive integer r ≤ p−2. The category MDr
O of strongly divisible modules

of weight r is defined to be the category of free SO-modules M of finite rank with
an SO-submodule Filr M and additive maps φ, N :M→M such that the following
properties hold:

• Filr SO ·M⊂ Filr M;

• Fil rM∩ IM= I Filr M for all ideals I in O;

• φ(sx)= φ(s)φ(x) for all s ∈ SO and for all x ∈M;

• φ(Filr M) is contained in prM and generates it over SO;

• N (sx)= N (s)x + s N (x) for all s ∈ SO and for all x ∈M;

• Nφ = pφN ;

• E(u)N (Filr M)⊂ Fil rM.

For a strongly divisible module M of weight r , there exists a unique admis-
sible filtered (φ, N )-module D with Hodge–Tate weights lying in [0, r ] such
that M[1/p] ' S ⊗W (k) D described as follows. We define a free SE -module
D :=M⊗Zp Qp, and extend φ and N on D. We also define a filtration on D as
follows: Filr D= Filr M[1/p] and

(2.2.1) Fili D :=


D if i ≤ 0;

{x ∈ D | E(u)r−i x ∈ Filr D} if 0≤ i ≤ r;∑i−1
j=0(Fili− j SQp)(Fil j D) if i > r , inductively.

Let s0 : SQp→Qp and sp : SQp→Qp be defined by u 7→ 0 and u 7→ p respectively,
and let D := D⊗SQp ,s0 Qp. The map s0 induces φ and N on D, and the map sp
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induces the filtration on D by taking sp(Fili D). Then it turns out that D is a weakly
admissible filtered (φ, N )-module over E with Filr+1 D = 0.

Hence, one has the following equivalent definition: let D be an admissible filtered
(φ, N )-module such that Fil0 D = D and Filr+1 D = 0. A strongly divisible module
in D := D(D) is an SO-submodule M of D such that

• M is a free SO-module of finite rank such that M[1/p] ' D;

• M is stable under φ and N ;

• φ(Filr M)⊂ prM where Filr M :=M∩Filr D.

For a strongly divisible module M, we define an O[GQp ]-module T∗st(M) as
follows:

T∗st(M) := HomS,Filr ,φ,N (M, Âst).

(See [Breuil 1999] for detail.) The functor T∗st provides an antiequivalence of
categories between the category MDr

O of strongly divisible modules of weight r
and the category of GQp -stable O-lattices in semistable E-representations of GQp

with Hodge–Tate weights lying in [0, r ], provided that 0≤ r ≤ p− 2. Moreover,
there is a compatibility: if M is a strongly divisible module in D :=D(D) for an
admissible filtered (φ, N )-module D, then T∗st(M) is a Galois stable O-lattice in
V∗st(D). This was conjectured by Breuil and proved by Liu [2008] (for the group
G K for a finite extension K of Qp).

2.3. Breuil modules. We write S̄F for SO/(π,Filp S) = F[u]/u p. The category
BrModr

F of Breuil modules of weight r consists of quadruples (M,Filr M, φr , N )
where

• M is a finitely generated S̄F-module, free over S̄F;

• Filr M is a S̄F-submodule of M containing ur M;

• φr :Filr M→M is F-linear and φ-semilinear (where φ : Fp[u]/u p
→ Fp[u]/u p

is the p-th power map) with image generating M as a S̄F-module;

• N :M→M is F-linear and satisfies
– N (ux)= uN (x)− ux for all x ∈M,
– ue N (Filr M)⊂ Filr M, and
– φr (ue N (x))= N (φr (x)) for all x ∈ Filr M.

The morphisms are S̄F-module homomorphisms that preserve Filr M and commute
with φr and N .

If M is an object of MDr
O, then M :=M/(π,Filp S)M is naturally an object of

BrModr
F where

• Filr M is the image of Filr M in M;

• the map φr is induced by 1/pr φ|Filr M;
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• N is induced by the one on M.

Note that this association gives rise to a functor from the category MDr
O to the

category BrModr
F.

For a Breuil module M, we define a F[GQp ]-module T∗st(M) as follows:

T∗st(M) := HomFp[u]/u p,Filr ,φr ,N (M, Â).

(See [Emerton et al. 2013] for detail.) Here, T∗st gives rise to a fully faithful
contravariant functor from the category BrModr

F to the category of finite-dimensional
F-representations of GQp with dimF T∗st(M) = rankS̄F

M. There is a compatibility,
that is, if M is a strongly divisible module of weight r and M :=M/(π,Filp S)M
denotes the Breuil module corresponding to the mod p reduction of M, then
T∗st(M)⊗O F∼= T∗st(M).

2.4. Notation. We let

γ :=
(u− p)p

p
∈ S and c := 1

p
φ(E(u)) ∈ S×.

It is easy to check that c ≡ γ − 1 modulo pS and that φ(γ ) ∈ p p−1S. We often
write v for E(u)= u− p to lighten the notation.

It will often be convenient to use covariant functors. We define covariant functors
Tr

st(•) and Vr
st(•) as follows:

Tr
st(•) := T∗st(•)

∨
⊗ εr and Vr

st(•) := V∗st(•)
∨
⊗ εr ,

where ε is the cyclotomic character.
We write Mm×n(R) for the group of m× n-matrices over a ring R. Let In be the

n×n identity matrix, and Jn the antidiagonal n×n matrix with 1 in the antidiagonal
entries. We also write 0m×n for the trivial matrix of size m × n. By coli (A), we
mean the i-th column of a matrix A. Similarly, by rowi (A), we mean the i-th row
of a matrix A.

If we let R be a commutative ring with unity, then by M = R(e1, . . . , en) we
mean that M is a free module over R of rank n with a basis e := (e1, . . . , en). For
an R-module homomorphism f : M→ M we define an n× n-matrix Mate( f ) by
the following equation:

( f (e1), . . . , f (en))= (e1, . . . , en) ·Mate( f ).

If x ∈ M is written as x = a1e1+ a2e2+ · · · + anen then we let [x]ei = ai for all
1≤ i ≤ n.

Let M be a Breuil module of weight r over S̄F with a basis e = (e1, . . . , en) and
let f := ( f1, . . . , fn) be a system of generators for Filr M modulo Filr S ·M. We
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define an n× n-matrix Mate, f (Filr M) by the equation

( f1, . . . , fn)= (e1, . . . , en) ·Mate, f (Filr M).

Similarly, for Frobenius morphism φr : Filr M→ M, we define an n × n-matrix
Mate, f (φr ) by the equation

(φr ( f1), . . . , φr ( fn))= (e1, . . . , en) ·Mate, f (φr ).

By vp we mean a valuation on Qp normalized as vp(p)= 1. By ω f we mean
Serre’s fundamental character of niveau f . If f = 1 then we write ω for ω1. We
also note that if a > b then

∑b
i=a f (i)= 0 by convention.

3. Examples

In this section, we introduce certain examples of various modules, such as filtered
(φ, N )-modules, filtered (φ, N )-modules over S, and Breuil modules. The neces-
sary studies of weakly admissible filtered (φ, N )-modules and their corresponding
filtered (φ, N )-modules over S are already done in [Breuil and Mézard 2002], so
we just import their results. The Breuil modules we introduce in this subsection
will appear as mod p reductions of the semistable representations of GQp with
Hodge–Tate weights (0, r) for r a positive integer less than p− 1, as we will see
later.

3.1. Examples of filtered (φ, N)-modules. The following examples of filtered
(φ, N )-modules exhaust all the 2-dimensional semistable noncrystalline representa-
tions of GQp with Hodge–Tate weights (0, r) for r > 0.

Example 3.1.1. For λ ∈ E with vp(λ)=
1
2(r − 1) and L ∈ E , there exists a basis

η := (η1, η2) satisfying

• Fili D =


D = E(η1, η2) if i ≤ 0,
E(η1+Lη2) if 0< i ≤ r ,
0 if i > r;

• Matη(φ)=
(

pλ 0
0 λ

)
;

• Matη(N )=
(

0 0
1 0

)
.

We write D(λ,L) for the filtered (φ, N )-modules in the preceding example.

Lemma 3.1.2. (1) D(λ,L) are admissible.

(2) D(λ,L) is isomorphic to D(λ′,L′) if and only if λ= λ′ and L= L′.



SEMISTABLE DEFORMATION RINGS IN EVEN HODGE–TATE WEIGHTS 309

(3) D(λ,L) exhaust all the 2-dimensional semistable noncrystalline representa-
tions of GQp with Hodge–Tate weights (0, r) for r > 0.

(4) D(λ,L) is not simple if and only if r = 1, in which case it has a nontrivial
proper submodule Eη2.

Proof. This is already done in [Breuil and Mézard 2002]. �

3.2. Examples of filtered (φ, N)-modules over S. Let SE := S⊗Qp E , and extend
φ, N , and {Fil j S}i∈N to SE E-linearly. We also let D := D(λ,L) in Example 3.1.1
and let D=D(λ,L) := S⊗W (k) D. Then D is a free SE -module. The induced maps
φ and N on D are obvious by definition.

We compute Filr D as follows:

Lemma 3.2.1. (1) Fil0 D= D;

(2) For 1≤ j ≤ r ,

Fil j D= SE

(
η1+Lη2+

j−1∑
i=1

(−1)i−1(u− p)i

i pi η2

)
+Fil j SE ·D;

(3) For r < j ,

Fil j D= Fil j−r SE

(
η1+Lη2+

r−1∑
i=1

(−1)i−1(u− p)i

i pi η2

)
+Fil j SE ·D.

Proof. This is already done in [Breuil and Mézard 2002]. �

It is easy to see that every element in Filr D can be written as

X(C0,C1, . . . ,Cr−1) :=

r−1∑
i=0

Ci (u− p)i
(
η1+Lη2+

r−1−i∑
j=1

(−1) j+1

j · p j (u− p) jη2

)
modulo Filr SE ·D for some Ci ∈ E , which is also easy to check that this can be
rewritten as follows:

(3.2.2) X(C0,C1, . . . ,Cr−1)

=

r−1∑
k=0

(u− p)k
(

Ck(η1+Lη2)+

k∑
j=1

(−1) j+1Ck− j

j · p j η2

)
.

We often write X for X(C0,C1, . . . ,Cr−1) for brevity.

3.3. Examples of Breuil modules. In this subsection, we provide some examples
of Breuil modules of rank 2 which (as we will see later) occur as mod p reductions
of semistable representations of GQp with Hodge–Tate weights (0, r), where r is
an even positive integer less then p− 1.

The following example parameterizes simple Breuil modules of rank 2:
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Example 3.3.1. Let a, b be positive integers with 0≤ b < a ≤ a+ b ≤ r < p− 1,
and α, β ∈ F×. The Breuil module M(a, b : α, β) ∈ F-BrModr is defined as follows:
there exists a basis e := (e1, e2) for M(a, b : α, β) and a system of generators
f := ( f1, f2) for Filr M such that

• M := S̄F(e1, e2);

• Mate, f (Filr M)=

(
ua 0
0 ub

)
;

• Mate, f (φr )=

(
0 β

α 0

)
;

• Mate(N )= 02×2.

Lemma 3.3.2. M(a, b : α, β) is isomorphic to M(a′, b′ : α′, β ′) if and only if a= a′,
b = b′, and αβ = α′β ′.

Proof. This is an easy linear algebra computation, chasing the definition. One can
find a similar argument in [Park 2017, Lemma 2.2]. �

Lemma 3.3.3. Assume that a+ b = r and let ρ̄ := Tr
st(M(a, b : α, β))⊗F F. Then

ρ̄|IQp
∼= ω

a+pb
2 ⊕ω

b+pa
2 .

In particular, ρ̄ is absolutely irreducible.

Proof. The argument is similar to [Park 2017, Proposition 2.5], which is heavily
relied on the result of [Caruso 2006, Theorem 5.2.2,]. �

The following example parameterizes Breuil modules of rank 2 whose corre-
sponding representations are ordinary:

Example 3.3.4. Let a, b be positive integers with 0≤ b < a ≤ a+ b ≤ r < p− 1,
and α, β, γ ∈ F×. The Breuil module M(a, b : α, β, γ ) ∈ F-BrModr is defined as
follows: there exists a basis e := (e1, e2) for M(a, b : α, β, γ ) and a system of
generators f := ( f1, f2) for Filr M such that

• M := S̄F(e1, e2);

• Mate, f (Filr M)=

(
ua 0
0 ub

)
;

• Mate, f (φr )=

(
γ β

α 0

)
;

• Mate(N )= 02×2.

Lemma 3.3.5. Assume that a+b= r and let ρ̄ :=Tr
st(M(a, b : α, β, γ ))⊗F F. Then

ρ̄ss
|IQp
∼= ω

a
⊕ωb.

In particular, ρ̄ is reducible.
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Proof. We first define Breuil modules M̃(a : α) := S̄F(ẽ) of rank 1 as follows:

• Filr M̃ is generated by ua ẽ;

• φr : Filr M̃→ M̃ is induced by ua ẽ 7→ αẽ;

• N : M̃→ M̃ is induced by N (ẽ)= 0.

The association e1 7→ −α/γ ẽ and e2 7→ ẽ gives rise to a morphism from M(a, b :
α, β, γ ) to M̃(b : −αβ/γ ). Moreover, the association ẽ 7→ e1+ α/γ e2 gives rise
to a morphism from M̃(a : γ ) to M(a, b : α, β, γ ). Namely, we have a short exact
sequence

0→ M̃(a : γ )→M(a, b : α, β, γ )→ M̃
(

b : −αβ
γ

)
→ 0.

Now, applying [Caruso 2006, Theorem 5.2.2,], to the short exact sequence completes
the proof. �

The following example parameterizes Breuil modules of rank 2 whose corre-
sponding representations have scalar semisimplification:

Example 3.3.6. Let a be a positive integer with a ≤ r < p− 1, and A ∈ GL2(F).
The Breuil module M(a : A) ∈ F-BrModr is defined as follows: there exists a basis
e := (e1, e2) for M(a, A) and a system of generators f := ( f1, f2) for Filr M such
that

• M := S̄F(e1, e2);

• Mate, f (Filr M)=

(
ua 0
0 ua

)
;

• Mate, f (φr )= A;

• Mate(N )= 02×2.

Lemma 3.3.7. Assume that r = 2a and let ρ̄ := Tr
st(M(a : A))⊗F F. Then

ρ̄ss
|IQp
∼= ω

a
⊕ωa.

In particular, ρ̄ is reducible.

Proof. First, notice that the argument in the proof of Lemma 3.3.5 does not work
for these Breuil modules. But, due to the shape of filtration, it is enough to consider
equivalent classes of similar matrices. Any 2× 2 invertible matrix is similar to one
of the following two matrices:(

α 1
0 β

)
and

(
α 0
0 β

)
for α 6= 0 6= β.
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Let M̃ be a Breuil module of rank 1 defined in the proof of Lemma 3.3.5, and
assume that A is one of the matrices above. Then the association e1 7→ 0 and
e2 7→ ẽ gives rise to a nontrivial morphism from M(a : A) to M̃(a : β). Moreover,
the association ẽ 7→ e1 gives rise to a nontrivial morphism from M̃(a :α) to M(a : A),
i.e., we have a short exact sequence

0→ M̃(a : α)→M(a : A)→ M̃(a : β)→ 0.

Applying [Caruso 2006, Theorem 5.2.2], to these short exact sequences of Breuil
modules completes the proof. �

4. Certain elements in SO

From now on, by r we always mean a positive even integer less than p− 1, and
we let r = 2m. In this section, we construct certain elements δ` ∈ SO for integers
0 ≤ ` ≤ m − 2, as well as elements that we denote δ∞ and δ−∞, that will be
used to construct strongly divisible modules. In order to do this, we need several
elementary but nontrivial lemmas, which will occupy the first subsection. In the
second subsection, we define sequences depending on L for each 0< r =2m< p−1,
and the limits of these sequences will appear in the coefficients of our strongly
divisible modules in certain cases.

4.1. Some matrices. Let s and t be positive integers such that t + 2s ≤ p, and
M (s,t)

∈Ms×(s+1)(O) be the matrix defined as

M (s,t)
=


(−1)t

t
(−1)t+1

t+1
· · ·

(−1)t+s−1

t+s−1
(−1)t+s

t+s
...

...
. . .

...
...

(−1)t+s−1

t+s−1
(−1)t+s

t+s
· · ·

(−1)t+2s−2

t+2s−2
(−1)t+2s−1

t+2s−1

 .

Lemma 4.1.1. Suppose that Y0, . . . , Ys ∈ O satisfy

M (s,t)
·

Ys
...

Y0

= 0.

Then for every j ∈ {0, 1, . . . , s},

Y j = x (s,t)j · Y0

where

x (s,t)j =
(s+t−1)!
(2s+t−1)!

(2s− j+t−1)!
(s− j+t−1)!

( s
j

)
.
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In particular, if we let M ′(s,t) be the symmetric s× s-matrix obtained from M (s,t)

by deleting the last column, then M ′(s,t) is invertible, that is, M ′(s,t) ∈ GLs(O).

Proof. For f, g ∈ O[X ] polynomials such that deg( f )+ deg(g)+ t < p, let

( f, g)=−
∫ 0

−1
X t−1 f (X)g(X) d X.

Note that there is a unique monic f ∈ O[X ] of degree s such that ( f, g)= 0 for all
g ∈ O[X ] of degree less than s. Indeed, let

f̃ =
1

X t−1

ds

d X s (X + 1)s X s+t−1
=

s∑
j=0

( s
j

)
( j+s+t−1)!
( j+t−1)!

X j .

Then f̃ is orthogonal to all g ∈ O[X ] of degree less than s. Dividing by its leading
coefficient, we obtain

f = (s+t−1)!
(2s+t−1)!

s∑
j=0

( s
j

)
( j+s+t−1)!
( j+t−1)!

X j .

To see that f is unique, we can replace O by C by fixing an embedding E ↪→ C.
Then we need to show that the rank of M (s,t) is s − 1, but for this it’s enough to
show the uniqueness of f over Q. If f ′ is another such monic polynomial, then
f − f ′ has degree less than s and is orthogonal to itself, from where the claim
easily follows.

Let

g =
s∑

j=0

Ys− j X j .

If 0≤ i ≤ s− 1 and 0≤ j ≤ s, then

(−1)t+ j+i

t+ j+i
= (X j , X i ).

Thus the hypothesis says that (g, X i )= 0 for i = 0, . . . , s−1, so that g is orthogonal
to all the polynomials of degree less than s. Thus,

g = Y0 f,

from where the lemma follows.
For the second part, we consider the square matrix

Diag((−1)t , (−1)t+1, . . . , (−1)t+s−1) ·M ′(s,t) ·Diag(1, (−1), . . . , (−1)s−1)



314 LUCIO GUERBEROFF AND CHOL PARK

which is a Cauchy matrix, i.e., it can be written as( 1
xi−y j

)
where

xi = t + s− 2+ i and y j := s− j.

Hence, one can readily check from the well-known determinant formula of a Cauchy
matrix that det M ′(s,t) is computed as

det M ′(s,t) =
(−1)s(t+s−1)∏s

i=2
∏i−1

j=1(i − j)2∏s
i=1

∏s
j=1(t − 2+ i + j)

.

Since t + 2s ≤ p, we conclude that det M ′(s,t) ∈ O×, which completes the proof. �

Note that by Lemma 4.1.1 x (s,t)0 = 1 for any positive integers s and t with
t + 2s ≤ p. But for any integers (not necessarily positive) s and t we also let
x (s,t)0 = 1 by convention.

Lemma 4.1.2. Let 0≤ `≤ m− 1, s = m− `− 1 and t = 2(`+ 1). Then

m−`−1∑
i=0

(−1)i x (s,t)i =
(m+`)!(m−`−1)!

(r−1)!
.

Proof. Write xi = x (s,t)i . By definition,

xi =
(m+`)!(r−1−i)!
(r−1)!(m+`−i)!

(m−`−1
i

)
,

and thus

m−`−1∑
i=0

(−1)i xi =
(m+`)!
(r−1)!

m−`−1∑
i=0

(−1)i
(m−`−1

i

)
P(i),

where P = (r − 1− X) . . . (m + `+ 1− X) is a polynomial of degree m − `− 1
whose leading coefficient is (−1)m−`−1. We now apply the well-known identity

n∑
i=0

(−1)i
(n

i

)
P(x + (n− i)d)= dnn!an

with n = m − `− 1, x = n and d = −1, where an is the leading coefficient of P ,
and we get the expression in the statement of the lemma. �
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We now restrict our attention to the following (m− 1)× (m+ 1)-matrix:

M (0)
=



(−1)1

1
(−1)2

2
· · ·

(−1)m

m
(−1)m+1

m+1
(−1)2

2
(−1)3

3
· · ·

(−1)m+1

m+1
(−1)m+2

m+2
...

...
. . .

...
...

(−1)m−1

m−1
(−1)m

m
· · ·

(−1)2m−2

2m−2
(−1)2m−1

2m−1


.

Note that the (m− 1)×m-matrix M (s,t) with s = m− 1 and t = 2 can be obtained
from M (0) by deleting the left-most column.

Lemma 4.1.3. Suppose that Y0, . . . , Ym ∈ O satisfy

M (0)
·

Ym
...

Y0

= 0.

Then for every j ∈ {1, 2, . . . ,m− 1}

Y j = x (s,t)j · Y0+ y(0)j · Ym

where x (s,t)j is defined as in Lemma 4.1.1 with s = m − 1 and t = 2 and y(0)j is a
uniquely determined element in O.

Proof. By Lemma 4.1.1, we see that [M ′(s,t)]−1
∈ GLs(O). It is now immediate to

get the results by looking at [M ′(s,t)]−1
·M (0). �

4.2. Sequences. In this subsection, we define sequences, which are convergent
in O and study their properties. Their limits will appear in the coefficients of our
strongly divisible modules in certain cases. We keep the notation of Section 4.1;
in particular, recall that we defined elements x (s,t)i and y(0)i . By convention, we let
x (s,t)0 = 1 for any integers s and t and y(0)0 = 0.

We start to define the following two quantities: for a positive integer k,

(4.2.1) Hk :=

k∑
i=1

1
i

and a(r) := Hm−1+ Hm .

Note that a(2) = 1 by convention. We also note that Hk ∈ O for k = 1, 2, . . . , r
since r < p− 1 and so a(r) ∈ O.

Assume first that r = 2. We start to define a sequence {G2,n} as follows: let
G2,0 = 1 and

G2,n+1 =
(L− 1)2

(L− 1)2− pG2,n
.
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Lemma 4.2.2. Assume that vp(L− 1) < 1
2 :

(1) {G2,n} converges to an element, denoted by 12 =12(L), in 1+m.

(2) 12 satisfies the equation p(12)
2
− (L− 1)212+ (L− 1)2 = 0.

Proof. It is immediate, by induction on n, that for all n ≥ 0 G2,n ∈ 1+m since
vp(L− 1) < 1

2 . One can readily check that

G2,n+2−G2,n+1 =
p(L− 1)2

[(L− 1)2− pG2,n+1][(L− 1)2− pG2,n]
(G2,n+1−G2,n),

so that we have

vp(G2,n+1−G2,n)= (n+ 1)[1− 2vp(L− 1)] + vp(G2,1−G2,0).

This completes the proof of the part (1).
Part (2) is immediate by part (1) and by definition. �

For r = 2m > 2, we need a little more preparation to define the sequences we
will use later on. For the rest of this subsection, we fix s = m− 1 and t = 2. Let

X0 :=

m∑
j=1

(−1) j

j
x (s,t)m− j and Y0 :=

m−1∑
j=1

(−1) j

j
y(0)m− j .

We also let

S0 :=
(−1)m +

∑m−1
i=0 (−1)i y(0)i∑m−1

i=0 (−1)i x (s,t)i

and T0 :=

∑m
k=1(−1)k

∑k
j=1(−1) j/j y(0)k− j∑m−1

i=0 (−1)i x (s,t)i

.

Note that X0, Y0, S0, T0 ∈ O by Lemmas 4.1.1, 4.1.2, and 4.1.3.
We are now ready to define the sequence: let Gr,0 = 1 and

Gr,n+1 =
X0(T0− a(r)S0)(L− a(r))2

(L− a(r))2+ pGr,n + p(Y0− X0S0−L)(L− a(r))
.

Lemma 4.2.3. Assume that r = 2m > 2 and that vp(L− a(r)) < 1
2 :

(1) {Gr,n} converges to an element, denoted by 1r =1r (L), in O;

(2) 1r satisfies the equation

p(1r )
2
+ (L− a(r))[(L− a(r))+ p(Y0− X0S0−L)]1r

− X0(T0− a(r)S0)(L− a(r))2 = 0.

Proof. The proof is very similar to Lemma 4.2.2. It is easy to check that

Gr,n+2−Gr,n+1 =
p · X

(L− a(r))2
(Gr,n+1−Gr,n)
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for some X ∈O, which implies that the sequence {Gr,n} is Cauchy, since vp(Gr,n+1−

Gr,n) approaches∞ as n goes to∞. The limit obviously sits in O since each Gn

does. The second part is immediate from the first part. �

Remark 4.2.4. The limits 1r can be defined as solutions of the polynomial equa-
tions. One can check that the equation described as in Lemma 4.2.2 (2) for r = 2
(resp. in Lemma 4.2.3 (2) for r = 2m > 2) has a unique solution 12 ∈ O such that
12 ≡ 1 mod m (resp. 1r ∈ O such that 1r ≡ X0(T0−a(r)S0) mod m) by Hensel’s
lemma.

4.3. The elements δ• ∈ SO. In this subsection, we define certain elements δ• ∈ SO

for • ∈ {∞, 0, 1, 2, . . . ,m− 2,−∞}. Recall that the elements x (s,t)j are defined in
Lemma 4.1.1 for positive integers s and t with t+2s ≤ p, and that we let x (s,t)0 = 1
for any s and t and y(0)0 = 0 by convention.

For ` ∈ {1, . . . ,m− 2}, we let t = 2(`+ 1) and s = m− `− 1, and we define

(4.3.1) δ` =

∑m+`
k=1 (γ − 1)k

∑k
j=max{1, k−m+`+1}(−1) j/j x (s,t)k− j∑m−`−1

i=0 x (s,t)i (γ − 1)i
.

Note that δ` is defined only when r = 2m ≥ 2(`+ 2)≥ 6.
We define δ∞ by letting ` = 0 in the formula of δ` in (4.3.1). Namely, we fix

t = 2 and s = m− 1, and let

(4.3.2) δ∞ =

∑m
k=1(γ − 1)k

∑k
j=1(−1) j/j x (s,t)k− j∑m−1

i=0 x (s,t)i (γ − 1)i
.

For δ−∞, we define r = 2 case separately. If r = 2 then we let

(4.3.3) δ−∞ =−(γ − 1)+
p12

L− 1
(γ − 1)2,

where 12 is defined in Lemma 4.2.2. Note that we use δ−∞ for r = 2 only when
vp(L− 1) < 1

2 , so that δ−∞ ∈ SO. If r = 2m > 2 then we define δ−∞ by letting
`= m− 1 in the formula of δ` in (4.3.1). More precisely, for r = 2m > 2 we let

(4.3.4) δ−∞ =

r−1∑
j=1

(−1) j

j
(γ − 1) j .

Remark 4.3.5. If vp(L− a(r)) < 1
2 , δ−∞ for r = 2 is in SO. Other δ• also belongs

to SO. Indeed, the denominators in the expressions are all units in SO, since modulo γ
they belong to O× by Lemma 4.1.2. Thus, δ• ∈ SO for •∈ {∞, 1, 2, . . . ,m−2,−∞},
where they are defined.

We often write δ(0)
•
∈ O for the constant determined by δ(0)

•
≡ δ• modulo (γ ).
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Lemma 4.3.6. δ∞ ≡ a(r) modulo γ SO. Equivalently,

(4.3.7) a(r)=

∑m
k=1(−1)k

∑k
j=1(−1) j/j x (m−1,2)

k− j∑m−1
i=0 (−1)i x (m−1,2)

i

.

Proof. The case r = 2 is clear. We assume that r ≥ 4 for the rest of the proof, so
m ≥ 2. It is obvious that it is enough to show the first congruence, since the quantity
in (4.3.7) is the same as δ(0)∞ .

Let xi = x (s,t)i with s = m − 1 and t = 2. After changing the indices, we can
write

(4.3.8) δ∞ =

∑m
i=1 zi (γ − 1)i∑m−1
i=0 xi (γ − 1)i

with

zi =

i−1∑
j=0

(−1)i− j

i− j
x j .

Now, notice that the denominator of δ∞ is congruent to
∑m−1

i=0 (−1)i xi modulo
γ SO, which equals

m!(m−1)!
(r−1)!

by Lemma 4.1.2. By Lemma 4.1.1 the numerator of δ∞ is congruent to

m!
(r−1)!

m∑
i=1

i−1∑
j=0

(−1) j

i− j
(r−1− j)!
(m− j)!

(m−1
j

)
,

which is equal to

(4.3.9) m!
(r−1)!

m−1∑
j=0

(−1) j
(m−1

j

)
(r−1− j)!
(m− j)!

Hm− j .

We define a power series g(x) as follows:

g(x) :=
∑

i≥m+1

(−1)i−m−1 m!(i−m−1)!
i !

x i .

It is easy to check that it satisfies the equation

(1+ x)m ln(1+ x)=
m∑

i=0

(m
i

)
(Hm − Hm−i )x i

+ g(x),

and so

ln(1−x)
1−x

−
Hm

1− x
−

g(−x)
(1− x)m+1 =−

1
(1− x)m+1

m∑
i=0

(−1)i
(m

i

)
Hm−i x i .



SEMISTABLE DEFORMATION RINGS IN EVEN HODGE–TATE WEIGHTS 319

Rewriting the formula on the right-hand side, we get

(4.3.10) ln(1−x)
1−x

−
Hm

1− x
−

g(−x)
(1− x)m+1

=

∑
i≥0

x i
(min(m,i)∑

j=0

(−1) j−1
(m

j

)(m+i− j
m

)
Hm− j

)
.

Thus, (4.3.9) is equal to −m!(m − 1)!/(r − 1)! times the coefficient of xm−1

in (4.3.10). Now, we have

ln(1−x)
1−x

=−

∑
i≥1

Hi x i , −
Hm

1− x
=−Hm

∑
i≥0

x i ,

and

−
g(−x)

(1− x)m+1 = (−1)m
∑

i≥m+1

x i
i−m−1∑

j=0

m! j !
(m+ j+1)!

( i− j−1
m

)
,

from where we get that (4.3.9) is equal to m!(m−1)!/(r − 1)!(Hm+Hm−1). Putting
everything together, we get that

δ∞ ≡

m!(m−1)!
(r−1)!

(Hm + Hm−1)

m!(m−1)!
(r−1)!

= a(r)

modulo γ SO. �

We now define δ0. In this case, we always fix s =m− 1 and t = 2, and keep the
notation as in Section 4.2. Note that δ0 is defined only when r = 2m > 2, and that
we are going to use it only when vp(L−a(r)) < 1

2 . To lighten the notation we first
let

Z0 :=
X0(L−a(r))2

(L−a(r))2+ p1r+ p(Y0−L)(L−a(r))
,

where 1r is defined in Lemma 4.2.3. Note that Z0 ∈ O if vp(L− a(r)) < 1
2 . We

are now ready to define δ0:

(4.3.11) δ0 =

∑m
k=1(γ − 1)k

∑k
j=1

(−1) j

j

(
x (s,t)k− j −

pZ0

L− a(r)
y(0)k− j

)
∑m−1

k=0

(
x (s,t)k −

pZ0

L− a(r)
y(0)k

)
(γ − 1)k −

pZ0

L− a(r)
(γ − 1)m

.

Note that δ0 ∈ SO since δ0 ≡ δ∞ modulo p/(L− a(r)) SO if vp(L− a(r)) < 1
2 .



320 LUCIO GUERBEROFF AND CHOL PARK

Lemma 4.3.12. Assume that r = 2m > 2 and vp(L− a(r)) < 1
2 , and let δ(0)0 ∈ O

be the constant determined by δ(0)0 ≡ δ0 modulo (γ ). Then

(4.3.13) δ
(0)
0 = a(r)− p

L−a(r)
1r .

In particular, vp(L− a(r))= vp(L− δ
(0)
0 ).

Proof. It is easy to check that the equation in Lemma 4.2.3 (2) implies

1r =
Z0(T0− a(r)S0)(L− a(r))
(L− a(r))− pZ0S0

.

On the other hand, we also readily get

δ
(0)
0 =

a(r)− p/(L− a(r)) Z0T0

1− p/(L− a(r)) Z0S0

from the definition of δ0, by using the identity (4.3.7) in Lemma 4.3.6. Note that
the denominator in the above two expressions never vanish due to our assumption
vp(L− a(r)) < 1

2 . Now it is easy to induce the identity (4.3.13) from the two
identities above.

The second part is immediate from the identity (4.3.13) since

vp

(
L− a(r)+

p1r

L− a(r)

)
= vp(L− a(r))

if vp(L− a(r)) < 1
2 . �

Lemma 4.3.14. N (δ0) ≡ 0 modulo (p) if vp(L− a(r)) < 1
2 as well as N (δ•) ≡ 0

modulo (p) for • ∈ {∞, 1, 2, . . . ,m− 2,−∞}.

Proof. It is routine to check that N (γ )=−p[γ + (u− p)p−1
]. Now it is immediate

to show that p divides N (δ•). �

5. Statements of main results on mod p reduction

In this section, we state our main results on Galois stable lattices in the semistable
representations of GQp with Hodge–Tate weights (0, r), where r is a positive even
integer less than p− 1. Recall that we define an integer m by r = 2m. We also
state our main results on mod p reduction of those semistable representations.

Recall that by D = D(λ,L) we mean the admissible filtered (φ, N )-modules
in Example 3.1.1. These modules parameterize all the 2-dimensional semistable
noncrystalline representations of GQp with Hodge–Tate weights (0, r). We also
recall that we write D=D(λ,L) for S⊗Zp D, and let h := vp(L−a(r)) for brevity.
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Define δ ∈ SO and 2 ∈ E as follows:

δ :=


δ∞ if 1

2 ≤ h;

δ` if − 1
2 − `≤ h < 1

2 − ` for ` ∈ {0, 1, . . . ,m− 2};

δ−∞ if h < 3
2 −m;

and

2 :=


λ/pm−1 if 1

2 ≤ h;

λ(L− a(r))/pm−`−1 if − 1
2 − `≤ h < 1

2 − ` for ` ∈ {0, 1, . . . ,m− 2};

λ(L− a(r)) if h < 3
2 −m.

Notice that the three cases according to the values of h cover all the h-line, and
recall that the elements δ• ∈ SO for • ∈ {∞, 0, 1, . . . ,m − 2,−∞} are defined in
Section 4.3. Finally, we let

E1 = pη1+ (L− δ)η2, E2 =2η2,

which are generators of our strongly divisible modules, as we will see below.
The following theorem is our main results on Galois stable lattices.

Theorem 5.0.1. Let r = 2m > 0 be an even integer less than p− 1. Then M :=

SO(E1, E2) is a strongly divisible module in D.

The following computations, which we will use later in the proof of Theorem 5.0.1,
are very elementary. We let δ(0) ∈ O be the constant determined by δ(0) ≡ δ

(mod γ SO). For instance, δ(0)∞ = a(r) by Lemma 4.3.6. One can readily check that

(5.0.2) φ(E1)= pλE1+
λ[L−φ(δ)− pL+ pδ]

2
E2, φ(E2)= λE2,

and

(5.0.3) N (E1)=
p−N (δ)
2

E2, N (E2)= 0.

Moreover, it follows from (3.2.2) that any element of Filr D can be written,
modulo Filr SE D, as

(5.0.4) Y=Y( EC)

=

r−1∑
k=0

vk
[

Ck

(
E1

p
+

pL− (L− δ(0))
p2

E2

)
+

k∑
j=1

(−1) j+1

j
Ck− j

p j2
E2

]

for elements C0, . . . ,Cr−1 ∈ E , where we denote EC = (C0, . . . ,Cr−1). Recall that
we write v for E(u)= u− p for brevity.

We now state our main results on mod p reduction.
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Theorem 5.0.5. Let r = 2m > 0 be an even integer less than p− 1. The mod p
reduction of ρ :=Vr

st(D) is absolutely irreducible if and only if one of the following
cases holds:

(1) − 1
2 − ` < h < 1

2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2}, in which case

ρ̄|IQp
∼= ω

m−`−1+p(m+`+1)
2 ⊕ω

m+`+1+p(m−`−1)
2 ;

(2) h < 3
2 −m, in which case

ρ̄|IQp
∼= ω

r
2⊕ω

pr
2 .

Moreover,

ρ̄ss
|IQp
∼=

{
ωm−`−1

⊕ωm+`+1 if h =− 1
2 − ` for ` ∈ {0, 1, . . . ,m− 2};

ωm
⊕ωm if h ≥ 1

2 .

The proof for the theorems above will occupy the next three sections. We divide
their proofs into three cases according to the different values of h. Namely,

1
2 ≤ h in Section 6;

−
1
2 − `≤ h < 1

2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2} in Section 7;

h < 3
2 −m in Section 8.

We found that constructing strongly divisible modules when 0 ≤ h < 1
2 is more

difficult than other cases. For instance, the case − 1
2 ≤ h < 1

2 in Section 7, as well
as the case h < 3

2 − m in Section 8 when r = 2, is more subtle. The strongly
divisible modules in these cases have coefficients defined by limits of sequences
which satisfy equations given by polynomials of degree 2 (see Section 4.2).

6. The first case: •=∞

In this section, we prove Theorems 5.0.1 and 5.0.5 under the condition h ≥ 1
2 . We

keep the assumption and the notation as in Section 5. In particular, we let δ = δ∞
and 2= λ/pm−1.

6.1. Matrices. In this subsection, we study some properties of certain matrices.
These matrices will be used later to describe generators of the filtration of our
strongly divisible modules. Recall that we let x (s,t)0 = 1 for any integers s and t by
convention.
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We let κ ∈ E× and construct a matrix T∞ ∈Mm×r (E) as follows:

T∞ =



κ 1 − 1
2 · · ·

(−1)m−1

m−2
(−1)m

m−1
· · ·

(−1)r

r−1

0 κ 1 · · ·
(−1)m−2

m−3
(−1)m−1

m−2
· · ·

(−1)r−1

r−2
...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 1 −
1
2 · · ·

(−1)m+3

m+2

0 0 0 · · · κ 1 · · ·
(−1)m+2

m+1

0 0 0 · · · 0 κ · · ·
(−1)m+1

m


.

We let P∞ ∈Mm×m(E) be the matrix obtained from the first m columns of T∞,
and let Q∞ be the matrix obtained from the remaining columns of T∞. It’s easy
to see that Q∞ = −Jm M ′(m,1), so that Q∞ ∈ GLm(O) by Lemma 4.1.1. We let
R∞ = Q−1

∞
∈ GLm(O).

Lemma 6.1.1. Keep the notation and the assumptions as above, and let R = R∞.
Then

vp(Ri, j )≥ 0 (1≤ i, j ≤ m).

Proof. This is immediate from the fact Q∞ =−Jm M ′(m,1) ∈ GLm(O). �

Lemma 6.1.2. Keep the notation and the assumptions as above, and let R = R∞.
Then for every k = 0, . . . ,m − 1, we have Rm−k,m = x (m−1,2)

k Rm,m . Moreover,
Rm,mzm =−1 where

zm =

m−1∑
k=0

(−1)m−k

m−k
x (m−1,2)

k .

Proof. Notice that M (m−1,2) is obtained from M ′(m,1) by deleting the first row. Since
M ′(m,1)R =−Jm , it follows that M (m−1,2) multiplied by the last column of R is 0.
That is,

M (m−1,2)
·

 R1,m
...

Rm,m

= 0.

The first part of the statement follows from Lemma 4.1.1.
Now, by definition, we have

Rm,mzm = Rm,m

m−1∑
k=0

(−1)m−k

m−k
x (m−1,2)

k .
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By the first part, this is equal to

m−1∑
k=0

(−1)m−k

m−k
Rm−k,m =

m∑
j=1

(−1) j

j
R j,m .

Recall that M ′(m,1)R = −Jm . In particular, the first row of M ′(m,1) multiplied by
the last column of R is equal to −1. This completes the proof. �

Lemma 6.1.3. Keep the notation and assumptions as above. Let R= R∞, P = P∞,
and consider the matrix R P ∈Mm×m(E). If 1≤ i, j ≤ m, then

vp((R P)i, j )≥min{0, vp(κ)}.

Proof. This follows immediately from the shape of P and from Lemma 6.1.1. �

6.2. Galois stable lattices. In this subsection, we prove Theorem 5.0.1 for the
case h ≥ 1

2 when r = 2m ≥ 2. We keep the notation as in Section 6.1. From the
computations in (5.0.2) and in (5.0.3), it is easy to check that

φ(E1)≡ φ(E2)≡ N (E1)≡ N (E2)≡ 0

modulo mM. In particular, M is stable under φ and N .
Let κ = (a(r)−L)/p in T∞, and

A =
(

pIm 0m×m

−pR P pm2R

)
.

Define vectors EC (i)
= (C (i)

0 , . . . ,C (i)
r−1) ∈ Er , for i = 0, . . . , r − 1, such that

pr−1C (i)
r−1

pr−2C (i)
r−2

...

p0C (i)
0

= pi colr−i (A).

Concretely, C (i)
k = pi−k Ar−k,r−i , so that when 0≤ i ≤ m− 1 we have

C (i)
k =

{
0 if m ≤ k ≤ r − 1;
pi−k+m2Rm−k,m−i if 0≤ k ≤ m− 1,

and when m ≤ i ≤ r − 1 we have

C (i)
k =

{
pi−k+1(Im)r−k,r−i if m ≤ k ≤ r − 1;
−pi−k+1(R P)m−k,r−i if 0≤ k ≤ m− 1.

Using these vectors, we define F̂i ∈ Filr D by the formula F̂i =Y( EC (i)), where Y

is defined in (5.0.4).
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Lemma 6.2.1. If 0≤ i ≤ m− 1 then

F̂i = v
m+i E2+

m−1∑
k=0

vk Rm−k,m−i pi+m−k2

(
E1

p
+

pL− (L− a(r))
p2

E2

)

+

m−1∑
k=0

k∑
j=1

vk (−1) j+1

j
Rm−k+ j,m−i pi+m−k E2,

and if m ≤ i ≤ r − 1 then

F̂i = v
i
(

E1+
pL
2

E2

)
−

m−1∑
k=0

vk(R P)m−k,r−i pi+1−k
(

E1

p
+

pL−(L−a(r))
p2

E2

)

−

m−1∑
k=0

k∑
j=1

vk (−1) j+1

j2
(R P)m−k+ j,r−i pi+1−k E2.

Proof. By definition, we have

F̂i =

r−1∑
k=0

vk
[

C (i)
k

(
E1

p
+
κ+L
2

E2

)
+

k∑
j=1

(−1) j+1

j

C (i)
k− j

p j2
E2

]
.

It is easy to see that

(6.2.2) [F̂i ]E1 =

r−1∑
k=0

vk C (i)
k

p

and

(6.2.3) [F̂i ]E2 =

r−1∑
k=0

vk
(

C (i)
k
κ+L
2
+

k∑
j=1

(−1) j+1

j

C (i)
k− j

p j2

)
.

Suppose first that 0≤ i ≤ m− 1. Applying the definition of C (i)
k to (6.2.2), we

get that

[F̂i ]E1 =

m−1∑
k=0

vk pi−k+m−12Rm−k,m−i ,

which proves that the coefficient of E1 in F̂i is as stated in the lemma. On the other
hand, Applying the definition of C (i)

k to (6.2.3), we get

m−1∑
k=0

vk pi−k+m(κ +L)Rm−k,m−i +

r−1∑
k=0

vk pi−k+m
k∑

j=1
k− j≤m−1

(−1) j+1

j
Rm−k+ j,m−i .
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Thus, to get the formula in the statement of the lemma, it’s enough to show that

r−1∑
k=0

vk pi−k+m
k∑

j=1
k− j≤m−1

(−1) j+1

j
Rm−k+ j,m−i

= vi+m
+

m−1∑
k=0

vk pi−k+m
k∑

j=1

(−1) j+1

j
Rm−k+ j,m−i .

We write this as the sum of two terms in the following way:

m−1∑
k=0

vk pi−k+m
k∑

j=1

(−1) j+1

j
Rm−k+ j,m−i

+

r−1∑
k=m

vk pi−k+m
k∑

j=k−m+1

(−1) j+1

j
Rm−k+ j,m−i .

Thus, it’s enough to show that

(6.2.4)
r−1∑
k=m

vk pi−k+m
k∑

j=k−m+1

(−1) j+1

j
Rm−k+ j,m−i = v

m+i .

Now, note that for any j ≥ 1 and any k ≥ m, we can write

(6.2.5) (−1) j+1

j
= Qr−k,m−k+ j .

Hence, we see that

k∑
j=k−m+1

(−1) j+1

j
Rm−k+ j,m−i =

m∑
j=1

Qr−k, j R j,m−i = (Im)r−k,m−i ,

from where (6.2.4) follows. This finishes the proof of the formula for F̂i in the case
0≤ i ≤ m− 1.

Suppose from now on that m ≤ i ≤ r − 1. Applying the definition of C (i)
k to

(6.2.2), we get that

[F̂i ]E1 =−

m−1∑
k=0

vk pi−k(R P)m−k,r−i +

r−1∑
k=m

vk pi−k(Im)r−k,r−i ,

which proves that the coefficient of E1 in F̂i is as stated in the lemma. On the other
hand, we apply the definition of C (i)

k to (6.2.3), and then we split the formula of
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[F̂i ]E2 into four terms as follows:

(6.2.6) −
m−1∑
k=0

vk pi−k+1

2
(κ +L)(R P)m−k,r−i + v

i p(κ+L)
2

−

r−1∑
k=0

vk pi−k+1

2

k∑
j=1

k− j≤m−1

(−1) j+1

j
(R P)m−k+ j,r−i

+

r−1∑
k=0

vk pi−k+1

2

k∑
j=1

k− j≥m

(−1) j+1

j
(Im)r−k+ j,r−i .

Using the identity (6.2.5), as well as using the facts that Q R P = P and that
Pr−k,r−i = 0 if k < i and Pr−i,r−i = κ , we get

−

r−1∑
k=m

vk pi−k+1

2

k∑
j=1

k− j≤m−1

(−1) j+1

j
(R P)m−k+ j,r−i

=−vi pκ
2
−

r−1∑
k=i+1

vk pi−k+1

2
Pr−k,r−i .

It then follows that (6.2.6) is equal to

−

m−1∑
k=0

vk pi−k+1

2

(
(κ +L)(R P)m−k+ j,r−i +

k∑
j=1

(−1) j+1

j
(R P)m−k+ j,r−i

)

+

r−1∑
k=0

vk pi−k+1

2

k∑
j=1

k− j≥m

(−1) j+1

j
(Im)r−k+ j,r−i −

r−1∑
k=i+1

vk pi−k+1

2
Pr−k,r−i .

It’s easy to see that the last two terms cancel each other, using that

Pr−k,r−i =
(−1)k−i+1

k−i

for i < k. This ends the proof of the lemma. �

Lemma 6.2.7. Every element x ∈ Filr D can be written as

x =
r−1∑
i=0

Di F̂i + x ′,

where Di ∈ E and x ′ ∈ Filr SE D.
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Proof. As we’ve seen before, any element of Filr D can be written, modulo Filr SE D

as Y=Y( EC), with EC = (C0, . . . ,Cr−1)∈ Er , as in (5.0.4). For i = 0, . . . ,m−1, let

Di =−
L−a(r)

p2
Cm+i +

m+i∑
j=1

(−1) j+1

j
Cm+i− j

p j2
,

and for i = m, . . . , r − 1, let

Di =
1
p

Ci .

We can express the Ci in terms of the Di as follows. It’s easy to see that

(6.2.8)


pr−1 Dr−1

pr−2 Dr−2
...

p0 D0

= 1
pm2

(
pm−12Im 0m×m

P Q

)
pr−1Cr−1

pr−2Cr−2
...

p0C0

 .
We can then invert the matrix in (6.2.8) and obtain

pr−1Cr−1

pr−2Cr−2
...

p0C0

= A


pr−1 Dr−1

pr−2 Dr−2
...

p0 D0

 .
Now, it follows from the definition of the vectors EC (i) that

EC =
r−1∑
i=0

Di EC (i)

and hence

Y=Y( EC)=
r−1∑
i=0

Di F̂i . �

Lemma 6.2.9. F̂i ≡ um+i E2 modulo mM for 0≤ i ≤m−1 and F̂i ≡ ui E1 modulo
mM for m ≤ i ≤ r − 1. In particular, the elements F̂i belong to Filr M.

Proof. Since F̂i ∈ Filr D by construction, it remains to show that F̂i ∈M. This
is easy to see using that R ∈ GLm(O) and that vp((R P)k, j ) ≥−

1
2 for any k, j by

Lemma 6.1.3 and the fact that vp(κ)= h− 1≥− 1
2 . �

Lemma 6.2.10. Let D0, . . . , Dr−1 ∈ E. Then
∑r−1

i=0 Di F̂i ∈M if and only if Di ∈O

for every i = 0, . . . , r − 1.
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Proof. One direction is obvious from the previous lemma. To prove the other
direction, suppose that y =

∑r−1
i=0 Di F̂i ∈M. Then [y]E1 is

m−1∑
i=0

Di

( m−1∑
k=0

vk Rm−k,m−i pi+m−k−12

)
+

r−1∑
i=m

Di

(
vi
−

m−1∑
k=0

vk(R P)m−k,r−i pi−k
)
.

By grouping this expression according to the power of v, we see that vi appears
multiplied by Di when i = m, . . . , r − 1. Since the expression belongs to SO, we
must have Di ∈ O for i = m, . . . , r − 1. Now, we do the same with [y]E2 . The
power vi for i = m, . . . , r − 1 appears multiplied by Di−m + Di pL/2. Since this
expression belongs to SO and

vp

(
Di

pL
2

)
≥ 1+ vp(L)−

1
2 ≥ 0,

we must also have Di−m ∈ O. This proves that Di ∈ O for any i = 0, . . . , r − 1. �

From the previous lemmas, it follows that any element x ∈ Filr M can be written
as x =

∑r−1
i=0 Di F̂i+x ′ for some Di ∈O, with x ′ ∈Filr SOM. Moreover, to show that

φ(Filr M)⊂ prM, it is enough to show that φ(F̂i ) ∈ prM for any i = 0, . . . , r−1.
We state the result as a proposition, and we include some additional information
for mod p reduction.

Proposition 6.2.11. Assume that h ≥ 1
2 . The module M= SO(E1, E2) is a strongly

divisible module with F̂i generators of Filr M modulo Filr SOM. Moreover, φ(F̂i )∈

prmM for every i 6= 0,m,

φ(F̂0)≡ pλ2 Rm,m

m−1∑
k=0

(γ − 1)k x (m−1,2)
k E1

and

φ(F̂m)≡ pmλ(L−a(r))Rm,m

m−1∑
k=0

(γ −1)k x (m−1,2)
k E1

+ pr
[
(γ −1)mδ−

m−1∑
k=0

(γ −1)k
( m−1∑

i=1

Rm−k,i Pi,mδ

+

k∑
j=1

(−1) j+1

j

m−1∑
i=1

Rm−k+ j,i Pi,m

)]
E2

modulo prmM.

The only thing that we need to do to prove that M is a strongly divisible module
is to show that φ(F̂i ) ∈ prM for every i = 0, . . . , r − 1. For later use for mod p
reduction, we compute φ(F̂i ) modulo prmM, using (5.0.2).
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Proof. First suppose that 0≤ i ≤ m− 1. Then

[φ(F̂i )]E1 =2λpi+m
m−1∑
k=0

(
φ(v)

p

)k
Rm−k,m−i .

Since (φ(v)/p)k ∈ SO and Rm−k,m−i ∈ O, we have [φ(F̂i )]E1 ∈ pr SO, because
vp(2λpi+m) = r + i . Moreover, [φ(F̂i )]E1 ∈ prmSO if i ≥ 1, and using that
(φ(v)/p)≡ (γ − 1) (mod pSO), we can write, combining with Lemma 6.1.2,

(6.2.12) [φ(F̂0)]E1 ≡ Rm,m pm2λ

m−1∑
k=0

(γ − 1)k x (m−1,2)
k (mod prmSO).

Since φ(γ ) ∈ p p−1SO ⊂ pr SO, we get that a(r)−φ(δ) ∈ pr SO by Lemma 4.3.6.
This implies that

[φ(F̂i )]E2 ≡ pm+iλ

((
φ(v)

p

)m+i
+ δ

m−1∑
k=0

Rm−k,m−i

(
φ(v)

p

)k

+

m−1∑
k=0

k∑
j=1

(−1) j+1

j
Rm−k+ j,m−i

(
φ(v)

p

)k
)

modulo prmSO. The element between the inner parentheses belongs to SO, so
if i ≥ 1, the whole expression belongs to prmSO. If i = 0, we use the fact that
(φ(v)/p)≡ (γ − 1) (mod pSO), together with Lemma 6.1.2, to get

[φ(F̂0)]E2 ≡ pmλ

[
(γ − 1)m

+ Rm,m

(
δ

m−1∑
k=0

xk(γ − 1)k +
m−1∑
k=0

k∑
j=1

(−1) j+1

j
xk− j (γ − 1)k

)]

modulo prmSO, where xi = x (s,t)i with s =m−1 and t = 2. The expression is 0 by
formula (4.3.8) and the second statement of Lemma 6.1.2. This ends the proof that
φ(F̂i ) ∈ prM if i = 0, . . . ,m− 1, and combined with (6.2.12), proves the formula
in the proposition for φ(F̂0) modulo prmM.

Suppose now that m ≤ i ≤ r − 1. Then

(6.2.13) [φ(F̂i )]E1 =

(φ(v)
p

)i
pi+1λ−

m−1∑
k=0

(
φ(v)

p

)k
pi+1λ(R P)m−k,r−i .

Since φ(v)/p ∈ SO, vp((R P)m−k,r−i )≥−
1
2 and i ≥ m, Equation (6.2.13) belongs

to pr SO. Moreover, it belongs to prmSO when i > m. When i = m, we use
Lemma 6.1.2, the fact that vp((R P)m−k,m−κRm−k,m)≥ 0 and vp(pm+1λ)= r+ 1

2
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to get

(6.2.14) [φ(F̂m)]E1 ≡−Rm,m pm+1λκ

m−1∑
k=0

(γ − 1)k x (m−1,2)
k

modulo prmSO.
We now use a similar argument as in the previous case to get

[φ(F̂i )]E2 ≡
pi+1λ

2

[(
φ(v)

p

)i(L−a(r)
p
+ δ

)
−

m−1∑
k=0

(R P)m−k,r−i

(
φ(v)

p

)k
δ

−

m−1∑
k=0

k∑
j=1

(−1) j+1

j
(R P)m−k+ j,r−i

(
φ(v)

p

)k
]

modulo prmSO. Note that vp(pi+1λ/2) = i + m ≥ r (and strictly larger when
i ≥ m + 1). Thus, if i ≥ m + 1, since the valuations of the entries of R P and of
(L− a(r))/p are at least − 1

2 , we have [φ(F̂i )]E2 ∈ prmSO.
Suppose now that i = m. Since vp(pm+1λ/2)= r , we get that

[φ(F̂m)]E2 ≡
pm+1λ

2

[
(γ − 1)m(δ− κ)− δ

m−1∑
k=0

(R P)m−k,m(γ − 1)k

−

m−1∑
k=0

k∑
j=1

(−1) j+1

j
(R P)m−k+ j,m(γ − 1)k

]
modulo prmSO. Note that for all k ∈ {0, 1, . . . ,m− 1},

(R P)m−k,m − κRm−k,m =

m−1∑
i=1

Rm−k,i Pi,m and vp

( m−1∑
i=1

Rm−k,i Pim

)
≥ 0.

We now use that φ(v)/p ≡ γ − 1 (mod pSO), vp(κ) ≥ −
1
2 and vp(Ri, j ) ≥ 0,

together with Lemma 6.1.2, and we get that [φ(F̂m)]E2 is congruent to

pr
[
(γ−1)mδ−

m−1∑
k=0

(γ−1)k
( m−1∑

i=1

Rm−k,i Pi,mδ+

k∑
j=1

(−1) j+1

j

m−1∑
i=1

Rm−k+ j,i Pi,m

)]

− prκ

(
(γ −1)m+ Rm,mδ

m−1∑
k=0

xk(γ −1)k+ Rm,m

m−1∑
k=0

k∑
j=1

(−1) j+1

j
xk− j (γ −1)k

)
modulo prmSO. The term multiplied by κ is equal to 0 by definition of δ = δ∞ and
by Lemma 6.1.2, which completes the proof. �
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6.3. Mod p reduction. In this subsection, we prove Theorem 5.0.5 in the case
h ≥ 1

2 . Throughout this subsection, we keep the notation and assumption as in
Section 6.2. We first compute the Breuil module corresponding to the mod p
reduction of the strongly divisible module M in Theorem 5.0.1 when h ≥ 1

2 .

Lemma 6.3.1. The Breuil module M := M/(π,Filp S) is described as follows:
there exists a basis e := (e1, e2) for M and a system of generators f := ( f1, f2) for
Filr M such that
• M := S̄F(e1, e2);

• Mate, f (Filr M)=

(
um 0
0 um

)
;

• Mate, f (φr )=

(
γ β

α 0

)
where

α :=(−1)ma(r)−
m−1∑
k=0

(−1)k
( m−1∑

i=1

Rm−k,i Pi,ma(r)

+

k∑
j=1

(−1) j+1

j

m−1∑
i=1

Rm−k+ j,i Pi,m

)

β :=
λ2∑m−1

k=0 (−1)k+1x (m−1,2)
k

pr−1
∑m−1

k=0 (−1)m−k/(m− k) x (m−1,2)
k

γ :=
λ(L− a(r))

∑m−1
k=0 (−1)k+1x (m−1,2)

k

pm
∑m−1

k=0 (−1)m−k/(m− k) x (m−1,2)
k

;

• Mate(N )= 02×2.

Proof. We keep the notation as in Section 6.2. We let e1 = E1 and e2 = E2 modulo
(π,Filp SO). We also let f1 := F̂m modulo (π,Filp SO) and f2 := F̂0 modulo
(π,Filp SO). By Lemma 6.2.9, F̂i ≡ um+i E2 for i ∈ {0, 1, . . . ,m − 1} modulo
mM and F̂i ≡ ui E1 for i ∈ {m,m+ 1, . . . , r − 1} modulo mM. Hence, Filr M is
generated by f2= ume2 and f1= ume1. By Proposition 6.2.11 and by Lemma 6.1.2,
we get the description for φr as in the statement. It is obvious that N (ei )= 0 from
(5.0.3) since vp(2) < 1 and p divides N (δ∞). �

Note that the proof in Lemma 6.3.1 implies that Filr M is generated by F̂0 and
F̂m modulo Filr SOM by Nakayama’s lemma.

Proposition 6.3.2. Let h ≥ 1
2 and ρ̄ := Vr

st(D). Then

ρ̄ss
|IQp
∼= ω

m
⊕ωm .

In particular, ρ̄ is reducible.

Proof. This is obvious by Lemmas 6.3.1 and 3.3.7. �
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7. The second case: • ∈ {0, 1, . . . ,m− 2}

In this section, we prove Theorems 5.0.1 and 5.0.5 under the condition − 1
2 − `≤

h < 1
2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2}. We keep the assumption and the notation as

in Section 5. In particular, we let δ = δ` and 2= λ(L− a(r))/pm−`−1. Note that
this case occurs only when r = 2m ≥ 2(`+2)≥ 4. We also note that the case `= 0
is more difficult than others, in which case we need to define limits of sequences to
construct δ0 (see (4.3.11)).

7.1. Matrices. In this subsection, we study some properties of certain matrices.
These matrices will be used later to describe generators of filtration of our strongly
divisible modules.

Fix κ ∈ E with vp(κ) < 0 and let x, y be positive integers. We let U be a upper-
triangular matrix of size x such that U−κ Ix ∈Mx×x(O) is nilpotent, Q′ ∈My×x(O),
Q′′′ ∈Mx×y(O), and Q′′ ∈ GLy(O). We define a square matrix of size x + y as

(7.1.1) Q :=
(

Q′ Q′′

U Q′′′

)
.

Lemma 7.1.2. Keep the notation and assumptions as above, and let R = R`. Then

det Q ≡ (−1)(y+2)xκ x det Q′′ (mod κ x−1).

In particular, Q is invertible.

Proof. We induct on x . For a given matrix A, we write Mi, j (A) for the (i, j)-minor
of A. If x = 1 then

det Q =
1+y∑
i=1

Qi,1 Mi,1(Q)≡ κM1+y,1(Q)= (−1)y+2κ det Q′′

modulo O, since vp(κ) < 0. For general x ,

det Q =
x+y∑
i=1

Qi,1 Mi,1(Q)≡ κMy+1,1(Q) (mod κ x−1)

by induction hypothesis and by using the assumption vp(κ) < 0. By induction
hypothesis again,

My+1,1(Q)≡ (−1)y+2(−1)(y+2)(x−1)κ x−1 det Q′′ (mod κ x−2),

which completes the proof. �
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From now on, fix r = 2m ≥ 4 an even integer. We let ` be an integer such that
0≤ `≤ m− 2. We construct a matrix T` ∈M(m+`+1)×r (E) as follows:

T` =



κ 1 − 1
2 · · ·

(−1)m+`

m+`−1
(−1)m+`+1

m+`
· · ·

(−1)r

r−1

0 κ 1 · · ·
(−1)m+`−1

m+`−2
(−1)m+`

m+`−1
· · ·

(−1)r−1

r−2
...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 1 −
1
2

· · ·
(−1)m−`+2

m−`+1

0 0 0 · · · κ 1 · · ·
(−1)m−`+1

m−`

0 0 0 · · · 0 κ · · ·
(−1)m−`

m−`−1



.

Let P` ∈M(m+`+1)×(m−`−1)(E) be the matrix obtained from the first m− `− 1
columns of T`, and Q` be the matrix obtained from the remaining columns of T`.
Note that Q` is an example of Q in Lemma 7.1.2. More precisely, we let U` be the
square matrix of size 2`+ 2 in the lower left corner of Q`. Note that U` is upper-
triangular. We also let Q′` ∈M(m−`−1)×(2`+2)(O) (resp. Q′′` ∈M(m−`−1)×(m−`−1)(O))
be the matrix obtained by using the first m − ` − 1 rows and the first 2` + 2
(resp. last m − `− 1) columns of Q`. We let Q′′′` ∈ M(2`+2)×(m−`−1)(O) be the
remaining part of Q`, so we have the same picture for Q` as in (7.1.1). Note that
Q′′` =−Jm−`−1 M ′(m−`−1,2`+3). In particular, Q′′` ∈ GLm−`−1(O) by Lemma 4.1.1.
We let R` = Q−1

` ∈ GLm+`+1(E).

Lemma 7.1.3. Keep the notation and assumptions as above, and let R = R`. Then

(1) provided that 1≤ i ≤ 2`+ 2 and 1≤ j ≤ m− `− 1, vp(Ri, j )=−vp(κ);

(2) provided that 1≤ i ≤ 2`+ 2 and m− `≤ j ≤ m+ `+ 1,

vp(Ri, j )=

{
−vp(κ) if i = j −m+ `+ 1,
−2vp(κ) if i 6= j −m+ `+ 1;

(3) provided that 2`+ 3≤ i ≤ m+ `+ 1 and 1≤ j ≤ m− `− 1, vp(Ri, j )= 0;

(4) provided that 2`+ 3≤ i ≤ m+ `+ 1 and m− `≤ j ≤ m+ `+ 1, vp(Ri, j )=

−vp(κ).

Moreover, Ri, j ≡ ri, j · κ
−ai, j modulo (κ−ai, j−1) for some ri, j ∈ O×, where ai, j ∈ Z

are defined by the equation vp(Ri, j )=−ai, jvp(κ).

Proof. Recall the following well-known identity:

R` =
1

det Q`
Adj(Q`).
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By Lemma 7.1.2, vp(det Q`)= 2(`+ 1)vp(κ). Hence, for vp(Ri, j ) it is enough to
compute vp(M j,i (Q`)). We recall the definition of M j,i (Q`). It is (−1)i+ j times
the determinant of the submatrix obtained from Q` by deleting the j-row and i-th
column. But this submatrix can be translated to the shape of Q in Lemma 7.1.2 by
interchanging rows and columns. Note that this operations change only the sign
of determinant. Hence, by Lemma 7.1.2 vp(M j,i (Q`)) is really vp(κ) times the
number of κ that appears in the corresponding submatrix. This completes the proof.
The last part is obvious by Lemma 7.1.2. �

Lemma 7.1.4. Keep the notation and assumptions as above, and let R = R`. Then

vp(Rm+`+1−k,m+`+1− x (m−`−1,2`+2)
k Rm+`+1,m+`+1)≥−2vp(κ)

for every k = 0, . . . ,m− `− 1.
Moreover, if `= 0, then we can say a bit more:

R1,m+1 =
X0

κ − Y0
Rm+1,m+1

and for every k = 0, . . . ,m− 1

Rm+1−k,m+1 =

(
x (m−1,2)

k + y(0)k
X0

κ − Y0

)
Rm+1,m+1,

where X0 and Y0 are defined in Section 4.2.

Proof. By Lemma 7.1.3, the valuation of the first 2`+ 1 entries of the last column
of R are all greater than or equal to −2vp(κ). Let Q̃′′ be the matrix obtained from
the last m−` columns and first m−`−1 rows of Q. Thus, Q̃′′ consist of adjoining
the last column of Q′ to the left of Q′′. We then have

Q̃′′


R2`+2,m+`+1

R2`+3,m+`+1
...

Rm+`+1,m+`+1

≡ 0 (mod κ−2).

Now, notice that Q̃′′ =−Jm−`−1 M (m−`−1,2`+2). Then the first part of the lemma
follows from Lemma 4.1.1.

Assume now that ` = 0. Let xi = x (m−1,2)
i , yi = y(0)i , and Q̃ be the matrix

obtained from Q0 by deleting the lowest two rows. Then Q̃ =−Jm+1 M (0). Thus,
by Lemma 4.1.3 we have

R j,m+1 = xm+1− j Rm+1,m+1+ ym+1− j R1,m+1
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for j = 2, 3, . . . ,m+ 1. From (Q R)m,m+1 = 0, we have another identity

κR1,m+1+

m∑
j=1

(−1) j+1

j
R j+1,m+1 = 0.

Combining these identities, we have(
κ −

m∑
j=1

(−1) j

j
ym− j

)
R1,m+1 =

( m∑
j=1

(−1) j

j
xm− j

)
Rm+1,m+1,

which completes the proof. �

Lemma 7.1.5. Keep the assumptions and notation as above. Let R = R`, P = P`,
and consider the matrix R P ∈M(m+`+1)×(m−`−1)(E). We also let 1≤ j ≤m−`−1
be arbitrary.

If 1≤ i ≤ 2`+ 2, then
vp((R P)i, j )≥ 0,

and if 2`+ 3≤ i ≤ m+ `+ 1, then

vp((R P)i, j )≥ vp(κ).

Proof. This follows immediately from the shape of P and from Lemma 7.1.3. �

Lemma 7.1.6. Keep the notation and assumptions as above, and let R = R`. Then

(7.1.7)
m−`−2∑

k=0

(−1)k Rm+`+1−k,m−`−1 ∈ O×.

Proof. Let Q′′ = Q′′` and R′′ be the submatrix of R determined by

R′′ = (Ri, j )2`+3≤i≤m+`+1, 1≤ j≤m−`−1.

Note that R′′i, j = Ri+2`+2, j for all 1≤ i, j ≤ m− `− 1, so that

m−`−2∑
k=0

(−1)k Rm+`+1−k,m−`−1 =

m−`−2∑
k=0

(−1)k R′′m−`−1−k,m−`−1.

Then Q′′, R′′ ∈M(m−`−1)×(m−`−1)(O). It is easy to see that Q′′ =−Jm−`−1 M ′(s,t)

with s = m − `− 1 and t = 2`+ 3, so that Q′′ ∈ GLm−`−1(O) by Lemma 4.1.1.
Since Q R = Im+`+1, we have Q′′R′′ ≡ Im−`−1 modulo (m) by Lemma 7.1.3. Thus,
we may regard Q′′ and R′′ as matrices in GLm−`−1(F).

We define a linear automorphism T on Fm−`−1 as follows: if v ∈ Fm−`−1,
regarding v as a row vector, then T (v) = v · R′′. We also define a quotient map
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πm−`−1 : F
m−`−1

→ F sending (x1, . . . , xm−`−1) to xm−`−1. We let F =πm−`−1◦T .
Then it is immediate to see that (7.1.7) holds if and only if

v0 := ((−1)s−1, (−1)s−2, . . . , (−1)s−(s−1), (−1)s−s) /∈ Ker(F).

If ` = m − 2 then v0 = (1) and F is an identity map, so that v0 /∈ Ker(F).
For the rest of the proof, we assume that 0 ≤ ` < m − 2. Note that Ker(F) is
generated by row1(Q′′), row2(Q′′), . . . , rowm−`−2(Q′′), since Q′′R′′ = Im−`−1 in
GLm−`−1(F) as well as dimF Ker(F) = m − `− 2. Note also that if we let S′′ be
the matrix obtained from Q′′ by deleting the last row, then S′′ =−Jm−`−2 M (s′,t ′)

with s ′ = m− `− 2 and t ′ = 2`+ 4. By Lemma 4.1.1, S′′ is row-equivalent to
0 0 · · · 0 −1 x1

0 0 · · · −1 0 x2
...

...
. . .

...
...

...

0 −1 · · · 0 0 xm−`−3

−1 0 · · · 0 0 xm−`−2

 ,

where xi = x (s
′,t ′)

i . Now it is easy to see that v0 ∈ Ker(F) if and only if

1+
m−`−2∑

i=1

(−1)i xi =

m−`−2∑
i=0

(−1)i xi = 0 ∈ F.

But this sum is already computed in Lemma 4.1.2. Replacing ` with `+ 1 in the
identity of Lemma 4.1.2, we get

m−`−2∑
i=0

(−1)i xi =
(m+`+1)!(m−`−2)!

(r−1)!
,

which is obviously in F× since r = 2m < p− 1. This completes the proof. �

7.2. Galois stable lattices. In this subsection, we prove Theorem 5.0.1 for the case
−

1
2 − `≤ h < 1

2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2}. Recall that this case occurs only
when r = 2m ≥ 4. Note that vp(L− δ

(0)
` − pL)= h for all ` ∈ {0, 1, 2, . . . ,m− 2}.

From the computations in (5.0.2) and in (5.0.3), it is easy to check that

φ(E1)≡ φ(E2)≡ N (E1)≡ N (E2)≡ 0

modulo mM. In particular, M is stable under φ and N .
Let κ = (pL− (L−δ(0)))/p in T`. We also let P = P` ∈M(m+`+1)×(m−`−1)(E),

Q = Q` ∈ GLm+`+1(E), and R = R` = Q−1. Note that vp(κ)= h− 1< 0. Let

A =
(

pIm−`−1 0m−`−1×m+`+1

−pR P pm−`−12R

)
.
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Define vectors EC (i)
= (C (i)

0 , . . . ,C (i)
r−1) ∈ Er , for i = 0, . . . , r − 1, such that

pr−1C (i)
r−1

pr−2C (i)
r−2

...

p0C (i)
0

= pi colr−i (A).

Concretely, C (i)
k = pi−k Ar−k,r−i , so that when 0≤ i ≤ m+ ` we have

C (i)
k =

{
pi−k+m−`−12Rm+`+1−k,m+`+1−i if 0≤ k ≤ m+ `;
0 if m+ `+ 1≤ k ≤ r − 1,

and when m+ `+ 1≤ i ≤ r − 1 we have

C (i)
k =

{
−pi−k+1(R P)m+`+1−k,r−i if 0≤ k ≤ m+ `;
pi−k+1(Im−`−1)r−k,r−i if m+ `+ 1≤ k ≤ r − 1.

Using these vectors, we define F̂i ∈ Filr D by the formula F̂i =Y( EC (i)), where Y

is defined in (5.0.4). For simplicity of notation, we will let R′ (resp. (R P)′) be the
matrix with entries R′i, j = Rm+`+1−i,m+`+1− j for 0≤ i, j ≤m+` (resp. (R P)′i, j =

(R P)m+`+1−i,r− j for 0≤ i ≤ m+ `, m+ `+ 1≤ j ≤ r − 1).

Lemma 7.2.1. If 0≤ i ≤ m+ ` then

F̂i =

m+∑̀
k=0

vk pi−k+m−`−22R′k,i E1

+

[
vi+m−`−1

+

m−`−2∑
k=0

vk pi−k+m−`−1
(
κR′k,i +

k∑
j=1

(−1) j+1

j
R′k− j,i

)]
E2,

and if m+ `+ 1≤ i ≤ r − 1 then

F̂i =

(
vi
−

m+∑̀
k=0

vk pi−k(R P)′k,i

)
E1

−

m−`−2∑
k=0

vk pi−k+1

2

(
κ(R P)′k,i +

k∑
j=1

(−1) j+1

j
(R P)′k− j,i

)
E2.

Proof. By definition, we have

F̂i =

r−1∑
k=0

vk
[

C (i)
k

(
E1

p
+
κ

2
E2

)
+

k∑
j=1

(−1) j+1

j

C (i)
k− j

p j2
E2

]
.
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It is easy to see that

(7.2.2) [F̂i ]E1 =

r−1∑
k=0

vk C (i)
k

p

and

(7.2.3) [F̂i ]E2 =

r−1∑
k=0

vk
(

C (i)
k
κ

2
+

k∑
j=1

(−1) j+1

j

C (i)
k− j

p j2

)
.

Suppose first that 0≤ i ≤ m+ `. Applying the definition of C (i)
k to (7.2.2), we

get that

[F̂i ]E1 =

m+∑̀
k=0

vk pi−k+m−`−22R′k,i ,

which proves that the coefficient of E1 in F̂i is as stated in the lemma. Similarly,
applying the definition of C (i)

k to (7.2.3), we can write this as

m+∑̀
k=0

vk pi−k+m−`−1κR′k,i +
r−1∑
k=0

vk pi−k+m−`−1
k∑

j=1
k− j≤m+`

(−1) j+1

j
R′k− j,i .

Thus, to get the formula in the statement of the lemma, it’s enough to show that

m+∑̀
k=m−`−1

vk pi−k+m−`−1κR′k,i +
r−1∑

k=m−`−1

vk pi−k+m−`−1
k∑

j=1
k− j≤m+`

(−1) j+1

j
R′k− j,i

is equal to vi+m−`−1. We write this as the sum of two terms in the following way:

(7.2.4)
m+∑̀

k=m−`−1

vk pi−k+m−`−1
(
κR′k,i +

k∑
j=1

(−1) j+1

j
R′k− j,i

)

+

r−1∑
k=m+`+1

vk pi−k+m−`−1
k∑

j=k−m−`

(−1) j+1

j
R′k− j,i .

Now, note that for any j ≥ 1 and any k ≥ m− `− 1, we can write

(7.2.5) (−1) j+1

j
= Qr−k,m+`+1−k+ j .

Hence, we see that

κR′k,i+
k∑

j=1

(−1) j+1

j
R′k− j,i=κRm+`+1−k,m+`+1−i+

m+`+1∑
j=m+`+2−k

Qr−k, j R j,m+`+1−i .
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Also notice that Qr−k,m+`+1−k = κ and Qr−k, j = 0 if j < m+ `+ 1− k, so that

κR′k,i +
k∑

j=1

(−1) j+1

j
R′k− j,i =

m+`+1∑
j=1

Qr−k, j R j,m+`+1−i = (Im+`+1)r−k,m+`+1−i .

Similarly,
k∑

j=k−m−`

(−1) j+1

j
R′k− j,i =

m+`+1∑
j=1

Qr−k, j R j,m+`+1−i = (Im+`+1)r−k,m+`+1−i .

It then follows that (7.2.4) is equal to

r−1∑
k=m−`−1

vk pi−k+m−`−1(Im+`+1)r−k,m+`+1−i = v
i+m−`−1,

which is what we wanted to show. This finishes the proof of the formula for F̂i in
the case 0≤ i ≤ m+ `.

Suppose from now on that m+`+1≤ i ≤ r−1. Applying the definition of C (i)
k

to (7.2.2), we get that

[F̂i ]E1 =−

m+∑̀
k=0

vk pi−k(R P)′k,i +
r−1∑

k=m+`+1

vk pi−k(Im−`−1)r−k,r−i ,

which proves that the coefficient of E1 in F̂i is as stated in the lemma. On the other
hand, we apply the definition of C (i)

k to (7.2.3), and then we split the formula of
[F̂i ]E2 into four terms as follows:

(7.2.6) −
m+∑̀
k=0

vk pi−k+1

2
κ(R P)′k,i + v

i pκ
2

−

r−1∑
k=0

vk pi−k+1

2

k∑
j=1

k− j≤m+`

(−1) j+1

j
(R P)′k− j,i

+

r−1∑
k=0

vk pi−k+1

2

k∑
j=1

k− j≥m+`+1

(−1) j+1

j
(Im−`−1)r−k+ j,r−i .

Using the identity (7.2.5) as well as using the facts that Q R P = P and that
Pr−k,r−i = 0 if k < i and Pr−i,r−i = κ , we get

−

m+∑̀
k=m−`−1

vk pi−k+1

2

k∑
j=1

k− j≤m+`

(−1) j+1

j
(R P)′k− j,i =

m+∑̀
k=m−`−1

vk pi−k+1

2
κ(R P)′k,i
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and

−

r−1∑
k=m+`+1

vk pi−k+1

2

k∑
j=1

k− j≤m+`

(−1) j+1

j
(R P)′k− j,i

=−vi pκ
2
−

r−1∑
k=i+1

vk pi−k+1

2
Pr−k,r−i .

It then follows that (7.2.6) is equal to

−

m−`−2∑
k=0

vk pi−k+1

2

(
κ(R P)′k,i +

k∑
j=1

(−1) j+1

j
(R P)′k− j,i

)

+

r−1∑
k=0

vk pi−k+1

2

k∑
j=1

k− j≥m+`+1

(−1) j+1

j
(Im−`−1)r−k+ j,r−i

−

r−1∑
k=i+1

vk pi−k+1

2
Pr−k,r−i .

It’s easy to see that the last two terms cancel each other, using that

Pr−k,r−i =
(−1)k−i+1

k−i

for i < k. This ends the proof of the lemma. �

Lemma 7.2.7. Every element x ∈ Filr D can be written as

x =
r−1∑
i=0

Di F̂i + x ′,

where Di ∈ E and x ′ ∈ Filr SE D.

Proof. As we’ve seen before, any element of Filr D can be written, modulo Filr SE D

as Y=Y( EC), with EC = (C0, . . . ,Cr−1) ∈ Er , as in (5.0.4). For i = 0, . . . ,m+ `,
let

Di =
pL−(L−δ(0))

p2
Ci+m−`−1+

i+m−`−1∑
j=1

(−1) j+1

j
Ci+m−`−1− j

p j2
.

For i = m+ `+ 1, . . . , r − 1, let

Di =
Ci

p
.
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We can express the Ci in terms of the Di as follows. Since
pr−1 Dr−1

pr−2 Dr−2
...

p0 D0

=
 1

p
Im−`−1 0m−`−1×m+`+1

1
pm−`−12

P
1

pm−`−12
Q




pr−1Cr−1

pr−2Cr−2
...

p0C0

 ,
we have 

pr−1Cr−1

pr−2Cr−2
...

p0C0

= A


pr−1 Dr−1

pr−2 Dr−2
...

p0 D0

 .
Now, it follows from the definition of the vectors EC (i) that

EC =
r−1∑
i=0

Di EC (i)

and hence

Y=Y( EC)=
r−1∑
i=0

Di F̂i . �

Lemma 7.2.8. F̂i ≡ ui+m−`−1 E2 modulo mM for 0≤ i ≤m+` and F̂i ≡ ui E1 for
m+`+1≤ i ≤ r −1 modulo mM. In particular, the elements F̂i belong to Filr M.

Proof. Since F̂i ∈ Filr D by construction, it remains to show that F̂i ∈M. Suppose
first that 0≤ i ≤ m+ `. We have

(7.2.9) [F̂i ]E1 =

m+∑̀
k=0

vk pi−k+m−`−22Rm+`+1−k,m+`+1−i .

We divide into four cases for k and i according to Lemma 7.1.3. In case (1), we get

vp(pi−k+m−`−22R′k,i )≥ i − k+m− 1
2 ≥ `+

3
2 > 0.

In case (2) with i 6= k−m+ `+ 1, we get

vp(pi−k+m−`−22R′k,i )≥ i − k+m− h+ 1
2 ≥−`− h+ 1

2 > 0.

In case (2) with i = k−m+ `+ 1, we get

vp(pi−k+m−`−22R′k,i )≥ `+
1
2 > 0.

In case (3), we get

vp(pi−k+m−`−22R′k,i )≥ 3`+ 5
2 + h ≥ 2`+ 2> 0.
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Finally, in case (4), we get

vp(pi−k+m−`−22R′k,i )≥ i − k+m− 1
2 ≥ `+

3
2 > 0.

Thus we conclude that (7.2.9) belongs to mSO. On the other hand,

(7.2.10) [F̂i ]E2=v
i+m−`−1

+

m−`−2∑
k=0

vk pi−k+m−`−1
(
κR′k,i+

k∑
j=1

(−1) j+1

j
R′k− j,i

)
.

Thus, in order to show [F̂i ]E2 ≡ ui+m−`−1 modulo mSO, it’s enough to see that

vp(pi−k+m−`−1κRm+`+1−k,m+`+1−i ) > 0

and
vp(pi−k+m−`−1 Rm+`+1−k+ j,m+`+1−i ) > 0

for every k = 0, . . . ,m− `−2 and j = 1, . . . , k. Both follow by considering cases
(3) and (4) of Lemma 7.1.3 for Rm+`+1−k,m+`+1−i and Rm+`+1−k+ j,m+`+1−i . For
instance, consider the element Rm+`+1−k,m+`+1−i . Lemma 7.1.3, case (4), says that
vp(Rm+`+1−k,m+`+1−i )≥−vp(κ) if i ≤ 2`+ 1, in which case

vp(pi−k+m−`−1 Rm+`+1−k,m+`+1−iκ)≥ i − k+m− `− 1≥ 1.

On the other hand, if i ≥ 2`+ 2, then Rm+`+1−k,m+`+1−i falls into case (3), and
we have vp(Rm+`+1−k,m+`+1−i )≥ 0. Then

vp(pi−k+m−`−1 Rm+`+1−k,m+`+1−iκ)≥ i − k+m− `− 1+ h− 1≥ `+ 3
2 .

The case of Rm+`+1−k+ j,m+`+1−i can be analyzed in a similar fashion.
Now suppose that m+ `+ 1≤ i ≤ r − 1. Then

(7.2.11) [F̂i ]E1 = v
i
−

m+∑̀
k=0

vk pi−k(R P)m+`+1−k,r−i .

We now use Lemma 7.1.5 to get that vp(pi−k(R P)m+`+1−k,r−i ) > 0 for any k =
0, . . . ,m+ `, so [F̂i ]E1 ≡ ui modulo mSO. On the other hand,

(7.2.12) [F̂i ]E2 =

m−`−2∑
k=0

vk pi−k+1

2

(
κ(R P)′k,i +

k∑
j=1

(−1) j+1

j
(R P)′k− j,i

)
.

We see that in order to show that (7.2.12) is in mSO, it’s enough to see that

vp

( pi−k

2
(pL− (L− δ(0)))(R P)m+`+1−k,r−i

)
> 0

and

vp

( pi−k+1

2
(R P)m+`+1−k+ j,r−i

)
> 0
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for every k = 0, . . . ,m− `− 2 and j = 1, . . . , k. Both follow from Lemma 7.1.5.
This finishes the proof of the lemma. �

Lemma 7.2.13. Let D0, . . . , Dr−1 ∈ E. Then
∑r−1

i=0 Di F̂i ∈M if and only if Di ∈O

for every i = 0, . . . , r − 1.

Proof. One direction is obvious from the previous lemma. To prove the other
direction, suppose that y =

∑r−1
i=0 Di F̂i ∈M. If 0≤ i ≤ m+ `, then the coefficient

of vi+m−`−1 in [y]E2 is Di . Since [y]E2 ∈ SO, we have that Di ∈ O for every
i = 0, . . . ,m+`. Similarly, if m+`+1≤ i ≤ r−1, then the coefficient of vi in [y]E1

is Di . Since [y]E1 ∈ SO, we have that Di ∈ O for every i =m+`+1, . . . , r −1. �

From the previous lemmas, it follows that any element x ∈ Filr M can be written
as x =

∑r−1
i=0 Di F̂i+x ′ for some Di ∈O, with x ′ ∈Filr SOM. Moreover, to show that

φ(Filr M)⊂ prM, it is enough to show that φ(F̂i ) ∈ prM for any i = 0, . . . , r−1.
We state the result as a proposition, and we include some additional information
for mod p reduction.

Proposition 7.2.14. Assume that− 1
2−`≤ h< 1

2−` for `∈ {0, 1, . . . ,m−2}. Then
M is a strongly divisible module with F̂i generators for Filr M modulo Filr SOM.
Moreover, φ(F̂i ) ∈ prmM for every i 6= 0,m+ `+ 1,

φ(F̂0)≡ λ
2(L− a(r))Rm+`+1,m+`+1

m−`−1∑
k=0

(γ − 1)k x (m−`−1,2`+2)
k E1

and

φ(F̂m+`+1)≡ pm+`+1λ(L− a(r))
m−`−2∑

k=0

(γ − 1)k Rm+`+1−k,m−`−1 E1

+ pr

[
(γ − 1)m+`+1

+
L−a(r)

p

m+∑̀
k=m−`−1

(γ − 1)k Rm+`+1−k,m−`−1

+

m−`−2∑
k=0

(γ − 1)k
(
δ`Rm+`+1−k,m−`−1

+

k∑
j=1

(−1) j+1

j
Rm+`+1−k+ j,m−`−1

)]
E2

modulo prmM.

The case `= 0 requires an extra work, which is the main reason why we first
prove the following lemma for Proposition 7.2.14. This lemma will explain why
we need to construct δ0 using limits of sequences (see (4.3.11)).
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Lemma 7.2.15. Assume that `= 0, i.e., − 1
2 ≤ h < 1

2 . Then

(7.2.16) [φ(F̂0)]E2 ∈ prmSO.

Proof. It is routine to check that

(7.2.17) [φ(F̂0)]E2

= pm−1λ

[(
φ(v)

p

)m−1
+

m∑
k=0

(
φ(v)

p

)k
R′k,0

L−φ(δ)− pL+ pδ
p

+

m−2∑
k=0

(
φ(v)

p

)k
(
κR′k,0+

k∑
j=1

(−1) j+1

j
R′k− j,0

)]
.

Since δ≡ δ(0) (mod γ SO) and φ(γ )∈ p p−1SO, we get φ(δ)≡ δ(0) (mod p p−1SO).
Note that, by Lemma 7.1.3, vp(Rm+1−k,m+1)≥ 0. Since r < p− 1, we get that

vp(Rm+1−k,m+1 pm−2+p−1λ) > r,

and thus from (7.2.17) we get

[φ(F̂0)]E2 ≡ pm−1λ

[(
φ(v)

p

)m−1
−

m∑
k=0

(
φ(v)

p

)k
κR′k,0+ δ

m∑
k=0

(
φ(v)

p

)k
R′k,0

+

m−2∑
k=0

(
φ(v)

p

)k(
κR′k,0+

k∑
j=1

(−1) j+1

j
R′k− j,0

)]
modulo prmSO. Rearranging the terms, we can write this as

(7.2.18) [φ(F̂0)]E2

≡ pm−1λ

[(
φ(v)

p

)m−1
−

m∑
k=m−1

(
φ(v)

p

)k
κR′k,0

+ δ

m∑
k=0

(
φ(v)

p

)k
R′k,0+

m−2∑
k=0

(
φ(v)

p

)k k∑
j=1

(−1) j+1

j
R′k− j,0

]
modulo prmSO.

Notice that if m− 1≤ k ≤ m, then

κR′k,0 = Qr−k,m+1−k Rm+1−k,m+1.

Using this, and the fact that Q R = Im+1, we get

κR′k,0 = (Im+1)r−k,m+1−

k∑
j=1

(−1) j+1

j
R′k− j,0.
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Thus, (7.2.18) is equal to

[φ(F̂0)]E2 ≡ pm−1λ

(
δ

m∑
k=0

(
φ(v)

p

)k
R′k,0+

m∑
k=0

(
φ(v)

p

)k k∑
j=1

(−1) j+1

j
R′k− j,0

)
modulo prmSO. Since φ(v)/p ≡ (γ − 1) (mod pSO), we also get

(7.2.19) [φ(F̂0)]E2

≡ pm−1λ

(
δ

m∑
k=0

(γ − 1)k R′k,0+
m∑

k=0

(γ − 1)k
k∑

j=1

(−1) j+1

j
R′k− j,0

)
modulo prmSO.

Applying Lemma 7.1.4 to (7.2.19), we get

(7.2.20) [φ(F̂0)]E2

≡ pm−1λR′0,0

[
δ

(
X0

κ − Y0
(γ − 1)m +

m−1∑
k=0

(
xk + yk

X0

κ − Y0

)
(γ − 1)k

)

+

m∑
k=0

(γ − 1)k
k∑

j=1

(−1) j+1

j

(
xk− j + yk− j

X0

κ − Y0

)]

modulo prmSO. Here, we write xi and yi for x (m−1,2)
i and y(0)i respectively, to

lighten the notation. Recall that Z0 is defined in Section 4.3. It is easy to check that

X0

κ − Y0
=−

p
L−a(r)

Z0

using the identity (4.3.13) in Lemma 4.3.12. Thus, the quantity in (7.2.20) vanishes
by definition of δ = δ0. That is, [φ(F̂0)]E2 ∈ prmSO when `= 0. �

We now prove Proposition 7.2.14. The only thing that we need to do to prove
that M is a strongly divisible module is to show that φ(F̂i ) ∈ prM for every
i = 0, . . . , r − 1. For later use for mod p reduction, we compute φ(F̂i ) modulo
prmM.

Proof of Proposition 7.2.14. Suppose first that 0≤ i ≤ m+ `. Then

(7.2.21) [φ(F̂i )]E1 = pi+m−`−12λ

m+∑̀
k=0

(
φ(v)

p

)k
Rm+`+1−k,m+`+1−i .

Note that

vp(pi+m−`−12λRm+`+1−k,m+`+1−i )= i + r + h− 1+ vp(Rm+`+1−k,m+`+1−i ).
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Using Lemma 7.1.3, it’s then easy to see that [φ(F̂i )]E1 ∈ pr SO. Moreover, it’s also
easy to see that [φ(F̂i )]E1 ∈ prmSO when i ≥ 1, whereas

[φ(F̂0)]E1 ≡ pm−`−12λ

m−`−1∑
k=0

(
φ(v)

p

)k
Rm+`+1−k,m+`+1 (mod prmSO).

Moreover, since φ(v)/p ≡ (γ − 1) (mod pSO), we have

[φ(F̂0)]E1 ≡ pm−`−12λ

m−`−1∑
k=0

(γ − 1)k Rm+`+1−k,m+`+1 (mod prmSO).

Now, Lemma 7.1.4 implies that

vp(Rm+`+1−k,m+`+1− x (m−`−1,2`+2)
k Rm+`+1,m+`+1)≥ 2− 2h > 1− h.

Also, vp(pm−`−12λ)= r + h− 1, so we get

(7.2.22) [φ(F̂0)]E1 ≡ Rm+`+1,m+`+1 pm−`−12λ

m−`−1∑
k=0

(γ − 1)k x (m−`−1,2`+2)
k

modulo prmSO.
On the other hand,

(7.2.23) [φ(F̂i )]E2

= pi+m−`−1λ

[(
φ(v)

p

)i+m−`−1
+

m+∑̀
k=0

(
φ(v)

p

)k
R′k,i

L−φ(δ)− pL+ pδ
p

+

m−`−2∑
k=0

(
φ(v)

p

)k
(
κR′k,i +

k∑
j=1

(−1) j+1

j
R′k− j,i

)]
.

Since φ(γ ) ∈ p p−1SO, φ(δ)≡ δ(0) (mod p p−1SO). Note that

vp(Rm+`+1−k,m+`+1−i )≥ 0,

by Lemma 7.1.3. As r < p−1, we get vp(Rm+`+1−k,m+`+1−i pi+m−`−2+p−1λ)> r ,
and thus from (7.2.23) we get

[φ(F̂i )]E2≡ pi+m−`−1λ

[(
φ(v)

p

)i+m−`−1
−

m+∑̀
k=0

(
φ(v)

p

)k
κR′k,i+δ

m+∑̀
k=0

(
φ(v)

p

)k
R′k,i

+

m−`−2∑
k=0

(
φ(v)

p

)k
(
κR′k,i +

k∑
j=1

(−1) j+1

j
R′k− j,i

)]
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modulo prmSO. Rearranging the terms, we can write this as

[φ(F̂i )]E2

≡ pi+m−`−1λ

[(
φ(v)

p

)i+m−`−1
−

m+∑̀
k=m−`−1

(
φ(v)

p

)k
κR′k,i

+δ

m+∑̀
k=0

(
φ(v)

p

)k
R′k,i +

m−`−2∑
k=0

(
φ(v)

p

)k k∑
j=1

(−1) j+1

j
R′k− j,i

]

modulo prmSO. Note that the case i=0 and `=0 is already treated in Lemma 7.2.15.
So we assume that 1≤ `≤ m− 2 for [φ(F̂i )]E2 if i = 0. Using Lemma 7.1.3, we
see that vp(pi+m−`−1λR′k,i ) > r when m− `≤ k ≤m+ `, and thus we can remove
some of the summands multiplying δ. We get

(7.2.24) [φ(F̂i )]E2 ≡ pi+m−`−1λ

[(
φ(v)

p

)i+m−`−1
−

m+∑̀
k=m−`−1

(
φ(v)

p

)k
κR′k,i

+ δ

m−`−1∑
k=0

(
φ(v)

p

)k
R′k,i +

m−`−2∑
k=0

(
φ(v)

p

)k k∑
j=1

(−1) j+1

j
R′k− j,i

]

modulo prmSO. Suppose that 2`+ 2 ≤ i ≤ m + `. It’s easy to see, again using
Lemma 7.1.3, that [φ(F̂i )]E2 ∈ prmSO. Suppose now that 1 ≤ i ≤ 2`+ 1. After
multiplying by pi+m−`−1λ, the terms in the second line of (7.2.24) are in prmSO.
Similarly, in the sum at the end of the first line, we can ignore the terms with
k 6= i +m− `− 1. Thus

(7.2.25) [φ(F̂i )]E2

≡ pi+m−`−1λ
(
φ(v)

p

)i+m−`−1
(1− κR2`+2−i,m+`+1−i ) (mod prmSO).

Using that Q R = Im+`+1, we know that 1 is equal to the m+`+1− i-th row of Q,
multiplied by the m+ `+ 1− i-th column of R, so

1= κR2`+2−i,m+`+1−i +

i+m−`−1∑
j=1

(−1) j+1

j
R2`+2−i+ j,m+`+1−i .

Using Lemma 7.1.3, this implies that the expression in (7.2.25) is in prmSO.
To sum up, we have thus far proved that φ(F̂i ) ∈ prmM for 1 ≤ i ≤ m + `.

Suppose from now on that i = 0 (and so we also assume ` > 0 by Lemma 7.2.15).
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The coefficient of E1 in φ(F̂0) has already been dealt above. From (7.2.24), we get

[φ(F̂0)]E2

≡ pm−`−1λ

[(
φ(v)

p

)m−`−1
−

m+∑̀
k=m−`−1

(
φ(v)

p

)k
κR′k,0

+ δ

m−`−1∑
k=0

(
φ(v)

p

)k
R′k,0+

m−`−2∑
k=0

(
φ(v)

p

)k k∑
j=1

(−1) j+1

j
R′k− j,0

]
modulo prmSO. Now, notice that if m− `− 1≤ k ≤ m+ `, then

κR′k,0 = Qr−k,m+`+1−k Rm+`+1−k,m+`+1.

Using this, and the fact that Q R = Im+`+1, we get

κR′k,0 = (Im+`+1)r−k,m+`+1−

k∑
j=1

(−1) j+1

j
R′k− j,0.

Thus,

(7.2.26) [φ(F̂0)]E2

≡ pm−`−1λ

(
δ

m−`−1∑
k=0

(
φ(v)

p

)k
R′k,0+

m+∑̀
k=0

(
φ(v)

p

)k k∑
j=1

(−1) j+1

j
R′k− j,0

)
modulo prmSO. If k− j ≥m−`, then vp(R′k− j,0)≥ 2−2h by Lemma 7.1.3, which
implies that these terms can be ignored in the last sum. When k− j ≤ m− `− 1,
we can use Lemma 7.1.4 to get vp(R′k− j,0− R′0,0xk− j )≥ 2− 2h, where xi = x (s,t)i ,
with s = m − `− 1 and t = 2`+ 2. We do the same with the first sum. Finally,
φ(v)/p ≡ (γ − 1) (mod pSO), and this easily implies that

(7.2.27) [φ(F̂0)]E2

≡ pm−`−1λR′0,0

(
δ

m−`−1∑
k=0

(γ−1)k xk+

m+∑̀
k=0

(γ−1)k
k∑

j=1
k− j≤m−`−1

(−1) j+1

j
xk− j

)

modulo prmSO. Since δ = δ` it follows that (7.2.27) is equal to 0. This finishes the
proof that φ(F̂0) ∈ prM, and the formula for this element modulo prmM follows
from (7.2.22) and the above computation.

Suppose from now on that m+ `+ 1≤ i ≤ r − 1. Then

[φ(F̂i )]E1 = pi+1λ

((φ(v)
p

)i
−

m+∑̀
k=0

(φ(v)
p

)k
(R P)′k,i

)
.
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Using Lemma 7.1.5, it’s easy to see that [φ(F̂i )]E1 ∈ pr SO. Moreover, if i>m+`+1,
then [φ(F̂i )]E1 ∈ prmSO. We also get that

[φ(F̂m+`+1)]E1 ≡−pm+`+2λ

m−`−2∑
k=0

(γ − 1)k(R P)m+`+1−k,m−`−1

modulo prmSO. We now write

(R P)m+`+1−k,m−`−1 =

m−`−1∑
j=1

Rm+`+1−k, j Pj,m−`−1.

When j = m − `− 1, Pj,m−`−1 = κ , and vp(Rm+`+1−k, j ) ≥ 0 by Lemma 7.1.3.
When j < m− `− 1, Pj,m−`−1 ∈ O, and vp(Rm+`+1−k, j )≥ 0 by the same lemma.
It follows that

vp((R P)m+`+1−k,m−`−1− Rm+`+1−k,m−`−1κ)≥ 0.

Since vp(pm+`+2λ)= r + `+ 3
2 > r , we get that

(7.2.28) [φ(F̂m+`+1)]E1 ≡−pm+`+2λκ

m−`−2∑
k=0

(γ − 1)k Rm+`+1−k,m−`−1

modulo prmM.
On the other hand, for any m+ `+ 1≤ i ≤ r − 1, we have

[φ(F̂i )]E2 =
piλ[L−φ(δ)− p(L− δ)]

2

((
φ(v)

p

)i
−

m+∑̀
k=0

(
φ(v)

p

)k
(R P)′k,i

)

−
pi+1λ

2

m−`−2∑
k=0

(
φ(v)

p

)k
(
(R P)′k,iκ +

k∑
j=1

(−1) j+1

j
(R P)′k− j,i

)
.

Now, we know that φ(δ) ≡ δ(0) (mod p p−1SO). Note that, by Lemma 7.1.5,
vp((R P)′k,i )≥ h− 1. Since r < p− 1, this implies that

[φ(F̂i )]E2 ≡ pi+m−`−1
(
φ(v)

p

)i
+

pi+1λ

2

m+∑̀
k=m−`−1

(
φ(v)

p

)k
κ(R P)′k,i

−
pi+1λ

2

m−`−2∑
k=0

(
φ(v)

p

)k
(
δ(R P)′k,i +

k∑
j=1

(−1) j+1

j
(R P)′k− j,i

)
modulo prmSO. Using Lemma 7.1.5, it’s easy to see that [φ(F̂i )]E2 ∈ pr SO, and
moreover if i ≥m+ `+ 2, then [φ(F̂i )]E2 ∈ prmSO. Furthermore, since φ(v)/p ≡
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(γ − 1) (mod pSO), if i = m+ `+ 1 then the same argument implies that

[φ(F̂m+`+1)]E2 ≡ pr (γ − 1)m+`+1
+

pm+`+2λ

2

m+∑̀
k=m−`−1

(γ − 1)kκ(R P)′k,m+`+1

−
pm+`+2λ

2

m−`−2∑
k=0

(γ − 1)k
(
δ(R P)′k,m+`+1+

k∑
j=1

(−1) j+1

j
(R P)′k− j,m+`+1

)

modulo prmSO. We then write

(R P)′k,m+`+1 = κRm+`+1−k,m−`−1+

m−`−2∑
j=1

Rm+`+1−k, j Pj,m−`−1.

Note that Pj,m−`−1 ∈ O for j = 1, . . . ,m− `− 2. In the end, by Lemma 7.1.3, we
get

[φ(F̂m+`+1)]E2 ≡ pr (γ−1)m+`+1
+

pm+`+2λ

2

m+∑̀
k=m−`−1

(γ−1)kκ2 Rm+`+1−k,m−`−1

−
pm+`+2λκ

2

m−`−2∑
k=0

(γ−1)k
(
δRm+`+1−k,m−`−1+

k∑
j=1

(−1) j+1

j
Rm+`+1−k+ j,m−`−1

)

modulo prmSO. When considering only modulo pr SO, we can see that this is equal
to 0 by Lemma 7.1.4, as in the case i = 0. This finishes the proof of the proposition.
The formula for φ(F̂m+`+1) modulo prmM follows from the above computation
and (7.2.28). �

7.3. Mod p reduction. In this subsection, we prove Theorem 5.0.5 in the case
−

1
2 − `≤ h < 1

2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2}. Throughout this subsection, we
keep the notation and assumption as in Section 7.2. We first compute the Breuil
modules corresponding to the mod p reduction of the strongly divisible module M

in Theorem 5.0.1 when − 1
2 − `≤ h < 1

2 − ` for ` ∈ {0, 1, . . . ,m− 2}.

Lemma 7.3.1. The Breuil module M := M/(π,Filp S) is described as follows:
there exists a basis e := (e1, e2) for M and a system of generators f := ( f1, f2) for
Filr M such that

• M := S̄F(e1, e2);

• Mate, f (Filr M)=

(
um+`+1 0

0 um−`−1

)
;
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• Mate, f (φr )=

(
γ β

α 0

)
, where

α :=(−1)m+`+1
+

L−a(r)
p

m+∑̀
k=m−`−1

(−1)k Rm+`+1−k,m−`−1

+

m−`−2∑
k=0

(−1)k
(

Rm+`+1−k,m−`−1δ
(0)
` +

k∑
j=1

(−1) j+1

j
Rm+`+1−k+ j,m−`−1

)
,

β :=
λ2(L− a(r))

pr Rm+`+1,m+`+1

m−`−1∑
k=0

(−1)k x (m−`−1,2`+2)
k ,

γ :=
λ(L− a(r))

pm−`−1

m−`−2∑
k=0

(−1)k Rm+`+1−k,m−`−1;

• Mate(N )= 02×2.

Proof. We keep the notation as in Section 7.2. We let e1 = E1 and e2 = E2 modulo
(π,Filp SO). We also let f1 := F̂m+`+1 modulo (π,Filp SO) and f2 := F̂0 modulo
(π,Filp SO). By Lemma 7.2.8, F̂i ≡ um−`−1+i E2 for i ∈ {0, 1, . . . ,m+ `} modulo
mM and F̂i ≡ ui E1 for i ∈ {m+ `+ 1, . . . , r − 1} modulo mM. Hence, Filr M is
generated by f1 = um+`+1e1 and f2 = um−`−1e2. By Proposition 7.2.14 and by
Lemma 7.1.4, we get the description for φr as in the statement. It is obvious that
N (ei )= 0 from (5.0.3) since vp(2) < 1 and p divides N (δ0). �

Note that the proof in Lemma 7.3.1 implies that Filr M is generated by F̂0 and
F̂m+`+1 modulo Filr SOM by Nakayama’s lemma.

Proposition 7.3.2. Fix ` ∈ {0, 1, 2, . . . ,m − 2}, and let − 1
2 − ` ≤ h < 1

2 − ` and
ρ := Vr

st(D). Then ρ̄ is absolutely irreducible if and only if −1
2 − ` < h < 1

2 − `, in
which case

ρ̄|IQp
∼= ω

m−`−1+p(m+`+1)
2 ⊕ω

m+`+1+p(m−`−1)
2 .

Moreover, if vp(L− a(r))=− 1
2 − ` then

ρ̄ss
|IQp
∼= ω

m−`−1
⊕ωm+`+1.

Proof. Recall that γ is the (1, 1)-entry of the matrix Mate, f (φr ) in Lemma 7.3.1.
By Lemma 7.1.6, γ = 0 if and only if −1

2 − ` < vp(L− a(r)) < 1
2 − `. Now it is

obvious by Lemmas 7.3.1, 3.3.3, and 3.3.5. �

8. The third case: •=−∞

In this section, we prove Theorems 5.0.1 and 5.0.5 under the condition h < 3
2 −m.

We keep the assumption and the notation as in Section 5. In particular, we let
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δ = δ−∞ and 2= λ(L− a(r)). Notice that the definition of δ−∞ for r = 2 is quite
different to the one for r = 2m > 2, so that we prove the case r = 2 separately, and
then prove for general r = 2m > 2.

8.1. The case r = 2. In this subsection, we prove Theorem 5.0.1 for the case
h < 3

2 −m = 1
2 when r = 2m = 2. Recall that X in (3.2.2) and Y in (5.0.4), and

that a(2)= 1. In this subsection, we write 1 for 12 to lighten the notation.
From the computations (5.0.2) and (5.0.3), it is easy to check that

(8.1.1) φ(E1)≡ E2 and φ(E2)≡ N (E1)≡ N (E2)≡ 0

modulo mM. In particular, M is stable under φ and N .
Rewriting X(C0,C1) in terms of E1, E2,

X(C0,C1) ∈Y(C0,C1)+Filp SE D,

where

Y(C0,C1)= C0

(
1
p

E1−
1
pλ

E2+
1

λ(L− 1)2
E2+

L
λ(L−1)

E2

)
+ (u− p)

(
C1

p
E1+

(L− 1)(C0+ pLC1)− [(L− 1)2− p1]C1

pλ(L− 1)2
E2

)
.

One can readily induce the identity

1C0+ (L− 1)C1

pλ1(L− 1)
=
(L− 1)C0+ [(L− 1)2− p1]C1

pλ(L− 1)2

from the equation in Lemma 4.2.2 (2). Using this identity, and rewriting C1 as a
linear combination of C0/(pλ) and 1C0− (L− 1)C1/(pλ1(L− 1)), we have

Y(C0,C1)=
C0

pλ
F̂1−

1C0− (L− 1)C1

pλ1(L− 1)
F̂2

where

F̂1 = λE1− E2+
p1

(L− 1)2
E2+

pL
L− 1

E2+ (u− p)
(
λ1

L− 1
E1+

pL1
(L− 1)2

E2

)
,

F̂2 = (u− p)
(
λ1E1− E2+

p1L

L− 1
E2

)
.

It is easy to check that

F̂1 ≡−E2 and F̂2 ≡−uE2

modulo mM. Hence, Y(C0,C1) ∈ Fil2 M if and only if

(8.1.2)
vp(C0)≥ 1+ vp(λ)=

3
2

vp(1C0− (L− 1)C1)≥
3
2 + (L− 1).
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We often write Y for Y(C0,C1) for brevity. For any d ∈ Fil2 D, we have
d ∈ Fil2 M if and only if d ∈ Y(C0,C1)+ Fil2 SM for some C0,C1 ∈ E with
Y(C0,C1)∈M. So it is enough to check that φ(Y)∈ p2M whenever Y(C0,C1)∈

Fil2 M.
It is also routine to check, by our computation of φ(Ei ), that

φ(F̂1)= pλ2 E1+
λ[φ(γ )− p(γ − 1)]

L− 1
E2

−
pλ1[φ(γ )(φ(γ )− 2)− p(γ − 1)2]

(L− 1)2
E2

+φ(v)

(
pλ21

L− 1
E1+

λ1[φ(γ )+L− 1− p(γ − 1)]
(L− 1)2

E2

−
pλ12

[(φ(γ )− 1)2− p(γ − 1)2]
(L− 1)3

E2

)
,

φ(F̂2)= φ(v)

(
pλ21E1+

λ1[φ(γ )+L− 1− p(γ − 1)]
L− 1

E2

−
pλ12

[(φ(γ )− 1)2− p(γ − 1)2]
(L− 1)2

E2− λE2

)
.

We claim that
φ(F̂1)≡ pλ2 E1 and φ(F̂2)≡ 0

modulo p2mM.
Indeed, it is easy to check that

φ(F̂2)≡−c
pλ[p12

− (L− 1)21+ (L− 1)2]
(L− 1)2

E2

modulo p2mM, where c := 1/p φ(v). By the equation in Lemma 4.2.2 (2), we
conclude that φ(F̂2)≡ 0 modulo p2mM. It is also easy to check that

φ(F̂1)≡ pλ2 E1−
pλ(γ − 1)
L− 1

E2+
p2λ1(γ − 1)2

(L− 1)2
E2

+φ(v)

(
λ1[(L− 1)2− p1]

(L− 1)3
−

pλ1(γ − 1)
(L− 1)2

)
E2.

By the equation in Lemma 4.2.2 (2) again,

φ(F̂1)≡ pλ2 E1−
λ

(L−1)
[p(γ − 1)− (u p

− p)]E2

+
pλ1(γ − 1)
(L− 1)2

[p(γ − 1)− (u p
− p)]E2.

Since p(γ − 1)≡ u p
− p modulo p2S, we conclude φ(F̂1)≡ pλ2 E1 mod p2mM.
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Therefore, we conclude that

(8.1.3)
1
p2φ(Y)≡

λC0

p2 E1

modulo mM if the inequalities in (8.1.2) hold, and so φ(Fil2 M)⊂ p2M.

8.2. Matrices. In this subsection, we study some properties of certain matrices.
These matrices will be used later to describe generators of the filtration of our
strongly divisible modules.

From now on, fix r = 2m ≥ 4 an even integer. We let κ ∈ E× be an element
such that vp(κ) < 0. We construct a matrix T−∞ ∈ GLr (E) be the upper-triangular
matrix defined as

T−∞ =



κ 1 − 1
2 . . .

(−1)r−1

r−2
(−1)r

r−1

0 κ 1 . . .
(−1)r−2

r−3
(−1)r−1

r−2

0 0 κ . . .
(−1)r−3

r−4
(−1)r−2

r−3
...
...

...
. . .

...
...

0 0 0 . . . κ 1
0 0 0 . . . 0 κ


.

There is no P−∞ in this case, and we let Q−∞ :=T−∞. We also let R−∞ :=Q−1
−∞.

We often write Q and R for Q−∞ and R−∞ respectively, to lighten the notation.

Lemma 8.2.1. Keep the notation and the assumptions as above, and let R = R−∞.

(1) For any i = 1, . . . , r , Ri,i = 1/κ .

(2) For any 1≤ i < j ≤ r ,

Ri, j ≡ (−1) j−i/ j − i
1
κ2

(
mod

1
κ3

)
.

Proof. Since Q−∞ is upper-triangular, the case (1) is immediate.
For the case (2), we induct on j for each i . Fix i and consider rowi (R). Note that

the first i − 1 entries of rowi (R) are 0, as R is upper-triangular, and the i-th entry
of rowi (R) is Ri,i = 1/κ . When j = i + 1, (RQ)i,i+1 = rowi (R) · coli+1(Q) =
1/κ+κRi,i+1= 0 so that we have Ri,i+1=−1/κ2. Assume that the assertion holds
for i + 1, i + 2, . . . , j − 1. From the equation

(RQ)i, j = rowi (R) · col j (Q)=
(−1) j−1+1

j−i
1
κ
+

j−1∑
k=i+1

(−1) j−k+1

j−k
Ri,k+κRi, j = 0,
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we conclude that Ri, j ≡
(−1) j−i

j − i
1
κ2

(
mod

1
κ3

)
by induction hypothesis. �

8.3. Galois stable lattices. In this subsection, we prove Theorem 5.0.1 for the case
h < 3

2 −m when r = 2m > 2. We let δ = δ−∞ and 2= λ(L− a(r)). We also let
κ = (pL− (L− δ(0)))/p in T−∞ = Q−∞. Note that vp(L− δ

(0)
− pL)= h since

h < 0, and so vp(κ)= h− 1.
By Lemma 8.2.1, we have that

(8.3.1) vp(Ri,i )= 1− h (i = 1, . . . , r)

and

(8.3.2) vp(Ri, j )= 2− 2h (1≤ i < j ≤ r).

Note that

(8.3.3) vp(Ri, j ) > 0 (1≤ i, j ≤ r).

From the computations (5.0.2) and (5.0.3), it is easy to check that

(8.3.4) φ(E1)≡ E2 and φ(E2)≡ N (E1)≡ N (E2)≡ 0

modulo mM. In particular, M is stable under φ and N .
Let A=2R. Define vectors EC (i)

= (C (i)
0 , . . . ,C (i)

r−1) ∈ Er , for i = 0, . . . , r − 1,
such that 

pr−1C (i)
r−1

pr−2C (i)
r−2

...

p0C (i)
0

= pi colr−i (A).

Concretely, C (i)
k = pi−k Ar−k,r−i = pi−k2Rr−k,r−i . Using these vectors, we define

F̂i ∈ Filr D by the formula F̂i =Y( EC (i)), where Y is defined in (5.0.4).

Lemma 8.3.5. If 0≤ i ≤ r − 1 then

F̂i = v
i E2+

r−1∑
k=i

vk pi−k−12Rr−k,r−i E1.

Proof. By definition, we have

F̂i =

r−1∑
k=0

vk
[

pi−k2Rr−k,r−i

(
E1

p
+
κ

2
E2

)
+

k∑
j=1

(−1) j+1

j
pi−k Rr−k+ j,r−i E2

]
.
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It is immediate to get [F̂i ]E1 as in the statement. But we need a little more compu-
tation for [F̂i ]E2 . We readily get

[F̂i ]E2 =

r−1∑
k=0

pi−kvk
(
κRr−k,r−i +

k∑
j=1

(−1) j+1

j
Rr−k+ j,r−i

)
.

But one can readily check that

κRr−k,r−i +

k∑
j=1

(−1) j+1

j
Rr−k+ j,r−i = (Q R)r−k,r−i ,

so that we have

[F̂i ]E2 =

r−1∑
k=0

pi−kvk(Q R)r−k,r−i .

Since Q R = Ir , we complete the proof. �

Lemma 8.3.6. Every element x ∈ Filr D can be written as

x =
r−1∑
i=0

Di F̂i + x ′,

where Di ∈ E and x ′ ∈ Filr SE D.

Proof. As we’ve seen before, any element of Filr D can be written, modulo Filr SE D

as Y=Y( EC), with EC = (C0, . . . ,Cr−1) ∈ Er , as in (5.0.4). For i = 0, . . . , r − 1,
let

Di =
pL−(L−δ(0))

p2
Ci +

i∑
j=1

(−1) j+1

j
Ci− j

p j2
.

We can express the Ci in terms of the Di as follows. Since
pr−1 Dr−1

pr−2 Dr−2
...

p0 D0

= 1
2

Q


pr−1Cr−1

pr−2Cr−2
...

p0C0

 ,
we have 

pr−1Cr−1

pr−2Cr−2
...

p0C0

= A


pr−1 Dr−1
pr−2 Dr−2

...

p0 D0

 .
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Now, it follows from the definition of the vectors EC (i) that

EC =
r−1∑
i=0

Di EC (i)

and hence

Y=Y( EC)=
r−1∑
i=0

Di F̂i . �

Lemma 8.3.7. F̂i ≡ ui E2 modulo mM for 0≤ i ≤ r−1. In particular, the elements
F̂i belong to Filr M.

Proof. Since F̂i ∈ Filr D by construction, it remains to show that F̂i ∈M. We have

(8.3.8) [F̂i ]E1 =

r−1∑
k=i

vk Rr−k,r−i pi−k−12.

If k = i ,
vp(Rr−k,r−i pi−k−12)= m− 1

2 > 0

by (8.3.1). If k > i , vp(Rr−k,r−i pi−k−12) = m + 1
2 − h + i − k by (8.3.2), and

m+ 1
2−h+ i−k > r−1+ i−k ≥ 0 because k ≤ r−1 and h< 3

2−m. Thus, (8.3.8)
belongs to mSO. On the other hand, [F̂i ]E2 = v

i
∈ SO. This finishes the proof. �

Lemma 8.3.9. Let D0, . . . , Dr−1 ∈ E. Then
∑r−1

i=0 Di F̂i ∈M if and only if Di ∈ O

for every i = 0, . . . , r − 1.

Proof. One direction is obvious from the previous lemma. To prove the other
direction, suppose that y =

∑r−1
i=0 Di F̂i ∈M. We see that

(8.3.10) [y]E2 =

r−1∑
i=0

vi Di .

Since (8.3.10) belongs to SO, we have that Di ∈ O for every i = 0, . . . , r − 1. �

From the previous lemmas, it follows that any element x ∈ Filr M can be written
as x =

∑r−1
i=0 Di F̂i+x ′ for some Di ∈O, with x ′ ∈Filr SOM. Moreover, to show that

φ(Filr M)⊂ prM, it is enough to show that φ(F̂i ) ∈ prM for any i = 0, . . . , r−1.
We state the result as a proposition, and we include some additional information
for mod p reduction.

Proposition 8.3.11. Assume that h < 3
2 − m and r = 2m > 2. Then M is a

strongly divisible module with F̂i generators for Filr M modulo Filr SOM. More-
over, φ(F̂i ) ∈ prmM for every i 6= 0, and

φ(F̂0)≡−pλ2 E1
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modulo prmM.

The only thing that we need to do to prove that M is a strongly divisible module
is to show that φ(F̂i ) ∈ prM for every i = 0, . . . , r − 1. For later use for mod p
reduction, we compute φ(F̂i ) modulo prmM, using (5.0.2).

Proof. We have

[φ(F̂i )]E1 =

r−1∑
k=i

(
φ(v)

p

)k
Rr−k,r−i pi2λ.

Since (φ(v)/p)k ∈ SO, we conclude that [φ(F̂i )]E1 ∈ pr SO using (8.3.1) and (8.3.2).
Combining with (8.3.2) and the fact that Rr,r = 1/κ , we get that [φ(F̂i )] ∈ prmSO

for i ≥ 1, and

(8.3.12) [φ(F̂0)]E1 ≡
2λ

κ
≡−pλ2 (mod prmSO).

On the other hand,

(8.3.13) [φ(F̂i )]E2

= piλ

((
φ(v)

p

)i
+

r−1∑
k=i

(
φ(v)

p

)k
Rr−k,r−i

L−φ(δ)− pL+ pδ
p

)
.

Since φ(γ ) ∈ p p−1SO, we get φ(δ)≡ δ(0) (mod p p−1SO). Since r < p− 1, we get
that

(8.3.14) [φ(F̂i )]E2 ≡ piλ

((
φ(v)

p

)i
+

r−1∑
k=i

(
φ(v)

p

)k
Rr−k,r−i (δ− κ)

)
modulo prmSO. Using (8.3.2) again, we see that vp(piλRr−k,r−i ) > r when i < k,
and thus we can remove some of the summands multiplying δ. Also, Rr−i,r−i = κ

−1,
so we get

(8.3.15) [φ(F̂i )]E2 ≡−piλ

( r−1∑
k=i+1

(
φ(v)

p

)k
Rr−k,r−iκ −

(
φ(v)

p

)i
Rr−i,r−iδ

)
modulo prmSO. Suppose first that i ≥ 1. Then

vp(piλRr−k,r−iκ) > r

by (8.3.2). Similarly,
vp(piλRr−i,r−i ) > r.

Thus, we see that [φ(F̂i )]E2 ∈ prmM for i ≥ 1. In particular, φ(F̂i ) ∈ prM for
i ≥ 1. Suppose that i = 0. With a similar argument as in the case i ≥ 1, together
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with the fact that (φ(v)/p)k ≡ (γ − 1)k (mod pSO), we get that

(8.3.16) [φ(F̂0)]E2 ≡−λ

( r−1∑
k=1

(γ − 1)k Rr−k,rκ − Rr,rδ

)
modulo prmSO. Now, notice that if 0≤ k ≤ r − 1, then κRr−k,r = Qr−k,r−k Rr−k,r .
Using this, and the fact that Q R = Ir , we get

κRr−k,r = (Ir )r−k,r −

k∑
j=1

(−1) j+1

j
Rr−k+ j,r .

Thus,

(8.3.17) [φ(F̂0)]E2 ≡ λ

( r−1∑
k=1

(γ − 1)k
k∑

j=1

(−1) j+1

j
Rr−k+ j,r + Rr,rδ

)
modulo prmSO. If j < k, then vp(Rr−k+ j,r ) ≥ 2− 2h by (8.3.2), which implies
that these terms can be ignored. Thus,

(8.3.18) [φ(F̂0)]E2 ≡ λRr,r

( r−1∑
k=1

(γ − 1)k
(−1)k+1

k
+ δ

)
modulo prmSO. This is equal to 0 by definition of δ = δ−∞. This finishes the proof
that φ(F̂i ) ∈ prM for every i = 0, . . . , r − 1, and hence φ(Filr M)⊂ prM. This
finishes the proof of the proposition. The formula for φ(F̂0) modulo prmM follows
from the above computation and (8.3.12). �

8.4. Mod p reduction. In this subsection, we prove Theorem 5.0.5 in the case
h < 3

2 −m. We keep the notation and assumption as in Section 8.3 if r = 2m > 2
and in Section 8.1 if r = 2. We first compute the Breuil module corresponding to
the mod p reduction of the strongly divisible module M in Theorem 5.0.1 when
h < 3

2 −m.

Lemma 8.4.1. The Breuil module M := M/(π,Filp S) is described as follows:
there exists a basis e := (e1, e2) for M and a system of generators f := ( f1, f2) for
Filr M such that

• M := S̄F(e1, e2);

• Mate, f (Filr M)=

(
ur 0
0 1

)
;

• Mate, f (φr )=

(
0 −λ2/pr−1

1 0

)
;

• Mate(N )= 02×2.



SEMISTABLE DEFORMATION RINGS IN EVEN HODGE–TATE WEIGHTS 361

Proof. We first consider the case r > 2, keeping the notation as in Section 8.3.
We let e1 = E1 and e2 = E2 modulo (π,Filp SO). We also let f1 := v

r E1 modulo
(π,Filp SO) and f2 := F̂0 modulo (π,Filp SO). By Lemma 8.3.7, F̂i ≡ ui E2 modulo
mM. Hence, Filr M is generated by f2 = e2 and f1 = ur e1. By Proposition 8.3.11,

φr ( f2)=−
λ2

pr−1 e1

and, by (5.0.2),

φr ( f1)≡
1
pr φ(v

r E1)≡ (γ − 1)r E2 ≡ (−1)r e2 ≡ e2

modulo (π,Filp SO). It is obvious that N (ei )= 0 from (5.0.3) since vp(2) < 1 and
p divides N (δm−1).

The case r = 2 is similar and easier. We keep the notation as in Section 8.1. In
this case we let f1 := v

2 E1 modulo (π,Filp SO) and f2 :=−F̂1 modulo (π,Filp SO)

as well as e1 = E1 and e2 = E2 modulo (π,Filp SO). Then all the others follow
immediately from Section 8.1. �

Note that if r = 2m > 2 then the proof in Lemma 8.4.1 implies that Filr M is
generated by F̂0 modulo Filr SOM by Nakayama’s lemma.

Proposition 8.4.2. Let h < 3
2 −m and ρ := Vr

st(D). Then

ρ̄|IQp
∼= ω

r
2⊕ω

pr
2 .

In particular, ρ̄ is absolutely irreducible.

Proof. This is obvious by Lemmas 8.4.1 and 3.3.3. �

9. Semistable deformation rings

In this section, we construct the irreducible components of the semistable deforma-
tion rings in Hodge–Tate weights (0, r), where r is a positive even integer less than
p− 1, of absolutely irreducible residual representations of GQp . The following is
the main results in this section.

Theorem 9.0.1. Let r = 2m > 0 be an even integer less than p− 1, and let R(0,r)
ρ̄0

be the semistable deformation rings in Hodge–Tate weights (0, r).

(1) If ρ̄0|IQp
∼= ωr

2⊕ω
pr
2 , then

R(0,r)
ρ̄0
∼
′ O[[D1, D2]]×O[[D, X ]]×O[[D, X ]];

(2) If ρ̄0|IQp
∼=ω

m−`−1+p(m+`+1)
2 ⊕ω

m+`+1+p(m−`−1)
2 for `∈ {0, 1, 2, . . . ,m−2},

then
R(0,r)
ρ̄0
∼

O[[D, X, Y ]]
(XY − p)

×
O[[D, X, Y ]]
(XY − p)

.
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By R∼′
∏n

i=1 Ri we mean that Ri ’s are just the irreducible components of R,
and by R ∼

∏n
i=1 Ri we mean in the sense of Breuil–Mézard [2002]. We recall

their definition: for complete Noetherian local rings R and Ri ’s,

(9.0.2) R∼

n∏
i=1

Ri

if

(1) πi :R→Ri is surjective for each i ;

(2) the map
∏n

i=1 πi :R→
∏n

i=1 Ri induces an isomorphism

R
[ 1

p

]
∼=

n∏
i=1

Ri

[ 1
p

]
.

We quickly review some known results on Galois deformation theory and on
integral p-adic Hodge theory over complete Noetherian local rings in the next two
subsections, and then prove Theorem 9.0.1 in the third subsection.

9.1. Galois deformation theory. In this subsection, we quickly review Galois de-
formation theory and recall some known results. Galois deformation theory is
initiated by B. Mazur [1989] and developed for n-dimensional representations of G
for profinite groups G satisfying the p-finiteness condition. But in this subsection,
we restrict to n = 2 and G = GQp since this is our context. It is easy to check that
GQp satisfies the p-finiteness condition by local class field theory. In fact, GQp is
topologically finitely generated, which implies the p-finiteness condition.

Let Ĉ be the category of complete Noetherian local O-algebras with residue field F,
and fix a residual representation ρ̄0 :GQp→GL2(F) with EndF[GQp ]

(ρ̄0)= F. There
is a functor Dρ̄0 from the category Ĉ to the category of sets, defined by

Dρ̄0(A) := {ρ : GQp → GL2(A) | ρ̄0 = ρ (mod mA)}/∼,

where mA is the maximal ideal of A, for all objects A in Ĉ. By ρ1 ∼ ρ2 for ρ1, ρ2 ∈

Dρ̄0(A), we mean that ρ1 is (strictly) equivalent to ρ2 over A, i.e., there exists
γ ∈Ker(πA) such that γ ·ρ1 ·γ

−1 ∼= ρ2, where πA :GL2(A)→GL2(F) is the map
induced from the surjection A→ F. The upshot is that this functor is representable,
i.e., there exists Rρ̄0 ∈ Ĉ such that Dρ̄0(•)

∼= HomĈ(Rρ̄0, •). This ring Rρ̄0 is
called a universal deformation ring of ρ̄0. The object in Dρ̄0(Rρ̄0) corresponding to
the identity 1Rρ̄0

under the isomorphism Dρ̄0(Rρ̄0)
∼= HomĈ(Rρ̄0,Rρ̄0) is called a

universal deformation of ρ̄0, which is denoted by ρu
: GQp → GL2(Rρ̄0).

One can ask if there exists a closed subspace of Rρ̄0 whose geometric points
parameterize potentially semistable representations of GQp with fixed Hodge–Tate
weights v and Galois type τ . This was a very difficult question, but thanks to Kisin
it is now known.
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Theorem 9.1.1. Let v = (s, t) be a pair of integers and τ be a Galois type. Then
there exists a quotient π :Rρ̄0 →Rv,τ

ρ̄0
such that a geometric point x :Rρ̄0 →Qp

induces a potentially semistable lift with Hodge–Tate weights v and with Galois
type τ if and only if x factors through π .

Moreover, Rv,τ
ρ̄0

is p-torsion free and has a reduced generic fiber, and the
relative dimension of Rv,τ

ρ̄0
over O is 2.

Proof. This is a result of Kisin [2008]. �

Note that Kisin proves a much more general statement than the one above. We
also note that a potentially semistable representation with trivial Galois type is
semistable. In this case, we write Rv

ρ̄0
for Rv,τ

ρ̄0
.

Fix a lift ψ : GQp → O× of det ρ̄0, and write R
v,τ,ψ
ρ̄0

for the deformation ring
whose characteristic 0 closed points parameterizes potentially semistable lifts of ρ̄0

with Hodge–Tate weights v, Galois type τ , and a fixed determinant ψ . The ring
R
v,τ,ψ
ρ̄0

forms a closed subscheme of Rv,τ
ρ̄0

. Moreover, it is known from [Emerton
and Gee 2014, Lemma 4.3.1] that if p > 2 then we have

(9.1.2) Rv,τ
ρ̄0
∼=R

v,τ,ψ
ρ̄0
[[D]].

We also write R
v,ψ
ρ̄0

for Rv,τ,ψ
ρ̄0

if τ is trivial.

9.2. Strongly divisible modules with coefficients. In this subsection, we review
some integral p-adic Hodge theory over complete Noetherian local rings.

Let R be an object in Ĉ. We define SR by mR-completion of S ⊗Zp R, and
extend the definitions of Fil, φ, and N to SR R-linearly. Fix a positive integer
r < p− 1. We now define the category MDr

R of strongly divisible SR-modules as
follows: an object in MDr

R consists of quadruples (M, Filr M, φr , N ) where

• M is a finitely generated free SR-module;

• Filr M is a submodule of M over SR;

• φr : Filr M→M and N :M→M are additive maps

satisfying the following conditions:

(1) Filr M contains Filr SRM;

(2) Filr M∩ IM= I Filr M for all ideals I of R;

(3) φr (sx)= φ(s)φr (x) for all s ∈ SR and for all x ∈ Filr M;

(4) φr (Filr M) is contained in M and generates M over SR;

(5) N (sx)= s N (x)+ N (s)x for all s ∈ SR and for all x ∈M;

(6) E(u)N (Filr M)⊂ Filr M;

(7) cNφr (x)= φr (E(u)N (x)) for all x ∈ Filr M, where c := 1/p φ(E(u)).
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The morphisms are SR-linear maps that preserve Filr M and that commute with φr

and N . If a strongly divisible module is defined over SR then we often say that it is
defined over R.

Note that if R is p-torsion free then it is easy to check that there is an additive
map φ :M→M such that φ(sx)= φ(s)φ(x) for all s ∈ SR and for all x ∈M and
that φr = 1/pr φ. Moreover, the condition (7) is equivalent to Nφ = pφN on M.
It is also easy to check that M/(mR,Filp SR) naturally has a structure of Breuil
module over S̄F.

There is an exact faithful covariant functor Tr
st from the category MDr

R to the
category of R-representations of GQp , defined in [Breuil and Mézard 2002]. It
satisfies various compatibilities:

Lemma 9.2.1. Fix a positive integer r < p−1. Let R be an object in Ĉ, I an ideal
of R containing mn

R for some n > 0, and M a strongly divisible module of weight r
over SR.

(1) If R′ is a complete Noetherian local O-algebra whose residue field is a finite
extension of F with a morphism R/I →R′ then

Tr
st(M⊗RR′)∼= Tr

st(M)⊗RR′.

(2) The induced map Tr
st(M)→ Tr

st(M⊗RR/I ) is surjective.

(3) If M is the Breuil module M/(mR,Filp SR) then

Tr
st(M)

∼= Tr
st(M)⊗R F.

Proof. These are proved in [Breuil and Mézard 2002, §3.2]. �

9.3. Proof of Theorem 9.0.1. In this subsection, we prove Theorem 9.0.1. Note
that we are interested only in absolutely irreducible mod p reductions in this section.
Hence, by Theorem 5.0.5 we divide its proof into three cases as follows:

h < 3
2 −m and r = 2m = 2 in Section 9.3.1;

h < 3
2 −m and r = 2m > 2 in Section 9.3.2;

−
1
2 − ` < h < 1

2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2} in Section 9.3.3.

We start this subsection by proving the following lemma.

Lemma 9.3.1. Let a, b ∈ Z≥0 with 0< a+ b < p− 1, and let ρ̄0 : GQp →GL2(F)

be an irreducible representation such that ρ̄0|IQp
∼= ω

a+pb
2 ⊕ω

b+pa
2 with a 6= b.

Then

(1) ρ̄0 has a crystalline lift with Hodge–Tate weights (a, b);

(2) ρ̄0 does not have a crystalline lift with Hodge–Tate weights (0, a+ b) unless
ab = 0.
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Proof. (2) is obvious by Fontaine–Laffaille theory. We now prove (1). By [Gee and
Savitt 2011, Lemma 6.2], there exists a crystalline character ε(a,b) :GQp2→O× such
that HTσ 2(ε(a,b))={a} and HTσ (ε(a,b))={b}, where σ is the generator of the cyclic
group Gal(Qp2/Qp) of order 2. Note that ε̄(a,b)∼=ω

a+pb
2 . V(a,b) := Ind

GQp
GQ

p2
ε(a,b) is

a 2-dimensional crystalline lift of ρ̄0 with Hodge–Tate weights (a, b) up to twisting
by an unramified character. This completes (1). �

9.3.1. The case h < 3
2 −m and r = 2m = 2. Assume that r = 2m = 2 and that

h < 3
2 −m = 1

2 . Recall that a(2)= 1 and that vp(λ)=
1
2 . We keep the notation as

in Section 8.1.
Fix a residual representation ρ̄0 such that ρ̄0|IQp

∼= ω2
2⊕ω

2p
2 . Since Tst is fully

faithful, it is equivalent to fixing a Breuil module M(2, 0, α, β) in Example 3.3.1.
By Lemma 3.3.2, we need to fix α · β. Say, −µ = α · β for a fixed µ ∈ F×. By
Lemma 8.4.1 for r = 2, we have the identity µ= λ2/p (mod m). We also fix a lift
ψ : GQp → O× of det ρ̄0, which is equivalent to fixing η := λ2

∈ O.
Fix λ ∈ O satisfying the equation η = λ2, extending E if necessary. We note that

there are two λ satisfying the equation η = λ2, say, λ =
√
η and λ = −

√
η. For

each such λ, the admissible filtered (φ, N )-modules D(λ,L) for L ∈ E satisfying
vp(L− 1) < 1

2 corresponds to the characteristic 0 closed points of R(0,2),ψ
ρ̄0

. Thus
for each such λ, we may let X = p/(λ(L− 1)), keeping in mind that X varies over
the maximal ideal m in O.

Lemma 9.3.2. Keep the notation as above.

(1) For λ=
√
η, denoting X = p/(λ(L− 1)) in the strongly divisible modules in

Section 8.1 determines a strongly divisible module over SO[[X ]];

(2) For λ=−
√
η, denoting X = p/(λ(L− 1)) in the strongly divisible modules

in Section 8.1 determines a strongly divisible module over SO[[X ]].

We denoted by M+2 (X) (resp. M−2 (X)) for the strongly divisible module over
O[[X ]] in (1) (resp. in (2)) in Lemma 9.3.2.

Proof. We only prove the case (1). The case (2) is identical. Assume λ=
√
η, and

let X = p/(λ(L− 1)). Using these identities, if we replace p/(λ(L− 1)) with X ,
then

G2,n+1 =
1

1− η/p X2G2,n
.

Thus, we may regard G2,n as an element in O[[X ]], so that 12 in O[[X ]] as well,
which we denote by 12(X). Note that 12(X)≡ 1 modulo ((π)+ (X)2).

From Section 8.1 and from the proof of Lemma 8.4.1, we see that Fil2 M is
generated by F̂1 and v2 E1 modulo Fil2 SOM. If we replace p/(λ(L−1)) with X in
the coefficients of F̂1, v2 E1, φ2(F̂1), φ2(v

2 E1), N (E1), and N (E2), then we claim
that we get a strongly divisible module over SO[[X ]]. Indeed, the proof of this claim
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is equivalent to the proof that specializing X in m gives rise to a strongly divisible
module over SO. If X 6= 0, we do know that the corresponding object is a strongly
divisible module over SO by the results in Section 8.1. But if X = 0, we claim
that M+2 (0) corresponds to a crystalline representation. We check this by showing
that the filtered (φ, N )-module corresponding to M+2 (0)[1/p] has N = 0 and is
admissible.

Using 12(0)= 1, M+2 (0) is computed as follows:

• M := SO(E1, E2);

• φ(E1)= pλE1+ (1− p)E2 and φ(E2)= λE2;

• N (E1)= 0= N (E2);

• Fil2 M= 〈λE1− (1− p)E2〉SO +Fil2 SM.

Following the functor described in the paragraph of (2.2.1), one can readily compute
a filtered (φ, N )-module D corresponding M+2 (0):

• D := E(η1, η2) and η := (η1, η2);

• Fili D :=


D if i ≤ 0;
E(λη1− (1− p)η2) if i = 1, 2;
0 if 3≤ i ;

• Matη(φ)=
(

pλ 0
1− p λ

)
and N = 0.

The only φ-invariant subspaces of D of dimension 1 are E(λη1−η2) and E(η2).
Now it is easy to check that D is admissible. Since D is admissible and N = 0 on D,
T2

st(M
+

2 (0)) is a Galois stable lattice in a crystalline lift of ρ̄0 with Hodge–Tate
weights (0, 2), which completes the proof. �

Considering T2
st(M

•

2(X)) for • ∈ {±}, one sees that Lemma 9.3.2 gives rise to
O-algebra morphisms

π •2 :Rρ̄0 → O[[X ]].

Lemma 9.3.3. For each • ∈ {±}, the morphism π •2 :Rρ̄0 → O[[X ]] is surjective.

Proof. Let R0 be the quotient ring O[[X ]]/((π)+(X)2)∼=F[X ]/X2. By Nakayama’s
lemma and by Lemma 9.2.1 (2), it is enough to show that the induced morphism
π •2 : Rρ̄0 → R0 is surjective for each • ∈ {±}. We only consider the case • = +.
The case •=− is very similar. We compute the strongly divisible module M0 :=

M+2 (X)/((π)+ (X)
2) over SR0 . We describe M0 = SR0(E1, E2) as follows:

• Fil2 M0 is generated by u2 E1 and E2 modulo Filp SR0M0;

• φ2(u2 E1)= E2 and φ2(E2)=−µE1;

• N (E1)= X (1− [u p
+ (u− p)p−1

])E2 and N (E2)= 0.
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Let A ∈ GL2(SR0) be a change of basis matrix. Then A = A0+ X A1 for some
A0 ∈ GLn(SF) and A1 ∈ M2×2(SF). We also write A−1

= B0 + X B1 for some
B0 ∈GLn(SF) and B1 ∈M2×2(SF). Let C :=Mate(N ), where e := (E1, E2). Then

AC A−1
= (A0+ X A1)C(B0+ X B1)= X A0

(
0 0

1− [u p
+ u p−1

] 0

)
B0.

Hence, one sees that M0 is not defined over any proper subring of R0, so that we
conclude that π+2 is surjective. �

Lemma 9.3.4. For each • ∈ {±}, the morphism π •2 :Rρ̄0 → O[[X ]] factors through
the quotient q :Rρ̄0 →R

(0,2),ψ
ρ̄0

.

Proof. Fix • ∈ {±}, and let f : O[[X ]] → Qp be an O-algebra morphism. Then
by the universal property of M•

2(X), there exists a semistable representation of
GQp with Hodge–Tate weights (0, 2) corresponding to f . Hence, there exists an
O-algebra morphism f ′ :R(0,2),ψ

ρ̄0
→Qp such that f ◦π •2 = f ′ ◦ q . Since O[[X ]] is

p-torsion free and has a reduced generic fiber, we have an O-algebra morphism
q• :R

(0,2),ψ
ρ̄0

→ O[[X ]] such that q• ◦ q = π •2, which completes the proof. �

Proposition 9.3.5. If ρ̄0|IQp
∼= ω2

2⊕ω
2p
2 , then

R(0,2)
ρ̄0
∼
′ O[[D1, D2]]×O[[D, X ]]×O[[D, X ]].

Proof. By a result of Kisin [2008], we know that the relative dimension of R(0,2)
ρ̄0

over O is 2, so that we know that there are at least two irreducible components by
Lemma 9.3.4, both of which are isomorphic to O[[D, X ]] by (9.1.2).

In fact, we have one more irreducible component, parameterizing the crystalline
lifts with Hodge–Tate weights (0, 2) of ρ̄0. By Lemma 9.3.1 (1), ρ̄0 has a crystalline
lift with Hodge–Tate weights (0, 2). By a result of [Clozel et al. 2008], we do know
that it is formally smooth. Since it also has a relative dimension 2 over O, we denote
this crystalline deformation ring by O[[D1, D2]]. Note that the characteristic 0 closed
points of these irreducible components exhaust all the 2-dimensional semistable
lifts of ρ̄0 with Hodge–Tate weights (0, 2), which completes the proof. �

9.3.2. The case h < 3
2 −m and r = 2m > 2. Assume that r = 2m > 2 and that

h < 3
2 −m. Recall that vp(λ) =

1
2(r − 1) = m − 1

2 . We keep the notation as in
Section 8.3.

Fix a residual representation ρ̄0 such that ρ̄0|IQp
∼= ωr

2⊕ω
pr
2 . Since Tst is fully

faithful, it is equivalent to fixing a Breuil module M(r, 0, α, β) in Example 3.3.1.
By Lemma 3.3.2, we need to fix α · β. Say, −µ = α · β for a fixed µ ∈ F×. By
Lemma 8.4.1 for r > 2, we have the identity µ= λ2/pr−1 (mod m). We also fix a
lift ψ : GQp → O× of det ρ̄0, which is equivalent to fixing η := λ2

∈ O.
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Fix λ ∈ O satisfying the equation η = λ2, extending E if necessary. We note that
there are two λ satisfying the equation η = λ2, say, λ =

√
η and λ = −

√
η. For

each such λ, the admissible filtered (φ, N )-modules D(λ,L) for L ∈ E satisfying
vp(L− a(r)) < 3

2 −m corresponds to the characteristic 0 closed points of R(0,r),ψ
ρ̄0

.
Thus for each such λ, we may let X = p/(λ(L− a(r))), keeping in mind that X
varies over the maximal ideal m in O.

Lemma 9.3.6. Keep the notation as above.

(1) For λ=
√
η, denoting X = p/(λ(L− a(r))) in the strongly divisible modules

in Section 8.3 determines a strongly divisible module over SO[[X ]];

(2) For λ=−
√
η, denoting X = p/(λ(L−a(r))) in the strongly divisible modules

in Section 8.3 determines a strongly divisible module over SO[[X ]].

We denoted by M+r (X) (resp. M−r (X)) for the strongly divisible module over
O[[X ]] in (1) (resp. in (2)) in Lemma 9.3.6.

Proof. The proof is very similar to Lemma 9.3.2. We only prove the case (1). The
case (2) is identical. Assume λ=

√
η, and let X = p/(λ(L− a(r))).

From Section 8.3 and from the proof of Lemma 8.4.1, we see that Filr M is
generated by F̂0 and vr E1 modulo Filr SOM. If we replace p/(λ(L− a(r))) with
X in the coefficients of F̂0, vr E1, φr (F̂0), φr (v

r E1), N (E1), and N (E2), then we
claim that we get a strongly divisible module over SO[[X ]]. Indeed, the proof of this
claim is equivalent to the proof that specializing X in m gives rise to a strongly
divisible module over SO. If X 6= 0, we do know that the corresponding object is a
strongly divisible module over SO by the results in Section 8.3. But if X = 0, we
claim that M+r (0) corresponds to a crystalline representation. We check this by
showing that the filtered (φ, N )-module corresponding to M+r (0)[1/p] has N = 0
and admissible.

M+r (0) is computed as follows:

• M := SO(E1, E2);

• φ(E1)= pλE1+ (1− p)E2 and φ(E2)= λE2;

• N (E1)= 0= N (E2);

• Filr M= 〈λE1− (1− p)E2〉SO +Filr SM.

Following the functor described in the paragraph of (2.2.1), one can readily compute
a filtered (φ, N )-module D corresponding M+r (0):

• D := E(η1, η2) and η := (η1, η2);

• Fili D :=


D if i ≤ 0;
E(λη1− (1− p)η2) if 0< i ≤ r ;
0 if r < i ;
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• Matη(φ)=
(

pλ 0
1− p λ

)
and N = 0.

The only φ-invariant subspaces of D of dimension 1 are E(λη1−η2) and E(η2).
Now it is easy to check that D is admissible. Since D is admissible and N = 0 on
D, Tr

st(M
+
r (0)) is a Galois stable lattice in a crystalline lift of ρ̄0 with Hodge–Tate

weights (0, r), which completes the proof. �

Considering Tr
st(M

•

r (X)) for • ∈ {±}, one sees that Lemma 9.3.6 gives rise to
O-algebra morphisms

π •r :Rρ̄0 → O[[X ]].

Lemma 9.3.7. For each • ∈ {±}, the morphism π •r :Rρ̄0 → O[[X ]] is surjective.

Proof. Let R0 be the quotient ring O[[X ]]/((π)+ (X)2)∼= F[X ]/X2. By the same
argument as in Lemma 9.3.3, it is enough to show that the induced morphism
π •r : Rρ̄0 → R0 is surjective for each • ∈ {±}. We only consider the case • = +.
The case •=− is very similar. We compute the strongly divisible module M0 :=

M+r (X)/((π)+ (X)
2) over SR0 . We describe M0 = SR0(E1, E2) as follows:

• Filr M0 is generated by ur E1 and E2−
µ

r−1
Xur−1 E1 modulo Filp SOM0;

• φr (ur E1)= E2 and φr

(
E2−

µ

r−1
Xur−1 E1

)
=−(µ+ 2

√
µD)E1;

• N (E1)= X
(

1− N (δ−∞)
p

)
E2 and N (E2)= 0.

By the same argument as in Lemma 9.3.3, one sees that M0 is not defined over
any proper subring of R0. Hence, we conclude that π+r is surjective. �

Lemma 9.3.8. For each • ∈ {±}, the morphism π •r :Rρ̄0 → O[[X ]] factors through
the quotient q :Rρ̄0 →R

(0,r),ψ
ρ̄0

.

Proof. The same argument as in Lemma 9.3.4 works. �

Proposition 9.3.9. If ρ̄0|IQp
∼= ωr

2⊕ω
pr
2 , then

R(0,r)
ρ̄0
∼
′ O[[D1, D2]]×O[[D, X ]]×O[[D, X ]].

Proof. The proof is very similar to Proposition 9.3.5. The only difference is that ρ̄0

has a crystalline lift with Hodge–Tate weights (0, r), by Lemma 9.3.1 (1). Note
that the characteristic 0 closed points of these irreducible components exhaust all
the 2-dimensional semistable lifts of ρ̄0 with Hodge–Tate weights (0, r). �
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9.3.3. The case − 1
2 − ` < h < 1

2 − ` for ` ∈ {0, 1, 2, . . . ,m − 2}. Assume that
r = 2m ≥ 4 and that −1

2 − ` < h < 1
2 − ` for ` ∈ {0, 1, 2, . . . ,m− 2}. Recall that

vp(λ)=
1
2(r − 1)= m− 1

2 . We keep the notation as in Section 7.2.
Fix a residual representation ρ̄0 such that

ρ̄0|IQp
∼= ω

m+`+1+p(m−`−1)
2 ⊕ω

m−`−1+p(m+`+1)
2 .

Since Tst is fully faithful, it is equivalent to fixing a Breuil module M(m+ `+ 1,
m − `− 1, α, β) in Example 3.3.1. By Lemma 3.3.2, we need to fix α · β. By
Lemma 7.3.1, it is enough to fix λ2/pr−1, since all the other quantities do not
depend on λ or on L. Say, µ := λ2/pr−1 (mod m) for a fixed µ ∈ F×. We also fix
a lift ψ : GQp → O× of det ρ̄0, which is equivalent to fixing η := λ2

∈ O.
Fix λ ∈ O satisfying the equation η = λ2, extending E if necessary. We note that

there are two λ satisfying the equation η = λ2, say λ =
√
η and λ = −

√
η. For

each such λ, the admissible filtered (φ, N )-modules D(λ,L) for L ∈ E satisfying
−

1
2 − ` < vp(L− a(r)) < 1

2 − ` corresponds to the characteristic 0 closed points
of R(0,r),ψ

ρ̄0
. Thus for each such λ, we may let X = pm−`/(λ(L− a(r))), keeping

in mind that X varies over the maximal ideal m in O satisfying 0< vp(X) < 1. We
also let Y = λ(L− a(r))/pm−`−1, so that X and Y satisfy the equation XY = p.

Lemma 9.3.10. Keep the notation as above:

(1) For λ=
√
η, denoting X = pm−`/(λ(L−a(r))) and Y = λ(L−a(r))/pm−`−1

in the strongly divisible modules in Section 7.2 determines a strongly divisible
module over SO[[X,Y ]]/(XY−p);

(2) For λ=−
√
η, denoting X = pm−`/(λ(L−a(r))) and Y =λ(L−a(r))/pm−`−1

in the strongly divisible modules in Section 7.2 determines a strongly divisible
module over SO[[X,Y ]]/(XY−p).

We denoted by M+r,`(X) (resp. M−r,`(X)) for the strongly divisible module over
O[[X, Y ]]/(XY − p) in (1) (resp. in (2)) in Lemma 9.3.10.

Proof. We only prove the case (1). The case (2) is identical. Assume λ =
√
η,

and let X = pm−`/(λ(L− a(r))) and Y = λ(L− a(r))/pm−`−1. The proof of this
lemma is equivalent to the proof that specializing X and Y in m satisfying XY = p
gives rise to a strongly divisible module over SO, as in Lemmas 9.3.2 and 9.3.6. But
the proof of this lemma is, in fact, easier, since the results in Section 7.2 already
tell us all the specializations are strongly divisible modules over SO. Hence, we
only need to check that the resulting object replacing pm−`/(λ(L− a(r))) and
λ(L− a(r))/pm−`−1 with X and Y respectively are defined over SO[[X,Y ]]/(XY−p).

From Section 7.2 and from the proof of Lemma 7.3.1, we see that the Filr M is
generated by F̂0 and F̂m+`+1 modulo Filr SOM. If we replace pm−`/(λ(L− a(r)))
and λ(L − a(r))/pm−`−1 with X and Y , respectively in the coefficients of F̂0,
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F̂m+`+1, φr (F̂0), φr (F̂m+`+1), N (E1), and N (E2), then it is easy and routine to
check that we get a strongly divisible module, denoted by M+r,`(X), defined over
SO[[X,Y ]]/(XY−p): to see this, one wants to check first that

Ri, j , (R P)i, j ∈
O[[X, Y ]]
(XY − p)

[ 1
p

]
.

In the case ` = 0, one also needs to show that 1r ∈ O[[X, Y ]]/(XY − p) and
δ0 ∈ SO[[X,Y ]]/(XY−p). By a similar argument as in Section 9.3.3, one can readily
check these properties as well as 1r ≡ X0(T0−a(r)S0) modulo (π)+ (X, Y )2. We
leave the details for the reader. �

Considering Tr
st(M

•

r,`(X)) for • ∈ {±}, one sees that Lemma 9.3.10 gives rise to
O-algebra morphisms

(9.3.11) π •r,` :Rρ̄0 →
O[[X, Y ]]
(XY− p)

.

Lemma 9.3.12. For each • ∈ {±}, the morphism (9.3.11) is surjective.

Proof. Let R0 be the quotient ring of O[[X, Y ]]/(XY − p) by the ideal ((π)+
(X, Y )2), which is isomorphic to F[X, Y ]/(X, Y )2. By the same argument as in
Lemma 9.3.3, it is enough to show that the induced map π •r,` :Rρ̄0→R0 is surjective.
To do that, we compute the strongly divisible module M0 := M•

r,`(X)/((π) +
(X, Y )2) over SR0 . We only consider the case •=+ since the case •=− is almost
the same. Recall that ri, j is defined in Lemma 7.1.3. By r̄i, j we mean the image of
ri, j under the quotient map O→ F. We describe M0 = SR0(E1, E2) as follows:

• Filr M0 is generated by um+`+1 E1 and µr̄1,m+`+1 Xum+`E1+um−`−1 E2 modulo
Filp SOM0;

• φr is computed as follows:

φr (µr̄1,m+`+1 Xum+`E1+ um−`−1 E2)

=−µr̄m+`+1,m+`+1

m−`−1∑
k=0

(γ−1)k x (m−`−1,2`+2)
k E1,

φr (um+`+1 E1)

= Y
m−`−2∑

k=0

(γ − 1)k r̄m+`+1−k,m−`−1 E1

+

[
(γ − 1)m+`+1

−

m+∑̀
k=m−`−1

(γ − 1)k r̄m+`+1−k,m−`−1

+

m−`−2∑
k=0

(γ − 1)k
(
δ`r̄m+`+1−k,m−`−1+

k∑
j=1

(−1) j+1

j
r̄m+`+1−k+ j,m−`−1

)]
E2;
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• N (E1)= X (1− N (δ`)/p)E2 and N (E2)= 0.

Note that the parameters X and Y all survive in the coefficients of M0. Moreover,
we claim that M0 is not defined over any proper subring of R0. Assume that M0 is
defined over a subring R′0 of R0. By the same argument of Lemma 9.3.3, we see
that R′0 contains the element X . We now consider the strongly divisible module
M′0 :=M0/(X) over R0/(X)∼= F[Y ]/(Y )2. We also let e := (E1, E2) and f := eV
where

V :=
(

um+`+1 0
0 um−`−1

)
.

Then V =Mate, f (Filr M′0). We also let A :=Mate, f (φr ). Note that if we write Y ·γ ′

for the (1, 1)-entry of A then γ ′ ∈ S×F by Lemma 7.1.6. Let R ∈GL2(SF[Y ]/(Y )2) be
a matrix of change of basis. Letting e′ := eR−1 and V ′ := RV , we have

φr (e′V ′)= φr (eR−1V ′)= φr (eV )= eA = e′R A,

so that Mate′, f ′(Filr M′0)= V ′ and Mate′, f ′(φr )= R A, where f ′ = eV ′. We may
write R = R0 + Y R1 for some R0 ∈ GL2(SF) and R1 ∈ M2×2(SF), and write
A = A0+ Y A1 for some A0 ∈ GL2(SF) and A1 ∈M2×2(SF). One easily sees that

R A = R0 A0+ Y (R1 A0+ R0 A1).

If V ′ ∈M2×2(SF), i.e., R1 = 02×2, then R0 A1 6= 02×2 since R0 is invertible and

A1 =

(
γ ′ 0
0 0

)
.

Hence, M′0 is not defined over any proper subring of F[Y ]/(Y )2, which implies that
R′0 contains the elements X and Y . That is, R′0 =R0. Hence, π+r,` is surjective. �

Lemma 9.3.13. For each • ∈ {±}, the morphism π •r,` :Rρ̄0 → O[[X, Y ]]/(XY − p)

factors through the quotient q :Rρ̄0 →R
(0,r),ψ
ρ̄0

.

Proof. The same argument as in Lemma 9.3.4 works. �

Proposition 9.3.14. If ρ̄0|IQp
∼=ω

m−`−1+p(m+`+1)
2 ⊕ω

m+`+1+p(m−`−1)
2 for 0≤ `≤

m− 2, then

R(0,r)
ρ̄0
∼

O[[D, X, Y ]]
(XY− p)

×
O[[D, X, Y ]]
(XY− p)

.

Proof. By Lemma 9.3.13 and by (9.1.2), we have a surjection π •r,` :R
(0,r)
ρ̄0
[1/p] →

O[[D, X, Y ]]/(XY − p)[1/p] for • ∈ {±}. Since the two irreducible components
are disjoint,

π+r,`×π
−

r,` :R
(0,r)
ρ̄0

[ 1
p

]
→

(
O[[D, X, Y ]]
(XY− p)

×
O[[D, X, Y ]]
(XY− p)

)[ 1
p

]
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is also surjective. By Lemma 9.3.1 (2), ρ̄0 does not have a crystalline lift with Hodge–
Tate weights (0, r). In other words, R(0,r)

ρ̄0
has only two irreducible components

described as above. The map π+r,`×π
−

r,` induces one to one correspondence between
the maximal ideals of R(0,r)

ρ̄0
[1/p] and the ones of

O[[D, X, Y ]]
(XY− p)

[ 1
p

]
×

O[[D, X, Y ]]
(XY− p)

[ 1
p

]
.

Since these rings are Jacobson, it also gives one to one correspondence between
prime ideals. The fact that R(0,r)

ρ̄0
[1/p] is reduced completes the proof. �

Remark 9.3.15. If ρ̄0 :GQp→GL2(F) is given as in Proposition 9.3.14, then R(0,r)
ρ̄0

has a smooth generic fiber, since the generic fibers of the irreducible components
are disjoint.

On the other hand, let ρ̄0 : GQp → GL2(F) be a residual representation such
that ρ̄0|IQp

∼= ωr
2⊕ω

pr
2 (as either in Proposition 9.3.5 or in Proposition 9.3.9). It is

obvious that the two irreducible components O[[D, X ]] are disjoint. More precisely,
if we let R+ = O[[D, X ]] when λ =

√
η and R− = O[[D, X ]] when λ = −

√
η,

then the geometric points of R+ give rise to semistable representations that are
not isomorphic to the ones coming from R−. However, these two irreducible
components intersect the crystalline deformation ring O[[D1, D2]], which happens
exactly when X = 0 (see the proofs of Lemmas 9.3.2 and 9.3.6). These are examples
of deformation rings whose generic fibers are not smooth.
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NONHOLOMORPHIC LEFSCHETZ FIBRATIONS
WITH (−1)-SECTIONS

NORIYUKI HAMADA, RYOMA KOBAYASHI AND NAOYUKI MONDEN

We construct two types of nonholomorphic Lefschetz fibrations over S2 with
(−1)-sections — hence, they are fiber sum indecomposable — by giving the
corresponding positive relators. One type of the two does not satisfy the
slope inequality (a necessary condition for a fibration to be holomorphic)
and has a simply connected total space, and the other has a total space
that cannot admit any complex structure in the first place. These give an
alternative existence proof for nonholomorphic Lefschetz pencils without
Donaldson’s theorem.

1. Introduction

The notion of Lefschetz fibrations in the smooth category was introduced from alge-
braic geometry by Moishezon [1977] to study complex surfaces from a topological
viewpoint. It is therefore natural to ask how far smooth (symplectic) Lefschetz
fibrations are from holomorphic ones. One approach to this question is to construct
various nonholomorphic examples. Motivated by this, we give the following results.

Theorem 1.1. For each g ≥ 3, there is a genus-g nonholomorphic Lefschetz fi-
bration X → S2 with a (−1)-section and π1(X) = 1 such that it does not satisfy
the “slope inequality”.

Theorem 1.2. For each g ≥ 4, there is a family of genus-g nonholomorphic Lef-
schetz fibrations XÛn

→ S2 with two disjoint (−1)-sections (for each positive integer
n) such that XÛn

does not admit any complex structure with either orientation and
is not homotopically equivalent to XÛm

when n 6= m.

Here, a nonholomorphic Lefschetz fibration means that it is not isomorphic to
any holomorphic one. We would like to emphasize that we are able to give explicit
monodromy factorizations of the above fibrations although we only give a procedure
to get such factorizations without explicitly showing them. In the rest of this section,
we give some background on Theorems 1.1 and 1.2.
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Keywords: Lefschetz fibrations, (−1)-sections, slope inequality, complex structure.
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1A. Lefschetz fibrations with (−1)-sections. The reason that we focus on Lef-
schetz fibrations that have (−1)-sections is that they play an important role as
follows. Blowing up at the base loci of a genus-g Lefschetz pencil yields a
genus-g Lefschetz fibration with (−1)-sections, and conversely, blowing down
of (−1)-sections of a genus-g Lefschetz fibration gives a genus-g Lefschetz pencil.
Furthermore, a closed 4-manifold admits a symplectic structure if and only if it
admits a Lefschetz pencil (Donaldson [1999] proved the “if” part, and the “only
if” part was shown in [Gompf and Stipsicz 1999]). On the other hand, a Lefschetz
fibration with a (−1)-section is fiber sum indecomposable (see [Stipsicz 2001;
Smith 2001a]); hence, such a fibration can be considered “prime” with respect to
the fiber sum operation. Therefore, as a corollary of Theorems 1.1 and 1.2, we
obtain the following result.

Corollary 1.3. For arbitrary g ≥ 3, there exists a genus-g nonholomorphic Lef-
schetz pencil on a simply connected 4-manifold. For arbitrary g ≥ 4, there exist
infinitely many genus-g nonholomorphic Lefschetz pencils on 4-manifolds that
cannot admit any complex structure with either orientation.

Remark 1.4. Baykur [2015] constructed infinitely many nonholomorphic genus-3
Lefschetz pencils with explicit monodromies. The 4-manifolds obtained as the total
spaces are not simply connected and do not admit any complex structure with either
orientation.

Remark 1.5. Donaldson’s construction of Lefschetz pencils on symplectic 4-
manifolds immediately implies the existence of nonholomorphic Lefschetz pencils
since there are symplectic 4-manifolds that cannot be complex. Yet this does not
tell much about the genera of the resulting pencils. Our result shows the existence
of nonholomorphic Lefschetz pencils for arbitrary genus g ≥ 3.

1B. The slope inequality and simply connected examples. The “slope inequality”
derives from the geography problem of relatively minimal holomorphic fibrations.
Let us consider a relatively minimal genus-g holomorphic fibration f : S→C where
S and C are a complex surface and a complex curve, respectively. Xiao [1987]
defined a certain numerical invariant λ f , called the “slope” of f , determined by the
signature and Euler characteristic of S, the genera of C and a generic fiber. Then
he showed that every relatively minimal genus-g holomorphic fibration f satisfies
4− 4/g ≤ λ f . We call this inequality the slope inequality.

The notion of the slope can be extended for (smooth) Lefschetz fibrations as λ f

is determined by topological invariants (see Section 3D); hence we can also consider
the slope inequality in the smooth category. Note that the slope inequality can
be rewritten as an inequality giving a lower bound on the signatures of Lefschetz
fibrations in terms of the genus of a generic fiber and the number of singular fibers
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(see Remark 3.11). It is known that the slope inequality holds for any hyperelliptic
Lefschetz fibration, especially any genus-2 Lefschetz fibration. Hain conjectured
that every Lefschetz fibration over S2 satisfies the slope inequality as well (see
[Amorós et al. 2000; Endo and Nagami 2005]). This conjecture in fact fails; Monden
[2014, Theorem 3.1] gave examples violating the slope inequality. In particular,
those examples are nonholomorphic by Xiao’s result. However, we do not know
if they are fiber sum indecomposable. Hence, we ask the following question: Is
there a fiber sum indecomposable Lefschetz fibration violating the slope inequality?
Theorem 1.1 together with the above-mentioned work of Stipsicz [2001] and Smith
[2001a] implies that the answer to this question is positive for any g ≥ 3.

Let us consider a genus-g nonholomorphic Lefschetz fibration X→ S2 with a
(−1)-section such that π1(X)= 1. To the best of our knowledge, all known such
fibrations with explicit monodromy factorizations are Fuller’s example (g= 3)1 and
those of Endo and Nagami [2005] (g = 3, 4, 5). Theorem 1.1 gives such examples
with explicit monodromy factorizations for arbitrary g ≥ 3.

Remark 1.6. We do not know whether the examples in [Smith 2001b; Endo and
Nagami 2005] and Theorem 1.1 have noncomplex total spaces or not. On the other
hand, Li [2008] constructed nonholomorphic Lefschetz pencils (fibrations with
(−1)-sections) on complex surfaces. However, their genera are implicit.

1C. Lefschetz fibrations with noncomplex total spaces. Many Lefschetz fibra-
tions with explicit monodromies and noncomplex total spaces have been constructed
using the (twisted) fiber sum operation (see for instance [Smith 1998; Ozbagci
and Stipsicz 2000; Fintushel and Stern 1998; Korkmaz 2001; Akhmedov and
Ozbagci 20172 Akhmedov and Monden 2015; Baykur and Korkmaz 2017]). They
are nonholomorphic, however, they do not have any (−1)-section since they are
decomposable. On the other hand, Stipsicz [2001] and, independently, Smith
[2001a] proved that there are infinitely many fiber sum indecomposable Lefschetz
fibrations with noncomplex total spaces. Since the constructions of these fibrations
are based on Donaldson’s theorem [1999], their monodromy factorizations are not
explicitly given. Theorem 1.2 gives infinitely many fiber sum indecomposable
Lefschetz fibrations with explicit monodromy factorizations and noncomplex total
spaces for any g ≥ 4.

The fundamental group of the total space XÛn
of a genus-g Lefschetz fibration in

the family in Theorem 1.2 is H1(XÛn
)=Z⊕Zn . By improving the work of [Ozbagci

and Stipsicz 2000] (see also [Baykur 2012]) slightly, we see that the 4-manifold
XÛn

does not carry any complex structure with either orientation. For g ≥ 22,

1It was shown by Smith [2001b] that Fuller’s example is nonholomorphic.
2Baykur has informed us that the examples in [Akhmedov and Ozbagci 2017] should be fiber sum

decomposable from Ozbagci’s talk in Turkey a few years ago.
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nonholomorphic Lefschetz fibrations with the same property of Theorem 1.2 were
constructed in [Kobayashi and Monden 2016] based on the technique of this paper.
Theorem 1.2 improves this result.

Remark 1.7. Nonholomorphic genus-2 Lefschetz fibrations with finite cyclic fun-
damental groups and without any (−1)-sections were constructed in [Akhmedov
and Monden 2015] by rationally blowing down a twisted fiber sum of two copies of
Matsumoto’s fibration. However, we do not know whether these are decomposable.

2. Preliminaries

2A. Notation. From now on, we use the same letter for a loop and its homotopy
class and homology class by abuse of notation. Similarly, we use the same letter for
a diffeomorphism and its isotopy class, or for a simple closed curve and its isotopy
class. A simple loop and a simple closed curve are even denoted by the same letter.
It will cause no confusion as it will be clear from the context which one we mean.

For convenience’s sake, we first fix the notation and the symbols for the curves
which we use throughout the paper. Let6g be the closed oriented surface of genus g
standardly embedded in the 3-space and

a1, b1, a2, b2, . . . , ag, bg

be the standard generators of the fundamental group π1(6g) of 6g as shown in
Figure 1. We choose orientations of ai , bi so that i(ai , bi )= 1, where i(ai , bi ) is
the algebraic intersection number of ai and bi . For loops a and b in π1(6g), the
product ab means that we traverse first a then b as usual. Let c1, c2, . . . , cg and
ag+1 be the simple closed curves on 6g as shown in Figure 1. Note that in π1(6g),
cg = 1 and ag+1 = 1. Then, the fundamental group π1(6g) has the presentation

π1(6g)= 〈a1, b1, a2, b2, . . . , ag, bg | cg〉.

Let Bh
0,1, Bh

0,2, Bh
1 , Bh

2 , . . . , Bh
h (h = 1, 2, . . . , g) and a′1, a′2, . . . , a′g be the sim-

ple closed curves on 6g as shown in Figures 2 and 3.

a1 a2 a3 ag−1 ag
ag+1

b1 b2 b3 bg−1 bg

c1 c2 c3 cg−1 cg

Figure 1. The standardly embedded 6g with two indicated disks
on the rightmost position and the generators a j , b j of the funda-
mental group and loops c j .
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h
ch

Bh
h

Bh
2

Bh
1

cr
Bh

0,1 Bh
0,2 Bg

0,1 Bg
0,2ah+1

a′1 a′2 a′r a′r+1 a′h−1 a′h a′h+1 a′g

Figure 2. The curves Bh
0,1, Bh

0,2, Bh
1 , Bh

2 , . . . , Bh
h , a′1, a′2, . . . , a′g

for h = 2r .
h

ch

Bh
h

Bh
2

Bh
1

ar+1 Bh
0,1 Bh

0,2 Bg
0,1 Bg

0,2ah+1

a′1 a′2 a′r+1 a′h−1 a′h a′h+1 a′g

Figure 3. The curves Bh
0,1, Bh

0,2, Bh
1 , Bh

2 , . . . , Bh
h , a′1, a′2, . . . , a′g

for h = 2r + 1.

Suppose h = 2r . It is easy to check that the following equalities hold in H1(6g):

Bh
0,1 = b1+ b2+ · · ·+ bh, Bh

0,2 = b1+ b2+ · · ·+ bh + ah+1, 1≤ h ≤ g;(1)

Bh
2k−1 = ak + bk + bk+1+ · · ·+ bh+1−k + ah+1−k, 1≤ k ≤ r, 1≤ h ≤ g;(2)

Bh
2k = ak + bk+1+ bk+2+ · · ·+ bh−k + ah+1−k, 1≤ k ≤ r, 1≤ h ≤ g.(3)

In the case of h= 2r+1, the same equalities (1) and (3) hold without change, while
the equality (2) holds for 1≤ k ≤ r + 1, 1≤ h ≤ g.

2B. Substitution technique. In this subsection, we introduce key techniques, called
a substitution and a partial conjugation, for constructing a new word in mapping
class groups from a word and a relator. We will utilize this technique to construct
Lefschetz fibrations with (−1)-section in the later sections.

Let 6b
g be a compact oriented surface of genus g with b boundary components.
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The mapping class group 0b
g of 6b

g is the group of isotopy classes of orientation-
preserving self-diffeomorphisms of 6b

g , where all the maps involved are assumed
to fix ∂6b

g pointwise. For simplicity, we write 6g = 6
0
g and 0g = 0

0
g. For two

elements φ1 and φ2 in 0b
g , the product φ2φ1 means that we first apply φ1 then φ2.

We denote by tc the right-handed Dehn twist along a simple closed curve c on 6b
g .

Definition 2.1. Let v1, v2, . . . , vn be simple closed curves on6b
g . If tεn

vn
· · · tε2

v2
tε1
v1
=1

in 0b
g , where εi =±1, then this factorization is called a relator. In the special case

where εi = 1 for all i , namely, tvn · · · tv2 tv1 = 1 holds in 0g, then this factorization
is called a positive relator.

We introduce a key technique for constructing a new product of right-handed
Dehn twists in 0b

g from old ones.

Definition 2.2. Let v1, v2, . . . , vk and d1, d2, . . . , dl be simple closed curves on6b
g

such that the following product, denoted by R, is a relator in 0b
g :

R := tv1 tv2 · · · tvk t−1
dl
· · · t−1

d2
t−1
d1
,

which equals the identity as a mapping class by definition. If a mapping class
φ in 0b

g satisfies φ(di ) = di , then by the relation tφ(c) = φtcφ−1, we obtain the
following relator, denoted by Rφ, in 0b

g :

Rφ = tφ(v1)tφ(v2) · · · tφ(vk)t
−1
dl
· · · t−1

d2
t−1
d1
.

Let W be a product of right-handed Dehn twists including td1 td2 · · · tdl as a subword:

W =U · td1 td2 · · · tdl · V,

where U and V are products of right-handed Dehn twists. Then, we get a new
product of right-handed Dehn twists, denoted by W ′, as follows:

U · Rφ · td1 td2 · · · tdl · V =U · tφ(v1)tφ(v2) · · · tφ(vk) · V =:W
′,

where the first equality means the equality as a mapping class. Then, W ′ is said to
be obtained by applying a Rφ-substitution to W.

Remark 2.3. A Rφ-substitution is a combination of a substitution technique and
a partial conjugation introduced by Fuller and Auroux [Auroux 2006b; Auroux
2006a], respectively.

2C. Relators in mapping class groups. In this subsection, we introduce some
well-known relators in mapping class groups, called the braid relator B, the lantern
relator L , the chain relators Ck,Ck and certain relators W h

1 ,W h
2 .
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δ1

δ2

δ3

δ4

α β

γ

Figure 4. The curves δ1, δ2, δ3, δ4 and α, β, γ .

Definition 2.4 (braid relator). Let α and β be simple closed curves on 6b
g . If the

geometric intersection number of α and β is equal to 0 (resp. 1), then we have the
braid relator B:

B := tαtβ t−1
α t−1

β (resp. B := tαtβ tαt−1
β t−1

α t−1
β ).

Definition 2.5 (lantern relator). Let δ1, δ2, δ3 and δ4 be the four boundary curves
of 64

0 and let α, β and γ be the interior curves as shown in Figure 4. Then, we
have the lantern relator L in 04

0 :

L := tαtβ tγ t−1
δ4

t−1
δ3

t−1
δ2

t−1
δ1
.

The lantern relator was discovered by Dehn [1938] and was rediscovered by
Johnson [1979].

Definition 2.6 (chain relator). Suppose h ≥ 1. Let α1, α2, . . . , α2h+1 be simple
closed curves on an oriented surface such that αi and αi+1 intersect transversally
at exactly one point for 1 ≤ i ≤ 2h and that αi and α j are disjoint if |i − j | ≥ 2.
Then, a regular neighborhood of α1 ∪ α2 ∪ · · · ∪ α2h (resp. α1 ∪ α2 ∪ · · · ∪ α2h+1)
is a subsurface of genus h with one boundary component (resp. two boundary
components), say d (resp. d1 and d2). We then have the even chain relator C2h and
the odd chain relator C2h+1:

C2h := (tα1 tα2 · · · tα2h )
4h+2t−1

d ,

C2h+1 := (tα1 tα2 · · · tα2h+1)
2h+2t−1

d2
t−1
d1
.

Definition 2.7. Suppose g≥ 2. Let62
g be the surface of genus g with two boundary

components obtained from6g by removing two disjoint open disks (see Figures 1, 2
and 3). Let ag+1 be one of the boundary curves of 62

g as shown in Figure 1, and let
a′g+1 be the other boundary curve of 62

g defined by a′g+1 = cgag+1. We then have
the following two relators W1,h , W2,h in 02

g for each h = 1, 2, . . . , g:

W1,h :=

(tBh
0,1

tBh
1
tBh

2
· · · tBh

h−1
tBh

h
tc`)

2t−1
ch

if h = 2`,

(tBh
0,1

tBh
1
tBh

2
· · · tBh

h−1
tBh

h
t2
a`+1

t2
a′`+1

)2t−1
ch

if h = 2`+ 1,
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W2,h :=

(tBh
0,2

tBh
1
tBh

2
· · · tBh

h−1
tBh

h
tc`)

2t−1
ah+1

t−1
a′h+1

if h = 2`,

(tBh
0,2

tBh
1
tBh

2
· · · tBh

h−1
tBh

h
t2
a`+1

t2
a′`+1

)2t−1
ah+1

t−1
a′h+1

if h = 2`+ 1.

Note that in 0g, the relator W2,g is a positive relator. Matsumoto [1996] discov-
ered this positive relator for g= 2, and Cadavid [1998] and independently Korkmaz
[2001] generalized Matsumoto’s relator to g ≥ 3. W1,g was shown to be a relator
in 01

g by Ozbagci and Stipsicz [2004]. In [Korkmaz 2009], it was claimed without
proof that W2,g is a relator in 02

g. Yet, we can show it to be true by applying the
same argument in Section 2 of [Korkmaz 2001] (for example see Section 6 of
[Kobayashi and Monden 2016]).

3. Lefschetz fibrations

3A. Basics on Lefschetz fibrations. We recall the definition and basic properties
of Lefschetz fibrations. More details can be found in [Gompf and Stipsicz 1999].

Definition 3.1. Let X be a closed, oriented smooth 4-manifold. A smooth map
f : X→ S2 is a Lefschetz fibration if for each critical point p of f and f (p), there
are complex local coordinate charts agreeing with the orientations of X and S2 on
which f is of the form f (z1, z2)= z1z2.

It follows that f has finitely many critical points C = {p1, p2, . . . , pn}. We can
assume that f is injective on C and relatively minimal (i.e., no fiber contains a
sphere with self-intersection number −1). Each fiber which contains a critical point,
called a singular fiber, is obtained by “collapsing” a simple closed curve in the
prescribed regular fiber to a point. We call the simple closed curve in the regular
fiber the vanishing cycle. If the genus of the regular fiber of f is g, then we call f
a genus-g Lefschetz fibration.

The monodromy of the fibration around a singular fiber f −1( f (pi )) is given by
a right-handed Dehn twist along the corresponding vanishing cycle, denoted by vi .
Once we fix an identification of 6g with the fiber over a base point of S2, we can
characterize the Lefschetz fibration f : X→ S2 by its monodromy representation
π1(S2

− f (C)) → 0g. Here, this map is indeed an antihomomorphism. Let
γ1, γ2, . . . , γn be an ordered system of generating loops for π1(S2

− f (C)) such
that each γi encircles only f (pi ) and γ1γ2 · · · γn = 1 in π1(S2

− f (C)). Thus, the
monodromy of f comprises a positive relator

tvn · · · tv2 tv1 = 1 in 0g.

Conversely, for any positive relator P in 0g, one can construct a genus-g Lefschetz
fibration over S2 whose monodromy is P. Therefore, we denote a genus-g Lefschetz
fibration associated with a positive relator P in 0g by fP : X P → S2.
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Two Lefschetz fibrations fPi : X Pi → S2 (i = 1, 2) are said to be isomorphic if
there exist orientation-preserving diffeomorphisms H : X P1→ X P2 and h : S2

→ S2

such that fP2 ◦ H = h ◦ fP1 . According to theorems of Kas [1980] and Matsumoto
[1996], if g ≥ 2, then the isomorphism class of a Lefschetz fibration is determined
by a positive relator modulo simultaneous conjugations

tvn · · · tv2 tv1 ∼ tφ(vn) · · · tφ(v2)tφ(v1) for any φ ∈ 0g

and elementary transformations

tvn · · · tvi+2 tvi+1 tvi tvi−1 tvi−2 · · · tv1 ∼tvn · · · tvi+2 tvi tt−1
vi (vi+1)

tvi−1 tvi−2 · · · tv1,

tvn · · · tvi+2 tvi+1 tvi tvi−1 tvi−2 · · · tv1 ∼tvn · · · tvi+2 tvi+1 ttvi (vi−1)tvi tvi−2 · · · tv1 .

Therefore, if P2 is obtained by applying a series of elementary transformations and
simultaneous conjugations to P1, then

(4) σ(X P1)= σ(X P2) and e(X P1)= e(X P2),

where σ(X) and e(X) stand for the signature and Euler characteristic of a 4-
manifold X, respectively.

3B. Sections of Lefschetz fibrations.

Definition 3.2. Let f : X → S2 be a Lefschetz fibration. A map σ : S2
→ X is

called a k-section of f if it satisfies f ◦ σ = idS2 and the self-intersection number
[σ(S2)]2 = k, where [σ(S2)] is the homology class in H2(X;Z).

If the factorization P = tvn · · · tv2 tv1(= 1) lifts from 0g to 01
g as

tk
δ = tṽn · · · tṽ2 tṽ1 (i.e., 1= tṽn · · · tṽ2 tṽ1 t−k

δ ),

then the Lefschetz fibration fP has a (−k)-section. Here, δ is the boundary curve
of61

g and tṽi is a Dehn twist mapped to tvi under 01
g→0g. Conversely, if a genus-g

Lefschetz fibration admits a (−k)-section, we obtain a relator of the above type
in 01

g. A similar relator holds for b disjoint sections (in which case one has to work
in the mapping class group 0b

g).
A necessary condition for a Lefschetz fibration to admit a (−1)-section was

shown independently by Stipsicz [2001] and Smith [2001a]:

Theorem 3.3 [Stipsicz 2001; Smith 2001a]. Let g ≥ 1. If a genus-g Lefschetz
fibration f : X→ S2 admits a (−1)-section, then f is fiber sum indecomposable.

Here, we recall the definition of fiber sum. Let fi : X i → S2 be a genus-g
Lefschetz fibration for i = 1, 2, and let Di be an open disk on S2 which does
not contain any critical values. Then, the fiber sum f1#F f2 : X1#F X2 → S2 is
obtained by gluing X1− f −1

1 (D1) and X2− f −1
2 (D2) along their boundaries via a



384 NORIYUKI HAMADA, RYOMA KOBAYASHI AND NAOYUKI MONDEN

A1
A2 A3

A4 A5 y
ιA2g–1

A2g

Figure 5. The involution ι of 6 and the curves A1, A2, . . . , A2g on 6g.

fiber-preserving orientation-reversing diffeomorphism and extending f1 and f2 in
a natural way. A Lefschetz fibration is said to be fiber sum indecomposable if it
cannot be decomposed as a fiber sum of two Lefschetz fibrations each of which has
at least one singular point.

For a Lefschetz fibration over S2 with a positive relator and a section, we can
determine the fundamental group of X as follows:

Lemma 3.4 (see [Gompf and Stipsicz 1999]). Let P be a positive relator P =
tvn · · · tv2 tv1 in 0g. Suppose that the corresponding genus-g Lefschetz fibration
f : X P→ S2 admits a section σ . Then, the fundamental group π1(X) is isomorphic
to the quotient of π1(6g) by the normal subgroup generated by the vanishing cycles
v1, v2, . . . , vn . The same holds for the first homology group H1(X).

3C. Signatures of Lefschetz fibrations. This subsection gives two results about
the signatures of Lefschetz fibrations.

Let 1g be the hyperelliptic mapping class group of genus g, i.e., the subgroup
of 0g consisting of those mapping classes commuting with the isotopy class of the
involution ι shown in Figure 5. Note that 1g = 0g for g = 1, 2 and that tc is in 1g

if and only if ι(c)= c.
A genus-g Lefschetz fibration is said to be hyperelliptic if it is associated with

a positive relator P = tv1 · · · tvn such that each tvi is contained in 1g. To compute
the signatures of Lefschetz fibrations, we present Matsumoto and Endo’s signature
formula for hyperelliptic Lefschetz fibrations.

Theorem 3.5 ([Matsumoto 1983; 1996] (g = 1, 2), [Endo 2000] (g ≥ 3)). Let
us consider a genus-g hyperelliptic Lefschetz fibration fP : X P → S2 with n
nonseparating and s =6[g/2]h=1 sh separating vanishing cycles, where sh is the number
of separating vanishing cycles that separate 6g into two surfaces, one of which has
genus h. Then, we have

σ(X P)=−
g+ 1

2g+ 1
n+

[g/2]∑
h=1

(
4h(g− h)

2g+ 1
− 1

)
sh .

By the work of Endo and Nagami [2005], we see the behavior of signatures of
Lefschetz fibrations under a monodromy substitution as follows.

Proposition 3.6 [Endo and Nagami 2005, Theorem 4.3, Definition 3.3, Lemma 3.5
and Propositions 3.9, 3.10 and 3.12]. Let B, L and C2h+1 be the braid relator, the
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lantern relator and the odd chain relator in Definitions 2.4, 2.5 and 2.6, respectively.
We assume that those relators are in 6g.

Let fPi : X Pi → S2 be a genus-g Lefschetz fibration with a positive relator
Pi (i = 1, 2). Suppose that P2 is obtained by applying an Rφ-substitution to P1,
where φ is a mapping class and R is a relator in 0g.

(1) If R = B, then σ(X P2)= σ(X P1).

(2) If R = L , then σ(X P2) = σ(X P1)+ 1. Hence, if R = L−1, then σ(X P2) =

σ(X P1)− 1.

(3) Assume that both d1 and d2 are not nullhomotopic in 6g. If R = C2h+1,
then σ(X P2) = σ(X P1)+ 2h(h + 2). Hence, if R = C−1

2h+1, then σ(X P2) =

σ(X P1)− 2h(h+ 2).

3D. Nonholomorphicity of Lefschetz fibrations.

Definition 3.7. A Lefschetz fibration f : X→ S2 is said to be holomorphic if there
are complex structures on both X and S2 with respect to which f is a holomorphic
projection. We say f is nonholomorphic if it is not isomorphic to any holomorphic
Lefschetz fibration.

Suppose that g ≥ 2. In order to prove Theorems 1.1 and 1.2, we introduce two
sufficient conditions for a Lefschetz fibration to be nonholomorphic.

One comes from the result of Xiao [1987]. For an almost complex 4-manifold X,
we set K 2(X) := 3σ(X)+2e(X) and χh(X) := (σ (X)+e(X))/4. Xiao proved the
following theorem, called the slope inequality:

Theorem 3.8 [Xiao 1987]. Every relatively minimal holomorphic genus-g fibration
f on a complex surface X over a complex curve C of genus k ≥ 0 satisfies the
inequality

4− 4/g ≤ λ f ,

where
λ f :=

K 2(X)− 8(g− 1)(k− 1)
χh(X)− (g− 1)(k− 1)

.

As a consequence of Theorem 3.8, we have:

Proposition 3.9. If a genus-g Lefschetz fibration f : X→ S2 does not satisfy the
slope inequality, namely, λ f < 4− 4/g, then f is nonholomorphic.

The other comes from the result of Ozbagci and Stipsicz [2000]. We present a
slightly improved version of their result where we replace π1 by H1, but this can
be concluded from the proof of Theorem 1.3 in [Ozbagci and Stipsicz 2000]:

Theorem 3.10. If a Lefschetz fibration f : X → S2 satisfies H1(X)= Z⊕Zn for
some positive integer n, then X admits no complex structure with either orientation,
so f is nonholomorphic.
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For the convenience of the readers, we give a proof of this theorem, which is
merely a simplification of that in [Ozbagci and Stipsicz 2000].

Proof. Assume that X carries a complex structure and let X ′ be the minimal model
of X. By the Enriques–Kodaira classification of complex surfaces, together with
the fact that b1(X ′) = 1 and b+2 (X

′) ≥ 1 (since X admits a symplectic structure
and so does X ′), we can observe that X ′ is an elliptic surface. If X ′ is an elliptic
fibration over a Riemann surface 6, we have b1(X ′) ≥ b1(6). Since b1(X ′) = 1,
6 must be S2. Since b1(X ′)= b3(X ′)= 1 and b2(X ′) 6= 0, the Euler characteristic
of X ′ cannot be 0. Now we suppose that X ′ is a minimal elliptic surface over S2

with nonzero Euler characteristic. According to [Gompf 1991], a presentation for
the fundamental group of such an elliptic surface is given as

π1(X ′)= 〈x1, · · · , xk | x
pi
i = 1, i = 1, . . . , k; x1 · · · xk = 1〉.

So it is clear that H1(X ′) has only torsion elements, which contradicts the assumption
H1(X)= Z⊕Zn . �

Remark 3.11. If X admits a genus-g Lefschetz fibration f : X→ S2 with n singular
fibers, then the Euler characteristic of X is e(X)=−4(g− 1)+ n. Using this fact,
the slope λ f of f can be written as

λ f = 12−
4

(σ (X)/n)+ 1
,

where σ(X) is the signature of X. Therefore, we can regard the slope λ f as the
“average signature” σ(X)/n per singular fiber. Moreover, the slope inequality
λ f ≥ 4− 4/g can be rewritten as

σ(X)≥−
g+ 1

2g+ 1
n,

that is, it gives a lower bound on σ in terms of g and n.

Remark 3.12. The work of Xiao [1987] was mainly motivated by the so-called
Severi inequality, stating that every minimal surface of general type of maximal
Albanese dimension satisfies K 2

≥4χh . This is equivalent to stating that if a minimal
complex surface S of general type satisfies K 2 < 4χh , then S admits a relatively
minimal holomorphic fibration over C of genus b1(S)/2. The Severi inequality was
stated in [di Severi 1932] (but the proof was not correct) and independently posed as
a conjecture by Reid [1979] and by Catanese [1983]. Xiao proved it when S admits
a relatively minimal holomorphic fibration over a curve of positive genus, that is, a
complex surface S admitting a holomorphic genus-g fibration f over C of positive
genus k with K 2 < 4χh + 4(g− 1)(k− 1) (i.e., λ f < 4) satisfies k = b1(S)/2. The
Severi inequality has been studied by many authors (for example [di Severi 1932;
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Reid 1979; Catanese 1983; Konno 1996; Manetti 2003; Pardini 2005]) and was
proved by Pardini [2005].

Remark 3.13. We denote by Mg the Deligne–Mumford compactified moduli
space of stable curves of genus g. We can reformulate the slope inequality for
Lefschetz fibrations in terms of Mg as follows. For a genus-g Lefschetz fibration
f : X→ S2 with n singular fibers, there is a symplectic structure on X such that for
all x ∈ S2, f −1(x) is a pseudo-holomorphic curve. Since a 2-dimensional almost-
complex structure is integrable, f −1(x) determines a point in Mg. By defining
φ f (x)=[ f −1(x)]∈Mg for x ∈ S2, we obtain the moduli map φ f : S2

→Mg. Let Hg

be the Hodge bundle on Mg with fiber the determinant line ∧g H 0(C; KC), where C
is the set of critical points of f . Then, by combining the signature formula σ(X)=
〈c1(Hg), [φ f (S2)]〉− n given by Smith [1999] and the slope inequality, we have

(2g+ 1)〈c1(Hg), [φ f (S2)]〉− g · n ≥ 0.

4. Nonholomorphic Lefschetz fibrations admitting (−1)-sections

In this section, we prove Theorem 1.1

Theorem 1.1. For each g ≥ 3, there is a genus-g nonholomorphic Lefschetz fibra-
tion X → S2 with a (−1)-section and π1(X) = 1 such that it does not satisfy the
slope inequality.

To prove this, we need a lemma. Suppose g≥ 3. Let61
g be the surface of genus g

with one boundary component obtained from 6g by removing the open disk whose
boundary curve is ag+1 (see Figure 1). Let us consider A1, A2, . . . , A2g to be the
simple closed curves on 61

g (see Figure 6) defined as follows: A1 = a1, A2 = b1,
A2h−1 = ah−1a−1

h and A2h = bh for h = 2, 3, . . . , g.

Lemma 4.1. (tA1 tA2 · · · tA2g )
2g+1
= (tA1 tA2 · · · tA2g−1)

2gtA2g · · · tA2 tA1 tA1 tA2 · · · tA2g .

Proof. The proof follows from the braid relations tAi tAi+1 tAi = tAi+1 tAi tAi+1 and
tAi tA j = tA j tAi for |i − j |> 1 (i.e., by applying B-substitutions to the left side). �

We now prove Theorem 1.1.

A1
A2 A3

A4 A5 y
A2g–1

A2g

ag+1

Figure 6. The curves A1, A2, . . . , A2g on 61
g .



388 NORIYUKI HAMADA, RYOMA KOBAYASHI AND NAOYUKI MONDEN

a3 a3

A1 A3 A5 A1 A3 A5

a2
e1 e2

Figure 7. The curves that give a Lantern relator.

Proof of Theorem 1.1. Suppose g ≥ 3. Let us consider the following chain relators,
C2g and C2g+1:

C2g = (tA1 tA2 · · · tA2g )
4g+2t−1

ag+1
, C2g−1 = (tA1 tA2 · · · tA2g−1)

2gt−1
ag

t−1
a′g
,

where ag and a′g are the curves as shown in Figures 2 and 3. By Lemma 4.1 and
the even chain relator C2g, we obtain the following relator C ′2g:

C ′2g = {(tA1 tA2 · · · tA2g−1)
2g
· tA2g · · · tA2 tA1 tA1 tA2 · · · tA2g }

2t−1
ag+1

.

By applying C−1
2g−1-substitution to C ′2g twice, we get a new relator H in 01

g:

H = (tag ta′g · tA2g · · · tA2 tA1 tA1 tA2 · · · tA2g )
2t−1

ag+1
.

Consider the curves on61
g in Figure 7. Since A1, a2, e1, and e2 are nonseparating

curves on the subsurface of genus g− 1(≥ 2) with two boundary components ag

and a′g, there are diffeomorphisms ψ1, ψ2 and ψ3 in 01
g such that ψ1(A1) = a2,

ψ2(A1)= e1, ψ3(A1)= e2, and each ψi is identical near ag and a′g. Then, we have
the following relator Hψ1 :

Hψ1 = (tag ta′g · tψ1(A2g) · · · tψ1(A2)ta2 ta2 tψ1(A2) · · · tψ1(A2g))
2
· t−1

ag+1
.

Applying Cψ2
2g−1- and Cψ3

2g−1-substitutions to Hψ1, we get a relator H ′:

H ′ = (te1 tψ2(A2) · · · tψ2(A2g−1))
2gtψ1(A2g) · · · tψ1(A2)ta2 ta2 tψ1(A2) · · · tψ1(A2g)

· (te2 tψ3(A2) · · · tψ3(A2g−1))
2gtψ1(A2g) · · · tψ1(A2)ta2 ta2 tψ1(A2) · · · tψ1(A2g) · t

−1
ag+1

.

Here, let us consider a word tc ·tv1 tv2 · · · tvk . By repeating elementary transformations
on this word, we obtain the word ttc(v1)ttc(v2) · · · ttc(vk) · tc. Therefore, since H ′ is a
positive relator including te1 , ta2 and te2 in this order, we can put them together to
the right side of the word to obtain a relator in the form

H ′′ = T · te1 ta2 te2 · t
−1
ag+1

,

where T is a product of 8g2
+ 4g− 3 right-handed Dehn twists. Let L denote the

lantern relator L = te1 ta2 te2 t−1
A1

t−1
a3

t−1
A5

t−1
A3

. Finally, we do L−1-substitution to H ′′, to
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obtain the following relator I in 01
g:

I = T · tA3 tA5 ta3 tA1 · t
−1
ag+1

.

The relator I reduces to a positive relator Î in 0g. Thus, Î gives a genus-g
Lefschetz fibration f Î : X Î → S2 which admits a (−1)-section.

We see that a genus-g Lefschetz fibration f Î : X Î → S2 has 2g(4g + 2)+ 1
singular fibers. Hence, we have

e(X Î )= 8g2
+ 5.

Here, note that C2g is a positive relator in 0g. This gives a genus-g Lefschetz
fibration fC2g : XC2g → S2 with 2g(4g + 2) nonseparating singular fibers. In
particular, this fibration is hyperelliptic since ι(Ai )= Ai for each i = 1, 2, . . . , 2g
(see Figure 5). Therefore, we have σ(XC2g )=−4g(g+1) by Theorem 3.5. Since I
is obtained from C2g by some B-substitutions, two C−1

2g−1-substitutions, Cψ2
2g−1- and

Cψ3
2g−1-substitutions, several other B-substitutions, and one L−1-substitution, by (4)

and Proposition 3.6, we have

σ(X Î )= σ(XC2g )− 1=−4g(g+ 1)− 1.

This gives λ f Î
= 4− 4/g− 1/g2 < 4− 4/g. By Proposition 3.9, this fibration is

nonholomorphic.
It is easy to check that Î includes the Dehn twist about the curve te1(ψ1(Ai )) for

1≤ i ≤ 2g. Since f Î admits a section, by Lemma 3.4 we have

π1(X Î ) ⊂ π1(6g)/〈te1(ψ1(A1)), . . . , te1(ψ1(A2g))〉.

On the other hand, it is easy to check that

π1(6g)/〈te1(ψ1(A1)), . . . , te1(ψ1(A2g))= π1(6g)/〈A1, . . . , A2g〉 = 1,

hence π1(X Î )= 1. �

Remark 4.2. We do not provide a monodromy factorization of f Î explicitly; how-
ever, we can obtain it by giving explicit ψ j (Ai ) for j = 1, 2, 3 and i = 1, 2, . . . , 2g.

Remark 4.3. All vanishing cycles of the Lefschetz fibration f Î are nonseparating
since all curves of the lantern relator employed in the proof of Theorem 1.1 are
nonseparating. For g ≥ 3, we can consider a lantern relator such that six curves
are nonseparating and one curve, denoted by sh , is separating, which separates
61

g into two subsurfaces 61
h and 62

g−h for h ≥ 2. Then, a similar argument to the
proof of Theorem 1.1 gives a genus-g Lefschetz fibration with a (−1)-section on a
simply connected total space having sh as a vanishing cycle and violating the slope
inequality, for each h = 2, 3, . . . , g− 1. Therefore, we can construct at least g− 1
different genus-g Lefschetz fibrations with the same conditions as in Theorem 1.1.
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Remark 4.4. Miyachi and Shiga [2011] produced genus-g Lefschetz fibrations
over 62m (m ≥ 1) which do not satisfy the slope inequality.

5. Noncomplex Lefschetz fibrations admitting (−1)-sections

In this section, we prove Theorem 1.2.

Theorem 1.2. For each g ≥ 4 and each positive integer n, there is a genus-g
nonholomorphic Lefschetz fibration fÛn

: XÛn
→ S2 with two disjoint (−1)-sections

such that XÛn
does not admit any complex structure with either orientation.

We assume g ≥ 4 and g = 4t, 4t + 1, 4t + 2, 4t + 3 throughout this section. To
prove Theorem 1.2, we construct a relator Un in 02

g by applying substitutions to
the relator W2,g in 02

g, which gives the Lefschetz fibration fÛn
: XÛn

→ S2.
Let a j , a′j , b j and c j ( j = 1, 2, . . . , g) be the simple closed curves on 62

g in
Figures 1, 2 and 3, and let ag+1 and a′g+1 be the boundary curves of 62

g as before.
For a positive integer n, we define a map φn to be

φn = tn
a2

ta3 ta4 · · · tat tb1 tb2 · · · tbt .

Note that φn(cr ) = cr for g = 2r , that φn(ar+1) = ar+1 and φn(a′r+1) = a′r+1 for
g= 2r+1, that φn(ct)= ct for r = 2t , and that φn(at+1)= at+1 and φn(a′t+1)= a′t+1
for r = 2t + 1.

The relator W2,g in 02
g includes Dehn twist tcr twice if g = 2r and the product

tar+1 ta′r+1
of two Dehn twists four times if g = 2r + 1. Therefore, we can apply

W1,r - and W φn
1,r -substitutions to W g

2 if g = 2r and W2,r - and W φn
2,r -substitutions to

W g
2 if g = 2r + 1. Then, for g = 2r (resp. g = 2r + 1), we denote by

Un

a relator which is obtained by applying once trivial and once φn-twisted W1,r -
(resp. W2,r -) substitutions to W2,g. For the convenience of the reader we write the
definition of the relator Un in detail. Let us consider the following word in 02

g
for j = 1, 2:

V j :=

{
(tBr

0, j
tBr

1
tBr

2
· · · tBr

r
tct )

2 if r = 2t,

(tBr
0, j

tBr
1
tBr

2
· · · tBr

r
t2
at+1

t2
a′t+1
)2 if r = 2t + 1.

Note that V1 =W1,r t−1
cr

and V2 =W2,r t−1
a′r+1

t−1
ar+1

. Then, we can write Un as follows:
If g = 2r , and therefore g = 4t, 4t + 2, then

Un := (tBg
0,2

tBg
1
tBg

2
· · · tBg

g
V1)(tBg

0,2
tBg

1
tBg

2
· · · tBg

g
V φn

1 )t−1
ag+1

t−1
a′g+1

,

and if g = 2r + 1, and therefore g = 4t + 1, 4t + 3, then

Un := (tBg
0,2

tBg
1
tBg

2
· · · tBg

g
V2tar+1 ta′r+1

)(tBg
0,2

tBg
1
tBg

2
· · · tBg

g
V φn

2 tar+1 ta′r+1
)t−1

ag+1
t−1
a′g+1

.
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Since the relator Un in 02
g is a product of t−1

ag+1
t−1
a′g+1

and positive Dehn twists, it
reduces to a positive relator of 0g, which is denoted by Ûn . This gives a genus-g
Lefschetz fibration fÛn

: XÛn
→ S2 with two disjoint (−1)-sections.

We prepare the following lemma.

Lemma 5.1. For g = 2r, 2r + 1 and r = 2t, 2t + 1, the following holds in H1(6g):

φn(Br
0, j )= Br

0, j + at · · · + a4+ a3+ na2.

φn(Br
1)= Br

1 − b1+ at + · · ·+ a4+ a3+ na2.

φn(Br
2)= Br

2 − b1+ at + · · ·+ a4+ a3+ na2.

φn(Br
3)= Br

3 − b2+ at + · · ·+ a4+ a3.

φn(Br
4)= Br

4 − b2+ at + · · ·+ a4+ a3− na2.

φn(Br
2k−1)= Br

2k−1− bk + at + · · ·+ ak+2+ ak+1, 3≤ k ≤ t.

φn(Br
2k)= Br

2k − bk + at + · · ·+ ak+2+ ak+1− ak, 3≤ k ≤ t.

If r = 2t + 1, and therefore g = 4t + 2, 4t + 3, then φn(B2t+1
2t+1 )= B2t+1

2t+1 .

Proof. We use the following well-known formula for the action of the N -th power
of the Dehn twist along a simple closed curve c on H1(6g) repeatedly (see [Farb
and Margalit 2012]):

t K
c (d)= d − Ni(d, c)c,

for an element d in H1(6g). Recall that i(ai , ai )= i(bi , bi )= 0, i(ai , b j )= 0 for
i 6= j and i(ai , bi )= 1.

First, we show the equation of φn(Br
2k−1) for 1≤ k ≤ t . From Figures 1–3, we

see that for 1≤ k ≤ t ,

i(Br
2k−1, ai )=

{
0 if 1≤ i ≤ k− 1,
−1 if k ≤ i ≤ t,

i(Br
2k−1, bi )=

{
1 if i = k,
0 if i 6= k.

Using the above mentioned formula, we get

φn(Br
2k−1)= tn

a2
ta3 ta4 · · · tat tb1 tb2 · · · tbt (B

r
2k−1)

= tn
a2

ta3 ta4 · · · tat tb1 tb2 · · · tbk−1(B
r
2k−1−bk)

= tn
a2

ta3 ta4 · · · tat tb1 tb2 · · · tbk−1(B
r
2k−1)−tn

a2
ta3 ta4 · · · tat tb1 tb2 · · · tbk−1(bk)

= tn
a2

ta3 ta4 · · · tat (B
r
2k−1)−tn

a2
ta3 ta4 · · · tat (bk).
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Therefore, from i(bk, ak)=−1 (by i(ak, bk)= 1), we have

φn(Br
2k−1)= tn

a2
ta3 ta4 · · · tat (B

r
2k−1)− tn

a2
ta3 ta4 · · · tat (bk)

= Br
2k−1+ at + · · ·+ ak+1+ ak − (bk + ak)

if 3≤ k, and

φn(Br
3)= tn

a2
ta3 ta4 · · · tat (B

r
3)− tn

a2
ta3 ta4 · · · tat (b2)

= Br
3 + at + · · ·+ a4+ a3+ na2− (b2+ na2),

φn(Br
1)= tn

a2
ta3 ta4 · · · tat (B

r
1)− tn

a2
ta3 ta4 · · · tat (b1)

= Br
1 + at + · · ·+ a4+ a3+ na2− b1.

Therefore, we obtain the required formula of φn(Br
2k−1) for 1≤ k ≤ t .

Next, we show the equation of φn(Br
2k) for 1≤ k ≤ t . From Figures 1–3, we see

that for 1≤ k ≤ t ,

i(B2t
2k, ai )=

{
0 if 1≤ i ≤ k,
−1 (k+ 1≤ i ≤ t),

i(B2t
2k, bi )=

{
1 if i = k,
0 if i 6= k,

where 1≤ i . Using this, a similar argument to φn(Br
2k−1) gives

φn(Br
2k)= tn

a2
ta3 ta4 · · · tat (B

r
2k)− tn

a2
ta3 ta4 · · · tat (bk)

= Br
2k + at + · · · ak+2+ ak+1− (bk + ak)

if 3≤ k and

φn(Br
4)= tn

a2
ta3 ta4 · · · tat (B

r
4)− tn

a2
ta3 ta4 · · · tat (b2)

= Br
4 + at + · · · a4+ a3− (b2+ na1),

φn(Br
2)= tn

a2
ta3 ta4 · · · tat (B

r
2)− tn

a2
ta3 ta4 · · · tat (b1)

= Br
2 + at + · · · a4+ a3+ na2− b1.

Therefore, we obtain the required formula of φn(Br
2k) for 1≤ k ≤ t .

Finally, we show the equation for φn(Br
0, j ). From Figures 1–3, we see that

i(B2t
0, j , ai )=−1 and i(B2t

0, j , bi )= 0. Therefore,

φn(Br
0, j )= tn

a2
ta3 ta4 · · · tat tb1 tb2 · · · tbt (B

r
0, j )= Br

0, j + at + · · ·+ a4+ a3+ na2.

Since i(B2t+1
2t+1 , ai ) = (B2t+1

2t+1 , bi ) = 0 for i = 1, 2, . . . , t , we have φn(B2t+1
2t+1 ) =

B2t+1
2t+1 , and this finishes the proof. �
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Proof of Theorem 1.2. It is sufficient to show that H1(XÛn
) = Z ⊕ Zn from

Theorem 3.10. For a set S, we denote by Z〈S〉 the Z-module generated by S.
Let

Sh
0, j := {B

h
0, j , Bh

1 , Bh
2 , . . . , Bh

h },

T h
0, j := {φn(Bh

0, j ), φn(Bh
1 ), φn(Bh

2 ), . . . , φn(Bh
h )}.

Recall that φn(ct) = ct for r = 2t and φn(at+1) = at+1 and φn(a′t+1) = a′t+1 for
r = 2t + 1. By this fact, ct = 0, a′t+1 = at+1 and a′r+1 = ar+1 in H1(6g) and
Lemma 3.4, we have

H1(XÛn
)=



H1(6g)/Z〈S4t
0,2 ∪ S2t

0,1 ∪ T 2t
0,1〉 if g= 4t,

H1(6g)/Z〈S4t+1
0,2 ∪ {a2t+1} ∪ S2t

0,2 ∪ T 2t
0,2〉 if g= 4t + 1,

H1(6g)/Z〈S4t+2
0,2 ∪ S2t+1

0,1 ∪ {at+1} ∪ T 2t+1
0,1 〉 if g= 4t + 2,

H1(6g)/Z〈S4t+3
0,2 ∪ {a2t+2} ∪ S2t+1

0,2 ∪ {at+1} ∪ T 2t+1
0,2 〉 if g= 4t + 3.

By φn(Br
2k−1) = φ(B

r
2k) = 0 and B2k−1 = B2k = 0 in H1(XÛn

) for 2 ≤ k ≤ t ,
Lemma 5.1 gives

(5) na2 = a3 = a4 = · · · = at = 0.

Using this, Br
2k−1 = 0 and φ(Br

2k−1)= 0 for 1≤ k ≤ t and Lemma 5.1, we have

(6) b1 = b2 = · · · = bt = 0.

By (5), the equation Br
0, j = 0, and Lemma 5.1, we can remove the relation

φn(Br
0, j ) = 0. Moreover, if r = 2t + 1, and therefore g = 4t + 2, 4t + 3, then

by Lemma 5.1 and B2t+1
2t+1 = 0, we can delete the relation φn(B2t+1

2t+1 )= 0.
Suppose that r = 2t (i.e., g = 4t, 4t + 1). Let us consider the equations (1)–(3)

for h = 2t . By B2t
2k−1 = B2t

2k = 0 in H1(XÛn
), we get

bk + b2t+1−k = 0, 1≤ k ≤ t.

By (6), we have

(7) b1 = b2 = · · · b2t = 0.

Using this and B2t
2k−1 = 0 for 1≤ k ≤ t , we have

ak + a2t+1−k = 0, 1≤ k ≤ t.

Therefore, by (5), we have

a1+ a2t = a2+ a2t−1 = 0;(8)

a3 = a4 = · · · = a2t−2 = 0.(9)

Note that B2t
0,1 = b1+ b2+ · · ·+ b2t and B2t

0,2 = b1+ b2+ · · ·+ b2t + a2t+1. By (7)
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(and a2t+1 = 0 if g = 4t + 1), we can delete B2t
0, j = 0 for j = 1, 2.

Suppose that r = 2t + 1 (i.e., g = 4t + 2, 4t + 3). Consider the equations (1)–(3)
for h = 2t + 1. By B2t+1

2k−1 = B2t+1
2k = 0 in H1(XÛn

), we get

bk + b2t+2−k = 0, 1≤ k ≤ t.

In particular, by B2t+1
2t+1 = at+1+ bt+1+ at+1 = 0 and at+1 = 0, we have bt+1 = 0.

By combining this with (6), we have

(10) b1 = b2 = · · · b2t+1 = 0.

Using this and B2t+1
2k−1 = 0 for 1≤ k ≤ t , we have

ak + a2t+2−k = 0, 1≤ k ≤ t.

Therefore, by (5) and the relation at+1 = 0, we have

a1+ a2t+1 = a2+ a2t = 0;(11)

a3 = a4 = · · · = a2t−1 = 0.(12)

For a similar reason to the case r = 2t , we can remove B2t+1
0, j = 0 for j = 1, 2.

Suppose that g = 2r (i.e., g = 4t, r = 2t or g = 4t + 2, r = 2t + 1). Consider
the equations (1)–(3) for h = 2r . By B2r

2k−1 = B2r
2k = 0 in H1(XÛn

), we obtain

bk + b2r+1−k = 0, 1≤ k ≤ r.

If g = 4t (resp. g = 4t + 2), then the relation (7) (resp. the relation (10)) gives

(13) b1 = b2 = · · · = b2r = 0.

Using this and B2r
2k−1 = 0 for 1≤ k ≤ r , we have

ak + a2r+1−k = 0, 1≤ k ≤ r.

By this equations and the equations (8) and (9) (resp. the equations (11) and (12))
if g = 4t (resp. g = 4t + 2), we obtain

a1+ ar = a2+ ar−1 = 0;(14)

a1+ a2r = a2+ a2r−1 = ar−1+ ar+2 = ar + ar+1 = 0;(15)

a3 = a4 = · · · = ar−2 = ar+3 = · · · = a2r−3 = a2r−2 = 0,(16)

and we can delete the relation B2r
0, j = 0 for a similar reason to the case r = 2t .

Since (14) and (15) give a2r = ar = −a1, ar+1 = a1, a2r−1 = ar−1 = −a2 and
ar+2 = a2, by (5), (13) and (16), we obtain

H1(XÛn
)= Z〈{a1, a2}〉/Z〈{na2}〉 = Z⊕Zn,

and the proof of Theorem 1.2 for g = 2r is complete.
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Suppose that g = 2r + 1 (i.e., g = 4t + 1, r = 2t , or g = 4t + 3, r = 2t + 1).
Consider the equations (1)–(3) for h = 2r + 1. By B2r+1

2k−1 = B2r
2k = 0 in H1(XÛn

),

bk + b2r+2−k = 0, 1≤ k ≤ r.

By B2r+1
2r+1 = ar+1+ br+1+ ar+1 = 0 and ar+1 = 0, we have br+1 = 0. Therefore,

if g = 4t + 1 (resp. g = 4t + 3), then the relation (7) (resp. the relation (10)) gives

(17) b1 = b2 = · · · = b2r+1 = 0.

Using this and B2r+1
2k−1 = 0 for 1≤ k ≤ r , we have

ak + a2r+2−k = 0, 1≤ k ≤ r.

By this equations, the equation ar+1 = 0 and the equations (8) and (9) (resp. the
equations (11) and (12)) if g = 4t + 1 (resp. g = 4t + 3), we obtain

a1+ ar = a2+ ar−1 = 0;(18)

a1+ a2r+1 = a2+ a2r = ar−1+ ar+3 = ar + ar+2 = 0;(19)

a3 = a4 = · · · = ar−2 = ar+1 = ar+4 = ar+5 = · · · = a2r−2 = a2r−1 = 0,(20)

and we can delete the relation B2r+1
0, j =0 for a similar reason to the case r =2t . Since

the equations (18) and (19) give a2r+1 = ar =−a1, ar+2 = a1, a2r = ar−1 =−a2

and ar+3 = a2, by (5), (17) and (20), we obtain

H1(XÛn
)= Z〈{a1, a2}〉/Z〈{na2}〉 = Z⊕Zn,

and the proof of Theorem 1.2 for g = 2r + 1 is complete. �
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TILTING MODULES OVER
AUSLANDER–GORENSTEIN ALGEBRAS

OSAMU IYAMA AND XIAOJIN ZHANG

For a finite-dimensional algebra 3 and a nonnegative integer n, we charac-
terize when the set tiltn3 of additive equivalence classes of tilting modules
with projective dimension at most n has a minimal (or equivalently, mini-
mum) element. This generalizes results of Happel and Unger. Moreover, for
an n-Gorenstein algebra 3 with n ≥ 1, we construct a minimal element in
tiltn3. As a result, we give equivalent conditions for a k-Gorenstein algebra
to be Iwanaga–Gorenstein. Moreover, for a 1-Gorenstein algebra 3 and its
factor algebra 0 = 3/(e), we show that there is a bijection between tilt13
and the set sτ -tilt 0 of additive equivalence classes of basic support τ -tilting
0-modules, where e is an idempotent such that e3 is the additive generator
of the category of projective-injective 3-modules.

1. Introduction

Tilting theory is essential in the representation theory of algebras. There are many
works (see [Assem et al. 2006; Angeleri Hügel et al. 2007; Happel 1988]) which
made the theory fruitful. One interesting topic in tilting theory is to classify tilting
modules for some given algebras. Among these, tilting modules over algebras of
large dominant dimension have gained more and more attention. For more details,
we refer to [Chen and Xi 2016; Crawley-Boevey and Sauter 2017; Nguyen et al.
2018; Iyama and Zhang 2016; Pressland and Sauter 2017; Kajita 2008].

For an algebra 3, denote by mod3 the category of finitely generated right 3-
modules. Recall that a 3-module T in mod3 is called a tilting module of finite
projective dimension if the projective dimension of T is n <∞, Exti3(T, T )= 0
holds for i ≥ 1, and there is an exact sequence 0→ 3→ T0→ · · · → Tn → 0
with Ti ∈ addT, where we use addT to denote the subcategory of mod3 consisting
of direct summands of finite direct sums of T. We say that M, N ∈ mod3 are
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additively equivalent if addM = addN. For a nonnegative integer n, let tiltn3 be
the set consisting of additive equivalence classes of tilting modules with projective
dimension at most n, and tilt3= tilt∞3 :=

⋃
n≥0 tiltn3. There is a natural partial

order on the set tilt3 defined as follows [Riedtmann and Schofield 1991; Happel and
Unger 2005; Aihara and Iyama 2012]: For T,U ∈ tilt3, T ≥U if Exti3(T,U )= 0
for all i > 0. This is equivalent to saying that T⊥⊇U⊥, where T⊥ is the subcategory
of mod3 consisting of modules M such that Exti3(T,M)= 0 for any i ≥ 1. Clearly
3 is the maximal element in tilt3, and if 3 is Iwanaga–Gorenstein, then D3 is the
minimal element in tilt3, where D is the ordinary duality. However, it is difficult
to find the minimal element in tilt3 for an arbitrary algebra 3.

For a right 3-module M, let 0→ M→ I 0(M)→ I 1(M)→ · · · be a minimal
injective resolution of M and · · · → P1(M) → P0(M) → M → 0 a minimal
projective resolution of M. Recall that an algebra 3 is called n-Gorenstein (resp.
quasi n-Gorenstein) if the projective dimension of I i (3) is less than or equal to i
(resp. i + 1) for 0≤ i ≤ n− 1 [Fossum et al. 1975; Huang 2006]. There are many
works on n-Gorenstein algebras [Auslander and Reiten 1994; Auslander and Reiten
1996; Clark 2001; Huang and Iyama 2007; Iwanaga and Sato 1996], but little is
known for the tilting modules over this class of algebras. Our first aim is to study
the existence of minimal tilting modules over this class of algebras. For a module
M ∈ mod3, we denote by �i M (resp. �−i M) the i-th syzygy (resp. cosyzygy)
of M. A special case of our first main theorem, Theorem 3.4, is the following:

Theorem 1.1 (Corollary 3.5). Let3 be a quasi n-Gorenstein algebra and 0≤ j ≤ n.
Then

(⊕ j−1
i=0 I i (3)

)
⊕�− j3 is the minimum element in tilt j3.

For example, algebras with dominant dimension at least n are n-Gorenstein. In
this case, the tilting module given in Theorem 1.1 was studied recently in [Crawley-
Boevey and Sauter 2017; Nguyen et al. 2018; Pressland and Sauter 2017] (see
Example 3.6).

Recall that a subcategory C of mod3 is called contravariantly finite if for any M
in mod3 there is a morphism CM → M with CM ∈ C such that the sequence
Hom3(−,CM)→ Hom3(−,M)→ 0 is exact over C . Dually, one can define
covariantly finite subcategories. For a subcategory D of mod3, denote by D⊥ the
subcategory consisting of modules N such that Exti3(M, N ) = 0 for i ≥ 1 and
M ∈ D . We denote this by M⊥ if D = addM. Dually, one can define ⊥D and ⊥M.

Denote by P∞(3) the subcategory consisting of3-modules with finite projective
dimension. Happel and Unger [2005, Theorem 3.3] showed that tilt3 has a minimal
element if and only if P∞(3) is contravariantly finite. It is natural to ask if there
is a similar result for tiltn3. We give a positive answer by proving the following
result, where we denote by Pn(3) the subcategory consisting of modules with
projective dimension at most n, where the equivalence of (1) and (5) for n =∞
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recovers [Happel and Unger 2005, Theorem 3.3], and the equivalence of (3) and (5)
for integer n recovers [Happel and Unger 1996, Corollary 2.3].

Theorem 1.2 (Theorem 3.1). Let3 be an algebra, and let n be∞ or a nonnegative
integer. Then the following are equivalent:

(1) tiltn3 has a minimal element.

(2) tiltn3 has the minimum element.

(3) There exists T ∈ tiltn3 such that ⊥T ⊇ Pn(3).

(4) There exists T ∈ tiltn3 such that ⊥(T⊥)= Pn(3).

(5) The subcategory Pn(3) is contravariantly finite.

For any M ∈ mod3, denote by id3M (resp. pd3M) the injective (resp. pro-
jective) dimension of M. An algebra is called Iwanaga–Gorenstein if both id33
and id3op 3 are finite. Auslander and Reiten [1994] posed a question which asks
whether 3 must be Iwanaga–Gorenstein if it is n-Gorenstein for all positive inte-
gers n. This is a generalization of the Nakayama conjecture which says that an
algebra with infinite dominant dimension is self-injective. Moreover, Auslander and
Reiten [1994, p. 25] studied the question of whether the P∞(3) is contravariantly
finite if 3 is n-Gorenstein for all positive integers n.

As a result of Theorems 1.1 and 1.2, we connect the two questions of Auslander
and Reiten above and show the following corollary which covers [Auslander and
Reiten 1994, Corollary 5.5].

Corollary 1.3 (Corollary 3.7). Let 3 be a k-Gorenstein algebra for all positive
integers k, and n a nonnegative integer. Then the following are equivalent:

(1) 3 is Iwanaga–Gorenstein with id33= id3op 3≤ n.

(2) id33≤ n.

(3) id3op 3≤ n.

(4) tilt3 has the minimum element T with pd3T ≤ n.

(5) tilt3op has the minimum element T with pd3T ≤ n.

(6) The subcategory P∞(3) is contravariantly finite and P∞(3)= Pn(3).

(7) The subcategory P∞(3op) is contravariantly finite and P∞(3op)= Pn(3
op).

It may be interesting to ask the following question for a finite-dimensional
algebra 3: Does the existence of the minimum element of tilt3 imply the existence
of a minimum element of tilt3op?

Now we turn to the classical tilting modules over 1-Gorenstein algebras and
study the connections with τ -tilting theory.

In 2014, Adachi, Iyama and Reiten introduced τ-tilting modules, see Definition 4.1,
which are generalizations of classical tilting modules from the viewpoint of mutation.
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For general details of τ -tilting theory, we refer to [Adachi et al. 2014; Demonet
et al. 2019; Iyama et al. 2014; Jasso 2015; Wei 2014; Zhang 2017b].

For an algebra 3, denote by sτ -tilt3 the set of the additive equivalence classes
of support τ -tilting 3-modules (see Definition 4.1). In [Demonet et al. 2017; Iyama
and Zhang 2016] it is shown that the functor −⊗3 0 induces a map from sτ -tilt3
to sτ -tilt0, where 0 is a factor algebra of 3. Recall that tilt13 is the set of additive
equivalence classes of classical tilting 3-modules. Our third main result is the
following.

Theorem 1.4 (Theorem 4.5). Let 3 be a 1-Gorenstein algebra and let 0 be the
factor algebra3/(e), where e is an idempotent such that adde3= add I 0(3). Then
−⊗3 0 induces a bijection from tilt13 to sτ -tilt0.

For an algebra 3, denote by #sτ -tilt3 the number of elements in the set sτ -tilt3.
As an immediate consequence, we have the following corollary. Recall from
[Demonet et al. 2019] that an algebra 3 is called τ -tilting finite if there are a finite
number of basic τ -tilting modules up to isomorphism.

Corollary 1.5 (Corollaries 4.7, 4.8 and 4.9). For each case, let e be the idempotent
such that adde3n = add I 0(3n).

(1) Let 3n = KQ be the hereditary Nakayama algebra with Q = An . Then there
are bijections

tilt13n ' sτ -tilt3n−1 ' {clusters of the cluster algebra of type An−1}.

Thus #sτ -tilt3n = (2(n+ 1))!/((n+ 2)!(n+ 1)!).

(2) Let 3n be the Auslander algebra of K [x]/(xn), let 0n−1 be the preprojective
algebra of Q = An−1 and let Sn be the symmetric group. Then there are
bijections

tilt13n ' sτ -tilt0n−1 'Sn.

Thus #sτ -tilt3n = n!.

(3) Let3n be the Auslander algebra of the hereditary Nakayama algebra KQ with
Q = An . Then there is a bijection tilt13n ' sτ -tilt3n−1. Thus 3 is τ -tilting
finite if and only if n ≤ 4.

The organization of this paper is as follows: In Section 2, we recall some
preliminaries. In Section 3, we give some equivalent conditions to the existence
of minimal elements in tiltn3 and show a Happel–Unger type theorem. More-
over, we construct minimal tilting modules for n-Gorenstein algebras and show
Theorem 1.1. In Section 4, we build a connection between classical tilting modules
over 1-Gorenstein algebras and support τ -tilting modules over factor algebras and
we show Theorem 1.4 and Corollary 1.5.
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Throughout this paper, we denote by K an algebraically closed field. All algebras
are basic connected finite-dimensional K -algebras and all modules are finitely
generated right modules. For an algebra A, we denote by modA the category of
finitely generated right A-modules. The composition of homomorphisms f : X→Y
and g : Y → Z is denoted by g f : X→ Z .

2. Preliminaries

We start with the following fundamental theorem due to Auslander and Reiten.

Theorem 2.1 [Auslander and Reiten 1991, Theorem 5.5]. Let n ≥ 0 and let 3 be a
finite-dimensional algebra. Then there exist bijections between the following objects
given by T 7→ X = ⊥(T⊥) and T 7→ Y = T⊥.

(1) T ∈ tiltn3.

(2) Contravariantly finite resolving subcategories X of mod3 contained in Pn(3).

(3) Covariantly finite coresolving subcategories Y of mod3 containing �−n(3).

Moreover, in this case, (X ,Y) is a cotorsion pair such that X ∩Y = addT, and X
consists of all X ∈mod3 such that there exists an exact sequence 0→ X→ T 0

→

· · · → T n
→ 0 with T i

∈ addT .

In the rest, a subcategory is always assumed to be full and closed under direct
sums and direct summands unless stated otherwise. For later application, we prepare
the following observation, which is a relative version of a well-known observation
(e.g., [Auslander and Smalø 1980]).

Lemma 2.2. Let C be a subcategory of mod3 which is closed under extensions,
and A a subcategory of C. Then the following conditions are equivalent.

(1) Any exact sequence 0→ A→ A′→ C→ 0 with A, A′ ∈A and C ∈ C splits.

(2) There is no exact sequence 0→ A→ A′→ C→ 0 with A ∈ indA, A′ ∈ A,
C ∈ C and A /∈ addA′.

Proof. It suffices to prove (2)⇒ (1). Assume that there exists a nonsplit exact
sequence 0→ A f

→ A′→ C→ 0 with A, A′ ∈ A and C ∈ C. Without loss of
generality, we can assume that f is in the radical of mod3.

Take an indecomposable direct summand X of A. Let ι : X→ A be the inclusion
and g = f ι. Then we have the following commutative diagram of nonsplit exact
sequences:

0 // X
g
//

ι��

A′ // C ′ //

��

0

0 // A
f
// A′ // C // 0

Since 0→ X ι
→ A→ C ′→ C→ 0 is an exact sequence, C ′ belongs to C.
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Decompose A′ = X⊕`⊕U with X /∈ addU, and write g : X → A′ = X⊕`⊕U.
Let Y 0

= X ,
Y i
= X⊕`

i
⊕U⊕(1+`+···+`

i−1),

and
gi
= g⊕`

i
⊕ 1⊕(1+`+···+`

i−1)
U : Y i

→ Y i+1.

Clearly Ker gi
= 0 and Coker gi

∈ C for any i ≥ 0.
Take m > 0 such that radm End3(X)= 0. Then the composition

h = gm−1
· · · g1g0

: X→ Y m
= X⊕`

m
⊕U⊕(1+`+···+`

m−1)

is a direct sum of morphisms 0→ X⊕`
m

and h′ : X→U⊕(1+`+···+`
m−1). Thus we

have an exact sequence

(2-1) 0→ X→U⊕(1+`+···+`
m−1)
→ Coker h′→ 0.

Since Coker h is an extension of Coker gi ’s, it belongs to C. Thus Coker h′ also
belongs to C. This is contradiction to the condition (2). �

Let C be a subcategory of mod3which is closed under extensions. A cogenerator
for C is a subcategory A of C such that, for any C ∈ C, there exists an exact sequence

0→ C→ A→ C ′→ 0

with A ∈ A and C ′ ∈ C. A cogenerator A of C is called minimal if no proper
subcategory of A is a cogenerator of C.

The following observation is a relative version of a well-known result in the
theory of (co)covers in [Auslander and Smalø 1980].

Proposition 2.3. Let C be a subcategory of mod3 which is closed under extensions.
If A is a minimal cogenerator for C, then Ext13(C,A)= 0 holds.

Proof. Since A is a minimal cogenerator for C, the conditions (1) and (2) in
Lemma 2.2 are satisfied. Otherwise, there is an exact sequence

0→ A→ A′→ C→ 0

with A ∈ indA, A′ ∈ A, C ∈ C and A /∈ addA′. Then the subcategory A′ of A
defined by

indA′ = (indA) \ {A}

is a cogenerator for C, which is a contradiction to the minimality of A.
Let A ∈ A be indecomposable. To prove Ext13(C, A) = 0, we take an exact

sequence
0→ A→ C ′→ C→ 0
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with C ∈ C. Since C ′ ∈ C, there exists an exact sequence

0→ C ′→ A′→ C ′′→ 0

with C ′′ ∈ C and A′ ∈ A. We have the following commutative diagram of exact
sequences:

0
��

0
��

0 // A // C ′ //

��

C //

��

0

0 // A // A′ //

��

X //

��

0

C ′′

��

C ′′

��

0 0

By the right vertical sequence, X belongs to C. Thus the middle horizontal sequence
splits by Lemma 2.2(1), and so the upper horizontal sequence splits, as desired. �

We need the following result on mutation of tilting modules.

Proposition 2.4 [Happel and Unger 2005; Coelho et al. 1994; Aihara and Iyama
2012]. For a basic tilting module T = X ⊕U with X indecomposable, if there is an
exact sequence 0→ X f

→U ′→ Y → 0 such that U ′ ∈ addU and f is a minimal
left (addU )-approximation of X , then V = Y ⊕U is a basic tilting module such
that V < T.

3. Minimal tilting modules and the category Pn(3)

Characterizations of existence of minimal tilting modules. Throughout this sec-
tion, let 3 be an arbitrary algebra. We focus on the properties of tilting modules in
tiltn3 and give some equivalent conditions to the existence of minimal elements in
tiltn3. More precisely, we generalize the Happel–Unger theorem stating that tilt3
has a minimal element if and only if P∞(3) is contravariantly finite (see [Happel
and Unger 2005, Theorem 3.3]). Now we connect the existence of a minimal
element in tiltn3 with the contravariantly finiteness of Pn(3) and show our main
result below. Note that the equivalence of (3) and (5) for integer n recovers [Happel
and Unger 1996, Corollary 2.3].

Theorem 3.1. Let 3 be an algebra, and let n be∞ or a nonnegative integer. Then
the following are equivalent:

(1) tiltn3 has a minimal element.

(2) tiltn3 has the minimum element.

(3) There exists T ∈ tiltn3 such that ⊥T ⊇ Pn(3).
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(4) There exists T ∈ tiltn3 such that ⊥(T⊥)= Pn(3).

(5) The subcategory Pn(3) is contravariantly finite.

To prove Theorem 3.1, we need the following result.

Proposition 3.2. Let 3 be an algebra, and let C be a resolving subcategory of
mod3 contained in P∞(3). For T ∈ C ∩ tilt3, the following conditions are
equivalent.

(1) T is a minimal element in C ∩ tilt3.

(2) T is the minimum element in C ∩ tilt3.

(3) ⊥(T⊥)= C.

(4) ⊥T ⊇ C.

(5) C ∩ T⊥ = addT.

(6) Every exact sequence 0→ T1→ T0→C→ 0 with Ti ∈ addT and C ∈ C splits.

(7) There is no monomorphism f : X → T ′ such that X is an indecomposable
direct summand of T, T ′ ∈ add(T/X) and Coker f ∈ C.

Proof. By the last part of Theorem 2.1, for any U ∈ C ∩ tilt3, we have

(3-1) ⊥(U⊥)⊆ C.

(1)⇒ (7) Assume that there exists such f : X→ T ′. Let g : X→U ′ be a minimal
left (addT/X)-approximation and Y = Coker g. Then f factors through g, and we
have a commutative diagram of exact sequences:

0 // X
f
// T ′ // Coker f // 0

X
g
// U ′ //

OO

Y //

OO

0

Thus Ker g = 0, and we have an exact sequence 0→U ′→ T ′⊕Y→Coker f → 0.
Thus Y ∈ C. This means that U = (T/X)⊕ Y is a mutation of T (Proposition 2.4)
and gives an element of C ∩ tilt3 such that T >U, a contradiction.

(7)⇒ (6) We only need to apply Lemma 2.2 for A = addT.

(6)⇒ (5) It suffices to show C ∩ T⊥ ⊆ addT. Let C0 ∈ C ∩ T⊥ and n = pd3C0.
Since T⊥ is an exact category with enough projectives addT, there exists an exact
sequence

· · ·
f2
−→ T1

f1
−→ T0

f0
−→C0→ 0

such that Ti ∈ addT and Ci = Im fi belongs to T⊥. Since C is resolving, each Ci

belongs to C. For every i > 0, we have

Exti3(Cn, T⊥)' Exti+1
3 (Cn−1, T⊥)' · · · ' Exti+n

3 (C0, T⊥)= 0.
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Thus Cn belongs to T⊥ ∩⊥(T⊥)= addT by Theorem 2.1.
Since Cn−1 ∈ C, the exact sequence 0→ Cn→ Tn−1→ Cn−1→ 0 splits by our

assumption, and hence Cn−1 belongs to addT. Repeating the same argument, we
have C0 ∈ addT, as desired.

(5)⇒ (1) Assume U ∈ C ∩ tilt3 satisfies T ≥ U. Then U ∈ C ∩ T⊥ = addT and
hence U = T.

(5)+ (7)⇒ (4) By Proposition 2.3, it suffices to show that addT is a minimal
cogenerator for C. Let C ∈C. Since (⊥(T⊥), T⊥) is a cotorsion pair by Theorem 2.1,
there exists an exact sequence 0→C→ Y→ X→ 0 with Y ∈ T⊥ and X ∈ ⊥(T⊥).
By (3-1), we have X ∈ C. Since C is extension closed, we have Y ∈ C∩T⊥ = addT
by (5). Thus addT is a cogenerator for C. Moreover, it is minimal by (7).

(4)⇒ (3) Thanks to (3-1), it suffices to show ⊥(T⊥) ⊇ C, i.e., any X ∈ C and
Y0 ∈ T⊥ satisfy Exti3(X, Y0)= 0 for all i > 0. Since T⊥ is an exact category with
enough projectives addT, there exists an exact sequence

· · ·
f2
−→ T1

f1
−→ T0

f0
−→ Y0→ 0

such that Ti ∈ addT and Yi = Im fi belongs to T⊥. For n = pd3X , by using (4),

Exti3(X, Y0)' Exti+1
3 (X, Y1)' · · · ' Exti+n

3 (X, Yn)= 0

as desired.

(3)⇒ (2) Let U∈ C∩tilt3. By (3-1), we have ⊥(U⊥)⊆ C=⊥(T⊥). Thus U⊥⊇ T⊥

by Theorem 2.1.

(2)⇒ (1) This is clear. �

Now we prove the following theorem, where the equivalence of (3) and (5)
recovers [Happel and Unger 1996, Theorems 2.1 and 2.2].

Theorem 3.3. Let 3 be an algebra, and let C be a resolving subcategory of mod3

contained in P∞(3). Then the following are equivalent:

(1) C ∩ tilt3 has a minimal element.

(2) C ∩ tilt3 has the minimum element.

(3) There exists T ∈ C ∩ tilt3 such that ⊥T ⊇ C.

(4) There exists T ∈ C ∩ tilt3 such that ⊥(T⊥)= C.

(5) The subcategory C is contravariantly finite.

Proof. (1)⇔ (2)⇔ (3)⇔ (4) These are shown in Proposition 3.2.

(4)⇔ (5) This is well known (see Theorem 2.1). �

We are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. One can obtain the assertion by putting C = Pn(3) in
Theorem 3.3. �

Minimal tilting modules of Auslander–Gorenstein algebras. In this section, we
construct a class of minimal tilting modules for n-Gorenstein algebras. As a result,
we show some equivalent conditions for an n-Gorenstein algebra to be Iwanaga–
Gorenstein, which gives a partial answer to a question of Auslander and Reiten
mentioned before.

Now we have the following result which gives a method in constructing minimal
tilting modules with finite projective dimension.

Theorem 3.4. For an algebra 3 and a fixed integer n ≥ 0, assume pd3 I i (3)≤ n
for any i , 0 ≤ i ≤ n − 1 and pd3�

−n3 ≤ n. Let T =
(⊕n−1

i=0 I i (3)
)
⊕�−n3.

Then we have the following:

(1) T is a tilting module with projective dimension at most n.

(2) T is the minimum element in tiltn3.

(3) Pn(3) is contravariantly finite and ⊥(T⊥)= Pn(3).

Proof. We show the assertion (1) step by step.
• By our assumptions, pd3T ≤ n holds.
•We prove Exti3(X,T )=0 for any i≥1 and X ∈Pn(3). This implies Exti3(T,T )=0
for i ≥ 1.

Clearly Exti3(X, I j (3))= 0 holds for i ≥ 1 since I j (3) is injective. Moreover
Exti3(X, �

−n3)= Exti+n
3 (X,3)= 0 holds for i ≥ 1 since X ∈ Pn(3).

• The following exact sequence gives the desired sequence in the definition of tilting
modules:

0→3→ I 0(3)→ · · · → I n−1(3)→�−n3→ 0.

(2) It suffices to show that T ∈U⊥ holds for any tilting module U with pd3U ≤ n.
This is a special case of the statment above.

(3) This follows from Theorem 3.1. �

Immediately, we have the following corollary.

Corollary 3.5. Let 3 be a quasi n-Gorenstein algebra with n ≥ 0. Then tiltn3 has
the minimum element

(⊕n−1
i=0 I i (3)

)
⊕�−n3.

Proof. This is immediate from Theorem 3.4 �

Recall that an algebra 3 is called of dominant dimension at least n if I i (3)

is projective for 0 ≤ i ≤ n − 1. Then we have the following immediate from
Theorem 3.4.
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Example 3.6. Let 3 be an algebra with dominant dimension at least n ≥ 0 and let
T = I 0(3)⊕�−n3. Then T is the minimum element in tiltn3, which was studied
recently in [Crawley-Boevey and Sauter 2017; Marczinzik 2018; Nguyen et al.
2018; Pressland and Sauter 2017]. The equality ⊥(T⊥)= Pn(3) in Theorem 3.4(3)
was observed in [Marczinzik 2018, 2.4].

Now we give some applications to a question of Auslander and Reiten which says
that if3 is n-Gorenstein for all nonnegative integer n then3 is Iwanaga–Gorenstein.
This is a generalization of the famous Nakayama conjecture. We have the following:

Corollary 3.7. Let 3 be a k-Gorenstein algebra for all positive integers k, and n
a nonnegative integer. Then the following are equivalent:

(1) 3 is Iwanaga–Gorenstein with id33= id3op 3≤ n.

(2) id33≤ n.

(3) id3op 3≤ n.

(4) tilt3 has the minimum element T with pd3 T ≤ n.

(5) tilt3op has the minimum element T with pd3op T ≤ n.

(6) The subcategory P∞(3) is contravariantly finite, and P∞(3)= Pn(3).

(7) The subcategory P∞(3op) is contravariantly finite, and P∞(3op)= Pn(3
op).

Proof. (1)⇒ (2) is clear, (2)⇔ (3) follows from [Auslander and Reiten 1994,
Corollary 5.5]. Hence (1)⇔ (2)⇔ (3) holds. (2)⇔ (4) follows from Corollary 3.5.
(4)⇔ (6) follows from [Happel and Unger 2005, Theorem 3.3] (see Theorem 3.1).
Dually, (3)⇔ (5)⇔ (7) holds. �

We give an example to show the existence and the constructing of minimal tilting
modules.

Example 3.8. Let 3= KQ/I be an algebra with the quiver Q:

1 a1
−→ 2 a2

−→· · ·
an−1
−−→ n an

−→ n+ 1

and I = Rad2KQ. Then:

(1) The global dimension of 3 is n and P(i)= I (i + 1) for 1≤ i ≤ n

(2) The minimal injective resolution of 3 is

0→3→
(⊕n+1

i=2
I (i)

)
⊕ I (n+ 1)→ I (n)→ · · · → I (1)→ 0.

Hence 3 is n-Gorenstein.

(3) The tilting module T j =
(⊕n+1

i=2 I (i)
)
⊕S(n− j+1) is of projective dimension j

for 0≤ j ≤ n and T j is a minimal element in the set tilt j3.
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The category Pn(3)
⊥. Since Pn(3) is a resolving subcategory of mod3, it is very

natural to study the corresponding coresolving subcategory Pn(3)
⊥. Clearly the

subcategory
Y1

n (3)= add�−n(mod3)

is contained in Pn(3)
⊥ and satisfies ⊥Y1

n (3)=Pn(3). Auslander and Reiten [1994,
Theorem 1.2] proved that Y1

n (3) is always covariantly finite. Moreover they proved
that Y1

i (3) is extension closed (or equivalently, coresolving) for every 1 ≤ i ≤ n
if and only if 3 is quasi n-Gorenstein [Auslander and Reiten 1994, Theorem 2.1].
For a more general class of algebras, it is natural to consider the extension closure
of Y1

n (3).
For a subcategory C of mod3, denote by C ∗m the subcategory of mod3 con-

sisting of all X ∈mod3 having a filtration X = X0 ⊇ X1 ⊇ · · · ⊇ Xm = 0 such that
X i/X i+1 ∈ C . Denote by �−n(mod3) the subcategory consisting of the modules
of the form �−nC ⊕ I for all C in mod3 and injective modules I. (Note that they
are not necessarily closed under direct summands.) Now we define subcategories by

Ym
n (3)= add(�−n(mod3)∗m) and Yn(3)=

⋃
m≥0

Ym
n (3).

We have the following observations.

Proposition 3.9. Let 3 be an algebra and n a nonnegative integer.

(1) Ym
n (3) is a covariantly finite subcategory for every m> 0 such that ⊥Ym

n (3)=

Pn(3).

(2) Yn(3) is a coresolving subcategory such that ⊥Yn(3)= Pn(3).

Proof. Clearly ⊥Yn(3) and ⊥Ym
n (3) coincide with ⊥Y1

n (3)= Pn(3). For (1), we
refer to [Chen 2009]. The assertion (2) is clear. �

As a consequence, we have the following observations.

Proposition 3.10. For an algebra 3, consider the following five conditions:

(1) The subcategory Pn(3) is contravariantly finite.

(2) Yn(3) is covariantly finite.

(3) Ym
n (3) is closed under extensions for some m > 0.

(4) Yn(3)= Ym
n (3) holds for some m > 0.

(5) Y1
n (3) is closed under extensions.

Then we have (5)⇒ (4)⇔ (3)⇔ (2)⇒ (1).

Proof. (5)⇒ (3) We may choose m = 1.

(3)⇒ (2) Assume that Ym
n (3) is extension closed. Then Yn(3)= Ym

n (3). This is
covariantly finite by Proposition 3.9(1).
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(2)⇒ (4) Let ` be the Loewy length of 3, S = 3/ rad3 and S→ Y be a left
Yn(3)-approximation of S. Then Y belongs to Ym

n (3) for some m > 0. We claim
Yn(3)= Ym`

n (3).
Since any X ∈mod3 belongs to (addS)∗`, the Horseshoe-type Lemma [Auslander

and Reiten 1991, Proposition 3.6] shows that X has a left Yn(3)-approximation
X→Y with Y ∈ (addY )∗`⊆Ym`

n (3). If X ∈Yn(3), then f is a split monomorphism.
Thus X ∈ Ym`

n (3) holds.

(4)⇒ (3) This is clear since Yn(3) is extension closed.

(2)⇒ (1) By Proposition 3.9(2), Yn(3) is a covariantly finite coresolving subcate-
gory such that ⊥Yn(3)= Pn(3). By [Auslander and Reiten 1992, Lemma 3.3(a)],
Pn(3) is contravariantly finite. �

We should remark that (5) is not equivalent to (2) in Proposition 3.10. We give
an example to show this. However, we do not know whether (2) is equivalent to (1).

Example 3.11. Let 3 be a local algebra with Loewy length 2. Then Y1
1 (3) =

add{K ,D3}. Thus it is closed under extensions if and only if 3 is self-injective.
On the other hand, Y2

1 (3) = mod3 holds, and hence Proposition 3.10(3) is
satisfied. Moreover, tilt13 has a minimal element 3, and P1(3) = add3 is
contravariantly finite.

4. A bijection between classical tilting modules and support τ -tilting modules

Throughout this section,3 is a 1-Gorenstein algebra and e is an idempotent such that
adde3=add I 0(3) unless stated otherwise. Denote by 0=3/(e) the factor algebra
of 3. We mainly focus on the bijection between classical tilting modules over a
1-Gorenstein algebra 3 and support τ -tilting modules over the factor algebra 0.

Now let 3 be an arbitrary algebra. Denote by τ the AR-translation and denote
by |N | the number of nonisomorphic indecomposable direct summands of a 3-
module N. Firstly, we recall the definition of support τ -tilting modules in [Adachi
et al. 2014].

Definition 4.1. (1) We call N ∈mod3 τ -rigid if Hom3(N , τN )= 0.

(2) We call N ∈mod3 τ -tilting if N is τ -rigid and |N | = |3|.

(3) We call N ∈mod3 support τ -tilting if there exists an idempotent e of 3 such
that N is a τ -tilting (3/(e))-module.

The following property is also needed for the main result in this section.

Lemma 4.2 [Adachi et al. 2014]. For an algebra 3, classical tilting 3-modules
are precisely faithful support τ -tilting 3-modules.

Now we are in a position to state the following properties of tilting modules over
1-Gorenstein algebras.
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Lemma 4.3. Let3 be a 1-Gorenstein algebra, and let e be an idempotent such that
adde3= add I 0(3).

(1) Every classical tilting 3-module T satisfies e3 ∈ addT .

(2) Every support τ -tilting3-module M satisfying e3∈ addM is a classical tilting
module.

Proof. (1) Since T is a classical tilting module, by Lemma 4.2 T is faithful, and
hence any projective module is cogenerated T. Then we get that e3 is a direct
summand of T since it is injective.

(2) Since 3 is 1-Gorenstein, then 3 can be embedded in add3e3, and hence 3 can
be embedded in add3M. Then M is faithful, and by Lemma 4.2, M is a classical
tilting module. �

For an algebra3 and U ∈mod3, denote by sτ -tiltU3 the set of all M ∈ sτ -tilt3
satisfying U ∈ addM . Denote by U⊥0 the subcategory consisting of modules M
such that Hom3(U,M)= 0. The following theorem from [Jasso 2015] is essential
to the main result in this section.

Theorem 4.4. Let A be an algebra and let U be a basic τ -rigid A-module. Let
T be the Bongartz completion of U, B = EndA(T ) and C = B/(eU ), where eU

is the idempotent corresponding to the projective B-module HomA(T,U ). Then
there is a bijection φ : sτ -tiltU A → sτ -tiltC via M → HomA(T, f M), where
0→ t M→ M→ f M→ 0 is the canonical sequence according to the torsion pair
(FacU,U⊥0).

Recall that tilt13 is the set of additive equivalence classes of classical tilting
3-modules. Now we are in a position to show our main result in this section.

Theorem 4.5. Let 3 be a 1-Gorenstein algebra and 0 = 3/(e), where e is an
idempotent such that adde3= add I 0(3). Then the tensor functor −⊗3 0 induces
a bijection from tilt13 to sτ -tilt0.

Proof. Let U = e3. Then tilt13 = sτ -tiltU3 holds by Lemma 4.3. On the other
hand, the Bongartz completion of U is nothing but T = 3. Then End3(T ) = 3
and e = eU hold in Theorem 4.4, and we get a bijection φ from tilt13 to sτ -tilt0.

In the following we show −⊗3 0 = φ as a map. Note that U = e3, so the
canonical sequence of T ′ ∈ tilt13 according to the torsion pair (FacU,U⊥0) is

0→ T ′(e)→ T ′→ T ′/T ′(e)→ 0.

Then by Theorem 4.4, φ(T ′) = Hom3(3, T ′/T ′(e)) ' T ′/T ′(e) ' T ′ ⊗3 0, so
φ =−⊗3 0 as a map. �

To give some applications of Theorem 4.5, we fix the following notation.
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Notation 4.6. Let 3n be the Auslander algebra of K [x]/(xn) and let 0n−1 be the
preprojective algebra of type An−1. Then we have the following:

(1) 3n is given by the quiver

1
a1
// 2

a2
//

b2

oo 3
a3
//

b3

oo · · ·

an−2
//

b4

oo n− 1
an−1

//

bn−1

oo n
bn

oo

with relations a1b2 = 0 and ai bi+1 = bi ai−1 for any 2≤ i ≤ n− 1.

(2) 0n−1 is given by the quiver

1
a1
// 2

a2
//

b2

oo 3
a3
//

b3

oo · · ·

an−2
//

b4

oo n− 1
bn−1

oo

with relations a1b2=0, an−2bn−1=0 and ai bi+1=bi ai−1 for any 2≤ i ≤n−2.

In the rest of this section, for an algebra 3n , we always assume that e is the
idempotent such that adde3n=add I 0(3n). Applying Theorem 4.5 to the Auslander
algebras of K [x]/(xn), we get the following corollary which recovers the results in
[Mizuno 2014; Iyama and Zhang 2016].

Corollary 4.7. Let 3n be the Auslander algebra of K [x]/(xn), let 0n−1 be the
preprojective algebra of Q = An−1 and let Sn be the symmetric group. Then there
are bijections

tilt13n ' sτ -tilt0n−1 'Sn.

Thus #sτ -tilt3n = n!.

Proof. It is not difficult to show that 0n−1 ' 3n/(e) by Notation 4.6. Then by
Theorem 4.5, tilt13n ' sτ -tilt0n−1 holds. On the other hand, sτ -tilt0n−1 ' Sn

holds by [Mizuno 2014, Theorem 0.1]. We are done. �

Recall that an algebra is called τ -tilting finite if there are a finite number of
basic τ -tilting modules up to isomorphism. Applying Theorem 4.5 to the Auslander
algebra of a Nakayama hereditary algebra, we have the following corollary.

Corollary 4.8. Let 3n be the Auslander algebra of the Nakayama hereditary alge-
bra KQ with Q = An . Then there is a bijection tilt13n ' sτ -tilt3n−1. Thus 3 is
τ -tilting finite if and only if n ≤ 4.

Proof. It is not difficult to show that3n/(e)'3n−1. Then by Theorem 4.5, tilt3n'

sτ -tilt3n−1. On the other hand, it was shown in [Kajita 2008] that 3n has a finite
number of classical tilting modules if and only if n≤ 5. Then the assertion holds. �

For more details of τ -rigid modules over Auslander algebras, we refer to [Zhang
2017a]. Recall from [Iyama 2011, Proposition 1.17] that a hereditary algebra is
1-Gorenstein if and only if it is a Nakayama algebra. Now we have the following
corollary.
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Corollary 4.9. Let 3n = KQ be the Nakayama hereditary algebra with Q = An .
Then there are bijections

tilt13n ' sτ -tilt3n−1 ' {clusters of the cluster algebra of type An−1}.

Thus #sτ -tilt3n = (2(n+ 1))!/((n+ 2)!(n+ 1)!).

Proof. A straight calculation shows that 3n−1 '3n/(e). Then by Theorem 4.5 and
[Kajita 2008, Theorem 1],

tilt13n ' sτ -tilt3n−1 and #sτ -tilt3n = (2(n+ 1))!/((n+ 2)!(n+ 1)!).

By [Adachi et al. 2014, Theorem 0.5] and [Buan et al. 2006, Theorem 4.5], one
gets the second bijection. �
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MAXIMAL SYMMETRY AND
UNIMODULAR SOLVMANIFOLDS

MICHAEL JABLONSKI

Recently, it was shown that Einstein solvmanifolds have maximal symmetry
in the sense that their isometry groups contain the isometry groups of any
other left-invariant metric on the given Lie group. Such a solvable Lie group
is necessarily nonunimodular. In this work we consider unimodular solv-
able Lie groups and prove that there is always some metric with maximal
symmetry. Further, if the group at hand admits a Ricci soliton, then it is the
isometry group of the Ricci soliton which is maximal.

1. Introduction

In this work, we restrict ourselves to the setting of Lie groups with left-invariant
metrics.

Definition 1.1. Let G be a Lie group. A left-invariant metric g on G is said to
be maximally symmetric if given any other left-invariant metric g′, there exists a
diffeomorphism φ ∈Diff(G) such that

Isom(M, g′)⊂ Isom(M, φ∗g)= φ Isom(M, g)φ−1.

We say G is a maximal symmetry space if it admits a metric of maximal symmetry.

Although our primary interest is in solvable Lie groups with left-invariant metrics,
we briefly discuss the more general setting of Lie groups. For G compact and
simple, we have that Isom(G)0, the connected component of the identity, for any
left-invariant metric, can be embedded into the isometry group of the bi-invariant
metric [Ochiai and Takahashi 1976]. This does not quite say that compact simple
Lie groups are maximal symmetry spaces, but it is close.

In the setting of noncompact semisimple groups, one does not have a bi-invariant
metric, but there is a natural choice which plays the role of the bi-invariant metric
and similar results are known, see [Gordon 1980]; note the work of Gordon actually

This work was supported by a grant from the Simons Foundation (#360562, MJ) and NSF grant
DMS-1612357.
MSC2010: 22E25, 53C25, 53C30.
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goes beyond the Lie group setting and considers a larger class of homogeneous
spaces with transitive reductive Lie group and studies their isometry groups.

If S is a nilpotent or completely solvable unimodular group, then it is a maximal
symmetry space. Although not stated in this language, this is a result of Gordon
and Wilson [1988]; see Section 2 below for more details. Furthermore, when such
a Lie group admits a Ricci soliton, the soliton metric has the maximal isometry
group [Jablonski 2011].

The nonunimodular setting for completely solvable groups is not as clean. In
special circumstances these groups can and do have maximal symmetry, e.g., if
a solvable group admits an Einstein metric, then it is a maximal symmetry space
and the Einstein metric actually has the largest isometry group; see [Gordon and
Jablonski 2015] for more details. However, it is known that not all nonunimodular,
completely solvable groups can be maximal symmetry spaces, see Example 1.6 of
[Gordon and Jablonski 2015]. For more on the subtleties of the maximal symmetry
question in the nonunimodular setting, see the forthcoming work [Epstein and
Jablonski 2018].

Our main result is for unimodular solvable Lie groups.

Theorem 1.2. Let R be a simply connected, unimodular solvable Lie group. Then R
is a maximal symmetry space.

Corollary 1.3. Let R be a simply connected, unimodular solvable Lie group which
admits a Ricci soliton metric. Then said Ricci soliton has maximal symmetry among
R-invariant metrics.

The strategy for proving both results is to reduce to the setting of completely
solvable groups, where the answer is immediate. To do this, we start with a solvable
group R, we modify a given initial metric until we obtain a metric whose isometry
group contains a transitive solvable S which is completely solvable. Our main
contribution, then, is to prove a uniqueness result for which S can appear; up to
isomorphism only one can and does appear. This uniqueness result is a consequence
of the following, which is of independent interest; see Lemma 4.3. (Here we use
the language of [Gordon and Wilson 1988].)

Lemma. Any modification of a completely solvable group is necessarily a normal
modification.

It seems noteworthy to point out that our work actually shows that any solvable
Lie group is associated to a unique completely solvable group (Theorem 4.7) in the
same way that type R groups have a well defined, unique nilshadow, cf. [Auslander
and Green 1966].

In the last section we give a concrete description of the completely solvable
group associated to any solvable group S in terms of S and the derivations of its
Lie algebra.
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Finally, we observe that the choices made throughout our process allow us
to choose our diffeomorphism φ from Definition 1.1 to be a composition of an
automorphism of R together with an automorphism of its associated completely
solvable group S. In the case that R= S is completely solvable, the diffeomorphism
which conjugates the isometry groups can be chosen to be an automorphism. It
would be interesting to know whether or not this is true in general.

2. Preliminaries

In this section, we recall the basics on isometry groups for (unimodular) solvmani-
folds from the foundational work of Gordon and Wilson [1988]. Throughout, our
standing assumption is that our solvable groups are simply connected. We begin
with a general result for Lie algebras.

Recall that every Lie algebra has a unique, maximal solvable ideal, called the
radical. A (solvable) Lie algebra g is called completely solvable if adX : g→ g has
only real eigenvalues for all X ∈ g. We have the following.

Proposition 2.1. Given any Lie algebra g there exists a unique maximal ideal s
which is completely solvable.

Remark 2.2. This completely solvable ideal is contained in the radical, but gener-
ally they are not equal. Notice that the nilradical of g is contained in s and so, as
with the radical, s is trivial precisely when g is semisimple.

Proof of proposition. As any solvable ideal is a subalgebra of the radical of g, it
suffices to prove the result in the special case that g is solvable. The result follows
upon showing that the sum of two such ideals is again an ideal of the same type. As
the sum of ideals is again an ideal, we only need to check the condition of complete
solvability.

Let g be a solvable Lie algebra and s1 and s2 be completely solvable ideals of g.
We will show that s1+s2 is again completely solvable. Observe that for any ideal s,
the eigenvalues of ad X |s are real if and only if the eigenvalues of ad X |g are real,
as we have only introduced extra zero eigenvalues.

The eigenvalues of ad X : s→ s do not change if we extend ad X to a map on
s⊗C. By Lie’s theorem, we may realize ad s as a subalgebra of upper triangular
matrices and so the eigenvalues of ad(X1+X2) are sums of eigenvalues of ad X1 and
ad X2. Taking X1 ∈ s1 and X2 ∈ s2, we see that s1+ s2 is completely solvable. �

Isometry groups and modifications. In [Gordon and Wilson 1988], the authors set
about the job of giving a description of the full isometry group of any solvmanifold.
Given any Lie group R with left-invariant metric, one can build a group of isometries
as follows: let C denote the set of orthogonal automorphisms of r, then R oC is a
subgroup of the isometry group. We call this group the algebraic isometry group
and denote it by AlgIsom(R, g).
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For R nilpotent, this gives the full isometry group [Gordon and Wilson 1988,
Corollary 4.4]. However, in general, the isometry group Isom(R, g) will be much
more. A good example of this is to look at a symmetric space of noncompact type.

So to understand the general setting, Gordon and Wilson detail a process of
modifying the initial solvable group R to one with a “better” presentation R′ called a
standard modification of R — this is another solvable group of isometries which acts
transitively. The modification process ends after (at most) two normal modifications
with the solvable group R′′ in so-called standard position. See [loc. cit., Section 3]
for details.

To illustrate why this process is nice, we present the following result in the case
of unimodular, solvable Lie groups.

Lemma 2.3. Let R be a unimodular solvable Lie group with left-invariant metric g.
Then Isom(R, g) = AlgIsom(R′′, g) = C n R′′ where R′′ is the solvable group in
standard position inside Isom(R, g) and C consists of orthogonal automorphisms
of r′′.

This follows from the following facts proven in Theorems 3.1, 4.2, and 4.3 of
[Gordon and Wilson 1988].

Proposition 2.4. If there is one transitive solvable Lie group of isometries which is
unimodular, then all transitive solvable groups of isometries are unimodular.

Proposition 2.5. If R is solvable, unimodular, and in standard position, then the
isometry group is the algebraic isometry group.

Proposition 2.6. Any almost simply-transitive solvable group of isometries is a
modification of one in standard position. Completely solvable groups are always in
standard position.

Regarding normal modifications, we record the following useful facts here.

Lemma 2.7. For solvable Lie groups R and S in a common isometry group, R
being a normal modification of S implies S is a normal modification of R.

This follows immediately from the description of normal modifications given
in Proposition 2.4 of [Gordon and Wilson 1988]. This will be used in the sequel
when S is completely solvable. Such S are in standard position in the isometry
group and any modification R is a normal modification (see Lemma 4.3), so we
see that there exists an abelian subalgebra t of the stabilizer subalgebra which
normalizes both r and s such that s⊂ rot and r⊂ sot; cf. Theorem 3.1 of [Gordon
and Wilson 1988]. As such, we have the following.

Lemma 2.8. For s a completely solvable algebra in the isometry algebra and r a
modification of s, we have [s, r] ⊂ s∩ r.
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Transitive groups of isometries. The following technical lemma will be needed later.

Lemma 2.9. Consider a solvable Lie group with left-invariant metric (R1, g).
Let K denote the orthogonal automorphisms of R1; this is a subgroup of the isotropy
group which fixes e ∈ R1. Let R2 be a subgroup of isometries satisfying k+ r2 ⊃ r1,
then R2 acts transitively.

Proof. As K fixes e ∈ R1 and k+ r2 ⊃ r1, we see that the orbit R2 · e has the same
dimension as R1= R1 ·e. But the orbit R2 ·e is then an open, complete submanifold
of the connected manifold R1, hence R2 acts transitively; cf. [Jablonski 2015b,
Lemma 3.8]. �

3. Proof of main result in the special case of
completely solvable and unimodular groups

Our general strategy is to reduce to the case where the group is completely solvable
and so we begin here. Let S be unimodular and completely solvable. For the sake
of consistency throughout the later sections, we write R = S in this section.

Theorem 3.1. Let S be a simply connected, unimodular, completely solvable Lie
group. Then S is a maximal symmetry space.

This theorem is an immediate consequence of the following result of Gordon
and Wilson, as we see below.

Theorem 3.2 (Gordon and Wilson). Let S be a simply connected, unimodular,
completely solvable Lie group with left-invariant metric g. Then Isom(S, g)= SoC ,
where C = Aut(s)∩ O(g).

Remark. In the above, we have abused notation as we are viewing C as a subgroup
of Aut(S). This is okay as S being simply connected gives that the action of C on s

lifts to an action on S.

As C <Aut(S) is a closed subgroup of O(g), it is compact. Choose any maximal
compact subgroup K of Aut(S) containing C and an inner product g′ on s so that K
acts orthogonally. Now we have

Isom(S, g) < Isom(S, g′)

To see that S is indeed a homogeneous maximal symmetry space, we only need to
compare isometry groups where C = K is a maximal compact subgroup of Aut(S).

Let g1 and g2 be two left-invariant metrics with isometry groups S o K1 and
S o K2, respectively, such that K1 and K2 are maximal compact subgroups of
automorphisms. As maximal compact subgroups are all conjugate, there exists
φ ∈ Aut(S) such that K1 = φK2φ

−1 and hence

Isom(S, g1)= φ Isom(S, g2)φ
−1
= Isom(S, φ∗g2).
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This shows that unimodular, completely solvable Lie groups are indeed homoge-
neous maximal symmetry spaces.

4. Proof of main result for general solvable, unimodular groups

To prove this result, we start by adjusting our metric so as to enlarge the isometry
group to one which is the isometry group of a left-invariant metric on a completely
solvable, unimodular group. Then we show that the completely solvable group
obtained is unique up to conjugation and use this to prove that there is one largest
isometry group for R up to conjugation.

Enlarging the isometry group to find some completely solvable group.

Proposition 4.1. Let R be a simply connected, unimodular solvmanifold with left-
invariant metric g. There exists another left-invariant metric g′ such that

(i) Isom(R, g) < Isom(R, g′), and

(ii) Isom(R, g′) contains a transitive, completely solvable group S.

Proof of Proposition 4.1. From the work of Gordon and Wilson (see Lemma 2.3),
we have the existence of a transitive, solvable subgroup R′′ < Isom(R, g) such that

Isom(R, g)= AlgIsom(R′′, g)= C n R′′,

where C consists of orthogonal automorphisms of r′′. Here R′′ is the group in
standard position in Isom(R, g).

There exists a maximal compact subgroup K of Aut(R′′) containing C . Choose
any inner product g′ on r′′ so that K consists of orthogonal automorphisms. Then
we immediately see that Isom(R′′, g′) > K n R′′. Applying Lemma 2.9, we see
that R acts transitively by isometries on (R′′, g′) and so this new left-invariant
metric g′ on R′′ gives rise to a left-invariant metric on R. This choice of g′ satisfies
part (i).

To finish, we show that Isom(R, g′) contains a completely solvable group S
which acts transitively. Consider the group Ad(R′′) as a subgroup of Aut(R′′).
This group is a normal, solvable subgroup and so is a subgroup of the radical
Rad(Aut(R′′)) of Aut(R′′).

As Rad(Aut(R′′)) is an algebraic group, it has an algebraic Levi decomposition

Rad(Aut(R′′))= M n N,

where M is a maximal reductive subgroup and N is the unipotent radical (see
[Mostow 1956]). Furthermore, the group M is abelian and decomposes as M =
MK MP , where MK is a compact torus and MP is a split torus. As maximal compact
subgroups are all conjugate and Rad(Aut(R′′)) does not change under conjugation,
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we may assume, after possibly changing M , that MK < K. So given X ∈ r′′, we
may write

ad X = K X + PX + NX ,

where K X ∈ Lie MK , PX ∈ Lie MP , and NX ∈ n = Lie N. Note, K X has purely
imaginary eigenvalues while PX has real eigenvalues.

Now define the set s⊂ r′′oLie MK ⊂ Lie Isom(R′′, g′) as

s := {X − K X | X ∈ r′′}.

Since the K X all commute, the nilradical of r′′ is contained in s, and derivations
of r′′ are valued in the nilradical, we see that s is a solvable Lie algebra.

Note that s is completely solvable (this follows as in the proof of Proposition 2.1)
and S acts transitively (via Lemma 2.9). �

As completely solvable groups are always in standard position (Proposition 2.6),
we see that R is a modification of the group S and that

Isom(R, g) < Isom(R, g′)= Isom(S, g′)= S oC,

where C is the compact group of orthogonal automorphisms of s, relative to g′.
Let K denote a maximal compact group of automorphisms of s and g′′ an inner
product on s such that Isom(S, g′′)= SoK. As R⊂ SnC ⊂ SnK acts transitively
and isometrically on (S, g′′), it picks up a left-invariant metric g′′ such that

Isom(R, g) < Isom(R, g′′).

In this way, we have found an isometry group Isom(R, g′′) which is a maximal
isometry group for S and so by Theorem 3.1 cannot be any larger.

This is a reasonable candidate for maximal isometry group for R; we verify this
in the sequel.

The uniqueness of S. The group S, constructed above, depends on several choices
made based on various initial and chosen metrics. More precisely, one starts with
metric g, makes two modifications to obtain the group R′′, then changes the metric
to some g′ to extract the group S.

If one were to start with a different metric h on R, then R′′ would certainly be
different and so it is unclear, a priori, how the resulting S for h would compare to
the group S built from the other metric g. Surprisingly, they must be conjugate via
Aut(R).

Proposition 4.2. There exists a maximal compact subalgebra k of Der(r) such
that s is the maximal completely solvable ideal of ro k.

Before proving this proposition, we use it to show that any two groups S con-
structed from R are conjugate via Aut(R).
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Let g and h be two different metrics on R with associated completely solvable
algebras sg and sh , respectively. Let kg and kh be the compact algebras as in
Proposition 4.2 for g and h, respectively. As the maximal compact subgroup of a
group is unique up to conjugation, we have some φ ∈Aut(R) such that kg =φkhφ

−1.
This implies

φshφ
−1
⊂ roφkhφ

−1
= ro kg.

As φshφ
−1 is completely solvable and of the same dimension as the maximal

completely solvable sg, they must be equal; cf. Proposition 2.1.
We now prove Proposition 4.2.

Lemma 4.3. Let s be a completely solvable Lie algebra with inner product. Any
modification of s (in its isometry algebra) is a normal modification.

Remark 4.4. In the special case of nilpotent Lie algebras, this result was already
known [Gordon and Wilson 1988, Theorem 2.5]. Building on that result, we extend
it to all completely solvable groups.

Proof. Let r= (id+φ)s be a modification of s with modification map φ : s→ Nl(s),
where Nl(s) is the set of skew-symmetric derivations of s; cf. [Gordon and Wilson
1988, Proposition 3.3]. To show this is a normal modification, it suffices to show
[s, s] ⊂ Kerφ by Proposition 2.4 of [Gordon and Wilson 1988].

Denote the nilradical of s by n(s). As every derivation of s takes its value in n(s),
we can decompose s= a+ n(s) where a is annihilated by Nl(s). As φ is linear, to
show [s, s] ⊂ Kerφ, it suffices to show [a, a], [a, n(s)], [n(s), n(s)] ⊂ Kerφ.

Take X, Y ∈ a. By the construction of a and Proposition 2.4 (i) of [Gordon and
Wilson 1988], we have

[X, Y ] = φ(X)Y −φ(Y )X + [X, Y ] = [φ(X)+ X, φ(Y )+ Y ] ∈ Kerφ.

Now consider X ∈ a and Y ∈ n(s). As above, the following is contained in Kerφ:

[φ(X)+ X, φ(Y )+ Y ] = φ(X)Y + [X, Y ],

that is, ad(φ(X)+ X) : n(s)→ Kerφ.
Since every derivation of s takes its image in n(s), and r ⊂ Nl(s)n s, we see

that n(s) is stable under D=ad(φ(X)+X)=φ(X)+ad X. Denoting the generalized
eigenspaces of D on n(s)C by Vλ, we have

n(s)=
⊕

(Vλ⊕ Vλ̄)∩ n(s).

Each summand is invariant under both φ(X) and ad X as these commute. Further, if
λ=a+bi , then on Vλ we have φ(X)2=−b2 Id and ad X can be realized as an upper
triangular matrix whose diagonal is a Id. Observe that Ker D=Kerφ(X)∩Ker ad X,
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so if b 6=0, then we see that D is nonsingular on Vλ and Vλ̄. This implies Vλ=D(Vλ)
and Vλ̄ = D(Vλ̄), which implies

Im(ad X |(Vλ⊕Vλ̄)∩n(s))⊂ (Vλ⊕ Vλ̄)∩ n(s)⊂ Im(D|n(s))⊂ Kerφ.

If b = 0, then Vλ = Vλ̄ and D|Vλ = ad X |Vλ , which implies

ad X |Vλ ⊂ Kerφ.

All together, this proves [a, n(s)] ⊂ Kerφ.
To finish, one must show [n(s), n(s)] ⊂Kerφ. However, as every derivation of s

preserves n(s), we may restrict our modification to n(s) and we have a modification

n′ = (id+φ)n(s)⊂ Nl(s)n n(s).

Theorem 2.5 of [Gordon and Wilson 1988] shows that any modification of a nilpotent
subalgebra must be a normal modification. Now [loc. cit., Proposition 2.4 (ii d)]
implies [n(s), n(s)] ⊂ Kerφ. This completes the proof of our lemma. �

Remark 4.5. Not all modifications are normal modifications, even in the case of
starting with an algebra in standard position. An example of this can be found
in Example 3.9 of [Gordon and Wilson 1988]. We warn the reader that there are
some typos in that example, the block diagonal matrices of A and V1 should be
interchanged. And then one should replace A− V1 with A+ V1 throughout the
example.

As explained in the discussion surrounding Lemmas 2.7 and 2.8, r and s are
normal modifications of each other and there is an abelian subalgebra t of the
stabilizer subalgebra which normalizes both r and s satisfying s⊂ ro t. Here s is
an ideal.

The proposition follows immediately from the following lemma.

Lemma 4.6. Let k be any maximal compact subalgebra of Der(r) containing t.
Then s is a maximal completely solvable ideal of ro k (cf. Proposition 2.1).

Proof. By the construction of s, it is clearly a complement of k in ro k. Further,
every element of ad k has purely imaginary eigenvalues on ro k, and so s will be a
maximal completely solvable ideal as soon as we show that it is ideal.

As [s, r] ⊂ s by Lemma 2.8, it suffices to show that s is stable under k. However,
as every derivation of r takes its image in the nilradical, it suffices to show that s
contains the nilradical of r.

As stated above, r being a normal modification of s gives r ⊂ so t where t

consists of skew-symmetric derivations of s and so every element of r may be
written as X + K where X ∈ s and K ∈ t⊂ Der(s)∩ so(s). One can quickly see,
as in the proof of Proposition 2.1, that the eigenvalues of ad(X + K ) are sums
of eigenvalues of ad X and K. Since ad X has real eigenvalues and K has purely
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imaginary eigenvalues, we see that ad(X + K ) having only the zero eigenvalue
implies K = 0. That is, the nilradical of r is contained in s. �

Before moving on with the rest of the proof of our main result, we record a
consequence of the work done above.

Theorem 4.7. Let R be a solvable Lie group. Up to isomorphism, there is a single
completely solvable group S which can be realized as a modification of R.

Maximal symmetry for R. We are now in a position to complete the proof that
for a simply connected, unimodular solvable Lie group, there is a single largest
isometry group up to conjugation by diffeomorphisms. In fact, we will see that
the diffeomorphism can be chosen to be a composition of an automorphism of R
together with an automorphism of S.

Starting with a metric g on R, we first construct another metric g′′ such that

Isom(R, g) < Isom(R, g′′)= Sg o K ,

where S= Sg is a completely solvable group (depending on g) and K is some maxi-
mal compact subgroup of Aut(S). Let h be another metric on R with corresponding
group Sh . From the above, we may replace h with φ∗h for some φ ∈ Aut(R) to
assume that Sh = Sg = S.

Now, as K is unique up to conjugation in Aut(S), we have the desired result.

Proof of Corollary 1.3. As in the above, the strategy is to reduce to the setting of
completely solvable groups. We briefly sketch the argument for doing this.

By Theorem 8.2 of [Jablonski 2015a], any solvable Lie group R admitting a
Ricci soliton metric must be a modification of a completely solvable group S which
admits a Ricci soliton. (In fact, those Ricci soliton metrics are isometric.) From
our work above, the modification is a normal modification and so the group S
is the same as the group we constructed above. Now the problem is reduced to
proving that Ricci soliton metrics on completely solvable Lie groups are maximally
symmetric, but this has been resolved — see Theorem 4.1 of [Jablonski 2011].

5. Constructing S from algebraic data of R

In the above work, we started with a solvable Lie group R and built an associated
completely solvable Lie group S. The group S was unique, up to conjugation by
Aut(R), but it was built by starting with a metric on R, making modifications to R,
changing the metric, making more modifications and then extracting information
from the modification R′′. We now give a straightforward description of the group S.

Let K be some choice of maximal compact subgroup of Aut(R). The group S is
the simply connected Lie group whose Lie algebra is the “orthogonal complement”
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of k in ro k relative to the Killing form of ro k, i.e.,

(5-1) s= {X ∈ ro k | B(X, Y )= 0 for all Y ∈ k},

where B is the Killing form of ro k.
One can see this quickly by showing that the algebra described in (5-1) is also

a maximal completely solvable ideal and then Proposition 2.1 shows that it must
be s. The details of the proof are similar to work done above and so we leave them
to the diligent reader.

References

[Auslander and Green 1966] L. Auslander and L. W. Green, “G-induced flows”, Amer. J. Math. 88
(1966), 43–60. MR Zbl

[Epstein and Jablonski 2018] J. Epstein and M. Jablonski, “Lack of maximal symmetry in non-
unimodular solvmanifolds”, preprint, 2018.

[Gordon 1980] C. Gordon, “Riemannian isometry groups containing transitive reductive subgroups”,
Math. Ann. 248:2 (1980), 185–192. MR Zbl

[Gordon and Jablonski 2015] C. S. Gordon and M. R. Jablonski, “Einstein solvmanifolds have
maximal symmetry”, 2015. To appear in J. Differential Geom. arXiv

[Gordon and Wilson 1988] C. S. Gordon and E. N. Wilson, “Isometry groups of Riemannian solv-
manifolds”, Trans. Amer. Math. Soc. 307:1 (1988), 245–269. MR Zbl

[Jablonski 2011] M. Jablonski, “Concerning the existence of Einstein and Ricci soliton metrics on
solvable Lie groups”, Geom. Topol. 15:2 (2011), 735–764. MR Zbl

[Jablonski 2015a] M. Jablonski, “Homogeneous Ricci solitons”, J. Reine Angew. Math. 699 (2015),
159–182. MR Zbl

[Jablonski 2015b] M. Jablonski, “Strongly solvable spaces”, Duke Math. J. 164:2 (2015), 361–402.
MR Zbl

[Mostow 1956] G. D. Mostow, “Fully reducible subgroups of algebraic groups”, Amer. J. Math. 78
(1956), 200–221. MR Zbl

[Ochiai and Takahashi 1976] T. Ochiai and T. Takahashi, “The group of isometries of a left invariant
Riemannian metric on a Lie group”, Math. Ann. 223:1 (1976), 91–96. MR Zbl

Received March 19, 2018. Revised July 25, 2018.

MICHAEL JABLONSKI

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OKLAHOMA

NORMAN, OK
UNITED STATES

mjablonski@math.ou.edu

http://dx.doi.org/10.2307/2373046
http://msp.org/idx/mr/0199308
http://msp.org/idx/zbl/0149.19903
http://dx.doi.org/10.1007/BF01421956
http://msp.org/idx/mr/573347
http://msp.org/idx/zbl/0412.53026
http://msp.org/idx/arx/1507.08321
http://dx.doi.org/10.2307/2000761
http://dx.doi.org/10.2307/2000761
http://msp.org/idx/mr/936815
http://msp.org/idx/zbl/0664.53022
http://dx.doi.org/10.2140/gt.2011.15.735
http://dx.doi.org/10.2140/gt.2011.15.735
http://msp.org/idx/mr/2800365
http://msp.org/idx/zbl/1217.22005
http://dx.doi.org/10.1515/crelle-2013-0044
http://msp.org/idx/mr/3305924
http://msp.org/idx/zbl/1315.53046
http://dx.doi.org/10.1215/00127094-2861277
http://msp.org/idx/mr/3306558
http://msp.org/idx/zbl/1323.53049
http://dx.doi.org/10.2307/2372490
http://msp.org/idx/mr/0092928
http://msp.org/idx/zbl/0073.01603
http://dx.doi.org/10.1007/BF01360280
http://dx.doi.org/10.1007/BF01360280
http://msp.org/idx/mr/0412354
http://msp.org/idx/zbl/0318.53042
mailto:mjablonski@math.ou.edu




PACIFIC JOURNAL OF MATHEMATICS
Vol. 298, No. 2, 2019

dx.doi.org/10.2140/pjm.2019.298.429

CONCORDANCE OF SEIFERT SURFACES

ROBERT MYERS

We prove that every oriented nondisk Seifert surface F for an oriented
knot K in S3 is smoothly concordant to a Seifert surface F′ for a hyperbolic
knot K ′ of arbitrarily large volume. This gives a new and simpler proof of
the result of Friedl and of Kawauchi that every knot is S-equivalent to a hy-
perbolic knot of arbitrarily large volume. The construction also gives a new
and simpler proof of the result of Silver and Whitten and of Kawauchi that
for every knot K there is a hyperbolic knot K ′ of arbitrarily large volume
and a map of pairs f : (S3, K ′)→ (S3, K ) which induces an epimorphism on
the knot groups. An example is given which shows that knot Floer homology
is not an invariant of Seifert surface concordance. We also prove that a set
of finite volume hyperbolic 3-manifolds with unbounded Haken numbers
has unbounded volumes.

1. Introduction

In what follows, the smooth category will always be assumed. This paper concerns
two equivalence relations on oriented knots in S3, concordance and S-equivalence.
Knots K and K ′ are concordant if there is a properly embedded oriented annulus A
in S3
×[0, 1]with A∩(S3

×{0})= K and A∩(S3
×{1})= K ′ such that ∂A= K−K ′.

Knots K and K ′ are S-equivalent if they have Seifert surfaces F and F ′ with
associated Seifert matrices which are equivalent under integral congruence and
elementary expansions and contractions [Trotter 1973].

Concordant knots need not be S-equivalent, e.g., the trivial knot and a slice knot
with nontrivial Alexander polynomial, such as the stevedore’s knot 61. S-equivalent
knots need not be concordant; Kearton [2004] has shown that every algebraically
slice knot is S-equivalent to a slice knot, but by Casson and Gordon [1978], there
are algebraically slice knots which are not slice knots.

The author [Myers 1983] proved that every knot is concordant to a hyperbolic
knot, generalizing the result of Kirby and Lickorish [1979] that every knot is
concordant to a prime knot. Friedl [2009] and Kawauchi [1989a; 1989b; 1994]
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have given proofs that every knot is S-equivalent to a hyperbolic knot, generalizing
the result of Kearton [2004] that every knot is S-equivalent to a prime knot.

Friedl noted, citing [Kearton 1975; 2004; Levine 1970; 1977; Trotter 1973], that
two knots are S-equivalent if and only if they have isometric Blanchfield pairings.
He then noted that by combining two results of Kawauchi’s imitation theory of
knots ([1989a, Theorem 1.1] and [1989b, Properties I and V]) one gets that for
every knot K there is a hyperbolic knot K ′ of arbitrarily large volume and a map
f : (S3, K ′)→ (S3, K ) which induces isomorphisms on every quotient of the knot
groups by their derived subgroups. Friedl then showed that this result implies that
the Blanchfield pairings are isometric. He also added a note in proof that one can
combine the existence of such knots and maps with another result of Kawauchi
([1994, Theorem 2.2]) to show S-equivalence.

It is natural to ask whether for every knot K there is a hyperbolic knot K ′

of arbitrarily large volume to which K is both S-equivalent and concordant. It
turns out that an affirmative answer is implicit in Kawauchi’s construction [1989a].
One can see the concordance by looking at Figure 7 of that paper for the time
interval 0≤ t ≤ 1.

Silver and Whitten [2006] proved that given any triple (G, µ, λ) where G is a
knot group and (µ, λ) is a meridian-longitude pair for G there are infinitely many
triples (G̃, µ̃, λ̃) where G̃ is the group of a prime knot and there is an epimorphism
φ : (G̃, µ̃, λ̃)−→ (G, µ, λ). In [Silver and Whitten 2005], they strengthened this
to the G̃ being the groups of hyperbolic knots of arbitrarily large volume. In a note
in proof they added the comment that Kawauchi informed them that many of the
results in the paper can be found in [Kawauchi 1989a; Kawauchi 1992].

The constructions of Kawauchi and of Silver and Whitten mentioned above are
rather intricate and the proofs somewhat lengthy. In the present paper, the author
gives a simpler and shorter construction and proof. Recall that a Seifert surface F
for a knot K in S3 is a compact, oriented surface with boundary K. Both F and K
will be assumed to be oriented, with ∂F = K. A Seifert surface F ′ for a knot K ′ will
be said to be concordant to F if there is an embedding h : F ×[0, 1]→ S3

×[0, 1]
such that

h(F ×{0})= h(F ×[0, 1])∩ (S3
×{0})= F,

h(F ×{1})= h(F ×[0, 1])∩ (S3
×{1})= F ′,

and there is an orientation of h(F×[0, 1]) such that (S3
×{0})∩∂h(F×[0, 1])= F

and (S3
×{1})∩∂h(F×[0, 1])=−F ′. In this case K and K ′ are clearly concordant.

They are also S-equivalent, which can be seen as follows.
Let N be a regular neighborhood of h(K × [0, 1]) in S3

× [0, 1]. Let P be
the closure of h(F × [0, 1])− N. Let Q = h(F × [0, 1]) ∩ P. Finally let R be
a regular neighborhood of Q in P. Then R is homeomorphic to Q × [−1,+1]
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and hence to F × [−1,+1]. Thus one gets a product structure of the form k :
F × [0, 1] × [−1, 1] → R on R. By abuse of notation this will be denoted by
R = F × [0, 1] × [−1, 1]. Thus we identify F with F × {0} × {0} and F ′ with
F ×{1}× {0}.

Now choose a collection of oriented simple closed curves ai on F which repre-
sents a basis for H1(F). Identify ai with ai ×{0}× {0}. Let a+i = ai ×{0}× {+1};
this is regarded as ai pushed off F in the positive normal direction. Let vi, j be
the linking number of ai and a+j . The resulting matrix is a Seifert matrix V for K.
Now let bi = ai ×{1}× {0} and b+i = ai ×{1}× {+1}. Letting v′i, j be the linking
number of bi and b+i one gets a Seifert matrix V ′ for K ′. Let Ai be the annulus
ai ×[0, 1]× {0}. Let A+i be the annulus ai ×[0, 1]× {+1}. Then Ai joins ai to bi

and A+i joins a+i to b+i .
Recall that if J and J+ are disjoint oriented simple closed curves in S3 then they

bound properly embedded oriented surfaces G and G+ in the 4-ball B4 which can
be chosen to meet in a finite number of points. The linking number of J and J+ is
then equal to the algebraic intersection number of G and G+. See [Rolfsen 1976,
page 136].

Regard S3
×{1} as ∂B4. Choose surfaces Gi and G+i in B4 with boundaries bi

and b+i , respectively. Let Ĝi = Ai∪Gi and Ĝ+i = A+i ∪G+i . Since Ai∩A+j =∅, the
intersection number of Ĝi and Ĝ+j is equal to that of Gi and G+j . It follows that the
Seifert matrices V of F and V ′ of F ′ with respect to the given bases are the same.

The main result of this paper will now be stated. The notation S3
\\K ′ means

the compact manifold obtained from S3 by removing the interior of a regular
neighborhood of the knot K ′. Recall that the Haken number [1968] of a compact
3-manifold M is the maximum number of compact, connected, properly embedded,
incompressible, boundary incompressible, pairwise nonparallel surfaces in M.

Theorem 1.1. Let F be a Seifert surface for a knot K in S3. Assume that F is not a
disk. Then F is concordant to a Seifert surface F ′ for a knot K ′ such that

(a) K ′ is hyperbolic,

(b) S3
\\K ′ has arbitrarily large Haken number,

(c) S3
− K ′ has arbitrarily large volume, and

(d) there is a map of pairs f : (S3, K ′)→ (S3, K ) which induces an epimorphism
f∗ : π1(S3

− K ′)→ π1(S3
− K ).

The paper is organized as follows. Section 2 reviews some basic material.
Section 3 proves that every nondisk Seifert surface for a knot can be put in a
certain standard position. Section 4 uses standard position to prove (a). Section 5
proves (b). The proof that (b) implies (c) follows from a more general result, that
a set of finite volume hyperbolic 3-manifolds with unbounded Haken numbers
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has unbounded volumes. This fact appears to be “quasi-known” but the author
does not know a precise reference in the literature and so gives a simple proof in
the Appendix. Section 6 proves (d). Section 7 considers the question of whether
Seifert surface concordance implies the invariance of more than just the union of
the sets of invariants of concordance and S-equivalence. It shows by example that
although the Alexander polynomial is an invariant of Seifert surface concordance,
its categorification, knot Floer homology, is not.

2. Preliminaries

As general references on knot theory and on 3-manifolds see [Lickorish 1997]
and [Jaco 1980]. A compact, connected, orientable 3-manifold M will be called
excellent if it is irreducible, boundary-irreducible, anannular, atoroidal, and is not a
3-ball. M will be called Haken if it contains a two-sided incompressible surface.
By Thurston’s uniformization theorem (see, e.g., [Morgan 1984]), excellent Haken
manifolds are hyperbolic.

The following standard technical result will be used to build more complicated
hyperbolic 3-manifolds out of simpler pieces. A proof can be found in Section 2 of
[Myers 1993].

Lemma 2.1 (gluing lemma). Let X be a compact, connected 3-manifold. Sup-
pose F is a compact, properly embedded, two-sided 2-manifold in X. It is not
assumed that F is connected. Let Y be the 3-manifold obtained by splitting X
along F. Denote by F1 and F2 the two copies of F in ∂Y which are identified
to obtain X. If each component of Y is excellent, F1 ∪ F2 and the closure of
Y − (F1 ∪ F2) is incompressible in Y, and each component of F1 ∪ F2 has negative
Euler characteristic, then X is excellent.

An n-tangle is the disjoint union λ= λ1∪ · · · ∪λn of properly embedded arcs in
a 3-ball B. This is sometimes denoted by the pair (B, λ). It will always be assumed
that n ≥ 2. When the specific number n of arcs is not at issue or is clear from the
context, λ will just be called a tangle.

This paper will assume that B is given a product structure of the form [a, b]×
[c, d] × [e, f ] with each component λi of the tangle (B, λ) joining a point of
(a, b)× (c, d)×{ f } to a point of (a, b)× (c, d)×{e}. This is done so that one may
compose tangles. The product of the tangles (B, λ) and (B, µ) will be obtained
by setting (B, λ) on top of (B, µ) so that the lower endpoint of each λi equals the
upper endpoint of each µi .

The exterior of a submanifold of a 3-manifold is the closure of the complement
of a regular neighborhood of the submanifold. A knot or tangle will be called
excellent if its exterior is excellent. In this case by a slight abuse of language the
knot or tangle will be called hyperbolic.
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3. Standard position for Seifert surfaces

Let F be a nondisk Seifert surface for a knot K. This section defines a way of
presenting F by a diagram in the plane, standard position. This presentation will
be used to build concordances.

The first step is to define an analogue for certain graphs of a plat presentation of
a knot.

Recall the idea of a plat presentation for a knot or link. Regard S3 as the union of
a 3-ball B+, a copy B0 of S2

×[−1, 1], and a 3-ball B− with B+ ∩ B0
= S2
×{1}

and B− ∩ B0
= S2

× {−1}. Choose M unknotted, unlinked, properly embedded
arcs in each of B+ and B−. Arrange them so that the projections p± : B±→ D±

onto equatorial disks have no crossings and are unnested. Let p0
: B0
→ A be a

projection of B0 onto an annulus A. Join the endpoints of the arcs in B+ to the
endpoints of the arcs in B− by arcs in B0 such that projection on A is given by a
braid β. In this paper the braid will be chosen so that it is an element of the braid
group of the plane, not the braid group of the sphere. The knot projections will be
drawn in R2 with regions U, C and L representing the projections of regions near
the knot in B+, B0, and B−, respectively. The map p : R3

→ R2 denotes this local
projection. The vertical coordinate in R2 is denoted by y. The braid is represented
by a box labeled β. The arcs in B+ and B− are represented by arcs on the top and
bottom of the box, respectively.

Now suppose that M ≥ 2. Choose g such that 2≤ 2g ≤ M, and let m = M − 2g.
Replace 2g adjacent arcs in L with the cone X on their boundary points having
vertex v in the interior of L; require that X be disjoint from the remaining arcs in L .
This gives a 1-complex in R3 consisting of a wedge W of 2g circles with possibly
some additional simple closed curve components. Restrict attention to those β for
which there are no such additional components. By changing β one may obtain an
isotopic embedding of W such that X is to the left of the arcs in L . This will be
called a plat presentation of a wedge of 2g circles. See Figure 1.

One may add words to the top and bottom of β to obtain an isotopic embedding
of W so that the arcs in each of U and L are concentrically nested. This will be
called a standard presentation of a wedge of 2g circles. See Figure 2.
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X

Figure 1. Plat presentation of a wedge of circles.
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Figure 2. Standard presentation of a wedge of circles.

Now take regular neighborhoods in U ∪ L of the arcs and X and widen the arcs
in β to bands which cross in the same manner as the arcs. One gets a standard
presentation of a surface with boundary. The special case of interest is that of an
orientable surface with connected boundary.

Lemma 3.1. Every nondisk Seifert surface for a knot in S3 has a standard presen-
tation.

Proof. Let F be a genus g ≥ 1 Seifert surface for a knot. Choose a wedge of
circles W in the interior of F such that the boundary of a regular neighborhood
of W in F is parallel in F to K. Let v be the vertex of W. The number of circles
is 2g, where g is the genus of F. Isotop F so that the projection of W onto R2 has
only transverse double point singularities. In particular, p−1(p(v)) consists of a
single point. Isotop F so that p(v) has y coordinate less than or equal to that of any
other point of p(W ). We may assume that for each edge of W all the critical values
of the function y ◦ p are local maxima and minima. Isotop F so as to move all the
minima into L and all the maxima into U. One now has a plat presentation of W.

The only obstruction to widening W into a plat presentation for F is that some of
the bands may be twisted. Since F is orientable, the twisting in each band consists
of a number of full twists. Each full twist is isotopic to a curl, as illustrated in
Figure 3. Isotop the local maxima and local minima of the curls into U and L ,
respectively. The isotopy from plat to standard presentation then preserves the fact
that the bands are untwisted. �

Figure 3. Replacing a twist by a curl.
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4. Constructing a concordance

The previous section showed that every nondisk Seifert surface F for a knot in S3

has a standard presentation which is obtained by widening a standard presentation
of a wedge of circles W. The basic idea for constructing a concordance from F to
a surface F ′ is to construct a concordance from W to some W ′ and widen W ′ to
get F ′. However, the obvious surface one gets from a projection of W ′ might not
be concordant to F. As an example of this phenomenon let P be a zero crossing
projection of the trivial knot and P ′ a one crossing projection of the trivial knot.
Let A and A′ be annuli obtained by widening P and P ′ into bands. These annuli
cannot be concordant because the components of their boundaries have different
linking numbers. The way to fix this is to require that any isotopies of a diagram be
regular, i.e., they are composed of Reidemeister moves of types II and III together
with planar isotopies.

Lemma 4.1. Given a standard presentation of a nondisk Seifert surface F, there is
a concordance of F with a Seifert surface F ′ such that S3

−K ′ is hyperbolic, where
K ′ = ∂F ′.

Proof. By the gluing lemma, it will be sufficient to show that S3
− F ′ is excellent.

Let W be the wedge of circles of which F is a regular neighborhood. Choose
a 3-ball E+ in U and a 3-ball E− in L as shown in Figure 4. E+ meets C in a
disk and meets W in M straight arcs; these arcs meet C in the leftmost M points of
W ∩U ∩C . E− meets C in a disk and meets W in all but the first endpoint of X
and in the leftmost M − 2g endpoints of the arcs in (W ∩ L)− X.

The trivial tangles in E+ and in E− are then replaced by concordant hyper-
bolic tangles α and γ , respectively. The process starts with a hyperbolic n-tangle

�
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L

β

X

E−

E+

Figure 4. W before surgery.
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Figure 5. A hyperbolic n-tangle, n = 4.

constructed in [Myers 1983]. Figure 5 shows the case n = 4.
This tangle is then composed with its mirror image as in Figure 6, left. By the

gluing lemma, the new tangle has an excellent Haken exterior and is thus hyperbolic.
A concordance to the trivial tangle is then constructed by attaching 1-handles,

performing type II Reidemeister moves, and then attaching 2-handles. See Figure 6,
right, for the first stage.

Figure 6. A ribbon n-tangle (left) and a ribbon concordance (right), n=4.

For future reference the general version of this result is stated below.

Lemma 4.2. Let D be a disk. Let τ = τ1∪· · ·∪τn be an n-tangle in D×[0, 1] such
that each τi has one boundary point in int(D)×{0} and the other in int(D)×{1}.
Let δ(τ ) be the tangle in D × [−1, 1] obtained by taking the union of τ and its
mirror image in D×[−1, 0]. Then δ(τ ) is concordant to the trivial tangle ε. �

Continuing with the proof of Lemma 4.1, one next

�
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L

α

β

γ

X

Figure 7. W ′ after surgery.

constructs the Seifert surface F ′ by replacing the
disjoint union of untwisted bands F ∩ (E+) with
the disjoint union of untwisted bands in E+

whose centerlines form the tangle α. These
bands are chosen so that their intersections with
∂E+ are the same as those of F with ∂E+. A
similar construction in ∂E− then completes the
construction of F ′.

One now shows that S3
− F ′ is hyperbolic.

Figure 7 shows the new wedge of circles W ′.
The exterior of W ′∩U is homeomorphic to the
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exterior of the tangle α and is therefore hyperbolic. The exterior of W ′ ∩ L is
homeomorphic to the exterior of the tangle γ . This can be seen as follows. Denote
the arcs in X by γ1, . . . , γk , numbered from left to right. Slide the lower endpoint
of γ2 along γ1 and into C ∩ L . Continue with γ3 through γ2g−1. The complement in
L of the new set of arcs is homeomorphic to the complement of γ and is therefore
hyperbolic. Since the exterior of β in C is a product, the result follows. �

5. Raising the Haken number and the volume

Lemma 5.1. Given a standard presentation of a nondisk Seifert surface F, and
given an N > 0, there is a concordance of F with a Seifert surface F ′ such that K ′

is hyperbolic and S3
− K ′ has Haken number at least N.

Proof. In the construction of the previous section, replace each of the tangles α and γ
by N copies of itself stacked one on top of the other. This gives N disjoint copies
of the exteriors of α and γ . The boundaries of the exteriors of these tangles are all
incompressible and nonparallel in S3

−K ′. By the gluing lemma, the exterior of the
new knot is an excellent Haken manifold and it follows that K ′ is hyperbolic. �

Lemma 5.2. Given a standard presentation of a nondisk Seifert surface F, and
given a V > 0 there is a concordance of F with a Seifert surface F ′ such that K ′ is
hyperbolic and S3

− K ′ has volume at least N.

Proof. This follows from Corollary A.3 in the Appendix and Lemma 5.1. �

6. Making a map

Lemma 6.1. Given a standard presentation of a nondisk Seifert surface F, there is
a concordance of F with a Seifert surface F ′ satisfying (a), (b), (c), and (d).

Proof. The proof follows from Lemmas 6.2 and 6.3 below by defining f to be the
identity outside the tangles involved. �

A tangle (B3, τ1∪· · ·∪τn) is a boundary tangle if there are disjoint arcs σ1, . . . , σn

in ∂B3 such that ∂σi = ∂τi and disjoint, compact, orientable surfaces Gi in B3 such
that ∂Gi = τi ∪ σi . Let τ = τ1 ∪ . . .∪ τn and G = G1 ∪ . . .∪Gn .

Let τ ∗ = τ ∗1 ∪ . . . τ
∗
n be a trivial tangle in B3 with ∂τ ∗i = ∂τi for all i . Choose

disjoint disks G∗i in B3 with ∂G∗i = ∂Gi .

Lemma 6.2. There is a map g : (B3, τ, B3
− τ)→ (B3, τ ∗, B3

− τ ∗) which is the
identity on ∂B3 and a homeomorphism from τ to τ ∗. In particular, g induces an
epimorphism π1(B3

− τ)→ π1(B3
− τ ∗) which carries the meridians of τ to the

meridians of τ ∗.

Proof. Let Y be the exterior of τ in B3. Let Hi = Gi ∩Y. Let Ni = Hi ×[−1, 1] be
a regular neighborhood of Hi in Y. Let N be the union of the Ni . Let C be a collar
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on ∂Y whose intersection with each Ni has the form Ai × [−1, 1], where Ai is a
collar on ∂Hi in Hi .

In a similar fashion let Y ∗ be the exterior of τ ∗ in B3, let H∗i = G∗i ∩ Y ∗,
N ∗i = H∗i ×[−1, 1], N ∗ =

⋃
N ∗i , C∗ = C , and A∗i = Ai .

For each t ∈ [−1, 1] define a map from Ni to N ∗i by crushing (Hi −C)×{t} to
a point in H∗i . This defines the restriction of g to Hi ×[−1, 1].

One next defines g on the closure W of the complement of N in B3 by crushing
W −C to a point. This gives a quotient map onto a 3-ball which may be identified
with the closure of B3

− N ∗.
Putting the two quotient maps together gives a quotient map from Y to Y ∗ which

extends to a map g : B3
→ B3 with the required properties. �

The existence of hyperbolic boundary n-tangles was proven by Cochran and
Orr in a more abstract general setting. In keeping with the desire to make the
constructions in this paper as explicit as possible, their procedure is implemented
in the following specific construction.

Lemma 6.3 [Cochran and Orr 1998, Lemma 7.3]. Hyperbolic boundary n-tangles
exist.

Proof. First choose a hyperbolic 2n-tangle λ. Configure it so that the ambient
3-cell is a rectangular box with each component of the tangle joining the interior of
the top of the box to the interior of the bottom of the box. Place it in the interior
of a larger box with which it is concentric. Connect the endpoints of λ to the
boundary of the larger box by straight arcs as in the first diagram in Figure 8. Then
slide the endpoints of every second arc onto the arc preceding it as in the second
diagram. Then slide the bottom endpoints of each resulting graph across the front
of the larger box onto the top arc as in the third diagram. This does not change the
homeomorphism type of the exterior of the graph.

λ λ

λ

Figure 8. Sliding endpoints to obtain a graph.
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Figure 9. Double 1(λn) of λn , n = 6.

Then one constructs the 2n-tangle1(λ) by replacing each arc of λ by two parallel
copies as in Figure 9.

Next one modifies the last diagram of Figure 8 in the following ways to obtain
Figure 10. First, one replaces λ in the inner box by 1(λ). Second, one widens the
graphs which join the inner box to the boundary of the outer box to obtain surfaces
whose unions with the bands inside the inner box are punctured tori. Note the three
half-twists inserted into the lower portion of each component of Figure 10 to achieve
this. By the gluing lemma, the exterior of this new tangle is hyperbolic since it is
obtained from a 3-manifold homeomorphic to the exterior of λ by identifying pairs
of incompressible once-punctured tori in its boundary.

1(λ)

Figure 10. A hyperbolic boundary tangle.

Finally one slides the left endpoints of each arc across the front of the larger box
(dotted lines) to obtain the final hyperbolic boundary tangle as in Figure 11. The
union of this tangle with its mirror image is still a boundary tangle and the rest of
the proof proceeds as before. �

1(λ)

Figure 11. The hyperbolic boundary tangle ready for use.
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Figure 12. Two projections of the stevedore’s knot 61.

7. Noninvariance of knot Floer homology

This section gives an example of a knot J with Seifert surface F and a knot J ′ with
Seifert surface F ′ such that F and F ′ are concordant, but J and J ′ have different
knot Floer homology.

J is the trefoil knot and F a genus one Seifert surface. J ′ is a certain twisted
double of a copy K of the stevedore’s knot 61 and F ′ is a genus one surface
contained in a solid torus V whose core is K.

Figure 12 shows two projections of K. The second will be used since it more
clearly displays the fact that K is a ribbon knot. See [Mizuma 2005] for an isotopy
between them.

Figure 13 shows an annulus A embedded in S3 with one boundary component
being K. The orientations of K and the other boundary component K ∗ are chosen
so that the two curves are homologous in A. From the diagram one computes that
the linking number lk(K , K ∗)= 0. Let K̃ = K ∪ K ∗.

K

K ∗

Figure 13. A 2-strand cable link K̃ = K ∪ K ∗ of K = 61.
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The knot J ′ is obtained by reversing the orientation on K ∗ to get a new oriented
link K̂ = K ∪ (−K ∗) and replacing the trivial tangle in the box in Figure 13 by

This results in the annulus being replaced by a genus one surface F ′. A saddle
move on the new diagram followed by a pair of 2-handle additions shows that F
and F ′ are concordant.

By a result of Ni [2007], knot Floer homology detects fibered knots. J is fibered.
If J ′ were fibered then its companion K would also be fibered (Proposition 9.11 of
[Myers 1980]), but the Alexander polynomial 2t−1

− 5+ 2t of K is not monic, and
so K is not fibered (see, e.g., [Rolfsen 1976, Corollary 10.8]); thus J is not fibered,
and so the knot Floer homologies of J and J ′ must be different.

Appendix: Pumping up the volume

There are several results in the literature to the effect that a topologically complicated
hyperbolic 3-manifold has high volume. See, for example, [Lackenby 2004; Purcell
2007; Shalen 2007].

One measure of the complexity of a compact 3-manifold M is the Haken number
h(M) [Haken 1968; Jaco 1980], the maximum number of compact, connected,
properly embedded, incompressible, boundary incompressible, pairwise nonparallel
surfaces in M. Call the union of such a maximal collection of surfaces a Haken
system for M.

Theorem A.1. Let Mn be a sequence of compact, connected, orientable 3-manifolds
with complete, finite volume, hyperbolic interiors Nn .

If lim
n→∞

h(Mn)=∞, then lim
n→∞

Vol(Nn)=∞.

Proof. If not, then by passing to a subsequence we may assume that Vol(Mn) is
bounded above by a positive constant V. It then follows from Jørgensen’s theorem
[Thurston 1980, Theorem 5.12.1, p. 119] that there is a finite set {X1, . . . , Xr } of
compact, connected, orientable 3-manifolds with finite volume, hyperbolic interiors
such that for each Mn there is an X j such that Mn is homeomorphic to the result
of Dehn filling along some of the components of ∂X j . Let H be the maximum of
the h(X j ). Choose an n such that h(Mn) > H. By the following lemma, which is
stated in greater generality than needed here, we have h(Mn)≤ H. �

Lemma A.2. Let Q and Q∗ be compact, connected, orientable, irreducible, ∂-
irreducible 3-manifolds. Suppose Q is obtained by Dehn filling along some of the
boundary components of Q∗. Then h(Q)≤ h(Q∗).

Proof. Let V = V1 ∪ · · · ∪ Vp be the union of the solid tori attached to Q∗ in order
to get Q. Let S = S1 ∪ · · · ∪ Sh(Q) be a Haken system for Q. Isotop S so that it
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meets V in a collection of meridinal disks and the number of such disks is minimal.
Let S∗ = S ∩ Q∗. Then S∗ is properly embedded in Q∗ and has h(Q) components.
It suffices to show that they are incompressible, ∂-incompressible, and pairwise
nonparallel in Q∗.

S∗ is incompressible in Q∗: Suppose D∗ is a compressing disk for S∗ in Q∗.
Then ∂D∗= ∂D for a disk D in S, and D∪D∗ bounds a 3-ball B in Q. Isotoping D
across B and off D∗ reduces the number of components of S ∩ V, contradicting
minimality.

S∗ is ∂-incompressible in Q∗: Suppose 1 is a ∂-compressing bigon for S∗ in Q∗.
Then ∂1= α ∪β, where α is a properly embedded arc in S∗ and β is a properly
embedded spanning arc in an annulus A in ∂V such that ∂A= ∂D0∪∂D1, where D0

and D1 are components of S∩V. Let E be the 3-ball in V bounded by A∪D0∪D1.
A regular neighborhood of 1∪ E in Q is a 3-ball across which one can isotop S to
remove D0 and D1 from S ∩ V, again contradicting minimality. (Alternatively, one
can show from this configuration that S∗ is compressible in Q∗.)

The components of S∗ are pairwise nonparallel in Q∗: Suppose components
S∗0 and S∗1 are parallel in Q∗. These surfaces are the intersections with Q∗ of
components S0 and S1 of S. There is an embedding of W ∗ = S∗0 ×[0, 1] in Q∗ with
S∗0 = S∗0×{0}, S∗1 = S∗0×{0}, and ∂S∗0×[0, 1] contained in ∂Q∗. Each component A
of W ∗ ∩ ∂V is an annulus for which there exists a 3-ball B in V with A = B ∩W ∗

such that the closure of ∂B− A consists of components of S∩V. These B allow one
to extend the product structure on W ∗ to a product structure W = S0×[0, 1] in Q
with S0×{0} = S0, S0×{1} = S1, and ∂S0×[0, 1] contained in ∂Q, contradicting
the fact that S is a Haken system in Q. �

Corollary A.3. Let Yn be a sequence of compact, connected, orientable 3-manifolds
such that the complement Un of the torus boundary components of Yn is a finite
volume hyperbolic manifold with totally geodesic boundary.

If lim
n→∞

h(Yn)=∞, then lim
n→∞

Vol(Un)=∞.

Proof. Let Mn be the double of Yn along the union F of its nontorus boundary
components. Suppose S is a Haken system in Yn . Let Ŝ be the double of S
along S ∩ F. The incompressibility of Ŝ in Mn follows from the incompressibility
of F and S in Yn and the ∂-incompressibility of S in Yn . The fact that ∂Mn consists
of tori then implies that Ŝ is ∂-incompressible in Mn . Suppose two components Ŝ0

and Ŝ1 of Ŝ are parallel in Mn via a product Ŝ0×[0, 1]. This product is invariant
under the involution which interchanges the two copies of Yn . By [Kim and
Tollefson 1977, Theorem A] the restriction of the involution is equivalent to a
product involution. Hence the fixed point set consists of annuli. By [Waldhausen
1968, Lemma 3.4] they are isotopic to product annuli. It follows that S0 and S1 are
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parallel in Yn . Thus h(Mn) ≥ h(Yn). The result then follows from Theorem A.1
and the fact that the interior Nn of Mn is a complete, finite volume hyperbolic
3-manifold with Vol(Nn)= 2 Vol(Un). �
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RESOLUTIONS FOR TWISTED TENSOR PRODUCTS

ANNE SHEPLER AND SARAH WITHERSPOON

We build resolutions for general twisted tensor products of algebras. These
bimodule and module resolutions unify many constructions in the literature
and are suitable for computing Hochschild (co)homology and more generally
Ext and Tor for (bi)modules. We analyze in detail the case of Ore exten-
sions, consequently obtaining Chevalley–Eilenberg resolutions for universal
enveloping algebras of Lie algebras (defining the cohomology of Lie groups
and Lie algebras). Other examples include semidirect products, crossed
products, Weyl algebras, Sridharan enveloping algebras, and Koszul pairs.

1. Introduction

Motivated by questions in noncommutative geometry, Čap, Schichl, and Vanžura
[Čap et al. 1995] introduced a very general twisted tensor product of algebras to
replace the (commutative) tensor product. Their examples included noncommutative
2-tori and crossed products of C∗-algebras with groups. Many other algebras
of interest arise as twisted tensor product algebras: crossed products with Hopf
algebras, algebras with triangular decomposition (e.g., universal enveloping algebras
of Lie algebras and quantum groups), braided tensor products defined by R-matrices,
and other biproduct constructions. In fact, twisted tensor product algebras are
abundant: If an algebra is isomorphic to A⊗ B as a vector space for two of its
subalgebras A and B under the canonical inclusion maps, then it must be isomorphic
to a twisted tensor product A⊗τ B for some twisting map τ : B ⊗ A→ A⊗ B
(see [Čap et al. 1995]).

Modules over a twisted tensor product algebra arise from tensoring together
modules for the individual algebras: If M and N are modules over algebras A and B,
respectively, compatible with a twisting map τ , then M⊗ N adopts the structure of
a module over A⊗τ B. We describe in this note a general method to twist together
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resolutions of A-modules and B-modules in order to construct resolutions for the cor-
responding modules over the twisted tensor product A⊗τB. A similar method works
for bimodules. In particular, we twist together resolutions of algebras over a field
to obtain a resolution for a twisted tensor product algebra as a bimodule over itself.

We are motivated by a desire to understand deformations of twisted tensor
products and to describe the homology theory in terms of the homology of the
original factor algebras. For example, under some finiteness assumptions, the
Hochschild cohomology of a tensor product of algebras is the tensor product of
their Hochschild cohomology rings. A similar statement is true of the cohomology
of augmented algebras. Both results hold because the tensor product of projective
resolutions for the factor algebras is a projective resolution for the tensor product
of the algebras.

In some particular settings, similar homological constructions have appeared for
modified versions of the tensor product of algebras. We mention just a few examples.
Gopalakrishnan and Sridharan [1966] constructed resolutions for modules of Ore
extensions. Bergh and Oppermann [2008] twisted resolutions when the twisting
arises from a bicharacter on grading groups. Jara, López Peña, and Ştefan [Jara
et al. 2017] worked with Koszul pairs. Guccione and Guccione [1999; 2002] built
resolutions for twisted tensor products, in particular crossed products with Hopf
algebras, out of bar and Koszul resolutions of the factor algebras. We adapted
this last construction in [Shepler and Witherspoon 2014] to handle more general
resolutions for the case of skew group algebras in order to understand deformations.
Walton and the second author generalized these resolutions to smash products with
Hopf algebras in [Walton and Witherspoon 2014].

In this paper, we unify many of these previous constructions and provide methods
useful in new settings for finding resolutions of modules over twisted tensor product
algebras: We show very generally that projective resolutions for bimodules of
two factor algebras can be twisted together to construct a projective resolution for
the resulting bimodule for the twisted tensor product given some compatibility
conditions. This twisting of resolutions provides an efficient means for computing
and handling Hochschild (co)homology in particular. A similar construction applies
to projective (left) module resolutions used, for example, to compute (co)homology
of augmented algebras.

We verify that many known resolutions may be viewed as twisted resolutions
in this way, including some of those mentioned above. We give details in the case
of Ore extensions. In particular, the bimodule Koszul resolution of a universal
enveloping algebra U(g) is a twisted resolution when g is a finite-dimensional
supersolvable Lie algebra. More general Lie algebras can be handled via triangular
decomposition. Our method also leads to standard resolutions for Weyl algebras
and some Sridharan enveloping algebras. For an Ore extension, we adapt results of
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Gopalakrishnan and Sridharan [1966] to construct twisted product resolutions of
modules. We thus regard the Chevalley–Eilenberg complex of U(g) as a twisted
product resolution. This defines Lie algebra and Lie group cohomology in terms of
an iterative twisting of resolutions.

In Section 2, we give definitions and some preliminary results. Bimodule twisted
tensor product complexes are constructed in Section 3 and we show they give
projective resolutions in Theorem 3.10. Section 4 gives applications to some types
of Ore extensions. We construct twisted tensor product complexes for resolving
modules in Section 5, and we show these complexes are projective resolutions in
Theorem 5.12. Applications to Ore extensions appear in Section 6.

We fix a field k of arbitrary characteristic throughout. All tensor products are
over k unless otherwise indicated, i.e., ⊗ = ⊗k , and all algebras are k-algebras.
Modules are left modules unless otherwise described.

2. Twisted tensor product algebras and compatible resolutions

In this section, we recall twisted tensor product algebras from [Čap et al. 1995]
and define a compatibility condition necessary for twisting resolutions together.
Examples include skew group algebras and crossed products with Hopf algebras
[Montgomery 1993], twisted tensor products given by bicharacters of grading
groups [Bergh and Oppermann 2008], braided products arising from R-matrices
[Manin 1988], two-cocycle twists of Hopf algebras [Radford and Schneider 2008],
and more.

Let A and B be associative algebras over k with multiplication maps m A :

A⊗A→ A and m B : B⊗B→ B and multiplicative identities 1A and 1B , respectively.
We write 1 for the identity map on any set.

Twisted tensor products. A twisting map

τ : B⊗ A→ A⊗ B

is a bijective k-linear map for which τ(1B ⊗ a)= a⊗ 1B and τ(b⊗ 1A)= 1A⊗ b
for all a ∈ A and b ∈ B, and

(2.1) τ ◦ (m B ⊗m A)= (m A⊗m B) ◦ (1⊗ τ ⊗ 1) ◦ (τ ⊗ τ) ◦ (1⊗ τ ⊗ 1)

as maps B⊗B⊗ A⊗ A→ A⊗B. The twisted tensor product algebra A⊗τB is the
vector space A⊗ B together with multiplication mτ given by such a twisting map τ .
By [Čap et al. 1995, Proposition/Definition 2.3], the algebra A⊗τ B is associative.

Note that the left-right distinction in a twisted tensor product algebra is artificial
since A⊗τ B ∼= B ⊗τ−1 A. Indeed, one might identify A⊗τ B with the algebra
generated by A and B (so that A and B are subalgebras) with relations given by (2.1).
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If A and B are N-graded algebras, we take the standard N-grading on A⊗ B and
B⊗ A and say a twisting map τ is strongly graded if it takes B j ⊗ Ai to Ai ⊗ B j

for all i, j following Conner and Goetz [2018]. (Note that [Jara et al. 2017] leave
off the adjective strongly.) In this case, the twisted tensor product algebra A⊗τ B
is N-graded.

Example 2.2. The Weyl algebra W = k〈x, y〉/(xy − yx − 1) is isomorphic to
the twisted tensor product A⊗τ B of A = k[x] and B = k[y] with twisting map
τ : B ⊗ A→ A⊗ B defined by τ(y ⊗ x) = x ⊗ y − 1⊗ 1. Likewise, the Weyl
algebra Wn on 2n indeterminates, which is equal to

k〈x1, . . . , xn, y1, . . . , yn〉/(xi x j−x j xi , yi y j−y j yi , xi y j−y j xi−δi, j :1≤ i, j≤n),

is isomorphic to a twisted tensor product. These are examples of (iterated) Ore
extensions, which we consider in detail in Section 4.

Example 2.3. A skew group algebra S o G for a finite group G acting on an
algebra S by automorphisms is isomorphic to the twisted tensor product kG⊗τ S
of the group algebra kG and of S. The twisting map τ is defined by τ(s ⊗ g) =
g⊗ g−1(s) for s ∈ S and g ∈ G. We consider the special case where S is a Koszul
algebra at the end of Section 3.

Bimodules over twisted tensor products. We fix a twisting map τ : B⊗A→ A⊗B
for k-algebras A and B.

Definition 2.4. An A-bimodule M is compatible with τ if there is a bijective k-
linear map τB,M : B⊗M→ M ⊗ B commuting with the bimodule structure of M
and multiplication in B, i.e., as maps on B ⊗ B ⊗ M and on B ⊗ A ⊗ M ⊗ A,
respectively,

τB,M(m B ⊗ 1)= (1⊗m B)(τB,M ⊗ 1)(1⊗ τB,M), and(2.5)

τB,M(1⊗ ρA,M)= (ρA,M ⊗ 1)(1⊗ 1⊗ τ)(1⊗ τB,M ⊗ 1)(τ ⊗ 1⊗ 1),(2.6)

where ρA,M : A ⊗ M ⊗ A→ M is the bimodule structure map. If A is graded
and M is a graded A-bimodule, we say that M is compatible with a strongly graded
twisting map τ if there is a map τB,M as above that takes Bi ⊗M j to M j ⊗ Bi for
all i, j.

Remark 2.7. Note that the above definition applies to B-bimodules as well as A-
bimodules by reversing the roles of A and B. Indeed, we apply the definition to the
algebra B, the twisted tensor product B⊗τ−1 A, and the twisting map τ−1 to obtain
conditions for a B-bimodule N to be compatible with τ−1. We may rewrite these
conditions using the convenient notation τN ,A = (τ

−1
A,N )

−1. We obtain an equivalent
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right version of the above definition: A given B-bimodule N is compatible with
τ−1 when there is some bijective k-linear map τN ,A : N ⊗ A→ A⊗ N satisfying

τN ,A(1⊗m A)= (m A⊗ 1)(1⊗ τN ,A)(τN ,A⊗ 1) and(2.8)

τN ,A(ρB,N ⊗ 1)= (1⊗ ρB,N )(τ ⊗ 1⊗ 1)(1⊗ τN ,A⊗ 1)(1⊗ 1⊗ τ),(2.9)

as maps on N ⊗ A⊗ A and on B⊗ N ⊗ B⊗ A, respectively, where

ρB,N : B⊗ N ⊗ B→ N

is the bimodule structure map.

In light of the last remark, we will say a bimodule is compatible with τ when it
is either an A-bimodule compatible with τ or a B-bimodule compatible with τ−1,
since one often identifies A⊗τ B and the isomorphic algebra B⊗τ−1 A in practice.

Remark 2.10. An A-bimodule M is compatible with the twisting map τ exactly
when there is a bijective k-linear map

τB,M : B⊗M→ M ⊗ B

making the following diagram commute:

(2.11)

B⊗M⊗B

τB,M⊗1

((

B⊗B⊗M

1⊗τB,M

66

m B⊗1
##

M⊗B⊗B

1⊗m B
{{

B⊗M
τB,M

// M⊗B

B⊗A⊗M⊗A

τ⊗1⊗1
##

1⊗ρA,M

;;

A⊗M⊗A⊗B

ρA,M⊗1
cc

A⊗B⊗M⊗A
1⊗ τB,M⊗1

// A⊗M⊗B⊗A

1⊗1⊗τ

;;

A similar diagram expresses compatibility of a B-bimodule N with τ .

Example 2.12. Let M= A, an A-bimodule via multiplication. Then A is compatible
with τ via τB,A = τ . Similarly N = B is compatible with τ .
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Bimodule structure. When M and N are compatible with τ , the tensor product
M ⊗ N is naturally an A⊗τ B-bimodule via the following composition of maps:

(2.13) A⊗τ B⊗M⊗N⊗A⊗τ B 1⊗ τB,M⊗ τN ,A⊗1
−−−−−−−−−→ A⊗M⊗B⊗A⊗N⊗B

1⊗1⊗ τ ⊗1⊗1
−−−−−−−−−→ A⊗M⊗A⊗B⊗N⊗B

ρA,M⊗ ρB,N−−−−−−−−−→M⊗N .

Bimodule resolutions. For any k-algebra A, let Ae
= A⊗ Aop be its enveloping

algebra, with Aop the opposite algebra to A. We view an A-bimodule M as a left
Ae-module. In Lemma 3.1 below, we will construct a projective resolution of an
(A⊗τ B)e-module M ⊗ N from individual resolutions of M and N using some
compatibility conditions. Let Pq(M) be an Ae-projective resolution of M and let
Pq(N ) be a Be-projective resolution of N :

· · · → P2(M)→ P1(M)→ P0(M)→ M→ 0,(2.14)

· · · → P2(N ) → P1(N ) → P0(N ) → N → 0.(2.15)

Bar and reduced bar resolutions. For example, M could be A itself and Pq(A)
could be the bar resolution Bar q(A) given by Barn(A)= A⊗(n+2) with differential

a0⊗ a1⊗ · · ·⊗ an+1 7→

n∑
i=0

(−1)i a0⊗ · · ·⊗ ai ai+1⊗ · · ·⊗ an+1

for all n ≥ 0 and a0, a1, . . . , an+1 ∈ A. We also use the reduced bar resolution
Bar q(A) with Barn(A) = A⊗ A⊗n

⊗ A for A = A/k1A and differential given by
the same formula.

Compatibility conditions. We now define what it means for resolutions to be com-
patible with the twisting map τ . We tensor arbitrary resolutions (2.14) and (2.15)
with A and B on the right and left to obtain complexes

Pq(N )⊗ A, A⊗ Pq(N ), Pq(M)⊗ B, and B⊗ Pq(M).
Viewing these simply as exact sequences of vector spaces, we note that any k-linear
maps τN ,A : N ⊗ A→ A⊗ N and τB,M : B⊗M→ M⊗ B can be lifted to k-linear
chain maps

(2.16) τPq(N ),A : Pq(N )⊗A→ A⊗Pq(N ) and τB,Pq(M) : B⊗Pq(M)→ Pq(M)⊗B.

For simplicity in the sequel, we will write τi,A = τPi (N ),A and τB,i = τB,Pi (M), for
each i , when no confusion will arise. We will use such maps to glue the two
resolutions together provided they satisfy the following compatibility conditions.
These conditions just state that the chain maps commute with multiplication and



RESOLUTIONS FOR TWISTED TENSOR PRODUCTS 451

with bimodule structure maps. There are many settings in which compatible chain
maps do exist, as we will see.

Definition 2.17. Let M be an A-bimodule that is compatible with τ . A projective
A-bimodule resolution Pq(M) is compatible with the twisting map τ if each Pi (M)
is compatible with τ via a map

τB,i : B⊗ Pi (M)→ Pi (M)⊗ B,

with τB, q a chain map lifting τB,M . Suppose A is graded, M is a graded A-bimodule,
and Pq(M) is a graded projective A-bimodule resolution; we say that Pq(M) is
compatible with a strongly graded twisting map τ if there are maps τB,i as above
taking B j ⊗ (Pi (M))l to (Pi (M))l ⊗ B j for all j, l.

Remark 2.18. The above definition applies to B-bimodule resolutions as well as
A-bimodule resolutions by reversing the roles of A and B in the definition, again as
A⊗τ B = B⊗τ−1 A. For a B-bimodule N that is compatible with τ , the definition
implies that a projective B-bimodule resolution Pq(N ) of N is compatible with the
twisting map τ when each Pi (N ) is compatible with τ via a map

τi,A : Pi (N )⊗ A→ A⊗ Pi (N ),

with τ q,A a chain map lifting τN ,A. Thus we say a resolution is compatible with τ if
it is either an A-bimodule resolution or a B-bimodule resolution compatible with τ .

We provide some small examples later: Example 2.21 (Weyl algebra) and
Example 3.13 (skew group algebra). First, a remark on embedding resolutions and
some general results.

Remark 2.19. Note that compatibility is preserved under embedding of resolutions
so long as the extensions of the twisting map τ preserve the embedding. Specifically,
assume

φ q : Q q(A) ↪→ Pq(A)
is an embedding of resolutions of the algebra A, and Pq(A) is compatible with a
twisting map τ : B⊗ A→ A⊗ B via chain maps

τB,i : B⊗ Pi (A)→ Pi (A)⊗ B.

If the maps τB,i preserve the embedding in the obvious sense that each τB,i restricts
to a surjective map B⊗ Im(φ)� Im(φ)⊗ B, then Q q(A) is compatible with τ via
these restrictions.

Compatibility of bar and Koszul resolutions. If A and B are both Koszul algebras
and τ is a strongly graded twisting map, then the algebra A⊗τ B is known to be
Koszul (see [Polishchuk and Positselski 2005, Example 4.7.3], [Jara et al. 2017,
Corollary 4.1.9], or [Walton and Witherspoon 2018, Proposition 1.8]). Conner
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and Goetz [2018] examine the situation when τ is not strongly graded. We show
next that both bar and Koszul resolutions are compatible with twisting maps. We
always assume our Koszul algebras are connected graded algebras, so that they are
quotients of tensor algebras on generating vector spaces in degree 1. Note that the
roles of A and B may be exchanged in the next proposition.

Proposition 2.20. Let τ be a twisting map for some k-algebras A and B.

(1) The bar resolution Bar q(A) is compatible with τ .

(2) The reduced bar resolution Bar q(A) is compatible with τ .

(3) If A is a Koszul algebra, B is a graded algebra, and τ is strongly graded, then
the Koszul resolution Kos q(A) is compatible with τ .

Proof. (i) The bar resolution of A may be twisted by repeated application of the
map τ , i.e., define

τB,i : B⊗ A⊗(i+2)
→ A⊗(i+2)

⊗ B

by applying τ to the first two tensor factors on the left, then applying τ to next two
tensor factors, and so on:

τB,i = (1⊗· · ·⊗1⊗τ)(1⊗· · ·⊗1⊗τ⊗1) · · · (1⊗τ⊗1⊗· · ·⊗1)(τ⊗1⊗· · ·⊗1).

Then Bar q(A) is compatible with τ via τB,i , as may be verified directly by repeated
use of (2.1).

(ii) Write the terms in the bar complex Bar q(A) as Pi = A⊗(i+2) for each i , and define
the terms in the reduced bar complex Bar q(A) by P i = A⊗ A⊗i

⊗ A. For each i , let
Ti be the kernel of the quotient map Bari (A)→ Bari (A). Then Tq is a subcomplex
of Bar q(A) and Bar q(A) ∼= Bar q(A)/Tq. By definition of the twisting map τ , the
multiplicative identity 1A commutes with elements of B under τ , implying that τB,i

of part (i) takes B⊗Ti onto Ti⊗B for each i . Let τ B,i : B⊗Bari (A)→Bari (A)⊗B
be the corresponding map on quotients. Then Bar q(A) is compatible with τ via the
maps τ B,i .

(iii) The proof of [Walton and Witherspoon 2018, Proposition 1.8] shows that the
embedding Kos q(A) ↪→Bar q(A) of bimodule resolutions is preserved by the iterated
twisting in part (i) above (see Remark 2.19). Thus Kos q(A) satisfies compatibility. �

We next give an example showing how Proposition 2.20 can be used for Koszul
resolutions even when the twisting map τ is not strongly graded.

Example 2.21. As in Example 2.2, let W be the Weyl algebra on x, y with A= k[x]
and B = k[y]. Let Kos q(A) be the Koszul resolution of A as an A-bimodule,

0→ A⊗ V ⊗ A d1
−→ A⊗ A m

−→ A→ 0,
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where V = Spank{x} ⊂ A, d1(1⊗ x ⊗ 1)= x ⊗ 1− 1⊗ x , and m is multiplication.
Let τ : B⊗ V → V ⊗ B be the swap map b⊗ v 7→ v⊗ b for all b in B and v in V,
and define

τ B, q : B⊗Kos q(A)→ Kos q(A)⊗ B

by iterations of τ and τ :

τ B,0 : B⊗ A⊗ A τ⊗1
−−−−−→ A⊗ B⊗ A 1⊗τ

−−−−−→ A⊗ A⊗ B, and

τ B,1 : B⊗ A⊗ V ⊗ A τ⊗1⊗1
−−−−−→ A⊗ B⊗ V ⊗ A

1⊗τ⊗1
−−−−−→ A⊗ V ⊗ B⊗ A 1⊗1⊗τ

−−−−−→ A⊗ V ⊗ A⊗ B.

Define τ q,A : Kos q(B)⊗ A → A ⊗ Kos q(B) similarly for the Koszul resolution
Kos q(B) of B. Note that τ is not strongly graded, so part (iii) of Proposition 2.20
does not apply even though both A and B are Koszul algebras. Instead, we appeal
to part (ii) and Remark 2.19 after taking canonical embeddings Kos q(A) ↪→Bar q(A)
and Kos q(B) ↪→Bar q(B). (For example, view A⊗V⊗A as a subspace of A⊗A⊗A;
the terms in other degrees are either 0 or the same as in the bar resolution.) The
maps τ B, q and τ q,A above are the restrictions to B⊗Kos q(A) and Kos q(B)⊗ A of
the maps of the same name in the proof of Proposition 2.20(ii) (after identifying V
with its image under the quotient map A→ A). In this way, we see that the Koszul
resolutions Kos q(A) and Kos q(B) are compatible with the twisting map τ via τ B, q
and τ q,A. We extend these ideas in Theorem 4.2.

3. Twisted product resolutions for Bimodules

Again, we fix k-algebras A and B with a twisting map τ : B ⊗ A→ A⊗ B and
consider an A-bimodule M and B-bimodule N. We build a projective resolution of
M ⊗ N as a bimodule over A⊗τ B from resolutions Pq(M) and Pq(N ) under our
compatibility assumptions. We give the construction in Lemma 3.1, prove exactness
in Lemma 3.5, and show in Lemma 3.9 that the modules in the construction are
indeed projective under an additional assumption.

Lemma 3.1. Let M be an A-bimodule and let N be a B-bimodule, both compatible
with a twisting map τ . Let Pq(M) and Pq(N ) be projective A- and B-bimodule
resolutions of M and N, respectively, that are compatible with τ . For each i, j ≥ 0,
let

(3.2) X i, j = Pi (M)⊗ Pj (N ),

an A⊗τ B-bimodule via diagram (2.13). Then X q, q is a bicomplex of A⊗τ B-
bimodules with horizontal and vertical differentials given by dh

i, j = di ⊗ 1 and
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dvi, j = (−1)i ⊗ d j , where di and d j denote the differentials of the appropriate
resolutions:

...

��

...

��

...

��

X0,2

dv0,2
��

X1,2
dh

1,2
oo

dv1,2
��

X2,2
dh

2,2
oo

dv2,2
��

· · ·oo

X0,1

dv0,1
��

X1,1
dh

1,1
oo

dv1,1
��

X2,1
dh

2,1
oo

dv2,1
��

· · ·oo

X0,0 X1,0
dh

1,0
oo X2,0

dh
2,0

oo · · ·oo

Proof. The k-vector spaces X i, j form a tensor product bicomplex with differentials
as stated. The bimodule action of A⊗τ B on X i, j commutes with the horizontal
and vertical differentials since τ q,B and τA, q are chain maps. Therefore this is an
A⊗τ B-bimodule bicomplex. �

Definition 3.3. The twisted product complex X q is the total complex of X q, q, i.e.,
when augmented by M ⊗ N, it is the complex

(3.4) · · · → X2→ X1→ X0→ M ⊗ N → 0

with Xn =
⊕

i+ j=n X i, j , and n-th differential
∑

i+ j=n di, j where

di, j = di ⊗ 1+ (−1)i ⊗ d j .

Lemma 3.5. The twisted product complex (3.4) is exact.

Proof. By the Künneth theorem [Weibel 1994, Theorem 3.6.3], for each n there is
an exact sequence

0→
⊕

i+ j=n

Hi (Pq(M))⊗H j (Pq(N ))→ Hn(Pq(M)⊗ Pq(N ))
→

⊕
i+ j=n−1

Tork
1
(
Hi (Pq(M)),H j (Pq(N )))→ 0.

Now Pq(M) and Pq(N ) are exact other than in degree 0, where they have homology
M and N, respectively. Therefore

Hi (Pq(M))= 0 for all i > 0 and H j (P(N ))= 0 for all j > 0.

The Tor term is 0 since k is a field. Thus for all n> 0, Hn(Pq(M)⊗Pq(N ))= 0, and

H0(Pq(M)⊗ Pq(N ))∼= H0(Pq(M))⊗H0(Pq(N ))∼= M ⊗ N

as vector spaces. Thus the complex (3.4) is exact. �
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In practice, one often can show directly that each X i, j is projective as an A⊗τ B-
bimodule, for example, when working with bar resolutions and/or Koszul resolutions.
For the general case, we need an extra compatibility assumption, which we explain
next. As each Pi (N ) is a projective B-bimodule, it embeds into a free Be-module
(Be)⊕J for some indexing set J. In the following definition, we use the map
(τ ⊗ 1)(1⊗ τ) : Be

⊗ A→ A⊗ Be.

Definition 3.6. A chain map τi,A : Pi (N )⊗ A→ A⊗ Pi (N ) is compatible with a
chosen embedding Pi (N ) ↪→ (Be)⊕J (for some indexing set J ) if the corresponding
diagram is commutative:

Pi (N )⊗A ↪ //

τi,A

��

(Be)⊕J
⊗A

((τ⊗1)(1⊗τ))⊕J

��

A⊗Pi (N ) ↪ // A⊗(Be)⊕J

Similarly, the map τB,i of (2.16) is compatible with a chosen embedding of Pi (M)
into a free Ae-module (Ae)⊕I (for some indexing set I ) if the corresponding
diagram is commutative, i.e., if τB,i is the restriction of the map ((1⊗ τ)(τ ⊗1))⊕I

to B⊗ Pi (M).

Remark 3.7. In many settings, one sees directly that each X i, j is projective, in
which case one need not consider this extra compatibility condition, as the next
lemma is not needed. This is the case, for example, when twisting by a bicharacter
on grading groups (see [Bergh and Oppermann 2008, Lemma 3.3]). In other
settings, τi,A and τB,i are automatically compatible with chosen embeddings into
free modules, for example if A and B are Koszul algebras and the embeddings
are standard embeddings into bar resolutions (see [Walton and Witherspoon 2018,
Proposition 1.8]).

Example 3.8. As in Examples 2.2 and 2.21, let W ∼= A⊗τ B be the Weyl algebra
on x, y, A = k[x], and B = k[y]. By construction, each map τ i,A is compatible
with the canonical embedding Kosi (A) ↪→ Bari (A) and likewise τ B,i is compatible
with Kosi (B) ↪→ Bari (B).

Lemma 3.9. If τB,i and τ j,A are compatible with chosen embeddings of Pi (M)
and Pj (N ) into free modules, then X i, j = Pi (M)⊗ Pj (N ) is a projective A⊗τ B-
bimodule.

Proof. First we verify the lemma in the case where Pi (M)= Ae, Pj (N )= Be, and
the chosen embeddings are the identity maps. In this case,

X i, j = Ae
⊗ Be

= A⊗ Aop
⊗ B⊗ Bop.
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One checks that the map

1⊗ τ ⊗ 1 : A⊗ B⊗ (A⊗ B)op
→ A⊗ Aop

⊗ B⊗ Bop

is an isomorphism of (A⊗τ B)e-modules by (2.1) and the definition of the action
given in the proof of Lemma 3.1. If Pi (M) and Pj (N ) are arbitrary free modules,
and the chosen embeddings are identity maps, we apply the above map to each
summand Ae

⊗ Be of Pi (M)⊗ Pj (N ) to see that X i, j is a free (A⊗τ B)e-module.
Now we consider the general case, including the possibility that at least one of

Pi (M), Pj (N ) is free but the corresponding chosen embedding into a (possibly
different) free module is not the identity map. The first part of the proof together
with the compatibility hypothesis implies that the embedding of k-vector spaces
Pi (M) ⊗ Pj (N ) ↪→ (Ae)⊕I

⊗ (Be)⊕J given by the tensor product of the two
embedding maps is a map of (A⊗τ B)e-modules. �

We combine the lemmas to obtain the following theorem.

Theorem 3.10. Let A and B be k-algebras, and let τ : B ⊗ A → A ⊗ B be a
twisting map. Let M be an A-bimodule and N a B-bimodule with projective A- and
B-bimodule resolutions Pq(M) and Pq(N ), respectively. Assume that M, N, Pq(M),
and Pq(N ) are compatible with τ and the corresponding maps τB,i and τ j,A are
compatible with chosen embeddings of Pi (M) and Pj (N ) into free modules. Then
the twisted product complex with

Xn =
⊕

i+ j=n

X i, j for X i, j = Pi (M)⊗ Pj (N )

gives a projective resolution of M ⊗ N as a A⊗τ B-bimodule:

· · · → X2→ X1→ X0→ M ⊗ N → 0.

Proof. The result follows from Lemmas 3.1, 3.5, and 3.9. �

Remark 3.11. The theorem generally unifies known constructions of resolutions in
several different contexts, for example, twisted tensor products given by bicharacters
of grading groups [Bergh and Oppermann 2008], crossed products [Guccione and
Guccione 2002], skew group algebras (semidirect products) of Koszul algebras
and finite groups [Shepler and Witherspoon 2014], and smash products of Koszul
algebras with Hopf algebras [Walton and Witherspoon 2014].

Theorem 3.10 combined with Proposition 2.20 and Remark 3.7 implies that
a twisted product resolution of A⊗τ B as a bimodule always exists, since bar
resolutions may always be twisted (and likewise Koszul resolutions, when one or
both of the algebras is Koszul; see also [Jara et al. 2017; Polishchuk and Positselski
2005; Walton and Witherspoon 2018]):
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Corollary 3.12. Let A and B be k-algebras with twisting map τ : B⊗ A→ B⊗ A.
The following are projective resolutions of A⊗τ B as a bimodule over itself.

• The twisted product complex of two bar resolutions.

• The twisted product complex of two Koszul resolutions when A and B are
Koszul algebras and τ is strongly graded.

• The twisted product complex of one bar resolution and one Koszul resolution in
the case where one of A or B is Koszul and the other is graded, for τ strongly
graded.

Moreover, bar resolutions may be replaced by reduced bar resolutions in the above
statements.

Examples: skew group algebras. We give some details for a class of examples
introduced in Example 2.3. The resolutions in [Shepler and Witherspoon 2014]
for S oG, where G is a finite group acting by graded automorphisms on a Koszul
algebra S, appear different from but are equivalent to (3.4) when M = kG (the
group algebra) and N = S. Note that kG⊗ S is isomorphic to SoG as an (SoG)-
bimodule via the twisting map τ . In [Shepler and Witherspoon 2014], the modules
X i, j are given as

(S oG)⊗C ′i ⊗ D′j ⊗ (S oG),

where Pi (kG)= kG⊗C ′i⊗kG, Pj (S)= S⊗D′j⊗S are free (kG)e- and Se-modules
determined by vector spaces C ′i , D′j , respectively. We assume Pi (kG) is G-graded
and the grading is compatible with the kG-bimodule action. We assume Pj (S) is a
kG-module in such a way that the differentials are kG-module homomorphisms,
and this action is compatible with that of S, so that Pj (S) becomes an SoG-module.
Compatibility with τ follows from these assumptions. There is an isomorphism of
S oG-bimodules,

(kG⊗C ′i ⊗ kG)⊗ (S⊗ D′j ⊗ S)−→∼ (S oG)⊗C ′i ⊗ D′j ⊗ (S oG),

similar to that used in the proof of [Shepler and Witherspoon 2014, Theorem 4.3],
given by

g⊗ x ⊗ g′⊗ s⊗ y⊗ s ′ 7→ g((hg′)s)⊗ x ⊗ (g′y)⊗ g′s ′

for all g, g′ ∈ G, s, s ′ ∈ S, x in the h-component of C ′i, and y ∈ D′j.

Example 3.13. In particular, [Shepler and Witherspoon 2014, Example 4.6] in-
volves a resolution that is neither a Koszul resolution nor a bar resolution and yet
satisfies compatibility. In that example, k is a field of positive characteristic p,
S= k[x, y], and G=〈g〉 is a group of order p acting on S by g ·x = x , g · y= x+ y.
The resolution Pq(S) is the Koszul resolution Kos q(S) of S,

0→ S⊗
∧2V ⊗ S→ S⊗

∧1V ⊗ S→ S⊗ S→ S→ 0,
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where V = Spank{x, y}. The resolution Pq(kG) is the bimodule resolution of kG,

(3.14) · · · η·−→kG⊗kG γ ·
−→kG⊗kG η·

−→kG⊗kG γ ·
−→kG⊗kG m

−→kG −→ 0,

where γ = g⊗ 1− 1⊗ g, η = g p−1
⊗ 1+ g p−2

⊗ g+ · · · + 1⊗ g p−1, and m is
multiplication. Compatibility follows from Proposition 2.20(i) using Remark 2.19
after taking the standard embedding Kos q(S) ↪→Bar q(S) and embedding (3.14) into
Bar q(kG) (see, e.g., [Guccione et al. 1991]).

4. Bimodule resolutions of Ore extensions

Many algebras of interest are Ore extensions of other algebras. We show how to
twist bimodule resolutions for such extensions in this section.

Ore extensions as twisted tensor products. Let R be a k-algebra and fix a k-algebra
automorphism σ of R. Let δ : R→ R be a left σ -derivation of R, that is,

(4.1) δ(rs)= δ(r)s+ σ(r)δ(s) for all r, s ∈ R.

The Ore extension R[x; σ, δ] is the algebra with underlying vector space R[x] and
multiplication determined by that of R and of k[x] and the additional Ore relation

xr = σ(r)x + δ(r) for all r ∈ R.

An Ore extension R[x; σ, δ] is thus isomorphic to a twisted tensor product A⊗τ B
where A = R, B = k[x], and the twisting map τ : B⊗ A→ A⊗ B satisfies

τ(x ⊗ r)= σ(r)⊗ x + δ(r)⊗ 1 for all r ∈ R.

Free resolutions for iterated Ore extensions. We will work with general Ore
extensions in Section 6. Here for simplicity we restrict to the case where the
automorphism on R is the identity, σ = 1R , so the Ore relation sets commutators
xr − r x equal to elements in R. In this case, the Ore extension is also known
as a ring of formal differential operators. We consider an iterated Ore extension
S = (· · · (k[x1][x2; 1, δ2]) · · · )[xt ; 1, δt ], which we abbreviate as

S= k[x1, . . . , xt ; δ2, . . . , δt ] = k〈x1, . . . , xt 〉/(x j xi−xi x j−δ j (xi ) : 1≤ i < j ≤ t)

with S ∼= k[x1, . . . , xt ] as a k-vector space. We assume that S is a filtered algebra
with deg(xi )= 1 for all i . Then each δ j is a filtered map, i.e.,

δ j (xi ) ∈ k⊕Spank{x1, . . . , x j−1}

for i < j. This setting includes Weyl algebras and universal enveloping algebras of
supersolvable Lie algebras.
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Theorem 4.2. Consider an iterated Ore extension S = k[x1, . . . , xt ; δ2, . . . , δt ]

with identity automorphisms σi = 1 and filtered derivations δi . There is an iterated
twisted product resolution K q that is a free resolution of S as a bimodule over itself :

Kn = S⊗
∧nV ⊗ S

for V = Spank{x1, . . . , xt } with differentials given by ( for 1≤ l1 < · · ·< ln ≤ t)

dn(1⊗xl1∧·· ·∧xln⊗1)

=

∑
1≤i≤n

(−1)i+1(xli⊗xl1∧·· ·∧x̂li∧·· ·∧xln⊗1−1⊗xl1∧·· ·∧x̂li∧·· ·∧xln⊗xli
)

+

∑
1≤i< j≤n

(−1) j
⊗xl1∧·· ·∧xli−1∧δl j (xli )∧xli+1∧·· ·∧x̂l j∧·· ·∧xln⊗1,

where δl j (xli ) is the image of δl j (xli ) under the projection k⊕ V � V.

Proof. We induct on t . For each i , the Koszul resolution of k[xi ] is embedded in
the (reduced) bar resolution of k[xi ] as

(4.3) 0→ k[xi ]⊗Spank{xi }⊗ k[xi ]
d1
−→ k[xi ]⊗ k[xi ]

m
−→ k[xi ] → 0,

where d1(1⊗ xi ⊗ 1)= xi ⊗ 1− 1⊗ xi and m is multiplication. For t = i = 1, the
complex (4.3) is a resolution of S satisfying the statement of the theorem.

Now assume t ≥ 2 and that the iterated Ore extension

A = k[x1, . . . , xt−1; δ2, . . . , δt−1]

has a free bimodule resolution Pq(A) as in the theorem. Let B = k[xt ] and let Pq(B)
be the Koszul resolution (4.3) for i = t . Then S = A⊗τ B where

τ(xt ⊗ a)= a⊗ xt + δt(a)⊗ 1 for all a ∈ A.

Embedding into the reduced bar resolution. We embed Pq(A) into the reduced
bar resolution Bar q(A) and then define twisting maps for Pq(A) via this embedding:
Let φn : Pn(A)→ A⊗(n+2) be the standard antisymmetrization map defined by

φn(1⊗ xl1 ∧ · · · ∧ xln ⊗ 1)=
∑

σ∈Symn

sgn σ ⊗ xlσ(1) ⊗ · · ·⊗ xlσ(n) ⊗ 1

for all 1 ≤ l1 < · · · < ln ≤ t − 1. This is a chain map from Pq(A) to Bar q(A).
Compose with the quotient map Bar q(A)→ Bar q(A) to obtain a chain map

φ q : Pq(A)→ Bar q(A).
Note that the image of Pq(A) in the bar resolution Bar q(A), under φ q, intersects the
kernel of this quotient map trivially. Thus the induced map φ q is injective.
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Iterated twisting. The reduced bar resolution is compatible with τ via the map

τ B, q : B⊗Bar q(A)→ Bar q(A)⊗ B

from the proof of Proposition 2.20(ii). We argue that τ B, q restricts to a surjective map

τ̃B, q : B⊗ Pq(A)→ Pq(A)⊗ B

by verifying that it preserves the image of φ q, i.e., τ B,n takes B ⊗ Im(φn) onto
Im(φn)⊗ B for all n. We apply τ B,n to

xt⊗φn(a0⊗y1∧· · ·∧yn⊗an+1)=
∑

π∈Symn

sgnπ (xt⊗a0⊗yπ(1)⊗· · ·⊗yπ(n)⊗an+1),

for some a0, an+1 in A, in order to move xt to the far right, obtaining( ∑
π∈Symn

(sgnπ) a0⊗ yπ(1)⊗ · · ·⊗ yπ(n)⊗ an+1

)
⊗ xt ∈ Im(φn)⊗ B

plus additional terms that arise from the relation

τ(xt ⊗ yπ(i))= yπ(i)⊗ xt + δt(yπ(i))⊗ 1.

(We use the same notation for elements of A and their images under the quotient
map A→ A in cases where no confusion can arise.) Since τ(1⊗ y j )= y j ⊗ 1 for
all j, these additional terms sum to∑
π∈Symn

(sgnπ) δt(a0)⊗yπ(1)⊗·· ·⊗yπ(n)⊗an+1⊗1

+

∑
π∈Symn

∑
1≤i≤n

(sgnπ) a0⊗yπ(1)⊗·· ·⊗δt(yπ(i))⊗yπ(i+1)⊗·· ·⊗yπ(n)⊗an+1⊗1

+

∑
π∈Symn

(sgnπ)a0⊗yπ(1)⊗·· ·⊗yπ(n)⊗δt(an+1)⊗1

=φn(δt(a0)⊗y1∧·· ·∧yn⊗an+1)⊗1 + φn
(
a0⊗y1∧·· ·∧yn⊗δt(an+1)

)
⊗1

+

∑
1≤i≤n

φn
(
a0⊗y1∧·· ·∧δt(yi )∧yi+1∧·· ·∧yn⊗an+1

)
⊗1 ∈ Im(φn)⊗B.

We may replace xt by xm
t in the above computation using induction after noting

that τ(xm
t ⊗ xi )= (1⊗m B)τ (xt ⊗ (τ (xm−1

t ⊗ xi )) for i < t . The above arguments
can be modified to apply to τ−1

B,i as well. Thus the chain map τ B, q preserves the
image of φ q and restricts to a surjective chain map τ̃B, q : B⊗ Pq(A)→ Pq(A)⊗ B
as claimed.
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Compatibility on one side. The complex Pq(A) inherits compatibility with τ from
the compatibility of the reduced bar complex Bar q(A) with τ . Indeed, since Bar q(A)
is compatible with τ via a map τ B, q which preserves the embedding

φ q : Pq(A) ↪→ Bar q(A),
the complex Pq(A) is compatible with τ via the restriction τ̃B, q of τ B, q to B⊗ Pq(A).
(See Proposition 2.20(ii) and its proof and Remark 2.19.)

Compatibility on the other side. Define a chain map

τ q,A : Pq(B)⊗ A→ A⊗ Pq(B)
by setting τ0,A = (τ ⊗ 1)(1⊗ τ) and

τ1,A((1⊗ xt ⊗ 1)⊗ xi )= xi ⊗ (1⊗ xt ⊗ 1)

and then extending (uniquely) to P1(B)⊗ A by requiring that compatibility con-
ditions (2.8) and (2.9) hold. A calculation shows that τ q,A is a chain map and that
Pq(B) is compatible with τ . By their definitions, τ0,A and τ1,A are compatible with
the embeddings of P0(B) and P1(B) into corresponding terms of the (reduced) bar
resolution.

Twisted product resolution. By construction, the twisted product resolution K q
arising from Pq(A) and Pq(B) in degree n is isomorphic to

S⊗
∧nV ⊗ S

as an S-bimodule via the isomorphisms

A⊗
∧i Spank{x1, . . . , xt−1}⊗ A⊗ B⊗

∧j Spank{xt }⊗ B

−→∼ A⊗ B⊗
∧i Spank{x1, . . . , xt−1}⊗

∧j Spank{xt }⊗ A⊗ B,

for j = 0, 1, given by applying τ−1 (properly interpreted for each factor) to the
innermost tensor factors A and B. We check the differentials: On Xn,0, the differ-
ential is just that arising from the factor Pn(A). Now consider the differential on
Xn−1,1, again writing xli = yi for some indices 1≤ l1 < · · ·< ln ≤ t − 1:

dn(1⊗y1∧·· ·∧yn−1⊗1⊗1⊗xt⊗1)

=

( ∑
1≤i≤n−1

(−1)i+1(yi⊗y1∧· · · ŷi∧· · ·∧yn−1⊗1−1⊗y1∧· · ·∧ŷi∧· · ·∧yn−1⊗yi
)

+

∑
1≤i< j≤n−1

(−1) j
⊗ y1∧· · ·∧δ j (yi )∧· · ·∧ ŷ j∧· · ·∧ yn−1⊗1

)
⊗(1⊗xt⊗1)

+ (−1)n−1(1⊗ y1 ∧ · · · ∧ yn−1⊗ 1)⊗ (xt ⊗ 1− 1⊗ xt),
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which may be rewritten, under the above isomorphism, as∑
1≤i≤n−1

(−1)i+1 yi ⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn−1⊗ xt ⊗ 1

−

∑
1≤i≤n−1

(−1)i+1
⊗ y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yn−1⊗ xt ⊗ yi

+

∑
1≤i< j≤n−1

(−1) j
⊗ y1 ∧ · · · ∧ δ j (yi )∧ · · · ∧ ŷ j ∧ · · · ∧ yn−1⊗ xt ⊗ 1

+ (−1)n−1xt ⊗ y1 ∧ · · · ∧ yn−1⊗ 1+ (−1)n ⊗ y1 ∧ · · · ∧ yn−1⊗ xt

+ (−1)n
∑

1≤i≤n−1

1⊗ y1 ∧ · · · ∧ δt(yi )∧ · · · ∧ yn−1⊗ 1.

Once we set yn = xt , identify y1∧· · ·∧ yn−1⊗xt with y1∧· · ·∧ yn−1∧xt , and make
other similar identifications, this agrees with the differential in the statement. �

Examples. The theorem applies in particular to the universal enveloping algebra
U(g) of a finite-dimensional solvable Lie algebra g. Here, we assume the underlying
field k is algebraically closed, else g should be supersolvable; see [Dixmier 1977,
1.3.14] and [Brown et al. 2015, Section 3]. The theorem gives a bimodule Koszul
resolution of U(g). Semisimple Lie algebras can then be handled via triangular
decomposition. Other examples include Weyl algebras and Sridharan enveloping
algebras [Sridharan 1961].

5. Twisted product resolutions for (left) modules

We now consider a twisted product resolution of left modules instead of bimodules.
We give the one-sided version of bimodule constructions in Sections 2 and 3. Again,
we fix k-algebras A and B with a twisting map τ : B ⊗ A → A ⊗ B. In the
constructions below, we consider compatible A-modules, but note that we as easily
could have started with compatible B-modules instead of A-modules using the
inverse twisting map τ−1 instead of τ in order to lift (left) modules of A and B to
(left) modules of A⊗τ B ∼= B⊗τ−1 A.

Let M be an A-module with module structure map ρA,M : A⊗ M → M and
recall the multiplication map m B : B⊗ B→ B.

Definition 5.1. The A-module M is compatible with the twisting map τ if there is
a bijective k-linear map τB,M : B⊗M→ M ⊗ B such that

τB,M(m B ⊗ 1)= (1⊗m B)(τB,M ⊗ 1)(1⊗ τB,M) and(5.2)

τB,M(1⊗ ρA,M)= (ρA,M ⊗ 1)(1⊗ τB,M)(τ ⊗ 1)(5.3)

as maps on B⊗ B⊗M and on B⊗ A⊗M, respectively.
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Note that this definition is equivalent to the commutativity of a diagram similar
to (2.11), where ρA,M is replaced by a one-sided module structure map.

Let N be a B-module with module structure map ρB,N : B⊗ N → N. If M is
compatible with τ , the tensor product M ⊗ N may be given the structure of an
A⊗τ B-module via the following composition of maps:

(5.4) A⊗τ B⊗M⊗N 1⊗ τB,M⊗1
−−−−−−→ A⊗M ⊗B⊗N ρA,M⊗ρB,N−−−−−−→M ⊗ N .

Let Pq(M) be an A-projective resolution of M and Pq(N ) be a B-projective
resolution of N :

· · · → P2(M)→ P1(M)→ P0(M)→ k→ 0,

· · · → P2(N ) → P1(N ) → P0(N ) → k→ 0.

Definition 5.5. Let M be an A-module that is compatible with τ . The projective
module resolution Pq(M) of the A-module M is compatible with the twisting map τ
if each Pi (M) is compatible with τ via maps τB,i for which

τB, q : B⊗ Pq(M)→ Pq(M)⊗ B

is a k-linear chain map lifting τB,M : B⊗M→ M ⊗ B.

Under the assumption of compatibility, we make the following definition.

Definition 5.6. Let M be an A-module compatible with τ and Pq(M) a projective
resolution of M that is compatible with τ . Let N be a B-module. The twisted
product complex Y q is the total complex of the bicomplex Y q, q defined by

(5.7) Yi, j = Pi (M)⊗ Pj (N ),

with A⊗τ B-module structure given by the maps τB, q as in (5.4) and with vertical
and horizontal differentials given by dh

i, j = di ⊗ 1 and dvi, j = (−1)i ⊗ d j . In other
words, Yn =

⊕
i+ j=n Yi, j with dn =

∑
i+ j=n di, j where di, j = dh

i, j + dvi, j .

Lemma 5.8. Assume M and Pq(M) are compatible with τ . Then the twisted product
complex Y q is a complex of A⊗τ B-modules.

Proof. Each space Yi, j is given the structure of an A⊗τ B-module via (5.4). The
differentials are module homomorphisms since τB, q is a chain map. �

Lemma 5.9. The twisted product complex · · · → Y2→ Y1→ Y0→ M⊗ N→ 0 is
exact.

Proof. As in the proof of Lemma 3.5, apply the Künneth theorem to obtain
Hn(Y q)= 0 for all n > 0 and H0(Y q)∼= M ⊗ N. �

We wish to prove in general that the modules Yi, j are projective, so we make an
additional assumption in the next lemma. Since Pq(M) is a projective resolution
of M as an A-module, each Pi (M) embeds in a free A-module A⊕I.
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Definition 5.10. For each i ≥ 0, the map τB,i is compatible with a chosen embed-
ding Pi (M) ↪→ A⊕I (for some indexing set I ) if the corresponding diagram is
commutative:

B⊗Pi (M) ↪ //

τB,i

��

B⊗A⊕I

τ⊕I

��

Pi (M)⊗B ↪ // A⊕I
⊗B

In many settings, one proves directly that the modules Yi, j are projective (e.g.,
the Ore extensions in the next section) and so one does not need this additional
compatibility assumption, nor the next lemma.

Lemma 5.11. For i ≥ 0, if τB,i is compatible with a chosen embedding of Pi (M)
into a free A-module, then Yi, j = Pi (M)⊗ Pj (N ) is a projective A⊗τ B-module.

Proof. By the hypothesis, it suffices to prove the lemma when Pi (A) = A and
Pj (B)= B. In that case, A⊗ B is the right regular module A⊗τ B by definition,
and so is free. �

Combining Lemmas 5.8, 5.9, and 5.11, we obtain the following theorem.

Theorem 5.12. Let A and B be k-algebras with twisting map τ : B⊗ A→ A⊗ B.
Let Pq(M) and Pq(N ) be projective A- and B-module resolutions of M and N, re-
spectively. Assume M and Pq(M) are compatible with τ and that the corresponding
maps τB,i are compatible with chosen embeddings of Pi (M) into free A-modules.
Then the twisted product complex with

Yn =
⊕

i+ j=n

Yi, j for Yi, j = Pi (M)⊗ Pj (N )

gives a projective resolution of M ⊗ N as a module over the twisted tensor product
A⊗τ B:

· · · → Y2→ Y1→ Y0→ M ⊗ N → 0.

Examples. Resolutions that may be constructed in this way include the Koszul
resolution of k for a twisted tensor product of two Koszul algebras (see the proof
of [Walton and Witherspoon 2018, Proposition 1.8]) and a resolution for a twisted
tensor product of algebras whose twisting map is given by a bicharacter on grading
groups (see [Bergh and Oppermann 2008]). We give another class of examples in
the next section.

6. Resolutions for Ore extensions

In Section 4, we considered resolutions of an Ore extension algebra as a bimodule
over itself. Here, we consider (left) modules over an Ore extension and show how to
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construct projective resolutions of these modules by regarding the Ore extension as a
twisted tensor product. Gopalakrishnan and Sridharan [1966] studied Ore extensions
R[x; σ, δ] in the case where σ is the identity automorphism. They showed that if M
is a (left) module over R[x; 1, δ], then an R-projective resolution of M lifts to an
R[x; 1, δ]-projective resolution. Here we allow arbitrary automorphisms σ of R and
give conditions under which an R-projective resolution of an R[x; σ, δ]-module M
lifts to an R[x; σ, δ]-projective resolution.

Again, let R be a k-algebra and σ be a k-algebra automorphism of R. Let δ be a
left σ -derivation of R (see (4.1)) and consider the Ore extension R[x; σ, δ]. Let
A = R, B = k[x], and τ : B ⊗ A→ A⊗ B be the twisting map determined by
τ(x ⊗ r)= σ(r)⊗ x + δ(r)⊗ 1 for all r ∈ R, as in Section 4, so that R[x; σ, δ] is
the twisted tensor product A⊗τ B.

Modules over Ore extensions. Consider an R[x; σ, δ]-module M. Assume that on
restriction to R, there is an isomorphism of R-modules, φ : M −→∼ Mσ, where Mσ

is the vector space M with R-module action given by r ·σ m = σ(r) ·m for all r ∈ R
and m ∈ M. Then M is compatible with τ : We define τB,M : B⊗M→ M ⊗ B by
setting, for all m ∈ M,

τB,M(1⊗m)= m⊗ 1,

τB,M(x ⊗m)= φ(m)⊗ x + xm⊗ 1

and extending by applying compatibility condition (5.2). That is, since the algebra
B = k[x] is free on the generator x , for each element m of M, we may define
τB,M(x

n
⊗m) by applying (5.2) to x ⊗ xn−1

⊗m. We check that (5.3) holds for
elements of the form x ⊗ r ⊗m, where r ∈ R and m ∈ M. Then a careful induction
on the power of x shows that (5.3) holds for all elements of the form xn

⊗ r ⊗m.
For example, if R[x; σ, δ] is an augmented algebra with augmentation ε :

R[x; σ, δ] → k for which εσ = ε, then εδ = 0 and the field k as a module over
R[x; σ, δ] via ε has the property that k ∼= kσ, and so k is compatible with τ .

Projective resolutions. Let Pq(M) be a projective resolution of M as an R-module:

· · ·
d2
−→ P1(M)

d1
−→ P0(M)

µ
−→M→ 0.

For each i , set Pσi (M)= (Pi (M))σ. Then

· · ·
d2
−→ Pσ1 (M)

d2
−→ Pσ0 (M)

φ−1µ
−−→M→ 0

is also a projective resolution of M as an R-module. By the comparison theorem,
there is an R-module chain map from Pq(M) to Pσq (M) lifting the identity map
M→ M, which we view as a k-linear chain map

(6.1) σ q : Pq(M)→ Pq(M)
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with σi (r z)= σ(r)σi (z) for all i ≥ 0, r ∈ R, and z ∈ Pi (M). We will assume for
Theorem 6.6 below that each σi is bijective. Let Pq(B) be the Koszul resolution
of k for B = k[x],

(6.2) 0→ k[x] x ·
−→ k[x] ε

−→ k→ 0,

where ε(x)= 0. The following two lemmas are proven as in [Gopalakrishnan and
Sridharan 1966] (where the authors proved the special case σ = 1). We include
details for completeness.

Lemma 6.3. Let P be a projective R-module. There is an R[x; σ, δ]-module
structure on P that extends the action of R.

Proof. First consider the case that P = R, the left regular module. Let x act on R by
x ·r = δ(r) for all r ∈ R. One checks that the action of xr in R[x; σ, δ] agrees with
that of σ(r)x + δ(r) on P, for all r ∈ R. Next, if P is a free module, it is a direct
sum of copies of R, and x acts on each copy in this way. Finally, in general, P is a
direct summand of a free R-module F. Let ι : P→ F and π : F→ P be R-module
homomorphisms for which πι is the identity map. Define x · p = π(x · ι(p)) for
all p ∈ P, where the action of x on ι(p) is as given previously for a free module.
Again one checks that the actions of xr and of σ(r)x + δ(r) agree, and so P is an
R[x; σ, δ]-module as claimed. �

Compatibility requirements. We will use the next lemma to show that the resolution
Pq(M) of M as an R-module is compatible with the twisting map τ (see Lemma 6.5).
Let f :M→M be the function given by the action of x on the R[x; σ, δ]-module M.

Lemma 6.4. There is a k-linear chain map δ q : Pq(M)→ Pq(M) lifting f :M→M
such that for each i ≥ 0, δi (r z)= σ(r)δi (z)+ δ(r)z for all r ∈ R and z ∈ Pi (M).

Proof. If i = 0, let δ′0 be the action of x on P0(M) given by Lemma 6.3. Then

δ′0(r z)− σ(r)δ′0(z)= δ(r)z

for r ∈ R, z ∈ P0(M). One checks that µδ′0 − f µ : P0(M) → Mσ is an R-
module homomorphism. As P0(M) is a projective R-module, there is an R-module
homomorphism δ′′0 : P0(M)→ Pσ0 (M) such that µδ′0− f µ=µδ′′0 . Let δ0 = δ

′

0−δ
′′

0.
One may check this satisfies the equation in the lemma.

Now fix i > 0 and assume there are k-linear maps δ j : Pj (M)→ Pj (M) such
that δ j (r z) = σ(r)δ j (z) + δ(r)z and d jδ j = δ j−1d j for all j, 0 ≤ j < i , and
r ∈ R, z ∈ Pj (M). Let δ′i : Pi (M)→ Pi (M) be the action of x on Pi (M) given in
Lemma 6.3, so that δ′i (r z)= σ(r)δ′i (z)+ δ(r)z for all r ∈ R, z ∈ Pi (M). Consider
the map

diδ
′

i − δi−1di : Pi (M)→ Pσi−1(M).
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A calculation shows that it is an R-module homomorphism. Since δi−1 is a chain
map,

di−1(diδ
′

i − δi−1di )= 0,

and so the image of diδ
′

i − δi−1di lies in Ker (di−1) = Im(di ). Since Pi (M) is
projective as an R-module, there is an R-homomorphism δ′′i : Pi (M)→ Pσi (M)
such that diδ

′

i−δi−1di = diδ
′′

i . Let δi = δ
′

i−δ
′′

i , so that diδi = δi−1di by construction.
One checks that for all r ∈ R and z ∈ Pi (M),

δi (r z)= δ′i (r z)−δ′′i (r z)= σ(r)δ′i (z)+δ(r)z−σ(r)δ
′′

i (z)= σ(r)δi (z)+δ(r)z. �

Lemma 6.5. The resolution Pq(M) is compatible with the twisting map τ .

Proof. Define τB,i : B⊗ Pi (M)→ Pi (M)⊗ B by

τB,i (1⊗ z)= z⊗ 1,

τB,i (x ⊗ z)= σi (z)⊗ x + δi (z)⊗ 1

for all z ∈ Pi (M), where σ q is the chain map of (6.1), δ q is the chain map of
Lemma 6.4, and we extend τB,i to B⊗ Pi (M) as before by requiring that compati-
bility conditions (5.2) and (5.3) hold. We check condition (5.3) in one case as an
example:

τB,i (x⊗r z)= σi (r z)⊗x+δi (r z)⊗1= σ(r)σi (z)⊗x+σ(r)δi (z)⊗1+δ(r)z⊗1,

for all r ∈ R, and z ∈ Pi (M), while on the other hand,

(ρA,i ⊗ 1)(1⊗ τB,i )(τ ⊗ 1)(x ⊗ r ⊗ z)

= (ρA,i ⊗ 1)(1⊗ τB,i )(σ (r)⊗ x ⊗ z+ δ(r)⊗ 1⊗ z)

= (ρA,i ⊗ 1)(σ (r)⊗ σi (z)⊗ x + σ(r)⊗ δi (z)⊗ 1+ δ(r)⊗ z⊗ 1)

= σ(r)σi (z)⊗ x + σ(r)δi (z)⊗ 1+ δ(r)z⊗ 1.

Condition (5.3) holds for all xn
⊗ r z by induction on n. �

Twisting resolutions for an Ore extension. We now construct a projective resolu-
tion of M as an R[x; σ, δ]-module from a projective resolution of M as an R-module.
We take the twisted product of two resolutions: the R-projective resolution of M
and the Koszul resolution (6.2) of k as a module over B = k[x].

Theorem 6.6. Let R[x; σ, δ] be an Ore extension. Let M be an R[x; σ, δ]-module
for which Mσ ∼= M as R-modules. Consider a projective resolution Pq(M) of M as
an R-module and suppose that each map σi : Pi (M)→ Pi (M) of (6.1) is bijective.
For each i ≥ 0, set

Yi,0 = Yi,1 = Pi (M)⊗ k[x] and Yi, j = 0 for all j > 1

as in Lemma 5.8. Then Y q is a projective resolution of M as an R[x; σ, δ]-module.
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Proof. By Lemma 6.5, Pq(M) is compatible with τ , and so by Lemmas 5.8 and 5.9,
the complex · · · → Y1→ Y0→ M→ 0 is an exact complex of R[x; σ, δ]-modules.
We verify directly that each Yi, j is a projective module: For each i ≥ 0 and j = 0, 1,

(6.7) Yi, j ∼= R[x; σ, δ]⊗R Pi (M)

via the R[x; σ, δ]-homomorphism given by

R[x; σ, δ]⊗R Pi (M)→ Yi, j , x ⊗ z 7→ σi (z)⊗ x + δi (z)⊗ 1,

with inverse map given by

z⊗ x 7→ x ⊗ σ−1
i (z)− 1⊗ δi (σ

−1
i (z)) .

Then R[x; σ, δ] ⊗R Pi (M) is projective since it is a tensor-induced module and
R[x; σ, δ] is flat over R. �

Remark 6.8. When σ is the identity, the complex Y q is precisely that of Gopalakr-
ishnan and Sridharan [1966, Theorem 1], under the isomorphism (6.7) above. As
a specific class of examples, we obtain in this way, via iterated Ore extension,
the Chevalley–Eilenberg resolution of the U(g)-module k for a finite-dimensional
supersolvable Lie algebra g.
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ITERATED AUTOMORPHISM ORBITS OF
BOUNDED CONVEX DOMAINS IN Cn

JOSHUA STRONG

The classification of bounded domains in Cn, with n > 1, is related to the geo-
metric properties of the boundary. A conjecture of Greene and Krantz relates
the geometry of the boundary with the group of biholomorphic self mappings
of the domain. The Greene–Krantz conjecture, if true, can tell us much about
the classification of smoothly bounded domains in Cn. Much work has been
done to attempt to solve this conjecture, though it has yet to be proved or
disproved. However, there are numerous partial results which support the
conjecture. In this paper, we prove a special case of the conjecture:
Theorem: Suppose � ⊂ Cn is a bounded convex domain with C∞ boundary.
Suppose there exists ϕ ∈ Aut(�) and p ∈ � such that for the sequence of
iterates {ϕ j } ⊂Aut(�) we have ϕ j ( p)→ x ∈ ∂� nontangentially. Then x is of
finite type.

1. Introduction

When studying domains in Cn, we care about equivalence under biholomorphism.
That is, two domains in Cn are equivalent if there is a biholomorphism between
them. This equivalence is especially useful when our domains are endowed with the
Kobayashi or Carathéodory metrics, for under these metrics, any biholomorphism
preserves the distance between any two points. So no matter how much their
Euclidean distances may differ, they are still the same distance apart in the Kobayashi
metric. The Kobayashi metric will be an essential tool in whats follows. Certain
properties of the automorphism group (biholomorphic self mappings) of the domain
and the type (order of contact with a variety) of the boundary can be used to classify
some bounded domains. It is a conjecture of Greene and Krantz that a smoothly
bounded domain with a noncompact automorphism group is of finite type at any
boundary orbit accumulation point. If this conjecture were true, it would classify
all smoothly bounded domains in C2 with a noncompact automorphism group, for

MSC2010: 32-02.
Keywords: several complex variables, Greene Krantz conjecture, finite type, convex domains,

automorphism orbit accumulation points, iterated automorphisms.
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they would be, up to biholomorphism, the ball or a complex ellipsoid. The purpose
of this paper is to prove the following:

Theorem 1.1. Suppose � ⊂ Cn is a bounded convex domain with C∞ boundary.
Suppose there exists ϕ ∈ Aut(�) and p ∈� such that for the sequence of iterates
{ϕ j
} ⊂ Aut(�), we have ϕ j (p)→ x ∈ ∂� nontangentially. Then x is of finite type.

Our main theorem gives us a classification of domains with the properties of the
hypothesis. Berteloot and Cœuré [1991] showed that if a smoothly bounded domain
�⊂ C2 admits an automorphism accumulation point which is of finite type, then
� is biholomorphic to a domain of the form Em = {(z, w) ∈ C2

: |z|2m
+ |w|2 < 1}

for some m > 0.

Corollary 1.2. Suppose � ⊂ C2 is a bounded convex domain with C∞ bound-
ary. Suppose there exist ϕ ∈ Aut(�) and p ∈ � such that for the sequence of
iterates {ϕ j (p)} ⊂ Aut(�), we have ϕ j (p)→ x ∈ ∂� nontangentially. Then � is
biholomorphic to an egg domain, Em .

For arbitrary dimension, n, Zimmer [2017] also showed that if a finite type
boundary point of a smoothly bounded convex domain is also a nontangential
automorphism orbit accumulation point, then the entire boundary is of finite type.
Furthermore, Bedford and Pinchuk [1994] showed that smoothly bounded convex
domains with finite type boundary and a noncompact automorphism group are
biholomorphic to a certain class of polynomial domains. Therefore we have the
following, which we state in the language of [Bedford and Pinchuk 1994].

Corollary 1.3. Suppose � ⊂ Cn+1 is a bounded convex domain with C∞ bound-
ary. Suppose there exist ϕ ∈ Aut(�) and p ∈ � such that for the sequence of
iterates {ϕ j (p)} ⊂ Aut(�), we have ϕ j (p)→ x ∈ ∂� nontangentially. Then � is
biholomorphic to a domain of the form{

(w, z1, . . . , zn) ∈ C×Cn
: |w|2+

∑
wt J=wt K= 1

2

aJ K z J z̄K < 1
}
,

where J = ( j1, . . . , jn) and K = (k1, . . . kn) are multi-indices, aJK = āKJ , and
wt J = j1δ1+ · · ·+ jnδn for some fixed δ` = (2m`)

−1, with m` a positive integer.

In Section 2 we discuss some notation and definitions to be used throughout.
Sections 3, 4, and 5 cover the main ideas of the hypothesis of our result. Finally,
in Section 6 we give a proof of the main result. This paper is part of the author’s
doctoral thesis. The author would like to thank Professor Bun Wong for all his help
and guidance as well as the referees for their thoughtful revisions.

2. Preliminaries

For two open subsets W, V ⊂ Cn, a function f :W → V is said to be a biholomor-
phism if f is holomorphic and admits a holomorphic inverse f −1

: V → W. We
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will denote by Hol(U, V ) the collection of holomorphic maps from U to V. The
unit disk in C is given by

1= {z ∈ C : |z|< 1},

the upper half plane in C by

H= {z ∈ C : Im(z) > 0},

and the unit polydisk in Cn by

1n
=1× · · ·×1= {(z1, . . . , zn) ∈ Cn

: |z j |< 1 for all j = 1, . . . , n}.

Finally the unit ball in Cn is denoted

Bn
= {(z1, . . . , zn) ∈ Cn

: |z1|
2
+ · · ·+ |zn|

2 < 1}.

Definition 2.1. Let�⊂Cn be an open set with Ck boundary. A function ρ :Cn
→R

is said to be a defining function for � if ρ is Ck and

(1) ρ(x) < 0 for all x ∈�,

(2) ρ(x) > 0 for all x /∈�, and

(3) ∇ρ(x) 6= 0 for all x ∈ ∂�.

Definition 2.2. Let � ⊂ Rn have a C1 defining function ρ. Let p ∈ ∂�. Then
w = (w1, . . . , wn) is a tangent vector to ∂� at p if

n∑
k=1

∂ρ

∂xk

∣∣∣∣
p
wk = 0.

In this case we write w ∈ Tp(∂�).

Definition 2.3. Let � ⊂ Cn be a domain with C2 boundary, p ∈ ∂�, and ρ be a
defining function for �. We say that p is a point of Levi pseudoconvexity if

n∑
j,k=1

∂2ρ

∂z j∂ z̄k

∣∣∣∣
p
w j w̄k ≥ 0

for all w ∈ Cn such that
n∑

j=1

∂ρ

∂z j

∣∣∣∣
p
w j = 0.

If instead, we have a strict inequality for all nonzero w satisfying the second
equation, we say that x is a point of strict (Levi) pseudoconvexity. In general, when
we say a boundary point is pseudoconvex we mean that it is weakly pseudoconvex.

The vectors satisfying the second equation in the above definition are called
complex tangent vectors. We shall denote the complex tangent space by T (1,0)

p (∂�).
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Note that T (1,0)
p (∂�)⊂ Tp(∂�). We call

n∑
j,k=1

∂2ρ

∂z j∂ z̄k

∣∣∣∣
p
w j w̄k

the Levi form of ρ at p. So p ∈ ∂� is a point of weak (respectively, strong)
pseudoconvexity if its Levi form is positive semidefinite (respectively, positive
definite).

Definition 2.4. Given �⊂ Cn, p ∈�, and v ∈ Cn, the Kobayashi pseudometric is
given by

K�(p, v)= inf{|ζ | : f ∈ Hol(1,�), f (0)= p, f ′(ζ )= v}.

The Poincaré metric coincides with this metric on1 and H. We will use Royden’s
integral formula [1971] for the Kobayashi pseudodistance.

Definition 2.5. The Kobayashi pseudodistance is given by

d�(z, w)= inf
γ

∫ 1

0
K�(γ (t), γ ′(t)) dt,

where z, w ∈ � and γ : [0, 1] → � is any piecewise C1 curve such that γ (0) =
z, γ (1)= w.

Proposition 2.6. Let U, V be domains in Cn and f : U → V be a holomorphic
map. Then

KV ( f (p), f ′(v))≤ KU (p, v)
and

dV ( f (z), f (w))≤ dU (z, w).

For convex domains that do not contain any complex lines, Barth [1980] showed
that the Kobayashi pseudodistance is an actual distance in the sense that d�(z, w)>0
if z 6= w.

Definition 2.7. We say that a subset �⊂ Cn is C-proper if � does not contain any
nontrivial complex affine lines.

Definition 2.8. Let � ⊂ Cn be a C-proper open set. For z ∈ � and v ∈ Cn, let
L(z, v)⊂ Cn be the complex line passing through z in the direction of v. We set

δ�(z, v)= dEuc(z, ∂�∩ L(z, v))
and

δ�(z)= dEuc(z, ∂�).

That is, δ�(z, v) is the Euclidean distance from z to ∂� in the complex direction
of v and δ�(z) is the overall Euclidean distance from z to ∂�.

Proposition 2.9 is a consequence of the definition of the Kobayashi metric.
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Proposition 2.9. Let �⊂ Cn be a domain, z ∈�, and v ∈ Cn. Then

K�(z, v)≤
‖v‖

δ�(z, v)
.

3. Variety type

Definition 3.1. Let U ⊂ Cn. A subset V ⊂U is called a holomorphic variety if it
is composed of the roots of a finite number of holomorphic functions. That is

V = {z ∈U : f1(z)= f2(z)= · · · = fk(z)= 0}

where fi are holomorphic functions on U.

When a variety, V, is (complex) one-dimensional, then it can be parametrized.
See [Gunning 1990] for a precise statement of the local parametrization theorem.
We state only what is necessary for our purposes.

Proposition 3.2. If V ⊂ Cn is a one-dimensional holomorphic variety and p ∈ V,
then there is a neighborhood U of p and a nonconstant holomorphic function,
f :1→ Cn with f (0)= p and f (1)⊂U ∩ V.

We often refer to a one-dimensional holomorphic variety as a holomorphic disk
or curve. When appropriate, we will refer to the image, f (1), as the holomorphic
disk.

Given a smooth function f :C→C with f (0)= 0, we let ν( f ) denote the order
of vanishing of f at 0. If g : C→ Cn is a smooth function with g(0) = 0 we let
ν(g)=mini ν(gi ), where g = (g1, . . . , gd).

Definition 3.3. Let � be a smooth domain in Cn with q = 0 ∈ ∂�. Let ρ(z) be a
defining function for � in a neighborhood of q . We say that ∂� is of finite type C
in the sense of D’Angelo if

sup
f

{
ν(ρ ◦ f )
ν( f )

}
= C <∞,

where f ranges through nonconstant holomorphic parametrizations of one-dimen-
sional holomorphic subvarieties of Cn with f (0)= q. We say that ∂� is of finite
line type L if

sup
`

{ν(ρ ◦ `)} = L <∞,

where ` ranges through complex lines in Cn with `(0)= q .

Note that ν(ρ ◦`)≥ 2 if and only if the image of ` is tangent to ∂� at q . So if we
have a domain �⊂ Cn and a point q ∈ ∂� such that there is a holomorphic disk V
passing through q , the D’Angelo (or variety) type of q is essentially a measurement
of “how close” V is to actually lying in ∂�. Now if V ⊂ ∂� then q would be a
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point of infinite type. When working with geometrically convex domains, one need
only consider the line type rather than the more general variety type. This is due to
McNeal, who gave the following proposition.

Proposition 3.4 [McNeal 1992]. Let � ⊂ Cn be a convex domain with q ∈ ∂�.
Then q is a point of finite variety type if and only if it is of finite line type.

4. Automorphism orbits

For a domain � ⊂ Cn, the group of automorphisms will be denoted by Aut(�).
That is, Aut(�) is the collection of biholomorphic self mappings of �.

Definition 4.1. Let �⊂ Cn be a domain. We say p ∈� is an orbit accumulation
point of Aut(�) if there is a sequence {ϕk} ⊂ Aut(�) and a point q ∈ � such
that ϕk(q)→ p. If p ∈ ∂� then we say p is a boundary orbit accumulation point
for {ϕk}.

H. Cartan showed that for a bounded domain, �, Aut(�) is a Lie group which
acts properly on �; see [Narasimhan 1971]. We can determine the compactness of
Aut(�) by examining the orbits.

Proposition 4.2. Suppose�⊂Cn is a bounded domain. Aut(�) admits a boundary
orbit accumulation point if and only if Aut(�) is noncompact.

The well-known ball characterization theorem of Bun Wong classifies all bounded
strongly pseudoconvex domains with a noncompact automorphism group.

Theorem 4.3 [Wong 1977]. If �⊂Cn is a strongly pseudoconvex bounded domain
with a noncompact automorphism group, then � is biholomorphic to the unit
ball Bn.

We now have all the necessary machinery to state the Greene–Krantz conjecture.

Conjecture 4.4 (Greene and Krantz). Let � ⊂ Cn be a bounded domain with
smooth C∞ boundary. If p ∈ ∂� is a boundary orbit accumulation point for
Aut(�), then ∂� is of finite type at p.

In [Krantz 2016], the conjecture above is shown for convex domains in C2. The
proof involves subelliptic estimates for the ∂̄ problem.

One partial result to this conjecture shows that if there is a boundary orbit
accumulation point, x , for a smoothly bounded convex domain, then there is no
nontrivial holomorphic disk contained in the boundary and passing through x .
However, this does not guarantee that x is a point of finite type.

Theorem 4.5 (Lee, Thomas and Wong [Lee et al. 2014]). Let�⊂Cn be a smoothly
bounded convex domain. Suppose there is a sequence {ϕ j } ⊂ Aut(�) such that
ϕ j (z) converges nontangentially to some boundary point for all z ∈�. If p ∈ ∂�
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is an orbit accumulation point, then there does not exist any nontrivial complex
analytic variety passing through p and lying in ∂�.

In C2, Hamann and Wong showed that we can remove the nontangential condition
in the above theorem.

Theorem 4.6 [Hamann and Wong 2017]. Let D be a bounded convex domain in C2

with C2 boundary. If p ∈ ∂D is an orbit accumulation point, then ∂D contains no
nontrivial analytic variety passing through p.

5. Nontangential convergence

The direction of travel of an automorphism orbit can yield certain conclusions.
Nontangential convergence provides us with useful properties.

Definition 5.1. For a domain �⊂Cn with C1 boundary, a sequence {q j } ⊂�, and
a point q ∈ ∂�, we say that q j → q nontangentially if, for all j large enough,

q j ∈ 0α(q)= {z ∈� : ‖z− q‖ ≤ αδ�(z)}

for some α > 1. We say that q j → q normally if the q j ’s approach q along the real
normal line to ∂� at q .

Let nq denote the inward-pointing normal vector to a C1 domain � ∈ Cn at
boundary point q ∈ ∂�.

Lemma 5.2. Let � ⊂ Cn be a convex domain with C1 boundary. Let z ∈ � and
q ′ = q + tnq for some t > 0. Then,

0α(q)⊂
{

z ∈� : 0≤ 6 zqq ′ ≤ arccos
( 1
α

)}
.

Proof. Put H = {z ∈ Cn
: Im(z1) > 0}. We may assume q = 0, nq = (i, 0, . . . , 0),

and �⊂ H. Then δ�(z)≤ δH (z)= Im(z1) which implies that ‖z−q‖≤ αIm(z1)=

α‖(Im(z1), 0, . . . , 0)‖. Then, since

cos(6 zqq ′)=
‖(Im(z1), 0, . . . , 0)‖

‖z− q‖
,

we have 6 zqq ′ ≤ arccos(1/α). �

When ∂� admits a nontangential orbit accumulation point, Lee et al. [2014]
showed that there is a sequence of points {p j } ⊂�, within some fixed Kobayashi
distance from p ∈ �, such that the action of the sequence of automorphisms
{ϕ j } ⊂ Aut(�) on the respective p j ’s approaches the accumulation point q ∈ ∂�
along the real normal line to the boundary at q . To be precise:

Lemma 5.3. Let �⊂ Cn be a convex domain with C1 boundary. Suppose {ϕ j } ⊂

Aut(�) and ϕ j (p)→ q ∈ ∂� nontangentially for some p ∈�. Then for sufficiently
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large j there exists {p j } ⊂ � such that ϕ j (p j )→ q normally and d�(p, p j ) ≤ r
for some r > 0.

Proof. Let `q = {q+ tnq : t ∈R} and define π :Cn
→ `q as the projection mapping

onto `q . Put q j = ϕ j (p), q̃ j = π(q j ), and p j = ϕ
−1(q̃ j ). Then q̃ j → q normally

and ‖q̃ j − q j‖ ≤ ‖q j − q‖. Fix j sufficiently large so that by Lemma 5.2

1
α
≤ cos(6 zqq ′)=

‖q̃ j − q‖
‖q j − q‖

.

Let γ (t)= (1− t)q j + t q̃ j . Then

d�(p, pj )= d�(q j , q̃ j )≤

∫ 1

0
K�(γ (t), γ ′(t)) dt ≤

∫ 1

0

‖γ ′(t)‖
δ�(γ (t), γ ′(t))

dt

≤

∫ 1

0

‖γ ′(t)‖
δ�(γ (t))

dt ≤
∫ 1

0

‖γ ′(t)‖α
‖γ (t)− q‖

dt ≤
‖q̃ j − q j‖α

‖q̃ j − q‖
≤
‖q j − q‖α
‖q̃ j − q‖

≤ α2.

Finally, we let r = α2. �

Essentially, this gives us that the Kobayashi distance from each ϕ j (p) to the real
normal line of the boundary at q ∈ ∂� remains bounded by a fixed constant.

6. Finite type

We will now be able to showcase a condition that guarantees finite type for some
boundary point of a smoothly bounded convex domain.

Definition 6.1. For a domain �⊂Cn denote by B�(o,M) the closed ball centered
at o ∈� with Kobayashi radius M. That is,

B�(o,M)= {z ∈� : d�(o, z)≤ M}.

Theorem 6.2 [Zimmer 2017]. Suppose �⊂ Cn is a bounded convex open set with
C∞ boundary. If there exist o ∈�, x ∈ ∂�, M ≥ 0, and T ∈ R so that

{x + e−t nx : t > T } ⊂ Aut(�)B�(o,M),

then x is of finite type in the sense of D’Angelo.

We now state the main result.

Theorem 6.3. Suppose � ⊂ Cn is a bounded convex domain with C∞ boundary.
Suppose there exist ϕ ∈ Aut(�) and p ∈ � such that for the sequence of iterates
{ϕ j
} ⊂ Aut(�) we have ϕ j (p)→ x ∈ ∂� nontangentially. Then x is of finite type.

Proof. Since the set of automorphisms of � forms a group under composition of
functions, we have ϕ j

∈ Aut(�) for all j ∈ N. Put M = d�(p, ϕ(p)). We may
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assume M > 0, since otherwise, ϕ would fix p. Then for every consecutive pair of
iterates we have

d�(ϕ j (p), ϕ j+1(p))= d�(ϕ j (p), ϕ j (ϕ(p))

= d�(p, ϕ(p))= M.

By Lemma 5.3, there exists {p j } ⊂� such that d�(p, p j )≤ r for some r > 0, and
ϕ j (p j )→ x normally. So we have

d�(ϕ j (p j ), ϕ
j+1(p j+1))

≤ d�(ϕ j (p j ), ϕ
j (p))+ d�(ϕ j (p), ϕ j+1(p))+ d�(ϕ j+1(p), ϕ j+1(p j+1))

≤ r + d�(ϕ j (p)), ϕ j+1(p))+ r = 2r +M,

for all j ∈ N. By convexity, we may assume x = 0 and nx = (i, 0, . . . , 0). Also,
since ϕ j (p j )→ 0 as j→∞, there are an infinitely many j such that

|ϕ j (p j )|> |ϕ
j+1(p j+1)|.

Then in the argument that follows, we will see that there exists a fixed radius, K,
such that for any j with |ϕ j (p j )|> |ϕ

j+1(p j+1)|, the ball B�(ϕ j (p j ), K ) contains
both ϕ j+1(p j+1) and the real line segment connecting ϕ j (p j ) and ϕ j+1(p j+1).
Now consider some z, y, w ∈ � that lie on the real normal line to ∂� at x such
that |w|< |y|< |z|. We claim that, for sufficiently small |z|, if w ∈ B�(z, R) for
some R > 0, then either y ∈ B�(z, R) or y ∈ B�(z, 1). If z is sufficiently small,
then there is a (complex) one-dimensional affine disk, D, centered at z, such that
D ⊂ � ∩ {ζ ∈ � : Im(ζ1) > 0}, 0 ∈ ∂D, and ∂D is tangent to ∂� at 0. Note
that D is essentially a copy of the unit disk under a translation and dilation and
so D is biholomorphic to 1. Now any geodesic under the Poincaré (equivalently,
Kobayashi) metric passing through z in D is a straight line. Thus,

dD(z, w)= dD(z, y)+ dD(y, w).

Let π : Cn
→ C be the projection onto the first coordinate so π(�)⊂H. Then

d�(z, w)≥ dπ(�)(π(z), π(w))≥ dH(π(z), π(w)).

For simplicity, we may assume that D has radius 1, so z = (i, 0, . . . , 0). Then the
mapping

ζ 7→

(
i
ζ − i
ζ + i

+ i, 0, . . . , 0
)

is a biholomorphism from H to D where z 7→ z and any purely imaginary ib ∈H
is mapped to some (ic, 0, . . . , 0) ∈ D where ic is also purely imaginary. Now

dH(π(z), π(w))= dD

(
z, w 2
|w|+1

)
.
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Note that since |w|< 1, then
∣∣w 2
|w|+1

∣∣> |w|. So if |y|>
∣∣w 2
|w|+1

∣∣, then

dD

(
z, w

2
|w| + 1

)
= dD(z, y)+ dD

(
y, w

2
|w| + 1

)
≥ dD(z, y)

≥ d�(z, y)

where the last inequality is given by the inclusion map from D into �. Otherwise,
if |y| ≤

∣∣w 2
|w|+1

∣∣, then

d�(y, w)≤
∫ 1

0

|y−w|
δ�(w)

dt ≤

∣∣∣w 2
|w|+1

∣∣∣− |w|
|w|

=
1− |w|
1+ |w|

< 1.

Therefore, if w ∈ B�(z, R) for z, w ∈ {x + e−t nx : t > T } with T sufficiently large,
then for all y ∈ {x + e−t nx : t > T } with |w| < |y| < |z|, either y ∈ B�(z, R) or
y ∈ B�(w, 1). Then since d�(ϕ j (p j ), ϕ

j+1(p j+1))≤ 2r +M, there is a T > 0 and
some K > 0 such that

{x + e−t nx : t > T } ⊂
⋃
j∈N

B�(ϕ j p j , K ),

and so
{x + e−t nx : t > T } ⊂ Aut(�)B�(p, K ).

Thus, by Theorem 6.2, x ∈ ∂� is of finite type. �
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SHARP LOGARITHMIC SOBOLEV INEQUALITIES ALONG
AN EXTENDED RICCI FLOW AND APPLICATIONS

GUOQIANG WU AND YU ZHENG

We prove a sharp Logarithmic Sobolev inequality along an extended Ricci
flow. As applications, we derive an integral bound for the conjugate heat
kernel and also obtain Lipschitz continuity of the pointed Nash entropy.
Finally, based on these results, we prove an ε-regularity theorem for this
extended Ricci flow.

1. Introduction

In this paper we study an extended Ricci flow as follows:
∂

∂t
g(t)=−2Ric(g(t))+ 2dφ(t)⊗ dφ(t),

∂

∂t
φ(t)=1g(t)φ(t),

g(0)= g0, φ(0)= φ0,

(1-1)

where t ∈ [−T, 0], g(t) are metrics, and φ(t) : (M, g)→ R are smooth functions.
This flow was introduced in [List 2008], where the author proved short time existence
and long time existence if φ is a smooth function from M to R. Later, R. Müller
[2012] considered φ as a smooth map from (M, g) to (N , h) and proved some
fundamental results for flow equation (1-1). The flow equations (1-1) come from
static Einstein vacuum equations arising in the general relativity, and also arise as
dimensional reductions of Ricci flow in higher dimensions. For more work on this
flow, see [Fang and Zheng 2016b; 2016a; Guo et al. 2015a; 2015b; 2013; Li 2018;
Liu and Wang 2017; Yang and Shen 2012]. Before stating our main results, we
want to introduce some notation. Suppose (Mn, g(t), φ(t))|t∈[−T,0] is an extended
Ricci flow, fix x, y ∈ M; we use dt(x, y) to denote the distance between x and y
at time t . We use Br (x, t) to denote the geodesic ball with radius r centered at x .
We use Rm to denote the Riemannian curvature operator of the metric g, Ric the
Ricci curvature, and R the scalar curvature. For the extended Ricci flow, we denote
Sic(g(t))= Ric(g(t))− dφ(t)⊗ dφ(t) and S(g(t))= R(g(t))− |∇φ(t)|2g(t).

MSC2010: primary 53C44; secondary 53C21.
Keywords: conjugate heat kernel, logarithmic Sobolev inequalities, ε-regularity.
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Given (x0, 0) ∈ M ×[−T, 0], we denote

Hx0(y, s)= H(x0, 0 ; y, s)= (4π |s|)−
n
2 exp(− fx0(y, s))

as the conjugate heat kernel based at (x0, 0), and

dνx0(y, s)= Hx0(y, s)dvolg(s)(y)

as the associated probability measure. See Definition 2.2.

Definition 1.1. Let (M, g) be a smooth Riemannian manifold and φ and f be
smooth functions. Given τ > 0, we define the associated W entropy as

W (g, φ, f, τ )=
∫

M
[τ(S+ |∇ f |2)+ f − n](4πτ)−

n
2 e− f dvolg,

where S = R− |∇φ|2. Moreover, the µ entropy can also be defined:

µ(g, φ, τ )= inf
{

W (g, φ, f, τ )
∣∣∣ ∫

M
(4πτ)−

n
2 e− f dvolg = 1

}
.

Next we state the Poincaré inequality and log-Sobolev inequality along the
extended Ricci flow (1-1); previous work on Ricci flow was given in Hein and
Naber [2014].

Theorem 1.2. Let (Mn, g(t), φ(t))|t∈[−T,0] be an extended Ricci flow (1-1). Fix a
point x0 ∈ M in the final time slice and let s ∈ [−T, 0].

(1) For all u ∈ C∞0 (M) with
∫

M u dνx0(s)= 0,∫
M

u2 dνx0(s)≤ 2|s|
∫

M
|∇u|2g(s) dνx0(s).(1-2)

Equality holds if and only if u ≡ 0.

(2) For all u ∈ C∞0 (M) with
∫

M u2 dνx0(s)= 1,∫
M

u2 log u2 dνx0(s)≤ 4|s|
∫

M
|∇u|2g(s) dνx0(s).(1-3)

Equality holds if and only if u ≡ 1.

Remark. Following [Perelman 2002], Ni [2004] defined entropy for the linear
heat equation on a complete Riemannian manifold. Under the Ricci nonnegativity
assumption, he proved the monotonicity, and as an application, he characterized
the Euclidean space using the sharp log-Sobolev inequality.

Next we state one important application of Theorem 1.2.
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Theorem 1.3. Let (Mn, g(t), φ(t))|t∈[−T,0] be an extended Ricci flow and dν =
dνx0(s) be a heat kernel measure. Then the Gaussian concentration inequality

ν(A)ν(B)≤ exp
(
−

dg(s)(A, B)2

8|s|

)
holds for A, B ⊆ M.

Corollary 1.4. For any C > 0 there exists a C ′ = C ′(n,C) > 0 such that the
following holds: Let (Mn, g(t), φ(t)) be an extended Ricci flow such that

sup
t∈[s,0]

‖S(g(t))‖∞ ≤
C
|s|

and inf
τ∈(0,2|s|)

ν(g(s), φ(s), τ )≥−C,

for some s ∈ [−T, 0). Let x1, x2 ∈ M and r2
= |s|, then

(1-4)
1

Vol(Br (x1, 0))

∫
Br (x1,0)

H(x2, 0; y, s) dvolg(s)(y)

≤ C ′ exp
(
−
−dg(s)(Br (x1, 0), Br (x2, 0))2

C ′|s|

)
.

Moreover, we have the following distance distortion estimate:

dg(s)(Br (x1, s), Br (x2, s))≤ C ′dg(0)(x1, x2).(1-5)

Definition 1.5. The pointed W entropy at scale |s| based at x0 is defined by

Wx0(s)=W (g(s), φ(s), fx0(s), |s|).

The pointed Nash entropy at (x0, s) ∈ M ×[−T, 0] is defined as

Nx0(s)=
1
|s|

∫ 0

s
Wx0(r) dr =

∫
M

fx0(s) dνx0(s)−
n
2
.

Now we can state the Lipschitz continuity of the pointed Nash entropy.

Theorem 1.6. For each C > 0, there exists a C ′ = C ′(n,C) > 0 such that the
following holds: Let (M, g(t), φ(t)) be an extended Ricci flow (1-1) such that

S(g(s))≥−
C
|s|

and inf
τ∈(0,2|s|)

µ(g(s), φ(s), τ )≥−C(1-6)

for some s ∈ [−T, 0], then the map

x ∈ (M, g(0))→ fx(s)Hx(s) ∈ L1(M, dvolg(s))

is globally C ′|s|−
1
2 Lipschitz. In particular, this means that

|Nx1(s)− Nx2(s)| ≤ C ′|s|−
1
2 dg(0)(x1, x2).
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Definition 1.7. For an extended Ricci flow (1-1):

(1) Given (x, t) ∈ M ×[−T, 0] and r > 0, we define the parabolic ball

Pr (x, t)= Br (x, t)×[t − r2, t].

(2) Given (x, t) ∈ M ×[−T, 0] and r > 0, we define the regularity scale

r|Rm |(x, t)= sup
{

r > 0 : sup
Pr (x,t)

|Rm | ≤ r−2
}
.

Now we can state our main ε-regularity theorem.

Theorem 1.8. For each C > 0, there exists ε = ε(n,C) > 0 such that the following
holds: Let (M, g(t), φ(t)) be an extended Ricci flow (1-1) such that

S(g(s))≥−
C
|s|
, inf

τ∈(0,2|s|)
µ(g(s), φ(s), τ )≥−C, |φ| ≤ C,(1-7)

for some s ∈ [−T, 0]. If the pointed entropy satisfies

Wx0(s)≥−ε

for some point x0 in the zero time slice, then we have

r |Rm |(x0, 0)2 ≥ ε|s|.

Remark. Xu [2017] considered the short time asymptotics of Nash entropy on
a complete Riemannian manifold with Ricci lower bound and gave interesting
applications.

The paper is organized as follows. In Section 2 we review some background and
preliminaries for the conjugate heat kernel, and we also prove a Bochner formula
for any space-time function along the extended Ricci flow. In Section 3 we define
the W entropy and obtain its monotonicity. As an application, we derive the κ
noncollapsing property for the extended Ricci flow. We also clarify the relation
between the pointed W entropy and the pointed Nash entropy. In Section 4 we
derive various estimates. First, we derive a gradient estimate for the positive solution
to the extended Ricci flow. Together with the monotonicity of W entropy, we prove
the upper bound for the heat kernel. Second, we generalize Perelman’s Harnack
inequality to the extended Ricci flow, and based on this we prove the lower bound for
the conjugate heat kernel. In Section 5, based on the results from previous sections,
we prove the Poincaré inequality and the log-Sobolev inequality along the extended
Ricci flow. As one application, we prove the Gaussian concentration inequality and
then obtain an integral bound for the conjugate heat kernel. In Section 6, using the
Poincaré inequality, we prove the Lipschitz continuity of the pointed Nash entropy.
In Section 7, we derive the ε- regularity theorem; the key ingredients are the point
picking argument and the Lipschitz continuity of the pointed Nash entropy.
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2. Background and preliminary

Letting (Mn, g(t), φ(t)) be an extended Ricci flow (1-1), we give the following
definitions.

Definition 2.1. The heat operator and its conjugate are defined by

�=
∂

∂t
−1 and �∗ =−

∂

∂t
−1+ S.(2-8)

Definition 2.2. For x, y ∈ M and s < t in [−T, 0], we let H(x, t; y, s) denote the
conjugate heat kernel based at (x, t), i.e, the unique minimal positive solution with
lims→t H(x, t; y, s)= δx(y) of the conjugate heat equation

�∗y,s H(x, t; y, s)=
(
−
∂

∂s
−1y,g(s)+ S(y, s)

)
H(x, t; y, s)= 0.(2-9)

Lemma 2.3. The conjugate heat equation satisfies the following properties:

(1)
∫

M H(x, t; y, s) dvolg(s)(y)= 1.

(2)
∫

M H(x, t; y, s) dvolg(t)(x)≤ exp(ρ(t − s)), where ρ = ‖S(g(−T ))−‖∞.

Proof. (1) Taking the derivative with respect to s, we get

d
ds

∫
M

H(x, t; y, s) dvolg(s)(y)

=

∫
M

(
∂

∂s
H(x, t; y, s)− H(x, t; y, s)S(y, s)

)
dvolg(s)(y)

=

∫
M

(
∂

∂s
+1g(s),y − S

)
H(x, t; y, s) dvolg(s)(y)= 0.

Due to lims→t H(x, t; y, s)= δx(y), we have
∫

M H(x, t; y, s) dvolg(s)(y)= 1.

(2) Taking the derivative with respect to t ,

d
dt

∫
M

H(x, t; y, s) dvolg(t)(x)

=

∫
M

(
∂

∂t
H(x, t; y, s)− H(x, t; y, s)S(x, t)

)
dvolg(t)(x)

=

∫
M
(1g(t),x H(x, t; y, s)− H(x, t; y, s)S(x, t)) dvolg(t)(x)

≤ ρ

∫
M

H(x, t; y, s) dvolg(t)(x).

In the last inequality we need to use the evolution equation of S along the extended
Ricci flow ∂

∂t S =1S+ 2|Sic |2+ 2(1φ)2. Applying the maximum principle, we
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know the minimum of S is increasing along the flow. Due to

lim
t→s

∫
M

H(x, t; y, s) dvolg(t)(x)= 1,

we have ∫
M

H(x, t; y, s) dvolg(t)(x)≤ exp(ρ(t − s)). �

Lemma 2.4. We have the following Bochner formula for all space-time functions u:

1
2�|∇u|2 =−|∇2u|2+〈∇�u,∇u〉− 〈∇u,∇φ〉2.(2-10)

Proof. Using the extended Ricci flow equation and the Bochner formula for function,

1
2
∂

∂t
|∇u|2 = ∂

∂t

(1
2

gi j
∇i u∇ j u

)
=−

1
2

gik g jl ∂

∂t
gkl∇i u∇ j u+ gi j

∇i
∂u
∂t
· ∇u

= Sic(∇u,∇u)+∇ ∂u
∂t
· ∇u,

and
1
2
1|∇u|2 = |∇2u|2+〈∇1u,∇u〉+Ric(∇u,∇u),

so
1
2
�|∇u|2 =−|∇2u|2+〈∇�u,∇u〉+Sic(∇u,∇u)−Ric(∇u,∇u)

=−|∇
2u|2+〈∇�u,∇u〉− 〈∇u,∇φ〉2. �

3. Monotonicity of entropy

Theorem 3.1. Along the extended Ricci flow

∂

∂t
g(t)=−2 Sic(g(t))=−2Ric(g(t))+ 2dφ(t)⊗ dφ(t),

∂

∂t
φ(t)=1g(t)φ(t),

∂ f
∂t
=−1 f + |∇ f |2− S(g(t))+ n

2τ ,

dτ
dt
=−1, t ∈ [−T, 0],

we have
d
dt

W (g(t), φ(t), f (t), τ (t))

= 2τ
∫

M

(
|Sic+∇2 f − 1

2τ
g|2+ (1φ−〈∇ f,∇φ〉)2

)
(4πτ)−

n
2 e− f dvolg(t).
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Defineµ(g, φ, τ )= inf
{
W (g, φ, f, τ )|

∫
M(4πτ)

−
n
2 e− f dvolg=1

}
; by the above

theorem, we have the following monotonicity fact.

Corollary 3.2. For any fixed t0 ∈ R, the quantity µ(g(t), φ(t), t0 − t) is non-
decreasing in t . It is constant if and only if the flow is isometric to the gradient Ricci
harmonic soliton with potential f (t).

Corollary 3.3. Given t0 ∈ R, put µ0 = µ(g(−T ), φ(−T ), t0+ T ) and τ = t0− t .
Then,∫

M
u2 log u2 dvolg(t) ≤ τ

∫
M
(4|∇u|2+ Su2) dvolg(t)−

n
2

log(4πτ)− n−µ0

for any u ∈ C∞0 (M) with
∫

M u2 dvolg(t) = 1.

Proof. Recall W (g, φ, f, τ ) =
∫

M [τ(S + |∇ f |2)+ f − n](4πτ)−
n
2 e− f dvolg, let

u2
= (4πτ)−

n
2 e− f , then

W (g, φ, f, τ )=
∫

M
[τ(Su2

+ 4|∇u|2)− u2 log u2
] dvolg −

n
2

log(4πτ)− n.

By Theorem 3.1, we have

W (g(−T ), φ(−T ), f (−T ), τ (−T ))≤W (g(t), φ(t), f (t), τ (t))

for t ∈ [−T, t0]. Hence

µ0 ≤

∫
M
[τ(Su2

+ 4|∇u|2)− u2 log u2
] dvolg(t)−

n
2

log(4πτ)− n. �

Next we prove the κ noncollapsed property for the extended Ricci flow (1-1).

Theorem 3.4. Fix t0 ∈ [−T, 0], x ∈ M and r > 0, and assume

inf
ρ∈(0,r)

µ(g(−T ), φ(−T ), t0+ T + ρ2)≥−C and sup
Br (x,t)

S(g(t0))≤ Cr−2.

Define κ = exp(−(2n+4
+ 2C)), then Vol(Br (x, t0))≥ κrn.

Proof. Given ρ ∈ (0, r), define the function ψ as follows,
ψ = 1 on B ρ

2
(x, t0),

ψ = 0 outside Bρ(x, t0),

ψ is linear on Bρ(x, t0) \ B ρ
2
(x, t0).

Denoting µ0 = µ(g(−T ), φ(−T ), t0 + T + ρ2) and τ(t) = t0 − t + ρ2, applying
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the previous corollary to u = ψ/‖ψ‖2, we have

ρ2
∫

M
(4|∇u|2+ Su2) dvolg(t0)−

n
2

log(4πρ2)− n−µ0

≤ ρ2
∫

M

(
4|∇ψ |2

‖ψ‖22
+ S

ψ2

‖ψ‖22

)
dvolg(t0)−

n
2

log(4πρ2)− n+C

≤
16

Vol(B ρ
2
(x, t0))

(
Vol(Bρ(x, t0))−Vol(B ρ

2
(x, t0))

)
+ 2C − n

2
log(4πρ2)− n.

In the above calculation we use |∇ψ | ≤ 2
ρ

on Bρ(x, t0) \ B ρ
2
(x, t0) and ‖ψ‖22 ≥

Vol(B ρ
2
(x, t0)).

On the other hand,∫
M

u2 log u2 dvolg(t0) =

∫
Bt0 (x,ρ)

ψ2

‖ψ‖22
log

ψ2

‖ψ‖22
dvolg(t0)

≥ log
∫

Bρ(x,t0)

(
ψ2

‖ψ‖22

)2

dvolg(t0) ≥ log
1

Vol(Bρ(x, t0))
,

where in the first inequality we use the following Cauchy–Schwarz inequality:(∫
Bρ(x,t0)

ψ2 dvolg(t0)

)2

≤

(∫
Bρ(x,t0)

ψ4 dvolg(t0)

)
Vol(Bρ(x, t0)).

So

log
1

Vol(Bρ(x, t0))
≤ 16

(
Vol(Bρ(x, t0))
Vol(B ρ

2
(x, t0))

− 1
)
+ 2C −

n
2

log(4πρ2)− n.

It is easy to get the implication

Vol(B ρ
2
(x, t0))≥ κ

(ρ
2

)n
⇒ Vol(Bρ(x, t0))≥ κρn

for κ = exp(−(2n+4
+ 2C)). Then the claim follows by induction on ρ. �

Remark. Müller [2010] considered more general geometric flows which include
Ricci flow, extended Ricci flow and Harmonic Ricci flow as special cases. In the
same paper, he introduced more general reduced volume in analogy to Perelman’s
[2002] and proved its monotonicity. In [Müller 2012], he systematically studied the
harmonic Ricci flow and proved some important fundamental estimates, in particular,
he proved the κ noncollapsing result along harmonic Ricci flow. The W entropy
for general geometric flow was discussed by Guo, Philipowski and Thalmaier [Guo
et al. 2013], and they also proved the monotonicity of W entropy.

Proposition 3.5. The following hold for x ∈ M and s ∈ [−T, 0].

(1) lims→0 Wx(s)= 0.
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(2) µ(g(−T ), φ(−T ), T )≤Wx(s)≤ 0.

(3) Wx(s)=−
∫ 0

s 2|r |
(∫

M |Sic+∇2 fx −
g

2|r | |
2
+ (1φ−〈∇φ,∇ fx 〉)

2
)

dνx(r) dr.

Proof. Recall Wx(s)=W (g(s), φ(s), fx(x), |s|); (1) follows from the asymptotic
expansion of the heat kernel at x . For (2) and (3),

d
ds

Wx(s)= 2|s|
∫

M

(
|Sic+∇2 fx −

g
2|s|
|
2
+ (1φ−〈∇φ,∇ fx 〉)

2
)

dνx(s),

so
µ(g(−T ), φ(−T ), T )≤W (g(−T ), φ(−T ), fx(−T ), T )

≤W (g(s), φ(s), fx(s), |s|)=Wx(s).

After integrating, we get

Wx(s)=−
∫ 0

s
2|r |

∫
M

( ∣∣∣∣Sic+∇2 fx−
g

2|r |

∣∣∣∣2+(1φ−〈∇φ,∇ fx 〉)
2
)

dνx(r)dr. �

Proposition 3.6. The following hold for x ∈ M and s ∈ [−T, 0].

(1) Wx(s)≤ Nx(s)≤ 0.

(2) d
ds

Nx(s)=
1
|s|
(Nx(s)−Wx(s))≥ 0.

(3) Nx(s)=−
∫

M
log Hx(s) dνx(s)−

n
2
(log(4π |s|)+ 1)=

∫
M

fx(s) dνx(s)−
n
2

.

(4) Nx(s)=−
∫ 0

s
2|r |

(
1−r

s

)∫
M

(∣∣∣Sic+∇2 fx−
g

2|r |

∣∣∣2+(1φ−〈∇φ,∇ fx 〉)
2
)

dνx(r)dr.

Proof. (1) By the definition of Nx(s) and the monotonicity of Wx(s),

Nx(s)−Wx(s)=
1
|s|

∫ 0

s
(Wx(r)−Wx(s)) dr ≥ 0.

(2) By direct calculation,

d
ds

Nx(s)=
d
ds

(
1
|s|

∫ 0

s
Wx(r) dr

)
=

1
s2

∫ 0

s
Wx(r) dr +

1
s

Wx(s)=
1
|s|
(Nx(s)−Wx(s)).

(3) Suppose u(y, l) = H(x, 0; y, l), then u solves the conjugate heat equation
∂u
∂l +1g(l)u(y, l)− S(y, l)u(y, l)= 0. Let τ(l)=−l; by direct calculation,

d
dl

(
−l
∫

M
u log u dvol

)
=W (g(l), φ(l), fx(l), |l|)+ n+ n

2
log(4π |l|).
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Integrating from s to 0,

s
∫

M
Hx(s) log Hx(s) dvol=

∫ 0

s
Wx(l) dl +

∫ 0

s

(
n+ n

2
log(4π |l|)

)
dl,

hence

Nx(s)=−
∫

M
log Hx(s) dνx(s)−

n
2
(log(4π |s|)+ 1)=

∫
M

fx(s) dνx(s)−
n
2
,

where in the last equality we use Hx(s)= (4π |s|)−
n
2 e− fx.

(4) Due to d
dl Nx(l)= 1

|l|(Nx(l)−Wx(l)), we have d
dl (l Nx(l))=Wx(l). Integrating

from s to 0, we get

−s Nx(s)

=

∫ 0

s
Wx(r)dr

=−

∫ 0

s

∫ 0

r
2|τ |

∫
M

(∣∣∣∣Sic+∇2 fx−
g

2|τ |

∣∣∣∣2+(1φ−〈∇ fx ,∇φ〉)
2
)

dνx(τ )dτdr

=−

∫ 0

s
2|r |(r−s)

∫
M

(∣∣∣∣Sic+∇2 fx−
g

2|r |

∣∣∣∣2+(1φ−〈∇ fx ,∇φ〉)
2
)

dνx(r)dr

so

Nx(s)=

−

∫ 0

s
2|r |

(
1−r

s

)∫
M

(∣∣∣∣Sic+∇2 fx−
g

2|r |

∣∣∣∣2+(1φ−〈∇ fx ,∇φ〉)
2
)

dνx(r)dr. �

4. Heat kernel estimate

At first we prove a gradient estimate for the heat equation along the extended Ricci
flow (1-1).

Lemma 4.1. Suppose u is a positive solution to the forward heat equation with a
family of metrics evolving under the extended Ricci flow on [0, T ], then

|∇u(x, t)|
u(x, t)

≤

√
1
t

√
log A

u(x, t)

for A = supM×[0,T ] u and (x, t) ∈ M ×[0, T ].

Proof. By direct calculation,

∂

∂t

(
u log A

u

)
=
∂u
∂t

log A
u
−
∂u
∂t
,

1
(

u log A
u

)
=1u log A

u
−1u− |∇u|2

u
,



SHARP LOGARITHMIC SOBOLEV INEQUALITIES 493

which, combined with the heat equation, gives

�
(

u log A
u

)
=
|∇u|2

u
.

Using the flow equation (1-1), we get

∂

∂t
|∇u|2

u
=

2 Sic(∇u,∇u)+ 2∇ ∂u
∂t · ∇u

u
−

∂u
∂t · |∇u|2

u2 ,

1
|∇u|2

u
=
1|∇u|2

u
−

4∇2u(∇u,∇u)
u2 + |∇u|2 ·

2|∇u|2− u ·1u
u3 .

Combined with the Bochner formula, this gives

�
|∇u|2

u
=
−2〈∇u,∇φ〉2

u
−

2
u
|∇

2u−
du⊗ du

u
|
2.

Consider the quantity t |∇u|2
u − u log A

u ,

�

(
t
|∇u|2

u
− u log

A
u

)
= t
(
−2〈∇φ,∇u〉2

u
−

2
u
|∇

2u−
du⊗ du

u
|
2
)
≤ 0.

By the maximum principle,

t
|∇u|2

u
− u log

A
u
≤ 0,

so |∇u|2/u2
≤

1
t log A

u . �

Now based on Corollary 3.3, we can use Davies’s method to derive the L∞

estimate for the heat kernel.

Theorem 4.2. Define ρ = ‖S(g(−T ))−‖∞ and

µ= inf
τ∈(0,2T )

µ(g(−T ), φ(−T ), τ ).

Suppose u : M × [t1, t2] → R+ with [t1, t2] ⊆ [−T, 0] is a positive solution to
∂u
∂s =1g(s)u, then we have

‖u(s)‖∞ ≤ (4π(s− t1))
−

n
2 exp(ρ(s− t1)−µ)‖u(t1)‖1.

Proof. Given the flow and heat equation
∂g
∂t
=−2 Sic(g(t))=−2Ric(g(t))+ 2dφ(t)⊗ dφ(t),

∂

∂t
φ(t)=1g(t)φ(t),

∂

∂t
u(t)=1g(t)u(t),

and letting p(t)= (s− t1)/(s− t), t ∈ [t1, s], with p(t1)= 1 and p(s)=∞,
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d
dt
‖u(t)‖p(t)

=
d
dt

(∫
M

u(t)p(t) dvolg(t)

) 1
p(t)

=−
p′(t)
p(t)2
‖u(t)‖p(t) log

∫
M

u(t)p(t) dvolg(t)+
1

p(t)

(∫
M

u(t)p(t) dvolg(t)

) 1
p(t)−1

×

[∫
M

u(t)p(t) p′(t) logu(t)dvolg(t)+

∫
M

u(t)p(t)−1(p(t)1u−Su)dvolg(t)

]
.

Integrating by parts and multiplying by p(t)2‖u(t)‖p(t)
p(t) gives

p(t)2‖u(t)‖p(t)
p(t)·

∂

∂t
‖u(t)‖p(t)

=−p′(t)‖u(t)‖p(t)+1
p(t) log

∫
M

u(t)p(t) dvolg(t)

+p(t)‖u(t)‖p(t) p′(t)
∫

M
u(t)p(t) logu(t)dvolg(t)

−p(t)2(p(t)−1)‖u(t)‖p(t)

∫
M

u(t)p(t)−2
|∇u|2 dvolg(t)

−p(t)‖u(t)‖p(t)

∫
M

Su(t)p(t) dvolg(t).

Dividing by ‖u(t)‖p(t) on both sides,

p(t)2‖u(t)‖p(t)
p(t) ·

∂

∂t
log ‖u(t)‖p(t)

=−p′(t)‖u(t)‖p(t)
p(t) log

∫
M

u(t)p(t) dvolg(t)

+ p(t)p′(t)
∫

M
u(t)p(t) log u(t) dvolg(t)

−4(p(t)−1)
∫

M
|∇u p(t)/2

|
2 dvolg(t)− p(t)

∫
M

S(u p(t)/2)2 dvolg(t).

Define v = u p(t)/2/‖u p(t)/2
‖2, then ‖v‖2 = 1 and v2 log v2

= p(t)v2 log u −
2v2 log ‖u p(t)/2‖2. So

p(t)2 ∂
∂t

log ‖u(t)‖p(t)

= p′(t)
∫

M
v2 log v2 dvolg(t)− 4(p(t)− 1)

∫
M

(
|∇v|2+ 1

4 Sv2) dvolg(t)

−

∫
M

Sv2 dvolg(t)
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= p′(t)
[∫

M
v2 log v2 dvolg(t)−

p(t)−1
p′(t)

∫
M
(4|∇v|2+ Sv2) dvolg(t)

]
−

∫
M

Sv2 dvolg(t)

≤ p′(t)
[
−

n
2

log(4π)
(t − t1)(s− t)

s− t1
− n−µ

]
+ ρ.

Observe p′(t)/p(t)2 = 1/(s− t1), hence

∂

∂t
log ‖u(t)‖p(t) ≤

1
s−t1

[
−

n
2

log(4π)(t−t1)(s−t)
s−t1

− n−µ
]
+ ρ.

Integrating from t1 to s with respect to t , we get

log
‖u(s)‖∞
‖u(t1)‖1

≤−
n
2

log(4π(s− t1))−µ+ (s− t1)ρ,

so

‖u(s)‖∞ ≤ (4π(s− t1))
−

n
2 exp(ρ(s− t1)−µ)‖u(t1)‖1. �

Corollary 4.3. Given any C > 0, there exists a C ′ = C ′(n,C) > 0 such that if
S(g(−s))≥− C

|s| and infτ∈(0,2|s|) µ(g(s), φ(s), τ )≥C , if we denote H(x, 0; y, s)=

(4π |s|)−
n
2 exp(− fx(y, s)), then

|∇x fx |
2
≤

C ′

|s|
(C ′+ fx)

at (x, 0).

Proof. Fix y, s and let u(x, t)=H(x, t; y, s), then u satisfies ∂u
∂t =1g(t)u. Applying

Theorem 4.2 we get
A = sup

[
s
2 ,0]×M

u ≤ C ′|s|−
n
2 ,

then by Lemma 4.1 with [t1, t2] =
[ s

2 , 0
]
,

|∇x fx |
2
=
|∇u|2

u2 ≤
1
|s|/2

log
A
u
=

2
|s|
(log A−logu)

≤
2
|s|

(
logC ′−n

2
log |s|+n

2
log(4π |s|)+ fx

)
≤

C ′

|s|
(C ′+ fx). �

Based on Perelman’s Harnack inequality [Perelman 2002], Zhang [2012] obtained
the lower bound for the heat kernel along Ricci flow, which can be used to derive
the κ noninflating property for Ricci flow. Next we generalize Perelman’s Harnack
inequality to the extended Ricci flow.
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Theorem 4.4. Let u = u(y, s) = H(x, t; y, s), s < t , and f be defined by u =
(4π(t − s))−

n
2 e− f . Denote τ = t − s and let P = P(u) be defined as

P = [τ(21 f − |∇ f |2+ S)+ f − n]u

= τ
(
−21u+ |∇u|2

u
+ Su

)
− u log u− n

2
log(4πτ)− nu;

then P ≤ 0. Moreover, for any smooth curve c = c(s) on M,

−
d
ds

f (c(s), s)≤ 1
2
(S(c(s), s)+ |c′(s)|2)− 1

2(t−s)
f (c(s), s).

Proof. By Lemma 6 in [Guo et al. 2015a], we know P ≤ 0, so

(t − s)(21 f − |∇ f |2+ S)+ f − n ≤ 0.

Since u solves the conjugate heat equation, we have

∂ f
∂s
=−1 f + |∇ f |2− S+

n
2(t − s)

.

Combining the above two equations, we get

∂ f
∂s
+

1
2

S− 1
2
|∇ f |2− f

2(t−s)
≥ 0.

On the other hand,

−
d
ds

f (c(s), s)=−∂ f
∂s
−〈∇ f, c′(s)〉 ≤ −∂ f

∂s
+

1
2
|∇ f |2+ 1

2
|c′(s)|2.

The desired inequality follows from adding the last two inequalities. �

Remark. In [Cao et al. 2015], the authors considered the Harnack estimate for the
conjugate heat kernel of general geometric flow, and our Theorem 4.4 is a special
case of [Cao et al. 2015, Theorem 1.2]. This kind of estimate is used to derive
smooth convergence of the conjugate heat kernel for our particular flow; for general
geometric flow in [Cao et al. 2015], we don’t even know the convergence of the
flow.

Next we introduce the reduced length and prove a bound of the heat kernel which
will be used in the following sections. Let x, y ∈ M, 0≤ s < t < T and consider
a smooth curve γ : [s, t] → M connecting (y, s) and (x, t), i.e., γ (s) = y and
γ (t)= x . Its L length is defined as

L(γ )=
∫ t

s

√
t − σ(|γ ′(σ )|2g(σ )+ S(γ (σ ), σ )) dσ.

The reduced distance between (x, t) and (y, s) is defined as

l(x,t)(y, s)=
1

2
√

t − s
inf{L(γ ) : γ : [s, t] → M between (y, s) and (x, t)}.
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Choose γ (σ ) : [s, t] → M to be the L geodesic between (y, s) and (x, t); from
Theorem 4.4 we know

−
d

dσ
((t − σ)

1
2 f (γ (σ ), σ ))≤ 1

2
(t − σ)

1
2 (S(γ (σ ), σ )+ |γ ′(σ )|2).

Integrating from s to t , we have

(t − s)
1
2 f (γ (s), s)≤ 1

2

∫ t

s

√
t − σ(S(γ (σ ), σ )+ |γ ′(σ )|2) dσ,

hence

f (y, s)≤ l(x,t)(y, s),

i.e.,

H(x, t; y, s)≥ (4π(t − s))−
n
2 e−l(x,t)(y,s).(4-11)

Now we are in a position to prove the lower bound of the heat kernel.

Theorem 4.5. Define ρ = ‖S(g(−T ))−‖∞, µ= infτ∈(0,2T ) µ(g(−T ), φ(−T ), τ ).
Denote τ = t − s for s < t in [−T, 0], then we have

H(x, t; y, s)≥(8πτ)−
n
2 exp

(
−

4d(x, y, t)2

τ
−

1
√
τ

∫ t

s

√
t − σ S(y, σ ) dσ−ρτ+µ

)
.

Proof. Let u(y, s)= H(y, t; y, s), s < t , then u solves the conjugate heat equation
−
∂u
∂s −1g(s)u + Su = 0. Define a function f by u(y, s) = (4πτ)−

n
2 e− f (y,s); we

need to use Theorem 4.4. Picking the curve c(s) to be the fixed point, we have

−
∂ f
∂s
≤

1
2

S(y, s)− 1
2τ

f (y, s).

For any s2 < s1 < t , we integrate the above inequality to get

f (y, s2)
√

t − s2 ≤ f (y, s1)
√

t − s1+
1
2

∫ s1

s2

√
t − σ S(y, σ ) dσ.

When s1 approaches t , f (y, s1) stays bounded because H(y, t; y, s)(t − s)
n
2 is

bounded between two positive constants. Hence for s ≤ t , we have

f (y, s)≤
1

2
√
τ

∫ t

s

√
t − σ S(y, σ ) dσ,

so,

H(y, t; y, s)≥
1

(4πτ)
n
2

e−
1

2
√
τ

∫ t
s
√

t−σ S(y,σ ) dσ
.

Next we will use the gradient estimate from Lemma 4.1 to get the lower bound
for H(x, t; y, s). Define v(x, l)= H(x, l; y, s), then v satisfies ∂v

∂l =1g(l)v(l). On
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the interval
[ t+s

2 , t
]
, applying Theorem 4.2 , we get

‖v(l)‖∞ ≤
(

4π · t−s
2

)− n
2
eρ(t−s)−µ

:= A.

By Lemma 4.1, we have ∣∣∣∣∇√log A
v(x, t)

∣∣∣∣≤ 1√
1
2 t − s

,

hence √
log A

v(x, t)
≤

√
log A

v(y, t)
+

d(x, y, t)√
1
2 t − s

.

Using Cauchy–Schwarz,

log A
v(x, t)

≤ log
( A
v(y, t)

)2
+

4d(x, y, t)2

t−s
.

So

v(x, t)≥ A−1v(y, t)2e−
4d(x,y,t)2

t−s

≥ (2π(t−s))
n
2 e−ρ(t−s)+µ(4πτ)−ne

−
1√
t−s

∫ t
s
√

t−σ S(y,σ )dσ
e−

4d(x,y,t)2
t−s

= (8πτ)−
n
2 exp

(
−

4d(x, y, t)2

t−s
−

1
√

t−s

∫ t

s

√
t−σ S(y,σ )dσ−ρτ+µ

)
. �

5. Log-Sobolev inequality and Gaussian concentration

Consider a smooth metric probability space (M, g, dν), where dν = e−hdvg. If the
so-called Bakry–Émery condition,

Ric+∇2h ≥ 1
2 g,

is satisfied, a celebrated theorem [Bakry and Émery 1985] asserts that (M, g, dν)
satisfies a logarithmic Sobolev inequality with a definite constant. More precisely,
this means that for every smooth function v with compact support and

∫
M v

2 dν= 1,∫
M
v2 log v2 dν ≤ 4

∫
M
|∇v|2 dν.

Since the work of [Bakry and Émery 1985] there has been plenty of work on the
characterization of the Ricci curvature bound using the log-Sobolev inequality; see
[Bakry and Ledoux 2006; Cheng and Thalmaier 2018; Naber 2013]. The above
log-Sobolev inequality has many important applications, for example, see [Carrillo
and Ni 2009; Munteanu and Wang 2012; Wu and Zhang 2017].
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With the same spirit, in this section we will prove Theorem 1.2, i.e., the Poincaré
inequality (1-2) and the log-Sobolev inequality (1-3). As applications, we obtain
Theorem 1.3 and Corollary 1.4.

In the following argument, for simplicity, we use dν to denote dνx0(y, s). We
can rewrite the Poincaré inequality (1-2) and the log-Sobolev inequality (1-3) in
the following way. For any u ∈ C∞0 (M) with u ≥ 0 in the second case,∫

M
u2 dν−

(∫
M

u dν
)2

≤ 2|s|
∫

M
|∇u|2 dν,(5-12) ∫

M
u log u dν−

(∫
M

u dν
)

log
(∫

M
u dν

)
≤ |s|

∫
M

|∇u|2

u
dν.(5-13)

Theorem 1.2 can be derived using a similar idea to that in [Hein and Naber 2014],
where the gradient estimate can be obtained by applying the “heat kernel homotopy”
principle [Bakry and Ledoux 2006]. Given s ≤ t in [−T, 0], we define Pst u as

Pst u(x)=
∫

M
u(y)H(x, t; y, s) dvolg(s)(y).

Note that when s is fixed, Pst u satisfies the heat equation.

Lemma 5.1. If U (t) are smooth functions on M ×[−T, 0], then

d
dt

Pt0U (t)= Pt0�tU (t).

Proof. When x, t are fixed, H(x, t; y, s) satisfies the conjugate heat equation.

d
dt

Pt0U (t)=
∫

M

∂

∂t
U (y, t)H(x, 0; y, t) dvolg(t)(y)

+

∫
M

U (y, t)
(
∂

∂t
− S(y, t)

)
H(x, 0; y, t) dvolg(t)(y)

=

∫
M

∂

∂t
U (y, t)H(x, 0; y, t) dvolg(t)(y)

−

∫
M

U (y, t)1y H(x, 0; y, t) dvolg(t)(y)

=

∫
M

(
∂

∂t
U (y, t)−1yU (y, t)

)
H(x, 0; y, t) dvolg(t)(y)

=

∫
M
�tU (y, t)H(x, 0; y, t) dvolg(t)(y)= Pt0�tU (t). �

Lemma 5.2. Let u ∈C∞0 (M) and u(t)= Pst u so that �t u(t)= 0. Suppose h and ψ
are two smooth functions from R to R.

(1) If U (t)= h(u(t)), then �tU (t)=−h′′(u)|∇u(t)|2g(t).
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(2) If U (t)= ψ(u(t))|∇u(t)|2g(t), then

�tU (t)=−2ψ(u)|∇2u|2−2ψ(u)〈∇φ,∇u〉2−ψ ′′(u)|∇u|4−4ψ ′(u)∇2u(∇u,∇u).

Proof. (1) �tU (t)= ( ∂∂t −1)h(u(t))= h′ ∂u
∂t − (h

′′
|∇u|2+h′1u)=−h′′(u)|∇u|2.

(2) Using the Bochner formula (2-10), we get

�t |∇u|2 =−2|∇2u|2− 2〈∇u,∇φ〉2.

So

�t(ψ(u)|∇u|2)=�tψ(u)|∇u|2+ψ(u)�t |∇u|2− 2〈∇ψ(u),∇|∇u|2〉

= −2ψ(u)|∇2u|2− 2ψ(u)〈∇φ,∇u〉2

−ψ ′′(u)|∇u|4− 4ψ ′(u)∇2u(∇u,∇u). �

Now we are going to prove the Poincaré inequality and the log-Sobolev inequality.
Note that

(5-14)
∫

M
h(u) dν− h

(∫
M

u dν
)
=−

∫ 0

s

d
dt

Pt0(h(Pst u)) dt

=

∫ 0

s
Pt0(h′′(Pst u)|∇Pst u|2g(t)) dt.

Proof of the Poincaré inequality (5-12). Pick h = x2; by (5-14) we have∫
M

u2 dν−
(∫

M
u dν

)2

= 2
∫ 0

s
Pt0(|∇Pst u|2g(t)) dt.

Using Lemma 5.1 and Lemma 5.2,

∂

∂r
Pr t(|∇Psr u|2g(r))= Pr t�r (|∇Psr u|2g(r))

= Pr t
(
−2|∇2 Psr u|2g(r)− 2〈∇φ,∇Psr u〉2

)
.

Integrating from s to t with respect to r ,

|∇Pst u|2g(t)= Pst(|∇u|2g(s))−2
∫ t

s
Pr t(|∇

2 Psr u|2g(r))dr−2
∫ t

s
Pr t(〈∇φ,∇Psr u〉2)dr,

so∫
M

u2 dν−
(∫

M
u dν

)2

= 2
∫ 0

s
Pt0(|∇Pst u|2g(t)) dt ≤ 2

∫ 0

s
Pt0 Pst(|∇u|2g(s)) dt

= 2
∫ 0

s
Ps0|∇u|2g(s) dt = 2|s|

∫
M
|∇u|2g(s) dνx0(s).

It is easy to see that equality holds if and only if∇2 Psr u≡0, i.e., u is constant. �
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Proof of the log-Sobolev inequality (5-13). Pick h = x log x ; by (5-14), we obtain∫
M

u log u dν−
(∫

M
u dν

)
log
(∫

M
u dν

)
=

∫ 0

s
Pt0

(
|∇Pst u|2g(t)

Pst u

)
dt.

Using Lemmas 5.1 and 5.2,

∂

∂r
Pr t(Psr u|∇ log Psr u|2g(r))= Pr t�r (Psr u|∇ log Psr u|2g(r))

= Pr t�r

(
|∇Psr u|2

Psr u

)
=−2Pr t

[
Psr u

(
|∇

2 log Psr u|2+
〈∇φ,∇Psr u〉2

(Psr u)2

)]
,

and integrating from s to t with respect to r ,

|∇Pst u|2g(t)
Pst u

=Pst

(
|∇u|2g(s)

u

)
−2

∫ t

s
Pr t

[
Psr u

(
|∇

2 log Psr u|2+
〈∇φ,∇Psr u〉2

(Psr u)2

)]
dr.

So∫
M

u logu dν−
(∫

M
u dν

)
log
(∫

M
u dν

)
=

∫ 0

s
Pt0

(
|∇Pst u|2g(t)

Pst u

)
dt

≤

∫ 0

s
Pt0 Pst

(
|∇u|2g(s)

u

)
dt =

∫ 0

s
Ps0

(
|∇u|2g(s)

u

)
dt = |s|

∫
M

|∇u|2g(s)
u

dνx0(s).

One sees that equality holds if and only if ∇2 log Psr u ≡ 0, i.e., u is constant. �

Next we will use the log-Sobolev inequality to derive Theorem 1.3, where the
proof follows from standard theory in the metric measure space.

Proof of Theorem 1.3. Choose any F ∈ C∞(M) with∫
M

F dν = 0, |∇F | ≤ 1.(5-15)

Define U (λ)= 1
λ

log
∫

M eλF dν, then

lim
λ→0

U (λ)= lim
λ→0

∫
M eλF F dν∫

M eλF dν
=

∫
M

F dν = 0.

Applying the log-Sobolev inequality to u2
=

eλF∫
M eλF dν ,

∫
M

(
eλF∫

M eλF dν
log

eλF∫
M eλF dν

)
dν ≤ 4|s|

∫
M

λ2

4 eλF
|∇F |2(∫

M eλF dν
)2 dν,

so∫
M

eλF dν
∫

M
eλF

(
λF−log

∫
M

eλF
)

dν≤|s|λ2
∫

M
eλF
|∇F |2 dν≤|s|λ2

∫
M

eλF dν,
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i.e., ∫
M

eλF
(
λF − log

∫
M

eλF
)

dν ≤ |s|λ2.

Hence,

d
dλ

U =
d

dλ

(
1
λ

log
∫

M
eλF dν

)
=
−1
λ2 log

∫
M

eλF dν+
1
λ

∫
M eλF F dν∫

M eλF dν

=
1
λ2

1∫
M eλF dν

(
−

∫
M

eλF dν log
∫

M
eλF dν+ λ

∫
M

eλF F dν
)
≤ |s|.

In the last inequality we use
∫

M eλF dν ≥ 1 because log
∫

M eλF dν ≥
∫

M λF dν = 0.
Combining d

dλU ≤ |s| and limλ→0 U (λ)= 0, we obtain∫
M

eλF dν ≤ e|s|λ
2

because any F satisfies (5-15).
Define G(y)= dg(s)(y, B) and F = G−

∫
M G dν, then∫

A
eλF(y1) dν(y1)≤

∫
M

eλF(y1) dν ≤ e|s|λ
2
,

and ∫
B

e−λF(y2) dν(y2)≤

∫
M

e−λF(y2) dν ≤ e|s|λ
2
.

So

eλdg(s)(A,B)ν(A)ν(B)≤
∫

B

∫
A

eλ(F(y1)−F(y2)) dν(y1)dν(y2)≤ e2|s|λ2
,

i.e.,

ν(A)ν(B)≤ e2|s|λ2
−λdg(s)(A,B).

Because

2|s|λ2
−λdg(s)(A, B)= 2|s|

(
λ−

dg(s)(A, B)
4|s|

)2

−
dg(s)(A, B)2

8|s|
≥−

dg(s)(A, B)2

8|s|
,

we get

ν(A)ν(B)≤ exp
(
−

dg(s)(A, B)2

8|s|

)
. �
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Remark. Given x1, x2 ∈ M, take A= Br (x1, s) and B = Br (x2, s), where r2
= |s|.

Applying the above theorem to dν = dνx2 ,

(5-16)
∫

Br (x1,s)
H(x2, 0; y, s) dvolg(s)(y)

≤
1

νx2(Br (x2, s))
exp

(
−

dg(s)(Br (x1, s), Br (x2, s))2

8|s|

)
,

due to
dg(s)(x1, x2)≤ dg(s)(Br (x1, s), (Br (x2, s)))+ 2r,

hence
1
2 dg(s)(x1, x2)

2
≤ dg(s)(Br (x1, s), Br (x2, s))2+ 4|s|.

So ∫
Br (x1,s)

H(x2, 0; y, s) dvolg(s)(y)≤
C

νx2(Br (x2, s))
exp

(
−

dg(s)(x1, x2)
2

C |s|

)
.

Together with Perelman’s κ noncollapsing property, this can be used to derive
certain upper bounds of the heat kernel [Wu ≥ 2019].

Proof of Corollary 1.4. Apply Theorem 1.3 with x0 = x2, A = Br (x1, s) and
B = Br (x2, s). Using Theorem 4.5, we obtain

inf
Br (x2,s)

H(x2, 0; y, s)≥
1

C ′
|s|−

n
2 .(5-17)

Due to the evolution equation of volume along (1-1),

d
dt

Volg(t)(Br (x2, 0))=−
∫

Br (x2,0)
S(y, t) dvolg(t)(y)≤

C
|s|

Volg(t)(Br (x2, 0)),

and integrating from s to 0 with respect to t , by Theorem 3.4 we have

Volg(s)(Br (x2, 0))≥
1

C ′
Volg(0)(Br (x2, 0))≥

1
C ′

rn.(5-18)

Combining (5-17), (5-18) and Volg(s)(Br (x1, 0))≥ 1
C ′ r

n, we get

1
Volg(s)(Br (x1, 0))

∫
Br (x1,0)

H(x2, 0, y, s) dvolg(s)(y)

≤ C ′|s|−
n
2 exp

(
−

dg(s)(Br (x1, 0), Br (x2, 0))
C ′|s|

)
.

From Theorem 4.5 again, we have

inf
Br (x1,0)

H(x2, 0; y, s)≥
1

C ′
|s|−

n
2 exp

(
−

dg(0)(x1, x2)
2

C ′|s|

)
,

and combining this with (1-4), (1-5) follows.
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6. Lipschitz continuity of pointed Nash entropy

Recall the pointed Nash entropy at (x0, s) ∈ M ×[−T, 0] is defined as

Nx0(s)=
1
|s|

∫ 0

s
Wx0(r) dr =

∫
M

fx0(s) dνx0(s)−
n
2
.

Based on the Poincaré inequality (1-2) in Theorem 1.2, we can prove the Lipschitz
continuity of the pointed Nash entropy.

Proof of Theorem 1.6. Define F(x)= fx(s)Hx(s), then

‖F(x1)− F(x2)‖ = ‖ fx1(s)Hx1(s)− fx2(s)Hx2(s)‖

=

∫
M
| fx1(s)Hx1(s)− fx2(s)Hx2(s)| dvolg(s)(y)

≤

∫
M

∫ dg(0)(x1,x2)

0
|∇γ (t)( fγ (t)Hγ (t))| dt dvolg(s)(y)

=

∫ dg(0)(x1,x2)

0

∫
M
|∇γ (t)( fγ (t)Hγ (t))| dvolg(s)(y)dt

≤ sup
x∈M

∫
M
|∇x( fx Hx)| dvolg(s) · dg(0)(x1, x2),

where γ (t) is a unit speed geodesic connecting x1 and x2 with respect to g(0). All
we need to do is to estimate the integral,∫

M
|∇x( fx Hx)| dvolg(s)(y)=

∫
M
|∇x fx Hx − fx Hx∇x fx | dvolg(s)(y)

=

∫
M
|∇x fx − fx∇x fx | dνx(s)≤ ‖∇x fx‖2(1+‖ fx‖2).

From the gradient estimate in Corollary 4.3, we know

|∇x fx |
2
≤

C ′

|s|
(C ′+ fx).

Hence ∫
M
|∇x( fx Hx)| dvolg(s)(y)≤ C ′|s|−

1
2 (1+‖ fx‖

2
2)≤ C ′|s|−

1
2 ,

where in the last inequality we use (3) from Theorem 6.1. �

Theorem 6.1. Under the assumption (1-6), the following holds for fx(s).

(1)
∫

M fx dν ∈ [ n2 −C, n
2 ].

(2)
∫

M |∇ fx |
2 dν ≤ ( n

2 +C) 1
|s| .

(3)
∫

M | fx |
2 dν ≤ (n+ 2+C)2. here we use dν to denote dνx(y, s).
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Proof. (1) Applying Propositions 3.5 and 3.6, we have

−C ≤ µ(g(s), φ(s), |s|)≤Wx(s)≤ Nx(s),

so
∫

M fx dν ∈
[ n

2 −C, n
2

]
.

(2) Recall Wx(s)=
∫

M(|s|(S+|∇ fx |
2)+ fx−n) dν and Nx(s)=

∫
M fx(s) dν− n

2 , so

Wx(s)− Nx(s)=
∫

M
|s|(S+ |∇ fx |

2) dν− n
2
≤ 0,

hence
∫

M(S+ |∇ fx |
2) dν ≤ n

2|s| .

(3) Applying the Poincaré inequality (1-2), we have∫
M

f 2
x dν ≤ 2|s|

∫
M
|∇ fx |

2 dν+
(∫

M
fx dν

)2

≤ 2|s|
(

n
2
+ c

)
1
|s|
+max

{(n
2
−C

)2
,
(n

2

)2
}
≤ (n+C + 2)2. �

7. Proof of ε-regularity theorem

In this section we prove the ε-regularity theorem. In order to do that, we quote the
derivative estimate to be used.

Lemma 7.1 [List 2008]. Let (Mn, g(t), φ(t)) be an extended Ricci flow (1-1) on
M ×[0, T ) with initial data (g0, φ0), and assume sup |φ0| ≤ C , then for all t > 0,

inf
x∈M

φ0(x)≤ φ(x, t)≤ sup
x∈M

φ0(x),

sup
x∈M
|∇φ|2(x, t)≤ C2t−1.

Proposition 7.2 [List 2008]. Let (Mn, g(t), φ(t)) be an extended Ricci flow (1-1).
Fix x0 ∈ M and r > 0, if

sup
Br (x0,s)

r2
|Rm | ≤ C̃ .

Denote 8 = (Rm,∇2φ), then the derivatives of 8 satisfy the inequality for all
m ≥ 0, and for all t ∈ (0, s] the estimate

sup
Br/2(x0,t)

|∇
m8|2 ≤ C(n,m)C̃(r−2

+ t−1)m+2

holds, where C = C(n,m) is a constant only depending on n and m.

Next we prove a more restricted version of Theorem 1.8, whose proof is based on
the point picking argument as in [Anderson 1990]. Once we have this, Theorem 1.8
can be derived using the Lipschitz continuity of the pointed Nash entropy in
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Theorem 1.6. In the following argument, for simplicity, we define

t (y)=−min{T, r|Rm |(y, 0)2}.

Theorem 7.3. There exists an ε = ε(n,C) > 0 such that if

Ny(t (y))≥−ε, for all y ∈ Bδ(x, 0),

where 0< δ ≤
√

T , then

r|Rm |(y, 0)≥ ε · dg(0)(y, ∂Bδ(x, 0)), for all y ∈ Bδ(x, 0).

Proof. Without loss of generality, we assume δ = 1≤ T. Suppose the contrary, then
we have a sequence of the extended Ricci flow (Mi , gi (t), φi (t)) satisfying (1-7)
and xi ∈ Mi such that

Ny(t (y))≥−
1
i
, for all y ∈ B1(xi , 0),(7-19)

but any point yi minimizing the quantity

w(y)=
r|Rm |(y, 0)

dgi (0)(y, ∂B1(xi , 0))

satisfies 0<w(yi )≤
1
i .

Choose any such yi and denote ri = r|Rm |(yi , 0). Consider the rescaled extended
Ricci flow (Mi , g̃i (t), φ̃i (t)), where

g̃i (t)=
1
r2

i
gi (r2

i t), φ̃i (t)= φi (r2
i t), t ∈

[
−

1
r2

i
, 0
]
.

Clearly r|Rm |(yi , g̃i (0))= 1 and

di =
1
2

dg̃i (0)(yi , ∂B 1
ri
(xi , g̃i (0)))≥

i
2
.

Because yi minimizes w,

r|Rm |(y, g̃i (0))≥
1
2
, for all y ∈ Bdi (yi , g̃i (0)).(7-20)

This curvature bound, together with the assumption above and the κ noncollapsing
property, implies that

Volg̃i (0)(B1(y, 0))≥ κ(n,C).

So we have a uniform curvature bound on P1/4(y, g̃i (0)) for any y ∈ Bdi (yi , g̃i (0)).
Then we have the smooth convergence

(Mi , g̃i (t), (yi , 0))→ (M∞, g∞(t), (y∞, 0)).

The limit is completely defined on [− 1
16 , 0] and is of bounded curvature.
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Now we have the heat kernel bound

(4π |t |)−
n
2 exp(−l(ỹi ,0)(y, t))≤ H(ỹi , 0; y, t)≤ C ′(n,C)|t |−

n
2 .

The lower bound is due to (4-11) and the upper bound is due to Theorem 4.2.
As before, we write H(ỹi , 0; y, t)= (4π |t |)−

n
2 exp(− fi (y, t)). By Lemma 4.1,

the gradient of H(ỹi , 0; y, t) is uniformly bounded on any compact domain; (7-20)
implies higher order derivatives of H(ỹi , 0; y, t) are also bounded, so the fi (y, t)
converge to f∞(y, t) smoothly on any compact subset. Because |φ̃i | ≤ C , by
Lemma 7.1 and Proposition 7.2 we know the various order derivatives of φ̃i are
uniformly bounded. Equation (7-19) together with (4) in Proposition 3.6 gives∫ 0

−
1
16

2|t |(1−16|t |)
∫

Mi

(∣∣∣∣Sic(g̃i )+∇
2 fi−

g̃i

2|t |

∣∣∣∣2+(1φ̃i−〈∇ fi ,∇φ̃i 〉)
2
)

dνỹi (t)dt≤ 1
i
.

Letting i→∞, we see f∞ satisfies

(7-21)

{
Sic(g∞)+∇2 f∞−

g∞
2|t | = 0,

1φ∞ = 〈∇φ∞,∇ f∞〉.

Because |φ̃i |≤C , after blowing up, φ̃i→φ∞= const , so (7-21) can be simplified to

Ric(g∞)+∇2 f∞−
g∞
2|t |
= 0,

which is nonflat and of bounded curvature on
[
−

1
16 , 0

]
. This is impossible, because

the curvature at time t is 1
16|t | times the curvature at time − 1

16 , and hence tends to
infinity as t→ 0. �

Proof of Theorem 1.8. Define ε=min{ 12ε7.3,
ε2

7.3
2C ′ } and δ= |s|

1
2 ε7.3

2C ′ , where C ′ is the
constant from Theorem 1.6 and ε7.3 is the constant from Theorem 7.3. Assume
Wx0(s)≥−ε, so Nx0(s)≥−ε. By Theorem 1.6, we have for any x ∈ Bδ(x0, 0),

Nx(s)≥ Nx0(s)−C ′|s|−
1
2 d(x0, x)≥−ε7.3.

Then we can apply Theorem 7.3 to get r|Rm |(x0, 0)≥ ε7.3δ ≥ ε|s|
1
2. �
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