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CALABI-YAU 4-FOLDS OF
BORCEA-VOISIN TYPE FROM F-THEORY

ANDREA CATTANEO, ALICE GARBAGNATI AND MATTEO PENEGINI

We apply Borcea—Voisin’s construction and give new examples of Calabi—
Yau 4-folds Y, which admit an elliptic fibration onto a smooth 3-fold V,
whose singular fibers of type I lie above a del Pezzo surface dP C V. These
are relevant models for F-theory according to Beasley et al. (2009a, 2009b).
Moreover, we give the explicit equations of some of these Calabi-—Yau 4-folds
and their fibrations.

1. Introduction

New models of grand unified theory (GUT) have recently been developed using F-
theory, a branch of string theory which provides a geometric realization of strongly
coupled type IIB string theory backgrounds; see, e.g., [Beasley et al. 2009a; 2009b].
In particular, one can compactify F-theory on an elliptically fibered manifold, i.e., a
fiber bundle whose general fiber is a torus.

We are interested in some of the mathematical questions posed by F-theory;
above all, that of the construction of some of these models. For us, F-theory will be
of the form R*! x Y, where Y is a Calabi—Yau 4-fold admitting an elliptic fibration
with a section on a complex 3-fold V, namely:

E——Y

E

Vv

In general, the elliptic fibers E of £ degenerate over a locus contained in a
complex codimension one sublocus A(E) of V, the discriminant of £. According
to theoretical speculation in physics, A(E) should contain del Pezzo surfaces above
which the general fiber is a singular fiber of type I5 (Figure 1): see, for instance,
[Beasley et al. 2009a; Bini and Penegini 2017].

MSC2010: 14J32, 14J35, 14]150.
Keywords: Calabi—Yau manifolds, elliptic fibrations, generalized Borcea—Voisin’s construction, del
Pezzo surfaces, K3 surfaces, F-theory.
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The aim of this work is to investigate explicit examples of elliptically fibered
Calabi—Yau 4-folds Y with this property by using a generalized Borcea—Voisin
construction. The original Borcea—Voisin construction was described independently
in [Borcea 1997] and [Voisin 1993], where the authors produced Calabi—Yau 3-
folds starting from a K3 surface and an elliptic curve. Afterwards, generalization
to higher dimensions was considered; see e.g., [Cynk and Hulek 2007; Dillies
2012]. There are two ways to construct 4-folds of Borcea—Voisin type, by using
involutions, either starting from a pair of K3 surfaces, or considering a Calabi—Yau
3-fold and an elliptic curve. In this paper we will consider the former method. A
first attempt to construct explicit examples of such Calabi—Yau 4-folds ¥ was made
in [Bini and Penegini 2017], also using a generalized Borcea—Voisin’s construction
but applied to a product of a Calabi—Yau 3-fold and an elliptic curve. In that case
the Calabi—Yau 3-fold was a complete intersection (3, 3) in P> containing a del
Pezzo surface of degree 6; this construction was inspired by [Kapustka 2015].

In order to construct a Calabi—Yau 4-fold Y with the elliptic fibration £ as
required one needs both a map to a smooth 3-fold V whose generic fibers are
genus 1 curves and a distinguished del Pezzo surface dP in V. A natural way to
produce these data is to consider two K3 surfaces S| and S, such that §; is the
double cover of dP and S, admits an elliptic fibration 7 : S, — Pl In this way we
will obtain £:Y — V ~dP x P!, To get Y from S; and S, we need a nonsymplectic
involution on each surface. Since S; is a double cover of dP, it clearly admits the
cover involution, denoted by ¢;, while the involution ¢, on S, is induced by the
elliptic involution on each smooth fiber of 7. Thus, (S; x $2)/(¢1 X t2) is a singular
Calabi—Yau 4-fold which admits a crepant resolution Y obtained blowing up the
singular locus. It follows at once that there is a map ¥ — (S1/t;) x P! ~dP x P!
whose generic fiber is a smooth genus 1 curve and the singular fibers lie either
on dP x A(rr) or on C x P! (where C C dP is the branch curve of S; — dP and
A(7r) is the discriminant of 7). The discriminant A(;r) consists of a finite number
of points and generically the fibers of £ over dP x A(rr) are of the same type as
the fiber of © over A(xr). Therefore the requirements on the singular fibers of £
needed in F-theory reduce to a requirement on the elliptic fibration 7 : S, — P!,

Moreover, we show that the choice of S; as double cover of a del Pezzo surface
and of S as elliptic fibration with specific reducible fibers can be easily modified to
obtain Calabi—Yau 4-folds with elliptic fibrations with a different basis (isomorphic
to S1/t1 X P') and reducible fibers (over S1/t x A(m)).

Our first result, proven in Propositions 3.1 and 4.2 (see also Section 4C) is:
Theorem 1.1. Let dP be a del Pezzo surface of degree 9 — n and S| — dP be a
double cover with Sy a K3 surface. Let S, — P! be an elliptic fibration on a K3
surface with singular fibers m1s+ (24 —5m) 1. The blow up Y of (S1 X $2)/(t1 X 12)
along its singular locus is a crepant resolution. It is a Calabi—Yau 4-fold which
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admits an elliptic fibration € : Y — dP x P! whose discriminant contains m copies
of dP above which the fibers are of type Is. The Hodge numbers of Y depend only
on n and m and are

YY) =5+n+2m, W Y)=2(15—n—m),
h>2(Y) =4(138 —9n — 19m + 2nm), h>'(Y) =137 — 11n — 22m + 2nm.

We also give more specific results on Y. Indeed, recalling that a del Pezzo surface
is either P! x P! or a blow up of P2 in n points B : dP — P2, for 0 <n <8, we give a
Weierstrass equation for the elliptic fibration ¥ — P! x P! x P! or ¥ — B(dP) x P!,
respectively, induced by &; see (12) and (13). Moreover, for n =5, 6 we provide the
explicit Weierstrass equation of the fibration £ : ¥ — dP x P!; see (17) and (15).

For m = 4, there are two different choices for 7 : S, — P!. One of them is
characterized by the presence of a 5-torsion section for 77 : S — P! and in this case
the K3 surface S, is a 2 : 1 cover of the rational surface with a level 5 structure; see
[Balestrieri et al. 2018]. We observe that if 7 : S, — P! admits a 5-torsion section,
the same is true for £.

The particular construction of Y enables us to find two other distinguished
fibrations (besides £): one whose fibers are K3 surfaces and the other whose fibers
are Calabi—Yau 3-folds of Borcea—Voisin type. So Y admits fibrations in Calabi—
Yau manifolds of any possible dimension. Moreover, by the explicit description of
these fibrations, we observe that £ and the fibration in Calabi—Yau 3-folds are not
isotrivial. So Y can be interpreted as a non (iso)trivial family of elliptic curves and
of Calabi—Yau 3-folds.

The concrete geometric description and the explicit equation of Y are interesting
in view of a possible application to F-theory and can be also used to specialize Y
to some more specific Calabi—Yau 3-folds with extra symmetries. These special-
izations are intensively used in dimension 3 to construct Calabi—Yau 3-folds with
prescribed Hodge numbers (see, e.g., [Constantin et al. 2017; Braun 2011]) and
can be considered in higher dimensions.

The geometric description of the fibrations on Y and their projective realization
is based on a detailed study of the linear systems of divisors on Y. In particular we
consider divisors Dy induced by divisors on S; and S,. We relate the dimension of
the spaces of sections of Dy with the one of the associated divisors on S; and S,.
Thanks to this study we are also able to describe Y as a double cover of P? x F4
(where F4 is the Hirzebruch surface S,/i7) and as an embedded variety in p>9-n,
The main results in this context are summarized in Propositions 6.1 and 6.2.

The paper is organized as follows. In Section 2, we recall the definition of
Calabi—Yau manifold, K3 surface and del Pezzo surface. Moreover, we describe
nonsymplectic involutions on K3 surfaces. Finally in Section 2E we introduce
the Borcea—Voisin construction. Section 3 is devoted to presenting models Y for
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F-theory described in the introduction. The Hodge numbers of Y are calculated in
Section 4. Section 5 is devoted to the study of the linear systems on Y. The results
are applied in Section 6 where several fibrations and projective models of Y are
described. Finally, in Section 7 we provide the explicit equations for some of these
models and fibrations.

Notation and conventions. We work over the field of complex numbers C.

2. Preliminaries

Definition 2.1. A Calabi—Yau manifold X is a compact Kihler manifold with trivial
canonical bundle such that /°%(X) =0if 0 < i < dim X.

A K3 surface S is a Calabi—Yau manifold of dimension 2. The Hodge numbers
of § are uniquely determined by these properties and are h%%(S) = h20(S) = 1,
h'0(S) =0, and A1 (S) = 20.

2A. Aninvolution ¢ on a K3 surface S can be either symplectic, i.e., it preserves the
symplectic structure of the surface, or not, in which case we speak of nonsymplectic
involution. In addition, an involution on a K3 surface is symplectic if and only if its
fixed locus consists of isolated points; an involution on a K3 surface is nonsymplectic
if and only if there are no isolated fixed points on S. These remarkable results depend
on the possibility to linearize ¢ near the fixed locus. Moreover, the fixed locus of an
involution on S is smooth. In particular, the fixed locus of a nonsymplectic involution
on a K3 surface is either empty or consists of the disjoint union of smooth curves.

From now on we consider only nonsymplectic involutions ¢ on K3 surfaces S.
As a consequence of the Hodge index theorem and of the adjunction formula, if the
fixed locus contains at least one curve C of genus g(C) := g > 2, then all the other
curves in the fixed locus are rational. On the other hand, if there is one curve of
genus 1 in the fixed locus, then the other fixed curves are either rational curves or
exactly one genus 1 curve.

So one obtains that the fixed locus of ¢ on § can be one of the following:

« Empty.
o The disjoint union of two smooth genus 1 curves E; and E>.

o The disjoint union of k curves, such that k — 1 are surely rational, with the
remaining curve having genus g > 0.

If we exclude the first two cases (FixL(S) =0, Fix,(S) = E| [] Ez), the fixed
locus can be topologically described by the two integers (g, k).

There is another point of view in the description of the involution ¢ on §. Indeed,
(* acts on the second cohomology group of S and its action is related to the moduli
space of K3 surfaces admitting a prescribed involution; this is due to the construction
of the moduli space of the lattice polarized K3 surfaces. So we are interested in
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the description of the lattice H 2(S,Z)". This coincides with the invariant part
of the Néron—Severi group N S(S)* since the automorphism is nonsymplectic,
and thus acts on H%9(S) as —idp20(s); see [Nikulin 1979, Section 4, 2°]. The
lattice H2(S, Z)" of rank r := rk(H2(S, Z)"") is known to be 2-elementary, i.e., its
discriminant group is (Z/27)“. Hence one can attach to this lattice the two inte-
gers (r, a). A very deep and important result on the nonsymplectic involutions on
K3 surfaces is that each admissible pair of integers (g, k) is uniquely associated to
a pair of integers (r, a); see [Nikulin 1979, Theorem 4.2.2].
We observe that for several admissible choices of (r, a) this pair uniquely deter-
mines the lattice H2(S, Z)", but there are some exceptions.
The relations between (g, k) and (r, @) are explicitly given by
22—r—a r—a
0 §=—"—H - k=—"+1L
r=104+k—g, a=12—-k—g.

2B. A surface dP is called a del Pezzo surface of degree d if the anticanonical
bundle — K 4p is ample and KﬁP = d. Moreover,we say that dP is a weak del Pezzo
surface if — K p is big and nef.

The anticanonical map embeds dP in P? as a surface of degree d. The del Pezzo
surfaces are either P! x P! (which has degree 8) or a blow up of P? in 9 —d points
in general position

) B :dP = Bly_y(P?) — P?;
see, e.g., [Dolgachev 2012].

2C. A double cover of a del Pezzo surface dP ramified along a smooth curve
C €| —2Kg4p| is a K3 surface S, endowed with the covering involution ¢. Since dP
is not a symplectic manifold, ¢ is nonsymplectic. For all the del Pezzo surfaces except
P! x P!, we can see S as the minimal resolution of a double cover of P2 branched
along B(C), which is a sextic with 9 — d nodes. Let us denote by p’ : § — P? the
composition of the double cover with the minimal resolution. The ramification
divisor of p’ is a genus 1 + d smooth curve, which is the fixed locus of .

If the del Pezzo surface is P! x P!, then S is a double cover of P! x P! branched
along a smooth curve of bidegree (4, 4) and we denote by p’ : S — P! x P! the
double cover.

Definition 2.2. An elliptic fibration £ : Y — V is a surjective map with connected
fibers between smooth manifolds such that: the general fiber of £ is a smooth
genus 1 curve; there is a rational map O : V --» Y such that £o0 O =idy. A flat
elliptic fibration is an elliptic fibration with a flat map £. In particular a flat elliptic
fibration has equidimensional fibers.
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Figure 1. Fiber of type Is.

2D. If Y is a surface then any elliptic fibration is flat. Moreover, on Y there is an
involution ¢ which restricts to the elliptic involution on each smooth fiber. If Y is a
K3 surface, then ¢ is a nonsymplectic involution.

2E. The generalized Borcea—Voisin construction. Let X;, i =1, 2, be a Calabi—
Yau manifold endowed with an involution ¢; whose fixed locus has codimension 1.

The quotient
(X1 % X2) /(11 X 12)

admits a crepant resolution which is a Calabi—Yau manifold as well (see [Cynk and
Hulek 2007]). We call Borcea—Voisin of X, and X, the Calabi—Yau BV(X, X>)
which is the blow up of (X| x X3)/(¢1 X tp) in its singular locus.

2F. Leth: X1 x X, —> X, xXzbethg@wupole ></X\g/intheﬁ>gcllgcusofu X17.
Let ¢ be the induced involution on X; X X, and g : X1 X Xo — X| X Xp/T=:7Y its
quotient. The commutative diagram

X]XXQ%X]XXz

| |

BV(Xl, Xz) ZYy —— (X1 X X2)/(L] X LQ)

exhibits the Borcea—Voisin manifold as a smooth quotient.

3. The construction

3A. In the following we apply the just-described Borcea—Voisin construction in
order to get a Calabi—Yau 4-fold Y together with a fibration £ : ¥ — V onto a
smooth 3-fold V, with the following properties: the general fiber of £ is a smooth
elliptic curve E, the discriminant locus of £ contains a del Pezzo surface dP, and
for a generic point p € dP the singular fiber £~!(p) is of type Is (see Figure 1).

3B. Let S; and S, be two K3 surfaces with the following properties:

(1) S; admits either a 2 : 1 covering p’: §; — P2, branched along a curve C, which
is a (possibly singular and possibly reducible) sextic curve in P2 ora 2 : 1
covering p’ : §; — P! x P!, branched along a curve C, which is a (possibly
singular and possibly reducible) curve of bidegree (4, 4) on P! x P,

(2) S, admits an elliptic fibration 7 : S, — P!, with discriminant locus A (7).
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The surface S has the covering involution ¢1, which is a nonsymplectic involution.
Moreover, if the branch curve C C P? (resp. C C P! x P!) is singular, then the
double cover of P? (resp. P! x P!) branched along C is singular. In this case the
K3 surface S; is the minimal resolution of this last singular surface. The fixed
locus of ¢; consists of the strict transform C of the branch curve, and possibly of
some other smooth rational curves, W; (which arise from the resolution of the triple
points of C). Moreover, notice that if we choose C C P? to be a sextic with n <9
nodes in general position then p’ factors through

0:S; 2% dp:=Bl,P?%,

where dP is a del Pezzo surface of degree d =9 — n. If C is a smooth curve, then
C = C and we put p = p’ so we still have p : S ZL ap.

The second K3 surface S, admits a nonsymplectic involution too, as in Section 2D.
This is the elliptic involution ¢;, which acts on the smooth fibers of 7 as the elliptic in-
volution of each elliptic curve. In particular it fixes the 2-torsion group on each fiber.
Therefore, it fixes the zero section O, which is a rational curve, and the trisection
T (not necessarily irreducible) passing through the 2-torsion points of the fibers.

3C. Applying the Borcea—Voisin construction (Section 2E) to (Sy, ¢1) and (S7, t2),
we obtain a smooth Calabi—Yau 4-fold Y. In particular, the singular locus of the
quotient X := (8] x $2)/(t1 X t2) is the image of the fixed locus of the product
involution ¢; X ;. As the involution acts componentwise, we have

Fixg, xs,(t1 X t2) = Fixs, t; x Fixg, 12,
therefore the fix locus consists of the disjoint union of
(1) the surface C x 0, where O ~ P! is the section of 7,
(2) the surface C x T, where T is the trisection of 7,
and, possibly,

(3) the surfaces C x E; (where E; >~ P! are the fixed components in the reducible
fibers of ),

(4) the surfaces W; x O, W; x T and W; x E; (where W; >~ P! are the rational
curves fixed by ¢; on Sp).

As in Section 2E we have the following commutative diagram.

SIxX S —2 8 x5S,

1

y —— X
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3D. By construction, the smooth 4-fold Y comes with several fibrations. Let us
analyze one of them and postpone the description of the others until Section 6.

Suppose that the del Pezzo surface is obtained by blowing up P? in 9 — d points
in general position (the easier case dP ~ P! x P! can be studied in similar way).
We have the fibration ¥ — P? x P! induced by the covering p’ : S — P? and the
fibration 7 : S, — P. Recall from Section 3B that we can specialize the fibration
if we require that p’ is branched along a sextic with n nodes in general position.
This further assumption yields

Y

|s
dP x P!

where dP is the del Pezzo surface obtained blowing up the nodes of the branch
locus. The general fiber of ¢ is an elliptic curve. Indeed, let (p, ¢) € dP x P! with
p ¢ Cand g ¢ A(r). Then (¢)~!(p, q) is isomorphic to the smooth elliptic curve
771 (g). Hence the singular fibers lie on points (p, g) € dP x P! of one of the
following three types: pe C, g € A(w); p€C, g A(w); peC, g€ A(r). We
discuss these three cases separately.

Case 1: (p,q) € dP x P! with p ¢ C and ¢ € A(r). Clearly 7 ~!(g) is a singular
curve, and since p ¢ C, we get a singular fiber for ¢,

(4) o N p. ) =77 (q).

Case2: (p,q) €dPx P! with peC andgq ¢ A(r). Consider first (p x n)_l(p, q)
in S| x S,. This is a single copy of 7 ~!(g), which is a smooth elliptic curve, over
the point p € C C S;. In addition, this curve meets the fixed locus of ¢; X 5 in
four distinct points: one of them corresponds to the intersection with C x O and
the other three correspond to the intersections with C x T. Notice that ¢; X ¢y acts
on p x w~'(q) as the elliptic involution t,, hence the quotient curve is a rational
curve. This discussion yields that ¢ ~!(p, ¢) is a singular fiber of type I*, where the
central rational component is isomorphic to the quotient of 7 ~!(g)/t> and the other
four rational curves are obtained by blowing up the intersection points described
above.

Case 3: (p, q) edPx P! with pe C and g € A(r). This time, (o x7) ™' (p, q) is the
singular fiber 7 ~!(g). Moreover, the quotient of this curve by ¢, is determined by its
singular fiber type. If 1, does not fix a component of At (g), then (p x )~} (p,q)
meets the fixed locus of ¢; x ¢, in a certain number of isolated points, depending on
the fiber 7~ (¢) (which correspond to the intersection of the fiber with O and T).
On the other hand, if ¢ does fix a component of 7 ~!(g), then there are curves in
(p x )" N(p, q)- In the latter case, o (p, q) contains a divisor.
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In each of the previous cases, the fiber over (p, ¢) is not smooth and thus we
obtain that the discriminant locus of ¢ is

A(p) = (C x PHY U (dP x A(r)).

This discussion yields that the surface dP x {g} C A(p) for all ¢ € A(;r) and
for the generic point p € dP the fiber of ¢ over (p, q) is of the same type as the
fiber of 7 over ¢. This implies the following proposition.

Proposition 3.1. There exists a Calabi—Yau 4-fold with an elliptic fibration over
dP x P! such that the discriminant locus contains a copy of dP. If, moreover, we
assume that the generic fiber above it is reduced, i.e., is of type I,, 1I, IIl, IV, then
it is possible to construct this elliptic fibration to be flat.

Proof. We show firstly that if the singular fibers of the elliptic fibration 7 are of type
1, 11, III or 1V, then our method produces an equidimensional fibration on Y. By
our analysis in Section 3D, Case 3, it suffices to show that the elliptic involution ¢,
on S, does not fix any irreducible component of such fibers. As we already observed,
the fixed locus of a nonsymplectic involution on a K3 surface consists of the disjoint
union of smooth curves, which readily rules out the irreducible singular fibers
(i.e., those of type I and II). Consider now the case of the I, singular fibers: call I';,
i € Z/nZ, its irreducible components, in such a way that the component meeting the
section O is I'g and I'; intersects I'; ;. Consider then I'g; since it meets the section
O (which is a component of Fixg, t2) we deduce that it is invariant but not fixed
for ¢, hence this involution must switch the two points where I'g meets I'y and '),
and has another fixed point. As a result, ¢, switches I'; and I';,_; and consequently
switches I'; with I',_; for 1 <i < [“51]. In the end, either we have a fixed point
at the intersection of I'(,_1) 2 and I'(,41)2 if n is odd, or we have two fixed points
on I',» if n is even (in this case, this curve is i>-invariant). Consider now a fiber
of type /11, and let I'g be the component meeting the section O and I'; the other
component. On I'y the point I'g N O is fixed, and so 'y is an invariant curve which
is not fixed by ¢;. As there is only one singular point in the fiber, this point must be
fixed as well, and so there cannot be other fixed points on I'g. As a consequence, if
the trisection 7" does not meet I'y, then it must meet I’y and this would imply that I'y
is fixed. So T must meet I", which prevents I'; from being a fixed curve. Consider
finally a fiber of type IV, and let ['y be the component meeting the section O and I'y,
['; be the other components. The unique singular point is necessarily a fixed point.
As before, on I'g we have two fixed points, the intersection with the section O and
the singular point of the fiber, and this component is globally invariant and can not
meet the trisection 7T in a point different from the singular point. If 7 does not meet
[g at all (and thus does not pass through the singular point), then it must meet one
between I'; and ', with multiplicity 2, which would imply that component is fixed
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(since it has at least three fixed points). As it meets the trisection (which is fixed),
this is absurd, and so T must pass through the singular point. As a consequence,
neither Iy nor I'; are fixed since they meet T at least in the singular point.

This is enough to claim that the elliptic fibration on Y is equidimensional. Finally,
as we are dealing with morphisms between smooth varieties, by [Nowak 1997,
criterion for flatness] we deduce that our fibration is also flat. O

3E. We shall now discuss a special case of the elliptic fibration ¢. Apparently, a
good phenomenological model for F-theory (see the introduction and references
therein) is the one where the discriminant locus contains a del Pezzo surface over
which there are /5 singular fibers. Indeed, F-theory on an elliptically fibered Calabi—
Yau 4-fold Y with base B is equivalent to Type IIB string theory on B with a
dilaton-axion T = C+ie~? varying over this base. At each point in B the complex
number t can be identified with the complex structure modulus of the elliptic
fiber over this point. For Y to be a Calabi—Yau 4-fold this fiber has to degenerate
over divisors D; in B. These degeneration loci encode the location of space-time
filling seven-branes of Type IIB compactified on B. In the case of an SU(5) gauge
group theory, D; should be del Pezzo surfaces and a singular fiber splits into an /5
Kodaira singular fiber; see, e.g., [Braun et al. 2013]. The choice of an SU(5)
gauge group theory lies on the fact that it is the smallest simple Lie group which
contains the standard model, and upon which the first grand unified theory was
based. Besides SU(5), another group which seems to be interesting for the grand
unified theories is E¢: the corresponding fibrations will have singular fibers of
type IV* on the del Pezzo in the discriminant. Let us discuss the situation of SU(5).

Remark 3.2. By Proposition 3.1 it is possible to construct elliptic fibrations with
fibers Is. Nevertheless, it is not possible to obtain elliptic fibrations such that all
the singular fibers are of type /5. Indeed, there are two different obstructions:

(1) The fibers obtained in Case 2 of Section 3D are of type I and this does not
depend on the choice of the properties of the elliptic fibration S, — P!.

(2) The singular fibers as in Case 1 of Section 3D depend only on the singular
fibers of S, — P! and these cannot be only of type Is, indeed 24 = x (S3) is
not divisible by 5.

However, it is known that there exist elliptic K3 surfaces with m fibers of type I5
and all other singular fibers of type I; for m =1, 2, 3, 4; see [Shimada 2000]. In
this case the number of fibers of type I; is 24 — Sm.

4. The Hodge numbers of Y

The aim of this section is the computation of the Hodge numbers of the constructed
4-folds.
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4A. By (3) the cohomology of Y is given by the part of the cohomology of ST;(/SZ
which is invariant under (¢; X ¢2)* The cohomology of S| x S5 is essentially obtained
as the sum of two different contributions: the pullback by b* of the cohomology
of S; x S, and the part of the cohomology introduced by the blow up of the fixed
locus Fix, x;, (81 % $2). The fixed locus Fix,, x,, (S1 X $2) = Fix,, (S1) x Fix,, (S2)
consists of surfaces, which are products of curves. So b : §1 x S — S1 x §, intro-
duces exceptional divisors which are P!-bundles over surfaces which are products
of curves. The Hodge diamonds of these exceptional 3-folds depends only on the
genus of the curves in Fix,, (S1) and Fix,, (52).

Since, up to an appropriate shift of the indices, the Hodge diamond of S; x S5 is
just the sum of the Hodge diamond of S} x S, /a_gd/ of all the Hodge diamonds of the
exceptional divisors, the Hodge diamond of S; x S, depends only on the properties
of the fixed locus of ¢; on S} and of ; on S;. Denoted by (g;, k;), i =1, 2, the pair
of integers Wﬁgh/describes the fixed locus of (; on §;, we obtain that the Hodge
diamond of S; x S, depends only on the four integers (g1, k1, g2, k2).

Now we consider the quotient 4-fold Y. Its cohomology is the invariant cohomol-

ogy 9ﬁ§1/ x §; for the action of (¢ x ¢)* Since the automorphism induced by ¢ x ¢
on S7 x S, acts trivially on the exceptional divisors, one has only to compute the
invariant part of the cohomology of S; x S, for the action of (¢; X ¢»)* But this
depends of course only on the properties of the action of ¢* on the cohomology
of S;. We observe that ¢ acts trivially on H 0(S;, Z), and that H'(S;, Z) is empty.
Denote by (r;, a;), i =1, 2, the invariants of the lattice H 2(S;, Z)%; these determine
uniquely H*(S) x S, Z)1x2)",

Thus the Hodge diamond of Y depends only on (g;, k;) and (r;, a;), i =1, 2.
By (1), it is immediate that the Hodge diamond of Y depends only either on
(g1, k1, &2, ko) or equivalently on (ry, ay, 2, az).

This result is already known, due to J. Dillies who computed the Hodge numbers
of the Borcea—Voisin of the product of two K3 surfaces by means of the invariants
(r1, a1, rp, ap) in [Dillies 2012]:

Proposition 4.1 [Dillies 2012, Section 7.2.1]. Let t; be a nonsymplectic involution
on S;, i = 1,2, such that its fixed locus is nonempty and does not consist of two
curves of genus 1. Let Y be the Borcea—Voisin 4-fold of S| and S;. Then

1.1 ryr riay airy aay 37‘1 aq 37‘2 ay
Ty =14+-12— — — 4=

h()+4 7] 4+4+2 2+2 5

hz’l(Y)=22—%+%+5r1—6a1+5r2—6a2,

h>2(Y) = 648 4 3riry + ajaz — 30r; — 30r, — 12a; — 12a,,

h3,1(Y):161+m+a1a2+r1a2+a1r2 _13ry  13r,  1lay 11a2.

4 4 4 4 2 2 2 2
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4B. Now we apply these computations to our particular case: $> is an elliptic K3
surface with m fibers of type I5 and S is either the double cover of [P branched
along a sextic with n nodes or the double cover of P! x P! branched along a smooth
bidegree (4, 4) curve. In this latter case we pose n = 1. We obtain the following
proposition.

Proposition 4.2. Let m > 0 be an integer, and suppose that w : S» — Pl in an
elliptic fibration with singular fibers of type mls + (24 — Sm) 1. Then

YY) =5+n+2m,

h>N(Y) =2(15—n—m),

h>2(Y) = 4(138 — 9n — 19m + 2nm),
WY Y) =137 = 11n — 22m + 2nm.

Proof. In order to deduce the Hodge numbers of Y by Proposition 4.1, we have to
compute the invariants (g;, k;) of the action of ¢; on S; in our context. If the surface
Sy is a 2 : 1 cover of P? branched on a sextic with n nodes and | is the cover
involution, then the fixed locus of ¢; is isomorphic to the branch curve and hence
has genus 10—n. So (g1, k1) = (10—n, 1) and thus r; = 14+n and a; = 1 +n. If the
surface S; is a 2 : 1 cover of P! x P! branched on a smooth bidegree (4, 4) curve,
and ¢ is the cover involution, then the fixed locus of ¢; is isomorphic to the branch
curve and hence has genus 9 = 10 — n. Also in this case (g1, k1) = (10 —n, 1) and
thusry=1+nanda; =1+n.

The involution ¢, on S, is the elliptic involution, and hence fixes the section of the
fibration, which is a rational curve, and the trisection passing through the 2-torsion
points of the fibers. Moreover, t, does not fix components of the reducible fibers.
So k» =2 and it remains to compute the genus of the trisection. The Weierstrass
equation of the elliptic fibration S, is y> = x3 4+ A(¢)x + B(¢) and the equation
of the trisection T is x> + A(f)x + B(t) = 0, which exhibits T as 3 : 1 cover
of P! branched on the zero points of the discriminant A(f) = 4A(t)* +27B(t)>
Under our assumptions, the discriminant has m roots of multiplicity 5 and 24 — 5m
simple roots, so that T is a 3 : 1 cover branched in 24 — 5m + m = 24 — 4m points
with multiplicity 2. Therefore, by the Riemann-Hurwitz formula, one obtains
2¢(T)—2=—-6+4+24—4m,ie., g(T)=10—2m. Hence kp =2, go=10—2m
and so rp =2+ 2m and a; = 2m. |

4C. Proof of Theorem 1.1. Theorem 1.1 states the existence of an elliptic fibration
£ on a certain Calabi—Yau 4-fold Y and contains the Hodge numbers of Y. The
construction of the Calabi—Yau 4-fold Y is contained in Section 3C, the existence
of the elliptic fibration £ is proved in Proposition 3.1 and the Hodge numbers of Y
are given in Proposition 4.2. This concludes the proof of Theorem 1.1.
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4D. By construction, Y is obtained as a (desingularization of a) quotient of S} x S
by 1 X 12, so each complex deformation of the pairs (S;, ¢;), where S; is a K3
surface admitting a prescribed nonsymplectic involution ¢;, induces a complex
deformation of Y. Since Y is a Calabi—Yau 4-fold, the dimension of the space
of its complex deformations is 3 (Y). By [Nikulin 1979], the dimension of
the space of complex deformations of (S;, ;) is 20 —r;, i =1,2. So iy >
(20 — r1) + (20 — rp) and the equality holds if and only if all the deformations of
Y are induced by deformations of (S;, ¢;) (compare with the definition of Borcea—
Voisin maximal family in [Cattaneo and Garbagnati 2016], where similar concepts
are discussed on Calabi—Yau 3-folds of Borcea—Voisin type). By Proposition 4.2,
one has h*1(Y) =137 — 11n — 22m + 2nm, r; = 1 +n, r, = 2+ 2m and thus
(20—r1)4+(20—ry) =37—n—2m. Hence, h>1(Y) is strictly bigger than 37—n—2m
and therefore a part of the deformations of Y are not induced by deformations of
the pairs (S;, ¢;).

Let us now fix the del Pezzo surface dP, and then the K3 surface S, with its
involution ¢;. The moduli space of K3 surfaces with m fibers of type Is as in
Proposition 4.2 has dimension 18 —4m (because this is the space of the (U & A?’” )-
polarized K3 surfaces). So, given a K3 surface S, as in Proposition 4.2, the moduli
of Y are 137 — 11n — 22m + 2nm and the moduli of the K3 surfaces S, admitting
the prescribed elliptic fibration are 18 —4m. In particular, any complex deformation
of S, which preserves the elliptic fibration induces a complex deformation of Y, but
there are a lot of deformations of ¥ which are not induced by those of S5.

5. Linear systems on Y

5A. Here we state some general results on linear systems on the product of varieties
with trivial canonical bundle, which will be applied to S; x ;.

Let X; and X, be two smooth varieties with trivial canonical bundle, and Ly,
and Ly, be two line bundles on X and X», respectively. Observe that we have a
natural injective homomorphism

H(X\, Lx,) ® H'(X2, Lx,) > H*(X| x X3, 7} Lx, ® 5 Lx,)
sQt > mfs - myt,
where the ;’s are the two projections. We now want to determine some conditions
which guarantee that this map is an isomorphism.
Using the Hirzebruch—Riemann—Roch theorem,

x (X1 x Xo, w{Lx, @5 Lx,) = x (X1, Lx,) - x (X2, Lx,).

If Lx, and Lx, are nef and big line bundles such that 7 Lx, ® ) Ly, is still nef
and big, then the above formula and Kawamata—Viehweg vanishing theorem lead to

RO(X1 x Xa, i Ly, @ w5 Lx,) = h(X1, Lx,) - h*(X2, Lx,).
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However, we are interested also in divisors which are not big and nef, therefore
we need the following result.

Proposition 5.1. Let X, X, be two smooth varieties of dimension ny and n,
respectively. Assume that they have trivial canonical bundle wx, = Ox, and that
hOni=1(X;) = 0. Let D; C X; be a smooth irreducible codimension 1 subvariety.
Then the canonical map

HO(X1,0x,(D1)@H (X2, Ox,(D2) > H (X1 x X3, 7} Ox, (D@73 Ox, (D2))
is an isomorphism.
Proof. By Kiinneth’s formula

RO1(X x Xo) = WO (X ) - hOm2(Xo) + O™ (X)) - RO 71 (X))
= A0 X) + AT (X) =0,

where n =nj| +n, =dim(X; x X»).

As already remarked, the ¥ map is injective, so it suffices to show that the source
and target spaces have the same dimension.

We begin with the computation of ho(X;, Ox, (D;)). From the exact sequence

0 — Ox,(=D;) = Ox, — Op, — 0,
we deduce the exact piece
H"~Y(X;, 0x)— H""Y(D;, Op,) = H" (X;, Ox,(—D;))— H" (X;, Ox,) = 0.
Since H"~!(X;, Ox,) = 0 by hypothesis, we get by Serre duality that
hO(Xi, Ox, (D)) = k" (X;, Ox,(=D;)) = k"~ (D;, Op,) + 1.

Now we pass to the computation of 1°(X| x X», 7 Ox, (D) @ 15 O0x,(D2)).
Let D = D; x X, U X x Dy, and observe that

71 Ox,(D1) ® 13 Ox,(D2) = Ox, xx,(D).
By the previous part of the proof, we have
h°(X1 x X2, 7{Ox, (D1) @ 13 Ox,(D2)) = "~ (D, Op) + 1,

so we need to compute 4"~ (D, Op) in this situation. Consider the diagram of
inclusions .
X x Dy——D

! ,
2

D, XDQ(—> Dy x X»
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and the short exact sequence

0— OD - il*OXlXDz 69i2>(<(9D1><X2 - i*ODlxDz - 0’

where
Op = i1.0x,xD, ®12:0D,x X, S > (S|x, %0y Slpyxx,)

and
11:0x,xD, @ 12:0p,xx, = 1+OD,x D, » (51, 82) = 105 p, = 520p,xp, -

This sequence induces the exact piece

H""%(Dy x D3, Op,xp,) — H" (D, Op)
— H"'(X| x D, Ox,xp,) ® H" (D) x X», Op,xx,) — 0,

from which we have that

W"~Y(D, Op) < h"~'(X1 x D2, Ox,xp,) + 1" (D1 x X2, Op,xx,)
+1"2(Dy x D2, Op,xp,).
These last numbers are easy to compute using Kiinneth’s formula:

n—1
RN (X1 % Dy, Ox,xp,) = Y _ W% (X)) - i~ (Dy)
i=0
= h*" (X) - "7 (Dy) = kO™ H(Dy);

RN (D1 x X3, Op,xx,) = h*"~1(Dy);

R""2(Dy x Da, Op,xp,) =h*"2(D} x D,)
n—2

= WD) -k (Dy)

i=0
=h*"7H(Dy) - K" (Dy),

where we used the trivial observation that A%%(D;) = 0 if k > n;.
Finally, we have the following chain of inequalities:

(" ~N(Dy, Op,) + ("> (D2, Op,) + 1)
=h"(X1, Ox,(D1)) - h° (X2, Ox,(D2))
< h%(X| x X2, Ox,xx,(D)) ="~ (D, Op) + 1
<h®"=Y (D) + 1" (Dy) + KO~ (Dy) - KO (Dy) + 1
= (h"~1(D1, Op,) + (">~ (Dy, Op,) + 1),

from which the proposition follows. ]
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Remark 5.2. Observe that this proposition can be deduced also from more general
arguments; see, for instance, [Kashiwara and Schapira 1990, Exercise I1.18] where
a broader generalization of the Kiinneth formula is shown.

5B. In particular, this result applies when X; and X, are K3 surfaces or, more
generally, when they are Calabi—Yau or hyperkéhler manifolds.

By induction, it is easy to generalize this result to a finite number of factors.
Notice that we require D; to be smooth in order to use Kiinneth’s formula. Indeed,
there is a more general version of Proposition 5.1 for line bundles. Namely, if £;
are globally generated/base point free line bundles over X; then their linear systems
|£;| have, by Bertini’s theorem, a smooth irreducible member, and we can apply
Proposition 5.1.

Let us denote D1+ D :=m{O(Dy)+n5O(D,). The linear system | D; | naturally
defines the map ¢|p,| : X; — P". Denoting by oy, », : P"! x P2 — Pmmtmtm
the Segre embedding, Proposition 5.1 implies that ¢|p, 4 p,| coincides with oy, », ©
(@011 X @Dy

Corollary 5.3. Let S;, i = 1,2, be two K3 surfaces and D; be an irreducible
smooth curve of genus g; on S;. Then h°(Sy x S», D1+ D)) = (g1 + (g2 + ).

5C. Use the same notation as in Section 3 diagram (3). On S; x Sy, let D be an
invariant divisor (resp. an invariant line bundle D) with respect to the ¢; X ¢, action.
Moreover, denote by Dy the divisor on Y such that g* Dy = b* D (resp. Dy is the
line bundle such that g*Dy = b*D).

Since ¢q is a double cover branched along a codimension 1 subvariety B, it is
uniquely defined by a line bundle £ on Y such that £&? = Oy (B) and we have

HO(S1 x S5, ¢* M) =H(Y, M) ® H'(Y, M ® L&)

for any line bundle M onY.
The isomorphism H°(S; x S5, b*D) ~ HO(S; x S5, D) yields

HO(S) x S5, D) ~ HO(S; x S5, ¢*Dy) ~ H(Y, Dy) & H(Y, Dy ® £&7V).

As a consequence, one sees that the space H(Y, Dy) corresponds to the invariant
subspace of H 0(S; x S», D) for the ¢* action, while HO(Y, Dy ® £71) corresponds
to the anti-invariant one. This yields at once the commutative diagram

— @D

S1 X S —25 81 x S 2L PHO(S, x Sy, D))

5) ql l l

Y X P(H(Y, Dy)Y),
v

P Dyl

where the vertical arrow on the right is the projection on P(H 0y, Dy)V) with
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center P(H(Y, Dy @ £~1)V) (observe that both these two spaces are pointwise
fixed for the induced action of ¢ on P(H?(S| x S», D)V)).

In what follows we denote by Dy and L the divisors such that Dy = O(Dy) and
L =0O(L), so L is half of the branch divisor.

5D. Let D; be a smooth irreducible curve on S; such that the divisor D; is invariant
for ¢;. Then ¢} acts on H 0(S;, D;)Y. Let us denote by H 0(S;, D;)1; the eigenspace
relative to the eigenvalue 1 for the action of 1; on H(S;, D;). Let h; be the
dimension of P(H(S;, D;)Y ).

Corollary 5.4. Let S;, D;, Dy, L and h; be as above. Then ¢\p,|: Y — PN where
N := (h 4+ D(ha + 1) + (g(D1) — h1)(g(D2) — ha) — 1 and gp,—1 : ¥ — PM
where M := (hy + 1)(g(D2) — h2) + (g(D1) —hy)(ha + 1) — 1.

Proof. By Corollary 5.3 the map ¢|p, 1 p,| is a map from §; x S to the Segre em-
bedding of P(H°(S;, D1)Y) and P(H(S,, D;)V). The action of the automorphism
11 X 1, on H(S| x S», Dy + D») is induced by the action of ¢; on HO(S;, D;) and
in particular

H(S1 x S2, D1 + D) 41

= H%(S1, D)1 ® H*(S2, D2) 41 ® H(S1, D)1 ® H'(S2, D2) 1,
whose dimension is (h141)(hay+1)+(g(D1)—h1)(g(D2) —h3). By Section 5C, the
divisors Dy and Dy — L define on Y two maps whose target space is the projection

of P(HO(S; x S5, D)V) to the eigenspaces for the action of 1| x 1 and the image is
the projection of ¢ p|(S1 X S2). So the target space of ¢|p, is

P(H(S1 x S2, D1+ D2)Y,),

whose dimension is (21 +1)(hy+1)+(g(D1)—h1)(g(D2) —hy)—1. One concludes
similarly for ¢|p, 1. ]

Lemma 5.5. Let D; be an effective divisor on S; invariant for ;, and h; be the
dimension of P(HO(S;, Di)il)fori =1, 2. Denote by 8p, the divisor on Y such
that g*(8p,) = b*(w}(D;)). Then

HO(Sy x Sy, 7/ (Dy)) ~ HO(S;. Di) and  dim(P(H"(Y, 8p,))) = h;.
fori=1,2.

6. Projective models and fibrations

The aim of this section is to apply the general results of the previous sections to
our specific situation. So, let (S1, ¢1) and (S>, t) be as in Section 3B (i.e., Sj is a
double cover of dP, ¢ is the cover involution, $; is an elliptic fibration and ¢, is
the elliptic involution). To simplify the notation, from now on we assume that the
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del Pezzo surface dP is a blow up of P2 so that S; is a double cover of P2. The
results of this section can be easily generalized to the case dP ~ P! x P!,
We now consider some interesting divisors on S; and S.

6A. Let i € Pic(S) be the pullback of the hyperplane section of P? by the generi-
cally 2: 1 map p’ : S; — P2 The divisor / is a nef and big divisor on S; and the
map @, is generically 2 : 1 to the image (which is P?). The action of ¢; is the
identity on H 0(Sy, h)Y, since ¢; is the cover involution.

We recall that the branch locus of p’ is a sextic with n simple nodes in general
position, for 0 <n < 8. As explained in Section 3, in order to construct a smooth
double cover we first blow up [P? at the n nodes of the sextic obtaining a del Pezzo
surface dP. Thus on §; there are n rational curves, lying over these exceptional
curves. We denote these curves by R;, i = 1,...,n. We will denote by H the
divisor 3k — Y " _, R; if n > 1 or the divisor 3% if n = 0. Observe that H is the
strict transform of the nodal sextic in P2,

For a generic choice of S; the Picard group of S is generated by /& and R;. The
divisor H is an ample divisor, because it has a positive intersection with all the
effective —2 classes. Moreover, H2 =18 —2n > 2, ifn <7. By [Saint-Donat 1974],
this divisor cannot be hyperelliptic and so the map ¢z is 1 : 1 onto its image in
[I:[)IO—n.

The divisor % p«(H) is the anticanonical divisor of the del Pezzo surface dP,
which embeds dP in

PO = P(HO(dP, Lp.(H))").

Since ¢; is the cover involution of p, the action of ¢} on HO(S;, H)Y has a (10—n)-
dimensional eigenspace for the eigenvalue +1 and a 1-dimensional eigenspace for
the eigenvalue —1. Observe that with this description, the projection

P(H(S1, H)Y) — P(H(S1, H)Y,)

from the point P(H 0S,, H )Zl) coincides with the double cover p.

Notably, if n = 6, the del Pezzo surface dP is a cubic surface in P?xo:xl:xzzxa)’
whose equation is f3(xg : x1 : x2 : x3) = 0. In this case the divisor H embeds
the K3 surface Sy in P* as the complete intersection of a quadric with equation
xf = g2(x0:x1 : x2 : x3) and the cubic f3(xp:x1:x2:x3) =0 and ¢; acts multiplying

x4 by —1.

6B. Let S, be a K3 surface with an elliptic fibration. Generically Pic(S,) is spanned
by the divisors F and O, the class of the fiber and the class of the section, respectively.
If S, has some other properties, for example some reducible fibers, then there are
other divisors on S, linearly independent from F and O. In any case, it is still true
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that (F, O) is primitively embedded in Pic(S;). We consider two divisors on S;:
Fand4F +20.

The divisor F is by definition the class of the fiber of the elliptic fibration on S5,
so that 7 = @|p| : S, — P! is the elliptic fibration on S,. In particular F is a nef
divisor, but it is not big, and it is invariant for ¢, (since ¢, preserves the fibration).
Moreover, (, preserves each fiber of the fibration, therefore (5 acts as the identity
on HY(S,, F)V.

It is easy to see that the divisor 4F 4 20 is a nef and big divisor. The map
@|4F+20)| contracts the zero section and possibly the nontrivial components of the
reducible fibers of the fibration. We see that

Ylar420] - 2 RN @1ar+20((82)

is a double cover, where gur420/(S2) is the cone over a rational normal curve
of degree 4 in P>, Blowing up the vertex of ¢4r420((S2) we obtain a surface
isomorphic to the Hirzebruch surface F4. The involution ¢, is the associated cover
involution; this means that (5 acts as the identity on H 0(S,,4F +20)".

6C. We observe that the divisors &, H, F and 4F + 20 are invariant for the action
of ¢; for some i. So, by Corollary 5.4, we get the following:
Proposition 6.1. Let Y and the divisors on Y be as above, then:

(1) The map

P Fy . ¥ ————— P

N

P? x P!
is an elliptic fibration on the image of P> x P! by the Segre embedding.
(2) The map

QH+Fy 0 ¥ —————— P

\ 09—n,1

PP x P!

is the same elliptic fibration as in (1) with a different projective model of the
basis, i.e., the image of dP X P! via 09_n.1.
3) The map

Pht@ari20)y 0 Y ——— PV

z

P2 x P3

is a generically 2 : 1 map onto its image contained in o2 5(P? x P?).



20 ANDREA CATTANEO, ALICE GARBAGNATI AND MATTEO PENEGINI

(4) The map

OH+@F+20))y| . Y ————————— P3O

[lj)9—n X [I:DS
is birational onto its image contained in og9_,, (PO x P).

Proof. The points (1) and (2) are proved in Section 6D. The points (3) and (4) are
proved in Section 6E. U

Proposition 6.2. Using the same notation as for Lemma 5.5 we have:

(1) ¢35, : Y — P2 is an isotrivial fibration in K3 surfaces whose generic fiber is
isomorphic to S.

2) Y5 : Y — P~ is the same fibration as in (1) with a different projective
model of the basis.

(3) @55 : Y — Plis a fibration in Calabi-Yau 3-folds whose generic fiber is the
Borcea—Voisin of the K3 surface Sy and the elliptic fiber of the fibration 7.

(4) Qsapinol - Y — P2 is an isotrivial fibration in K3 surfaces whose generic fiber
is isomorphic to S;.

Proof. The proof is explained in Section 6D, where all the previous maps are
described in detail. (]

6D. Fibrations on Y. As the natural map p’ x 7 : §; x S» — P? x P! satisfies
(p x ) ot = p x 7, we have an induced map X — P2 x P, The composition of
this map with the resolution ¥ — X and with the two projections then gives

(1) an elliptic fibration £ : ¥ — P? x P!,

(2) a K3-fibration G : ¥ — P2,

(3) a fibration in elliptically fibered 3-folds # : ¥ — P,
We describe these fibrations:

(1) The map £:Y — P?x P! is induced by the divisor (h+ F)y since gy : S — P?
and @ f| : S$» — P!. We already described the properties and the singular fibers for
this fibration in Section 3D.

The composition of ¢4 |(S1) and the projection to the invariant subspace of
P10-" exhibits S as the double cover of the del Pezzo surface dP anticanonically
embedded in P°~". The del Pezzo surface dP is the blow up of P2 in n points and
the double cover S| — dP corresponds (after the blow up) to the double cover
Q- S1 —~> P2 since H = 3h — Z:f’:l R;. Thus, the map ¢|n+r),| is the same
fibration as ¢4 r),|, with a different model for the basis (which is now dP x P.
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2) Themap G : Y — P2 is induced by 8,. The fibers of these fibrations are
isomorphic to S since we have the commutative diagram

S1X52—>51

NN
JARIY) P

X dP P2

The singular fibers of G lie over the branch curve C C P2 of the double cover
Sy — P2 Let P € C. It s easy to see that (o’ x n)_l(prﬂgzl(P)) is given by P x S,
and so in the quotient X we see a surface isomorphic to S, /¢, which is a surface
obtained from [F4 by means of blow ups. Moreover, under the blow up ¥ — X
we add a certain number of ruled surfaces: these are all disjoint from each other,
and meet the blow up of F4 on the base curve of the rulings, i.e., on the section O,
on the trisection 7" and possibly on the rational fixed components E; (which are
necessarily contained in reducible not-reduced fibers).

For the same reason as above, ¢, is the fibration G with a different description
of the basis.

(3) The fibration # is induced by 8. For every ¢ € P!, we denote by F; the elliptic
fiber of S, — P! over ¢. The inclusion S} x F; C S; x S, induces

SIX F—— 8§ x5

l/tlx(lz)m l/Hth

BV (Si, F;) —— (S1 X Fy) /(11 X (12)|F,)© X Y

So the fibers of ¢;, are Borcea—Voisin Calabi—Yau 3-folds which are elliptically
fibered by definition. The singular fibers lie on A ().

(4) Moreover, there is another K3-fibration. Indeed, the map ¢ys,,.,,,| gives an
isotrivial fibration in K3 surfaces isomorphic to S| and with basis the cone over the
rational normal curve in P4 by the diagram

Sl X S2 E— Sz
J//Hth l/lz

X —— (82/1p) —— P?

6E. Projective models. By the diagram

Plh| XPl4F+20|

S; xS, P2 x PST pl7

4:1
2:1

Yy — X
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we can describe the map induced by the linear system |(h +4F +20)y| on Y as
a double cover of the image (under the Segre embedding of the ambient spaces) of
@ n|(S1) X @lar+20((S2), which is the product of P2 with the cone over the rational
normal curve of degree 4. This map is generically 2 : 1, and its branch locus is given
by the union of the product of the sextic curve in [P? with the vertex of the cone (the
fiber over such points is a curve) and the product of the sextic with the trisection; the
generic fiber is a single point, but there may be points where the fiber is a curve. The
last case occurs only if the fibration 7 : S, — P! has reducible nonreduced fibers.
To describe the map induced by |(H +4F +20)y| we use the diagram

PIH|XP4F+20|

S; xS, [p)lO—n X [|j>5r_> [p)65—6n

2:1 010-n,5
2:]l l

PI(H+4F+20)y| _ _
Y X - |]j>9 noy [p)S(Jg - |]j)59 6n
: —n,

where
PO~ x P° — PP x P

is induced by the projection of P10~ =P(HO(S;, H)Y) to P(H(S|, H)Y,). Recall
that H is an ample divisor on S; (indeed, it is very ample), so the image of
@|H| X @lar+20 1s the product of §; and the cone over the rational normal curve of
degree 4. Observe that generically this map is 2 : 1, and so it descends toa 1: 1
map on X and on Y. So ¢n+4r4+20)y| maps Y onto the product of dP with the
cone over the rational normal curve of degree 4.

7. Explicit equations of Y

The aim of this section is to give some explicit equations for the projective models
described above, in terms of the corresponding equations for S;.

With a slight abuse, in this section we will substitute [F4 to its singular model as
the cone on the rational normal curve of degree 4. In this way we will obtain better
models for Y.

7A. If §; is the double cover of [P’(ZXO: x11xy) WE assume its equation to be

(©6) w? = fe(xo: X1 : x2)

so that the curve C is V (fs(xo : x1 : x2)). We assume that C is irreducible, even
if some of the following results can be easily generalized. The cover involution ¢;
acts as (w; (xo:x1:x2)) = (—w; (xg:x1:x2)).

If Sy is the double cover of P, .\ x P, .., we assume its equation to be

(7) w? = fy4((xo 2 x1), (x2: x3))
so that the curve C is V (f1.4((xo : x1), (x2 : x3))).
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In the following we give the details of our computations under the assumption
that S} is a cover of P2 and we only state the main results in the case where S; is a
cover of P! x P!

7B. Before giving the description of S, we make a little digression on the Weier-
strass equation of an elliptic fibration. In particular, let ¥ — V be an elliptic
fibration and

(8) v =x4+Ax+B

be an equation for its Weierstrass model. The condition that Y is a Calabi—Yau
variety is equivalent to

A e HO(V, —4Ky), B e H(V, —6Ky).

The discriminant A is then an element of H%(V, —12Ky).

In particular if V is P (resp. P" x P"), the functions A, B and A are homo-
geneous polynomials of degree 4m + 4, 6m + 6 and 12m + 12 (resp. of bidegree
(4n+4,4m+4), (6n+6,6m+6) and (12n + 12, 12m + 12)).

We observe that, if V is P (resp. P" x P™), requiring that all the singular fibers
of the elliptic fibration (8) are of type Is implies that m =4 mod 5 (resp. n =4 mod 5
and m =4 mod 5). When V is a 3-fold, this gives a stronger version of Remark 3.2.

7C. Let S, be the elliptic K3 surface whose Weierstrass equation is
9 V2=x>+A@t:s)x+ B(t:s),

where (according to the previous section) A(t : s) and B(¢ : s) are homogeneous
polynomials of degree 8 and 12, respectively. For generic choices of A(f : s) and
B(t : s), the elliptic fibration (9) has 24 nodal curves as unique singular fibers.
For specific choices one can obtain other singular and reducible fibers. The cover
involution ¢, acts as

(. x5 (t:8)) = (=y, x; (7:5)).
Equivalently S, is the double cover of the Hirzebruch surface F4 given by
(10) ur=z(3+ A s)x2+ B(t : $)2°),

where the coordinates (z, s, x, z) are the homogeneous toric coordinates of [Fy4; see,
e.g., [Cattaneo and Garbagnati 2016, §2.3]. The action of ¢, on these coordinates is
(u,t,s,x,2) = (—u,t,s, x,z). Observe that the curve on F4 defined by

2P+ Al s)x22+ B(t:5)2°) =0

is linearly equivalent to —2Kp,.
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7C1. The choice of particular polynomials in (9) is associated to the choice of
particular fibers of the fibration. Indeed, this elliptic fibration has an /s5-fiber in
(¢ : 5) if and only if the following three conditions hold:

(1) A@:5) #0.
(2) B(t:5) #0.
(3) A vanishes of order 5 in (7 : 5), where A :=4A3 +27B>

Up to standard transformations one can assume that the fiber of type I5 is over
t =0and

7
A(t:s) = S+ Za,-tisg_i — 38,
i=1
11

4 2 2
B(t:s) = b2 bitis12 _ a asap | 4y %ﬁg
(t:s) 12 +; + a4+1728+ 3 +12+ = s

+ _a3+%+ Z‘3S9+ _a2+a_12 t2s10 1 11+2S
6 216 12

We observe that the polynomials A(¢ : s) and B(t : s) depend on 14 parameters and,
indeed, 14 is exactly the dimension of the family of K3 surfaces whose generic
member has an elliptic fibration with one fiber of type Is.

We already noticed that an elliptic fibration on a K3 surface has at most four
fibers of type Is and indeed there are two distinct families of K3 surfaces with this
property: the Mordell-Weil group of the generic member of one of these families
is trivial, the one of the other is Z/57Z, [Shimada 2000, Case 2345, Table 1].

The K3 surfaces of the latter family are known to be double covers of the extremal
rational elliptic surface [1, 1, 5, 5] whose Mordell-Weil group is Z/57; see [Schiitt
and Shioda 2010, Section 9.1] for the definition of the extremal rational elliptic
surface. By this property, it is easy to find the Weierstrass equation of the K3 surface
(as described in [Balestrieri et al. 2018, Section 4.2.2]). Indeed, the equation of the
rigid rational fibration over [P’( ) 1s

(11) ¥ =x7+A(wx + B(w),
where
Ap) == —4 4—lu3k—27—4M2?»2+1M?»3—L)»4
B(w) = 864“ + 48“5)‘ + 288“4)‘2 + 78 segh At — /“‘5 + mﬁ

In order to obtain the two-dimensional family of K3 surfaces we are looking for,
it suffices to apply a base change of order two f : P! s) [P’EM ) to the rational

elliptic surface. In particular, if f branches over (p; : 1) and (p; : 1), the base
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change = p1t*> +52% A =12+52/p, produces the required K3 surface if the fibers
over (p; : 1) and (p; : 1) of the rational elliptic surface are smooth.

7D. The elliptic fibration £. Let us now consider (6) for S| and (9) for S,. The
action of ¢; X t» on S7 x S leaves the functions Y := yw3, X :=xw?, xo,x1, X2, 1,8
invariant. Hence an equation for a birational model of Y expressed in these coordi-
nates is

(12) Y2 =X+ At 1) f(x0:x1 1 x2) X + B(t:8) £ (x0 1 X1 2 x2).
The previous equation is a Weierstrass form for the elliptic fibration
. 2 1
E:Y — [p(xo:)c]:xz) x [FD(t:s)‘

Observe that the coefficient A(f : s) f62(xo :x1:xp) and B(t :s) f63 (xg : x1 : xp) are
bihomogeneous on P? x P! of bidegree (12, 8) and (18, 12) respectively, so by
Section 7B we have another proof that the total space of the elliptic fibration & is
indeed a Calabi—Yau variety.

One can check the properties of this fibration described in Section 3D directly
by the computation of the discriminant of the Weierstrass equation (12), indeed

AE) = f8(xo 1 x1 1 x2)(4A3(t 1 5) +2TB(t : 5)) = fO(x0: x1 : x2) A().

In this birational model, the basis of the fibration is P2 x P! and the del Pezzo
surface contained in the discriminant is the blow up of P? in the singular points
of fe(xo : x1 : x2). The singular fibers due to the factor A(r) in A(E) are not
generically modified by the blow up of P2 in n points, so that over the generic point
of P? (and thus of the del Pezzo surface), the singular fibers of £ correspond to
singular fibers of 7.

If the equation of S is (7), the Weierstrass equation of £ is

(13) Y2 =X+ A(t:5) fi4((xo:x1), (2 :x3) X +B(t:5) 7 4 ((x0: x1), (x2:x3)).

In some special cases it is also possible to write more explicitly a Weierstrass
form of this elliptic fibration with basis the product of the del Pezzo surface and

IP%Z:S), as we see in Sections 7D1 and 7D2.

Remark 7.1. A generalization of this construction produces 4-folds with Kodaira
dimension equal to —oo (resp. > 0) with an elliptic fibration. Indeed, it suffices to
consider S, which is no longer a K3 surface, but a surface with Kodaira dimension
—o0 (resp. > 0) admitting an elliptic fibration with basis P!. So the equation of S,
is y2 =x3 4+ A(t : s)x + B(t : 5) with deg(A(z : 5)) = 4m and deg(B(t : s)) = 6m
for m = 1 (resp. m > 2). The surface S, admits the elliptic involution ¢, and
(S1 x 82)/t1 x 1o admits a Weierstrass equation analogous to (12) or to (13).
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7D1. The case n=6. Letus assume that C C [P has n =6 nodes in general position.
In this case the del Pezzo surface dP has degree 3 and is canonically embedded as a
cubic in P?yo:yliyzim)' So it admits an equation of the form g3(yo: y1: y2: y3) =0.
The image of C under this embedding is the complete intersection of g3 =0 and a
quadric g2(yo: y1: y2: y3) =0in P,

The K3 surface Sy is embedded by ¢/ in P4 (Yo : y1:Yy2:¥3:ya)asthe complete
intersection of a cubic and a quadric, and since it is the double cover of dP, its

equation is

2 _ e
(14) {y4 =g(o:y1:y2:y3),

0=g3(yo:y1:y2:y3).
The involution ¢; acts on P4, changing only the sign of y4.

With the same argument as before, this leads to the following equation for a
birational model of Y:

(15) {Y2 = X3+ A1 :5)g3(yo:y1 i y2 1 y)X 4+ Bt :5)g3(Yo 1 y1: Y21 ¥3),
oy y2:y3)=0.

The first equation is the Weierstrass form of an elliptic fibration with basis P3 x P!
and the second equation corresponds to restricting this equation to the del Pezzo
surface embedded in the first factor (i.e., in P3).

Corollary 7.2. The equation
2_v3 S isei).2 R AN
Y =X +(Zait’s ")gz(yo:yl :yz:y3)X+(Zbit’s1 ")gz(yo:w IY21Y3),
i=0 i=0
g3(yo:yr:y2:y3) =0,

where g; is a homogenous polynomial of degree i in C[yy: y1: y2: y3l,

aZ
a0=—3, b0=2, b1=_ala b2=_az+é’
4 2 2
araq ay a aszag a, axaj
T T U N ad | 4, 24
T 1= TUt T e T T

describes a birational model of a Calabi—Yau 4-fold with an elliptic fibration such
that the fibers over the del Pezzo surface (g3(yo:y1:y2:y3)=0)x (t=0) C P3 x |]3>tl
are generically of type Is.

The other singular fibers are described by the zeros of the discriminant

8 3 12 2
gg(yo YLy y3)<4(2aiti 8_i> +27(Zbl-tis12_i) )
i=0

i=0
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Remark 7.3. With the same process one obtains the equation of an elliptic fibration
over dP x P! such that there are m < 4 del Pezzo surfaces in dP x P! over each
of which the general fiber is of type Is. To do this it suffices to specialize the
coefficients a; and b; according to the conditions described in Section 7C1. In the
case m = 4 there are two different specializations; one of them is associated to the
presence of a 5-torsion section and its equation is the given in Section 7C1.

7D2. The case n =5. The treatment of the case n =5 is similar to that for n = 6.
So let us assume that C C P? has n = 5 nodes in general position. In this case the

del Pezzo surface dP has degree 4 and is canonically embedded in [P)‘(‘},O: Vivaiysive) A8

the complete intersection of two quadrics g» = 0 and g, = 0. The image of C under
this embedding is the complete intersection of the del Pezzo with a quadric ¢} = 0.

The K3 surface ) is embedded by ¢z in P>(yo: y1:y2:y3:ys:ys) as the
complete intersection of three quadrics, and since it is the double cover of dP, its
equation is

Y2=q5 (o vy y3i e,
(16) 0=q;(yo:y1:y2:Y3:54),
O=q2(Yo:y1:y2:y3:y4).
The involution ¢; acts on P> changing only the sign of ys.
Hence a birational model of Y is:

Y2 = XA gy (o 11213 1y X+B(t15)gy” (Vo v1 i y2 1 v3 i va),

(A7) 1450 y1:y2:y3:y4) =0,
G2(Yo:y1:y2:y3:y4)=0.

The first equation is the Weierstrass form of an elliptic fibration with basis P* x P!
and the other two equations restrict this equation to the del Pezzo surface embedded
in the first factor (i.e., in P%).

Remark 7.4. It is possible to obtain explicit equations for the elliptic fibrations
with fiber(s) of type /s as in Corollary 7.2.

7E. The double cover Y — P? x F4. Let us consider the equations (6) for §;
and (10) for S,. The functions

W =uw, xo, x1, X2, t, §, X, Z
are invariant for ¢; x (o and they satisfy the equation
(18) w2 = Sfo(xo @ xq cx2)z(x3 + A1 $)xZ2 + B(t 2 $)Z0).

This equation exhibits a birational model of Y as a double cover of the rational
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4-fold P? x F,4 branched over a divisor in | — 2Kp2,f ,|- In particular this is the
equation associated to the linear system [(h +4F +20)y]|.

The projections of (18) give different descriptions of projective models: the
one associated to the linear system |8 is obtained by the projection to P?; the
one associated to |84r4+20] 1s obtained by the projection to F4 C P3; the one
associated to the linear system |§f| is obtained by the projection to [P’%t: 5

Consider first the composition with the projection on P? to obtain an equation
for G. Fix a point (xp : X1 : X) € P2 and assume that fo(xo : X1 : x2) # 0. Then the
corresponding fiber has equation

w? = fe(xo @ X : %)z + A $)x2 + B2 $)ZD),

which is easily seen to be isomorphic to S, (substitute W with / fe(xg : x1 : x2) W
to find an equation equivalent to (10)).

Consider now the composition with the projection on Fy4. Fix a point (£, 5, X, Z) €
4 which does not lie on the negative curve nor on the trisection. Then the corre-
sponding fiber is

W2 = fe(xo:x1: x2)Z(% + AT 15X+ B(7 : 5)Z),

which is a K3 surface isomorphic to Sj.

Finally we give an equation for H. Let us put z = 1 in (18) and perform the
change of coordinates w — w/fs, x — x/fe. Multiplying the resulting equation
by f62, we obtain

w? = x° + A(t: s)fﬁz(xo 1X1:x2)x + B(t: s)fg(xo DX X0).

For every fixed (7 : §) € P!, this is the equation of a Calabi—Yau 3-fold of Borcea—
Voisin type obtained from the K3 surface w? = Je(xo0: x1 : x2) and the elliptic curve
y2 =x3 4+ A(f : 5)x + B(f : 5); see [Cattaneo and Garbagnati 2016, Section 4.4].

7E1. We now want to describe what happens if the sextic curve in P> has n = 6 or
n =5 nodes.

Assume first that p’ : §; — [P? is branched along a sextic with 6 nodes. Then
we can use (14) and (10) to describe S; and S,, respectively, and using the same
argument as before (i.e., put W = y4u) we obtain the equation

W2 =g(y0:y1:y2:y3)2(x® + At : 5)xz? + B(t : )27,
0=2g3(vo:y1:y2:y3),
which exhibits Y as the double cover of dP x F* Let us denote by U — P3 x [F4 the
double cover branched on g»(yo : y1 : y2 : v3)z(x> + A(t : s)xz> + B(t : 5)z°). The

branch divisor is 2Hp3 — 2K, and so Y is a section of the anticanonical bundle
of U.
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With a further change of variables, where the only nonidentic transformations
are W = g, W and x’ = gox, we then find the following equation for a birational
model of Y (we drop the primes for simplicity of notation):

W2=z(x3+ At :5)82(vo: y1:y2: y3)x22+ Bt :5)g3 (Vo : y1: y2: ¥3)2°),
0=g3(yo:y1:y2:y3)

Here the first equation gives an elliptic fibration over P? x P! as a double cover,
while the second restricts this fibration to dP x P!,

Analogously, if n =5, then S7 and S are described by (16) and (10), respectively,
so that we have the following equation for Y:

W2 = gjz(x3 + Axz? + BZ3),
0=gq5,
0=qo,

with the same considerations as the case just treated.

7F. An involution on Y. By construction Y admits an involution ¢ induced by
11 x id € Aut(S; x S») and acting as —1 on H*%(Y). Since

L1 X id= (L] X tz) o (id XL2),

¢ is equivalently induced by id xt;. The involution ¢ has a clear geometric inter-
pretation in several models described above. By Section 6E, Y is a2 : 1 cover of
P? x F4 whose equation is given in (18). The involution ¢ is the cover involution,
indeed it acts as —1 on the variable W := uw, and by (6) the map ¢; x id acts as
—1 on w.

By Section 6D, Y admits the elliptic fibration £ whose equation is given in (12).
The involution ¢ is the elliptic involution, indeed it acts as —1 on the variable
Y := yw?, and by (9) the map id x¢, acts as —1 on y.

Hence Y /1 is birational to P2 x [F4 and admits a fibration in rational curves, whose
fibers are the quotient of the fibers of the elliptic fibration £.
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PARTIAL REGULARITY OF HARMONIC MAPS
FROM A RIEMANNIAN MANIFOLD INTO
A LORENTZIAN MANIFOLD

JIAYU L1 AND LEI L1U

We study the partial regularity theorem for stationary harmonic maps
from a Riemannian manifold into a Lorentzian manifold. For a weakly sta-
tionary harmonic map (u, v) from a smooth bounded open domain 2 C R™
to a Lorentzian manifold with Dirichlet boundary condition, we prove
that it is smooth outside a closed set whose (m—2)-dimensional Hausdorff
measure is zero. Moreover, if the target manifold N does not admit any
harmonic spheres S/, I =2, ..., m — 1, we show (u, v) is smooth.

1. Introduction

Suppose (M, g) and (N, hy) are two compact Riemannian manifolds of dimensions
m and n respectively. For amap u € C' (M, N), the energy functional of u is defined
as

(1-1) E(u):l/ IVul?d vol, .
2 M

A critical point of the energy functional E is called a harmonic map. By Nash’s
embedding theorem, we can embed N isometrically into some Euclidean space RX
and the corresponding Euler-Lagrange equation is

Agu = A(u)(Vu, Vu),

where Ag is the Laplace-Beltrami operator on M with respect to g and A is the
second fundamental form of N C RX.

Harmonic map is a very important notion in geometric analysis which has been
widely studied in the past decades. Physically, harmonic maps come from the
nonlinear sigma model, which plays an important role in quantum field and string
theory. From the perspective of general relativity, it is natural to consider the targets
of harmonic maps to be Lorentzian manifolds. Geometrically, the link between
harmonic maps into Si‘ and the conformal Gauss maps of Willmore surfaces in §3

The research is supported by NSF in China No. 11426236, 11131007.
MSC2010: 53C43, S8E20.
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also leads to such harmonic maps [Bryant 1984]. The work on minimal surfaces
in anti-de Sitter spaces and its applications in theoretical physics also shows the
importance of such maps [Alday and Maldacena 2009]. In this paper, we shall
focus on the interior partial regularity of stationary harmonic maps from a compact
Riemannian manifold of dimension m (> 3) into a Lorentzian manifold.

We now proceed to introduce the model. Let N x R be a Lorentzian manifold
equipped with a warped product metric

h=hy — B(d6)?,

where (R, d0?) is the standard 1-dimensional Euclidean space and S is a positive
smooth function on (N, hy). Since N is compact, there exist positive constants A;
and X\, such that

O<A <B()<Air<oo and |VB()| <Xt forallyeN.
Set

W2 (M, NxR):={ue WM, RX), ve WH2(M, R) |u(x) € N for a.e. x € M}.

For (u, v) € WH2(M, N x R), we consider the functional
(1-2) Enuvi M) = [ (IVuP = B VuP) dvol,
M

which is called the Lorentzian energy of the map (u, v) on M. A critical point (u, v)
of the functional (1-2) is called a harmonic map from (M, g) into the Lorentzian
manifold (N x R, h).

When the target manifold is a Lorentzian manifold, the existence of geodesics
was studied in [Benci et al. 1991] and Greco [1993; 1997] constructed a smooth
harmonic map via some developed variational methods. Recently, Han, Jost, Liu
and Zhao [Han et al. 2019] investigated a parabolic-elliptic system for maps and
got a global existence result by assuming either some geometric conditions on the
target manifold or small energy of the initial maps. The result implies the existence
of a harmonic map in a given homotopy class. The blowup behavior for Lorentzian
harmonic maps was studied in [Han et al. 2017b], and for approximate Lorentzian
harmonic maps and Lorentzian harmonic maps, flow from a Riemann surface was
studied in [Han et al. 2019; 2017a]. For the global weak solution of Lorentzian
harmonic map flow, one can refer to [Han et al. 2018]. The regularity theory was
studied in [Isobe 1998; Zhu 2013] for dimension 2 and in [Isobe 1997] for higher
dimensions on some kinds of minimal type solutions.

Via direct calculations, Zhu [2013] derived the Euler-Lagrange equations for
(1-2),

— = _pT 2 .
(1-3) { Au=A@)(Vu, Vu) =B (w)|Vv|* in M,

—div(B(u)Vv) =0, inM,
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where A is the second fundamental form of N in RX, B(u) := (B!, B?, ..., BX)
with
Bi— 1 3,3(@
2 dy/

and BT is the tangential part of B along the map u.
Definition 1.1. We call (x, v) € W'2(Q, N x R) a weakly Lorentzian harmonic
map with Dirichlet boundary data
(u, v)ag = (@, ¥)
if it is a weak solution of (1-3) with boundary data (¢, ).

Similar to harmonic maps, we introduce the notion of stationary Lorentzian
harmonic maps.

Definition 1.2. A weakly Lorentzian harmonic map (u, v) € WH2(Q, N x R) is
called a stationary Lorentzian harmonic map if it is also a critical point of E;, with
respect to the domain variations; i.e., for any ¥ € CSO(Q, R™), it holds

d
dt
where u;(x) =u(x +tY(x)) and v;(x) = v(x +tY (x)).

1
o 3V = BT Py dvol, =0,
=V JQ

Our first main result is the following small-energy regularity theorem.

Theorem 1.3. For m > 2 and any o € (0, 1), there exists an €y > 0 depending only
onm, o and (N, hy) such that if (u, v) € WL2(Q, N xR) isa weakly Lorentzian
harmonic map satisfying

(1-4) sup p2m / |Vu|*d vol, < €F,
B, (x)

X€By (x0), 0<r=ro

then (u, v) € C*(Byy/2(x0)). Moreover, it satisfies the estimate

i
(1-5) 1ol Vaell Lo (B, pxoy) F 70l V0l LB,y o) 7o IV ttll o By a o))
1
+ 75 NVl ca s,y a0

1—-m/2 2—
< C(rg "NV V)20, o+ " IV VO )

4—2m 4
+r() HVUHLZ(BrO(XO)))’

where C = C(m, L1, Ay, @, N) is a positive constant and

I(Vu, V)lI3, = ||V,

2
(Bry(x0) ° +IVollz,

(Bro (XO)) (Bro (XO)) :

In this paper, we can get the following interior partial regularity theorem. For a
similar result for harmonic maps, one can refer to [Bethuel 1993; Evans 1991; Li
and Tian 1998]. For results on gauge theory, one can refer to [Tian 2000].
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Theorem 1.4. For m > 2, let (u, v) € W2(Q, N x R) be a stationary Lorentzian
harmonic map with Dirichlet boundary data (u, v)|3q = (¢, V), where ¥ € C1(3Q).
Then there exists a closed subset S(u) C Q, with H"2(S(u)) = 0, such that
(u, v) € C*(Q2\ S(u)).

Remark 1.5. The boundary assumption ¢ € C!(3Q) is used to derive the estimate
lvllwirq) for some p > m. See Lemma 2.1. In fact, by the classical theory of
the Laplace operator and the following proof in this paper, one may find that it is
enough to assume that v € W'~/ (3Q) for some p > m.

Furthermore, we have:

Theorem 1.6. Under the same assumption as the above theorem, if N does not
admit harmonic spheres SLl=2,...,m—1,then (u,v) is smooth.

To prove the partial regularity results, we first need to establish the monotonicity
formula for stationary Lorentzian harmonic maps. Thanks to the elliptic estimates
of the v-equation of divergence forms, we can control the additional terms (corre-
sponding to harmonic maps) in the monotonicity formula. Secondly, we need to
study the energy concentration set of a blow-up sequence of stationary Lorentzian
harmonic maps. Here, we follow Lin’s scheme [1999] to get the first bubble which
is a nonconstant harmonic sphere. The proof is based on the analysis of defect
measure using geometric measure theory.

The rest of paper is organized as follows. In Section 2, we establish the mono-
tonicity formula for stationary Lorentzian harmonic maps which is crucial in the
proof of our main theorems. In Section 3, we prove the small-energy regularity
theorem, Theorem 1.3, and then the partial regularity theorem, Theorem 1.4, follows
immediately from a standard monotonicity formula argument. Theorem 1.6 will be
proved in Section 4.

2. Monotonicity formula

In this section, we firstly derive the monotonicity formula for stationary Lorentzian
harmonic maps. Secondly, for reader’s convenience, we recall a regularity theorem
in [Sharp 2014] which will be used in the proof.

Thanks to the divergence structure of v-equation, we have the following estimate.

Lemma 2.1. Let (u, v) € W"2(Q, N x R) be a weakly Lorentzian harmonic map
with Dirichlet boundary data (¢, V), where W € C'(3Q). Then v € W'P(Q) for
any 1 < p < oo and

(2-1) Vuller < C(p, A1, A2, DN o1 ) -
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Proof. Let v be the unique smooth solution of the equation

Av=0 in £,
v(x) =Y onads2,
which satisfies

vl < CENYlIcion)-

We call v an extension of ¥ and for simplicity, we still denote it by ¥ € C!'(Q).
It is easy to see that v — i/ € WOI’Z(Q) is a weak solution of

—div(B)V (v —¢)) =div(B(u) V).

By the standard theory of the second elliptic operator of divergence forms, see
Theorem 1 in [Meyers 1963], we obtain that v € W7 for any 1 < p < oo and
satisfies

[VullLr < C(p, A1, A2, DIV e < C(p, A1, A2, DYl o1 pq)- U

Next, we derive the stationary identity for stationary Lorentzian harmonic maps.

Lemma 2.2. Let (u, v) € WH2(Q, N x R) be a weakly Lorentzian harmonic map.
Then (u, v) is stationary if and only if for any Y € C§°(2, R™), there holds

22 9\ _Lvup? Vo)ser) 2 dx=0
( )/<<3 «’ Gy y> pu )<8 o’ a—y>—§(| ul"=p)Vul%) ay)ax_a x=U.

Proof. For any Y € C;°(2, R™), let t € R small enough and y = F;(x) :=x +1Y (x)
and x = Ft_1 (y). By Definition 1.2, (u, v) is stationary if and only if

d
dt
where u,(x) = u(F;(x)) and v, (x) = v(F;(x)).

On the one hand, by a standard calculation, see, e.g., [Lin and Wang 2008], we
have

t=0

f L4vu, 2 = Bupivu?) dx = o,
Q 2

23 -

ou o a7
d 1f |Vut|2dx:/ ou 9y Ligups,, ) 2 ax.
=02 Jq o \\dx* dxY 2 ax“

dt

On the other hand, computing directly, we obtain

4] (3pwiivul)
_ 1B e g dv v \aYY v v ye
=3 oy ¥ VI +/3(u)< e y> + B(u )< 979557 3x y>

= ia—a(ﬂ(u)IVvI Y+ Bu Nore

ov dv 8Y7’
" axv | ox
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Thus,

1 2 oY”
(2-4) - ,B(ut)Wv,l dx= ﬂ(u) Py B_V —5VvlT8ay Bx_“dx'
Combining (2-3) with (2-4), we will get the conclusion of the lemma. O

Now, we can derive the monotonicity formula for stationary Lorentzian harmonic
maps.

Lemma 2.3. Let (u,v) € W'2(Q2, N x R) be a stationary Lorentzian harmonic
map. Then for any xg € Q and 0 < r; < ry < dist(xg, 02), there holds

(2-5) 3" '"/ (IVul* = Bw)| Vo) dx —ri~ ’"/ (IVul* - Bw)|Vvl*) dx
By, (x0) B, (x0)

= 2/ |x —x0|2_’"( ) dx,
By, (x0)\ By (x0)

where 0, = d0/0r = 9/d|x — xg|.
Proof. For simplicity, we assume xp =0 € 2. For any € > 0 and 0 < r < dist(0, 9€2),
let pc (x) = @ (|x]) € CgO(B,) be such that

ou |?
or

0 =< (Pe(x) =< 1 and <Pe(x)|B<1,é),- =1

Taking Y (x) = x@(x) in the formula (2-2) and noting that

oYV ()80 + x%xY
= X _—
gya P Ouy T

@L(x),

we have

(1- %)fB (IVul® = B@)| Vo) (x) dx

gASEl

Letting € — 0, we get

ou

2
. + %(wz—ﬂ<u>|Vv|2>)|x|¢g<x>dx.
;

(2—m) (IVMI — B)|Vv]*)dx +r . (IVul®> = Bw)| Vo)

u v 2
=2r/33r<a—r B )
which yields
2—m 2 —m du dv 2
( f(|w| —ﬁ(u)IVvl)dx) / (ar s )

The conclusion of the lemma follows by integrating r from r| to r;. (]
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As a direct corollary of above monotonicity formula, we have:

Corollary 2.4. Let (u, v) € W"2(Q, N x R) be a stationary Lorentzian harmonic
map with Dirichlet boundary data (¢, ). Then for any xg € Qand 0 <r; <r; <
dist(xg, 0L2), there holds

rlz_m/ |Vul|*dx
Brl (XO)

= rzsz IVul*d x + C(m, p, k1, 2o, @, [¥llc1ae)) (r2) > 277
Brz(x())

Proof. By Lemma 2.3, we have

rlz_m/ |Vul? dx
B, (2)

<3 [ qvuP - paoivePyay i [ gl ds
Br2 (x0) Brl (x0)

0
+2/ Ix — xo[2 " B ()| ———* dx
By, (x0) d|x — xo

< ri‘m/ \Vu|? dx + C(m, A2)(r2)> 2™ P||Vv|12,
Brz(x())

< r§—m/ Vul dx +COm, p, A1, 2o, Q. W llcrogy) (r) 277,
By, (x0)
where the second inequality follows from Young’s inequality:

(2-6) / 27" Vo2 dx < (IVll7 o X P | Loro-28,)
B,

< C(m, p, r1, 22, 2, Wl 1 o) (1) 227 O

In the end of this section, we want to recall a regularity theorem for a system of
critical PDE in [Sharp 2014]. Systems of this form were introduced and studied
by [Riviere and Struwe 2008]. For this, let us first recall the definition of Morrey
spaces; see [Giaquinta 1983].

Definition 2.5. For p > 1, 0 < u <m, and a domain U C R", the Morrey space
MP-*(U) is defined by

MPHU) = f € L (U) || fllmrnw) < oo},

loc
where

”f”[[\)/[p,u((]) ‘= Ssup rﬂ_m/ | f17.
B,CU B,

Theorem 2.6 [Sharp 2014, Theorem 1.2]. For everym > 2 and p € (%, m), there
exists € = e(m,d, p) > 0and C = C(m, d, p) > 0 with the following property.
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Suppose that u € W2(By, R?), Vu € M>*(B;, RY), Qe M>2(By, so(d) @ A'R™)
and f € LP(By, RY) satisfy

2-7) Au=Q -Vu+ f inxB
weakly. If ||2||p22(p,) < €, then

2
IV=ull pr2oim2p, ) + IVUull pzoron-m2p, ) < CUlullLigyy + 11 e s))-

3. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Without loss of generality, we may assume rg = 1 and

1

e vdx =0.
|B1| JB,

Take a cut-off function n € C3°(B;) such that 0 <n <1, N5 = 1 and |Vn| <C.
By a direct computation, we get

div(Bw)V(nv)) = div(Bw) Vi) + B(u)VnVu  in By.

Then according to the standard theory of the second elliptic operator of divergence
forms, see Theorem 1 in [Meyers 1963], we have v € wl.2m/m=2) (B, /8) and

IV Ul p2n/mn-2 (B, ) < C(m, Ay, ) IVl p2mion-2 gy + 1B@) VNVl 12(g,))
< C(m, A1, A)IIVVll 2B,y

where the last inequality follows from Sobolev’s embedding W2 < 2/(m=2)
and Poincaré’s inequality

lvll2cpy < Cm) VUl 2))-

Using Theorem 1 in [Meyers 1963] and by a bootstrap argument, it is easy to
see that v € Wl”’(B3/4) for any 1 < p < 0o and

(3_1) ”vv”Lp(Bg/4) =< C(m’ D )\'1’ )\'Z)HVUHLZ(Bl)‘
It is well known that the equation of u can be written in the form of (2-7) with
QI < C(N)IVul and |f] < CGa, N)IVol.

By Theorem 2.6 and (3-1), taking €y = €o(m, p, N) sufficiently small, we know
ue Wl’p(B5/g) for any m < p < oo and

IVullLr sy < C(m, p, A1, A2, N)(IVull g2,y + NV o sy))
< C(m, p, hi, da, N)(IVull 28 + 1V01 725, )-



PARTIAL REGULARITY OF HARMONIC MAPS 41

Applying W27 estimates of the Laplacian operator, we obtain

IVullwir o)
< COm, p. 22, N)YUV 2 g, )+ 1YV 20 + Vel 1285 )
< C(m, p, h1, ha, N)IVull 2y + 1Vul 7o 5, + 1V01 7205, + 1V 5,)
and
IVOlwrrByne) < COn, p, 2, Aoy NIVl VOl Loy + 1V VI 285 )5))
< Cm, p, hi, hay NIVl 208 1+ 1Vl 28, + 1V T2,)-

By Sobolev’s embedding theorem, we see that (Vu, Vv) € C%(By/16) for any
a=1—m/p e (0, 1) and the estimate (1-5) holds. Then the high regularity follows
from the classical Schauder estimates of the Laplacian operator and a standard
bootstrap argument. U

Now, we prove our main theorem, Theorem 1.4.

Proof of Theorem 1.4. Define

(3-2) S = {x co

62
liminfrz_”/ |Vul? > —0},
N0 B, (x) m

where €y > 0 is the constant in Theorem 1.3. It is well known that H"~2(S(u)) = 0.
Next, we will show S(u) is a closed set and (u, v) € C*(R2\ S(¢)).
For any xo € 2\ S(«#) and € > 0, there exists 0 < ry < € such that

2
€
(3-3) (2rg)> ™" / |Vul*dx < -2
Bayy (x0) 2
Therefore,
2m—2€2
(3-4) sup rgm/ |Vul? dx frgm/ \Vul?dx < ——2.
2By, (x0) B,y(2) Bary (0) 2
By Corollary 2.4, we have
(3-5) sup P2 f |Vu|>dx
z€ By (x0), 0<r=ry B, (2)
< sup rg " / |Vul>dx+C(m, p. 1. 2o, 1V [l o1 ay) (o) >"77
2€By (x0) Byy(2)
2m—2€2 3
T LtCy(m, pht, A2, 1Y Dl o)) (ro) > 2P

for some m < p < 0o, where Cy(m, p, A1, A2, |¥llc1(5)) 1S @ positive constant.
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Taking
2 2m/p—2
(s s o)
€ < s
4C1(m, p, k1, A2, IVl crog)
we get
2
(3-6) sup prm f |Vul?dx < 2.
2€By, (x0), 0<r=<rg B, (2) 2

Then Theorem 1.3 tells us that (u, v) € C*°(B,,,2(xp)), which implies By 4(x0) C
Q\ Su). O
4. Proof of Theorem 1.6

In this section, we will study the blow-up behavior of a sequence of stationary
Lorentzian harmonic maps {(u,, v,)} with Dirichlet boundary data (¢, ¥) and with
bounded energy

1
mwwmzifuwmkﬂww%mfA.
Q

Due to the weak compactness, we may assume u,, — u weakly in W!2(Q, N) and
My = |Vu,,|2dx — 0= |Vu|2dx +v

in the sense of Radon measures, where v is a nonnegative Radon measure by Fatou’s
lemma and is usually called the defect measure.

Without loss of generality, we assume B;(0) € 2. Similar to harmonic maps
[Lin 1999], we define the energy concentration set X as

(4-1) Y= {x € B(0)

2
€
lim inf lim inf 72" / |Vu,|>dx > -2 }
r B (x) 2m

\0 n—oo

where ¢ is the constant in Theorem 1.3.
Denoting by spt(v) the support set of v and defining

sing(u) := {x € B1(0) | u is not smooth at x},
we have:

Lemma 4.1. Suppose {(u,, v,)} is a sequence of stationary Lorentzian harmonic
maps with Dirichlet boundary data (u,,v,)|q = (¢, V) and bounded energy
E(uy,, v,) < A; then the energy concentration set X is closed in B and

H"2(Z) < C(m, o, A).

Moreover, there holds

(4-2) ¥ = spt(v) Using(u).
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Proof. For xy € By \ X, by the definition of X, we know that for any positive
constant

2 2m/p—2
TS )
6 S b
4C (m, p, 21, 22, ¥ llcroe)

where Ci(m, p, A1, A2, [[¥]lc15q)) 18 the constant in (3-5), there exists a positive
constant ry < € and a subsequence of {n} (also denoted by {n}), such that, for any 7,
2

€
Q2rg)*™ / |Vu|*dx < 22,
Bayy () 2
which implies (similar to deriving (3-6))
2
€
sup rz_’"/ |Vu,|>dx < 2.
2€Byy (). 0<r=rg B, (2) 2
By Theorem 1.4, we know

—m/2
(4-3)  IVunllLoB,ypexo) + 1VURllLoB,y 2 (x0)) < Cm, Ax, Ao, A, N)rg "2,

Then, it is easy to see that there exists a small positive constant r; = ry (m, rg, A1,
M, A, €9, N), such that, whenever r < ry,

2
€
sup rz_’"/ |Vin|*dx < m(—)i-l'
X€Bry/a(x0) B, (x) 2

Thus, B,,/4(xo) C B1 \ X. So, X is a closed set.

It is standard to get H m=2(x)<C by a covering lemma; see [Lin 1999].

For (4-2), on the one hand, let xo € B; \ X. Then (4-3) holds and by standard
elliptic estimates of the Laplace operator, we have

4-4) lnllciva (s, a0 + 10nllcr+a s,y a0y < €

for some 0 < @ < 1. Thus, up to a subsequence of {u,, v,}, u, — u strongly in
Wh2and u € C°(By,/3(x0)), which implies that x( ¢ sing(«) and x( ¢ spt v since
v=0on B, /3(xo).

On the other hand, if xo € X, by the definition, for any r > 0 sufficiently small,
we have

B €2
liminf'un( (X0)) > 0 ’
n— 00 ym—2 om+1

which implies

w(Br(x0) _ €
ym—2 — om+l

for a.e. r > 0. Suppose x¢ ¢ sing(¢); then
2

€
rz—m/ IVul*dx < =0
B (x0) 2
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whenever r > 0 is small enough. Then we have

v(B,(x0)) _ €
ym—2 — om+2

for all small positive » > 0 and x¢ € sptv. O

Lemma 4.2. Under the same assumption as above lemma, the limit

v(B,(x))

rm—2

(4-5) 0,(x) := lim

r—0

exists for H m=2_g.e. x € X. Moreover,

2
0 0,(x) < COm. Ay Aas Ay N W [t )82
2m =Yy = ) ) ) ) ) Cl(02)/%% )

where 8 := dist(B1(0), 0Q2).

Proof. Let x € Q and s; — 0, t; — 0 be two arbitrary positive sequences. By
Corollary 2.4, we have
By, (X)) _ (B, (1))

m—2 - m—2
S; tj

(4-6) + C(m, p, A1, day A, N, W o1 ey ()2 2"F

for s; <t; and some m < p < oo. Letting firstly i — oo and secondly j — oo, we
get

, w(Br(x)) .. . p(Br(x))
imsup ——— < liminf ———.
0 rm—2 r—0 rm—2
Thus,
i u(By(x))
im——-—
r—0 rm72
exists. Noting that for H” %-a.e. x € Q,
4-7) lim r2~" / |Vul>dx =0,
r—0 B, (x)
we have
. Vv(Br(x)) . u(Br(x))
lim —— = lim ———.
r—0 rm—2 r—0 pm—2

It is easy to see from (4-6) (taking p = 2m) that
P (B (x)) < C(A)SG™ + C(m, A, ha, AN, 1Yl c190))80
< C(m, Ay, 2o, AN, 1Y ler )5

which implies 1 | ¥ is absolutely continuous with respect to H™~2 | X. By the
Radon—Nikodym theorem, we know that there exists a measurable function 6 (x)
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such that
wlE=0x)H" 2| =.

Noting that for H"?-ae. x € X,

H"2(ENB H"2(£NB
22" < liminf ( @) i sup ( r@)
r—0 rm72 0 rm72
and by (4-7), we have
V] T =0(x)H" 2| T
and
i — 2—m
<0,(x) =0(x) < C(m, A1, 22, A, N, ¥ llcrp0)85 " O

2m

Since v is absolutely continuous with respect to H” 2 | ¥ and v = 0 outside X,
0, (x) is positive for v-a.e. x € 2. Hence by [Preiss 1987], we have:

Corollary 4.3. The set of energy concentration points X is (m—2)-rectifiable.

For any y € ¥ and A > 0, we define a scaled Radon measure 1, ; by
[y 5. (A) = 277" u(y + 1A).
A Radon measure p, is called the tangent measure of p at y if

My = Mx
in the sense of Radon measures as r N\ 0; see [Federer 1969; Simon 1983].

Lemma 4.4. Suppose H"~2(X) > 0. Then there exists a nonconstant harmonic
sphere S% into N.

Proof. Since ¥ is (m—2)-rectifiable and H m=2(%) > 0, we know there exists a
point xo € X such that v has a tangent measure v, at xo and

Ve = 0,(x0) H™ 2 | =y,

where X, C R™ is an (m—2)-dimensional linear subspace which is usually called
the tangent space of ¥ at xo. Without loss of generality, we may assume xg = 0
and T, = R"~2 x {(0, 0)}.

By a similar diagonal argument as that in [Lin 1999], there exists a sequence
rn, — 0 such that

,11,11 = |Vﬁ,11|2dx — Dy

in the sense of Radon measures, where ft,ll(x) = Uy (xp 4+ 1px).
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Set v, L(x) 1= vy (o + rpx). Itis easy to see that (@}
Lorentzian harmonic map. By Lemma 2.3, we have

) is also a stationary

n’ Vl

@4-8) 2" / (Va2 — @) V3l dx

By (0) ) L

e m/ (VL - BV dx
Brl(0>

_2/ Zm/ < 1
3B, (0) 8|x|

| I
By Young’s inequality, there holds

) dH" ' dr.

(4-9) fB PV, P dx < )PPV 0l s, ) 1P Lo s,
< C(m, p, M, Ao, A, N, 1Y Dl o) (rar) 2P,
Letting n — oo in (4-8) and noting that
737" 4 (By, (0)) = ri " v,(B,, (0)),
we get
ail |?

4-10 li
(4-10) im o]

n—oo B2 (O)

dx =0.

Similarly, since vyy , = v, for any y € X, and r > 0, we also have

~1
du,

dlx —

2
(4-11) lim dx =0 foryeX,NB;.

This implies

4-12 1 =0.
( ) ”LIEOZ/Z(O) axk
Let x' = (x1, ..., Xm—2), X" = (Xm—1, Xn), and define f, : B * — R by
fux) = / (x x")dx".
" Z B2(0) 3xk

Then, (4-12) tells us
Jim £ 0D g2y = O-

Denote by M (f,)(x’) the Hardy-Littlewood maximal function; i.e.,

M(f)(x)= sup r*" / fu@hdx', x € B;2(0).
0<r<1/2 B"2(x)
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By a weak L'-estimate, for any p > 0, we have

|{X€ 1/2 ( ) | (fn)>'0}|_T”fn”Ll(Bsz(O))’
which implies
|{x € B{}3*(0) | limsup M(f,) > 0}] =0.

Combining this with Theorem 1.4, we know there exists a sequence of points
{x, € Bi”/gz(O)} such that (&2, ﬁ,ll) is smooth near (x),, x”) for all x” € BIZ(O) and

(4-13) lim M (f)(x,) = 0.

By the blow-up argument in [Lin 1999], we can find sequences {0, } and {x]} C
BIZ/Z(O) such that o, — 0, x, — (0, 0) and
2

. €
(4-14) max onz_’"/ IVu,lll2 dx = —2—,
x"€B3,(0) BR2(x)x B2, (x") Ca(m)

where the maximum is achieved at the point x; and C»(m) > 2™ is a positive
constant to be determined later.
In fact, define

gn(0):= max 02—'"/ |Vii! |2 dx.
x"€B},(0) B 2(x!)x B2(x")

On the one hand, noting that (u,, v,) is smooth near x], x BIZ(O), we have
lirrh gn(o)=0.

On the other hand, for any ¢ > 0, when n is big enough, it must hold that
gn(o) > eg /2™, for otherwise, by Theorem 1.3, i1} will converge strongly in w2
to a constant map, which contradicts (i, — v,. Thus, there exists o, such that
gn(oy) = eg /C2(m) and we may assume the maximum is achieved at x,. Next, we
show 0, — 0 and x,/ — (0, 0).

If o, > § > 0, by Corollary 2.4, we have

2

€ )
=limsu 0,
o) ’Hoop gn(on)

2
3 _ €
> lim sup(g, (8) — C(m, p, A, A2, @, [¥llcrog) (rad)*2"/P) > =2

’
n—oo 2m

which is a contradiction.
If x;/ — x{ € B} ,(0) and x{ # (0, 0), for any o' < 5 |x{

2
€
2—31 < limsup g,(0) < 0> v (BI"2(0) x B, (x{)) =0.

n—oo

This is also a contradiction.
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Let x, = (x/, x”) and

n’ }’l
(i (x), T (x)) := (it (¥n + 03X), T, (¥n + 03X)).
Then (u2(x) v2(x)) is a stationary Lorentzian harmonic map defined on Bm 2(O) X

32 (0) where R, = 1/(40,) which tends to infinity as n — oc.
By (4-13), we have

m—2 8122 2
(4-15) lim sup R>™ f Do dx
"= 0<R<R, BR 2 (0)x B}, (0) 1 dxi
m—2, ,~112
' dul
= lim sup (GnR)Z_m/ -| dx
n—000_R.R, B;”‘le(x )xBUan(x”) k=1 dxk

< lim M(f,)(x;) =0
n—oo
By (4-14), we get
2

€ . .
(4-16) / \Vi2|*dx= max / |Vii?|* dx.
Co(m)  Jpm=20)xB2(0) x"eB 1 (0) J B2 (0)x BA(x")

By Corollary 2.4, for any R > 0, we obtain

(4-17) / Vi |* dx = (an)z—’"/ Vil |? dx
Bl 2(0)x B2 (0) B ()X B2 p(xl))

onR

< C(m, A, 22,80, A, 2, 1Y llc190) R™ 2,

when 7 is big enough.
Letz eC Oo(B'"_Z(O)) and n € C 00(32(0)) be two cut-off functions such that
0<¢<l1, §|Bm 20 = =1,0<¢<1,and ’7|32 L) = = 1. Similar to [Lin 1999], for

any R > 0, we deﬁne Fy(a): Bg'~ 2(0) x B2 (0) — Ras
Fyla) = f Va2 (@ + )¢ (") dx.
B"2(0)x B2(0)

Computing directly, one has
DF(a) _ /
dak B}'~2(0)x B2(0) 8)Ck

=—|Viip | (a+x)¢ (x)n(x") dx

o2 9%l .
=2 (a+x)¢(x"n(x")dx
BI'2(0)xB(0) \ 0% 3X13x

o
=2 f <Aﬁﬁ, “ >(a +0) (") dx
B %(0)x B}(0) dxg

it 8u >
-2 n + o 7 dx.
/Bmz(o)sz(O)< ox) o | X) (C(X)n(x ) dx
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On the one hand, by (1-3), we have

~2 81/7’21 ! "
-2 Au,, — Na+x)¢(xInx")dx
B"2(0)x B2(0) 0xk
= —2/ <BT(L7§)|V53|2
B2(0)x B2(0)

1/2
o) (]
By 1 (0)xBg,;(0) By 1 (0)xBg,;(0)

On the other hand, by Holder’s inequality, we have

aﬁ% !/ /!

, (a+x)¢(x)Hn(x") dx
0xi

92 12 1/2
“n dx) .
3xk

dui2 i
—2/ < i >< +x>—<§(x>n(x”>)dx
Bm—2 (0) x BZ(O)

ax; dxy

1/2
0 (]
By 1 (0)xBg,(0) B 1 (0)xBg,(0)

Combining these together and letting n — oo, we obtain
0F,(a)
N
day

uniformly in Bé”fz(O) X B%e (0) for any fixed R > 0.
Thus, for any a = (a’, d”) = Bg’_z(O) X B%(O),

dii>

n

2 1/2
dx) .

0xXk

2 aF, (a)
f |v 1 a
BY',% (@) x B} 5(a") ag
a0F,(a
5/ Vi |dx+C(>Z @
Bm72(0)><32(a//) aak
0F, (a)
o+ Clm )Z' Y.

Therefore, when n is big enough, we have

C(m)e]

for all b € B3(0).
Ca(m) R

(4-18) 62’"/ Vi (x', x" +b)dx <
B"2(0)x B2(0)
Taking C,(m) > 2" C(m), by Corollary 2.4, we have

sup 2 [ VIR ) d
x0€B3(0), 0<r<3 By (x0)

< sup 3% / Vi (x', x" +b) dx
X0€B3(0) B3 (xo) 2—-2m/p
+C(m, p, A1, 22, @2, ¥ |l c1om)) (OnTn)
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S 2m—262—m/ |Vﬂz|2(x/’x//+b) d.x
BY'"%(0)x B2(0) 2-2m/p
+C(m, p, A1, A2, Q, 1V llc1omy) (OnTn)

2""2C(m)el
< - Y
Co(m)

2
B €
+C(m, p, A1, A2 @V Nl auy) Onra)* 2P < ?0

for some m < p < oo, whenever r is large enough.
By Theorem 1.3, we know (ii2, 92) subconverges to a Lorentzian harmonic map
(@, 9) in C} (Bg"/;Z(O) x R?). Moreover, by (4-15)-(4-17), for any R > 0, we have

loc

m—2
fB;e(O) ;

62
/ \Vit|>dx = —2—,
B, (0) Ca(m)

/ \Vii|* dx < C(m, h1, A2, 80, A, @, ¥l 5 R™ 2
Br(0)

2
dx =0,

ou

0Xy

and

Furthermore, since

/ IVi|>dx = lim |V52|1? dx
Br(0)

< lim (ry0,)> 2"/P R™ 7P|V, |7, =0,
n—oo

we know © is a constant and i : R> — N is a nonconstant harmonic map with
finite energy. By the conformal theory of harmonic maps in dimension 2, # can be
extended to a nonconstant harmonic sphere. U

Proof of Theorem 1.6. The conclusion of Theorem 1.6 standardly follows from
Lemma 4.4 and the Federer dimensions reduction argument, which is similar to
[Schoen and Uhlenbeck 1982] for minimizing harmonic maps. We omit the details
here. (]
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SUR LES PAQUETS D’ARTHUR DES GROUPES UNITAIRES
ET QUELQUES CONSEQUENCES POUR
LES GROUPES CLASSIQUES

COLETTE MEGLIN ET DAVID RENARD

Nous donnons une construction explicite des paquets d’Arthur des groupes
unitaires réels par induction cohomologique et induction parabolique et
en suivant une idée communiquée par P. Trapa, nous établissons la pro-
priété de multiplicité un de ceux-ci. Nous montrons en particulier des ré-
sultats d’irréductibilité de certaines induites paraboliques pour les groupes
unitaires, ce qui nous permet de compléter les démonstrations d’énoncés
analogues annoncés dans nos travaux sur les paquets d’Arthur des groupes
classiques.

We give an explicit construction of Arthur packets for real unitary groups
by cohomological and parabolic induction and following an idea commu-
nicated to us by P. Trapa, we show that they satisfy the multiplicity one
property. In particular, we show the irreducibility of some parabolically
induced representations for unitary groups, and use this to give the proof
of analogous statements made in our work on Arthur packets of classical
groups.

1. Introduction

Le premier objet de cet article est de déterminer le plus explicitement possible les
paquets d’ Arthur des groupes unitaires réels, et d’établir un résultat de multiplicité
un pour ceux-ci. Dans [Mceglin et Renard 2017] et les articles afférents [Moeglin
et Renard 2018b, 2018a], des résultats analogues ont été établis pour les groupes
classiques (i.e., spéciaux orthogonaux et symplectiques) réels. Nous complétons
aussi nos résultats sur les groupes classiques en donnant les démonstrations d’énon-
cés de réduction aux parametres de bonne parité et d’irréductibilité d’induites
paraboliques dans cette réduction annoncés dans [Mceglin et Renard 2017]. Cette
démonstration d’irréductibilité d’induites pour les groupes classiques utilise le
résultat analogue pour les groupes unitaires démontré dans cet article, ce qui explique
qu’elle apparaisse seulement ici.

MSC2010: primary 20G05, 22E50; secondary 11F55.
Mots-clefs : Arthur packets, unitary groups, classical groups.
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Les paquets d’ Arthur des groupes classiques et unitaires sont déterminés par leurs
propriétés, plus précisément par certaines identités endoscopiques [Arthur 2013;
Mok 2015]. Nous renvoyons a [Mceglin et Renard 2017], §2 pour une discussion
générale sur les paquets d’ Arthur et §4 pour les énoncés de nos résultats pour les
groupes classiques. Rappelons simplement ici quelques éléments. Soit G un groupe
algébrique connexe réductif défini sur R et notons G le groupe de ses points réels.
Soit

Yo : Wrg x SL(C) — Lg

un parametre d’Arthur. Notons Sy, le centralisateur de I'image de ¥ dans G,
(Sy¢)o sa composante neutre, et posons A(Yg) = Sy, /(Sy;)o. Supposons pour
simplifier que ces groupes soient abéliens (c’est une hypothese qui porte sur G et
qui est vérifiée si G est un groupe classique ou unitaire). D’autre part, supposons
que G soit quasi-déployé, ou bien forme intérieure pure d’un groupe quasi-déployé.
Les conjectures d’ Arthur [1984; 1989] dans ce cadre reviennent alors a affirmer
I’existence d’une certaine combinaison linéaire a coefficients complexes de repré-
sentations irréductibles unitaires de G x A (1), que nous notons 74 (¥g), et qui
doit vérifier certaines propriétés, notamment des identités de transfert endoscopique.
Pour les groupes classiques quasi-déployés, ceci est établi dans [Arthur 2013], ou
T4 (Yg) est caractérisée par les identités de transfert endoscopique attachées aux
données endoscopiques elliptiques de G et par une identité de transfert endoscopique
vers un groupe général linaire tordu. Il est démontré de plus que les coefficients
complexes dans 74 (/) sont en fait des entiers positifs. Ainsi on peut voir 74 (¥g)
comme une représentation unitaire de longueur finie de G x A(¥¢). Décomposons
cette représentation selon les représentations irréductibles unitaires de G en écrivant

m*(We)= @ m®ps.

mell(Ye)

Ici, TT(¥¢) est donc un ensemble fini de représentations irréductibles unitaires de G,
le paquet d’ Arthur attaché a V¢, et pour tout w € I1(g), pr est une représentation
unitaire de dimension finie de A({g) (une somme directe de caracteres car A(Yg)
est abélien). La dimension de p, est la multiplicité de = dans le paquet I1(i/g)
(rappelons que les paquets d’ Arthur ne sont pas disjoints). Ces résultats sont aussi
démontrés pour les groupes classiques non quasi-déployés, c’est-a-dire les groupes
spéciaux orthogonaux réels SO(p, ¢), dans [Meeglin et Renard 2018b] et pour les
groupes unitaires dans [Mok 2015; Kaletha et al. 2014].

Le travail entrepris dans [Moeglin et Renard 2017] auquel nous renvoyons pour
plus de détails, est de donner une construction explicite de 774 () pour les groupes
classiques. Un probléme important qui nous occupe aussi est d’établir que les
multiplicités sont 1, c’est-a-dire que p, est un caractere de A(¥g). Considérons la



SUR LES PAQUETS D’ARTHUR DES GROUPES UNITAIRES 55

composition de ¢ avec la représentation standard Stdg du L-groupe de G. On
obtient un parametre

W = Sth OWG : Wr X SLQ(C) —> GLN(C)

que I’on voit comme une représentation completement réductible de dimension N
de WRr x SL,(C). On écrit une décomposition de v de la forme

kl' = ‘/fmp S Wbp = 1/fmp S ‘/fbp,disc @ l/’bp,u

Ol Yp est la partie de mauvaise parité du parametre, Yp disc 1a partie de bonne
parité discrete, et Y, la partie de bonne parit€ unipotente. Les constructions de
[Mceglin et Renard 2017] se font en quatre étapes. La premiere étape est le cas
Y = Ypp,u des parametres unipotents et de bonne parité. Dans ce cas, ﬂA(wG) est
déterminée dans [Mceglin 2017] par des correspondance de Howe et la propriété
de multiplicité un de tels paquets y est établie. Les représentations de G dans ces
paquets sont faiblement unipotentes au sens de [Knapp et Vogan 1995, Chapter XII].
La deuxieéme étape est le cas ol ¥ = Ypp disc © Ybp,u» lorsque le parametre Yy, disc
possede certaines propriétés de régularité. Les représentations dans le paquet IT(¢)
sont alors obtenues par 1’induction cohomologique de Vogan—Zuckerman a partir
des représentations faiblement unipotentes dans le paquet I1(yg,), ou Yg, est
un parametre d’ Arthur unipotent pour un groupe G, de méme type que G et de
rang plus petit, qui apres composition avec la représentation standard Stdg, donne
Vbp,u» €t de caracteres de groupes unitaires associ€s a Yy gisc. Sous I’hypothese
de régularité mentionnée, les inductions cohomologiques se font dans le « good
range », et en particulier sont irréductibles, les parametres de Langlands des induites
se déduisent facilement de ceux des induisantes, et la propriété de multiplicité un
des paquets est conservée. Les résultats sont démontrés dans [Mceglin et Renard
2017] et utilisent de maniere cruciale les constructions d’ Adams et Johnson [1987 ;
Johnson 1984] qui sont reliées a celles d’ Arthur dans [Arancibia et al. 2018]. La
troisieme étape établie dans [Mceglin et Renard 2018a] consiste a s’ affranchir de
I’hypothese de régularité de vpp gisc, €t 1’on utilise pour cela les propriétés des
foncteurs de translation [Knapp et Vogan 1995, Chapter VII]. Les représentations
dans T1(¥) sont encore obtenues par induction cohomologique comme dans le cas
régulier, mais celle-ci a maintenant lieu dans le « weakly fair range », ou les résultats
généraux sont moins fort. En particulier, I’irréductibilité n’est plus préservée, il
peut y avoir des annulations, les parametres de Langlands des induites deviennent
tres délicats a calculer car il n’y a pas de formule générale. En conséquence, on
perd dans cette étape la conservation de la propriété de multiplicité un (mais nous
conjecturons que celle-ci reste vraie, il faudrait 1’établir en utilisant d’autres outils).
Enfin, la quatrieme étape consiste a passer des paquets de bonne parité aux paquets
généraux. Les énoncés sont simples, cela se fait par une induction parabolique a
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partir des représentations du paquet I1({g,,), ou ¥c,, est un parametre d’ Arthur
de bonne parité pour un groupe Gy, de méme type que G et de rang plus petit,
qui apres composition avec la représentation standard Stdg,, donne ¥y, et d’une
représentation d’un groupe linéaire attachée a Y. Ces résultats de réduction a la
bonne parité ont été annoncés dans [Mceglin et Renard 2017] sans démonstrations,
et nous donnons celles-ci ici (proposition 5.2 et théoreme 5.4).

L’ objet principal de cet article est donc d’établir des résultats analogues, mais
pour les groupes unitaires. La stratégie suit les mémes étapes, mais les résultats sont
plus simples. Soit G un groupe unitaire de rang N défini sur R, disons G = U(p, ¢q),
p+q=N,etyg: Wg xSLy(C) — G un parameétre d’ Arthur pour G. Maintenant,
on remplace la composition avec la représentation standard par la restriction du
parametre a C* < Wg (changement de base). On obtient donc un parametre

W = l//(;|([:>< :C* x SLz(C) = Wq: X SLz(C) — GLN((D),

que I’on voit comme un parametre pour GLy (C). La encore, on décompose i en
somme de représentations irréductibles de C* (donc de dimension 1) et I’on sépare
les composantes de bonne et de mauvaise parité (voir section 2) :

lﬁ = me S?) ‘//bp~

La premiere simplification par rapport au cas des groupes classiques et qu’il n’y
a pas a considérer de partie unipotente. La premiere étape consiste donc a établir
les résultats dans le cas vy = V), en faisant d’abord 1a aussi une hypothese de
régularité du paramétre. Ecrivons

¢
¥ = Yp = P x B Rla;])
i=1
ou R[a;] est la représentation irréductible algébrique de dimension a; de SL;,(C) et
Xi;» ti € Z, est le caractere de C* défini par z +— (z/2)" /2. La condition de bonne
parité est que pour tout i =1, ..., ¢, t; +a; — N est pair. On suppose les #; rangés
dans I’ordre décroissant, ce qui est loisible. La condition de régularité est alors que
pourtouti =1,...,¢—1,

(1-1) ti—(a; — 1) > tiy1 + @iy — 1).

Remarquons que N = Zle a;. On note D(y) I'ensemble des familles d =
(pi» qi)i=1....e de couples d’entiers tels que Zle pi = p et Zleqi =gq. La
représentation 774 () est construite par induction cohomologique. Notons g I’al-
gebre de Lie complexifiée de G = U(p, g), K un sous-groupe compact maximal
de G associé a une involution de Cartan 6, et £ la complexification de I’algebre
de Lie de K. A un élément d de D(y), on associe de maniére explicite une sous-
algebre parabolique 6-stable q4 = [y @ vy de g. On pose Ly = Normg (q4). C’est
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un c-Levi de G, au sens de Shelstad [2015], isomorphe au produit ]—[f:1 Upi, qi),
et la complexifiée de I’algebre de Lie de ce groupe est [;. On introduit un caractére
Ag4 de ce groupe, déterminé par les (#;, a;) (voir équation (4-2)), et I’on pose

(1-2) Aa() = (RES, 2 ) ™0 (A )

ou (Rﬂ’dKLdm ) est le foncteur d’induction cohomologique de Vogan-Zuckerman

en degré k (cf. [Knapp et Vogan 1995, Chapter V]). La condition de régularité (1-1)
assure que cette induction cohomologique est dans le « good range ». De ceci, il
découle que (RﬁdeﬂK)k(Ad) =0, si k # dim(vy N¥E), et que o7z (Y¥) est un module
unitaire et irréductible. De plus, les .7 () lorsque d parcourt D(1/) sont distincts.

Définissons maintenant pour tout d € D(y) un caractere €4 du groupe A(Yg).
On définit d’abord €4 comme une application de [1, £] dans £1. Pour cela on pose

pour tout entier i € [1, 4], a<; =};_; a; et

(1-3) eq(i) = (_1)1’1’“<i+‘]i(a<i+1)+ai(ai_l)/2.

Le groupe A(y) s’identifie de maniére naturelle & (1) et €4 A un caractere
de A(¥). Il découle alors essentiellement des résultats de [Adams et Johnson
1987; Johnson 1984; Arancibia et al. 2018] (voir aussi [Mceglin et Renard 2017])
que

(1-4) )= ) () Rey.

deD(y)

D’apres la remarque faite ci-dessus sur le fait que les .7 (1) sont non isomorphes
deux a deux, on en déduit la propriété de multiplicité un pour ces paquets.

Ensuite, on abandonne I’hypothese de régularité (1-1) pour ne conserver que
I’hypothese de décroissance de la suite (#;);—1,....¢, et ’on définit <7; () comme
ci-dessus. L’induction cohomologique a alors lieu dans le « weakly fair range » et
I’on a toujours (RﬁdemK)k (Ag) =0, sik #dim(vyNE). De plus, si «7; () n’est pas
nul, ¢’est un module unitaire et irréductible, cette derniere propriété étant propre aux
groupes unitaires (cf. [Matumoto 1996; Trapa 2001]) et est due a Barbasch et Vogan.
Le groupe A (/) s’identifie maintenant 4 un quotient de {#-1}*. Nous établissons
que le caractere €4 défini ci-dessus ce factorise par ce quotient si <7z () est non nul
(proposition 4.4). Nous montrons que le terme de droite de (1-4), qui est donc encore
bien défini comme représentation de G x A(¥¢), est bien la représentation TAY).
On a donc (théoreme 4.1 du texte) :

Théoreme 1.1. On suppose que  est de bonne parité. Alors la représentation
associée a \r est

)= ) ) Rey.

deD(y)
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De plus, les représentations <7y (\) non nulles sont non isomorphes deux a deux.

Comme dans le cas des groupes classiques on passe du cas régulier au cas général
(de bonne parité) en utilisant les foncteurs de translation. Pour les groupes unitaires,
on a donc en plus le fait que les <7; () sont irréductibles ou nuls (on ne détermine
pas quand ces modules sont nuls, voir la remarque 4.2). De plus, la seconde assertion
du théoréme montre que la propriété de multiplicité un est conservée.

Passons maintenant a un parametre Y général, avec ¥ = Y, @ Ypp. A la partie
de bonne parité ¥, on attache donc un paquet I1(yc,,) d’un groupe unitaire de
rang Ny, plus petit par la construction que 1’on vient de donner, a la partie de
mauvaise parité on attache une représentation irréductible unitaire p d’un groupe
GLy,(C), etT’on a N = 2N, + Npp. Ceci détermine un sous-groupe parabolique
standard P = MN de G, du moins si inf(p, g) > N,, avec un facteur de Levi
M isomorphe a GLy, (C) x Gy, (et donc Gpp = U(p — Ny, ¢ — N,)). On a alors
(théoreme 5.3 du texte), en remarquant que les groupes A(Yg) et A(Yg,,) sont
naturellement isomorphes :

Théoréme 1.2. La représentation w4 (yg) est obtenue a partir de nA(x//Gbp) par
induction parabolique, c’est-a-dire

m'Wo)= P  Indf(pR ) K p,.

Top €Y Gy, )
De plus, les induites paraboliques dans le membre de droite sont irréductibles.

Dans cette étape, la conservation de la propriété de multiplicité un des paquets
est évidente. On a donc

Théoreme 1.3. Les paquets d’Arthur des groupes unitaires réels ont la propriété
de multiplicité un.

2. Décomposition des A-parametres

Supposons d’abord que G est un groupe classique. On note Stdg la représentation
standard du L-groupe de G dans GL (C) (voir [Mceglin et Renard 2017, §3.1]), par
exemple si G = Sp,, (R), LG =80,,,1(C) x Wg et Stdg est donné par I’inclusion
de SOzn_H (C) dans GL2n+1 ((C)

Si Y6 : Wgp x SLy(C) — LG est un parametre d’Arthur pour G, on pose
¥ = Stdg oy et I’on voit ¥y comme une représentation complétement réduc-
tible de Wi x SL;(C). Dans [Moeglin et Renard 2017, §4.1], on a décomposé
cette représentation en représentations irréductibles, et séparé ces représentations
irréductibles selon leur parité, qui peut étre bonne ou mauvaise, ce qui permet
d’énoncer certains résultats de réduction.
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Nous allons maintenant faire de méme pour les groupes unitaires. Soit donc
maintenant G un groupe unitaire réel de rang N, et soit

(2-1) G Wr xSLy(C) = G = GLy (C) x Wi

un parametre d’Arthur pour G. On note v la restriction de g au sous-groupe
C* xSL;,(C) de WrxSL;(C), que I’on voit comme une représentation de dimension
N de C* x SL,(C). Cette représentation est completement réductible. Pour tout
a € Z~, notons R[a] la représentation algébrique de SL;(C) de dimension a, et
pour tout (¢, s) € Z x iR, notons

(2_2) Xis 17> (Z/Z)I/Z(ZZ)S/Z — Z(I+S)/ZZ(_I+S)/2-
C’est un caractere unitaire de C*. On note pour tout a € Z~.,

(2-3) Xt,s,a = Xt,s © deta

ou det, est le déterminant de GL,(C).
La forme générale de la décomposition de ¥ en irréductibles (apres une éventuelle
conjugaison dans GLy (C)) est

(2-4) v= @ xs®RId
(t,s,0)eEWY)

pour un certain ensemble avec multiplicités finies £(1y) de triplets
(t,s,a) e ZxiR x Z~y.

Définition 2.1. On dit que le triplet (¢, s, @) est de bonne parité si s = 0, et si
t+a—-1/24+(N-1)/2€Z.

Remarque 2.2. Le fait que v provient d’un A-parametre pour G = U(p, q) est
équivalent a la propriété suivante : si (¢, s, a) € £(i) n’est pas de bonne parité,
alors la multiplicité de ce triplet dans £(i) est égale a la multiplicité du triplet
(t, —s, a) dans le cas ou s # 0, et si s =0, la multiplicité de (z, 0, a) est paire.

Cela revient a dire, en notant £(Y )y, les triplets de £(y) ayant bonne parité,
qu’il existe une décomposition de £(1) en 1’union disjointe de trois sous-ensembles,
EWp, E' (W), et E"(Y) tel que si (¢, 5, a) € E'(Y) alors (t, —s, a) € " (Y) avec
la méme multiplicité.

On note

(2-5) Yopi= P xs®Rlal.

(1.5,a)€E(W)bp
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Alors Y est un morphisme de C* x SL(C) dans GLy,, (C) ou

(2-6) Np= >  a

(1.5,a)€E(Y)vp

qui provient d’un A-parametre comme en (2-1), mais pour les groupes unitaires de
rang Npp.

3. Réalisation des groupes unitaires et de leur c-Levi. Induction
cohomologique

3A. Paires paraboliques. Soit G le groupe des points réels d’un groupe algébrique
connexe réductif défini sur R. On fixe une involution de Cartan 6 de G, et I’on note
K le sous-groupe des points fixes de 6 : ¢’est un sous-groupe compact maximal
de G. On suppose que G et K sont de méme rang ; autrement dit, G possede un
sous-groupe de Cartan 7 inclus dans K et donc compact. On note ty, € et go
les algebres de Lie respectives de T,K et G et t, £ et g leur complexifiées. Les
sous-algebres paraboliques 6-stables de g sont obtenues de la maniere suivante. On
fixe un élément v € v/—1t5, et ’on pose :

I=g”=t€9< D g“), v= P o

- A(g,t) A(g,t)
(3 1) oéf,oz)gzo Oéf,a)io
=@, L = Normg(q).

Dans cet article, nous appellerons paire parabolique une paire (q, L) obtenue comme
ci-dessus, avec q sous-algebre parabolique 6-stable de g. Le sous-groupe L de G
sera appelé c-Levi de G (terminologie de Shelstad [2015]).

On note (Rﬁ:fm «)¥ Ie foncteur d’induction cohomologique de Vogan—Zuckerman
(cf. [Vogan 1981, §6.3.1]) en degré k, de la catégorie des ([, K N L)-modules vers
la catégorie des (g, K)-modules. Dans ce contexte, le degré qui nous intéresse
particulierement, et méme exclusivement, est S = dim(v N #¥), et dans ’article, nous
écrirons (Rﬂ:fm K)S sans préciser de nouveau ce qu’est S.

Si A est un caractere unitaire de L, on note XA sa différentielle, que I’on voit
comme un €élément de it;. On pose alors

K N
Ag(A) = REFO5(A).
Si le groupe L est connexe, A détermine A et I’on note alors cette représenta-
tion Aq(2).
Sous certaines conditions sur le caractere infinitésimal de la représentation o
de L que I’on induit, on a des résultats d’annulation, d’irréductibilité et d’unitarité

des modules (Rﬁ:fm K)S(a). Nous renvoyons a [Knapp et Vogan 1995] (p. 34, 35 et
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793 respectivement) pour les définitions du (weakly) good range, du (weakly) fair
range et des représentations faiblement unipotentes pour lesquels on a les résultats
suivants : dans le weakly good range (Rq n K) (o) estnul si k =S =dim(vN¢).
Si o est irréductible et dans le good range (resp. weakly good range), Rq L)
est 1rreduct1ble (resp irréductible ou nul). Si o est unitaire et dans le weakly good
range, (RUl n K) (o) est unitaire. Si o est faiblement umpotente et dans le weakly
fair range, alors (72g mK)k(a) estnul si k # S et (Rq mK) (o) est unitaire si o
est de plus unitaire. En revanche, on n’a pas de résultat d’irréductibilité en général
dans le weakly fair range, ni méme le fair range.

3B. Le groupe symplectique. Une maniere commode de réaliser les groupes uni-
taires U(p, q), p+q = N, est de les réaliser comme c-Levi d’un groupe symplectique
Sp(2N, R), les c-Levi des U(p, g) s’identifient alors eux aussi a des c-Levi de
Sp(2N, R). On suppose R2N (identifié a Moan 1(R), les matrices colonnes) muni
de sa forme symplectique usuelle, c’est-a-dire, si X, Y € R*V

(X|Y)='XJY oulJ= Ov In)
—IN ON

Soit ¥ =Sp(2N, R) le groupe des isomorphismes de (R (1)), que I’on muni de
I’involution de Cartan @ : g — ‘g~ !. Le sous-groupe de ¢ des points fixes sous 6 est
un sous-groupe compact maximal de ¢, que 1’on note %, et qui est isomorphe au
groupe unitaire U(N). On note g et € les sous-algebres de Lie respectives de ¢ et
A, réalisées comme sous-algebre de Lie de Mjy (R). Pour tout (ay, ..., ay) € RY,

on pose :
( “
a

an

t@ay,...,ay) =

—ay

Alors
to:={t(ar.....an). (ai,...,ay) eR"}
est une sous-algebre de Cartan de € et aussi de gp.

Notons g, £, t les complexifications des algebres de Lie go, 9, to, respectivement.
Soient A(g, t), A(E, t) les systeémes de racines de g et £ respectivement, relativement
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a la sous-algebre de Cartan t. On a

A(g, ) ={=x(ei £ej), 1 =i < j<N}U{£2¢;, 1 <i < N},
A, ) ={x(ei —¢j), 1 =i <j =N}

oll ¢; € /=11t C t* est la forme linéaire 7 (ay, ..., an) — +/—1a;. On fixe les
systémes de racines positives

AT (g, ) ={(e;tej), 1 <i<j<N}U{2¢,1<i <N}
At t)={(es—ej), 1 <i<j<N}

On identifie t* et CV grice a la base (ei)1<i<n de t*, et de méme pour t grace a la
base duale.

3C. Paires paraboliques maximales et induction cohomologique. On continue
avec les notations du paragraphe précédent, en particulier ¥ = Sp(2N, R). Soit
(q, L) une paire parabolique pour ¢, et 1’on suppose que la sous-algebre parabolique
0-stable q = [ @ v est maximale. Une telle sous-algebre est obtenue en prenant un
élément de t de la forme

thg=(1,...,1,0,...,0,—1,..., 1)
e e —
p N-p—q q

avec p+¢g < N. On pose alors

lp.g = g =t® < @ ga)’ U;;,q = @ Ha>»

_ aeA(g,t) aeA(g,t)
(3-2) a(t)=0 a(t)>0
Ty =lpg @V, L., =Normg(q,.,)-

Dans le cas ou p+¢g =N, L, , est une réalisation du groupe unitaire U(p, q).
Les racines de t dans [, , sont :

*(e; —ej), l1<i<j<p ou p+1<i<j<N,
* (e +ej), I<i<p<j<N.
On choisit comme systeme de racines positives :

ei—ej, 1=<i<j=<p,
A =0Ty, 0=1—(ei—¢)), p+1<i<j<N
ei+ej, 1<i<p<j=N.
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On pose
(3-3)
8(lpg) =1 o
aeA;q
=3(N=1,N=3,...,g=p+1,p—q+1,....,p—q+3,..., N—1).

p q

Ona ¥ =LyoetL,,N# >~U(p)xUlg).

3D. c-Levides U(p, q). On continue avec les notations de la section précédente.
Notons D(p, q) I’ensemble des familles d = (p;, g;)i=1....¢ de couples d’entiers
positifs ou nuls tels que

Yopi=p et ) g=q et DWN)= [] D, 9.

.....

P.q
ptq=N
Pour tout d = (p;, qi)i=1,...¢ € D(N), notons
=00 .2, 2,0 = =L =2 =2 =L ).
- —— e N —
P1 Pe—1 pe qe qe—1 q1

On définit la sous-algebre parabolique 6-stable g/, = [; @ v, et le c-Levi Ly associés
atg comme en (3-1). Sid € D(p, q), alors Iy C [pq et Eg estun c-Levide L, g4,
associ€ a la sous-algebre parabolique 0-stable q4 de [, 4, ou

(3-4) Gg =0y Nlpg=1la® (N0, =13 Dvy.

On pose AT (Ig, ) = A(lg, ) NAT (I, 4, t) etpour touti =1, ..., ¢, a; = p; +¢i,

(3-5) (L)

=—<a1—1,a1—3,...,q1—p1+1,a2—1,a2—3,...,q2—p2+1,...,

P1 p2
ag—l,ap—3,....q0—pe+1,pe—qe+1,....p0—qe+3,...,a0—1,...,

pe qe
p—q@+l ... pp—q@+3, ... a1,

q2

p1—Q1+l,...,p1—q1+3,...,a1—1).

q1
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4. Parametres de bonne parité

Soit ¥ un A-parametre pour U(p, g) comme en (2-1). On suppose que i est de
bonne parité, i.e., ¥ = Yr,p. On a donc

L
(4-1) v =P, ® Rlai)).

i=1

On a supprimé les parametres s; des notations, puisque dans le cas de bonne parité,
ils sont tous nuls. On ordonne les indices i pour que #; > --- >ty et si t; = f;1
alors a; > aj+1.

On reprend les notations de la section 3D, en particulier la réalisation de U(p, q)
comme sous-groupe L, , d’un groupe symplectique. Pour tout i € [1, £], on fixe
une décomposition a; = p; + g; en somme de deux entiers éventuellement nuls. On
note D(y) I’ensemble de ces décompositions qui vérifient de plus p =) . p;. On
a donc D(y) C D(p, q), ce dernier ensemble étant défini dans la section 3D, et
en particulier un élément d € D(y) détermine un c-Levi Ly de L, , isomorphe a
[1; U(pi, gi) et une sous-algebre parabolique 6-stable q; = Iy ® vy de [, , dont la
sous-algebre de Levi est précisément 1’algebre de Lie complexifiée de Ly. Pour
touti € [1, £], on pose a; := Zj<i

Via I’isomorphisme de Ly avec [ [; U(p;, ¢;), on définit le caractere A4 du groupe
L, par

Clj.

(4-2) Ag = X dettita=N/2=ax
i

On peut aussi définir ce caractere en donnant sa différentielle comme un élément de
t* dans le systeme de coordonnées de la section 3B. Posons A; = (t;+a;,—N)/2—a_;.
On a alors

N VE VST ST VIS VR VI VA ST S|
e e’ N e

-

pP1 Pe qe q1

Le foncteur d’induction cohomologique (Rﬁ;{KLm K)dim("ﬁme) permet de produire

une représentation de U(p, g) a partir de ce caractere. On pose

(4-3) Aa() = RES )0 (M)

La condition #; > - -- > 1, assure que cette induction cohomologique est dans le
weakly fair range (cf. [Knapp et Vogan 1995, p. 35]). De ceci, il découle que
(RﬁdemK)i(Ag) =0, si i # dim(vg NE), et que si .7 () n’est pas nul, c’est un
module unitaire et irréductible, cette derniere propriété étant propre aux groupes
unitaires (cf. [Matumoto 1996; Trapa 2001]).
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On a défini I’application €4 de [1, £] dans =1 en (1-3). Nous allons expliquer
plus loin comment A(g) s’identifie & un quotient de {£1}* et €4 A un caractere
de A(Yg).

Théoreme 4.1. On suppose que  est de bonne parité. Alors la représentation
associée a \r est

T W) = () Rey.
d

De plus, les représentations <7, (\) non nulles sont non isomorphes deux a deux.

Remarque 4.2. On ne précise pas ici quand les «7; (/) sont non nulles. Toutefois
Particle [Trapa 2001] donne un algorithme pour résoudre cette question; c’est
un probleme difficile. La deuxieme assertion du théoréme est une assertion de
multiplicité un dans les paquets d’ Arthur pour des parametres de bonne parité. Les
résultats de réduction a la bonne parité établis dans la section 5B montrent qu’il y a
multiplicité un dans tous les paquets d’ Arthur des groupes unitaires.

s 2

Démonstration du théoreme 4.1. Le théoreme est déja établi sous la condition que
les induites cohomologiques (4-3) soient réalisées dans le good range, ce qui est
plus restrictif que le weakly fair range, la condition sur v étant (1-1). Dans ce cas,
A(Yrg) s’identifie naturellement a {£1}¢.

En effet, sous cette condition, le théoreme est un cas particulier de [Mceglin et
Renard 2017, théoréme 9.3], qui résulte fondamentalement de [Adams et Johnson
1987; Johnson 1984; Arancibia et al. 2018]. De plus, dans ce cas, les 7; () sont
non nulles et non isomorphes deux a deux.

On se ramene a ce cas en utilisant les foncteurs de translation (cf. [Knapp et Vogan
1995, Chapter VII and Chapter VIII, §5]). On fixe des entiers 77 > --- > T, > O et
on note ¥, le A-parametre

(4-4) Vi =P +7, @ Rlai)),

de sorte que ¥ vérifie les hypothese de good range (1-1), et I’on a donc

W)= P ) Re,

deD(Yy)

ou les modules .27 () sont définis comme en (4-3) en remplagant les #; par les
t; + T; dans la définition de Ay en (4-2). Avec ces hypotheses, comme nous 1’avons
dit, A(yy) s’identifie 2 {41}¢ et cette expression est alors bien définie.

On considere le foncteur de translation correspondant a la représentation de
dimension finie .% qui est la restriction a U(p, ¢) de la représentation de GLy (C)
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de plus bas poids (dans les coordonnées usuelles pour ce groupe)

(—T1/2,-~ L =T1/2, -, =Ty)2,--- ,—Te/2)-

ai ag

Dans les coordonnées choisies ci-dessus pour t*, ce plus bas poids est

y = (—T1/2,...,—T1/2,...,—Te/2,...,—Tg/2,

P1 pe
Te/z,—...,T@/z,...,Tl/z,...,T1/2>.

qe q1

Posons §(vg) =6(l,4) —8(l).

Remarque 4.3. On voit facilement avec les expressions (3-3) et (3-5) que I’on peut
définir les T; vérifiant les conditions ci-dessus en posant y = —2m §(vy) pour un
entier m assez grand.

On note 7 ce foncteur et on sait d’apres [Mceglin et Renard 2018a, théoréme 4.1],
que I'on a

T (W) =7 (),

et d’autre part, d’apres [Mceglin et Renard 2018a, théoréme 4.3], en remarquant
que D(Y1) =D(¥), ona T (#y(Y4)) = y(¥) pour tout d € D(y). Pour un tel d
fixé, le caractere €4 se factorise en un caractere de A(Y) si et seulement si pour
tout 7, j € [1, €] tels que t; =t; et a; = a;, on a €4(i) = €4(j). Or on a d’apres
[Matumoto 1996, Theorem 3.3.4; Trapa 2001, Theorem 7.9, Lemma 9.3], que I’on
commentera ci-dessous

Proposition 4.4. La représentation T (;(\4)) est non nulle seulement si pour
touti €[1,€] tel que t;y1 =t; ona p; > qi+1 et i > pit1.

Comme 1’a remarqué Matumoto juste avant 1’énoncé de son théoreme, cette
proposition est une conséquence du paragraphe 4.2 de [Barbasch et Vogan 1983].
On peut donc dire que cette proposition est essentiellement due a Barbasch et Vogan.
On peut faire des inductions par étage et donc supposer que £ =2,i =1 et t; =1,.
On rappelle que I’on a ordonné les couples (t;, a;) tel que si t; =t;1 alors @; > a; 4
sans cette hypothese la proposition serait fausse. Cette hypothése est un oubli dans
[Matumoto 1996] et les choix de cette référence pour I’induction cohomologique
étant opposés aux notres les inégalités sont inversées.

Ainsi pour tout d € D(y), soit le caractere €4 se factorise en un caractere de
A(Yg), soit <7, () est nul, et ceci donne un sens a la formule donnant 7A(y) dans
le théoréme et établit la premiere partie de celui-ci.

Démontrons maintenant 1’assertion de multiplicité un. La difficulté vient de
I’utilisation du foncteur de translation permettant de passer du good range au weakly
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fair range. Avec les notations ci-dessus, on sait que si d # d’, alors «7; () et
</ (Y4) sont non isomorphes, et I’on voudrait en déduire que si les représentations
Ag(P) =T (g(Yy)) et oy () = T (g (Y4)) sont non nulles, alors elles sont
non isomorphes.

Pour cela, nous allons utiliser des résultats sur les foncteurs de translation dis-
séminés dans [Knapp et Vogan 1995], et nous allons expliquer comment nous y
ramener, ce qui nous oblige a quelques détours. Signalons aussi que les idées sont
expliquées et mises en ceuvre dans [Vogan 1988] dans un contexte différent, et
que c’est P. Trapa qui nous a suggéré que la démonstration de I’irréductibilité de
I’induction cohomologique convenablement comprise pouvait aussi donner 1’énoncé
de multiplicité un voulu. La premiere chose a faire est de se ramener a des foncteurs
d’induction cohomologique ol la sous-algebre parabolique 9-stable q est fixée et
ou ce sont les formes réelles fortes au sens de [Adams et al. 1992] qui vont varier.
Expliquons le formalisme. On part du groupe compact U(N) et de sa réalisation
usuelle comme sous-groupe des points fixes de I’involution o : g+ ‘g ~! de GLy (C).
On note ici g I’algebre de Lie de GL (C). On choisit un tore maximal 7 de U(N), et
I’on note t la complexifiée de son algébre de Lie. On fixe une sous-algebre de Borel
b de g contenant t. On identifie T a U(1)V, t a CV de sorte que les racines simples
de t dans b soient les formes linéaires ¢; —e; 11, i =1,..., N —1, ot (¢;)i=1,.. N
est la base canonique de (CV)*. La partition N = Zle a; détermine alors une
sous-algebre parabolique q = [ v de g contenant b. Notons T[2] I’ensemble des
éléments d’ordre 2 de T'. Pour tout ¢ € T[2], posons

o, =Ad(t)oo, 6, =Ad®).

Alors o, est une forme réelle de GLy (C) et nous notons U, le groupe de ses points
réels. L’involution 6; est une involution de Cartan de U,, et I’on note K, le sous-
groupe de ses points fixes. C’est un sous-groupe compact maximal de U;. Les U;
sont des formes intérieures pures de U(N) = U;—; (on obtient plus généralement
toutes les formes réelles fortes au sens de [Adams et al. 1992] en considérant plutdt
que T[2] ’ensemble des éléments de T dont le carré est dans le centre de Uy,
c’est-a-dire de la forme A/ly. Le choix d’une racine carré de A identifie le groupe
des points réels a un U(p, q)). Si I'on écrit t = (51, ..., ny) par I'identification
T = UV, avec n; € {£1} pour touti =1, ..., N, alors U, est isomorphe au
groupe U(n(t), n_1(t)) ou ny(t) est le nombre des n; égaux a 1 et n_;(¢) celui des
n; égaux a —1. Pour t1, t, € T[2], les formes réelles Uy, et U,, sont équivalentes si
et seulement si ny(t;) =ni(f) et n_1(¢t;) =n_1(f). La sous-algebre parabolique
q est 9;-stable pour tout # € T'[2]. Posons L; = Normy, (¢) : c’est un c-Levi de U;
et la complexifiée de son algebre de Lie est . Ces groupes L;, pour ¢ € T[2], sont
des formes réelles d’un groupe complexe L¢ isomorphe a [[; GL,, (C). Le groupe
L; estisomorphe a [ [; U(pi, g;), o p; (resp. g1) est le nombre de 1 (resp. de —1)
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dans les a; premieres coordonnées de ¢, et ainsi de suite. On a donc pour chaque ¢
des foncteurs d’induction cohomologique
0.K k
(Rq,L:ﬁK[)
que nous allons toujours considérer dans le bon degré, c’est-a-dire S; = dim(v N ¢§,).
On revient maintenant a p et g fixés avec p + g = N et pour tout élément

d = (pi, qi) € D(¥), on pose
o= (1. L =1 ... =1, ... 1. 1—1.. -1).
—_—— ——

pP1 q1 De qe

On fixe un caractére A de L¢ : dans I’identification de L¢ avec [ [; GL,, (C), il
est donné par

A = |X| dettitai—N)/2—a<i
i
On pose alors pour tout d = (p;, qg;) € DY),

9.K; S,
Ay = <Rq,L,jmK,d) 4(A).

C’est un (g, K;,)-module. Comme les formes réelles U,, sont toutes équivalentes
lorsque d décrit DY), c’est-a-dire conjuguées deux a deux par un automorphisme
intérieur de GLy (C), on peut voir les classes d’équivalence de (g, K;,)-modules
comme des classes d’équivalence de modules de Harish-Chandra pouriU (p,q), et
les modules .7 () correspondent aux modules .7 (). Il sagit donc de montrer que
les modules ;zz;(g[/) non nuls sont inéquivalents deux a deux, vus comme modules
de Harish-Chandra pour U(p, g). D’autre part, comme les groupes unitaires sont
connexes, la catégorie des (g, K;,)-modules est une sous-catégorie pleine de la
catégorie des 4l(g)-modules, ou ﬂ(g) est ’algebre enveloppante de g, et il s’agit
donc de montrer que les modules .7 () non nuls sont inéquivalents deux a deux
comme $1(g)-modules. )

Bien siir, on peut remplacer i par ¥ dans ces considérations, et 1’on obtient de
méme des modules «7;(v/1.), d € D(¥) =D() et]’on sait qu’ils sont inéquivalents
deux a deux comme ﬂ(g)—modules.

Rappelons maintenant quelques éléments sur le foncteur de translation tirés de
[Knapp et Vogan 1995, Chapter VIII]. Celui-ci est donc défini par la représentation
de dimension finie .%# de plus bas poids y = —2m §(v), d’apres la remarque 4.3,
et nous sommes donc dans les hypotheéses de la proposition 8.31 de [Knapp et
Vogan 1995]. Le foncteur 7 nous fait passer des modules ayant comme caractere
infinitésimal généralisé celui donné par le parametre i, notons-le w4, a des
modules ayant comme caractere infinitésimal généralisé celui donné par le parametre
Y, notons-le u =y +y = py —2m d(v). Ici, on voit p4 et u comme des éléments
de t* qui déterminent chacun un caractére du centre de 1’algeébre enveloppante.
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Reprenons des éléments de la démonstration de la proposition 8.31 de [Knapp
et Vogan 1995], que I’on particularise au cas des groupes unitaires étudiés ici, en
adaptant 1égérement les notations. On y introduit pour tout A" € t*, un module de
Verma généralisé noté M (A'), et I’on montre que si A’ vérifie les conditions du
weakly fair range, alors 7 (M (X' +2m §(v)) = M ()') [loc. cit., Lemma 8.35]. On en
déduit [loc. cit., Lemma 8.39] que pour toute forme réelle G du groupe complexe
ambiant muni d’une involution de Cartan 6 ayant comme groupe des points fixes le
sous-groupe compact maximal K de G, tel que q soit une sous-algebre parabolique
0-stable, avec de plus les conditions de weakly fair range sur A’, que I’on a

T (AL [k W +2m 8(0))) = AT (V).

En particulier, ceci s’applique aux formes réelles U,, définies ci-dessus eta A'+8 = u
(8 désigne bien entendu la demi-somme des racines positive), et I’on a donc

T(Ay () = ().

pour tout d € D(¥). On introduit Q(A") = End(M (1')), qui est un U(g)QLU(g)-
module ayant pour caractére infinitésimal (1’48, —(A’+68)) muni d’une application
naturelle ¢ : U(g) — Q(X') qui respecte les actions a gauche de 4U(g). Ensuite, on
prend les élément U(N )-finis de I’algebre Q(1") en posant R(A") =End(M (1)) y(n).-
Ainsi, R(A") devient un (gdbg, U(N)x U(N))-module, et I'image de ¢ est a valeurs
dans R(A"). On pose alors S = S(A') = R(A") ® End(.%), et cette algébre admet une
décomposition selon ses composantes primaires (a gauche et a droite), S = P, B SD’? .

Prenons maintenant A’ = 1 — 8. La composante S,," est une sous-algebre de S.
Soit M un U(g)-module ayant pour caractere infinitésimal ., et supposons que
M soit aussi un module a gauche unifere pour R()') tel que les deux actions soient
compatibles via ¢. Alors la composante p-primaire N, du S-module N = M ® .7
est naturellement un S, "-module. Ce qui est fondamental pour nous ici est le
résultat suivant : si M est un R(A')-module simple, alors N, est S,"-module
simple ou bien 0, et de plus, si M', M? sont deux R(X')-module simples non
équivalents, et si N :L et Nli sont non nuls, alors ce sont deux S, "-modules simples
non équivalents. On trouve la démonstration a la page 524 de [Knapp et Vogan
1995], pour une algebre S différente, mais la démonstration est formelle et se
transpose sans changements. D’ailleurs un résultat formel général analogue (avec
la méme démonstration) dans le cadre des algebres a idempotents se trouve dans
[Renard 2010, proposition 1.3.2].

Il y a un foncteur de translation pour les U(g)®U(g)-modules construit avec
End(.%) allant des modules ayant pour caractere infinitésimal généralisé (s, —+)
vers les modules ayant pour caractere infinitésimal généralisé (u, —u). Notons
le 72. On a alors

St =T*(R(uy —8)) = R( —9).
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De plus, on peut munir les <7;(¥4.), d € D(¥), d’une structure de R(1")-module
compatibles avec 1’action de £l(g), ceci apparait 2 la page 577 de [Knapp et Vogan
1995]. Il résulte de ceci que les bc%‘;(z/ur), d € D(yr) sont des R(u — 8)-modules nuls
ou simples, les non nuls étant inéquivalents deux 2 deux. La proposition 8.31 de
[Knapp et Vogan 1995] a en fait pour but d’énoncer un critere pour en déduire que ce
sont des $1(g)-modules nuls ou simple, il suffit que I’application naturelle ¢ de $((g)
dans R(u — 8) soit surjective. Or c’est le cas pour les groupes unitaires, cela vient
du fait que les orbites nilpotentes en type A sont de Richardson avec une application
moment birationnelle et sont d’adhérence normale [Kraft et Procesi 1979]. C’est
ainsi que I’on montre que les A4(A)-modules dans le weakly fair range sont nuls
ou irréductibles pour les groupes unitaires. Ce que nous venons de remarquer ici,
c’est que I’inspection de la démonstration montre en plus que les modules <7 (),
d € D(y) non nuls ne sont pas équivalents en tant que ${(g)-modules et ceci termine
la démonstration du théoreme. (]

Remarque 4.5. La définition des paquets d’ Arthur par les identités de transfert
endoscopiques suppose avoir choisi parmi les formes réelles fortes (au sens de
[Adams et al. 1992]) U;, t € T[2], introduites ci-dessus, une forme quasi-déployée,
et pour celle-ci, une donnée de Whittaker. Ici, la forme quasi-déployée choisie est
donné par

te=(L, -1 1,—1,...,(=D")

et est donc isomorphe a U(N /2, N/2) si N estpairet U(|N/2]+1, |[N/2]) si N est
impair. D’ autre part, on peut considérer un parametre de séries discretes ¥, pour les
groupes unitaires de rang N, c¢’est-a-dire avec ¢ = @lN: 1 (x;; X R[1]) avec les #; dis-
tincts. Les constructions faites ci-dessus pour d € D(y¥) = ((1, 0), (0, 1), (1,0), ...)
déterminent une série discrete générique de ce groupe unitaire quasi-déployé, et 1’on
fixe la donnée de Whittaker pour que cette série discrete admette une fonctionnelle
de Whittaker. Des choix différents meneraient a une formule différente en (1-3)
en tordant la paramétrisation par un caractere de A (Y ¢). Voir [Mceglin et Renard
2017] pour une discussion analogue pour les groupes classiques.

5. Réduction au cas de bonne parité

5A. Mauvaise parité et induction parabolique. Dans cette section, nous démon-
trons des résultats énoncés sans démonstration dans [Mceglin et Renard 2017] ainsi
que leurs analogues pour les groupes unitaires. Soient G un groupe classique ou
unitaire, et ¥, ¥ comme dans la section 2. Considérons une décomposition de
de la forme :

(5-1) v=pdp @Y
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ou, dans p, il n’apparait que des facteurs de mauvaise parité. Ici p* désigne la
représentation contragrédiente si G est un groupe classique, et la duale hermitienne
si G est un groupe unitaire. Remarquons que toute la partie de mauvaise parité peut
se mettre sous la forme p @ p*.

Si G est classique, le parametre ¥’ se factorise par le L-groupe d’un groupe
classique quasi-déployé G” de méme type que G. Soit V> le paramétre d’ Arthur
pour le groupe G’ tel que ¥’ = Stdg' oY De méme, si G est unitaire, ¥ est la
restriction a C* x SL; (C) d’un paramétre - pour un groupe unitaire quasi-déployé
G’ de rang plus petit.

Notons N, la dimension de la représentation p. Si G est classique, c’est une
représentation de Wy x SL,(C), et I’on note HSL la représentation de GLy, (R) de
parametre d’ Arthur p (cf. [Arancibia et al. 2018, §3.1]). Si G est unitaire, c’est une
représentation de C* x SL,(C), et I’on note HEL la représentation de GLy, (C) de
parametre d’Arthur p. Pour unifier les notations, on note simplement GLy, pour le
groupe GLy, (R) si I’on est dans le cadre des groupes classiques, et GLy, (C) si
I’on est dans le cadre des groupes unitaires.

Selon la forme intérieure G et la dimension N, de p, le groupe G admet ou
pas un sous-groupe de Levi maximal standard M isomorphe a GLy, xG', ot G’
est une forme intérieure de G”. Par exemple, si G = U(p, q), la condition est que
inf(p, q) > N,, etsic’estle cas,ona G' =U(p — N,,q — N,), et on a la méme
condition si G =SO(p, g). Si G est quasi-déployé, la condition est toujours vérifiée
avec G’ = G”, et ceci fournit une injection

(5-2) (: M = (GLy, x G°) x Wg < LG

de sorte que Y =t o Yy ot Yy : Wr — LM est construit a partir de p et ¥¢».
Ici GLy, = GLy(C) si GLy, = GLy,(R) et GLy, = GLy(C) x GLy(C) si
GLy, = GLy, (O).

Comme le groupe G” ne joue pas de rdle dans ce qui suit, on note plutdt g/ pour
V¥ g» du moins si la condition d’existence de G’ est satisfaite. On vérifie facilement
I’énoncé suivant.

Remarque 5.1. Les groupes A(/g) et A(Y’) sont naturellement isomorphes.

Reprenons les notations de I’introduction, ot pour un parametre d’ Arthur g
pour le groupe G, nous avons noté 74 () la représentation unitaire de longueur
finie de G x A(Y¥ ) attachée a /¢. On la note aussi nA(wg, G). On décompose
maintenant cette représentation selon les caracteres du groupe abélien fini A () :

(5-3) W, G = @ 7We.n G)Rn

)
ou les w (g, n, G) sont maintenant des représentations unitaires de longueur finie
de G.
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Proposition 5.2. Avec les notations ci-dessus, si la condition d’existence de la
forme intérieure G' n’est pas vérifiée, on a w4 (Yg) =0. -

Si la condition d’existence de la forme intérieure G' est vérifiée, soitn € A(Yg)
et soient 1 (Y, n, G) et t1(Yg, n, G') les représentations semi-simples de G et
G’ respectivement attachées par Arthur (cf. (5-3), oit pour w(Yg:, n, G') on tient
compte de la remarque ci-dessus). On a alors

(5-4) 7(Ye.n, G) =Ind§(NS" @ (Yo, 0, G)).

ou P est un sous-groupe parabolique standard maximal de G de facteur de Levi M
isomorphe a GLy, xG'.

Pour les groupes classiques, c’est la proposition 4.3 de [Mceglin et Renard 2017],
énoncée sans démonstration.

Démonstration. Notons 78 (g, 1, G) la représentation induite du membre de droite
dans (5-4), et
?We, G = P 7 W, n, G Ry

neA(Wg)

Nous avons besoin de savoir que 7 2 (¢, G) est non nul si G est quasi-déployé avant
de pouvoir démontrer que cette représentation est 74 (¢, G). Evidemment si G est
quasi-déployé, on a remarqué que la condition d’existence de G’ est toujours satis-
faite, et que G’ = G” est quasi-déployé. Ainsi 778 (¥, G) est non nul si et seulement
si 74 (Y, G') est non nul. Or on sait que le paquet 14 (Y, G) est non nul, car il
contient au moins les représentations dans le paquet de Langlands associé au paquet
d’ Arthur. Ceci montre I’assertion voulue. Considérons alors la représentation vir-
tuelle stable 74 (Y, G')(sy)=[n(Yg, G"], ousy =vy'(1, —1d) (cf. ([Mceglin et
Renard 2017, (2.3.3)]). Elle vérifie I’identité endoscopique tordue [Mceglin et Renard
2017, (3.2.4)]. Comme le transfert endoscopique tordu commute avec 1’induction,
on obtient que le transfert tordu de la représentation virtuelle B (WG, G)(sy) est
la trace tordue de I’induite pour le parabolique standard de GLy de Levi standard
GLy, x GLy de la représentation HgL X H(‘;’,L Or cette induite est H(W;L, d’apres la
définition des paquets d’ Arthur des groupes linéaires (voir [Arancibia et al. 2018, sec-
tion 3.2]). D’autre part 74 (Vg, G)(sy) = [T (Y, G)] vérifie aussi I'identité endo-
scopique tordue. On obtient donc que 74 (Y¥g, G)(sy) = 78 (Wg, G)(sy), puisque
ces deux représentations virtuelles stables ont méme transfert endoscopique tordu.

Nous allons démontrer que 778 (g, G) vérifie aussi les identités endoscopiques
ordinaires [Mceglin et Renard 2017, (2.3.5)]. On ne suppose plus que G est quasi-
déployé, mais 1’on suppose que la condition d’existence de G’ est satisfaite, car
sinon, il est clair que 74(Yg, G) =0.Soit H=(H,x,&§ :“H - LG, ...) une
donnée endoscopique elliptique de G (cf. [Arthur 2013]) telle que g se factorise
par le groupe dual de H et on fixe une telle factorisation /¢ = & o ¥,.. En particulier
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I’élément x € LG s’identifie 2 un élément du commutant de . Il faut alors
démontrer qu’il existe une donnée endoscopique elliptique H' = (H', x', ...) de G’,
tel que 1’élément x’ de cette donnée soit dans le centralisateur de V¢ et tel que
le transfert de la distribution stable associée a H et a la factorisation de ¥ soit
I’induite du produit tensoriel des données analogues pour ¥/ et H' et de la représen-
tation HgL. Expliquons maintenant comment construire explicitement cette donnée
endoscopique H'. Comme il est loisible de le faire ici, on suppose que x vérifie
x? = 1. On décompose alors v en v, @ _ suivant les valeurs propres de x. On
remarque que 1’on a aussi une décomposition analogue pour ¥’ et pour p. On a alors

Uy =pp ®pL BV,

et une décomposition analogue avec + remplacé par —. C’est ici qu’a servi I’hypo-

theése sur la mauvaise parité des composantes de p, pour que le dual de p,. apparaisse

lui aussi dans I’espace propre de valeur propre +1. Notons N,, les dimensions des

représentations pi, et HgiL la représentation de GLy,, associée a ce parametre.

Onabiensir N, =N, +N,_et HgL est I’induite parabolique de Hgf X Hg’} .
Ainsi il existe un sous-groupe de Levi

My >~ (GLNp+ xM+) X (GLN/L xM*)

de H tel que ¥, se factorise par le L-groupe de My et la représentation virtuelle
stable [ (¥, H)] de H associée a ¥, est une induite a partir de ce Levi. Notons
H' le facteur M x M~ de M : ¢’est un groupe endoscopique pour G, s’inscrivant
dans une donnée endoscopique H' = (H', x', §’, ...) de G’ et le parametre d’ Arthur
Y se factorise en &' o y,v. L'élément x” est dans le centralisateur de ¥/, on peut
le prendre tel que x’ 2=1let v =y’ T @y’ estla décomposition de v selon les
valeurs propres +1 de x’. Partons de la représentation stable [z (v, H')] associée
a Y. On peut d’abord considérer son transfert endoscopique vers G’, puis induire
vers G avec HSL :

Ind§_,,  (MSY & Trans§, ([ (Y, HHD)).

ou Transg/, désigne le transfert endoscopique (spectral) du groupe endoscopique
H’ de G’ vers G'. Or, ceci est égal a

IndG_,,y (MSE K (Yo, H) (syrx)) = w8 (Y, G)(syx).

Le fait que le transfert commute a 1’induction nous dit que I’on obtient le méme
résultat en prenant le produit tensoriel extérieur avec Hg:‘ et HS_L pour obtenir une
représentation virtuelle de My que I’on induit vers H, puis en prenant ensuite le
transfert endoscopique de H vers G :

Trans, (Indgh:MHNH (HS’:‘ X HS_L X [z (Y, GN])).
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Or ceci est égal a
Trans§; ([ (Y, H)]) = 74 (Y6, G)(syx).

On obtient donc que 78, G)(syx) = T4 (Wg, G) (syx). Comme on a ceci pour
tout x € A(¥ ), que G soit ou non quasi-déployé, on en déduit par inversion de
Fourier que nB(wg, G) = nA(wG, G). O

5B. Irréductibilité de I’induite parabolique pour les groupes unitaires. Nous al-
lons reformuler la proposition 5.2 de maniere un peu plus explicite pour les groupes
unitaires, en y ajoutant un résultat d’irréductibilité des induites paraboliques.

Théoreme 5.3. Soient g un A-parametre pour G = U(p, q), V¥ sa restriction a
C* x SL2(C) comme en (2-4) et Yrop la partie de bonne parité de ce paramétre.
Soient N = p +q et Ny, comme en (2-6). En particulier N — Ny, est pair, et I’on
pose amp = (N — Npp) /2, c’est le cardinal de I’ensemble E' (). On a alors
(1) Siinf(p, g) < amp, alors 74 (g, G) =0.
(i1) Si inf(p, q) > amp on pose pyy = p — Amp, Gop = g — Amp €t Yyp est la
restriction a C* x SLy(C) d’un paramétre VYGy, POUr Gop = U(phyp, gbp)- On
a donc une représentation unitaire rrA(l//Gbp, Gup) de U(pop, qop) X A(l/bep),
qui s’écrit

T WGy Gop) = D T (W6 1. Gop) M.

nGA@G\bp)
Alors 14 (Y, G) s’écrit t* (Vg, G) = eaneA/@) w(Yg, n, G)Xn, avec pour
tout n € A(Y) (rappelons qu’en vertu de la remarque 5.1, on peut identifier

AWay,) et AW6)),

nwc,n,G):Ind%(( X x,,s,a)w(wcbp,n,c;bp>>
(t,s,)eE’ (Y)

pour le sous-groupe parabolique standard P de U(p, q) dont le sous-groupe
de Levi est ]_[([,S’a)eg,(w) GL(a, C) x U(puvp, qvp)-
De plus, si T est une sous-représentation irréductible de 7w (Y g, oo 10 Gop)s

alors Ind$ (X s.areew) Xi.5.a) B T) est irréductible.
Démonstration. Seule la derniere assertion est nouvelle par rapport a la proposition.
Les représentations t de la derniere assertion du théoréme sont les représentations
<y (Ypp) de la section 4 attachée a la partie de bonne parité du parametre. Il est
démontré dans [Matumoto 1996, Theorem 3.2.2(2)] que I'induite parabolique de

( X x(t,s,a))ﬁmz(wbp)

(t,s,a)e€ (¥)

est irréductible, ce qui est exactement 1’assertion voulue. U
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5C. Irréductibilité de induction parabolique pour les groupes classiques. Nous
complétons maintenant la proposition 5.2 pour les groupes classiques en y ajoutant
le fait que, comme pour les groupes unitaires, 1’induction parabolique préserve
Iirréductibilité. Ce résultat avait été énoncé sans démonstration dans [Mceglin et
Renard 2017, théoreme 4.4].

Théoreme 5.4. On se place dans les hypothéses de la proposition 5.2. On suppose
que la condition d’existence de la forme intérieure G’ est vérifiée. Soit n € A(Yg).
Si T est une sous-représentation irréductible de w (Vg n, G'), alors Indg (HEL Xt)
est irréductible.

Rappelons que pour un groupe classique G, la mauvaise parité est : impaire si G
est un groupe spécial orthogonal, paire si G est un groupe symplectique. On écrit
la partie de mauvaise parité p (cf. [Moeeglin et Renard 2017, §4.1]) sous la forme

p= P ssBRale @ ne.s BRG]

i=l,..., 4 j=1,.., 4

Dans la premiere somme, t; € Z-¢, s; € iR, et §;, 5, est le parametre de Langlands de
la série discréte de caractere infinitésimal ((; +s:)/2, (—t; +5;)/2) de GLy(R), et
sis; =0, alors #; +a; — 1 est de mauvaise parité. Dans la seconde somme €; € {£1},
sj€iR, et Nej.s; €St le parametre de Langlands du caractere x — sgn(x)(l_ef)/zlxﬁf
de GL{(R), et si s; =0, alors a;. — 1 est de mauvaise parité. On note encore §;, 5, et
Ne,.s; les représentations de GL;(R) et GL;(R) dont ce sont les parametres. Pour
chaque indice i, on considere la représentation de Speh, notée Speh(d;, s, , a;) de
GL,,, (R) qui est irréductible et unitaire, et pour chaque indice j, le caractere unitaire
Ne,.s; © det de GLa} (R). La représentation HEL est alors obtenue par induction
parabolique irréductible a partir de la représentation

( & Speh((st,',si ’ ai)) IZ ( & T]ej’sj [¢] det)
' ¢

i=1,..,0 j=1,...

du facteur de Levi

( ] GLZL,,.(IR)> x( I1 GLa}(R))

i=1,...,0 j=l,t
de GLy, (R).

Soit Gy le groupe de méme type que G tel que GLy, (R) X G est un sous-groupe
de Levi d’un parabolique P de G. On note 1y une représentation unitaire irréductible
de Go. On note Ny son rang. On suppose que le caractere infinitésimal de g a bonne
parité, c’est-a-dire qu’il est formé d’entiers si la demi-somme des racines positive
de G est formée d’entiers et est formé de demi-entiers non entiers sinon. Le fait
que 7p soit unitaire n’est absolument pas nécessaire mais simplifie 1égérement la
preuve. Le théoreme résulte alors de la proposition plus générale suivante.
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Proposition 5.5. La représentation induite Indg(HSL X 19) est irréductible.

Démonstration. On note m = Indg (I"[SL X 19). Nous allons scinder la démonstration
en plusieurs étapes.

Premiére étape. Pour tout j € [1, £'], on remplace Nej.s; X R [a}] dans la partie de
mauvaise parité p par

(néj,Sj IZ R[a;]) @ (nféj,Sj IE R[a;])

On obtient ainsi un paramétre p* de dimension plus grande, et toujours de mau-
vaise parité, et il est clair que la proposition est vraie pour p si elle 1’est pour p*.
Remarquons que 1’on peut poser Nej.s; B N—ejs; = do, 5 (la limite de séries dis-
cretes do, 5 de GL;(R) est I’'induite de Nej.s; X N—¢;. sj). Ainsi, on peut supposer que
p=B._ 0O, X Rl[a;], mais il est maintenant possible que certains #; soient
nuls. La dimension N, de p est paire, et I’on pose N //) = N,/2 =7, a;. On change
maintenant 1égerement les notations, P = MN désigne maintenant le sous-groupe
parabolique standard de G de facteur de Levi isomorphe a ([]; GLag, (R)) x Go.
La représentation 7 est donc avec ces notations

7 =Ind§ ((& Speh(s;, ;, a,-)) X ro).

1

Deuxiéme étape. Les représentations Speh($;, s;, a;) sont obtenues a partir du carac-
tere xy.5;.a; d¢ GL,, (C) par induction cohomologique. Ceci est bien connu, voir par
exemple [Knapp et Vogan 1995, p. 586], et I’on utilise ici la version normalisée de
I’induction cohomologique [loc. cit., (11.150b)]. Ainsi, 7 est obtenue en deux étapes,
d’abord une induction cohomologique, puis une induction parabolique. Le théoreme
de transfert du chapitre 11 de [loc. cit.] permet d’échanger 1’ordre de ces deux
inductions. Une référence commode pour cela est [Matumoto 2004, Theorem 2.2.3],
qui nous donne exactement I’énoncé voulu. Donnons les détails. Matumoto introduit
la terminologie de o 0-paire pour un couple (p, q) de sous-algebres paraboliques
de G. La sous-algebre p est la complexifiée de I’algebre de Lie d’un sous-groupe
parabolique P de G, qui ici a été fixée a la fin de la premiere étape. La sous-algebre
q est une sous-algebre parabolique #-stable. On pose L = Normg (q). On choisit
ici cette sous-algebre de sorte que d’une part L soit isomorphe a U(N/, N ;)) x Go
et que d’autre part la condition S2 de la définition 2.1.1 de [Matumoto 2004] soit
vérifiée, c’est-a-dire que p N g contient une sous-algebre de Cartan o et §-stable
de g. Il est facile de vérifier que I’on trouve une telle sous-algebre ¢, en partant
d’un sous-groupe de Cartan isomorphe a (CX)N;) x U(1)No de M. On adopte les
notations de Matumoto, qui sont usuelles (p =m®n, g =[P u, etc.). On a ainsi

MNK dim(uNmNe)
T= Indg((nR?ﬂm,rzmMmK) e (<|X| Xt,',s,-,a,) X7 ))

i



SUR LES PAQUETS D’ARTHUR DES GROUPES UNITAIRES 77

Remarquons que ici L N M est isomorphe a ([]; GLg, (C)) x Go. Le résultat de
Matumoto nous permet alors d’écrire, sous certaines conditions de positivité des
parametres,

T = (Rg:llme)dlm(umE) (IndéﬂL (((& Xl‘,',S,',al‘) & f()) ® C—S(u )) .

Ici, on a simplifié la formulation de Matumoto, en utilisant le fait que le groupe
L N M est connexe, et ainsi le caractere noté Csinyy par Matumoto venant de la
normalisation subtile des foncteurs d’induction cohomologique dans [Knapp et
Vogan 1995] coincide ici avec Cssny) (en général ces deux caracteres sont seulement
égaux sur la composante neutre de L N M). D’autre part, si I’on suppose les t;
suffisamment grand, les hypotheses de positivité dans le théoreme de Matumoto
sont vérifiées.

On veut montrer que 7 est irréductible. Or, avec les #; suffisamment grand, 1’induc-
tion cohomologique (Rﬁ:fm )M e fait dans le good range et préserve donc Iir-
réductibilité. 11 suffit alors de démontrer que Ind; (((IX; x1.51.0:) M 70) ® C_su))
est irréductible. Or

U(N,,N))
Il’ld%mL (((lx Xt,-,s,-,a,-)g":O) ®C—8(u)) = (Indp/ e ((|X| Xt,-,s,-,a,-) ®C—8(u))>|ZtO

Ici P’ est un sous-groupe parabolique de U(N,, N ;) de facteur de Levi isomorphe
a []; GL, (C) (ce dernier se plonge naturellement dans GLy,(C) et ’on voit
GLy, (C) comme le Levi du parabolique de Siegel). On est ramené a montrer
Pirréductibilité de Ind %> ((X; x,.5,.,) ® C—squ))- Ceci découle de la derniere
assertion du théoréme 5.3 car I’hypothése de mauvaise parité pour le groupe unitaire
UN',N ;)) est vérifiée, comme on le montre ci-dessous.

On calcule le caractere de torsion C_s(,). Posons g = 0 si G est un groupe
orthogonal pair, e = 1 si G est un groupe symplectique, et €g = % si G est un
groupe orthogonal impair. Dans le systeme de coordonnées usuelles pour G, on a

Sw=(N—-N,—3+ec,....N-N,—1+¢€5.,0,...,0).

p o
[ —
N, No

L’hypothese de mauvaise parité des (#;, s;, a;) pour G est : soit s; # 0, soits; =0
et(ti+a;—1)/2+¢€g € %Z\Z. Dans les deux cas, (ti + N — N; — % +€q, S, ai)
est de mauvaise parité pour U(N/, N ;)), car dans le second cas

5ti+ai—1)+N—N,—5+ec+52N,—1) e 3Z\Z.

Ceci termine la deuxiéme étape ou 1’on a établi le résultat voulu si la condition
que les #; soient suffisamment grands.

Troisieme étape. On ne suppose plus ici que les #; sont suffisamment grand, mais on
choisit 7' suffisamment grand pour que la représentation 7 obtenue en remplacant
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les #; par t; + T soit irréductible d’apres la deuxieme étape. C’est-a-dire que 1’on
pose

nr =Ind$ ((& Speh (8,475, a,~)> X ro)

i
JMNK dim(uNmNt)
= Ind3 ((nR‘chm,LmMmK ) ((g Xt,-+T,s,-,ai) X t0))
1

On veut montrer que 7 s obtient de w7 par un foncteur de translation [Knapp
et Vogan 1995, Chapter 7], c’est-a-dire que 1’on obtient 7 en tensorisant w7 par
une représentation de dimension finie F' de G, et I’on projette sur la composante de
caractere infinitésimal généralisé le caractere infinitésimal de 7. On note ng le rang
de Gy. Le rang de G est donc ng + N, =no + 2N/’).

On choisit une sous-algebre de Cartan h de g et un systeme de racines positives
A (g, b) de b dans g. On considere la représentation de dimension finie F, de G
de plus haut poids

(T/2,...,7/2,0,...,0).
————— ) — —

2N, no
On remarque que cette représentation admet le poids extrémal

wo:=(-T/2,...,=T/2,T/2,...,T/2,0,...,0).
N e’

’ ! n
N » Np 0

On note p’ =m’ @1’ la sous-algebre parabolique de g qui stabilise le sous-espace
poids g de F (qui est de dimension 1 car pq est extrémal). Son facteur de Levi
m’ est isomorphe a gly, (C) x gl (C) x go. On note ¢’ = ' ® v’ la sous-algebre
parabolique de g contenue dans p’ dont la sous-algeébre de Levi I est isomorphe a

gly, (C) x -+ - x gly, (C) x glg, (C) x - - - x gly, (C) X go.
Ceci ne détermine pas ¢ :onal' cm/, v’ Cv/, v =n'® (m’' Nu') et 'on fixe
m’ Nu’ en demandant que pour toute racine 8 € A, h),
(5-5) B(tis oo ostly o tes oo tg—tg, o tey oo, =1, ..., —11) < 0.

ai ap ag aj

On note X le caractere infinitésimal de 7 et ):T celui de w7 que I’on voit aussi
comme éléments de h*. On veut montrer que w s’obtient de w7 par le foncteur de
translation défini par F, c’est-a-dire que

= (7 ®F);

oll (-); dénote la projection d’un module 3(g)-fini sur sa composante primaire pour
le caractere infinitésimal généralisé défini par A.
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Pour cela, on suit [Vogan 1988, Proposition 4.7] en modifiant convenablement
les hypotheses. On commence par montrer un analogue du lemme 4.8 de [Vogan
1988].

Lemme 5.6. Soit i € b* le plus haut poids d’une composante irréductible de la
restriction de F a I. On suppose que pour un certain w dans le groupe de Weyl
de G,ona

(r+w=w-X
Alors (L = L.

Démonstration. On pose hy = h N[, '] et ’on note 3 le centre de I'. On a alors
h=h®s et b"=b D3

C’est une somme directe orthogonale. Si v € h*, on note v = V(@ v; sa décomposition
selon cette somme orthogonale. Le poids p s’écrit o+ Y pea@.p Mg B, avec les
coefficients m entiers négatifs. On a donc

(Ar 4wy =CGr+po)s+ Y. mgBy,
BeA®.bh)
Dans le systéme de coordonnées choisi, A7 s’écrit
%(tl +T+@—=1,....t0+T—(@—=1),....te+T+@—1),.... 5, +T +(ag—1),

aj ag

—tg—T+(ag—1),...,—t,—T —(a;—1),

ag

—n—T+wr4xuw—n—T—mr4L&””*)

aj

ou sur les derniére coordonnées, il apparait le caractére infinitésimal de 7y que nous
n’explicitons pas. Ainsi Ar + o s écrit

|
%n+@—npwn—m—n“wq+w—npwn+m—n,

aj ag

—Q+Mr4l~w—Q—Wr4%—h—+Wr4%~w—h—WVJL&HqQ

ag ay

et ):T + o = X, d’on

Gor + )= Ay + Z mg Bz,
BeAW,h)
et en utilisant (5-5), on en conclut

(5-6) |G =+ )51 < 1125l
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avec égalité si tous les mg sont nuls.

D’autre part A7+ et A = Ar + po ont méme prOJectlon sur by car . — g € h*
Ainsi ||(A7 + u)(|l = [|A(]. Or I hypothese force A7 -+ i et A A avoir méme norme,
et il y a donc égalité dans (5-6), d’ou 1 = . O

Pour en déduire le fait que la translation de 77 est bien 7, on raisonne comme
dans [Vogan 1988], ou la proposition 4.7 est déduite du lemme 4.8. Ici, on uti-
lise le fait que pour toute représentation T de M et pour toute représentation
de dimension finie F de G, Ind% p(DRF = Indg (t ® Fim). On applique ceci a
T=("R ?ﬂﬁgﬁMﬂK}d‘m(”mmm)((&, Xi+T.51.a) ¥ T0) et & F comme ci-dessus, et
I’on obtient

di NmNE
T ® F = IndG <( glmnﬁfrzlr{ijK) mum )<(g Xt,-+T,.v1,a;) IE TO) ® F|M) .
l

Ensuite, on utilise le fait que I’induction cohomologique a lieu dans le weakly
fair range, ou il y a annulation des foncteurs d’induction cohomologique en de-

gré différent de dim(u N'm N €), ce qui nous permet de remplacer le foncteur

m,MNK dlm(uﬂmﬂE) i n m,MNK dim(uNmNE)—i
(" qum,LmMmK) ar R:=) (=) ( qmm,LmMmK) (on ob-

tient alors une égalité de représentations virtuelles). Ceci nous permet d’utiliser
[Vogan 1981, Lemma 7.2.9(b)], et ’on a alors

nr @ F = Indg (R((lx Xt,v+T,s[,a,-> X ‘E()) ® F|M>
= Ind (R«(‘Z Xt,-+T,s,-,a,-> X To) ® F|MmL>)-

On remarque alors, avec les notations employées, que 1’on a en fait ' =[Nm
et ¢ = I'®n. On conclut en remarquant que les contributions a la projection de
77 ® F sur la composante primaire A proviennent des composantes de la restriction
de F a I’ de plus haut poids u vérifiant I’hypotheése du lemme, et que ceci donne
alors le résultat voulu.

Quatrieme étape. La translation préserve I'irréductibilité si ’image de 1’algebre
enveloppante dans I’algebre des endomorphismes G-finis de la représentation induite
du caractere de p est surjective. Un critere pour cela est que 1’orbite de Richardson
du parabolique P soit de fermeture normale et que I’application moment soit
birationnelle. Les orbites décrites par Barbasch [1989, Proposition 14.5] vérifient ces
criteres. La description de Barbasch en termes d’induite de Richardson s’applique
directement pour nous : dans le cas des groupes symplectiques, il suffit que G

soit trivial, et pour les groupes orthogonaux a I'inverse, il suffit que le rang de
Gy soit grand par rapport aux a;, et que la représentation 7y soit de dimension
finie. Comme on suppose 7y unitaire, si 7o n’est pas de dimension 1, cela veut dire
que Gy est un groupe compact, mais nous n’allons utiliser que le cas ol 7 est la
représentation triviale. Ainsi, on obtient I’irréductibilité de  a condition que 7 soit
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la représentation triviale du groupe trivial si G est symplectique, et la représentation
triviale d’un groupe G de rang suffisamment grand si G est orthogonal.

Cinquieme étape. On revient a 1’énoncé général de la proposition en utilisant
toutefois la réduction effectuée dans la premiere étape. On a donc

7 =1Ind§ <(® Speh(s,, 5, a; )) X m).

i

L’idée est de construire un opérateur d’entrelacement de 7 dans un module stan-
dard en position de Langlands négative, I’irréductibilité de & étant alors conséquence
de I'injectivité de cet opérateur : rappelons que 1’on a supposé 7y unitaire, et donc 7
est de longueur finie et unitaire, donc semi-simple, et bien siir, le module standard
en position de Langlands négative admet un unique sous-module irréductible.

Pour cela, nous allons avoir besoin de quelques considérations préliminaires
sur les représentations induites des groupes généraux linéaires. Utilisons les no-
tations usuelles pour les induites depuis les sous-groupes paraboliques standard
dans les groupes généraux linéaires et classiques. Comme précédemment, notons
;.5 la représentation de GL;(R) essentiellement de carré intégrable de caractere
infinitésimal ((—f +5)/2, (t +5)/2),0ut € Z-¢ et s € C (jusque 13, nous n’avions
introduit que les séries discretes, c’est-a-dire les §; ¢ avec s € iR), et notons 7¢ 5 le
caractére de GL (R) défini par x > sgn(x)!=9/2|x|%, € € 1, s € C, de caractere
infinitésimal s. Si § est ’'une de ces représentations §; s ou 7. s de GL2(R) ou
GL(R), notons Z(§) I’ensemble (¢ +s)/2+ Z dans le premier cas, et s + Z dans le
second. D’apres un résultat de B. Speh [1981], si §; et 8, sont deux représentations
de cette forme, alors la représentation induite §; x §, est irréductible si Z(81) # Z(5>).
En particulier, comme dans le groupe de Grothendieck on a §; x 8, = 6 x 81 en
toute généralité, on voit dans ce cas que §; X &, et 5 x §; sont isomorphes. On a
des familles d’opérateurs d’entrelacements

M(y1, y2) 1 811" X 821172 = 8] - |2 x 81+
et
N(y1, y2) 1 8] - 12 x 81" = 1] x &2 -

méromorphes en (y(, y2) € C2. Les compositions

M(y1, y2) x N(y1,y2) et N(y1, y2) X N(y1, y2)

sont des opérateurs scalaires donnés par une méme fonction méromorphe 1n(yy, y2)
a valeurs complexes. Cette fonction n’a pas de pole en (0, 0) (a cause de la condition
sur Z(81) et Z(83)) et I’'un des opérateurs M (yy, y2) ou N (y1, ¥2) est holomorphe en
(0, 0) (celui pour lequel le terme de gauche de la fleche est en position de Langlands
positive, et le terme de droite en position négative). Les opérateurs d’entrelacement
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M (0, 0) et N(0, 0) sont donc définis et réalisent 1’isomorphisme entre §; x §; et
52 ) 1.
On tire de ceci le résultat suivant

Proposition 5.7. Soient 1| et 1, des représentations irréductibles de GL,, (R) et
GL,, (R) respectivement. Supposons que pour un x; € C, le caractére infinitésimal
de 1| soit formé de nombres tous dans x + Z, et supposons qu’aucune composante
du caractere infinitésimal de 1, ne soit dans x + 7. Alors les représentations induites
71 X 7 et Ty X 71 de GLy, 44, (R) sont isomorphes.

Démonstration. On réalise 7| et 7, comme sous-module de représentations standards
en position de Langlands négative :

‘L’1;>51,1X---X51JI, Tz‘—)(Sz’lX---X(Sz,rz.
On a une famille méromorphe d’opérateurs d’entrelacement

MO, y2) 28l X X Sy [P X S [P X X Gy |2

= 81117 X X By [P X S | X X By |

qui se factorise en un produit de composition d’opérateurs d’entrelacement élé-
mentaires de la forme considérée avant 1I’énoncé de la proposition et qui sont tous
holomorphes bijectifs en (0, 0). L’ opérateur M (y, y») est donc holomorphe bijectif
en (0, 0). |

Revenons maintenant a notre but principal dans cette cinquieme étape.
Pour tout indice i, la représentation de Speh(é;, s,, a;) est réalisée comme unique
sous-module de la représentation standard :

St,-,s,-,a,- = Sti,si | : |_(ai_1)/2 X ati,si | : |—(di—3)/2 X... X 81‘,‘,5‘,‘ | : |(ui_3)/2 X 8t,‘,Sl‘ | : |(d1—1)/2.

Réalisons aussi la représentation 7y comme sous-module de Langlands d’une
représentation standard 7 de G en position négative. Ecrivons 7 = 7__ x Tiemp»
ol Temp est tempérée irréductible, et T__ est en position de Langlands strictement
négative (ici 7__ est donc une représentation d’un produit de GL;(R) et GL;(R),
et Tiemp une représentation d’un produit de GL(R) et GL2(R) et d’un groupe
classique, le produit de ces deux facteurs formant un sous-groupe de Levi standard
de Gy). On obtient donc un plongement

(5-7) T (]_[ S,,,,s,.,ai) X T__ X Tiemp-
1
Formons maintenant une représentation standard en position négative de la
maniere suivante. La représentation [ [, Sy, 5,4, X T—— s’écrit comme un produit de
représentations de la forme §|-|* ou § est une série discrete de GL(R) ou GLy(R)
et x est un demi-entier. Remplagons dans ce produit les termes comme ci-dessus
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avec x > 0 par §|-|™* et réordonnons les facteurs pour les mettre dans 1’ordre des
x croissants. Ecrivons le produit obtenu comme €tant A__ X Aepp 00 A__ estle
produit des facteurs 8] - |* avec x <0 et Amp celui avec x = 0. Notons A/ 1’opérateur
d’entrelacement standard pour le groupe G qui envoie (]_L St Si,a[) X T__ X Tiemp
dans A__ X A¢emp X Tremp- L’ opérateur d’entrelacement N se factorise en opérateurs
élémentaires, I’effet d’un opérateur élémentaire étant de remplacer un facteur §| - |*
avec x > 0 par §|-|* ou bien un produit de la forme 1| - |*' x 5| |*> avec 0> x| > x>
par 82| "2 x 8- |*" et ceux-ci sont bien définis (holomorphes) dans le domaine ou
on les considere. Notons encore A la composition de N avec (5-7) :

(5-8) Nim e (]‘[ St,.,si,a,.) X T—_ X Tiemp = A—— X Atemp X Tiemp-

i

La représentation Aemp X Tremp €St une représentation tempérée d’un groupe clas-
sique, induite d’une tempérée irréductible. La théorie du R-groupe et I’hypothese sur
les parités de Aemp (mauvaise) et de Tiemp (bonne) nous dit que cette représentation
est irréductible. D’autre part, A__ est en position de Langlands strictement négative.
Le terme de droite est donc une représentation standard en position de Langlands
négative, qui admet un unique sous-module irréductible.

Ainsi, on a bien construit un opérateur d’entrelacement de & vers un module
standard en position de Langlands négative, et il reste a montrer son injectivité.
Faisons tout d’abord quelques observations sur A__ et Agpp. La premiere est
formée a partir de facteurs §|-|* venant soit des S;, s, 4, soit de 7__. Mais un facteur
81]-*" venant d’un S;, g, 4, et un facteur 6;|-|*' venant de T__ commutent, car leur
produit est irréductible d’apres le résultat de Speh et les hypotheses sur les parités.
Onadoncen fait A__ = AP x 7 =7 _ x A" ot A°P*" est obtenue comme
ci-dessus en changeant des exposants en leurs opposés et en remettant le tout dans
I’ordre, mais seulement pour les facteurs provenant des représentations de Speh. Le
terme Aemp est lui un prodult de facteurs provenant des représentations de Speh.
On peut donc noter Aemp = Atemp pour insister sur ce fait. D’autre part, il commute
avec 7__ en vertu du résultat de Speh invoqué ci-dessus. Ainsi (5-8) peut aussi
s’écrire

Speh Speh

X Afemp X T-— X Temp-

(5-9) N:m— A

Montrons maintenant que pour I’injectivité de A/, on se ramene au cas ol 7
est une représentation d’un groupe compact. En effet, supposons que 7y soit sous-
module d’une série principale (]_[ j yj) x 7 ol les y; sont des caracteres de GL; (R)
et 7 est une représentation d’un groupe compact G, de méme type que G (G, est
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la partie compacte du facteur de Levi d’un parabolique minimal de Gg). On a donc

(5-10) 7 = <]_[ Speh(s;, s, , a,-)> X Tp > (]_[ Speh(s;, ., al-)> x <]_[ y,-) X T,
i i j

Grace a la proposition ci-dessus,

(]‘[ Speh(s,, ., a») x (H yj) = (]‘[ yj) X (H Speh(s;, ;. a»)
i J j i

et ’on peut réécrire le terme de droite en permutant les facteurs. On obtient donc
un plongement

(5-] 1) T = (l_[ Speh(gt[,s;’ al)) X tO

— (1_[ yj> X (]_[ Speh(é;, s, ai)> X T = (l_[ y}.) o
J i |

Admettons le résultat pour 7, a savoir que 1’opérateur d’entrelacement
N nl= (H Speh(s;, ;, ai)) X Ty = AL X Afgmp X Tiemp
i

construit comme ci-dessus en partant de 77’ plutdt que de 7, et avec les notations
évidentes, est injectif. Remarquons que comme t/; est une représentation irréductible
d’un groupe compact, on a avec ces notations 7' = rtemp = 1) et T__ est triviale

et en particulier A’ _ = A " D’ autre part A/ Atser;ﬁg = Atemp- On a donc un
opérateur injectif

N :n' = (1_[ Speh(s;, ;, a,-)) X T <> ASPER o A?Jiﬁ? X 1.
i

temp

Par exactitude du foncteur d’induction parabolique, on en déduit un opérateur

injectif,
. Speh Speh
N".(l_[yj)xn’;)(nyj)xA X Aemp X To-
J J
On utilise a nouveau la proposition 5.7 pour écrire le terme de droite sous la forme
N Afg;ﬁg X (]_[ j yj) X T, et on compose avec le plongement (5-11) pour

obtenir un morphisme injectif que 1’on note encore A :
Speh Speh 1
N o= AT X A X (l_[ yj> X 7.
J
L’injection 79 — (]_[ j yj) X T, est obtenue en composant I’injection 7y <

T__ X Tiemp €t un morphisme 7__ X Tiemp —> (]_[J ¥j) X t4. Ainsi I'on voit que N
se factorise par V. Ceci établit le fait que I’injectivité de N’ implique celle de N.
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Pour les groupes symplectiques, qui sont déployés, 7, est la représentation triviale
du groupe trivial. L’injectivité de A/ provient alors de I’irréductibilité de 7’ établie
a la quatrieme étape, et du fait que N est non nul.

Les groupes orthogonaux demandent encore un peu de travail pour conclure
comme ci-dessus car G|, peut étre de rang trop petit pour pouvoir appliquer I’irréduc-
tibilit¢ démontrée a la quatrieme étape. On utilise les foncteurs de translation pour
se ramener au cas ol le caractere infinitésimal de 7, est celui de la représentation
triviale, c’est-a-dire que 7 est la représentation triviale Trivg, de Gy

Soit o un facteur irréductible de 7’ = (]_[l Speh(é;, 5, a,-)) x Trivg, (rappelons
que 77’ est unitaire et donc semi-simple). Notons n le plus grand entier entrant dans
le caractere infinitésimal de Trivg, . Soit 7" un entier suffisamment grand. Notons G;
le groupe de méme type que G, et de rang 7 +rg(Gy) tel que GL; R x Gy soit
un sous-groupe de Levi de G, et soit Triv(;g la représentation triviale de ce groupe.
On suppose donc T assez grand pour que les hypotheses de la quatrieme étape
soient vérifiées pour 7" = (]_[l Speh(é;, 5, a,-)) X Tring qui est donc irréductible.
La représentation induite

(5-12) B B A S B LR
posseéde un seul quotient irréductible car elle est quotient de la représentation
|'|}’l0+T X |'|l’l0+T—1 N |'|l’l()+1 % S(O')

ou S(o) est une représentation standard en position de Langlands positive et dont
o est le quotient de Langlands. Grace a la proposition 5.7, on peut mettre (5-12) en
position de Langlands positive, et elle admet donc un unique quotient irréductible.
Ce quotient irréductible est isomorphe a I’'image de 1’opérateur d’entrelacement
standard

|‘|n0+TX|.|n0+T71X.'_X|'|n0+1XO,_> |'|7n07TX|'|7n07T+1X"'X|'|7n071XO'
Donc les quotients irréductibles de
(5-13) R P L et O N L

sont isomorphes aux sous-modules irréductibles de I’image de 1’opérateur d’entre-
lacement standard

(5_14) |.|n0+T X |.|n0+T—l X oo X |_|no+l % 7T/
— |.|—n0—T % |_|—n()—T—l N |_|—n()—l % 7_[/

et il y a bijection entre ces sous-modules irréductibles de 1’image (et cette image
est semi-simple) et les sous-modules irréductibles de 7’.
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L’ opérateur d’entrelacement (5-14) se réécrit en utilisant la proposition 5.7 ci-
dessus

(5-15) (1_[ Speh(é;, ai)) X |.|no+T % |,|n0+T71 NV |,|no+1 « Triv%
i
- (1‘[ Speh(s;, ;. a») |- e 0T v
i

Or |_|n0+T x |- |n0+T—1 X oo X |- |no+1 x TriVGE)’ (resp. |- |—n0—T X |- |—n0—T+1 X
S B ™ Trivg,) est la représentation standard en position de Langlands
positive (resp. négative) dont Trivgy est I'unique quotient irréductible (resp. sous-
module). Ainsi 7" = ([]; Speh(s;, ;. ai)) x Trivy apparait comme image de (5-15),
et cette image est irréductible. Mais (5-15) s’écrit comme la composition de 1’iso-
morphisme

(]_[ Speh(s;, ;. a,)) s | [T Tl s |0 x T,
i

o [0t T s ot T =l Lot (]‘[ Speh(s;, ;. ai)) x Trivg,
i

no+7T—1 X no+1

=|.|m*T x 7,

de (5-14), et de I’isomorphisme

| X |n()+T |—Vl0—T+l X

X|' "'Xl'l_n0_1X7T/

— |- |70 s o THL s [Tl (]‘[ Speh(a,,.,s,,ai)) x Trivg,

1

~ (1‘[ Speh(s,, ., ai)) x [ 77T s 7o TH e 707 v,
i

Ainsi I’'image de (5-15) est d’une part irréductible et d’autre part a autant de
composantes irréductibles que 7" d’apres la remarque faite aprés (5-14). Ceci montre
que 7’ est irréductible.

Ceci termine la démonstration de la proposition 5.5. U
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TOPOLOGY AND DYNAMICS OF THE CONTRACTING
BOUNDARY OF COCOMPACT CAT(0) SPACES

DEVIN MURRAY

Let X be a proper CAT(0) space and let G be a cocompact group of isome-
tries of X which acts properly discontinuously. Charney and Sultan con-
structed a quasi-isometry invariant boundary for proper CAT(0) spaces
which they called the contracting boundary. The contracting boundary
imitates the Gromov boundary for §-hyperbolic spaces. We will make this
comparison more precise by establishing some well-known results for the
Gromov boundary in the case of the contracting boundary. We show that
the dynamics on the contracting boundary is very similar to that of a §-
hyperbolic group. In particular the action of G on d.X is minimal if G is
not virtually cyclic. We also establish a uniform convergence result that
is similar to the w-convergence of Papasoglu and Swenson and as a conse-
quence we obtain a new North-South dynamics result on the contracting
boundary. We additionally investigate the topological properties of the con-
tracting boundary and we find necessary and sufficient conditions for G
to be §-hyperbolic. We prove that if the contracting boundary is compact,
locally compact or metrizable, then G is §-hyperbolic.

1. Introduction

The Gromov boundary has been a very useful and powerful tool in understanding the
structure of 6-hyperbolic groups. The boundary has a large array of nice topological,
metric, and dynamical properties that can be used in probing everything from
subgroups and splittings to algorithmic properties. It has also played an important
role in proving various rigidity theorems.

For proper CAT(0) spaces, there is a nice visual boundary, but Croke and Kleiner
[2000] showed that such a boundary is not a quasi-isometry invariant. They con-
structed two different CAT(0) spaces with nonhomeomorphic visual boundaries on
which the same group acts geometrically. The visual boundary can still be used to
study CAT(0) groups, for instance it can detect products [Bridson and Haefliger
1999, 11.9.24], but the failure of quasi-isometry invariance is a serious blow. Charney
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Keywords: geometric group theory, Morse boundary, rank-one isometries, CAT(0) geometry,
contracting boundary,
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and Sultan [2013] constructed a natural topological space associated to a CAT(0)
space, called the contracting boundary, which is a quasi-isometry invariant.

One of the many properties that geodesics have in a §-hyperbolic space is that
there is a uniform bound on the diameter of the projection of a ball onto a geodesic
disjoint from it. It turns out that this is a very powerful property and the existence
of such geodesics in a space has significant consequences for the geometry [Algom-
Kfir 2011; Bestvina and Fujiwara 2009; Hamenstiddt 2009]. Such geodesics are
called contracting geodesics.

The contracting boundary, d.X, of a complete CAT(0) space X is the set of
contracting rays in X up to asymptotic equivalence. It is homeomorphic to the
Gromov boundary when X is also §-hyperbolic and is designed to imitate the
Gromov boundary for more general CAT(0) spaces. However, the contracting
boundary for CAT(0) groups is still not very well understood, so we hope to help
lay out the ground work for a program of study to better understand it and its
implications for CAT(0) groups.

The rank-rigidity conjecture of Ballmann and Buyalo says that for sufficiently
nice CAT(0) spaces, the nonexistence of a periodic contracting axis implies that
the space is either a metric product, a symmetric space, or a Euclidean building
[Ballmann and Buyalo 2008]. Rank-rigidity theorems have been proven for many
different classes of spaces including Hadamard manifolds, CAT(0) cube complexes,
and right-angled Artin groups, as well as some others [Ballmann 1985; Caprace
and Sageev 2011; Behrstock and Charney 2012; Caprace and Fujiwara 2010]. In
light of these results, the study of CAT(0) groups can often be reduced to the study
of CAT(0) groups with a contracting axis. Building on the work of Ballmann
and Buyalo, we show that a CAT(0) group has a contracting axis if and only if
the contracting boundary, d. X, is nonempty. Thus the contracting boundary is a
promising tool for the study of CAT(0) spaces and groups.

Several of the rigidity theorems for hyperbolic groups can be proven through a
careful study of the dynamics of the action of the group on its boundary [Freden
1995; Gabai 1992; Casson and Jungreis 1994]. These rigidity theorems become
even more striking when further geometric structures are added, such as the Mostow
rigidity of finite dimensional hyperbolic manifolds [Mostow 1968].

Our most promising results have been predominantly dynamical. While the
topology of the contracting boundary tends to be rather pathological, many of the dy-
namical properties of the Gromov boundary are shared by the contracting boundary.

There are two main dynamics results that we obtain in this paper. The first says
that the orbit of any contracting ray is dense.

Theorem 4.1. Let G be a group acting geometrically on a proper CAT(0) space.
Either G is virtually Z or the G orbit of every point in the contracting boundary is
dense.
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The second dynamics result concerns a more powerful convergence-group-like
property. This is similar to the m-convergence of a CAT(0) group on its visual
boundary.

Theorem 4.2. Let X be a proper CAT(0) space and G a group acting geometrically
on X. If g; is a sequence of elements of G where gix — y ™ for some x € X and
vyt € 0cX, then there is a subsequence such that g; Iy > y~ fory~ € 0.X and for
any open neighborhood U of y™ in 8.X and any compact K in 3. X — y~ there is
an n such that g;(K) C U fori > n.

The normal version of 7-convergence introduced by Papasoglu and Swenson
[2009] and the North-South dynamics due to Hamenstidt [2009] both deal with the
visual topology on the visual boundary. Because the topology on the contracting
boundary is not the subspace topology, these theorems don’t directly apply.

Both of these results are well known for the action of a hyperbolic group on its
boundary. We will discuss them both in greater detail in Section 4.

The topology on the contracting boundary is defined as a direct limit of subspaces,
9P X, consisting of rays with contracting constant bounded by D. The topology
is quite fine and is, perhaps, more pathological than one would expect from a
bordification. While the subspaces 3” X are compact and metrizable, we prove
that the direct limit, d. X, is not always compact (nor locally compact) for CAT(0)
groups, though it is known to be o -compact [Charney and Sultan 2013]. In Section 3
we define the topology and discuss some relevant basic topological facts.

One of the powerful tools that is available when studying the Gromov boundary
is the family of metrics on it. In Section 5 we show that a number of topological
properties, including the metrizability of the contracting boundary, characterize
when the space is 6-hyperbolic.

Theorem 5.1. Let X be a complete proper CAT(0) space with a geometric group
action. Then the following are equivalent:

(1) X is 6-hyperbolic.

(i) 9.X is compact.
(iii) 9.X is locally compact.
(iv) 90.X is metrizable.

A generalization of the contracting boundary for proper geodesic metric spaces,
called the Morse boundary, was introduced by Cordes [2017]. It would be interesting
to see if any of these results hold true in that more general setting. In particular,
it seems like many of the necessary pieces are already known for an analogue of

Theorem 5.1 for the Morse boundary in some restricted cases [Cordes 2017; Fink
2015].
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2. Some basics on contracting geodesics

For the entirety of this paper we will assume that a geodesic a is an isometric
embedding of R or a segment of R into a metric space. For convenience we will
often conflate the image of the embedding with the map itself. For the subsequent
discussion we may assume that unless stated otherwise all metric spaces are proper
and satisfy the CAT(0) inequality.

Notation. Recall that 0 X is the set of infinite geodesics, where two geodesics are
considered equivalent if they are within a bounded neighborhood of one another.
Throughout we will mostly consider the cone topology on this set; recall that
a neighborhood system is described by the set U, (e, r) which are all geodesics,
with b starting at a(0) such that d(b, a(r)) < €. This is sometimes called the cone
topology.

We will adopt the notation convention that [x, y] represents the unique geodesic
between the points x, y € X. For a point x € X and a point « € dX we will use
[x, @) to denote the unique geodesic starting from x which is in the equivalence
class . When we write (¢, 8), we will mean a specific bi-infinite geodesic, ¢, such
that ¢|(—c0,01 € @ and c|[o,o0) € B. For a geodesic ray a in X we will use a(co) to
denote the equivalence class of a in 9X.

Definition 2.1 (contracting geodesics). A geodesic a is said to be A-contracting
for some constant A if for all x, y € X,

d(x,y) <d(x, ma(x)) = d(7ma(x), 4 (y)) < A.

Note that this definition is sometimes called strongly contracting in the literature.
Contracting geodesics can be thought of as detecting hyperbolic “directions” in a
CAT(0) space. Another useful, and equivalent, property of hyperbolic-like geodesics
is that of §-slimness. This is much closer to the notion of Gromov hyperbolicity.

Definition 2.2 (slim geodesics). A geodesic a is said to be §-slim if for all y ¢ a and
all z on a there exists a point w on the geodesic [y, z] such that d (7, (y), w) <.

It turns out that this property will be much more versatile for our purposes; luckily
for us the two notions are equivalent in proper CAT(0) spaces. For a complete
proof, see [Charney and Sultan 2013; Bestvina and Fujiwara 2009].

Lemma 2.3. If a is a contracting geodesic with contracting constant A then a is
Sa-slim for some &4 which depends only on A. The converse is also true; if a is
§-slim then it is ® (8)-contracting where ®(8) depends linearly on §.

We will adopt the convention used in [Bestvina and Fujiwara 2009], that all
constants will be denoted by ®(-). Typically the function ®(-) will be linear in
its terms. When constants are referenced in later statements the relevant lemma and
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theorem number will be added as a subscript. Sometimes it will be expedient to
drop the terms of & if they are clear from context, e.g., Lemma 2.3 says that if a is
a §-slim geodesic it is $; 3-contracting.

One of the most important facts about the contracting constant of a geodesic is
that it is controlled by the contracting constants of nearby geodesics. This will very
important in the sequel as it will allow us to push contracting geodesics around via
isometries and give us fine-tuned control on the contracting constants of a target
geodesic.

Lemma 2.4. If we have geodesics [a, b] and [a’, b'], where [a, D] is A-contracting,
d(a,a’y=D,andd(b,b")= D’ then [a’, b'] is ®(A, D, D')-contracting. It suffices
to take ®(A, D, D') = 16A +28D +7D’ + 10.

A proof for this is in [Bestvina and Fujiwara 2009, Lemma 3.8]. Though they
do not write down the explicit ®(A, D, D’) in their paper, it is possible to recover
the one above from their work.

Another important property of contracting geodesics is that subsegments of a
contracting geodesic are contracting. So unless otherwise specified we may assume
that if a is A-contracting, all subsegments are also A-contracting.

Lemma 2.5. [fa is a contracting ray with contracting constant A then a subsegment
of it is ®(A)-contracting where ®(A) = A+ 3.

Bestvina and Fujiwara [2009] prove this in a slightly more general context. To
understand why the contracting constant may have to increase, note that there are
balls that don’t intersect the subsegment but do intersect the original contracting
ray. The increase can be thought of as making up for some possible differences in
the local geometry of the subsegment compared to the original ray.

As a converse to the previous lemma, sometimes we will need to piece together
two contracting geodesics into a longer geodesic. It is an easy warm-up exercise to
show that this new geodesic is also contracting.

Lemma 2.6. Let a and b be geodesics in a CAT(0) space X. If a is A-contracting,
b is B-contracting, and a(0) = b(0) = z, then the following hold:

(1) If the concatenation of a and b is a geodesic, then it is (A+ B)-contracting.

(ii) For every point x € a and y € b, the geodesic [x, y] is a (A, B)-contracting
geodesic where ®(A, B) = ©34(A,0,84) + Pr.4(B, 64, 0).

(iii) If X is also a proper metric space, the geodesic [x, b(00)) and (a(00), b(0c0))
are ® (A, B)-contracting such that (A, B) is as above.

Proof. (i) Left as an exercise.

(i1) If the concatenation of a and b is a geodesic, this is obvious by part (i), so
assume otherwise. By Lemma 2.3 we have that a is §4-slim and b is §g-slim. We
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may assume that 64 > §p. By the definition of slimness there is a point w on [x, y]
which is within 254 of both of the other sides of the geodesic triangle A(x, y, z).
By Lemma 2.4 the geodesic [x, w] is ®;4(A, 0, 25 4)-contracting and the geodesic
[w, y] is ;4(B, 254, 0)-contracting. So by the first part of this lemma, [x, y] is
contracting with ® (A, B) = $24(A, 0,284) + P1r4(B, 254, 0).

(iii) This follows easily from part (ii) by taking a sequence of points y; — b(c0).
The uniqueness of infinite rays in proper CAT(0) spaces, Lemma 2.4, and the
Arzela—Ascoli theorem imply the statement. (]

In contrast with geodesics in Euclidean flats, the diameter of the projection of any
geodesic onto a contracting geodesic is finite. The proof can be found in [Charney
and Sultan 2013].

Lemma 2.7. If a is a contracting geodesic and b is any other infinite geodesic then
the projection of b onto a is of bounded diameter D.

In a §-hyperbolic space, geodesics are coarsely determined by their endpoints on
the boundary. For CAT(0) spaces which contain Euclidean flats, this is easily seen
to be false; however, if the geodesic happens to be §-slim, it is true.

Lemma 2.8. Let a be a §-slim bi-infinite geodesic. If b is a bi-infinite geodesic
which stays a bounded distance from a then b will be in the 2§-neighborhood of a.

Proof. Left as an exercise to the reader. [l

As a consequence of the bounded projection property for contracting geodesics,
Charney and Sultan [2013, Proposition 3.7] proved that contracting geodesics have
a strong visibility condition.

Lemma 2.9 (visibility). If X is a CAT(0) space and a is a contracting geodesic
then if b is any geodesic in X there is a bi-infinite geodesic from b(00) to a(0o).

Lemma 2.10. If X is a proper CAT(0) space and a is a 5-slim geodesic in X then
for any x € X the distance d(m,(x), [x, a(c0))) is less than or equal to 8. This just
extends the concept of 5-slimness.

Proof. This is just an application of the §-slim condition to the sequence of geodesics
[x, a(N)] and the Arzela—Ascoli theorem O

The following lemma is simply Corollary 3.4 from [Bestvina and Fujiwara 2009].

Lemma 2.11 (thin rectangles). Let w, x, v, z be points such that the geodesic [x, y]
is D-contracting and m(y y)(w) = x and 7y y)(z) = y. Then there exists an M > 0
such that either d(x, y) < M ord([x, y], [w, z]) < M, where M depends only on D.

We are going to need a slightly beefier version of Lemma 2.11 in the following
proofs. We are going to have to require tighter control of the entire geodesic and
we will let one of our endpoints be a point in the boundary.
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Figure 1. Bounding rectangles.

A remark on the notation in the following lemma: the projection of a point in the
contracting boundary, o, onto a D-contracting geodesic, y, is a well defined notion.
For more details and a definition see Remark 3.5 and the discussion before it.

Lemma 2.12. Let y be a D-contracting geodesic, o € 0.X and x € X. If c
is the geodesic from x to m,(x), b is the geodesic from m,(x) to m,(a) and a
is the geodesic from m,(a) to a, then there exists an M > 0 such that either
d(my,(x), my (o)) < M or the geodesic [x, ) is in the M neighborhood of cUbUa
and vice versa.

Proof. First, fix a w on the geodesic a. We will prove the lemma replacing « with
w and that will suffice as you can take a sequence of w tending towards « and
apply the Arzela—Ascoli theorem to obtain the lemma.

Applying Lemma 2.11 to the points x, , (x), 7, () and w we get an M’ such
that either there are points z; and z, on the geodesic [x, w] such that d(z1, z2) < M’
or d(m, (x), my()) < M’ (see Figure 1). We may assume the former.

Since y is D-contracting we may assume that [z, 7, («)] is also D-contracting,
and thus the triangle z,, w, 7, () is §p-slim. Since [z;, w] is in the M’ neighbor-
hood of [z, w] and [z2, w] is in the § neighborhood of [z2, ), ()] U [y, (o), w],
(where § might be a linear function of § p), we have that [z1, w] is in the M’+6 neigh-
borhood of [z2, ), ()] U [, (@), w]. Running the argument in the other direction
gives that [z2, ), ()] U [}, (), w] is within the M’ + § neighborhood of [z1, w].

By repeating this argument with x, 7, (x), z> and z; and setting M = M’ +§ we
get the result. (I

This next lemma gives us information about the global geometry when the
equivalence class of a contracting ray is fixed by a cocompact group action. This
lemma will allow us to rule out the existence of global fixed points in the contracting
boundary later on.
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b(00)

Figure 2. A globally fixed contracting geodesic.

Lemma 2.13. Let G be some group acting cocompactly by isometries on a CAT(0)
space X. If there is some o € 0 X such that G fixes o and some representative of o
is contracting, then every ray in X is contracting.

Proof. For the following argument, refer to Figure 2. Let b be some ray in X.
Pick a representative a of « such that a(0) = 5(0) = x. Note that because one
of the representatives of « is contracting, all of them are, though the contracting
constant will depend on x, so let A be such that a and all subsegments of a are
A-contracting. By Lemma 2.7 the projection of b onto a is bounded, i.e., there is a
P such that d(x, m,(b(i))) < P for all i. By cocompactness we also have a C > 0
and a collection {g;} € G with d(g;x, b(i)) < C. This implies that

d(x, m,(gix)) <d(x, ma(b(i))) +d(ma(b(i)), m,(gix))
< P+d(b(i), gix)
E P + Ca

where the second inequality is by the definition of P and the fact that the projection
function is nonincreasing.

Because the g; leave o fixed we have that g;a is the geodesic from g;x to «.
Since a is contracting, by Lemma 2.10 there is a §4 such that d(;,(g;ix), gia) < da
for all i. We can then derive the following inequality:

d(x,gia) <P+ C+364.
Thus there is some N; such that d(x, gia(N;)) < P+ C + 4.
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Because all subsegments of g;a are also A-contracting we have that [b(0), b(i)]
is close to an A-contracting geodesic and Lemma 2.4 then implies that [6(0), b(i)]
is @ 4(A, C, P+ C + §4)-contracting for all i. The geodesic b is then contracting
since every initial segment is contracting with the same constant. (I

Definition 2.14. Let X be a complete CAT(0) space. The angle Z(«, ) between
o, B € 0X is defined as

sup Ly (e, ),

xeX
where /, («, B) is the Alexandrov angle between the two (unique) geodesics which
start at x and are in the equivalence class of « and 8. The function Z( -, -) defines
a metric on d X making it a complete metric space. The associated length metric is
called the Tits metric and is denoted dr («, B).

For further information on the Tits metric see [Bridson and Haefliger 1999,
Chapter 11.9].

The following is a result of Ballmann and Buyalo [2008, Proposition 1.10] and
it supplies us with a rank-one isometry for all complete cocompact CAT(0) spaces
which have a contracting ray.

Proposition 2.15. Suppose X is a cocompact CAT(0) space and 3 X is nonempty,
then the following are equivalent.

(1) X contains a periodic rank-one geodesic.

(2) Foreach& € 0X thereisann € 0X withdr(n, &) > m.

Corollary 2.16. Let X be a complete and proper CAT(0) space and let G act on X
geometrically. If X has a contracting ray then there is a rank-one isometry.

Proof. By the strong visibility condition in Lemma 2.9, if X has a contracting ray a
then it is visible from all points & € d X. The geodesic between a(co) and any §y € 0 X
guaranteed by visibility tells us that the Alexandrov angle /(a(00), &) is equal to 7.
To show that the Tits distance is larger than 7 from any point £ € d X, pick a geodesic
from a(oo) to & inside the Tits boundary d X and call it ¢ (note: if no such geodesic
exists then dy (a(00), &) =00). Now let &y be a point on ¢ separate from a(co) and &.
Then we will have that dr (a(00), &) =length(c) > Z(a(o0), &)+ L(&p, &) > +€;
note that € > 0 since &y # &. So dr(a(c0), &) > m and we have that X has a
rank-one periodic geodesic. O

We need the following technical fact about geodesics in metric spaces at several
points in this paper; we include a proof for the sake of completeness.

Lemma 2.17. Let vy be a geodesic in a metric space X and let x be a point in X
such that d(x, y (0)) = to. Then if the distance d(x, y) < D, then d(x, y (ty)) <2D.
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Proof. Since d(x, y) < D, let £ be a point such that d(x, y (£)) < D. There are two
cases, £ >ty or £ < 1y.

In the first case, we consider the geodesic triangle defined by y (0), y (£), and x,
but rewrite £ = fy + a. The triangle inequality says that fo+a < D + 1y, i.e., a < D.
Then, considering the triangle defined by the three points y (fo + a), v (fp) and x,
we get a new triangle inequality, d(x, y (o)) <a+ D <2D.

In the second case, we again consider the geodesic triangle given by y (0),
¥ (£) and x, but this time we write £ = fy — a. The triangle inequality gives us
to < D+ (typ —a) or a < D. Considering the triangle defined by y (t9 — a), v (to)
and x, we get the triangle inequality d(x, y (f9)) < D +a <2D. U

3. The topology of the contracting boundary

The topology of the contracting boundary is very different from any of the typical
topologies put on the visual boundary. Later, in Section 5, we will show that the
contracting boundary is not always a metric space. In fact, we show it to not even be
first-countable. In anticipation of that we will prove some elementary topological
facts about the contracting boundary (and direct limit spaces in general) to facilitate
some of the later proofs.

First, let’s define the contracting boundary and then we will talk about some of
its basic topological properties.

Definition 3.1. Let X be a CAT(0) space. Let 9P X, be the set of infinite geodesic
rays that start at x and are D-contracting; we call this the D-component of the
contracting boundary. This is a subspace of the visual boundary of X, dX,, and
has the associated topology on it. If Dy < D; then there is the natural continuous
inclusion 32° X, <> 921X, so taking all nonnegative D we get a directed system.

The contracting boundary, denoted 0. X, is the union of all of the D-components
with the direct limit topology.

The homeomorphism type (but not the contracting constants) of the contracting
boundary is independent of the basepoint x, and so typically this will be suppressed
when there is no danger of confusion [Charney and Sultan 2013].

One of the basic properties of a direct limit space is that a set in the space is
open (respectively, closed) if and only if its intersection with each component is
open (closed). In fact, this is often taken as the definition.

Because the topology of the contracting boundary is so dependent on the topology
of the components, it will be useful to know how the subspace topology on the
components sits inside the visual topology. The following is Lemma 3.3 in [Charney
and Sultan 2013].

Lemma 3.2. For all D > 0, the D-components of the contracting boundary are
closed subsets of the visual boundary.
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Understanding compact sets in the contracting boundary will be important later
in our investigation. It turns out that compact sets in the contracting boundary are
closely related to the compact sets of the visual boundary, but are limited by their
contracting constants.

Lemma 3.3. A set K is compact in 3.X if and only if K = C N3P X for some
compact set C C X and some D.

Proof. < If K = C N3P X then because C is compact in dX and 3 X is a closed
setin dX by Lemma 3.2, K is a closed subset in C and therefore compact in 9 X.
Now the topology on d.X is defined in such a way that each of the components
3L X are topologically embedded into 3,X, i.e., compact subsets of 32 X will also
be compact in 9. X. So K is a compact set in d. X.

= Assume that K is a set in 9. X but that K is not contained in 3 X for any D.
These assumptions guarantee that there is some sequence of geodesics {a;} in K
where a; is D;-contracting and D; — oo. By possibly passing to a subsequence
we may assume that D; > D;_; and that each a; is not D;_;-contracting. Let
Ap, ={a;i}i>n+1. Note that for all n and all D, A, N 8LPX is a finite set and therefore
closed in each component, so A, is closed in d. X.

The collection O = {d.X \ A,} is an open cover of K, but each open set only
contains finitely many of the a;. Take any finite subcollection of O; it will only
cover finitely many of the @; and so it is not a cover, therefore K is not compact.
We can then conclude that if K is compact, it is contained in one of the components
9P X for some D. Because the topology on 9.X is finer than that of X, any set
which is compact in the contracting boundary is compact in the visual boundary.
In other words, every compact set K in the contracting boundary is of the form
K = K N3P X for some D. u

We will also want to know when sequences in the contracting boundary converge.
It turns out that a sequence converges in the contracting boundary if and only if
it converges in the visual boundary and its contracting constants are uniformly
bounded above.

Lemma 3.4. Let X be a proper CAT(0) metric space. A sequence a; in 0.X .
converges to a point b € 0. X if and only if the following two conditions hold:

(1) There is a uniform K such that a; is K -contracting for all i.
(2) In the visual boundary, a; — b.

Proof. < Since the qg; are all K-contracting, {a;, b} C 834 X, where M is the
max of the contracting constant of b and K. The topology on this component
is just the subspace topology and thus since a; — b in the visual boundary, the
convergence happens in this component as well. Because each of these components
is topologically embedded, convergence occurs in d. X, as well.
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= Note that the topology on 9. X is finer than that of the subspace topology. In
particular, if condition (2) fails then a; will not converge to b in the contracting
boundary.

Assume (1) fails, this means that for each k € N there is an i such that g;, is
not k-contracting. Consider the set {a;, }; this subsequence is in fact closed in 9. X,
because only finitely many of its elements are in each 3 X, and are thus closed in
the subspace topology. Thus a; / b in 9. X . U

For a point in the contracting boundary, o € 3. X, and a C-contracting geodesic ray
v, whose forward endpoint is different from o, we can define 7, (@), the projection
of o onto y. If we take a representative of «, say a geodesic a, the projection of a
onto y is a set of finite diameter by Lemma 2.7. There is then some unbounded
sequence of #; such that ), (a(#;)) will converge to some point y (7). Note that the
point y (T') depends, not only on the chosen representative of «, but also on the
sequence of ;. For a given representative a we have that a is eventually contained
in the compliment of any bounded neighborhood of y. Applying Lemma 2.11,
given a large enough 79, the geodesic [a(#y), a(c0)) is not contained in the M¢
neighborhood of y and so for all z, t > #,, we have d () (a(t)), 7, (a(t'))) < Mc.
Thus for any two sequences a(#;) and a(t)), since the projections of these two
sequences are eventually within M¢ of each other, the limits are as well. If another
representative of « is chosen, say d’, it is within a bounded distance of a, let us
call that distance D. By picking #y large enough, the geodesics [a(#y), a(c0)) and
[a'(ty), a’(00)) are outside of the D 4+ M neighborhood of y. Let ¢ > 1y, then there
is a t; such that d(a’(¢), a(f1)) < D, so applying Lemma 2.11, the projections of
a'(t) and a(#)) are within M¢ of each other. Thus the projections of [a’(y), a’(00))
and [a(ty), a(oco)) onto y are within 2M of each other.

Remark 3.5. A closed and bounded set in a proper CAT(0) metric space has a
unique center. That is, a point which is the center of the smallest circle which
contains the entire set exists and is unique [Bridson and Haefliger 1999, 11.2.7]. In
this paper that point will be referred to as the barycenter.

Definition 3.6. Given « € 9. X, and a C-contracting ray y, by the previous discus-
sion the set E = {lim; . m,a(#;) | a € a and the limit exists} will be nonempty
and have diameter at most 2Mc. Let 7, (a) be the barycenter of E (or the closure
of E if necessary).

Remark 3.7. For any T the three points, y (T'), « and ), (a) form an infinite §-slim
triangle where § depends only on C.

We will topologize the set X. = X U 3.X. Recall that X can be redefined as the
set of so-called “generalized” rays in X. A generalized ray is amap a : [0, 00) = X
such that an initial component a/|j ;) is an isometric embedding and the map a|[; o)
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is constant (by setting t = co we get back our infinite rays). Fixing a basepoint, xy,
such that all a(0) = x, each point x € X is represented by the unique generalized
ray, a,, whose initial component is the geodesic from x( to x, and is the constant
function a, (k) = x for k > d(xg, x) otherwise. Let us denote such a representation
of X by X,,. This defines a topological space X = X U9dX which is endowed with
the cone topology.

Definition 3.8 (topology of X.). Let xo be a basepoint in X. Define the following
set of generalized rays:

)_(g) ={c e X | c(0) =xy and c is at most D-contracting}.

Endowing these sets with the subspace topology from X, the inclusions will
form a directed system. This gives us our topology on X as the direct limit,

- . =D
Xexy = h_r)nXxO.

Remark 3.9. For all D < D" we have the following commutative diagrams, where
all inclusions are topological embeddings:

X, —— aP'X,,

[ [

Xy — Xo

By the universal property of the direct limit topology, this implies that there is
a continuous injection 9. X, < X c.xo- Because all of the maps in the diagram
are topological embeddings, it is immediate that this map is also a topological
embedding.

X is also topologically embedded in X .. ,. This is because, for each x € X, every
open ball is eventually contained in X ? for large enough D. This is just a conse-
quence of Lemma 2.4. Furthermore, X is an open set in X and so 8. X is a closed set.

Lemma 3.10. Consider a sequence of points x; € X. Fixing a basepoint x, the
sequence x; converges to some o € 3.X in the topology on X if and only if the
geodesics [x, x;] converge to « in the cone topology on X and the contracting
constants of the |x, x;] are uniformly bounded.

Proof. The proof of this is the same as the proof of Lemma 3.4. ([l

4. The topological dynamics of the action on the boundary

The topological dynamics of a group action can be a powerful tool in understanding
the global topology. In order to better gain an understanding of the contracting
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boundary of cocompact CAT(0) spaces we will attempt to exploit some well-known
results from §-hyperbolic spaces.

Most of the following results are well-known dynamical results for the visual
boundary of a CAT(0) group which contains a rank-one isometry, and a result
of Ballmann and Buyalo [2008] guarantees this is the case for the cocompact
groups we are considering here. However, the definition of the topology as a direct
limit of spaces gives the contracting boundary a much finer topology than the
subspace topology would. Because of this different topology we are considering, it
is necessary to reprove (and in some cases reword) these dynamics results as none
of them will follow as immediate corollaries from the known theorems.

For nonelementary hyperbolic groups, the orbit of every point in the boundary is
dense. This establishes a strong dichotomy: either the group is virtually Z or its
boundary has no isolated points.

Our first theorem is establishing this result in the case of the contracting boundary,
i.e., the contracting boundary either has no isolated points and has a countable
dense subset, or the group is virtually cyclic.

Theorem 4.1. Let X be a proper CAT(0) space such that G acts geometrically
on X. If 0. X # @ and G is not virtually cyclic then the orbit of each point in 9. X
is dense.

This is very similar to a result of Hamenstiddt [2009] on the limit set when the
group contains a rank-one isometry.

In the spirit of treating the contracting boundary as a replacement for the Gromov
boundary for CAT(0) spaces, it is natural to ask whether axial isometries act with
North-South Dynamics and if the group G acts as a convergence group action
on d.X. Recall that an axial isometry is an isometry that fixes a geodesic, called
the axis of the isometry; these are also called loxodromic or hyperbolic isometries
in the literature. Because the contracting boundary is not compact, the classical
formulations of these dynamical properties will have to be reinterpreted somewhat.

Theorem 4.2. Let X be a proper CAT(0) space on which G acts geometrically.
Let g; be a sequence of isometries in G such that gix — y* where y™ € 3.X, then
there is a subsequence of g;’s where gi_]x — v~ for some y~ € d.X and for every
open neighborhood U of y ™ and every compact set K C 3. X —y ~, we have uniform
convergence of g;(K) — y™.

This theorem is closer to Papasoglu and Swenson’s -convergence [2009] than

it is to a true convergence action. A corollary of this theorem is that rank-one
isometries act with a version of North-South dynamics on the contracting boundary.

Corollary 4.3. Let X be a proper CAT(0) space and let G be a group acting
geometrically on it. If g is a rank-one isometry in G, U is an open neighborhood
of g*° and K is a compact set in 9. X — g~ then g"(K) C U for sufficiently large n.
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Figure 3. The Salvetti complex X of Ar.

Failure of classical North-South dynamics. By classical North-South dynamics,
we mean the following theorem.

Theorem 4.4. If G is a 5-hyperbolic group acting on its Cayley graph X and if g is
an infinite-order element then for all open sets U and V with g*° e U and g~ €V
we have g" (V) C U for large enough n.

It is a well-established fact that for CAT(0) groups, the classical version of
North-South dynamics of axial isometries on the visual boundary fails. In particular,
if the isometry is not rank-one, whole flats may be fixed by the isometry.

Unfortunately, even if g is a rank-one element of G, this classical version of
North-South dynamics on 9. X still fails. If a is an axis for g there are open sets U
and V of a(0o) and a(—o0) such that gV (3.X \ V) € U for any N.

Note: this is in direct contrast with the subspace topology on the set of contracting
geodesics, (85”17 X). In [Hamenstadt 2009] and [Ballmann 1995], it was proven that
rank-one isometries act on the entire visual boundary with North-South dynamics
and thus on any subspace containing the endpoints.

For an example of the failure of the classical North-South dynamics of rank-one
isometries on the contracting boundary consider the RAAG, Ar = (a, b, ¢ | [b, c]).
This is the fundamental group of the Salvetti complex, X (see Figure 3), and its
universal cover, X, is a CAT(0) cube complex on which Ar acts geometrically
[Charney and Davis 1995]. Let y be an axis for the loxodromic element a. Let b;
be the geodesics following the words a~'b'aaaa - - -. Note that the contracting
geodesics b; do not converge to y (—oo) in the contracting boundary. This is because
the intersection of the set {b;} with each of the contracting components 9° X is a
finite set and therefore closed in the subspace topology, and thus {b;} is closed in 9. X.

The set V = (U, -(r, €) N 9.X) \ {b;} is then an open set around y (—o0) but for
all N we have aVby ¢ U,+(r',€) forall € <r'.

Proof of Theorem 4.1. The first step in proving this theorem will be to prove an
initially weaker result. We will prove that for a cocompact CAT(0) space, the
orbit of a point in the contracting boundary is either a singleton or is dense. The
proof relies on the observation that the orbit of a bi-infinite geodesic is easier to
understand and contains more geometric information than the orbit of an infinite
ray. We will take some contracting ray and one of its orbit points and connect the
two with a bi-infinite geodesic. It is then reasonably easy to show that the orbit of
this bi-infinite geodesic is dense in the contracting boundary.
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Proposition 4.5. If the action of G on X is cocompact and at € 3.X then a™ is
globally fixed by G or its orbit is dense in 9. X.

Proof. First note that if there are only two points in d.X then the proposition is
obvious. Either the orbit is a singleton or it is the entire boundary. So from now on
we may assume that |9.X| > 2 and that " isn’t globally fixed.

To show that the orbit is dense it suffices to show that for all § € 9. X there exists
a sequence of g; € G such that gja™ — B.

If B € Ga™ then we are done since there is an & such that 8 = ha™ so the
constant sequence g; = h will work.

If B is not in the orbit of a™, pick a point distinct from ot in Ga™ and call
ita™,i.e., hat =a~ for some h # e. By the visibility of 9. X there is a geodesic
connecting o~ to at. If we label this geodesic a and pick a basepoint x = a(0) on
it, there is also a representative, b, of 8, such that b(0) = x.

Note: since o™ and o~ are different elements of the contracting boundary, there
are two different contracting constants for their representatives a|[o, o) and a|(—oc,07,
but by Lemma 2.6 we have a uniform contracting constant for all of a and we shall
call it A. For the representative b of 8, let B be its contracting constant. Since
Lemma 2.3 guarantees that @ and b are slim, we will denote 4 and §p as their
slimness constants, respectively. To make the following discussion simpler, we will
assume that A and B are chosen so that all subsegments (finite or infinite) of either
geodesic are also contracting with the same constant.

By the cocompactness of the action of G on X there is a uniform C > 0 such that
for each i € N there is a g; € G such that d(g;x, b(i)) < C. Since we’ve picked g;
so that the orbit of x travels up along b we’d like to say that the geodesic a follows
suit, but first we need to pass to a subsequence.

Let g;a be the bi-infinite geodesic connecting g;a~ to g;a™ with basepoint g;x.
Now note that there is a #; such that g;a(#;) is the projection of x on g;a (see
Figure 4).

Infinitely many of the #; will be either positive or negative, so by passing to a
subsequence we may assume that all the #; have the same sign.

In the following argument we will consider the case when #; < 0. In this case
we will prove that g;a™ — B. If instead, #; > 0, the following argument will go
on to show, mutatis mutandis, that g;a~ — B. Because o~ = ha™, this tells us
giha™ — B. Thus, in either case, the orbit of @™ will accumulate on any B € 9. X.

Consider the representatives of g;a™ starting from the basepoint x and denote
them k;. To show that the sequence k; converges in d.X to b, Lemma 3.4 says we
only need the following two conditions:

(1) There is a uniform K such that for all i, k; is K -contracting.

(2) k; converges to b in the visual boundary 9 X.
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9¢a+

gt — x
Figure 4. Convergence of « translates.

It turns out that these two ingredients are a direct consequence of the following
lemma:

Lemma 4.6. There is a constant C such that for each i the following holds:
d (ki (i), b(i)) =2(64 + C).

Proof of Lemma 4.6. For the following discussion see Figure 4. We only need
to show that the distance from the point b(i) to the geodesic k; is 64 + C, then
applying Lemma 2.17 we get the result.

Observe that g;a is A-contracting and thus there is a point w on the geodesic k;
which is within 64 of 7,,,(x) by Lemma 2.10. Recall that 7y, (x) = g;a(t;) and
that #; < 0. By the convexity of the distance function, any point along the geodesic
8ial[;,00) Will also be within §4 of k;. In particular, since g;x = g;a(0) € g;al[;,c0)»
d(gix, ki) <684.

Because of how the g; were defined we also have that d(g;x, b(i)) < C. This
lets us conclude that d(b(i), k;) <84 + C. O

Lemma 4.6 is the key to establishing conditions (1) and (2).

Proof of (1). Since d(k;(i), b(i)) is less than or equal to 2(§4 + C), which is
independent of i, by Lemma 2.4 there exists a constant, ®» 4, independent from i,
such that the geodesic k; [jo.;] is $2.4-contracting.

The cocompact constant gives us d(b(i), g;x) < C, so together with Lemma 4.6
we have d(k; (i), gix) <284+ 3C.

Because g;a|(;; o0) 18 84-slim, for large enough T the point k; (T') is within §4 of
8ial[s.00)- You can apply Lemma 2.4 again to all subsegments k; |; 7 with large 7T,
thus they are all @/, ,-contracting for some @ , independent of i. This implies that
the infinite ray k;|[; o) is contracting with the same contracting constant.
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The concatenation of k;|jo ;1 and k; |[i o) gives us the entire geodesic k;. Then
Lemma 2.6 tells us that for all i, the k; are (P4 + d>/2. 4)-contracting. O

Proof of (2). Recall that the sets
Up(e,r) ={c|c0)=x and d(c(r), b(r)) < &}

form a local neighborhood basis for the visual boundary. So for each Uy (e, r) we
need an N such that k; € Up(e, r) fori > N.

N(e,r) = max{r , M}

&

is just such an N. When i > N (e, r) we get the following chain of inequalities:
d(ki(r). b(r) = 7d(ki(i). b(D) < 7264 +C) <e.

The first inequality is just a restatement of the convexity of the distance function
(and is the reason N (g, r) is chosen as a max), the second is a result of Lemma 4.6,
and the final inequality is just a restatement of the definition of N (g, r). Thus we
have that the sequence k; converges to b in the visual boundary. (]

Establishing conditions (1) and (2) tells us that k; — b in 9. X,. Because b was
arbitrary this tells us that the orbit Ga™ is dense in 9. X, and so the statement of
the proposition is proven. (]

The following corollary will come up later and so we will include it here. It
states that the orbits of contracting rays which aren’t globally fixed are dense in the
visual boundary.

Corollary 4.7. If G acts cocompactly on X and o™ € 8.X isn’t globally fixed by G
then its orbit is dense in 0 X.

Proof. This is an immediate consequence of the proof of condition (2) above. At no
point was the contracting constant of » used and so replacing it with a noncontracting
geodesic gives the same result. (Note that, in this case, condition (1) fails). O

Proposition 4.5 is the major component of Theorem 4.1, but there remain a
few loose ends. Here is an outline of what remains of the proof. We need to first
show that there are enough contracting geodesics in any cocompact CAT(0) space,
namely that if the contracting boundary is not empty it contains at least two points.
Second, we need to show that if there are exactly two points in the contracting
boundary the group is virtually cyclic. This will establish our dichotomy, that our
group is virtually cyclic or there are strictly more than two points in our contracting
boundary. Finally, it will be easy to then show that if there are more than two points
in the contracting boundary, none of them are globally fixed.
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Proposition 4.8. If G acts geometrically on a proper CAT(0) space X, then
|0.X| = 2 ifand only if G is virtually 7.

Proof. = Let a be a contracting geodesic connecting the two points in d.X. Recall
that this implies that a is §-slim for some §. Because the action of G on X is
cocompact there is some C such that for all points x € X there is some g, such
that d(g.a(0), x) < C. Because the contracting boundary only contains two points,
gxa is a bi-infinite geodesic which is asymptotic to the bi-infinite geodesic a. By
Lemma 2.8 we have d(g.a, a) < 2§, so the distance between x and a is bounded
by 28 + C. Thus a is a quasi-surjective quasi-isometric embedding of R, i.e., X is
quasi-isometric to the real line, and thus G is quasi-isometric to Z. It is a standard
exercise to show that a group which is quasi-isometric to Z is virtually cyclic. For
a sketch of the proof, see [Ghys and de la Harpe 1990, p. 10, Exercise 1.16]

& If G is virtually Z, then it is quasi-isometric to R. The contracting boundary
of a CAT(0) space is a quasi-isometric invariant, so d.X is equal to d.R which is
two discrete points. U

Lemma 4.9. If X is a proper CAT(0) space with a geometric action and 0. X # &
then |0.X| > 2.

Proof. Since the contracting boundary is nonempty we have at least one contracting
ray a. Now look at the orbit of a; if it is not fixed we’re done since the orbit of a
contracting ray is contracting. If it is fixed, then by Lemma 2.13 every geodesic ray
is contracting. So now the only way that we wouldn’t have at least two points in the
contracting boundary would be if all infinite geodesics were asymptotic. However,
if a CAT(0) group is not finite, it contains an infinite order element which has an
axis in X; for a proof, see [Swenson 1999]. U

Proposition 4.10 (the flat plane theorem). If a group G is acting geometrically on
a CAT(0) space, X, then X is §-hyperbolic if and only if X contains no Euclidean
flats F2

This is a standard result from [Bridson and Haefliger 1999, 1I1.H.1.5].

Corollary 4.11. Let G act geometrically on a proper CAT(0) space X with nonempty
contracting boundary 0. X. If G fixes a point in 9. X then G is virtually 7.

Proof. Let a € 9. X be a fixed point. By Lemma 2.13 we have that every geodesic
in X is contracting. In particular, we have that X cannot contain a Euclidean flat
and thus by the flat plane theorem, X is §-hyperbolic. The Svarc—Milnor lemma
then tells us that G is a §-hyperbolic group. Note that in this case the contracting
boundary is the Gromov boundary.

Recall that if a §-hyperbolic group is nonelementary, i.e., it is neither finite nor
virtually cyclic, then it has no globally fixed points in its boundary. This is because
it must contain an undistorted free group on two generators and the generators both
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act by North-South dynamics on the boundary with disjoint fixed points. For a
proof of these facts see [Ghys and de la Harpe 1990, Chapter 8]. The group G is
then virtually Z and so we are done. (]

Proof of Theorem 4.2. We will prove Theorem 4.2 by proving the easier to state
theorem below.

Theorem 4.12. Let y* and y~ be points in the contracting boundary. If there
is a sequence of isometries g; such that gix — y* and gi_lx — y~, then for
any compact set K in 3.X — {y~} and any open neighborhood, U C 3.X, of y ™,
gi(K) C U for large enough i.

We can loosen the hypothesis that the g;” ! converge to Yy~ to obtain Theorem 4.2
from Theorem 4.12. By a result of Ballmann and Buyalo [2008], if g;x — y T,
then (passing to a subsequence if necessary) the inverses converge to something
in the boundary, let’s call it y —. Because the contracting constants of the geodesic
[x, g Ix] (by Lemma 3.10) are uniformly bounded above by some uniform con-
stant B, you can bound the contracting constant of every finite subinterval of ¥~ by
B + 1 (and in fact by B with a little more work). Thus y ~ is contracting as well.

Because open sets in d.X can be much finer than in the visual boundary it is
not a priori obvious that there will be any form of North-South dynamics on the
contracting boundary. The important observation is that all open sets around y*
have a “B-contracting core” which contains the set of all B-contracting elements
which are nearby to ' in the visual topology. Because the action by g; coarsely
preserves the contracting constants in K, (and because they are already bounded)
you can push the set K into the “core” of U with the dynamics of the visual boundary
and establish that it is in fact a subset of U.

Note: I think this is not enough to use the ping-pong lemma, because compact
sets and neighborhoods aren’t complements of each other like they are with the
visual topology. This makes me suspect that there is a decent chance this applies
to the Morse boundary (where the ping-pong lemma fails in general see [Fink
2015]). Because of this I include a proof of a known dynamics result (Lemma 4.14)
on the visual boundary of a CAT(0) space which I believe will be amenable to
generalization onto the Morse boundary.

The proof will be broken up into two lemmas in order to simplify the discussion.

For the following we will assume that X is a proper CAT(0) space with nonempty
contracting boundary and a group of isometries G acting geometrically.

Lemma 4.13. Let V be an open set in the contracting boundary containing a
point y, then for each positive constant B there is an r and an €, depending only
on B, y and V such that

X, NU,(re)C V.
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bi(yi)

ci(pi)

v (pgy) Y~ (Pa)

Figure 5. The length p; is uniformly bounded.

Proof. We can prove this by contradiction. Assume that for some B no such r and €
exist. Then for each n € N we could find an element of 8CB X NU,(n, 1) which is
not in V. Thus we have a sequence of geodesics 1, such that n; € U, (n, 1) for all
i > n which is no more than B-contracting. Because this is precisely the condition
for convergence of a sequence in the contracting boundary laid out in Lemma 3.4,
we have that n,, — y but that the 7, are not in V. Because V is a neighborhood
of y this is a contradiction. U

The following lemma is a direct consequence of the m-convergence due to
Papasoglu and Swenson [2009]. This lemma should be generalizable to the Morse
boundary so we will provide a different proof which does not rely on the Tits metric
and so is likely easier to generalize.

Lemma 4.14. Let y™, y~ be elements in 9.X and g; be a sequence of group
elements such that gix — y+ and gi_lx — ¥~ in X.. For any neighborhoods of
vy~ and y* in X of the form U, (s, €) and U, +(r, €), there is an N such that for
all points a in the set 3. X — U, (s, €) we have g;(a) C U, +(r, €) foralli > N.

Proof. For the sake of simplicity we can assume that the basepoint x is on a geodesic
from ¥~ to y*. Through an abuse of notation we will conflate the representatives of
vy~ and y 7 starting at x with the elements ¥~ and ¥ . Let us denote the geodesic
[x, g x] by ¢;. Let a denote the parametrized geodesic from x to o and b; be the
geodesic from g;” Ix to a. For the following argument refer to Figure 5.

Denote by y ~(pg) the projection of « onto y ~. This exists provided that y * # «;
in the case where such a projection is unbounded, the geodesic b; is asymptotic
to y* and in place of ¥ ~(p,) a point sufficiently far along y* will suffice since
b; is one leg of a slim ideal triangle. Because a € 9.X — U,-(s, ¢), there is a
uniform bound on |p,| which depends only on ¥, ~, s and . Similarly, denote
the projection of gi_lx onto y by y_(pgi-lx).
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gi(bi(yi))
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/j/;.//z‘gix
5 gi(ci(pi)) +
* Yy

Figure 6. Convergence of the g; (b;).

Because the ¢; converge to y~ in X, they are uniformly contracting. Thus the
triangle given by y ~ and g~'x, x is 8-slim for some 8 only depending on the bound
of the contracting constants of the ¢;. A standard argument shows that given an M’,
for all sufficiently large i, we have the inequality | p,-1,— py| > M'. Choosing the M’
from Lemma 2.12 gives us that there is a y; such that d(y ~(py), bi (y;)) < M'. For
large enough i we also have a point on ¢;, say ¢; (p;), so that d(c;(p;), ¥y~ (pa)) < 1.
This gives us a bound on the distance;

d(ci(pi), bi(yi))) <M+ 1.

Note that the length of [gi_lx, b; (y;)] is no shorter than |pgf1x — pal —2M’, and
so we can make this length larger than %2(M "4+ 1)r by pickihg yet larger i.

Shifting the picture by applying the isometry g; gives us Figure 6. The previous
estimation was arranged so that g;a is in Uy, (r, %). Because the g;c; converge
to ¥+ we can assume that g;c; is in U+ (r, 5). By setting N to be the largest of the
previous i’s we get that g;a € U,,+(r, €). Note that none of the previous estimates
depend on « (including the bound on |pg|). U

Proof of Theorem 4.2. We may assume that x is on the bi-infinite geodesic y from
y~ to y*. Let K be a compact setin 9.X —y~ and U an open set containing y+
in . X. By Lemma 3.3 there is a uniform A such that all elements ¢ in K (with
basepoint x) are no more than A-contracting.

Because [x, g;x] — y+ by Lemma 3.10 they are no more than B-contracting
where B depends only on the sequence of g;. For all i and all « € K by Lemma 2.6
the geodesic [x, g;«) is P, 6(A, B)-contracting because the geodesics [x, g;x] are
B-contracting and [g;x, g;) is A-contracting. For notational convenience, set
C = dy6(A, B).

By Lemma 4.13 for the contracting constant C there is an r and an € such that
3¢ X, N U,+(r,e) C U. Because K is a compact set in the contracting boundary by
Lemma 3.3 it is also a compact set in d X — {y ~}, so there is an s and an ¢ such that
K C 03X, —U,-(s,¢). So applying Lemma 4.14, for large enough i we have that
g&i(K) C Uy,+(r, €), but we already know that g; (K) C BL.CX)C and so g;(K)Cc U. U
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5. A characterization of §-hyperbolicity

One of the ways in which the behavior of the contracting boundary diverges from
that of the Gromov boundary is in its local topology. The Gromov boundary comes
equipped with a family of visual metrics that induce the same topology on the
boundary, making it a compact complete metric space. For the contracting boundary,
this happens only in the rarest of circumstances. It is quite easy to cook up examples
of spaces which have nonmetrizable contracting boundary. The following is one
such example.

Consider again our favorite RAAG, Ar = (a, b, c | [b, c]), along with the univer-
sal cover of its Salvetti complex, X. The infinite word w = aaaa - - - corresponds to
a 0-contracting geodesic in X which starts at some lift of the natural basepoint x in X
(see Figure 3). If we let wij =a'b/aaa - - -, this corresponds to an infinite geodesic
starting at the lift of x which is exactly j-contracting (i.e., it is not B-contracting
for any B < j). It is clear that for each fixed j, the sequences {wl.] }ien converge to
w in the contracting boundary. Now if we construct a new sequence by picking an i
for each j, i.e., we choose a function f : N — N, then regardless of our choice of f
the new sequence {w’, £ )} jen will never converge to w. This is because the set
{w’ I J)} jen 1s closed in 9, X as its intersection with each component, 8 X x» 18
finite and therefore closed.

It is a general fact for all first-countable spaces that if you have a countable
collection of sequences which all converge to the same point, it is always possible to
pick a “diagonal” sequence which also converges. That is, if we have {xi] } such that
lim; xi]
The proof of this is an elementary exercise in point-set topology. Because this is
impossible in the above example we can see that the contracting boundary of X
cannot be metrizable.

Of course, for some CAT(0) spaces, the contracting boundary is metrizable;
any CAT(-1) spaces, for instance. It turns out that this is completely generic, the
metrizability of the contracting boundary completely characterizes §-hyperbolicity
of cocompact CAT(0) spaces.

= x, there is always some function f : N — N such that lim; x7 ;) = x.

Theorem 5.1. Assume that there is a group G acting geometrically on a complete
proper CAT(0) space X, with |0.X| > 2, then the following are equivalent:

(1) X is 6-hyperbolic.
(i) The contracting constants are bounded, i.e., 3. X, C BCD Xy, for some D.
(iii) The map 1d : X — X induces a homeomorphism 0X = 9.X.

(iv) 0X C 0.X, i.e., as sets the visual boundary and the contracting boundary are
the same.

(V) 0.X is compact.



112 DEVIN MURRAY

g"b

a(—oo0) ¢ > a(00)

p yog'p
Figure 7. Periodic isometries coarsely fix contracting constants.

(vi) 0.X is locally compact.

(vil) 0.X is first-countable, and in fact metrizable.

In order to prove these equivalences we need a bit more fine control over how
the contracting constants change under the group action. When there is a rank-one
isometry you can say precisely how the contracting constants are changing as you
act on a contracting ray. We will make that more precise below, but first we need
some notation.

Notation. If b is a B-contracting geodesic in some CAT(0) space X then we will
denote the minimum of all contracting constants B := min{B | b is B-contracting}.

Lemma 5.2. Let g be a rank-one isometry of a CAT(0) space X whose axis, a,
is A-contracting. If b is a B-contracting geodesic with b(0) = a(0) = p, then
k, =1[p, g"b(c0)) will be a K -contracting geodesic such that

W(B,A) <K < ®(A, B),

where W(B, A) = (B — 16A — 778, — 38) — 3 and ®(A, B) is as in Lemma 2.6.

Proof. Consider the geodesics g"b and k, given in Figure 7. By Lemma 2.6,
because a is A-contracting and b is B-contracting, the geodesic k, is at most
®,6(A, B)-contracting.

Assume for the sake of contradiction that &, is K-contracting with

B—16A—7754—38 ;
16 '

In particular this gives us that K +3 < 11—6(§ —16A —7754 —38).

Because a is §4-slim and by replacing 64 with 244 if necessary, there are then
anx €k,, yeaand z € g"b withd(x,y) <84 and d(y, z) < 4. Now because
k, is K-contracting, the subsegment [x, k,(00)] is K 4-3-contracting. The geodesic
[z, g"b(00)] is within the 264 neighborhood of [x, k,,(c0)] so Lemma 2.4 gives us

K <
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an explicit upper bound on the contracting constant for [z, g"b(c0)]. In particular
we know that it is at worst ®; 4(K + 3, 254, 25 4)-contracting where

Dy 4(K +3,284,284) =16(K +3) 4+ 7054 + 10.

Similarly, we can see that [g" p, z] is P24(A +3,0,584) = (16A + 754 + 10)-
contracting. Now g”"b is the concatenation of [g" p, z] and [z, g"b(c0)) and so we
get that it is at most B’ = @, 4(K + 3, 284, 264) + ®2.4(A + 3, 0, 28 4)-contracting.

Working everything out, the assumption that we made gives us the inequality

B'=16(K +3) + 16A + 7754 + 38

< 16(E10ATIA=I8) 11644775, +38 = B.
But then g"b is B-contracting with B < B which is a contradiction. So we know
that k,, is K-contracting where K > W (B, A). [l

Corollary 2.16 provides us with a rank-one axis whenever the contracting bound-
ary is nonempty and so Lemma 5.2 gives us fine-tuned control over the contracting
constants under the action of that rank-one isometry.

Remark 5.3. Suppose we have a sequence of contracting geodesics {k,} and another
noncontracting geodesic b all with the same basepoint. If the endpoints k;, (c0)
converge to b(oo) in the visual boundary, then the contracting constants for &, are
unbounded.

We now have all of the ingredients we needed in order to prove the main theorem.

Proof of Theorem 5.1. We will first prove the equivalence of (i) through (iv). The
equivalence of (v), (vi), and (vii) with the others will then be easier to show.

(i) = (i1) The slim triangle condition for a é-hyperbolic space is easily seen to
imply the slim geodesic condition that we have been using; for an explicit proof
see [Charney and Sultan 2013]. Because every geodesic is uniformly §-slim by the
hyperbolicity, condition they all have uniform contracting constants by Lemma 2.3.

(i1) = (iii) Note that because the contracting constants are bounded, the directed
system stabilizes, i.e., the collection of contracting geodesics has the subspace
topology induced from the visual boundary. Thus, if we can prove that every infinite
ray is contracting we would be done, since the contracting boundary will then have
the same topology as the entire visual boundary.

Let b be some geodesic ray in X and pick any a € d.X; by Corollary 4.7 there is
a sequence of {g;} such that g;a — b. If b is not contracting then by Remark 5.3
the contracting constants of the representatives of g;a that start at x = a(0) are
growing without bound, which is a contradiction.

(iii) = (iv) This is obvious.
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(iv) = (i) This follows from the flat plane theorem, i.e., since X € d.X we have
that every geodesic in X is contracting, thus there are no noncontracting geodesics.
In particular this implies that there are no Euclidean planes embedded in X, but by
the above theorem this implies that X is §-hyperbolic.

(iii) = (v) For a proper CAT(0) space, 0 X is compact.
(v) = (vi) This is trivial.

(vi) = (ii) Assume (ii) is false, then we will show that d. X is not locally compact.

Let o be some element of d.X and let U be an arbitrary neighborhood of «. By
Corollary 2.16 there is some rank-one isometry, g, and by Theorem 4.1 we may
assume that the forward endpoint of g is in the interior of U. Let a be an axis of g
and let A be its contracting constant.

By assumption, there is a subset B = {b;} such that the minimal contracting
constant of each b; is bounded below by 16(i 4+ 16A + 7754 + 38). Applying
Theorem 4.1 with the g" as the g; and switching the roles of a and b; we can see
that g"b;(co) converges to a(co). In particular, for each i there is an n, say n;,
such that g"b;(00) is in U. Let the geodesics [a(0), g"b;(c0)) be denoted by c;.
Applying Lemma 5.2 we get that the ¢; are at least i-contracting.

Let the collection C = {C;} where C; = {c;};>;. Each set C; is a closed subset
of U and () C; = @. The collection {U \ C;} will then be an open cover of U with
no finite refinement and so U is not compact. Since o and U were arbitrary, d.X is
not locally compact.

(i) + (iii) = (vii) The Gromov boundary of a §-hyperbolic group is metrizable
and since the contracting boundary is homeomorphic to the visual boundary we
are done.

(vii) = (ii) Assume that (ii) is false, that there is no upper bound on the contracting
constants of the contracting boundary. We will show that the contracting boundary
is not first-countable (and thus not metrizable).

As with the example in the introduction to this section it is enough to exhibit a
collection {oz;.’ } and an « in the contracting boundary such that for each j, oz;’ -«
as i — oo, but the ozij are at best j-contracting. In particular, this means that for
any function f : N — N, the sequence ozjc( 7 will not converge to «. This is because
the intersection of {a}( j)) with dP X, will always be finite and thus the set {a}( M
is closed. We’ve already seen that the existence of such a sequence contradicts
first-countability. '

The construction of the ozl.] ’s isn’t particularly hard in light of Lemma 5.2.
Since d.X is nonempty we have, by Corollary 2.16, a rank-one isometry g with
axis a. Now since a is rank-one it has a contracting constant A and is §4-slim.
We are assuming that there is no upper bound on the contracting constants for
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geodesics so pick a geodesic b/ with a minimal contracting constant B of at least
16j +16A+7754+38. By Lemma 5.2 the geodes1cs kJ [b(0), g ipi (oo)] will be
K -contracting where j < \I!(B], A) <K <d5,(A, B; i)

So we have our collection of points in the contracting boundary {k] (00)}. For
each j, the geodesics ki] have a fixed upper bound on their contracting constants.
To get convergence in the visual boundary recall that a rank-one isometry acts
by North-South dynamics on the visual boundary [Hamenstiddt 2009]. Thus
lim; ki] (00) = a(oo) for each j in d.X and the contracting constants are bounded
below by j. This gives us that 9. X cannot be first-countable. U
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KMS CONDITIONS, STANDARD REAL SUBSPACES AND
REFLECTION POSITIVITY ON THE CIRCLE GROUP

KARL-HERMANN NEEB AND GESTUR OLAFSSON

We continue our investigations of the representation theoretic side of re-
flection positivity by studying positive definite functions ¥ on the additive
group (R, +) satisfying a suitably defined KMS condition. These functions
take values in the space Bil(V) of bilinear forms on a real vector space V.
As in quantum statistical mechanics, the KMS condition is defined in terms
of an analytic continuation of ¥ to the strip

{zeC:0=<Imz < B)

with a coupling condition ¥ (i + ¢) = ¥ (¢) on the boundary. Our first
main result consists of a characterization of these functions in terms of
modular objects (A, J) (J an antilinear involution and A > 0 selfadjoint
with JAJ = A~') and an integral representation.

Our second main result is the existence of a Bil(V)-valued positive def-
inite function f on the group R, = R x {idg, 7} with () = —¢ satisfy-
ing f(t, ) = ¥(it) for 0 <t < . We thus obtain a 28-periodic unitary
one-parameter group on the GNS space H  for which the one-parameter
group on the GNS space H is obtained by Osterwalder—Schrader quanti-
zation.

Finally, we show that the building blocks of these representations arise
from bundle-valued Sobolev spaces corresponding to the kernels

(XZ _ dZ/dtZ)—l
on the circle R/87Z of length B.

1. Introduction 118
2. Positive definite functions and KMS conditions 122
3. Form-valued reflection positive functions 129
4. Reflection positive functions and KMS conditions 136
5. The case B =00 151
Appendix A. Some background on positive definite kernels 153
Appendix B. Standard real subspaces via contractions 160
References 167

MSC2010: primary 43A35, 43A65, 471L.30; secondary 47190, 81T05.
Keywords: KMS condition, reflection positivity, standard real subspace.

117


http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2019.299-1
http://dx.doi.org/10.2140/pjm.2019.299.117

118 KARL-HERMANN NEEB AND GESTUR OLAFSSON

1. Introduction

In this note we continue our investigations of the mathematical foundations of
reflection positivity, a basic concept in constructive quantum field theory [Glimm
and Jaffe 1981; Klein and Landau 1983; Jorgensen and Olafsson 1998; 2000;
De Angelis et al. 1986; Jaffe and Ritter 2007]. Originally, reflection positivity, also
called Osterwalder—Schrader positivity, arises as a requirement on the euclidean
side to establish a duality between euclidean and relativistic quantum field theories
[Osterwalder and Schrader 1973]. Itis closely related to “Wick rotation” or “analytic
continuation” in the time variable from the real to the imaginary axis.

The underlying fundamental concept is that of a reflection positive Hilbert space,
introduced in [Neeb and Olafsson 2014]. This is a triple (£, £+, 6), where £ is a
Hilbert space, 6 : £ — £ is a unitary involution and £, is a closed subspace of £
which is 8-positive in the sense that (Ov, v) >0 for v € &;.

In [Neeb and Olafsson 2014], we introduced the concept of a reflection positive
cyclic representation (7, £, v), where (€, £4, 6) is a reflection positive Hilbert space
and v € £ a f-fixed vector (or, more generally, a distribution vector). In the present
paper we shall see that, to treat reflection positive representations of the circle group
G =T corresponding to unitary representations of the dual group G¢ = R arising
from KMS states, or from their modular objects (A, J ),! we are forced to work in
a more general framework, where the representations are generated by the image
of an R-linear map j : V — & from a real vector space V into the representation
space £ and where j (V) does not consist of f-fixed vectors.

To explain the corresponding concept of a reflection positive representation,
we start with a symmetric Lie group, i.e., a pair (G, 7), where T € Aut(G) is an
involution. Then we form the extended group G, := G x {1, t}. Let (U, £) be a
unitary representation of G, and let j : V — £ be a linear map from the real vector
space V to &. Then (U, &, j, V) is called reflection positive with respect to a subset
G C G if the closed subspace £, generated by U, i j (V) defines a reflection
positive Hilbert space (£, £, U;). Generalizing the well-known Gelfand—Naimark—
Segal (GNS) construction leads to an encoding of representations generated by j (V)
in terms of form-valued positive definite functions ¥ (g) (v, w) := (j (v), Uy j (w))
[Neeb and Olafsson 2015b].

This paper continues the investigations started in [Neeb and Olafsson 2015b],
where we studied reflection positive representations of the circle group and their
connections to KMS states, which was largely motivated by the work of Klein and
Landau [1981] (see also [Cuniberti et al. 2001]). A long-term goal of this project is

IRecall that KMS stands for Kubo-Martin—-Schwinger; see [Bratteli and Robinson 1981, §5.3.1] for
more on KMS states and their interpretation in quantum statistical mechanics as thermal equilibrium
states.
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to combine our representation theoretic approach to reflection positivity with KMS
states of operator algebras and Borchers triples corresponding to modular inclusions
[Buchholz et al. 2011; Borchers 1992; Longo 2008; Schlingemann 1999].

A crucial step in this direction is the concept of a positive definite function
satisfying a KMS condition that can be formulated as follows: First, let V be a real
vector space and Bil(V') be the space of real bilinear maps V x V — C. A function
Y :R— Bil(V) is said to be positive definite if the kernel ¥ (¢ —s) (v, w) on Rx V is
positive definite. For 8 > 0, we consider the open strip Sg :={z € C:0 <Imz < 8}.
We say that a positive definite function ¢ : R — Bil(V) satisfies the KMS condition
for B > 0 if ¥ extends to a function S_ﬂ — Bil(V) which is pointwise continuous
and pointwise holomorphic on the interior Sg, and satisfies

V@ip+1t)=y({) forteR.

The central idea in the classification of positive definite functions satisfying
a KMS condition is to relate them to standard real subspaces of a (complex)
Hilbert space; these are closed real subspaces V € H for which V NiV = {0}
and V +1iV is dense (cf. Definition 2.4). Any such subspace determines a pair
(A, J) of modular objects, where A is a positive selfadjoint operator and J is
an antilinear involution satisfying JAJ = A~!. The connection is established
by V = Fix(JAY?) = {v € D(A'/?) : JA'2y = v}. Our first main result is the
following characterization of the KMS condition in terms of standard real subspaces.
Here we write Bil* (V) C Bil(V) for the convex cone of all those bilinear forms f
for which the sesquilinear extension to V¢ x V¢ is positive semidefinite.

Theorem 2.6 (characterization of the KMS condition). Let V be a real vector space
and ¥ : R — Bil(V) be a pointwise continuous positive definite function. Then the
following are equivalent:

(1)  satisfies the KMS condition for 8 > 0.

(i1) There exists a standard real subspace V| in a Hilbert space H and a linear
map j:V — Vi such that

(D) YO, w)= (), AT j(w)) forteR, v,weV.

(iii) There exists a Bil™ (V)-valued regular Borel measure i on R satisfying
U(t) = / e du(h),  where du(=1) = e Prdu(n).
R

If these conditions are satisfied, then the function \ : S_ﬂ — Bil(V) is pointwise
bounded.

The equivalence of (i) and (ii) in Theorem 2.6 describes the tight connection
between the KMS condition and the modular objects associated to a standard real
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subspace. Part (iii) provides an integral representation that can be viewed as a
classification result.

For a function ¢ satisfying the 8-KMS condition, analytic continuation leads to
the operator-valued function

¢ :10, 8] = B(Vo), (v, e(Ow) =Y ) (v, w).

This function satisfies ¢ (8) = ¢(0), and hence extends uniquely to a (weak operator)
continuous function ¢ : R — B(V¢) satisfying

() ot+p) =) forteR.

Recall the group R; := R x {1, t} with 7(¢) = —¢. In Theorem 4.5 we show that
there exists a positive definite function

f R, — Bil(V) satistfying f(t, v) = ¢(¢).

The function f is 2B-periodic, hence factors through a function on Ty, :=
R;/Z28 = O,(R). This leads to a natural “euclidean” counterpart of the unitary one-
parameter group U, = A~/"/# associated to the KMS positive definite function .
To understand the structure of the positive definite functions which arise in this
way, and the corresponding unitary representations of Tog -, we write f = f + f_
with f1(B8+¢t, ) = f1.(¢, t°) (the bosonic part) and f_(B+1¢, %) = — f_(¢, T°)
(the fermionic part). Then fi are both positive definite and combine to a matrix
valued positive definite function

0 f

(Lemma 4.12). Neglecting an additive summand which is constant, we can now
define a unitary representation of the subgroup P := (Z8); on Vé by

p(B.1) = ((1) _01> and (0, 7) = <(1) lol)

where [ is a complex structure on V. Then we have the relation

fi= (f+ 0 ) R, — Ma(B(Ve)) = B(V3)

fi(hg) = p(h) f*(g) for he P, geRy,

which determines in particular how f¥ is obtained from the function ¢ above. For
the special case where the real representation corresponding to i is isotypic, or the
associated modular operator A is a multiple of the identity, the GNS representation
/' n’ H s:) can be realized on the Hilbert space completion of

I, ={seC*Ry,, Vé) :s(hg) =p(h)s(g) forall g e Ry, h € P}
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with respect to the scalar product

L[ D, (A =A)"! 1)d h A—d2
<51,S2>-—ﬁ/0 (s1(¢2, 1), (W —A) 's2)(¢, 1)) dt,  where =3

On this space, R; acts by right translation. This provides a natural “euclidean
realization” of our representation on the Riemannian manifold Tg = S' in the spirit
of [De Angelis et al. 1986; Dimock 2004; Jaffe and Ritter 2007]. The “periodicity
in imaginary time” that we also observe here has been studied in detail from a
physics perspective by Fulling and Ruijsenaars [1987].

We conclude this paper with a short Section 5, in which we prove a version of
Theorem 2.6 for f = oo which connects naturally to our previous work on dilations
of semigroups of contractions in [Neeb and Olafsson 2015a]. In two appendices
we provide some background material. Appendix A recalls some facts on positive
definite kernels and discusses in particular the connection between complex and
real-valued kernels. Appendix B discusses standard real subspaces in terms of
skew-symmetric contractions on real Hilbert spaces. This perspective was crucial
for the present paper, and we expect it to be useful in other contexts as well.

In a subsequent paper [Neeb and Olafsson 2019], we extend the results obtained
here for the group G = O,(R) = SO, (R), to more general groups such as O,41(R)
(where reflection positivity refers to the sphere S") and Oy ,(R) (where reflection
positivity refers to the n-dimensional hyperbolic space H"). Eventually, we would
like to see how our representation theoretic analysis can be blended with the existing
work on relativistic KMS conditions [Bros and Buchholz 1994; Gérard and Jakel
2007] and in particular with [Barata et al. 2013; 2016]. The close connection
between modular objects (A, J) and standard real subspaces was first explored
by Rieffel and van Daele [1977]. They also define a notion of a KMS condition
for a unitary one-parameter group (U;);cg on a complex Hilbert space H with
a real subspace V C #H. In our terms, their condition means that the function
YR — Bil(V), ¥ (t) = (v, U,w) satisfies the KMS condition for 8 = —1 (which
refers to a function on the strip {—1 < Im z < 0}). From [Rieffel and van Daele 1977,
Proposition 3.7], one can easily derive the implication (ii) = (i) of Theorem 2.6
(cf. also [Longo 2008, Proposition 3.7]). In this case, [Rieffel and van Daele 1977,
Theorem 3.8] even implies that U, = A~"/# is the unique unitary one-parameter
group satisfying the KMS condition for . From [Rieffel and van Daele 1977,
Theorem 3.9], one can also derive the implication (i) = (ii). Instead of A, Rieftel
and van Daele work with the bounded operator R =2(1 + A)~! which is the sum
of the orthogonal projections of the real Hilbert space H onto the closed subspaces
V and i V. In our context, this operator appears as 1+ iC for the skew-hermitian

A1

operator C= iA—Jrl (Lemma 4.2).

In the context of free fields, the interplay between standard real subspaces and
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von Neumann algebras of operators on Fock space has already been studied by
Araki [1963] and Eckmann and Osterwalder [1973]. The connection between the
KMS condition and the modular theory of von Neumann algebras has already
been observed and studied in [Haag et al. 1967]. We refer to [Yngvason 1994]
for some particularly interesting concrete subspaces corresponding to fields on
light rays and to [Ramacher 2000] for descriptions of standard real subspaces in
terms of boundary values of holomorphic functions. Numerical aspects of the KMS
condition and rather general holomorphic extension aspects have recently been
studied in [De Micheli and Viano 2012].

Notation. We follow the “physics convention” that the scalar product (-, -) on a
complex Hilbert space is linear in the second argument.

For a real vector space V, we write Bil(V) for the complex vector space of
complex-valued bilinear forms V x V — C. For h € Bil(V), we write h for the
pointwise complex conjugate and put ' (v, w) := h(w, v) and h* :=h'. We say
that h is hermitian if h = h", which means that Re & is symmetric and Im/ is
skew-symmetric. We write Herm(V') € Bil(V) for the real subspace of hermitian
forms.

Every h € Bil(V) extends canonically to a sesquilinear form on V¢ (linear in the
second argument),

hc(v+iw, vV +iw') :=h, V) —ih(w, V) +ih(v, w) +h(w, w).

We may therefore identify Bil(V') with the space Sesq(V¢) of sesquilinear forms
on the complex vector space V. We write Bil* (V) C Bil(V) for the convex cone
of all those bilinear forms f for which the sesquilinear extension to Vg x Vg is
positive semidefinite, i.e., for which / defines a positive definite kernel on V.

2. Positive definite functions and KMS conditions

Throughout this section V is an arbitrary real vector space. We recall from
Definition A.3 that a function ¢ : R — Bil(V) is called positive definite if the
kernel K ((¢, v), (s, w)) := ¥ (t — s)(v, w) on R x V is positive definite. The
main result of this section is Theorem 2.6. This result leads in particular to the
analytic continuation of v to the strip Sg. We also explain how the corresponding
representation of R can be realized in a Hilbert space consisting of holomorphic
functions on the strip Sg/» with continuous boundary values (Proposition 2.9).

We call a function :8_5 — Bil(V) pointwise continuous if, for all v, w € V, the
function ¥ (z) :== ¥ (z) (v, w) is continuous. Moreover, we say that ¥ is pointwise
holomorphic in Sg, if, for all v, w € V, the function lﬁv’w|gﬂ is holomorphic. By
the Schwarz reflection principle, any pointwise continuous pointwise holomorphic
function i is uniquely determined by its restriction to R.
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Definition 2.1. For 8 > 0, let Sg := {z € C: 0 < Imz < B}. For a real vector
space V, we say that a positive definite function i : R — Bil(V) satisfies the KMS
condition for B > 0 if ¢ extends to a function y : S_,g — Bil(V) which is pointwise
continuous, pointwise holomorphic on Sg, and satisfies

3) v@ip+1)=y(@) forreR.

Lemma 2.2. Suppose that ¥ : R — Bil(V) satisfies the KMS condition for > 0.
Then

) V(D =v@" and Yp+D=v@  for z€Ss.
The function ¢ : [0, B] — Bil(V), ¢(t) := (it) has hermitian values and satisfies
(5) pB—1)=¢@) for0<1<§p.

It extends to a unique pointwise continuous symmetric 23-periodic function ¢ : R —
Herm(V) satisfying
eB+1t)=9@) forteR.

Proof. Note that ¥ (—t) = ¥ (¢)* holds for every positive definite function v : R —
Bil(V). By analytic continuation (and the Schwarz reflection principle), this leads
to the first part of (4). Likewise, condition (3) leads to the second part of (4). This
in turn implies (5), and the remainder is clear. O

Remark 2.3. Note that (4) implies in particular that v (i8/2 + t) is real-valued
for t € R (cf. [Rieffel and van Daele 1977, Proposition 3.5]).

We now introduce standard real subspaces V C ‘H and the associated modular
objects (A, J).

Definition 2.4. A closed real subspace V of a complex Hilbert space H is said to
be standard if
VNiv={0} and V+iV="H.

For every standard real subspace V C H, we define an unbounded antilinear
operator

S:DS)=V+iV—->H, Sv+iw):=v—iw, v,welV.

Then S is closed and has a polar decomposition § = JA!/2, where J is an anti-

unitary involution and A a positive selfadjoint operator (cf. [Neeb and Olafsson
2015b, Lemma 4.2]; see also [Bratteli and Robinson 1979, Proposition 2.5.11;
Longo 2008, Proposition 3.3]). We call (A, J) the modular objects of V.

Remark 2.5. (a) From S? = id, it follows that the modular objects (A, J) of a
standard real subspace satisfy the modular relation

(6) JAJ = AL
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If, conversely, (A, J) is a pair of a positive selfadjoint operator A and an anti-
linear involution J satisfying (6), then S := JA!/2 is an unbounded antilinear
involution with D(S) = D(A!/?) whose fixed point space Fix(S) is a standard
real subspace. Thus standard real subspaces are parametrized by pairs (A, J)
satisfying (6) (cf. [Longo 2008, Proposition 3.2] and [Neeb and Olafsson 2015b,
Lemma 4.4]).

(b) As the unitary one-parameter group A’ commutes with J and A, it leaves the
real subspace V = Fix(S) invariant.

We now come to the proof of Theorem 2.6.

Theorem 2.6 (Characterization of the KMS condition). Let V be a real vector
space and let ¥ : R — Bil(V) be a pointwise continuous positive definite function.
Then the following are equivalent:

(1) y satisfies the KMS condition for B > 0.

(ii) There exists a standard real subspace V| in a Hilbert space H and a linear
map j:V — V| such that

(7) YO, w)= (), AT j(w)) forteR,v,weV.
(iii) There exists a Bil™ (V)-valued regular Borel measure i on R satisfying
du(=2) = e P*du),
such that
V() = /R e dp(h) = ().

If these conditions are satisfied, then the function

¥ : S — Bil(V)
is pointwise bounded.

Proof. (i) = (ii): From the GNS construction (Proposition A.4), we obtain a
continuous unitary representation (U, ) and a linear map j : V — H such that

v, w)=(j(),Ujw)) forreR v,weV.
We further assume that the range of the map
C:RxV—>H, ¢(tv):=Ujw)

spans a dense subspace. Using Stone’s theorem, we write U; =e "' for a selfadjoint
operator H on H and consider the positive selfadjoint operator

A =P satisfying U, = A7'"/P for t e R.
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With the B(#)-valued spectral measure P on R with H = fR AdP(A), we thus
obtain

VO, w) = (), e j(w)) = /R e g PIWI (3),

where P"" = (v, P(-)w). The KMS condition for i gives that, for each v € V, the
function ¥ (¢) (v, v) extends holomorphically to S_ﬂ which implies that the integral
fR ePr d Pi™-.i® (3 is finite, and hence that j (V) € D(A!/?) [Neeb and Olafsson
2015b, Lemma B.4]. The uniqueness of analytic continuation (Schwarz’ principle)
now implies

(®) V(x+iy)(v, w) :/e—i<x+iy)x dPI@JW (3)
R
= (AP j(v), A™H/B AV (wy))

for v,w € V and 0 < y < B. Since D(A'/?) is U-invariant, we obtain from the
KMS condition,

(AY2e(t,v), AV (s, w)) = (A2 j(v), AY2U_ j(w)) = Y (@B +5 — 1) (v, w)
= W(S _t)(v’ w) = ({(ta U), g(sv U))>

This implies the existence of a unique antilinear isometry J : H — H with

Je(t,v)y=AY2c@t,v) forallteR, veV.
Then

U Jo(t,v) = A2t 45, v) = Jo(t +s,v) = JUL(t,v)  fort,seR, veV
shows that J commutes with every U,. This implies that JA'Y/2J=1 = A=1/2 50
ct,v)=J Aot )= ATV T et v),

which in turn implies
Je(t,v)y =A@, v)y=J""c@t,v) forteR, veV.

Since the range of ¢ is total, it follows that J~! = J, so J is an anti-unitary involution.
Therefore (A, J) is the modular object of the standard real subspace V| := Fix(S)
for the unbounded antilinear involution S := JA!/? (Remark 2.5).

For v € V, we now have j(v) € D(S) = D(A'/?) and Sj(v) = JA?j(v) =
J?j(v) = j(v), so that j(V) C V. This completes the proof of (ii).

(i1) = (ii1): For v, w € V we have
Y () (v, w) = (j (), AP j(w)) = /R e (j (), dP(M)j(w)),

where P is the spectral measure of the selfadjoint operator L := —% log A (the
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Liouvillian). We therefore consider the Bil* (V)-valued measure defined by

w( ), w) = (@), P(+)jw)) = P/WJW),

It remains to show that du(—1) = e #*di()), which means that ryu = e_g holds
for r(X) = —A. To verify this relation, we first observe that JLJ = —L implies
that J PJ = r, P. This leads to

w() @, w) = (P(-)jw), j() = (P(-)Sj(w), Sj®))
= (P(-)JA?j(w), JA'?j(v))
= (JP()TAZjw), A2 j(w)) = ((r P)() A2 j (v), A2 j(w))
=ep- ((rP)(-)j (), j(Ww)) =ep- (rap) () (v, w).

This implies that 1 = eg - ry .

(iii) = (i): Condition (iii) implies that ¥ (0) = w(R) exists, so that u is a pointwise
finite measure. Further, the relation r,u = e_gjt implies that the measure e_gu is
also finite. Therefore the integral

©) V(z) = /R e du(n)

exists pointwise and extends i to $ in such a way that this extension is pointwise
continuous on Sg and pointwise holomorphic on the interior. The relation r,pu =
e_g further leads to

v(@ip+1) = f STPHD qun) = / e_g(R)e™ du(r)
R R

- f M d(r, ) (0) = / M AR (h) = D).
R R

Therefore i satisfies the KMS condition for S.

We finally assume that (i)—(iii) are satisfied and show that i is pointwise bounded
on S_,g Since each 1(z) extends to a sesquilinear form ¥ (z)c on Vg, in view
of the polarization identity, it suffices to show the boundedness of the functions
z+— ¥ (z)c(v, v) for v € V. For the positive measure u”'(E) := u(E)c(v, v),
we obtain from (9) the estimate

V(D). v)] < fR e A o) = [R M 400 (),

The convexity of the function on the right, the Laplace transform of the finite positive
measure 1>, and ¥ (Bi) (v, v) = |A/2j (v)||* < 0o now imply the boundedness
of ¥ (z)c(v, v). O
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Remark 2.7. A special case worth noting arises from a C*-dynamical system
(A, R, ) for V:=A;, :={A € A: A* = A} and an invariant state w on A. Such a
state is a S-KMS state if and only if

¥ :R— Bil(Ay), v (@) (A, B) :=w(Aa:(B))

satisfies the KMS condition for 8 > 0 (cf. [Neeb and Olafsson 2015b, Proposition 5.2;
Rieffel and van Daele 1977, Theorem 4.10; Bratteli and Robinson 1981]). If
(T, U®, Hy, Q) is the corresponding covariant GNS representation of (A, R),

w(A)=(Q,1,(A)Q) for AecA and UrQ=Q fortreR.
Therefore
V(1)(A, B) = w(Aa,(B)) = (2, m,(Aa,(B))2)
=(Q, 1,(A) U, (B)U®,Q) = (1,(A)Q, U1, (B)L)

for A, B € Aj,. The corresponding standard real subspace of H,, is V} := 7, (A;) 2.
Corollary 2.8. If ¢ : R — Bil(V) satisfies the B-KMS condition, then the kernel

(10) K : Spja x Spja — Bil(V), K(z,w)(E, )=y @—w)E,n)
is positive definite.
Proof. This follows immediately from the following relation that we derive from (8):
Kz, w)E, n)=vy—-w)E n
= (A_%j(f;‘), A_%j(n)) for &, neV, z,weSppn O

Now that we know from Corollary 2.8 that the kernel K in (10) is positive
definite, we obtain a corresponding reproducing kernel Hilbert space consisting of
functions on Sg/, x V which are linear in the second argument and holomorphic on
Sg/2 in the first. We may therefore think of these functions as having values in the
algebraic dual space V*:=Hom(V, R) of V. We write O(%, V*) for the space of
those functions f :% — V* with the property that, for every n € V, the function
z+> f(z)(n) is continuous on % and holomorphic on the open strip Sg/».

Proposition 2.9 (Realization of H on O(%, V*)). Assume that ¢ : R — Bil(V)
satisfies the KMS condition for B > 0 and let :S_ﬂ—> Bil(V) denote the correspond-
ing extension and Hy C O(%, V*) denote the Hilbert space with reproducing
kernel

Kz, w)E, n):=y-—w)&,n for§neV,

ie.,

F@)E) = (K., f)  for feHy, where K g(w)(n) =¥ (w—2)(1,§).
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Then
(U;//f)(z) = f(z+1), teR,ze%,

defines a unitary one-parameter group on Hy,,

JiV=Hy, j@ =v@(0,n)

is a linear map with UV -cyclic range, and

vOE N =E), U jm) forteRE eV,

The anti-unitary involution on Hy, corresponding to the standard real subspace
Vi € Hy from Theorem 2.6 is given by

(11) 1)@ :=f(z+§).

Proof. First we recall that the natural reproducing kernel Hilbert space Hy = Hg
is generated by the function K, ;) satisfying
K(w,n)(z)@) = <K(Z,§)v K(w,n)) =K(z, w)(é, 77)
=¥ @—w)E,n.
As a function of z, the kernel K is continuous on Sg/ and holomorphic on the

interior. Therefore [Neeb 2000, Proposition I1.1.9] implies that H, is a subspace of
O(Sg/2, V*), where, for every f € Hy and & € V, we have

f@E)=(Keze, f)

That the formula for Utw defines a unitary one-parameter group on H, follows
directly from the invariance of the kernel K under the action of R on Sg by
translation.

Next we observe that

G, U jm) = (Ko U Ko)
= (K©,5), K—i,p) =¥ (@)(&, n).

To see that j(V) is UY-cyclic, we have to show that the elements U;/’ jn) =
Ky form a total subset of H,. This means that any f € Hy with

0= (Kq.p. f)=f®)1)

for every t € R and n € V vanishes. As the function ¢t — f(¢)(n) extends to a
continuous function on Sg/2, holomorphic on the interior, it vanishes by the Schwarz
reflection principle. Further, n was arbitrary, so f = 0 follows.
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Now we turn to the involution Ji. As Ky, (z) = ¥ (z —w)(-, n), the operator
Ji on O(Sg/2, V*), defined by the right hand side of (11) satisfies

(12) (WK = K (z+ %) _ w(z+ % —w>(- )

=¢<iﬁ+z—%—w)(-,n)zw(wg—w)(nn)
= Kaovip/2,n)(2)-
Here we have used that m =Y (@iB +7) (Lemma 2.2). From

(Ka+ip2.m Ke+ige) = K@+iB/2, w+iB/2)(E, n) =y (i +7—w)(E, n)
=y @-w)E, n=(Kes, Kwn)
it now follows that the operator J; in (11) leaves the subspace H,, invariant and

defines an antilinear isometry on this space. From the explicit formula it follows
that J; is an involution. It is also clear that J; commutes with the unitary operators

Ui f)@) = fz+0).

The relation U; Ky, ) = K(w—:,5) leads by analytic continuation to

1/2
1Ko = Kipram = AP K-

In the proof of Theorem 2.6, we have seen that, for n € V and ¢ € R, the anti-unitary
involution J corresponding to the associated standard real subspace V; satisfies

Jj) =AY jm).

As both J and J; commute with every U, and the subset {U;j(n):t € R,ne V}is
total in H,, we conclude that J; = J. |

3. Form-valued reflection positive functions

In this section we discuss reflection positivity on the level of form-valued positive
definite functions. This is particularly well adapted to reflection positive Hilbert
spaces (€, £, 0), for which &, is generated by elements of the form U, Lj(),
where g is contained in a certain subset G C G which is not necessarily a subsemi-
group, and j : V — #H is a linear map for which Ug j (V) spans a dense subspace
of £. In particular, we present a version of the GNS construction in this context
(Proposition 3.9) and we briefly discuss it more specifically for the trivial group
G = {1} (Section 3B) and the 2-element group (Section 3C). The latter case shows
explicitly that the cone of reflection positive functions does not adapt naturally
to the decomposition into even and odd functions. Put differently, if a reflection
positive representation decomposes into two subrepresentations, the summands
need not be reflection positive (see also [Neeb and Olafsson 20147).
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3A. Reflection positivity and form-valued functions. Let (G, T) be a symmetric
Lie group, i.e., G is a Lie group and T € Aut(G) with 7> =idg. In the following
we write G; := G x {1, 7} and g% := 7(g) ' [Neeb and Olafsson 2014]. In this
section we introduce reflection positive functions on G, with values in Bil(V) for
a real vector space V.

Definition 3.1. Let £ be a Hilbert space and let 8 € U(E) be an involution. A closed
subspace &4 C £ is called 6-positive if (fv, v) > 0 for v € £;. We then call the
triple (&, £+, 6) a reflection positive Hilbert space. For a reflection positive Hilbert
space we put N :={v e &, : (Av,v) =0} and write ¢ : £y — EL /N, v >V =¢q(v)
for the quotient map and € for the Hilbert completion of £, /A with respect to the
norm |9z := [|v]l := +/(6v, v).

Example 3.2. Suppose that K: X x X — C is a positive definite kernel on the
set X and that 7: X — X is an involution leaving K invariant. We further assume
that X C X is a subset with the property that the kernel K (x, y) := K(tx, y) is
also positive definite on X .

Let £ := Hx C C¥ denote the corresponding reproducing kernel Hilbert space
generated by elements (K )ex with (K, Ky) =K (x, y). Then the closed subspace
&4 C & generated by (K )ex, 1s 0-positive for (0f)(x) := f(rx). We thus obtain
a reflection positive Hilbert space (£, £1,0). We call such kernels K reflection
positive with respect to (X, X, 7).

Definition 3.3. Let G, C G be a subset. Let V be a real vector space and let
j 1V — H be a linear map whose range is cyclic for the unitary representation
(U, &) of G;. Then we say that (U, &, j, V) is reflection positive with respect
to G4 CGif, for &4 :=span U, (—;l Jj(V), the triple (£, £, U;) is areflection positive
Hilbert space.

Definition 3.4. Let V be a real vector space. We call a function ¢ : G, — Bil(V)
reflection positive with respect to the subset G of G if

(RP1) ¢ is positive definite and

(RP2) the kernel (s, 1) — @(stit) = p(stt™ 1) is positive definite on G ..
Remark 3.5. Let ¢ : G; — Bil(V) be a positive definite function, so that the
kernel K ((x, v), (v, w)) := (p(xy_l)(v, w) on G, x V is positive definite. The
involution 7 acts on G, x V by t.(g, v) := (g7, v) and the corresponding kernel
K™((x,v), (v, w)) := K((x7,v), (y, w)) = pxty" (v, w) is positive definite on
G4 x V if and only if ¢ is reflection positive in the sense of Example 3.2.

Positive definite functions on G extend canonically to G if they are r-invariant:

Lemma 3.6. Let V be a real vector space and let (G, T) be a symmetric Lie group.
Then the following assertions hold:
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(1) If ¢ : G — Bil(V) is a positive definite function which is t-invariant in the
sense that ¢ ot = @, then ¢(g, T) := ¢(g) defines an extension to G, which is
positive definite and t-biinvariant.

(i) Let (U, H) be a unitary representation of G, let 0 := U, let j : V — H
be a linear map, and let ¢(g) (v, w) = (j (v), Ug j(w)) be the corresponding
Bil(V)-valued positive definite function. Then the following are equivalent:

(a) j(v) = j(v) foreveryv e V.
(b) ¢ is T-biinvariant.
(c) ¢ is left T-invariant.

Proof. (i) From the GNS construction (Proposition A.4), we obtain a continuous
unitary representation (U, ) of G and a linear map j : V — H such that

P&, w) = (j(v), Ugj(w)) for geG, v,welV.

As p(g)(v, w) = ¢(t(g))(v, w), the uniqueness in the GNS construction provide a
unitary operator 6 : H — H with

OU,yj(v) = Ur(g)j(v) for geG,veV.

Note that 8 fixes each j(v). Therefore U, := 6 defines an extension of G to a
unitary representation of G, on H. Hence ¥ (g) (v, w) = (j(v), Ugj(w)) defines a
positive definite Bil(V)-valued function on G, which satisfies

V(g ), w) = (0 (v), Uy j(w))

=(j(v),Ugj(w)) =9(g)(v,w) for geG,v,weV.
(i1) Clearly, (a) = (b) = (c). It remains to show that (c) implies (a). So we assume
that ¢(tg) = ¢(g) for g € G.. This means that, for every v, w € V, we have

(J (), Ugj(w)) = ¢(g)(v, w) = ¢(r8)(v, w)
= (J(v),0U; j(w)) = (0] (v), Ugj(w)).
Since Ug, j (V) is total in H, this implies that 8 (v) = j(v) foreveryve V. U
Remark 3.7. (a) As G, consists of the two cosets G and Gt = G x {1}, every
function ¢ on G, is given by a pair of functions on G:
¢+ :G—=Bil(V), ¢:(8) =0 D, ¢-(8) =0 1)

Then (RP2) is a condition on ¢_ alone, and (RP1) is a condition on the pair (¢4, ¢_).

(b) If ¢ is reflection positive, then its complex conjugate @ is also reflection positive
because the convex cone of positive definite kernels on a set is stable under complex
conjugation. This implies in particular that Re ¢ = %((p + @) is reflection positive
(cf. Theorem A.13).
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The following lemma provides a tool which is sometimes convenient to verify
positive definiteness of a function on the extended group G- in terms of a kernel
on the original group G.

Lemma 3.8. Every function ¢ : G, — B(V) leads to a My(B(V))-valued kernel

p(gh™) w(grh‘1)>
p(gth™ @gh™h )’

and the function ¢ on G is positive definite if and only if Q is positive definite.

Q:GxG—>MB(V)=BVaV), 0(@gh= (

Proof. That Q is positive definite is equivalent to the existence of a Hilbert space H
and a map

0:G— BAH,VOV)ZBMH, V)®  with Q(x, y) = £(x)¢(y)* for x,y € G

(cf. [Neeb 2000, Theorem 1.1.4]). If £ is such a map, then it can be written as
£(x) = (£1(x), £2(x)) with £;(x) € B(H, V). We thus obtain

L1 (x) e (n)* Zl(X)Ez(y)*)

Q(x, y) =Lx)t(y)" = <gz(x)£1(y)* £r(x) L2 (y)*

and thus

LG =L@GO)*  and GGG = L) LK) .
Therefore
JjiGe— BH, V),  jaxD=0(k), j&x 1) =1Lx),
satisfies
JE D D* =600 = ey,
J& DG D =@ GG =Gy

and
Je D, ) =00 (y) = ety ™D,

J, D, D =L (x) e (1) = ey ).

We therefore have ¢(xy~!) = j(x)j(y)* for x,y € G, and thus ¢ is positive
definite.

If, conversely, ¢ is positive definite and j : G, — B(#, V) is such that p(x ~'y) =
J@x)j(y)* forx,y € G, then £(x) := (j(x, 1), j(x, 1)) € B(H,V & V) defines a
map with Q(x, y) = €(x)¢(y)* forx, y € G. O

Proposition 3.9 (GNS construction for reflection positive functions). Let V be a
real vector space, let (U, £) be a unitary representation of G, and put 6 := U;.
Then the following assertions hold:
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G) If (U, H, j, V) is reflection positive with respect to G ., then

P(g) (v, w) := (j(v), Ugj(w)), g§€Grv,weV,
is a reflection positive Bil(V)-valued function.

@{i) If ¢ : G; — Bil(V) is a reflection positive function with respect to G, then
the corresponding GNS representation (U?, H,, j, V) is a reflection positive
representation, where H, C CY9*V is the Hilbert subspace with reproducing
kernel K ((x, v), (y, w)) := (p(xy_l)(v, w) on which G, acts by

(Ug fHx,v) = f(xg, v).
Proof. (i) For s,t € G, we have

@Gt (W, w) = (j(©), Usgy1j (w)) = (U1 j (v), Uz U1 j(w))
=(0U-1j (v), U1 j(w)),

so that the kernel (p(stt™1)) s.teG,, 1 positive definite.

(i1) Recall the relation ¢(g)(v, w) = (j (v), Uy j(w)) for g € G, v, w € V from
Proposition A.4. Moreover, (6f)(x, v) = f(xt, v), and

OUYj (), U, jw)) = (j(), U’ jw)) = p(stt~) (v, w),

so the positive definiteness of the kernel (p(stt~!)) s,1eG, implies that we obtain,

with £ = H, and £, := span (U&)—1 j(V), a reflection positive Hilbert space
(&,&4,0). O

3B. Reflection positivity for the trivial group. In this short section we discuss
the case of the 2-element group 7" = {1, 7} in some detail. It corresponds to G,
where G = {1} is trivial, but it already demonstrates how the intricate structure of
a reflection positive Hilbert space (£, £, 0) can be encoded in terms of positive
definite functions on 7.

A unitary representation (U, £) of T is nothing but the specification of a unitary
operator § = U, on £. We write £ = £! @ £~! for the eigenspace decomposition
of £ under 6 and p*! : £ — £*! for the orthogonal projections.

Suppose, in addition, that V is a real or complex Hilbert space and that j: V — &
is a continuous linear map whose range generates £ under the representation U,
i.e., the projections pil(j(V)) C £*! are dense subspaces. In view of the GNS
construction, the data (£, U, j, V) is encoded in the operator-valued positive definite
function

¢:T— B(V), ¢(g)=j"Uyj.

For a function ¢ : T — B(V), let A := ¢(1) and B := ¢(t). Then ¢ is positive
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definite if and only if A = A* > 0, B = B*, and the operator matrix

1 A B
(28 %;) _ (B A) e My(B(V)) = B(V & V)

defines a positive operator (Lemma 3.8 and [Neeb 2000, Remark 1.1.3]). This is
equivalent to

(13) |[{Bv, w)|2 < (Av,v){Aw,w) for v,weV

(cf. Corollary A.9). Note that (13) holds if A =1 and || B|| < 1. If, more generally,
A is invertible, then (13) is equivalent to IA~12BA~12|| < 1. Here A = j*j
basically encodes how V is mapped into £ and B encodes the unitary involution 6.

The function ¢ is reflection positive with respect to G = {1} if and only if
B = ¢(7) > 0, which means that j (V) is 0-positive. In this sense reflection positive
functions on T encode reflection positive Hilbert spaces (£, £4,60) by 8 = U,
and £, := j(V). A pair (A, B) of hermitian operators on V corresponds to a
reflection positive function ¢ : T — B(V) if and only if 0 < B < A. By the Cauchy-
Schwarz inequality, this is equivalent to (13) if A and B are positive operators. This
shows that

p=9o+¢1 with ¢o(1) =A—B, ¢o(r) =0 and ¢ (1) =¢i(r) =B,

where both functions ¢g and ¢; are reflection positive. The function ¢q corresponds
to the case where £; 1 6&, so that £ = {0}, and the constant function ¢ corresponds
to the trivial representation of 7, and hence to 6 = 1, which means that g : £, — £
is isometric.

Replacing V by &, we see that reflection positive functions ¢ : T — B(&) with
¢(1) =1 encode reflection positive Hilbert spaces (£, £, 6) for which pT!(&,)
is dense in £%!. By (13), these configurations are parametrized by the hermitian
contractions B = ¢(7) on &;. For v, w € £;, we then have

(v, 0w) = (v, Bw).

Therefore the 1-eigenspace ker(B — 1) corresponds to the maximal subspace in &4
on which the map g : £ — £ is isometric. We also observe that ker B =kerg. In
this sense the operator B describes how £ is obtained from the Hilbert space £...

Remark 3.10. Suppose that 6 is a unitary involution on £ with the eigenspaces £*!.
If K C £ is a §-positive subspace, then clearly £ NE~!' = {0} and this implies that
K is the graph I'(Z) of the operator

Z:D(Z)={vrec& :(@_e& Y (v, v) ek} —> € vi v,

That I'(Z) is a 6-positive subspace is equivalent to ||Z| < 1. Therefore the
closedness of K shows that D(Z) is a closed subspace of £ U (cf. [Jorgensen 2002,
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Lemma 5.1]). If p!(K) = D(Z) is dense in £, the closedness of D(Z) implies that
Z e B(EY, €Y. The density of p*I(IC) = Z(EY) is equivalent to Z having dense
range.

From this perspective, we can also generate the configuration (£, £, 6) in terms
of £'. Then jw)y=(, Zv) € E'@ &~ defines a linear map j : E' - & whose range
is K. The corresponding B(E')-valued positive definite function on 7 is given by

Yy =j*j=1+2*Z and v (t)=j0j=1-2"Z.
The polar decomposition of j : €' — K takes the form
j=Uj*j=U~N1+2Z*Z,
where U : £! — K is unitary. Therefore the corresponding B(K)-valued positive
definite function on 7 is given by
M=1 and (1) L= Z -
= an )=U———
v 4 1+2°Z
because j*¢(t)j = j*0j =1 — Z*Z implies
e(m)=0(H'a-z2nj ' =va+z2 ) VA -z2 A+ zrz)"V2u!
1-2*7
14+272%Z '
Relating this to the preceding discussion, we see that U ker Z C £, is the maximal
subspace on which ¢ is isometric and

=U

Uve&':||Zv| =|v|}=Uker(l— Z*Z) =kerq.
In particular, ¢ is injective if and only if Z is a strict contraction.

3C. Reflection positivity for the 2-element group. In this subsection, we take a
closer look at the 2-element group G = {1, o'} because it nicely illustrates that if a
reflection positive representation decomposes into two subrepresentations, then the
summands need not be reflection positive (see also [Neeb and Olafsson 2014]). On
the level of positive definite functions, this is reflected in the fact that the cone of
reflection positive functions does not adapt to the decomposition into even and odd
functions.

We consider the 2-element group G := {1, o'}, which leads to the Klein-4-group

G, =G x{1,1})=7/27 x7/27.

We consider reflection positivity with respect to the subset G := {1}.
Any unitary representation (U, £) of G, decomposes into four eigenspaces

E=VpeMpeltge 1 E2 =y e Uyv=ev, Uy =0},
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and for 6 := U, the subspace gl =gl g1 is Uy-invariant. Forv=(a, b, ¢, d),
we then have

Uwv=(a,b,—c,—d) and U,v=(a,—b,c,—d).
Assume £ = Cv for a single vector v. Then reflection positivity corresponds to
(v, 6v) = lal® + [b|* — |c|* — |d|” = 0.
With respect to U, we have
v=v1+v_1=(a,0,¢,0)+(0,b,0,d)
and
(Uyv, 0Uyv) = (v,0v) >0 and  (Uyv, Ov) = |a|*> — |b|® = |c|* + |d|?.
Therefore the subspace Cv 4+ CU, v is 6-positive if and only if
£(lal® = 1b” — le* +1d|?) < |a]* + b — |c|* — |d ],

which is equivalent to
ld| <1b| and [c] <|al.

Clearly, these two conditions are strictly stronger than the 6-positivity of Cu.
For the corresponding positive definite function f(g) = (v, Ugv) we have

f@) = lal*+ b+ |c)> + |d|*, f@ =lal®+b* = e —|d],
f@)=lal = b+ —1d*,  flor)=lal>—|b]* —|c]+|d|*.
Decomposing f = f1 + f—; with respect to the left action of o, we obtain
A= file)=lal+Ic’.  fitt) = filor)=lal* —Ic?
and
[ =—=fie)=bP+dP.  fa@) =—fi(oT)=b]>—|d|>.

Both functions f1(g) = (v+1, Ugv+1) are positive definite, but they are reflection
positive if and only if |c| < |a| and |d| < |b|.

Note that, even for U, =1 and U, = —1, there exist nontrivial reflection positive
representations with (v, v) > 0.

4. Reflection positive functions and KMS conditions

In this section we build the bridge from positive definite functions ¥ : R — Bil(V)
satisfying the KMS condition for B > 0 to reflection positive functions on the group
Tap,: = 02(R). We have already seen in Lemma 2.2 that analytic continuation
leads to a 2-periodic function ¢ : R — Bil(V) satisfying ¢(f + B) = ¢(1) fort € R
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and ¢(t) = ¥ (it) for 0 <t < B. In this section we show the existence of a positive
definite function f : R; — Bil(V) with f(z, t) = ¢(¢) for t € R. By construction,
f is then reflection positive with respect to the interval [0, 8/2] =G4+ € G =R in
the sense of Definition 3.4.

Since we can build on Theorem 2.6, our first goal is to express, for a standard
real subspace V C H, the Bil(V)-valued function

@ : 10, B] — Bil(V),

14
(9 o) (v, w) ;==Y it)(v, w) = (A?Py, AV?Pw)  for v,weV,0<t<p

from (8) in the proof of Theorem 2.6 as a B(V¢)-valued function. To this end, we
shall need the description of V in terms of a skew-symmetric strict contraction C
on V (Lemma B.9), and this leads to a quite explicit description of ¢ that we then
use to prove our main theorem.

4A. From form-valued to operator-valued functions. In the following it will be
more convenient to work with operator-valued functions instead of form-valued
ones. The translation is achieved by the following lemma. For its formulation,
we recall the polar decomposition of bounded skew-symmetric operators on real
Hilbert spaces.

Remark 4.1. (polar decomposition of skew-symmetric operators) Let DT = —D be
an injective skew-symmetric operator on the real Hilbert space V and let D = I|D|
be its polar decomposition. Then im(D) is dense because D is injective, and
therefore I defines an isometry V — V. From

[ID|=D=-D"=—|D|I"'=—-1"'U|D|I™"
it follows that 12 = —1, i.e., that I is a complex structure and that | D| commutes
with 1.
Lemma 4.2. Let V C H be a standard real subspace with modular objects (A, J),

let C = iﬁ—;i, and let C := av € B(V) be the skew-symmetric strict contraction

from Lemma B.9. We assume that ker C = {0}, so the polar decomposition C = I|C|
defines a complex structure I on V. Consider the skew-symmetric operator

D :=log 1-1€] I
' 1+|C|)

Then the function ¢(t)(v, w) = (A/?v, A'/?w) from (14) has the form

(15) () (v, w) = (v, g(O)w)y. for t €[0,1], v,w € Vg,
where the function ¢ : [0, 11 — B(V¢) is given by
—1|D| —(1-0)|D| —t|D| _ ,—(1=0)|D|
G =1+i0)"a—icy = T +irs ¢

1+ e 1] 1+ 10l
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Note that ¢(0) =1+iC #1if C #0.

Proof. Since C is a skew-symmetric contraction on V, the operators 1 +iC on V¢
are symmetric, so that we obtain a function

?:10, 11— B(Vp), o) =1+i0)'"A—-ic), 0<r<l.
Therefore both sides of (15) are defined, and we have to show that
(16) (v, §(Ow)y, = (A0, A?w)  forv, w e Ve.
For the skew-hermitian contraction C on 7, we likewise obtain bounded operators
1) :=1+i0)'"'A—-iC), 0<t<l,
and the continuity of the inclusion V¢ < H implies that
eM)lve =9(1) : Ve — Ve,
From the relation
1-iC

A= =,
1+iC

we further obtain the identity
) =1+iC)A!

of selfadjoint operators on 7{. Let V| denote the domain of the (possibly) unbounded
selfadjoint operator 1=2€ on V. Then, for0 <7 <1, V{ is a dense subspace which

1+iC
. . . . — t
is contained in the domain of (L—ig) . For w € V{, we have

1-iC\’
eNHw=>1A+iC)| —— for 0<t<1.
pw=~1A+i )<1+ic) w for0<r<
For v € Vg and @ := (%)tw we now obtain with (39) from Lemma B.9 the
relation

1+iC
AN\ !
_ <v, (1 = ’9) w> = (0, Alw)y = (A0, A )y,
1+iC H
Since both sides of (16) define continuous hermitian forms on V¢ and the preceding
calculation shows that equality holds on a dense subspace, we obtain (16) for all
v, w e Ve.
Next we observe that the polar decomposition of D is given by

1+C|
1-|C|/)

~ o - 1—-iC\’
(v,eMw)ye = (v, A+iC)w)y, = (v, W)y = <v, ( ) w>
H

D=—-I|D| and |D|=log<
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The operator | D] satisfies

e”FlD‘=—1:F|C| and 14€FIPI= 2

(17) =
1£(C| 1+|C|

Since i1 is an involution with the two eigenvalues £1, comparing the action on
both eigenspaces shows that, for 0 <t < 1, we have

1—-iCc\’ 1—iI|C\' DIl
= _— =e .
1+iC 1+iI|C|

The assertion of the lemma now follows from

1-ic\’ ;
9(1)=A+iC)| ———= ) = A +il|C|)e P!
) =1+i )(l—i—iC) (I+il|CDe

1—il 1+l
=(1+i1|C|)(etD'—2l +e*f‘D'—J;’ )

1—-il
2

=1+ ICI)(e_”D'—l il eamnip 121 ”)
2 2

=A+e ! Ph e Pl +il) + e IPl1 —iD)
¢~!ID| 4 o=(1=DIDI  ,=1ID| _ p=(1=DID|

= agew  MTewr -

1+il
=PI+ e 4Pl e

Remark 4.3. (a) Since C is a strict contraction on V, 14 iC is injective on V¢, so

~ 1+iC 1+iI|C
H::log( aal >=1og(+’—||>=i1|1)|:—i1)

1-iC 1—il|C]|

also defines a selfadjoint operator on the complex Hilbert space V.
Next we observe that H is a restriction of

1+iC
L _log( A> =—logA,
1-iC

the infinitesimal generator of the one-parameter group U; = A~'’. For the orthogonal
one-parameter group U, := U, |y € O(V), it follows that its infinitesimal generator
is a skew-adjoint extension of the skew-adjoint operator D on V, and hence coincides
with D. We therefore have

(18) e’ = A7y for teR.

This provides an alternative characterization of the operator D in Lemma 4.2.
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(b) Let (V, (-, -)) be a real Hilbert space and (U,),cr be an orthogonal strongly
continuous one-parameter group with skew-symmetric infinitesimal generator D,
i.e., U =e'P for t € R. Let us assume that ker D = {0}, i.e., the subspace VY of
U-fixed points in V is trivial. Then the polar decomposition D = I|D| can be used
to define a skew-symmetric contraction

1—e P 1—e 1P

Then the hermitian form
h(v, w) = (v, w)+i(v, Cw)

defines a positive definite kernel on V (Lemma A.10). Let # denote the correspond-
ing reproducing kernel space and let j : V — # be the natural map. By construction,
|C| has no fixed points, so that 1+ C Zis injective, and therefore Lemma A.10(iii)
implies that the complex linear extension jc : Vo — H is injective. As the real
part of 4 is the original scalar product on V, the inclusion V < # is isometric, so
that V = j(V) is a standard real subspace of H. Since & is U-invariant, it defines
a unitary one-parameter group U on H. Finally (18) implies that U, = A" for
t € R and the modular operator A corresponding to j (V). This shows that every
orthogonal one-parameter group on a real Hilbert space is of the form (18) for a
naturally defined embedding V < 7 as a standard real subspace.

Before we turn to the associated reflection positive functions, we need the fol-
lowing technical lemma on Fourier expansions of certain operator-valued functions.
In [Cuniberti et al. 2001], this is called the Matsubara formalism. (In view of
[Derezinski and Gérard 2013, Definition 18.49], we have

2B(1 — e PB)
where G g is the euclidean thermal Green’s function associated to the positive
operator € = B.)

up(t)=Ggg(t)-

Lemma 4.4. Let B > 0 be a selfadjoint operator on the complex Hilbert space H
and let B > 0. We consider the operator-valued functions uﬁ : R — B(H) satisfying

1B 4 p—(B-DB

W fOI"OSfSIB.

”2@&(’ +B) = i”?(l‘) and u?(t) =

Then u§ are weakly continuous symmetric 2-periodic with the Fourier expansions

I/t—g(t) — Z anBant/ﬁ and ”E(I) — Z C§n+le(2n+l)mt/ﬁ

neZ nez
with
s 5 (A—(=D"ePB) 28B
cC, =¢C =

nTITT T A4 e BB (BB)2 + (nm)?

for nel.
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Proof. (a) Every 28-periodic continuous function £ : R — C has a Fourier expansion

. 1 [%P .
E(t) = che”””/ﬂ with ¢, = Y / E(t)e /B gr.
neZ ﬂ 0
For the B-periodic function with u™ (1) = u} (1) := (e7™* + e~ #=D4) /(1 + 7 P*)
for 0 <t < B we have ut(t + 8) = u™ (¢), so that only even terms appear:

| —e P 28X

+ t) = ﬂi2nt/ﬁ’ — ]
W=D eme T TP (B2 + )

nez

To obtain this formula, we first calculate

B 1
.= %/ e—l‘)»e—ﬂint/ﬂ dt :/ e—(,B)»—Hrin)t dt
0

0
1— e—(ﬂ)»-‘rﬂin) 1— (_1)ne—ﬁ)»
© Ba+4mi2n  Br+mi2n

Therefore

1 —eP* 4o P 1 —eP*
BA+2nmi —BA+2nmi
_l—e P N 1—e P (1—eP")2B)
 BA+2nmi - Br—2nmi  (BL)2+ (2nw)?

(I+e ™ Pyery=ar o0 +ePra; 5, =

For the 2B-periodic function with u™(t) = u; (t) := (e~ —e~F=D*) /(1 +e7F*)
forO<t < pBand u™ (t+ B) = —u (¢) only odd terms appear:

28

(1) = m'(2n+1)t/,B’ — ]
u () ZCZn-‘rle Con+1 (,3)\)2+((2n+ 1)7_[)2

neZ

This follows from

—BA
ay2n+1 —€ b a—)2n+1

Con+1 =

1+ e Pr

_ 1 e P 1+ e 1

C BA+Qn+Dmi l+ePr  —Br+Q2n+ Dmi

B 1 N 1 B 2B

S BA+Q@u+Drmi o BrA—QCn+Dmi (BM2+(2n+ D)2’

Note that
1 —(=1)re P 2B
Ch=C_p,= (=Dre p for ne 7.

I+e P (BA)?+ (nm)?
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(b) If P denotes the spectral measure of B, we have for v € H the relation

o

(v, Bv) =/ xdP%’(x) with PV" = (v, P(-)v).
0
This leads for 0 <t <28 to
o0
(v, 15 (H)v) = / () dPY ().
0

For the operator-valued Fourier coefficients, we thus obtain
1 —(=1)e F* 2B
(v, ) =/cn(x>dP”’"<x>=/ e P
R R 14+e P (B2 + (nm)?
(1—(=1)"e PP) 2B
={v, V).
1+e P8 (BB)2 + (nm)?

This proves the assertion. (]

dP" (%)

4B. Existence of reflection positive extensions. We now come to one of our main
results on reflection positive extensions. It shows that, for every positive definite
function v : R — Bil(V) satisfying the 8-KMS condition, there exists a reflection
positive function f : G, — B(V¢) satisfying

v (v, w) = (v, f(it, DHw)

for v, w € V,0 <t < B. Then the corresponding GNS representation (U foH r) of
the group (T25). = O2(R) is a “euclidean realization” of the unitary one-parameter
group (A~/B),cr corresponding to v in the sense that it is obtained by Osterwalder—
Schrader quantization from U/ (cf. [Neeb and Olafsson 2014]). The following
theorem generalizes the results of [Neeb and Olafsson 2015b] dealing with the
scalar-valued case.

Theorem 4.5 (Reflection positive extensions). Let V C H be a standard real
subspace and let C = I|C| be the corresponding skew-symmetric strict contraction
on V. We assume that ker C = {0}, so that I defines a complex structure on V. We
define a weakly continuous function ¢ : R — B(V¢) by

PO =A+iCO)'"PA—iC)P forO<t<B and FA+B)=¢(1) forteR.

Write
o) =uT ) +ilu () with ut(@) € B(V), ur(t+B) =+u™(@).

Then
f:R; — B(Vp), f@, %)= ut @)+ GDu" (1), teR,ee{0,1},

is a weak-operator continuous positive definite function satisfying f(t, t) = ¢(1).
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It is reflection positive with respect to the subset [0, 8/2] C R in the sense that the
kernel

(@) (=s, )= f+s,7), 0=<s,1=p/2,
is positive definite.

Proof. We may, without loss of generality, assume that 8 = 1. Recall the operator D
from Lemma 4.2. With this lemma, we write

o) = (1+e‘|D|)_1(e‘”m+e‘<1_’)|D|+iI(e_’|D|—e_(l_’)‘m)) for0<zr<I.
Using Lemma 4.4 with 8 =1 and B = | D|, we get
Q1) = up (1) +ilujpy (1) for t € R.

(a) We define f : R, — B(Vp) by fi(t, %) := urLD‘(t) forr e R, e €{0,1}. To
see that f] is positive definite, it suffices to verify this for its restriction to R
(Lemma 3.6), which follows from the positivity of the Fourier coefficients in the
expansion

. 1—e 1Pl 2|D|
+ _ ID| 2nmit . [D| _
uipy (1= eay ™ with ey = 47y IDE+ 2nm)?1 -

nez
(Lemma 4.4). Note that f; is 1-periodic.
(b) Likewise, the function f, : R; — B(V¢) defined by f>(¢, °) := uﬁ)l(t) for
t € R, e € {0, 1}, is positive definite because the Fourier coefficients

2|D
clzDJlrlz DI >0 forne”Z
n |ID|2 4+ (2n + 1)m)21

are positive. Note that f>(r + 1, t8) = — fa(¢, t°) for t € R, ¢ € {0, 1}.

(c) We now consider the function
fz(g) =h(g) f2(g) with h(z,t%) = (@GI)° for t €R, € € {0, 1}.

Since i(g) commutes with f>(g’) for g, g’ € Ry, the function f> is positive definite
if i is positive definite (Lemma A.6). As & is constant on the two R-cosets and its
restriction to the 2-element subgroup {1, t} is a unitary representation, £ is positive
definite. We conclude that the B(V¢)-valued function f := f;+ fz on R; is positive
definite. U

Corollary 4.6. Let V be a real vector space and let r : R — Bil(V) be a continuous
positive definite function satisfying the p-KMS condition. Then there exists a
pointwise continuous function f : R, — Bil(V) which is reflection positive with
respect to the subset [0, 8/2] C R and which satisfies

fi,r)y=vGt) for0<t<§p and f(@+pB,t)=f(, 1) forteR.
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Remark 4.7. The function £, in the proof of Theorem 4.5 is not reflection positive
because f>(8, 7) is a negative operator. This also shows that the natural decom-
position f = fi + f> into even and odd parts is not compatible with reflection
positivity.

4C. Integral representation of reflection positive functions. We now describe an
integral representation of the reflection positive function f : R; — Bil(V) which
corresponds to the decomposition of the corresponding unitary representation of R;.
With

o) =A+i0)!""PA-ic)’? for 0<t <8,

where C € B(V) is a skew-symmetric strict contraction, we first decompose V into
Vo :=kerC and V| := VOL = CV. Then the polar decomposition C = I|C]| yields
a complex structure / on V. Accordingly, we write ¢ = @y + @1, where ¢y = 1
is constant. This component leads to the constant function fy(¢, T) = 1. We now
assume that V =V, i.e., that C is injective. Then [ is a complex structure on V.

Proposition 4.8. If ker C = {0} and P denotes the spectral measure of the sym-

metric operator |D| = %log E}gl on V, then we have the integral representation

(19) £, ) :f uy () +u, (GEDEdP (L),
(0,00)

where uit : R — R are defined by uit(t + B8) = :l:uic(t) and
e e (B-DA
Proof. First we observe that | D| is a positive symmetric operator with trivial kernel

which commutes with 7. We therefore have |D| = [ 0.00) A dP(A). With the notation
from Lemma 4.4, we then have

Ui (1) = for 0<1<B.

[, ) =uly ) +up GD for 1 €R, e €{0,1}.

From the integral representations ”\im (1) = f (0.00) uki(t) d P (}), we obtain (19). I
Remark 4.9. (a) For 0 <t < §, we have in particular

e_”‘ +e—(ﬂ—t)x e—tk —e_(ﬂ_’))‘
t,1%) = 1 i1 dP()).
roe= [ T arGy

(b) The most basic type is obtained for D = A1, A > 0, which, for 0 <¢ < 8, leads to

(eft}» +€7(’37t))‘)1 + (eft)n _ e*(ﬂft))u)(il)e

S = uf (O1+uy (OGD)°.

ft, )=

The simplest nontrivial example arises for V = R? with I = ((1) _(])).
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(c) Every Borel spectral measure P on (0, co) which commutes with / defines a pos-
itive operator | D| = fooo AdP()) and we may put D :=—1|D|. Then ker | D| =0, so

PIDI 1 BID|
e
|C| = m = tanh<T)

is a symmetric contraction with trivial kernel commuting with /, and therefore
C :=1|C| is a skew-symmetric contraction with polar decomposition /|C| and

1 1+|C
|D| = —log( | |>.
B 1-|C|

4D. Characterizing reflection positive extensions. In Theorem 4.5 we obtained
positive definite extensions to all of R, for certain functions on the coset R x {t}.
In this section we describe an intrinsic characterization of those weakly continuous
reflection positive functions f : R, — B(V¢) arising from this construction. First
we observe that we can recover i from f:

Lemma 4.10. If f : R, — Bil(V) is reflection positive and pointwise continuous,
then there exists a unique B-KMS positive definite function ¥ : R — Bil(V) with

f@, )y=v@Gt) for0<t<8§.

Proof. First we observe that the function ¢(¢) := f (¢, t) has values in Herm(V¢)
and satisfies

(20) e(t+B)=9¢(t) forteR.

Reflection positivity implies that the kernel go(%) for 0 <1t,s < B is positive

definite. By [Neeb and Olafsson 2015b, Theorem B.3], there exists a Bil™(V)-
valued measure w such that

(21) 0 :/e—“ du() for 0<t<§.
R

The continuity of ¢ on [0, 8] actually implies that the integral representation
also holds on the closed interval [0, 8] by the monotone convergence theorem.
In particular, the measure w is finite. Therefore its Fourier transform v (¢) :=
fR e du(r) is a pointwise continuous Bil(V')-valued positive definite function
on R. Further, (20) implies

(22) e du(=h) =dE(),
and ¢(¢) = (it) holds for the B-KMS function i : R — Bil(V) by Theorem 4.5. [J

Before we describe a realization of the GNS representation (U/, H £) in spaces
of sections of a vector bundle, let us recall the general background for this.
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Remark 4.11. For a B(V)-valued positive definite function f : G — B(V), the re-
producing kernel Hilbert space with kernel K (g, h) =¢(gh~ ) =K <K is generated
by the functions

Knwi=Kfw with Kj,(g) =K.Kjw=K(g, h)w=g(gh™Hw.
The group G acts on this space by right translations
(Ugs)(h) :=s(hg).
If P C G is a subgroup and (p, V) is a unitary representation for which

fhg)=ph)f(g) forall geG, heP,
then

Hy S F(G,V),:=1{s:G— V:s(hg) =p(h)s(g) forall g € G, h € P}.
Therefore H r can be identified with a space of sections of the associated bundle
V:=(VxpG)=(VxG)/P,
where P acts on the trivial vector bundle V x G over G by h.(v, g) = (p(h)v, hg).

To derive a suitable characterization of the functions f arising in Theorem 4.5, we
identify 28-periodic function s on R with pairs of function (sg, s1) via s = so + 51,
where s¢ is B-periodic and s1(8 +t) = —s;(¢f). Accordingly, any 2p-periodic
function s : R — V¢ defines a function

S:R— Vé, §=(s1,82) with §(B+1)= <(1) _01> 5(t).

In this sense, s is a section of the vector bundle over Tg with fiber Vé defined by
the representation of 8Z, specified by

1 0
p(B) = (0 _1>.

Splitting the B(V)-valued positive definite function
f iR, — B(V), [, ) =ujp @) +up G for t €R, & €{0,1)
into even and odd parts with respect to the S-translation, we obtain:

Lemma 4.12. For the subgroup P .= (Z8). =78 x {1, t} of G :=R., we consider
the unitary representation p : P — U(Vé) defined by

(1 0 (10
0B, 1) := (0 _1) and p(0,7):= (0 iI)’

where I is a complex structure on the real Hilbert space V commuting with the
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positive operator |D|. Then

) 0
*iR, — B(V?) = My(B(V “ty = (1P
f — B(V?) 2(B(V)), [, ) ( 0 uipy G
is a positive definite function satisfying

(23) fP(hg) = p(h) f*(g) for he P,geg.

The corresponding GNS representation (U H r2) is equivalent to the GNS repre-
sentation (U7, Hy).

Proof. The first assertion follows from

u|+D|(—t) 0
0 u‘_DI(—t)(iI)”]

B u|+D|(r) 0
0 ul_Dl(t)(iI)s“

ul*;)l(t) 0
0 —up®GHF ’

FHO, ), ) = fi(—1, ) = (

and

AP+t = (

As the GNS representation (U, H r) decomposes under the involution U ﬂf into £1-
eigenspaces, this representation is equivalent to the GNS representation (U/", 7t)
corresponding to f*. O

Remark 4.13. (a) The preceding lemma implies that, if the complex structure / on
V is fixed, then the relation (23) determines f* completely in terms of the function

[0, B1 — Ma(B(V)), t+> fi(t, 1) = (Reg(l) iImow(t)) ’

so that ¢ determines f in a natural way.

(b) This lemma also shows that we may identify the Hilbert space H y = H ;: as
a space of section of a Hilbert bundle V? x » G over the circle Tg = R, /H with
fiber V2.

(c) Every function s : R; — V2 satisfying s(hg) = p(h)s(g) for h € (BZ); is
determined by its restriction s to the subgroup R, which satisfies

S(B+t)=p(B,Ds@¢) forreR.
The action of 7 is in this picture given by

(24) (r.5)(@) =5, 1) =50, 1)(—1, 1)) = p(0)5(—0).
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Remark 4.14. (a) In view of (22), there exists a BilT(V)-valued measure v on
[0, o0) for which we can write

(25) dur) =dv(}) + P dv(—2).

This leads, for 0 <t < g and v =v; +iv, to
o0 o
(26) () = / e fe B gy () +i / e —em B0 gy, ().
0 0

In particular, the most elementary nontrivial examples correspond to the Dirac
measures of the form v = §, - (¥ +iw), where §, is the Dirac measure in A > 0:

(p(t) — (e—l‘)» _i_e_(,B—l))»)y + l-(e—l)x _ e_(,g—l‘))\)a) — e—tkh +e—(ﬂ—[)kﬁ’

where h :=y +iw € Bil* (V). Writing w(v, w) = ¥ (v, Cw) (Corollary A.9) and
replacing V by the real Hilbert space defined by the positive semidefinite form y
on V, we obtain the B(V¢)-valued function

P =( P4+ B 4iC(e™ —e B = A +iC)+e P 1 -iC)
for 0 <t < B, which leads to
fa, =01 —I—e_’“)(uj{(t)l +u;, (OIC|ED*) for t eR, e €{0,1}.
(b) This can also be formulated in terms of forms. With y (v, w) = (v, w)y and
h(v, w) =y, w)+iow, w) = (v, A+iC)w)y, = (v, A+il|ChHw)v,,

we get
[ )W, w) = (v, @ (O1+u; ()|CIGED)w).

4E. Realization by resolvents of the Laplacian. We have seen in the preceding
subsection how to obtain a realization of the Hilbert space H y as a space H sz of
sections of a Hilbert bundle V with fiber Vé over the circle Tg = R/BZ. In this
section we provide an analytic description of the scalar product on this space if
| D] = A1 for some A > 0. We shall see that it has a natural description in terms of
the resolvent (A2 — A)~! of the Laplacian of Ty acting on sections of the bundle V.
On the circle group T,g, we consider the normalized Haar measure given by

1 [
/ hOdur, = o5 | hawar

where we identify functions i on T,g with 28-periodic functions on R.
As in Lemma 4.12, we write

uy (1)1 0

g ey 2\ ~
[t )—( 0 u;(t)(il)s)GB(VC)_MZ(B(VC))’
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For x,(t) = ™"!/P we then have

+_§:A *_E A
u, = X and  u, = Con+1X2n+15

nez neZ
where
T e 2B 1= (=1)"e P 24 1
DT T T e B2+ () d4e P B a2+ (m/p)

for n € Z (the rightmost factors are called bosonic Matsubara coefficients if # is
even and fermionic if n is odd [Derezinski and Gérard 2013, §18]). With

L l—e P2 B 24 L 2
27) ¢y =————=tanh| — )— and ¢’ :=—,
1+ehA* B 2 ) B B
we thus obtain
) 2
@) =yt =y
A2+ (2nm/B)? A2+ (2n+)m/B)?

The following proposition shows that the positive operator (A> — A)~! on the
Hilbert space of L?-section of V defines a unitary representation of R, which is
unitarily equivalent to the representation on #H s (cf. Lemma 4.12).

Proposition 4.15. For A > 0, let H, be the Hilbert space obtained by completing
the space

I,:={seC*R,, Vé) :s(hg) =p(h)s(g) forall g e R, h € (ZB),)}

with respect to

1 [
(51, 52) = —= / (510, 1), (02 = A)\s2)(t, 1)) dr.
28 Jo

On M, we have a natural unitary representation U* of R, by right translation
which is unitarily equivalent to the GNS representation (U7", Hy:). Here the
corresponding j-map is given by

. . [ V1 A V1 A 0
29 V—>H y == n + — n .
29) j A ]<vz> ,/c+n€ZZX2 <0> V¢ ém +1 <v2>

Proof. We identify I, with the space
{s € C*(R, Vé) cs(B+1) = p(B)s(t) forall t € R}

(Remark 4.13). Then s = (if ), where s is B-periodic and s_ is S-antiperiodic.
Accordingly, we have an orthogonal decomposition H; = H: @©H, , where ’Hf =
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{s € H; :s(B+1)==%s(¢) for all t € R}. Then U* is given by

(Uts)(x)=s(t+x) fort,xeR and (Uls)(x) :( .s+(—x) )
@@1)s—(—x)

From the Fourier expansion s = Zn <7 XnSn and the orthonormality of the x,,
we then derive

30) (51,8203, = Z AZ(S_;E’;—;TZ/"/;)Z

nez

For the map j : V — H, in (29), the image is Uﬁ—generating for H, because the
projection onto each Fourier component generates the first or the second component
of Vé, according to parity. Therefore the unitary representation (U*, ;) is equiva-
lent to the GNS representation of the positive definite function f : R, — B(Vé),
given by

(v, f(@w) = (j(), Ug j(w))y,.

From

. 0
U();,‘,TS)](U) = \/ZZ X2n X2n (1) (lé)I) + \/EZ Xon+1X2n+1(1) ((i1)8U2> s

neZ nez

we derive with (28),

~ & X2n(t)
(v, f(t, THw) =} gm(vh wi)

A X2n+l(t) .
e g A2+ (2n+ 1)71/5)2(01, (1) wy)

= x5, (i, w1y + D Xont1(0)h, 4 (v2, (1) wa)

neZ neZ
= (vi. uf (Owr) + (v, u; (DD wa) = (v, A1, T°)w).

This shows that f = f%, which completes the proof. U

Remark 4.16. From u} =", _, ¢} x2a, it follows that

ne

02— auf =3 (324 Z ) = Y s =t
r T 2n B2 X2n =€ X2n = €100,
neZ neZ

where the latter relation means that

1 2
0)=— n(t)d
51(0) 2,32/0 54() xon (t) dt

nez
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for every smooth B-periodic function s; on R. This relation can also be written as

_ 1
(= A8 = —uj.
C+

Fromu} =Y, ., 5, X2n+1, it follows that

B Qn+ 1)x?
2 - Nu, = Zcén_H (Az - xmr1=cx1 Z X2n-

2
neZ 'B nez

As every smooth B-antiperiodic function s_ is of the form s_ = x_;s;, where s
is B-periodic, we obtain, in the sense of distributions,

(02— Ay, s-) = cts4(0) =t s_(0) = (c* 8o, 5-),

and therefore
1
2 -1 -
A=A 5= _c}‘ u;

on B-antiperiodic functions. Combining all this, we get

2 i, e (AP =Muf1 0 k1 0

as an operator-valued distribution on the space of smooth sections of V (cf. also the
discussion of thermal euclidean Green’s functions in [Derezinski and Gérard 2013,
Definition 18.49]).

5. The case f = c©

In the context of C*-dynamical systems, it is well known that the positive energy
condition for the unitary one-parameter group implementing the automorphisms of
a C*-algebra A in a representation can be viewed as a KMS condition for 8 = oo
(cf. [Bratteli and Robinson 1981]). For reflection positive representations of G =R,
this case corresponds to G = R, which has been treated in [Neeb and Olafsson
2014; 2015a] (cf. also the discussion of euclidean Green’s functions in [Derezinski
and Gérard 2013, Definition 18.48]). The following theorem makes this analogy
also transparent in the context of our Theorem 2.6.

If ¥ : R — Bil(V) is a positive definite function satisfying the KMS condition
for 8 > 0, then its extension to S_,g is pointwise bounded (Theorem 2.6). This
observation explains the assumptions in the following theorem.

Theorem 5.1 (KMS condition for 8 = 00). Let V be a real vector space and let
¥ : R — Bil(V) be a pointwise continuous positive definite function. Then the
following are equivalent:
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(1) ¥ extends to a pointwise bounded function on the closed upper half plane
which is pointwise holomorphic on C..

(i) There exists a Bil+(V)-valued regular Borel measure u on [0, 00) satisfying
o0
V() = / ¢ dp(h),
0

(iii)) The GNS representation (U v, Hy ) has spectrum contained in [0, 00).

If this is the case, then the function
f@, %) :=vyt]) forteR, ee0,]l1},

on R; is reflection positive with respect to Ry = [0, 00).

Proof. (i) = (ii): First we use [Neeb and Olafsson 2015b, Proposition B.1] to write
¢ as the Fourier transform of a Bil™ (V)-valued regular Borel measure i on R:
U(t) = fR e duu()). Evaluating in v € Vi, we obtain for the positive measure
u¥? = u(-)(v, v) the relation

YO, v) = / et dpt (1),
R

This function extends to a bounded holomorphic function ¥ on C;. In particular,
the Laplace transform L(u"V)(¢t) = ¥ (it)(v, v) is bounded, which implies that
supp(u®¥) <€ [0, 0o) (cf. [Neeb 2000, Remark V.4.12]). This implies that u is
supported on [0, 00).

(i) = (iii): Write U, := U V' — ¢itH with the selfadjoint generator H. We show
that H > 0. Let E be the spectral measure of H, so that H = fR AdE(A) and
U, = [pe™ dE()). It suffices to show that, for every f € L'(R) for which the
Fourier transform f (1) = [, "' f(t) dt vanishes on R, the operator

Uf=/f(t)e"”" dt://f(t)e’”dE(k)dt
R RJR

= / / fe™ dtdE() = / fOYAEQ) = f(H)
R JR R

vanishes. For v, w € V, we obtain with (ii) that
(j(),Usj(w)) = /R FO (W), Upj(w))dt = /R (@ /O et dut " (n) de

=f /f(t)ei’kdtdu"’w()\)=/ f)du"" () =0
0 R 0

if f vanishes on R. This proves that j (V) C ker(Uy) and since Uy is an inter-
twining operator and the subspace j (V) C H, is generating, it follows that U = 0.
This implies that H > 0.
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>ii1) = (i): Write U, := U,w =¢'" and assume that H > 0. The spectral calculus
for selfadjoint operators now implies that ﬁz :=¢'*H Imz > 0 defines a strongly
continuous representation on the upper half plane C; which is holomorphic on the
interior and whose range consists of contractions ([Neeb 2000, Chapter VI]). Then

V@) w) = (j ), Uejw)) = (j ), & j(w)), v,weV,Imz >0,

provides the bounded analytic extension of ¥ to C,..

Now we assume that (i)—(iii) are satisfied. Writing ¥ (¢) (v, w) = (j (v), U j (w))
for a linear map j : V — # and a unitary one-parameter group U; = ¢'" on #, we
have H > 0 by (iii) and

fa, ) =), e "M jw),
so that the positive definiteness of f follows from the positive definiteness of the

function ¢ — e~ on R [Neeb and Olafsson 2014, Proposition 4.1]. O

Appendix A. Some background on positive definite kernels

In this appendix we collect precise statements of some basic facts on positive
definite kernels and functions to keep the paper more self-contained.

Form-valued positive definite kernels.

Definition A.1. Let X be a set and V be a real vector space. We write Bil(V) =
Bil(V, C) for the space of complex-valued bilinear forms on V. We call a map
K : X x X — Bil(V) a positive definite kernel if the associated scalar-valued kernel

K':(XxV)x(XxV)=>C, K((x,v),(y,w):=K(,y) (v, w)

is positive definite.> The corresponding reproducing kernel Hilbert space H x> <
CX*V is generated by the elements K& ,, x € X, v € V, with the inner product

(K ey K(yy) = K (6, )0, w) =1 K°((x, v), (3, w)) =: K}, (x, v),

so that, for all f € Hg», we have
fov) = (K], f).

We identify H g» with a subspace of (V*)X by identifying f € Hg» with the function
[ X = V* f*(x):= f(x,-). Wecall

Hi ={f": f Mg} S (VH¥
2This definition is adapted to our convention that scalar products are linear in the second argument.

Accordingly, a kernel K : X x X — Bil(V) is positive definite in the sense of Definition A.1 if and
only if the kernel (x, y) — K(x, y)—r is positive definite in the sense of [Neeb and Olafsson 2015b].
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the (vector-valued) reproducing kernel space associated to K. The elements
Kyv:= (K, )* with K, ,(y)=K(y,x)(-,v) for x,ye X,v,weV,

then form a dense subspace of Hg with

(3D (Kx,v, Kyw) = K(x, y)(v, w).

Example A.2. If V is a complex Hilbert space, X isasetand K : X x X — B(V)
is an operator-valued kernel, then K is called positive definite if the corresponding
kernel

K: XxV)yx(XxV)—C_C, I?((x, v), (v, w)) := (v, K(x, y)w)

is positive definite [Neeb 2000, Definition I.1.1], and this means that the kernel
K': X x X — Sesq(V) CBil(V), K'(x,y)(v,w):= (v, K(x, y)w)

is positive definite.

If X = G is a group and the kernel K is invariant under right translations, then it
is of the form K (g, h) = ¢(gh~") for a function ¢ : G — Bil(V).

Definition A.3. Let G be a group and let V be a real vector space. A function
¢ : G — Bil(V) is said to be positive definite if the Bil(V)-valued kernel K (g, h) :=
@(gh™") is positive definite.

The following proposition ([Neeb and Olafsson 2015b, Proposition A.4]) gener-
alizes the GNS construction to form-valued positive definite functions on groups.

Proposition A.4 (GNS-construction). Let V be a real vector space.

(a) Let ¢ : G — Bil(V) be a positive definite function. Then (Ug f)h) := f(hg)
defines a unitary representation of G on the reproducing kernel Hilbert space
Hy € (V*C with kernel K (g, h) = go(gh_l) and the range of the map

JiV o He jOQW) =@, ),  jo) =K,
is a cyclic subspace, i.e., U g Jj (V) spans a dense subspace of H. We then have
(32) @@ (v, w) = (j(v), U7 j(w)) for geG, v,w,eV.

(b) If, conversely, (U, H) is a unitary representation of G and j : V — H a linear
map whose range is cyclic, then

¢:G = Bil(V), (@) (v, w):=(j), Uyj(w))

is a Bil(V)-valued positive definite function and (U, H) is unitarily equivalent to
U?, Hy).
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Remark A.5. If ¢ : G — Bil(V) is a positive definite function, then (32) shows
that, if V := j(V), which is the real Hilbert space defined by completing V with
respect to the positive semidefinite form ¢ (1), then

P(8) (v, w) = (v, Ugw)
defines a positive definite function
§:G—Bil(V) with $(g)(j(v). j(w)) =(g)(v, w) for v,we V.

Therefore it often suffices to consider Bil(V')-valued positive definite functions
for a real Hilbert space V for which ¢(1) is a positive definite hermitian form
on V whose real part is the scalar product on V. In terms of (32), this means that
Jj 'V — H is an isometric embedding of the real Hilbert space V.

Products of operator-valued kernels.

Lemma A.6. If K;: X x X — B(V), j = 1,2, are two positive definite kernels
with the property that

Ki(x, NK2(x, ) = Ko(x', Y)Ki(x,y)  for x,x', y, ¥ € X,
then the product kernel K := K - K» is also positive definite.

Proof. Let x1, ..., xx. We have to show that the operator
C = (Ki(xj, x)Ka(xj, xp))1<jk<n € My (B(V)) = B(V")

is positive (cf. [Neeb 2000, Remark 1.1.3]).
Let A; € B(V) denote the von Neumann algebra generated by the values of K.
Then A; and A, commute. Further, the matrices

AW = (Ko(xj, xi)1zjkzn € Ma(A),  €=1,2,
are positive, so [Lance 1995, Lemma 4.3] implies that the matrix
D := (Ki(xj, xx) @ Ka(xj, x1)) € My(A; ® A)

is positive. Since C is the image of D under the canonical representation of
M, (A; ® Ay) on V", it follows that C is positive. O

From real to complex-valued kernels. In this section we take a brief look at
the interplay between real and complex-valued positive definite kernels. Here
Corollary A.9 is of central importance because it shows how the positive definiteness
of a complex-valued form 4 = y + i on a real vector space V leads to a skew-
symmetric contraction on the real Hilbert space V.
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Lemma A.7. Let K : X x X — C be a positive definite kernel. Then the corre-
sponding Hilbert space Hx < CX is invariant under complex conjugation such that
o (f) := f defines an antilinear isometry on Hg if and only if K is real-valued.

Proof. The invariance requirement implies the relation

(f; Kx) = f(x) =(Ky,0())) =(f,0(Ky)) for feHkg,
and therefore o (K,) = K, i.e., K is real-valued. If, conversely, K is real-valued,
then Hx = H% i H}Ré is an orthogonal sum of real Hilbert spaces, so that complex
conjugation acts on Hx as an isometry. U
Proposition A.8. Let A, B : X x X — R be real kernels on the set X. Then the

kernel
K=A+iB: XxX—>C

is positive definite if and only if
(a) A is positive definite, and

(b) there exists a skew-symmetric contractive operator C on the real reproducing
kernel Hilbert space 7—[§ C RX with

B(x,y)=(Ac,CA,)=(CA))(x) forx,yeX.

Proof. Necessity: If K is positive definite, then so is K = A —i B, and this implies
that A = %(K + K) is positive definite. As A —iB =2A — K is positive definite,
[Neeb 2000, Theorem 1.2.8]% implies the existence of a bounded operator D > 0 on
the complex reproducing kernel Hilbert space H 4 € CX with

Ky(x)=K(x,y)=(Ax, DA)) =(DA))(x) for x,yeX.

From Lemma A.7 we know that H 4 = Hﬁ@i?—lﬁ. From the relation Ay+iB,= DA,
for every y € X and the fact that B is real-valued it thus follows that D =1+iC
for a bounded operator C on ’H§ satisfying CA, = B, for every y € X. Now
D = D* > 0 implies that C = —CT is a contraction and

B(x,y) = (CAy)(x) = (A, CA,) for x,y€X.
Sufficiency: Suppose, conversely, that A is positive definite and that C is a skew-

symmetric contraction on the real Hilbert space Hﬂ'} Then the hermitian operator
1+iC on HE is nonnegative, and therefore its symbol

K(x,y) =((1+iC)A))(x) =A(x,y)+i(CAy)(x)

is a positive definite kernel on X. (]

3For two positive definite kernels K and Q on a set X, the relation Hg € H ¢ is equivalent to
AQ — K being positive definite for some A > 0, and this in turn is equivalent to the existence of a
bounded positive operator B on H ¢ with || B|| < A satisfying K (x, y) = (Qx, BQy) = (BQy)(x) for
x,y € X [Neeb 2000, Theorem 1.2.8].
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Corollary A.9. Let V be a real vector space, let y : V x V. — R be a symmetric and
w:V xV — R be a skew-symmetric bilinear form and consider the corresponding
hermitian form h := y +iw. Then the following are equivalent:

(1) h is a positive definite kernel on V.

(i1) y is positive semidefinite and there exists a skew-symmetric bounded operator
C on the real Hilbert space V,, obtained by completing V /{veV :y (v, v) =0}
such that o (v, w) = ([v], Clwl)v,, where [v] denotes the image of vin V,,.

(ii1) y is positive semidefinite and
(33) o, w)? <y, v)yw,w) forv,weV.

Proof. (1) < (ii): In view of Proposition A.8, the kernel 4 is positive definite if and
only if the kernel y is positive definite, i.e., y is a positive semidefinite form, and
the kernel w can be written as

(34) w (v, w) = ([v], C[w])vy for v, weV,

where C is a skew-symmetric contraction on the real Hilbert space V.
(i1) = (iii): (34) and ||C|| <1 imply that

o, w)* < |ICIPIIIA NI = ¥ (w, w)y (v, v).

(iii) = (ii): Suppose, conversely, that y is positive semidefinite and that (33) is
satisfied. Then w defines a continuous bilinear form on the real Hilbert space V),
with norm < 1. Hence there exists a skew-symmetric contraction C € B(V,)
satisfying (34). This proves the corollary. U

Lemma A.10. Let h = y 4 iw be a positive definite kernel as in Corollary A.9, let

Hy € Hom(V, C) be the corresponding reproducing kernel Hilbert space and let

j:V = Hy, jv) =h(-,v) be the canonical map. The following assertions hold:

(1) j is injective if and only if y is positive definite, i.e., defines an inner product

onV.

(i) The complex linear extension jc : Vo — Hp, v +iw — j) +1i-j(w) is
injective if and only if

w(v, w)2 <y, v)y(w,w) for0£v,weV.

(iii) Suppose that y is positive definite, that (V, y) is complete and that o (v, w) =
([v], Clw]) for an operator C on H;’f = (V, y). Then jc is injective if and only
if |Cv|l < ||v| for every nonzero v € ’H;'?.

Proof. (1) In view of (j(v), j(w)) = (h(-,v), h(-,w)) = h(v, w), we have

7 (I? = h(v, v) = y(v, v), so that j is injective if and only if y is positive
definite.
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(i1) First we calculate

ljic+iw)|* = lj ) +i-jw)|* =y, v)+y@w, w)+2Re(j),i-jw))
=yW,v)+yw,w)+2Reih(w, v)
=y, v)+yw,w)+2w(v, w).

Writing w (v, w) = (Y, Cyy) asin (34), it follows that jc (v+iw) =0 is equivalent to

(35) 2(0v, Cyw) = (Yo, Vo) + (Yw, Yu)-

Next we observe that j (v) = —i - j(w) implies y (v, v) = ||j )|I* = ||j (w)|* =
y (w, w), which leads to

Vo, Crw) = Iy l? = 1vul* = 19l - 17w -

As C is a contraction, this is equivalent to Cy, = y,, by the Cauchy—Schwarz
inequality.

If, conversely, there exists a nonzero v € V with Cy, =y, and y (v, v) =y (w, w),
then jc(v +iw) = 0 by (35). This proves (ii).

(iii) If (V, y) is complete, j (V) = (V, y) is closed in H;,. Therefore Cj (V) C j(V),
and (iii) follows from the preceding discussion. O

Remark A.11. If V C H is a standard real subspace (Definition 2.4), then the
kernel 2 (v, w) := (v, w) on V has the property that the corresponding reproducing
kernel Hilbert space is H and the inclusion is the corresponding map j : V — H.
In particular, its complex linear extension is injective.

If, conversely, h = y +iw is a positive definite bilinear kernel on a real vector
space V, then j (V) is a standard real subspace of the corresponding complex Hilbert
space Hj, if and only if (V, y) is complete (which is equivalent to the closedness
of j(V)) and the complex linear extension jc : Vo — Hj is injective, which is
equivalent to j (V) Ni- j(V) = {0} (cf. Lemma A.10(iii)).

Example A.12. Consider the context of Proposition A.8, where K = A+iBisa
positive definite kernel and C € B(’HE) is such that B, = CA, for y € X. Then

Vi=A+iC)H5 CHa

is areal subspace. For the isometric antilinear involution defined on H 4 by o (f) = f,
we then have for every f € ’HS the relation

(0(M+iC)f, A+iC) f)=fI> = ICfI* = 0.

Therefore (H 4, V, o) is a reflection positive real Hilbert space (Proposition B.3).
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Real parts of positive definite functions. Let ¢ : G — C be a positive definite
function on the group G. Then o is also positive definite, so that Re ¢ = %((p +9)
is positive definite as well. From Lemma A.7(a) we know that a positive definite
function ¢ on G is real-valued if and only if the corresponding reproducing kernel
Hilbert space H,, is invariant under conjugation with ||]7|| =| fl for f € H,. Based
on these observations, one would like to understand the set of all positive definite
functions with a given real part. A natural description of this set in the spirit of the
present paper is provided by the following theorem.

Theorem A.13 (Complex extensions of real positive definite functions). Let
¢ : G — R be a positive definite function and let (U?, ’Hff) denote the corresponding
orthogonal representation on the real reproducing kernel space ’HEE C RC by right
translations: (U?(g) f)(h) := f(hg). Then the following assertions hold:

(a) For each skew-symmetric contraction C on H, commuting with U?(G), the
function oc =9 +iCp € H, C CC is positive definite. Here we consider ¢
as an element of the real Hilbert space 7-[5 C R,

(b) Each positive definite function ¢ with Re ¢ = ¢ is of the form ¢c¢ for a unique

skew-symmetric contraction C on ‘H, commuting with U%(G).

Proof. (a) Clearly H, = 7—[5 Pi Hf'f is the Hilbert space complexification of HS
(Lemma A.7). On H,, the operator B :=1+iC is positive because it is hermitian
and ||C]| < 1. Let K(x, y) := @(xy~") be the kernel corresponding to ¢ which
satisfies Ky = U ¢(y)~ 1. Then the associated kernel
K (x,y) = (BKy, K) = (BUY(9) "', U¥(x) ')
= (U?(y») "' By, U*(x) ')
= (U (xy DA +iC)¢p, ) = (A +iC)p)(xy™")

is positive definite (cf. [Neeb 2000, Lemma 1.2.4]), and this means that ¢ +iC¢ is
a positive definite function.

(b) If ¢ = ¢ + i) is positive definite with ¢, ¥ real-valued, then write K = A+iB
for the corresponding kernels:

K, )=oxy ™, A, y) =9y and B(x,y)=y@xyh.

Then Proposition A.8 implies that ¢ is positive definite and that there exists a
skew-symmetric contraction C € B(HS) with

Yxy™) = (CAy)(x) = (CU?(») o, U?(x)"'9).

Since this kernel on G x G is invariant under right translations and U¥(G)¢ is total
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in ’HS, it follows that C commutes with U?(G). This in turn leads to

Y (xy ) =(Co, U?(yx Np) = (Co)(xy™")

and hence to ¥ = Ce. ([

Appendix B. Standard real subspaces via contractions

In this section we show how standard real subspaces can be parametrized in a very
convenient way by skew-symmetric contractions in real Hilbert spaces. The survey
article [Longo 2008] is an excellent source for the theory of standard real subspaces.

Skew symmetric contractions.

Lemma B.1. Let Cy be a skew-symmetric contraction on the real Hilbert space E
andV :=(1+iCy)E C Ec. For 0 # v € E, the following are equivalent:

@) C‘z,v = —u.

(i) ICyvll = (v

(iii) There exists 0 = w € V with (Cyv, w) = ||v|||w]|.

(v) A1+iCy)veVNiV.

Proof. (i) < (ii): First we observe that [[v]|> — [Cyv|? = ((1 + C})v, v). In

view of the positivity of 1+ C?, the relation ((1+ C‘z,)v, v) = 0 is equivalent to
(14C3)v=0.

(i1) < (iii) follows from max{(Cyv, w) : w € E, ||[w| < 1} = ||Cyv| < ||v].

(iv) & (i): For w € E, the condition (14+iCy)v =i(1+iCy)w is equivalent to

Cyw = —v and w = Cyv. Such an element w exists if and only if C‘z,v =—v. O

Lemma B.2. For a skew-symmetric contraction Cy on the real Hilbert space E
andV := (1 +iCy)E C Ec, the following are equivalent:

G C ‘2, + 1 is injective.
(ii) ||Cyv]l < ||v|| for every nonzero v € E.
@iii) (Cyv, w) < ||[v|||lw]| for nonzero elements v, w € E.
@iv) VNiVv ={0}.
(v) The operators 1 £iCy on E¢ are injective.
(vi) V+1iV isdensein Ec.
(vii) V is a standard real subspace.

Proof. The equivalence of (i)—(iv) follows immediately from Lemma B.1.
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Further, (iv) can also be formulated as: (1 +iCy)(v+iw) =0 forv,w e E
implies v 4+ iw = 0, which in turn means that 14 iCy is injective. This in turn is
equivalent to 1 — i Cy being injective. Therefore (iv) is equivalent to (v).

AsV+4+iV=(1+4+iCy)Ec =im(1+iCy), this complex subspace is dense if
and only if the hermitian operator 1+ iCy has dense range, and this is equivalent
to 1+ iCy being injective. Therefore (v) and (vi) are also equivalent.

Next we observe that V is closed because

(A +iCy)vl|* = [v]* + ICyv]|* > [v]* for ve E

shows that the range V of the operator 1 +iCy : E — E¢ is closed. Since (iv)
and (vi) are equivalent, they are therefore equivalent to V being a standard real
subspace. (I

Proposition B.3. Let E be a real Hilbert space, Cy be a skew-symmetric contrac-
tion on E, let Ec be the complexification of E and leto : Ec — Ec, a+ib+—>a—ib
be complex conjugation on E¢. Then the real subspace

V:i=(01+iCy)E C Ec
has the following properties:

(i) Let Ey=ker(C3 +1) and E\ = Ej, so that E = E¢@® E\. Then Cy:=Cy |, is
a complex structure on Eg and Vo := (1+iCy)Ey C E¢ is the (—i)-eigenspace
of Cy. It coincides with V NiV. In particular it is a complex subspace of Ec.
The subspace V1 := (1+iCvy)E is a standard real subspace of E1 c.

(i1) If V = Vi, then the corresponding modular objects are given by

an=((i5ie) o)
D =\\i¥xic, ) %)

Proof. (i) Fora, b € E, the relation Cy (a+ib) = —i(a+ib) is equivalentto Cya=>b
and Cyb = —a, i.e., to a +ib € V. Therefore Vj is the (—i)-eigenspace of Cy
in Ec. From Lemma B.1(iv) we further obtain VNiV = V. For V| :=(1+iCy)E],
we thus have V) NiV; = {0}, so that Lemma B.2(vii) implies that V] is a standard
real subspace of E| c.

(i) If V = Vi, then

1-iCy\?
36 A=
(36) (1 + in)
is a positive selfadjoint operator on E¢ with domain (14-iCy)?Ec. Further A'/? =
(1—iCy)(1+iCy)~" has domain V¢
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Sinceoc Ao =A~! by (36), S: =0 A 1/2 is an unbounded antilinear involution with
Fix(S) = {€ e D(A?) = V¢ : S& = &).
For§ =(1+iCy)v, v e Ec, we have
SE=cA?e=c1—iCy)v=1+iCy)o(v),
so S& =& is equivalent to v € V. We conclude that Fix(S) = V. This proves (ii). [J

Remark B.4. Let C be a skew-symmetric contraction on the real Hilbert space E.
Then the selfadjoint operator C? + 1 is invertible if and only if —1 ¢ Spec(C?),
which is equivalent to 1 & Spec(i C), where i C is considered as a selfadjoint operator
on the complex Hilbert space Ec. This, in turn, is equivalent to the invertibility of
1+ iC and hence to the boundedness of (1 —iC)(1+iC)~.

Real reflection positivity and standard subspaces. In this section we relate stan-
dard real subspaces to reflection positive real Hilbert spaces of the form (E¢, V, o),
where o is the complex conjugation on the complexification E¢ of a real Hilbert
space. This sheds an interesting light on the close connection between standard real
subspaces and reflection positivity.

Lemma B.S. Let E be a real Hilbert space and E¢ be its complexification. On E¢
we consider the antilinear isometry defined by o (a+ib) :=a —ib. A real subspace
V C Ec has the property that the form (v, w) — {(ov, w) is real-valued and
positive semidefinite on 'V if and only if there exists a skew-symmetric contraction
Cy :D(Cy) > EwithV =1+iCy)(D(Cy)). The subspace V is closed if and
only if D(Cy) is closed.

Proof. First, let Cy : D(Cy) — E be a skew-symmetric contraction and put
V.=0+4+iCy)D(Cy). For v, w € D(Cy), we then have
(0 (A+iCy)v), A+iCy)w) = ((1=iCy)v), A+iCy)w)
=, w)+(—iCyv,w)+(v,iCyw)—(Cyv, Cyw)
= (v, w)—(Cyv, Cyw) = (1+C)v, w) €R.
Moreover 1+ C ‘2, > (0 implies that the form is positive semidefinite.

Conversely, let V C E¢ be a real subspace which is o-positive in the sense
that the form f (v, w) := (ov, w) is real-valued and positive semidefinite. This
assumption implies that V Ni E = {0}. Hence there exists a real linear operator
Cy :D(Cy) — E for which V= (1+iCy)D(Cy). Since

(c(v+iCyv),w+iCyw)={(v—iCyv,w+iCyw)
= (U, w) - (vav va> +i(<cvv’ w) + (vav U))
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is supposed to be real-valued,
(Cyv,w)+ (v,Cyw)=0 for v,wekE.

This means that Cy is skew-symmetric on D(Cy ). Further, the positivity assumption
implies that ||Cyv]|| < ||v] forv € E.

The subspace V is closed if and only if the graph of Cy is closed, which is
equivalent to the closedness of D(Cy) because Cy is a contraction. ]

Proposition B.6. Let E be a real Hilbert space, let Cy be a skew-symmetric con-
traction on E, let Ec be the complexification of E and let o : Ec — E¢, a+ib+—
a —ib be complex conjugation on Ec. Then the real subspace

=1+4+iCy)E C Ec
has the following properties:

(1) V is closed and o-positive, so that (Ec, V, o) is a reflection positive real
Hilbert space.

(i) V+ =io(V),ie., the bilinear form y, (£, 1) := (6&, n) on V is real-valued.

(iii) The null space of the positive semidefinite form y, on V coincides with the
(—i)-eigenspace Vy of Cy on Ec. If Vo = {0}, then the unbounded positive
operator

satisfies | FE|* = (05 &) for & € V, so that we can identify the real Hilbert
space completion v of V with respect to y, with F(V). We further have
oFo=F\.

Proof. (i) The subspace V is closed because
[ +iCy)vl|* = [v]* + ICyv]|* > [v]* for ve E

shows that the range of the operator 14+iCy : E — V is closed.
For the complex conjugation o on Ec, we have for v, w € E the relation

Vo (A+iCy)v, A+iCy)w) = (6 A+iCy)v, A+iCy)w)
=((1-iCy)v, A+iCy)w)
={1+iCy)A—iCy)v,w) = ((1+C v, w) e R

and thus
Yo (14+iCy)v, 1+iCy)v) = |[v]|* — [Cyv|* > 0.
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(i1) An element a +ib € Ec (a, b € E) is orthogonal to V with respect to the real
scalar product if and only if

O0=Re(a+ib,v+iCyv) ={(a,v)+ (b, Cyv) = {a —Cyb, v)

for every v € E; this is equivalent to Cyb =a, i.e,toa+ib=i(b—iCyb) €io (V).

(iii) An element £ := (14+iCy)v € V satisfies (c&, &) =0 if and only if C‘z,v = —v,
which is equivalent to

(1—iCy)E=1—iCy)A+iCy)v=>1+C)v=0,

i.e., to Cy& = —i&. This implies that Vy € V is the nullspace of y,.

Now we assume that Vy = {0} and V = V|. As 1 +iCy are nonnegative
hermitian operators on Ec, they have a nonnegative square root and (1+iCy)~!/2
is an unbounded operator whose domain is

14+iCyEc 2/14iCy/14+iCyEc = (14iCy)Ec.

This leads to an unbounded symmetric operator

ForéE =(1+4+iCy)v, v € E, we have

Fe =1 —iCy)A+iCy)v=/1+Civ,

50 | FE|1> = (14 C2)v, v) = (0&, &). Therefore F: V — V := F(V) C Eg is the
canonical map of the reflection positive real Hilbert space (Ec, V, o). It satisfies

oFo = =F". O

Remark B.7. Since U, = A" acts on the reflection positive Hilbert space (Ec,V,0)
by automorphisms, it induces on the corresponding real Hilbert space V an or-
thogonal representation. The natural map v 1+ C%, :E—Vin Proposition B.6
intertwines the orthogonal representations U;|g and U;|5.

The following proposition asserts that all standard real subspaces are of the form
described in Proposition B.3.

Proposition B.8. Ler V C H be a standard real subspace with modular objects
(A, J). Then E := Fix(J) is a real Hilbert space with H = E¢ and there exists
a skew-symmetric strict contraction Cy : E — E with V = (1+iCy)E. Then
D(A)YNV isdensein V.
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Proof. First we observe that V is J-positive:
(J§.§) = (JSE.86) = (A?6,£) = 0.
This implies the existence of a contraction Cy : D(Cy) — E with
V=T(Cy):=1+iCy)D(Cy)

(Section 3B). That Cy is strict follows from Lemma B.2. From the real orthogonal
decomposition H =V @iJ(V) [Neeb and Olafsson 2015b, Lemma 4.2(1v)], we
now obtain

Vi=iJ(V)=i(1—iCy)D(Cy) =il (—Cy) = (Cy +il)D(Cy),

where L refers to the real-valued scalar product Re(-,-) on H=E @i E.

Ifa e END(Cy)t, thena e V- =iJ(V)=il'(=Cy) leads to a = Cy0 = 0.
Therefore D(Cy) is dense in E. As V isclosed and 1+iCy : D(Cy) — V is a
topological isomorphism, it follows that D(Cy ) is closed, and thus D(Cy) = E.

As vy (&, n) := (JE, n) is real-valued on V (recall JV = (iV)1), we obtain for
v, w € V the relation

0=Im(J(A+iCy)v, d+iCy)w) =Im((A—iCy)v, 1 +iCy)w)
=Im((1—iCy)(1—iCy)v, w) = —((Cy + Cy)v, w),

so that C‘I = —Cy (Lemma B.5).

It remains to show that D(A) NV is dense in V. Since Cy is a strict contraction,
the kernel of 1 + C‘Z, is trivial, i.e., —1 is not an eigenvalue of C‘Z,. Let E, CE
be the spectral subspace of C‘z, for the subset [—1 + 1/n, 1]. This subspace is
Cy-invariant and the union of these subspace is dense in E because —1 is not an
eigenvalue. As (1+iCy)E, € D(A), it follows that D(A) NV is dense in V. [J

Contractions and modular objects. The following lemma describes the complex-
valued scalar product on a standard real subspace in terms of the corresponding
modular objects (A, J).

Lemma B.9. Ler V C H be a standard real subspace, (A, J) be the corresponding
modular objects and

(Uv U))’H - V(Uv w) +ia)(v’ U))

be the corresponding hermitian positive definite form on V; in particular (v, w)y =
y (v, w). Then

y (v, w) = %((v, w) + (A?v, AVw)),
(37) .
(v, w) = - ((v, w) = (A0, AVPw)).



166 KARL-HERMANN NEEB AND GESTUR OLAFSSON

In particular, we have a strict contraction C on V satisfying
(38) w@, w)=y@, Cw) and C=Cl|y,

where

~ A—=1 AWVZ_pAT12 log A
—1A+1=1A1/2+A_]/2=ztan .

Moreover,
(39) (v, w)pr = (v, A+iC)w)y, for v,w e Vg,

so that the map

O :=+14iC: Vg — V¢
extends to a unitary isomorphism H — Vg.

Proof. As V C D(A'?) and v = Sv = JAY?y or v € V (Remark 2.5), we obtain
(Al/zv, AI/Zw) =(Jv, Jw)=(w,v) =(v,w) forv,welV.

This implies (37). Next we note that
A—-1

A+
is a bounded operator on H which can also be written as
A2 _ A-1/2
B=——7—-.
Al /2 + Afl /2
In this form we see that J BJ = —B. We also note that B commutes with A, and
hence preserves D(A'/?). This leads to

SB=JAY?B=—BS,

and therefore to BV = B Fix(S) € i Fix(S§) =iV. In particular, C := i B restricts
to a bounded skew-symmetric operator C : V — V. If v, w are contained in the
dense subspace V N'D(A) of V (Proposition B.8), we obtain

y (v, Cw) = 1((v, Cw) + (A'?v, A'2Cw))
= 2{(1+ A)v, Cw)

=1, A+ A)Cw)

= L, A= dw) =@, w).
2i
Since w and y (-, C-) are continuous on V, they coincide on all of V. By Lemma B.2,
the operator C is a strict contraction. By (38), we have for v, w € V the relation (39),

and since both sides are sesquilinear, it also holds for v, w € V. This implies the
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existence of an isometric extension ® : H — V¢ of the operator ~/1+iC on Vg.
To see that @ is unitary, we observe that

im(®)t = (1+iC)"*Ve)t =ker +iC)/? =ker(1 +iC),

and this space is trivial by Lemma B.2. ]
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IMPROVED BUCKLEY’S THEOREM ON
LOCALLY COMPACT ABELIAN GROUPS

VICTORIA PATERNOSTRO AND EZEQUIEL RELA

We present sharp quantitative weighted norm inequalities for the Hardy—
Littlewood maximal function in the context of locally compact abelian
groups, obtaining an improved version of the so-called Buckley’s theorem.
On the way, we prove a precise reverse Holder inequality for Mucken-
houpt A, weights and provide a valid version of the “open property” for
Muckenhoupt A, weights.

1. Introduction and main results

The study of weighted norm inequalities for maximal type operators is one of
the central topics in harmonic analysis that began with the celebrated theorem
of Muckenhoupt [1972]. It states that the class of weights (nonnegative locally
integrable functions) characterizing the boundedness of the Hardy—Littlewood
maximal function M on the weighted space L”(R", wdx) is the so-called Muck-
enhoupt A, class (see below for the precise definitions). It is important to remark
that Muckenhoupt’s result is qualitative, that is, it does not provide any precise
information on how the operator norm of M depends on the underlying weight
in w € A,. The first quantitative result on the boundedness for the maximal function
in R" dates back to the 90s, is due to Buckley [1993], and gives the best possible
power dependence on the A, constant [w]a,. More precisely, Buckley proved

1/(p—1
(D) Mo wdn s Lo@nwan < ClwlP7 1< p<oc.

Recently a simpler and elegant proof was presented by Lerner [2008], who used a
very clever argument composing weighted versions of the maximal function. Since
then, finer improvements have been found. In particular, there is in [Hyténen et al.
2012] a sharp mixed bound valid in the context of spaces of homogeneous type.
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maximal functions.
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Our purpose here is to obtain sharp quantitative norm estimates in the context
of locally compact abelian groups (LCA groups). The modern approach to this
problem is to use a sharp version of the reverse Holder inequality (RHI) with a
precise quantitative expression for the exponent to derive a proper open property for
the A, classes. Then an interpolation type argument allows us to prove the desired
bound.

In the rest of the introduction we first describe in detail the context where we
will work in and then properly state the results that we will prove.

1A. Muckenhoupt weights and maximal functions on LCA groups. In the eu-
clidean setting, the standard way to introduce A, weights is by considering averages
over cubes, balls or more general families of convex sets. In any case, the family
is built using some specific metric. In our context of LCA groups we lack such a
concept. However there are many LCA groups where we do have the possibility of
considering a family of base sets satisfying the other fundamental property of the
basis of cubes or balls: any point has a family of decreasing base sets shrinking to
it and, in addition, the whole space can be covered by the increasing union of such
a family.

In order to properly define the A, classes, let us fix an LCA group G with
a measure u that is inner regular and such that u(K) < oo for every compact
set K C G. Notice that u does need to be the Haar measure because we do not
assume g to be translation invariant. The reader can find a comprehensive treatment
of harmonic analysis on LCA groups in [Hewitt and Ross 1970; 1963; Rudin
1962]. The general assumption on the group will be that it admits a sequence of
neighborhoods of 0 with certain properties that we described in the next definition
(cf. [Edwards and Gaudry 1977, Section 2.1]).

Definition 1.1. A collection {U;};c7 is a covering family for G if

(1) {U;}icz is an increasing base of relatively compact neighborhoods of 0,
Uiez Ui = G and [); U; = {0}.

(2) There exists a positive constant D > 1 and an increasing function 8 : Z — 7
such that for any i € Z and any x € G,
o i <00,
o U; —U; C Uy,
o ux+Upi)) < Du(x +Up).

We will refer to the third condition as the doubling property of the measure o with
respect to 8 and we will call D the doubling constant. In the case of R" equipped
with the natural metric and measure, we can consider the family of dyadic cubes
of sidelength 2' or the euclidean balls B(x, 2') for i € Z. The doubling constant
of the Lebesgue measure in this context is 2" and the function 6 can be taken
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to be 6(i) =i + 1. Therefore, the intuition here is that the index i in the above
definition can be seen as a sort of radius or size of the given set U, .

For each x € G, the set x + U; will be called a base set and the collection of all
base sets will be denoted by

(1-2) B:={x+U :xeG,icZ).

The notion of base sets allows us to define a direct analogue of the Hardy—
Littlewood maximal function:

1
(1-3) Mf(x) = sup ]{J|f|du:= sup —/U|f|du,

xeUeB xeves (U)

where the supremum is taken over the sets U € B with positive measure.

As we already mentioned, our purpose here is to prove sharp weighted norm
inequalities for this operator in L”(G, wd ), where w is a weight on G. Firstly,
recall that the celebrated Muckenhoupt’s theorem asserts that the class of weights
characterizing the boundedness of M on L?(R", wdx), p > 1, is the Muckenhoupt
A, class defined in R" by

p—1
(1-4) [w]a,®n.dx) = sup(][ w d,u) <][ w!=? du) < 0.
9 (Y] 0

Here p’ denotes the conjugate exponent of p defined by the condition % + pi =1.
In the case of LCA groups the analogue of (1-4) is obtained by replacing the cubes
by base sets. More precisely, a weight w is an A, = A, (G, du) weight if

p—1
(1-5) [w]a, := sup (][ wd,u) <][ w' =7 du) < 00.
UeB U U

The limiting case of (1-5), when p = 1, defines the class Aj; that is, the set of
weights w such that

[w]a, := sup <][ wdu) esssup(w 1) < +o0,
UeB U U

which is equivalent to w having the property
Muw(x) < [w]a, w(x) u-almost everywhere x € G.

As in the usual setting of R" we will also often refer to o := w!~?" as the dual
weight for w. It is easy to verify that w € A, if and only if 0 € A .

The family of A, classes is increasing and this motivates the definition of the
larger class A as the union Ay, = p>1Ap. There are many characterizations
of the class A, (see [Duoandikoetxea et al. 2016] or the more classical reference
[Grafakos 2004]). Some of them are given in terms of the finiteness of some Ao
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constant suitably defined. The classical definition consists in taking the limit on
the A, constant as p goes to infinity, namely:

(1-6) (w)a,, = sup(][ wdu) exp][ log(w™ Y dpu.
UeB U

However, the modern tendency is to consider the so-called Fujii—Wilson constant

implicitly introduced by Fujii [1977/78], and later rediscovered by Wilson [1987;

2008], and here we choose to follow this approach by defining the Ao, constant as

1
- e )

/ Mwyxy)du,
U

where w(U) = [, wdp.

1B. Our contribution. As we have already seen, there is a proper — and natural —
way to define the A, and A, classes on LCA groups having covering families. In
contrast with the case p < 00, it is not immediate that the weight w belongs to A
when any of constants defined on (1-6) and (1-7) is finite. In fact, a weight w is
in A (that is, in some A,) if and only if it satisfies the reverse Holder inequality,

which says
1/r
(][ w’dp,) 50][ wdu
U U

for some r > 1 and where U is an open set defined in terms of U (in the euclidean
case U = U and in the case of spaces of homogeneous type, it is a dilation of U).
This is a very well known result in the qualitative case. Concerning the quantitative
aspect, a sharp result in terms of [w]4_, in the context of spaces of homogeneous
type was proved recently in [Hytonen et al. 2012].

Our first result is the following version of the RHI. Note that, as in [Hytonen
et al. 2012], we are able to precisely describe the exponent r in terms of the
constant [w]a_,.

Theorem 1.2 (sharp weak reverse Holder inequality). Let w € Ax. Define the

exponent r(w) as
1

—_
r(w) D, —1

’

where D is the doubling constant. Then, for a fixed U = xo+ Uj, € B, the following
inequality holds:

1/r(w)
(1-8) (][ w" d,u) < ZDz][Awd,u,
U ]

where U is the union of the base sets {x +U; : x e U, i <ip}.
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Once we have proven such RHI, we are able to provide a quantitative open
property for A, classes. Itis very well known that the A, classes are open in the sense
thatif w € A, for some p > 1, then w also belongs to some A ,_, for some & > 0. But
the best possible ¢ in this property is not completely characterized. Another related
interesting and still open question (even in the euclidean setting) is to determine,
given a weight w € Ay, the smallest p > 1 such that w € A,. There are some
estimates in [Hagelstein and Parissis 2016] but there is no proof of their sharpness.

Here we will deduce from Theorem 1.2 an open property for A, classes in LCA
groups with some control on the constants. More precisely, given w € A, for
1 < p <oo we will obtain that w € A,_, fore = (p—1)/(C[o]a,,) with C = 4D
Further, [w]a, , <27~ 'D*~2[w],, (see Lemma 3.1).

In a recent article, Sauer [2015] proved a weighted bound for the maximal
function for LCA groups following Lerner’s approach. Additionally, he asked
whether it is possible to obtain the sharp result from Buckley in this general setting.
In our main theorem we answer this question in the affirmative and moreover,
we provide a better mixed bound. By a mixed bound we understand a bound
that depends on [wla, and [w]a_, of the form ‘P([W]Ap[w]Aoo) where ¢ is some
nonnegative function, typically a power function. Since [w]a < [w] A, always,
usually mixed type bounds are sharper than estimates involving only the A, constant.

A result in this direction was obtained in [Hytonen et al. 2012] where the authors
proved an improvement of Buckley’s result (1-1) in terms of mixed bounds for
spaces of homogeneous type, namely

IMIlp_ e < Cwla,lo]a )P < C[w]iﬁ”‘”,

Our main result provides an extension of the above estimate to the context of
LCA groups and we will obtain it as a consequence of the RHI and the open property.
We remark here that the lack of geometry in this setting constitutes a major obstacle
to overcome.

Theorem 1.3. Let M be the Hardy-Littlewood maximal function defined in (1-3)
and let 1 < p < oo. Then there is a structural constant C > 0 such that

(1-9) IMFllL ) < CQwla, lo1a) P f 2 o)
In particular,
(1-10) 1Moy < Clwly P70,

1C. Outline. The paper is organized as follows. In Section 2 we give some pre-
liminary results. We prove the engulfing property in this context that will be used
several times throughout the paper. We also define the local maximal function,
prove a crucial covering lemma (Lemma 2.7) and show a localization property of
the local maximal function. In Section 3 we give the proofs of the results described
in Section 1B.
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2. Preliminaries

In this section we provide some properties of covering families that we will use.
Furthermore, we will introduce a local maximal function which will be crucial to
proving the RHI.

As we already mentioned in the introduction, the family of dyadic cubes of
sidelength 2/ or the euclidean balls B(x, 2') for i € Z are covering families for
G = R. Other examples are presented below.

Example 2.1. (1) When G =T = {¢?™ : 1 € [—1, 1)} with the Haar measure,
consider U C G defined as Uy =T and for k € N, U = {0} and

Then, {Ug}rez is a covering family for T with 8(k) =k+ 1 and D = 2.

(2)For G =7,take U; = {k € Z : |k| <2'~!} for i > 1 and U; = {0} otherwise.
Then {U,};cz is a covering family for Z with 8(i) =i+ 1 and D = 2.

(3) Let G be an LCA group with Haar measure p and let H be a compact
and open subgroup of G with w(H) = 1. Consider an expansive automorphism
A : G — G with respect to H, which means that H C AH and ();_, A'H = {0}.
If, additionally, G = UieZ A'H, then {A'H};c7 is a covering family for G. Indeed,
since H C AH and H isagroup, AAH —ATH=A"HC A""'H so0(i)=i+1. To
see that the doubling property is satisfied, note that 4 defined as 4 (B) := u(AB)
for B C G a Borel set, is a Haar measure on G. Thus, there is a positive number «
such that 4 = . The constant « is the so-called modulus of A and is denoted
by o = |A|. Then, u(A"'H) = us(A'H) = |A|u(A'H) for i € Z. Observe that
G/H is discrete and AH/H is finite, so AH is the union of finitely many cosets
of the quotient G/H, say {H +s; ;:1. Therefore, |A| = |A|w(H) = u(AH) =r,
and r > 2 since H C AH. Thus we can take D = |A| > 2. A structure of this type
is considered in [Benedetto and Benedetto 2004] for constructing wavelets on LCA
groups with open and compact subgroups.

For a concrete example of this situation, consider the p-adic group G = Q)
where p > 2 is a prime number consisting of all formal Laurent series in p with
coefficients {0, 1, ..., p — 1}, that is,

@p:{Zanpn:n()EZ, ane{O,l,...,p—l}}_

n=nop

As a compact and open subgroup we can consider H = Z, which is

sz{Zanp”:ane{O,l,...,p—l}}.

n>0
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Take A : Q, — Q, to be the automorphism defined as A(x) = p~'x. Then, A is
expansive with respect to Z, and it can be easily checked that Q, = | J;., A'Z,,.
Then, {Ain}iez is a covering family for Q, and in this case, D = |A| = p.

Let {U;}icz be a fixed covering family for G. From now on, we assume the
sets U; to be symmetric. This is not a restriction at all because one can always
consider the new family of base sets formed by the difference sets U; — U; which
increases the doubling constant from D to D% We denote 2U; := U; —U; = U; + Uj.

Any covering family has the so-called engulfing property:

Lemma 2.2. Let U, V be two base sets such that U = x +U; and V = y + U; with
i§jandx,yeG.IfUﬂV;zé@,thenx+U,-Cy—i—U@z(j).

Proof. There are two points u; € U; and u; € U; such that x +u; =y +u;. Then
x=y+4u;—u; €y+U; —U;j Cy+ U and therefore

x4+ Ui Cy+Usg) +Usjy Cy+Upy)
(recall that we assume that the base sets are symmetric). O

Remark 2.3. Fora given V € B, where B is the base of G defined as in (1-2), we will
denote by j (V) € Z the maximum integer such that V =x + Uy, for some x € G.
To see that such a number exists, let us define N(V)={je€Z:3x € G,V =x+U;}
and show that sup N (V) < oo. If sup N (V) = oo, we could find a sequence {x,},en
of points in G and a sequence of integer indices {i,},en such that i, — o0 as
n — oo and

V=x,+U, for all n e N.

By compactness of V we can assume (relabeling) that the sequence converges
to some x € G, which we can assume to be the origin. Now we claim that, for
any j € N, there is some m € N such that U; C x,, + U;, and from this fact would
follow that (V) = oo, but this implies that oo = u(V) < w(V) < oo which is a
contradiction. To verify the claim, fix U; and choose ng such that x, € U; and
i, > j for all n > ng. Then,

U fi Nx, +U i # O

for all n > ng. Furthermore, the above still holds if we replace x,, by any x,, with
m >n > ng since x,, € U; and x,, € x,,, + U;,. Therefore by the engulfing property
(see e.g., Lemma 2.2) we obtain

U] C Xm + ng(ln) C Xm + Uim
for any m such that i,,, > 02(iy).

In order to introduce the local maximal function, we first define a local base for
a fixed base set U.
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Definition 2.4. Let U € 5 be a fixed base set and let k := j(U). The local base By
is defined as

2-1) By :={y+U;j:yeU,j=<k}
We also defined the enlarged set U by the formula
(2-2) uv=J v

VEBU

Lemma 2.5. Let U = x + Uy be a fixed base set in B and set k = j(U). We then
have the following geometric properties:

(@) If VeBy then V C x + Ugpy.
(b) Forany z € U,
UCz+Upy),
where U is as in (2-2). As a consequence of this last property, we obtain
n(0) < w(z+Up ) < Dz +Up)
for any z € U. In particular, u(fj) < D?*u(U), since U = x + Uy.
Proof. (a) Let V =y + U; with j <k and take any z € V. Then z = y +u; with
uj € U; C Uy. Since y € U we can write y = x + uy, ux € Uy. Then we have
z=x+uj+tur €x+ U+ Up Cx+ Uy

(b) Let VeBy, V=y+U; withyeU, j<k.ByLemma2.2,since VNU # &,
V Cx+ Ug). Take any z € U, z = x +ux, uy € Uy. Then,

V Cx+Uswy=z—uk+Upqy Cz—Ur+Uppy Cz—Usiy +Usky) C 2+ Upary. O

We now define the local maximal function as

(2-3) My f(y) := sup ][Vlf(Z)ldM(Z)

yeVeBy

for any y € U and My f(y) = 0 otherwise.

Remark 2.6. (a) In [Hewitt and Ross 1970, Theorem 44.18], a version of the
Lebesgue differentiation theorem is proven with respect to the Haar measure for
LCA groups having D’-sequences (cf. [Hewitt and Ross 1970, Definition 44.10]).
A careful reading of the proof of [Hewitt and Ross 1970, Theorem 44.18] reveals
that the result is still true with the obvious changes for measures which are not
translation invariant. Thus, since a covering family is in particular a D’-sequence,
we have that the Lebesgue differentiation theorem holds in our context.
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(b) As a consequence of the Lebesgue differentiation theorem, we have the elemen-
tary but important property of the local maximal function:

fx) <My f(x) u-almost everywhere x € U.

Consider now, for a fixed U € B, the level set for the local maximal function
acting on a weight w at scale A > 0:

(2-4) Q i={xeU: Myw(x) > A}.

A key instrument will be a Calder6n—Zygmund (C-Z) decomposition of €2,. We

will obtain it by using an adapted version of a covering lemma from [Edwards and
Gaudry 1977, Lemma 2.2.1]. Although the proof follows standard arguments, we
include it here for completeness. When w is a nonnegative and locally integrable
function on G and V C G is relatively compact, we denote the average of w on V
as wy; that is, wy = f, wdpu.
Lemma 2.7. Let U € B be a fixed base set in G and let w be a nonnegative and
integrable function supported on U. For > wg, define Q) as in (2-4). If Q, is
nonempty, there exists a finite or countable index set Q and a family {y; + Uy, }ico
of pairwise disjoint base sets from By such that:

(a) The sequence {o;}icg is decreasing.

®) (Jyi+Ue € | i+ Upe)-
ieQ i€eQ

(c) Foranyi € Q,

A< ][ wdu.
yi“l‘Uai

(d) Givenr > «; for somei € Q,
(2-5) f wdp < D
yi+Ur

Proof. Suppose that there is no finite sequence of points in €2, such that the
conclusion holds (in that case, there is nothing to prove). For x € €2;, define

(2-6) a(x):max{jeZ:EIV:y+Uj€BU,er,][wdu>k}.
1%

Since V =y +U; € By implies j < j(U), we have that « is well defined. Consider
now, for each x € Q,, a base set V, € By, Vi :=y, + Uy(x) such that x € V. In
other words, one of the base sets in B containing the point x where the map «o
attains its value. Observe that, in particular, «(y,) > a(x).

We start by picking x; as an extremal point for «, that is «(x;) > a(x) for all
x € Q. Puta; =a(x;) and y; :=yy, such that V,, = y; +U,,. Note that, since | <
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a(y1) <a(x)) =y, we also have a(y;) = ;. Now suppose that we have chosen
the first # points yy, ..., y, and their respective base sets Uy, . .., Uy, such that

o thesets V; :=y; + Uy, 1 <j=<n,are pairwise disjoint,

e aj :=a(y;) > a(x) forall x € A;_;, where

2-7) Aj =\ v+ Upe). 1=j=n
L<j

Since we are assuming that this procedure never ends, A; # @ forall 1 < j <n.
Therefore we can choose x,, 11 € A, such that o, 1 :=a(x,+1) > a(x) forall x € A,.
This means that there is a base set V,,1 := y,4+1+ U,,,, and in particular wy, ., > A
and o (y,+1) = a,+1. Note that this construction produces a decreasing sequence
{an}nen. Let’s see that V,, 1 NV; = @ for all 1 < j < n. Supposing that this is not

the case, we could find u € U,,,, and v € Uy, for some j < n such that

Ynt1+u=y;+v.

Since x,,41 € V41, we have that for some z € U, .,

Xptl =Ynt1+Z=Yyj+v—u+ze€ yj+U0lj —Uapy + Vs
Since U,

On+1

C Uy; and trivially Uy; C Ug(q;), We get
Xn+1 €Y + UgZ(aj),

which is a contradiction by the choice of x,,41.
We are left to prove that this procedure exhausts the set 2;. If not, there is a
point x € A, with a(x) < «, for all n > 1. Define the set S as

S:={y,:neN}.

Since R
SCl{ze):a(@)=ax)}CU

and U is contained in some base set (see item (b) in Lemma 2.5), we conclude that
S is relatively compact.
By monotonicity of «, we have Uy, C U,,. Therefore the set

F .= U(yn + Ua,,) CS+ qu

n

is also relatively compact and this implies 1 (F) < co. Now consider N € Z such
that S C Uy and an integer r > 0 such that 8" («(x)) > N. Then for any n € N,
Yn € S CUn C Uprg(x)) and thus 0 € y, 4 Upr («(x)). Further, we get

Unv =0+Uy Cyn+ Usr(ax) + Un C yn+2Upr (ax)) C Yn + Upri (x))-
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The doubling property shows
M(UN) = Dr+1ﬂ(yn + Uoz(x))

and this implies

W)=Y " uOn+Un) = Y 1O+ Uae)) = D™D " u(Un) = 00.

This contradicts the condition ,u(F ) < oo and we conclude with the proof of items
(a), (b) and (c) of the lemma.

We prove now item (d). To control the average on y; 4+ U,, we consider two
cases: first we consider r < k := j(U). Then y; 4+ U, € By and by maximality we
have in LU, W du < M. Indeed, if not we would have o; = a(y;) > r > «;. Second,
where r > k, we have 6%(r) > 62(k) and thus, by Lemma 2.5,

yi+ U@Z(r) Dyit+ U62(k) D Z/]\

Therefore, since w = 0 almost everywhere U*,

U
][ wdqu wdufDZA.
Yi+U, u(yi +U,) Jo

The lemma is now completely proven. (Il

Now we present a localization argument for the local maximal function My;. The
idea is better understood when considering the usual dyadic maximal function M dQ
localized on a cube Q in R". Suppose that the level set 2, ={x € O : M de(x) > A}
for A > wg is decomposed into dyadic subcubes of Q such that Q =_J; Q; and the
cubes Q; are maximal with respect to the condition wg, > A. Then the conclusion
is that for any x € Q;, the equality M‘éw(x) = M‘é(w)(Q[)(x) holds. In this more
general setting, the analogous result is contained in Lemma 2.8 which does not
have a direct proof as in the dyadic case.

For simplicity in the exposition, we introduce the following notation. Given
a base set of the form V = y + U;, we denote by V* the dilation of V by 0,
i.e., V* =y+ Up(j). Further iterations of this operation are defined recursively, that
is, V** = (V*)* and V"* for n iterations of the dilation operation.

Lemma 2.8. Let U € B be a fixed base set and consider w = w x a nonnegative
and integrable function on U where U is as in (2-2). For A > wg, let 2, be defined
as above and let {V;}ico = {yi + Uy, }ico be the C—Z decomposition of 2, given by
Lemma 2.7. Then, for L = D®, anyi € Q and any x € VN Qpa,

(2-8) Myw(x) = My (w)ys)(x).

Proof. Let x € V** N Qp;. Then there exists V € By, V =y +U;, with y € U and
j < j(U) suchthat x € V and wy > LA. We claim j < 6%(«;). To see that this is in
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fact true, suppose towards a contradiction, that j > 6%(a;). Then, V C y; + Ug2(jy-

Indeed, if z € V then z = y +w with w € U;. On the other hand, since x € V**NV,

x=y;i+u=y+v withu € Up(, and v € U;. Then
z=y+v—v4+w=x—-v4+w=y,+u—v+w.

Since U2,y C Uj, we get that z € y; + Uj + Up(j) C yi + Ug2(;). As a consequence,

Uy :
% I’L(V) y,'—‘,-ng(/.)

We note that since 0%(o;) < j, x € VN V** C VN (y; + Uj) and then, by the
engulfing property we have that y; + U; C y + Up2(j). Thus, using the doubling
property of the measure ;& we obtain

n(yi + Ug2(jy) < Dz,u(yi +Uj) < D2M()’+U92(j)) <D,
u(y +Uj) u(y +Uj) u(y +Uj)

Furthermore, since 62( Jj)=>j> 02 (i) > i, by item (4) in Lemma 2.7,

][ wdp < D>\
yi+U92(j)

and we can conclude that

LA<][wdu§D6)»=L)»,
1%

which gives a contradiction. Hence, the claim j < 62(e;) holds.
Now, using Lemma 2.2 we have V C Vl-4* and then

][ wdp = ][ WYy dpe < M(wxya)(x),
V V 1 1
which proves inequality (2-8). U

3. Proof of the main results

We present here the proof of Theorem 1.2.

Proof of Theorem 1.2. Step 1. We start with the following estimate for the local
maximal function. Let U = x¢ + Uy be a fixed base set. We claim that, for
e=1/AD"[w]s, — 1),

1+
G3-1) J oty dusz[w]Aw(]{ wdu) .
U U

Recall that we may assume that the weight w is supported on U. Let Q; be defined
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as in (2-4). We write the norm using the layer cake formula as
oo
/A(MUw)Hg di = [ XTI Myw(S2,) da
U 0

wl7 o0

=f sxe—lMUw(QA)d/\Jrf e X T Myw(2,) d
0 wg

=I+1I.

The first term is easily controlled by using the A, constant of w (see (1-7)):

ISMUw(l/J\)w%zw%/AMdeu
U

&€
< wﬁ/ My wxy+u,,,,) di
y+Up2

< whlwla, wy + Upw))
= w5 wla, w0),

where y € U and we used Lemma 2.5 and the definition of [w]4,, .
Now, for each A > wg we consider {V;};co the C—Z decomposition of €2, from
Lemma 2.7 to control II. We have

Myw(§2) < Z Myw (V™).

1

For any i € Q we write V** = ViUV, with V| :=V*NQp; and V; := V] \ Qp;
where L = DS. Thus, by Lemma 2.8 and the A, property (1-7) we have

Myw(V*) = | Mywdp+ | Mywdp
Vi v,

< | Mywxys)(x)dp+ Lap(Va)
Vi

< [wla wVi*) + Lap(ViH) = (wlaowys + Liyp(Vi)
< ([wla AD?* 4+ LA D* (Vi) < 2[wla ADPu(Vy),

where in the last inequality we have used (2-5) and the doubling property of .
This gives

Myw(2) <Y Myw(V;™) < 2[wla AD' ) " (V)

1 1

< 2[w]a AD"u(y).



184 VICTORIA PATERNOSTRO AND EZEQUIEL RELA

Thus,

(o]
1< 2[w]AmD10/ erf () dA
0

[w]Aleo— f Myw'* e du.
Therefore, gathering all the estimations and averaging over U,
(1 — 2[w]AwD10 & ][ Myw'** dp < wit

Choosing & < 1/(4[w]a, D'* — 1) we get that 1 —2[w]a,_ D'%/(s +1) > 1 and
we obtain the desired estimate (3-1).

Step 2. Now we proceed to prove the main estimate (1-8). By Remark 2.6, we
have that w(x) < Myw(x) holds on U. Then we obtain

/w1+€du§/(MUw)gwduff(MUw)ewdu.
U U U

Once again we use the layer cake formula combined with the C—Z decomposition
of ; and proceeding much as above, we obtain

o0
/A(Myw)gwdu:f e w(Q,) di
U 0
w[j [o,0)
=/ gﬁ—lw(m)dx+/ er* " lw(,) d
0 wy
<w(@)ws + / eAe IZw(V**)dA
wg

5w((7)w§7+1)2/ SASZM(V**)dk

wg

g <

wg

<w @+ Dt [ e 3 v da

o0
gw(U)w%JrD“/ eAE L ($2) dA
0

4

<w @+ 25 [ (gw)' < ap.
U

Therefore, averaging over U, using /,L(l/]\) < D?u(U) and (3-1), we have

6 1+e
][ stdeDzw%H—i-M(][ wdu) )
U e+1 U
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By our previous choice of ¢,

2D%[wla,, _ 2D"elwla,,
e+l — e+l

14¢
][ w1+€du§2D2<][ wdu) ) O
U U

We present now some classical applications of the RHI to weighted norm in-
equalities for maximal functions. One crucial property of A, classes is the well

1
< =
-2

and we conclude that

known open condition. In the next lemma we provide a quantitative version of it.

Lemma 3.1. For 1 < p < oo, let w € A,. Then, for e = (p—1)/(Clo]a,,) with
C=4D" ando = wl_p/, we have that w € A,_,. Further,

[wla, . <2°7' D 2wy,

Proof. Let w € A,. The A,_, condition for w takes the form

, p—e—1
sup<][ wd,u) (][ w!=(P=o d,u) < 0.
UeB U U

Recall that the dual weight of w, o = wl_p/, is also in A. Therefore it satisfies an
RHI with exponent (o) given by Theorem 1.2. Choose ¢ such that 1 — (p —¢g)' =
(1 — pyr(o), namely ¢ = (p — 1)/(r(o)’) which is equivalent to the condition
r(c)=(p—1)/(p —e&—1). Then we obtain

N , (P=1)/(r(@))
(][ w!=(—o) du) _ (][ o 1=2r @) du)
U U

<D ]Q o du)’,
U

for any U € B. Now, for U = x + Uy € B, recall that U** = x + Uy, and that
U c U**. Then,

(fra (o) el ) o)

with C = 2P~ D*P~2 We conclude that
[wla, . <277 D 2wy, O

In what follows we will need the fact that the maximal function M maps L{;*(G)
to itself with operator norm bounded by C [w]Xq 7 for some C > 0. Without presenting
any details on weak norms and Lorentz spaces, we include here a quantitative

estimate on the size of level sets of the maximal function.
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Lemma 3.2. Let 1 < g < 00 and let M be the maximal function defined in (1-3).
Then, for any f € Li,(G),
(3-2) sup Afw({x € G : Mf(x) > A}) < D*[wly, A1, .

)">0 w
Proof. For any locally integrable function f and any A > 0, let 2, be the level
set Q) :={x € G: Mf(x) > A}. We also define some sort of truncated maximal
operator as follows: for any K € Z, let Mg be the averaging operator given by

(3-3) Mg f(x)= sup ][ |f@ldu,

VeBk(x) JV
where the supremum is taken over the subfamily Bk of BB consisting of all base sets
of the form y 4+ U; with y € G and i < K containing the point x, i.e.,

(3-4) Bx(x)={V=y4+U; :xeV,i <K}

For each K we consider the corresponding level set Qf ={xeG: Mgf(x)> A}
We clearly have that the family {Qf } is increasing in K and also €, = g Qf .
We therefore may compute the value of w(€2,) as the limit of w(Qf ). In addition,
we recall that the group G is o-compact since G = | J, ., U,. We will again use a
limiting argument to compute w(Qf ) as the limit of w(SZ,’\< NU,) with r — +o0.

Now for K € Z fixed, choose r € Z such that r > K. A simple Vitali’s covering
lemma can be applied now to 2 f N U,. We want to select a countable subfamily of
disjoint base sets whose dilates cover Qf N U,. More precisely, suppose that the
set Qf N U, is nonempty. For each x € Qf N U,, there exists a base set V, of the
form V, =y, 4+ U;, such that

(3-5) . |l f@ldpn > A.
Since i, < K forall x € Qf NU,, there is some i; = max{i,}. We start the recursive
selection procedure by picking one of these largest base sets as V| = y; 4+ U;,. Now
suppose that the first Vi, Va, ..., Vj sets have been selected. We pick Vi verifying
that Vi1 = ykq1 + Uiy, Where i =max{iy : y, +U; NV, =9, j=1,...,k}.
This process generates a sequence of disjoint base sets {V;}. We note that the
index sequence {i;} goes to —oo as k goes to infinity. If not, since it is decreasing,
there would be some iy = iy for all k > ky. Then we have that V, N U, # @ and
ix < K <r and by the engulfing property, Vi, C U}* for all k > k¢. In particular,
the set S = {yx : k > ko} C U is relatively compact. Then, considering the set

F=|Jvcs+u,
k>kg

and proceeding as in Lemma 2.7 we get a contradiction.
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We claim now that
Qfnu, c | v
keN
To verify this, consider some x € Qf N U, and the corresponding V, =y, + U, .
Suppose first that V, intersects some Vj. Let ko be the smallest k € N such that
Ve N Vi # &. Then we have that i, <ij,, since iy, was selected as the largest index

among all the sets V, disjoint from Vi, ..., Vi,—; (and by hypothesis V, is one of
them). Then the engulfing property yields

Ve =yx+ Ui, Cyto+ Us2qi) = Vi -

We are left to consider the case when V, NV, = & for all k € N. But in this case,
we would have that i, < i} for all £ and this is a contradiction since we saw that
ik — —OQ.

Summing up, we find a countable collection of base sets {Vi}; such that

][fdu>)» and QfﬂUrCUVk**.
Vi &

Then we can compute

Mw(QENU) <Y Mw(VE) <)Y w(Vk**)<][
k k

wl/qwl/q|f|)q
Vi
w(Vk**)(/‘ wi=7 4 )q1< 9w d )
—vam n 1w dn
PRI o) ([
ZM(V**)q Lwrdn \Hrwdn

<D*[wla, Y [ Iflwdu
kY Ve

< D¥[wla, /17y
From this estimate we conclude that
Mw () < DX [wla, Il f 117,
for any A > 0. O

Now we are able to present the proof of the sharp version of Buckley’s theorem
for the maximal function M on L?(G), p > 1.

Proof of Theorem 1.3. The idea is to use a sort of interpolation type argument,
exploiting the sublinearity of the maximal operator M and the weak type estimate
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for M from Lemma 3.2. For any f € L} (G) and any ¢ > 0, define the truncation
fi:= fxqf1>1- Then, an easy computation of the averages defining M gives

xeG:Mf(x)>2t}C{xeG: Mfi(x) >t}
Now we compute the L%, norm as follows:
o0
IMFUL, = / pi" M w((x € G MF(x) > 1)) di
0
oo
= 2Pf pt"'w({x € G: Mf(x) > 2t}) dt
0
oo
< 2!’/ pt" Yw{x € G : Mf,(x) > t}) dt.
0
We recall the open property for Muckenhoupt weights: any w € A, also belongs
to A,_ for some explicit £ > 0 (see Lemma 3.1). Using the estimate of Lemma 3.2

for ¢ = p — ¢, we obtain

(3-6)  IMfI]p g =2"PD* P W, f ! f T @w@) dpdt

21’pD2(” 8)[

Ao / )P wdp

_ p22p71D6p Z[w]AP

where in the last inequality we used Lemma 3.1. Noticing that in Lemma 3.1,
e=(p—1)/@4D'""[o]4,), we finally conclude from (3-6) that

IM£llLr ) < CAwla,lo1a) P fllLz )

and the proof of (1-9) is complete.
Finally, since [o]4, < [O’]Ap, = [w]zp_l, (1-10) follows from (1-9). O
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ETERNAL FORCED MEAN CURVATURE FLOWS II:
EXISTENCE

GRAHAM SMITH

We show that under suitable nondegeneracy conditions, complete gradient
flow lines of the scalar curvature functional of a riemannian manifold per-
turb into eternal forced mean curvature flows with large forcing term.

1. Introduction

1.1. Background. Ye [1991] shows how nondegenerate critical points of the scalar
curvature function of a riemannian manifold perturb into families of convex em-
bedded spheres inside that manifold of arbitrary large constant mean curvature.
While this result has been shown to have significant applications in the study of the
isoperimetric problem (see, for example, [Brendle and Eichmair 2014; Eichmair and
Metzger 2012; 2013a; 2013b; Nardulli 2009; 20141]), its applications to the study
of the differential topologies of spaces of immersed and embedded submanifolds
have been less exploited. However, in [Smith 2011], we show how — in heuristic
terms — Ye’s result implies that the Euler characteristic of the space of convex
Alexandrov embedded spheres inside a given manifold is equal to (—1) times the
Euler characteristic of that manifold. This has applications to the study of existence,
and to some measure, uniqueness, of Alexandrov embedded spheres of constant
curvature for many different notions of curvature.

However, if our aim is to prove existence, then the results of [Smith 2011]
are unsatisfactory when the Euler characteristic of the ambient manifold vanishes.
This happens, for example, when the ambient manifold is 3-dimensional, which
is nonetheless one of the most interesting cases. Furthermore, even when these
techniques can be successfully applied to prove existence (as in, for example,
[Maximo et al. 2017; Rosenberg and Smith 2010; White 1991]), they still often fall
short of optimal results, for there are good topological reasons to believe that— at
least generically — there are far more solutions than those whose existence we have
managed to prove.

With this in mind, in [Smith 2015], we initiated a programme for the study of the
Morse homology of the spaces of immersed and embedded hypersurfaces, where

MSC2010: 58C30.
Keywords: Morse homology, mean curvature, forced mean curvature flow.
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the natural Morse function to be studied is the area functional or, more generally,
the “Area minus Volume” functional (defined below), which depends on a parameter
h, and which we denote by 7. The critical points of ¥}, which define the chain
groups of the Morse complex [Schwarz 1993], are then immersed hypersurfaces of
constant mean curvature equal to /, and its complete gradient flows, which define
its d operator (see [Schwarz 1993], again), are then eternal forced mean curvature
flows with forcing term #.

Within this context, Ye’s result says that for large values of /2, nondegenerate
critical points of the scalar curvature function map to (in fact, nondegenerate) critical
points of Fj,. In this paper, we prove the corresponding result for complete gradient
flows of the scalar curvature function. That is, under suitable nondegeneracy
conditions, we show that for sufficiently large values of 4, these flows map to
complete gradient flows of F;,. Combined with a suitable converse (that is, a
concentration result), which has been proven in Ye’s case, but which we have not
yet proven here, this would mean that for large values of £, the entire Morse complex
of the scalar curvature functional maps to the Morse complex of Fj,. This would
make the two isomorphic, thereby yielding an explicit description of the Morse
homology of the space of Alexandrov embedded spheres. In particular, since the
number of constant mean curvature immersed spheres should be bounded below by
the sum of the Betti numbers of this homology, we should thereby obtain stronger
existence results for such hypersurfaces than those that are currently known.

Finally, it is worth observing that the results of this paper are also of interest
within the classical theory of mean curvature flows. Indeed, eternal mean curvature
flows in R™*!, which arise as the blow-up limits of Type II singularities [Mantegazza
2011], are still not fully understood. For example, the class of all such flows trivially
includes the class of mean curvature flow solitons — that is, complete hypersurfaces
which evolve by translation under the mean curvature flow (see [Martin et al. 2015]
for a good survey). Since the property of being eternal ought to be quite restrictive,
it is reasonable to expect that there exist no others. However, at the time of writing,
the problem of determining whether all eternal mean curvature flows in R™*! are
indeed solitons remains unsolved. With this in mind, the eternal forced mean
curvature flows described in this paper have come as rather a surprise to experts in
the field and we hope that they may shed some light on the above problem. Finally,
after completion of this paper we were made aware of the work [Alikakos and
Freire 2003] which bears some similarities to our own.

1.2. Notation, terminology and main result. Let M := M"™*! be a complete (m +
1)-dimensional riemannian manifold. Let S be its scalar curvature function, where,
throughout the paper, we adopt the convention which normalises all curvature
functions so that the unit sphere in Euclidean space always has positive unit curvature.
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Let y : R — M solve the nonlinear ODE

m+1
———VS=0
2(m+3) §=0,
so that y is (up to reparametrisation) a complete gradient flow line of S. Consider
the linearisation L of (1) about y. This is a linear ordinary differential operator
from I"'(y*T M) to itself, having the following form (see the Appendix):

_ 0 m+1
2 L= T 3m+3)

We recall that S is said to be of Morse type whenever all of its critical points are
nondegenerate. In this case, if y has relatively compact image, then y (t) converges
towards critical points of S as ¢ tends to £00. Furthermore, by [Robbin and Salamon
1995], L defines a Fredholm map from the space of Holder differentiable sections
k+Le (=T M) into T5% (y* T M), and its Fredholm index is equal to the difference
of the Morse indices of the two end-points of . We say that y is nondegenerate
whenever L is surjective, and we say that S is of Morse—Smale type whenever, in
addition to all of its critical points being nondegenerate, all of its complete gradient

(D v+

Hess(S).

flow lines which have relatively compact image are also nondegenerate. This is the
property that we require for the Morse complex of S to be well-defined [Schwarz
1993]. There is no shortage of metrics whose scalar curvature function has this
property. Indeed, they are generic (that is, in the second category in the sense of
Baire) within any conformal class (see the Appendix).

Let B"*! and S™ be respectively the closed unit ball and the unit sphere in
R+

Definition 1.2.1. Let £ denote the space of smooth immersions of B”*! into M
and let £ denote the quotient of this space under the action of the group of smooth
orientation preserving diffeomorphisms of B”*! by reparameterization.

It is usual to identify an immersion in & with its equivalence class in £. By a
slight abuse of terminology, for each e € £, we define Vol(e) and Area(e) to be
respectively the volumes of B"*+! and §™ with respect to the metric e*g.

Definition 1.2.2. For all 4 > 0, we define the “Area minus Volume” functional by
3) Fn(e) := Area(e) — h Vol(e).

Many properties of the immersion e are actually determined by its restriction
to §™. Indeed, the restriction operator actually defines a local homeomorphism
from & into the space of reparametrisation equivalence classes of immersions of
S™ into M whose image is the space of Alexandrov embeddings of S™ into M.
Furthermore, an embedding e : B™*! — M is a critical point of F,, whenever its
restriction to S has constant mean curvature equal to 4. Likewise, the family
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e:Rx B™! — M is an L? gradient flow of F;, whenever its restriction to R x §”
is an eternal forced mean curvature flow with forcing term /4. That is, whenever
this restriction satisfies

@) (2o, M)+ H —h =0,

where N, and H; are respectively the outward-pointing unit normal vector field and
the mean curvature of the restriction of ¢, :=e(z, - ) to R x S™.

We now introduce the mechanism by which complete gradient flow lines of
S perturb to eternal forced mean curvature flows. Let y be a complete gradient
flow line of S. Using parallel transport, we identify the bundle y*T M with the
trivial bundle R x R”*!, and we define Exp : R x R"*! — M such that, for all ¢,
Exp, :=Exp(t, - ) is the exponential map of M about the point y (¢). Now, following
[Ye 1991], for all s > 0, forall Y : R — R”*! and for all f:R x §™ —]0, co[, we
define the function e(s, ¥, f) : R x $™ — M by

5) e(s,Y, f)(t, x) =Exp,(sY(t)+s(1 +52f(t, x))x).

Heuristically, e(s, Y, f) is a smooth family of immersed spheres in M whose centres
move along y with a small displacement given by Y.

Theorem 1.2.3. If S is of Morse—Smale type, and if vy is a complete gradient flow
line of S with relatively compact image then, for all sufficiently small s, there exist
Y:R— R™ ! and f: R x §™ —10, oo[ such that, up to reparametrisation in time,
e(s, Y, f) is an eternal forced mean curvature flow with forcing term 1/s.

Remark. A detailed formal statement of Theorem 1.2.3 is given in Theorem 4.7.2
below. In particular, not only do we obtain Holder estimates for the pair (Y, f),
but we also describe in Theorem 4.6.1, below, an iterative process for determining
asymptotic expansions of these solutions up to arbitrary order.

1.3. Discussion. Like Ye’s result, Theorem 1.2.3 is proven by first determining
formal solutions in the form of asymptotic series, and then perturbing suitably high
order partial sums of these series to yield exact solutions. There are, nonetheless,
considerable differences between Theorem 1.2.3 and Ye’s result, primarily because
Theorem 1.2.3 is a parabolic, and not an elliptic, problem. On the one hand, since
parabolic and elliptic operators are all hypoelliptic, the analytic tools that we use
are barely different. However, on the other, the time-dependence introduces new —
and rather confusing — phenomena as the scale parameter s tends to zero.

This is perhaps best illustrated by considering the first approximation ¥ =0 and
f =0. Here, the mean curvature of the sphere e(s, 0, 0)(¢, - ) isequal to 1 /s + O(s),
so that the forced mean curvature flow with forcing term 1/s should move along
the curve y with speed approximately s, which trivially tends to 0. It is perhaps
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surprising that this scale dependence does not actually introduce any singularities
as s tends to 0. However, a deeper study of the equations involved reveals the role
played by operator

©) 0, i=s"2+ Ln+B),

where A is the standard Laplacian of the sphere $™. In fact, the fourth power of
s that appears in (6) can already be seen to arise from the coefficient of f in (5)
together with the slowing of the flow by a factor of s. This term will affect our
work in three different ways.

First, Theorem 1.2.3 becomes a genuine singular perturbation problem. In actual
fact, Ye’s result, although presented as a singular perturbation problem, transforms,
after removal of the first few terms and division by a suitable factor, into a regular
perturbation problem, which is then directly solved by the inverse function theorem.
In the present case, however, when s = 0, the operator Q; is no longer hypoelliptic,
and the same simplification no longer applies.

Second, since the Green’s operator of O depends on s, the terms in the asymp-
totic series of the formal solution (determined in Theorem 4.6.1, below) actually
also depend on s, so that more care is required in ensuring that the Holder bounds
we obtain are independent of s.

Third, the appropriate functional analytic framework for studying parabolic
operators is that of inhomogeneous spaces (introduced here in Section 4.4, below).
Furthermore, the s dependence of Q; requires the use of weighted spaces (also
defined in Section 4.4, below), where what appears to be the most appropriate weight-
ing is in fact slightly counterintuitive (see the remarks following Equation (101)).

Finally, in order to develop a Morse homology theory for the space of convex
Alexandrov embedded spheres, two further results are still required. Indeed, it would
be necessary to show, first that the eternal flows obtained here are nondegenerate,
and second, that for sufficiently large values of the forcing term, they are the only
ones. However, we believe at this stage that it is more interesting to develop a more
satisfactory compactness result than that obtained in [Smith 2015], and for this
reason we postpone this study to later work.

1.4. Overview of paper. This paper is structured as follows. In Section 2, we
develop a formalism for the succinct description of the Taylor series of various
well-known geometric functions, and in Section 3, we extend this formalism in
order to describe the functions used in the proof of Theorem 1.2.3. Our objective
here is to understand the general terms of these series without having to resort
to explicit calculations and, for the sake of completeness, we have studied this
problem in far more depth than is actually necessary for our current applications.
In Section 4, we then reformulate these results in the language of asymptotic series.
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In particular, since the operation of composition by smooth functions yields smooth
functionals between Holder spaces, this immediately yields norm estimates for the
functionals of interest to us without any further effort being required.

Having determined the asymptotic expansion of the forced mean curvature flow
operator, the rest of Section 4 is devoted to constructing formal solutions and then
perturbing these formal solutions into exact solutions. It is here that we introduce the
required functional analytic framework, based on the Fredholm theory of parabolic
operators over weighted inhomogeneous Holder spaces [Krylov 2008]. In addition,
using the theory of spherical harmonics, we improve our norm estimates for every
term in the asymptotic series of our formal solutions. Although this is not strictly
necessary, we believe it makes our reasoning a lot cleaner. Finally, once formal
solutions have been constructed, a straightforward application of the inverse function
theorem yields the desired result.

2. The Taylor series of geometric functions

2.1. Curvature tensors. Throughout this paper, Einstein’s summation convention
will be used. Let Q be the unit ball in R™*!. Let g be a smooth metric over Q with
Levi-Civita covariant derivative V and Riemann curvature tensor R. We suppose
that

(7) V3,9, =0 and g(d,,9,) =1,

where 0, here denotes the unit radial vector field. This simply means that (€2, g) is
an exponential chart of some riemannian manifold. Now denote

®) 8ij := g(0)ij

and let 8V be its metric dual. By (7), §;j is simply the standard euclidean metric
over R”*!. Finally, for convenience, we suppose that  is convex with respect to
g in the sense that for all x, y € Q, there exists a unique geodesic in €2 from x to y.

We say that a function defined over 2 is geometric when it only depends on
the metric g. We are interested in the Taylor series about 0 of such functions and,
in particular, how their coefficients depend on the Riemann curvature tensor. In
order to describe this dependence, we introduce the following algebraic formalism.
Consider the set of formal tensors X := {(R;, i2i3j -is..ivs3)keN} Where the subscript ;
here denotes formal covariant differentiation. Observe that all elements of X are
covariant of order 1 and contravariant of order at least 3. Given two formal tensors,
/obll iy and ,0 1o which are both covariant of order 1, define their matrix product
by oy, . i) ot Froda® and observe that this product is also covariant of order 1. Now
let R be the vector space with basis the set of all finite formal combinations of
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elements of X obtained by permutation of indices and matrix multiplication. We
call R the space of curvature tensors.

For all k € Z, let R be the subspace of R consisting of those elements which
are contravariant of order k + 1. When p € R¥, we say that it has order-difference k.
Observe that order-difference is preserved by permutation of indices, and if p and
o’ have order-differences k and k' respectively, then their matrix product has order-
difference k + k’. In particular, since every generator of R has order-difference at
least 2, it follows that for k < 2, RF is trivial, and for k > 2, it is spanned by matrix
products of those generators which have order-difference at most k. Considerations
such as these make it relatively straightforward to determine R¥ for all k. For
example,

2 .
R = <(Rig(1)ig(2)ig(3)J)U€Z3>v

3 .
R = <(Rig(|>ia(2)ig(3)j;i”(4))0‘624>7

9
()R“: R

((R...J_.. o JR. . P
lo(lo@)loB) lo@la5)? 1MPla()io(2) loB)lo@lo(5)

o iR, . . P
Rla(l)lJ(Z)p Rla(3>la(4)la(5> )0625>’

and so on, where, for all k&, ¥; denotes the group of permutations of the set
{1,...,k}.

Identifying elements of R via the symmetries of the Riemann curvature tensor,
we obtain
Proposition 2.1.1. R is self-adjoint with respect to § in the sense that if ,0;'.1. is
an element of R, then 8i“8]~,bpj.’l'
foralll <l <k.

- Jk
@i identifies with a unique element of R

Proof. 1t suffices to prove the result for each generator of R. We thus show that
8198 bR i injs” ju it vajier.o.jess identifies with a unique element of R for all k and
for all 1 </ < k + 3. We achieve this by induction on k. Indeed, for k£ = 0, the
result follows directly from the symmetries of the Riemann curvature tensor. For
k =1, it follows from these symmetries together with the second Bianchi identity.
Now suppose that k£ > 2. Since the set of generators of R is closed under formal
covariant differentiation, so too is R, and we may therefore suppose that [ = k 4 3.
However,

S i > R S . ip.o P
RJI]ZJS sJa-Jk+2J1 T RJIJZJ3 sJ4- Jk+1J1Tk+2 +RJI<+2]1P RJl]2]3 3 J4- Jk+1
k+1
a i
- E :Rjk+2jl.ih Rj1j2j3 3 Jaee e Jb—1GJb41 -+ Jk417
b=1

and the result now follows by induction. U
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The significance of Proposition 2.1.1 lies in the fact that although geometric
functions are defined in terms of the metric, they can be approximated purely in
terms of curvature tensors, as we will see presently.

Finally, denote

(10) R:=R (8},

where 8’ here denotes the Kronecker delta tensor. For all k, define R¥ as before.
We also call elements of R curvature tensors. Observe that R is also closed under
matrix multiplication. Furthermore, RO = (5’) and, for all k # 0, RF = Rk,

2.2. Curvature Polynomials. Let X := (X1, ..., X,,) be a vector of formal vari-
ables each taking values in R™*!. For p e R¥ and forO<rj+---+r, <k+1,
define the formal polynomial
b (on... )lj(r1+ )L k]
= b XI X et X e,

where X ’j denotes the i-th component of the vector X ;. Abusing notation, let R[X]
be the vector space with basis the set of all such formal polynomials. We call R[X]
the space of curvature polynomials. Observe that R[X] is closed under matrix
multiplication, although it is not always possible to multiply two given elements
(indeed, two elements which are both covariant of order 1 and contravariant of order
0 cannot be multiplied). Furthermore, since R is self-adjoint with respect to 4, so too
is R[X] in the sense that if P‘ e is an element of R[X], then 614§
identifies with a unique element of R[X]forall 1 <[ <k.

For k € Z and for r := (ry,...,r,) € N, let R’,‘[X] denote the subspace of
R[X] consisting of those elements which are contravariant of order k + 1 and
homogeneous of degree r; in X; for each i. Likewise, denote

ﬂb J1 Ji=1Gj1+1-- jk

(12) RYX1:= P RIX].

When P € R’,‘ [X], we say that it has order-difference k and degree r. As before,
permutation of indices preserves order-difference, and if P and P’ have order-
differences k and k' respectively then their matrix product has order-difference
k+K.

Throughout most of this section, we will only be concerned with the case where
n = 1 and we denote r := r;. Here we have

Proposition 2.2.1. If r > k and if p € R¥, then p, = 0. In particular, R*[X] is
nontrivial only if k > 0.
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Proof. 1t suffices to prove the result when p is a generator of R. However, for
each k, by symmetry, R;, j,;," j,.. i X' ... X’* =0, and the result follows. O

Proposition 2.2.1 implies that every element of R[X] is a finite sum of matrix
products of those generators of R[X] which are of order-difference 0, that is,

formal polynomials of the form R,,l,-mj preprpn XPU . XPE2 where k varies over

all nonnegative integers. By considerations such as these, we obtain, for example,
RIX]=0, RIX]=0,

(13) . _ o . .
RIX] = (Ryig! XPX9), RIUX]= (Ryig’:r XPXIX"),

and so on. Likewise, every element of R'[X] is a finite sum of matrix products of
generators all but one of which are elements of R°[X] and the remaining one of
which is an element of R'[X], and we obtain,

Ro[X1=0,

RIXT = A(Rpiyiney’ X7 Rigiaeyp”’ X aexs),

R;[X] = <(Rﬁia(1)qj2ia(2)Xqu’ RPia(l)ia(z)quXqu’
Ria(l)iq<z)pj;qXqu)

(14)

0’622)’

and so on. In summary, it is relatively straightforward to determine R’,‘[X ] for all k
and for all r.

For general n, since RF is trivial for k < 2, Rr_l [X]is trivial forry +---+r, <2
and R(r) [X] is trivial for r{ +---+r, < 1. This ‘observation will play an important
role in the sequel.

Finally, as before, denote

(15) RIX1=RIX]1& () & (X)),

where X ’/ denotes the i-th component of the vector X ;. For all k, and for all , define
7_3;‘ [X] as before. We also call elements of R[X] curvature polynomials. Observe
that R[X] is also closed under matrix multiplication. Furthermore,

16)  RIXI=R'XI®(X1..... X)), RUAX1=RX]® (8)),
and R¥[X] = R¥[X] for all other values of k.

2.3. General properties of Taylor series. As before, let X := (Xy,..., X,,) be a
vector of formal variables taking values in R”*!. Abusing notation, let A[X] be an
algebra of formal polynomials in X, and let A[X] be the algebra of formal power
series in X all of whose partial sums are elements of A[X]. For such a formal
power series F and for every nonnegative integer k denote by [ F] its partial sum
of order k.
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Recall that for all real «, the binomial theorem furnishes a sequence (ay ) of
real numbers such that for x €] — 1, 1],

o.¢]
(17) A+x)% =" apax”.
k=0

Consequently, if the algebra A[X] contains an identity, which we always denote
by 1, then for all formal power series F' in A[[X] with F(0) = I, and for any real
exponent o we define

o0
(18) F*:=Y " aa(F—DF.
k=0
Proposition 2.3.1. Let F be a formal power series in X. If F belongs to A[X],

and if F(0) = I, then F* also belongs to A[X]| for all real c.

Proof. Denote G := F — I. For all k, G¥ € A[X] and since G(0) =0, [G*], =0
for all [ < k. Thus, for all « and for all /,

[e'e) )
[F*) = [Zak,aGk} =Y aralG*l € ALX],
k=0 I k=0

and so F* € A[[X]], as desired. O

Now let T := (T1, ..., T,) be a vector of formal variables taking values in R,
and let A[X][[T] denote the algebra of formal power series in T all of whose
coefficients are elements of A[X].

Proposition 2.3.2. Let F be a formal power series in X, and define G(X, T) :=
F(T1 Xy, ..., T,X,). If G belongs to A[X1[T1, then F belongs to A[X]].

Proof. By hypothesis,

1 ki kn
G_Xk:—kl!---kn!Tl TR P(X),

where, for all k, the formal polynomial P, belongs to A[X]. Now consider the
formal derivatives of F and G with respect to X and T respectively. By the chain
rule,

ok . 9hG

— 0. X)=P(X) € A[X].
oTh .. AT ¢

k.. ok F
ax5 gxkn O @ @X3 =
L0 X,

It follows that every partial sum of F belongs to A[X], and so F belongs to A[X]],
as desired. O
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2.4. Tensor-valued geometric functions. Forall p, g N, let TP9:=TP49(R"+1)
be the space of tensors over R”*! which are covariant of order p and contravariant
of order ¢. Consider a function f : Q@ — T1**!1 and denote by [ f] its Taylor series.
In the present context, the statement that [ f] belongs to R¥[X] means that the
Taylor series of [ f] about O is given by

)~ R (),

r=0

where, for all , R, is a curvature polynomial of order-difference k and degree r.

Now observe that 7!-! naturally identifies with End(R™*!). In particular, since
matrix multiplication coincides with the usual notion of matrix multiplication in
this case, the space R°[X] is also closed with respect to this product, and therefore
constitutes an algebra.

Let M : © — End(R™*") be such that for all x € Q and for every vector U,
M (x)U is the parallel transport of U along the radial line from x to 0. The first
few terms of the Taylor series of M are readily determined. Indeed,

Proposition 2.4.1.
(19) M; (x) ~ 83- + %Rquixpxq + l—lszjqi;,xpqur + 0 (x*).

Remark. Equations (19), (21) and (25) are all proven via the same classical Jacobi
field argument [Chavel 2006]. For the reader’s convenience, we provide a proof of
(19) in order to illustrate the technique.

Proof. Fix a point xo € §™ and a vector Ug € R™*1. Let x(y):=txgand U(t) :=tUy
so that x is a geodesic and U is a Jacobi field over x. We use a dot to denote both
differentiation and covariant differentiation in the radial direction. By definition,
U (0) =0 and, since (£2, g) is an exponential chart, U (0) = Uy. Furthermore, by
the Jacobi field equation,

U=R(x,U, %) = Riyx.
Differentiating this two more times yields
ViU = (VR)(%, U, %; )+ R(x, U, %),
ViU = (VPR)(%, U, i; %, %) + 2(VR) (%, U, ; %) + R(%, R(%, U, %), X).
Upon evaluating at zero and applying Taylor’s theorem, we obtain
MEOU @) =t (Up+ ERpjo' xPxTUJ + 5 Ry xPx9x"Ug + O (x%)),
where x := txg. The result now follows upon dividing each side by ¢. U

More generally, we have
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Proposition 2.4.2.
(20) [M] e R[X].

Proof. Fix a point xq € €2 and a vector Uy € R™*1. Let x(¢) :=txq and U (¢) := tUj.
Using a dot to denote differentiation and covariant differentiation in the radial
direction, we obtain, as before

U@)=0, U0)=Uy and U = Riyx.

We now claim that there exist sequences (P;) and (Qy) of polynomials over
End(R"*!) such that, for all k,

VERU = PU(R(xX) (1), ..., VER(X) DU + Qe (R(x) (), . .., VFTIR(x) (1)U,
where, for all /,
VIR(x) (%) := R(x)pljpz";m_upmjcpl b

This holds for £ = 0 by the Jacobi field equation. For £ > 0, using the inductive
hypothesis and the fact that V;x = 0, we obtain
VEPU = Vi (P(R(X)(X), ..., VER(x) (1)U
+ QR (), ..., VF IR (1)U

= P (R(x)(%), ..., VFR(X)GO)U + Qr(R(x) (%), ..., VFIR(x)(x)U

k
+)  P(R@)), ..., VER() (1), VT R(x) (1)U
1=0
k—1
+ D QriR@)@), ... VIR (), VTR (0) ()T
1=0
for suitable sequences of polynomials (P ;) and (Qx ;). However, by the Jacobi
field equation again, U= R;yx, and the assertion follows by induction. Observe,
furthermore, that for all k, the zeroth order terms of P, and Qj both vanish. Substi-
tuting ¢+ = 0 now yields

(VEF2U)(0) = Qr(R(0)(xp), . ..., V' R(0)(x0)) Up.

However, for all k,
3f t M (1x0)Upli=0 = (Vi U)(0),

so that, by Taylor’s theorem,

S Tk _ _
[M(TX)=1d+ g ka_l(R(O)(X), . VEZR(0)(X)) e RIXIITT,
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and the result now follows by Proposition 2.3.2. (Il
Let A, B : @ — End(R™*!) be such that, for all x,
o 8ij(x) = Al (x)8 ;= BipAf(x),
g (x) = B, (x)6"” = §'" B} (x),

where g’/ (x) denotes the metric inverse of g; j(x). Using the same Jacobi field
techniques as before, we obtain
) A; (x) ~ 8; + %Rp.,-q"xpxq + %Rp.,-q’.;,xpqur +0@xh,

B;- (x) ~ 8; — %Rquixpxq — %Rqui;,xpqur + 0@x"h.
More generally,

Proposition 2.4.3.

(23) [A],[B] € R°[X].

Proof. For every point x in € and for all vectors U and V in R+,

g)(U, V)=gO)Mx)U, Mx)V) = (Mx)U, M(x)V) = (M*(x)M(x)U, V).

Since U and V are arbitrary, it follows that A = M*M. However, since R[X]
is self-adjoint with respect to &, [M*] belongs to R[X] and therefore so too
does [A] = [M*][M]. Finally, since [A](0) = A(0) = I, by Proposition 2.3.1,
[B]=[A"']1=[A]"! also belongs to RIX]), and this completes the proof. U

Let I': Q — T'1'2 be the Christoffel symbol® of the Levi-Civita covariant derivative
of g. That is,

(24) T'f; ()3 == V3,0 — Dy,0;,

where D denotes the canonical differentiation operator over R”*!. Recall that T is
symmetric in i and j. Furthermore, using the same Jacobi field techniques once
again, we obtain

(25  THO) ~ SRy x? + SR pii* gx"x 4+ 5 Rpig"ixPx7 + 0 (7).
More generally,

Proposition 2.4.4.

(26) [T e RUX].

1Of course, technically speaking, the Christoffel symbol is not actually a tensor, although this
does not affect the following discussion. The reader uncomfortable with this may choose to view the
Christoffel symbol instead as the difference between the covariant derivatives V and D, in which case
it is correctly a tensor.
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Proof. By the Koszul formula, for all vectors U, V and W in R™*! and for every
point x in €,
27 2(AX)T(x)U, V), W)

=(DAx; U)V, W)+ (DA(x; V)U, W) —(DA(x; W)U, V).

Since [A] belongs to R[[X]), its formal derivative, D[A] = [DA] also belongs to
RIX]. Now let & : Q — T2 be such that

(Px)(U, V), W)= (DAx; W)U, V).

Since R[X] is self-adjoint with respect to 8, [®] also belongs to R[X], and
therefore, by linearity, so too does [AI']. It follows that [[']=[B][A][[']=[B][Al']
belongs to R[X], and this completes the proof. O

2.5. The exponential map and parallel transport. Define Q, C R"+! x R™*! by

(28) Qo = {(x, ) [lIxl+ 1yl <1}

Let Exp : 2, — 2 be the exponential map of g. That is, for all (x, y), the curve
t — Exp(x, ty) is the unique geodesic in 2 leaving the point x in the direction of
the vector y.

Proposition 2.5.1.

(29) [Exp] e R7[X, YT,

and

(30) [Expl = X +Y + O(|I X, Y|).

Proof. For any function ¢ of s and ¢, and for all &, let [¢] x denote its Taylor
series up to order k in ¢. Likewise, for any formal series @ in S and 7', let [ ]«
denote its partial sum up to order k in 7. Now define E(x, y, s, t) := Exp(sx, ty).
By definition, for every point (x, y) € €2, and for all s,

E(x,y,s,0)=Exp(sx, 0) = sx,
0 E(x,y,s,0) =0 Exp(sx, ty)|r=0 =,

so that [E]w,1 = SX 4+ TY, which belongs to RI[X, YIS, T]. We now claim that
the partial sum [E] x belongs to RI[X, YIS, T] for all k. Indeed, suppose that
this holds for k. Observe that

[T(E)OE, 0 E)]oo,k—1 = [I'([ETo0,k=1) (T [Eloo ks 9T [ Eloo k) oo k-1

where d7 denotes formal partial differentiation with respect to 7'. Since [I"] belongs
to R[X], it follows by the inductive hypothesis that [I"(E) (9, E, 9; E)]co.k—1 belongs
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to R[X, Y][[S, T1. However, by the geodesic equation,
32[Elooit1 = [87Elook—1 = —[T(E)@.E, & E)look—1 € RIX, YIS, T1,

and the claim now follows by induction. In particular [ £] belongs to RIX, YIS, TT
and the first assertion follows by Proposition 2.3.2. Finally, since [Exp] —(X+7Y) €
R[X, Y], its lowest degree term has degree at least 3 in X and Y, thus proving
the second assertion. This completes the proof. (I

Let Tr: Q) x R"*! — End(R"*!) be such that for all (x, y) and for every vector U,
Tr(x, y)U is the parallel transport of U from the point x to the point Exp(x, y)
along the geodesic ¢ — Exp(x, ty).

Proposition 2.5.2.

(31) [Tr] € RO[X, Y1,
and

(32) [Tr] =1 + O(IX, Y|?).

Proof. As before, for any function ¢ of s and ¢, and for all k, let [¢] x denote its
Taylor series up to order k in t. Likewise, for any formal series ® in § and T, let
[®]oo x denote its partial sum up to order k in 7'. Define E (x, y, s, t) :=Exp(sx, ty)
and F(x,y,s,t) :=Tr(sx, ty). By definition, for every point (x, y) € £, and for
all s,

F(x,y,s,0) =Tr(sx,0) =1,

so that [ F]o,0 = I, which belongs to RI[X, YIS, T1. We now claim that the partial
sum [ F]so x belongs to RIX, YIS, T] for all k. Indeed, suppose that this holds
for k. Observe that

[T (E)OE, F)look = [I'([EToo,) (AT [Elook+15 [F oo,k oo ks

where d7 denotes formal partial differentiation with respect to 7. Since [I"] belongs
to R[X] and since [Exp] belongs to R[X, Y], it follows by the inductive hypothesis
that [I"(E) (0 E, F)]oo k also belongs to RI[X, Y][S, T]. However, by the parallel
transport equation

Or[Flook+1 = [0 Flook = —[T(E)SE, F)look € RIX, YIS, T1,

and the claim now follows by induction. In particular, F belongs to RIX, YIS, T1
and the first assertion follows by Proposition 2.3.2. Finally, since [F] — I €
RO[X, YT, its lowest degree term has degree at least 2 in X and Y, thus proving
the second assertion. This completes the proof. U
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Finally, we consider higher order iterates of the exponential map and the parallel
transport. Thus, for all n, define Q2,1 C (R™+1)"+! by

(33) Qppr ={Cx1, oo X)) Xl 4o+ Il < 1},
and define the sequences of functions (Exp,) and (Tr,) such that
(34) Exp, (x1, x2) := Exp(x1, x2), Tro(x) :=1d,
and, for all n,

35) Exp, (x1, ..., Xp41) := Exp(Exp,_; (x1, ..., x4), Tra—1(x1, .o oy Xn)Xng1),
Tr, (x1, ..., xp+)U :=Tr(Exp,_; (x1, ..., xp), Trp—1(x1, ..., 1) U).
Proposition 2.5.3. Foralln,

[Exp,] € R™'[X1, ..., Xpp1ll,

(36) Y
[Tr,] € RO[[X1. ..., Xop1]l,

and

(37) [Exp,] = X1+ 4+ Xpp1 + O X1, ..., X1 I,

[Tl =1+ O0(X1, ..., Xus1ll).

Proof. This follows by induction using Propositions 2.5.1 and 2.5.2 and the recursive
definitions of (Exp,) and (Tt,). O

3. Taylor series of functions derived from immersions

3.1. Graphs over spheres. Let S be the unit sphere in R”+! and let V, Hess and
A be respectively its gradient, Hessian and Laplace operators with respect to the
standard euclidean metric. For ¢ €]0, oo[, which we think of as a scale parameter,
and for f € C°(S™), consider the function e(z, f) : §” — R™*! given by

(38) e(t, f)(x) :==t(1+1* f(x))x.

Heuristically, e(#, f) is an immersed sphere of radius approximately ¢ centred on
the origin. For all k, let J := J*S™ denote the bundle of k-jets over $™, and for
a function f € C¥(S™) and a point x € §™, denote by f; its k-jet at x, where the
order k of the jet should hopefully be clear from the context. Define the functions
N :10, oo[x J1S™ — §™ and H :]0, oo[x J*S™ — R such that for all 7 €]0, oo[
and for all f, € JS™, N(¢t, f,) and H (t, f,) are respectively the outward-pointing
unit normal of the immersion e(#, f) at the point e(#, f)(x) and its mean curvature
at that point, both with respect to the metric g. It is worth noting that both N and
H are actually smooth functions defined over finite-dimensional domains and may
both be expressed explicitly in terms of (rather complicated) formulae involving g.
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We prefer to define these functions in the above manner in order to emphasise their
clear geometric meanings.

We are interested in the Taylor series of N (¢, fy) and H (¢, f,) in t about 0. To this
end, we first introduce the following auxiliary functions. Define r : R" ! — [0, oo[
and x : R"*1\ {0} — S™ by

(39) r(y):=Iyll, x(y):=y/r.
Given f € C'(5™), define f :]0, co[x (R™+1\ {0}) = R by
(40) f,y)i=r—t(1+1f(x)).

Observe that the image of e(¢, f) coincides with the level set of f at height 0.
Furthermore, for every point y in this level set, V f(y) is orthogonal to this level
set with respect to the metric g.

Proposition 3.1.1.
~ l‘ j—
(41) Vit y) =2 = T BOIEVf ().

Proof. The gradient of f with respect to the euclidean metric is

A y t3 —
Df(,y)==——Vfx).
ror
However, for all vectors U in R"™*!,

df(t,)(U)=(Df(t,y),U)=(A)By)Df(t,y),U)=g(BG)DF(,y),U),

so that the gradient of f with respect to g is Vf(t, y) = B(y)Df(t, y), and since
B(y)y =y for all y, the result follows. ([l

We now invert the situation and consider both » and y as functions of ¢ and x,
so that

(42) rt,x)=t(1+ tzf(x)), v, x):=t(1+ tzf(x))x.
We define
43) NGt f) =V ft.y) =2 = IBO)PV ),

so that we obtain the following formula for N:

(44) N(t, fo) == N, fo),

IN, %)l

where ||, here denotes the norm with respect to the metric g.



208 GRAHAM SMITH

It will also be necessary to extend e, N and H to allow for variations of the centre
of the immersed sphere. Thus, for  €]0, o[, for y € R™*! and for f € C°(S™),
define e(t, y, f) : S — R™*! by

(45) e(t,y, £)(x) :=Exp(ty, t(1+* f (x))x),

so that, heuristically, e(¢, y, f) is an immersed sphere of radius approximately ¢
with centre displaced to the point y. Define N :]0, co[ x R"*! x J1§" — §™ and
H 3]0, co[ x R" 1 % J25™ —> R as before. Observe, in particular, that e(¢, 0, f) =
e(t, ), N0, fx) =N(, f) and H(z,0, f) = H(, fx).

3.2. The Taylor series of the unit normal vector. We now study the Taylor series
of the scale-dependent functions introduced in Section 3.1. In particular, we are
interested in how the different terms in these series contribute to the exponent of ¢.
To this end, we extend the formalism developed in Sections 2.1 and 2.2 as follows.
For a vector X := (X1, ..., X,,) of formal variables taking values in R™*!, consider
the set of formal polynomials

(46) (X8ap P} (X) | P € RIX]),

where X ; denotes the i-th component of the vector X ;. Let Q[X] be the vector
space with basis the set of all tensor products of elements of this set. We call Q[ X]
the space of curvature polynomials of the second kind. For all k € N and for all
r:=(1,...,rp) € N, denote by Q’,‘ [X] the subspace consisting of those elements
which are contravariant of order k and which are homogeneous of degree r; in the
variable X; for all i. When Q € R’,‘ [X], we say that it has order k and degree r.
Finally, denote i

(47) Q[X]:= QlX]&(1).

We also call elements of Q[X] curvature polynomials of the second kind.

Now let A be an algebra graded by N¥ for some k. Let A[T'] be the algebra of
polynomials over R with coefficients in A. For a given weight w := (wy, ..., wg) €
N, Tet A[T1], be the subalgebra of A[T'] consisting of those polynomials whose
coefficients of degree m are elements of EB@’ iy=m Ai for all m. Likewise, let A[T']]
be the algebra of formal power series over R with coefficients in A, and for w € N¥,
let A[[T],, be the subalgebra of A[T]] consisting of those formal power series all
of whose partial sums are elements of A[T],,.

Now let R[F] be the algebra of formal polynomials in the variable . Consider
a smooth function ¢ : [0, co[x J¥S™ — R which only depends on the metric g
and the jet f,. For such a function, the statement that [¢] belongs to R.[F] ®
Q*,*[X ,VF [T 12,1,2), for example, means that its Taylor series in ¢ about O takes
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the form

(48) U f)~ Y " Y Y Pra(f(0))Qialx, V()

m=0 (i,(2,1,2))=m «

where, for all i := (i1, i2, i3) and for all o, P; 4 is a polynomial of degree i; and
Qi .« 1s a curvature polynomial of the second kind of order 0 and degree (i2, i3).
We leave the reader to interpret the meanings of other tensor products of spaces of
formal polynomials. Importantly, this notation emphasises that all terms in X carry
weight 1 in 7 whilst all terms in F and V F carry weight 2. This behaviour will be
common to all series studied in the sequel.

Proposition 3.2.1. For all real

(49) [(r/)*] € Re[FIIT ]2
Proof. By definition, [(r/t)] =1 +t2f] belongs to R.[F][7 1. Since [(r/1)](0) =
(r/1)(0) = 1, the result follows by Proposition 2.3.1. U

Proposition 3.2.2. For all real o,

(50) [N, fOl*1 € RAF1® Q% [X, VFIITT2.12
and
(51) NG, fOl*1=1+O0(T*).

Proof. Using (7), (21) and (43), we obtain, for all ¢ and for all x,

A 2 — —
189G, 12 =1+ (1) (BOIV 1.2V 1),

However, by Propositions 2.4.3 and 3.2.1,

(B =[B(%en)]

belongs to R, [FIQR. [XIIT 12,1y, so that [(B(y)IZVf IZVf )] belongs to R,[ F]®
Q* «[ X, VF]|[T]](2 1.2)- It follows by Proposition 3.2.1 again that ||N(t fx)||2
belongs to R,.[F] ® Q* JAX,VF [T 12,1,2) and, since the first term in this series
equals 1, the first assertion follows by Proposition 2.3.1. Finally, since [(z/r)?]

has order 0 in T and since [(B(y)t>V f, t>V f)] has order 4 in T, we see that
||]\7(t, fx)||§ =1+ O(T*), and the second assertion follows by Proposition 2.3.1
again. This completes the proof. U

Proposition 3.2.3.

(52) N(1, fo) = @11, fox + P2, [,
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where
53 [®1] € RIFI® ?EZ,*[X, ?F][[T]ig,l,a, B
[@:] € RJF1® Q) ,[X, VFI® R, L[X, VFIITT21.2.1.2)-
Furthermore
(54) [N(t,y, f)l=X—T>VF + O(T%.

Proof. As in the above proof, [B(y)] belongs to R,[F] ® 7_2*[X][[T]](2,1) and so
[B(y)tzﬁf] belongs to Ry[F]® 7_2*,*[X, ﬁF][[T]](g,l,z). By Proposition 3.2.1, the
series [(t/r)B(y)tzﬁf] also belongs to R [F] ®7_2*’*[X, §F][[T]](2,1’2), and the
result now follows by (43), (44) and Proposition 3.2.2. [l

Proposition 3.2.4.

(55) N(t, y, fr) = P11, y, fo)x+Pa(t, y. fo),

where

[@1] e RIFI®QY, [X,Y, VFI[T]21.1.2),

[@2] e RIFI®QY, [X, Y, VFI® R, [X. Y, VFIITl2.1.12.1.12-

%, %, %

(56)

Furthermore,
(57) [N(, f)l= X+ O(T?).
Proof. This Taylor series is obtained from Proposition 3.2.3 by substituting for
every generator Rj,i,is’ i, i, of R its own Taylor series in ¢ about 0:
1
[Ri1i2i3j:i4---ik+3] = Z —T" Rilizisj;i4---ik+3+m Yty ke,

m!
m=0

The result follows. O

3.3. Normal variation of spheres. We extend e further in order to study variations
of the base point, of the displacement of the centre, and of the immersion itself.
Thus, for ¢ €]0, ool, for y, z, w € R™*! and for f, g € C°(S™), consider the function
e(t,y,z,w, f,g): 8" — Rm+1 given by
(58) ety z.w, f. 9)(x) :=Expy(z. t(y +w), t (1 +17(f (x) + g(x)))x),
and define P, Q :]0, co[ xR"™*! x JO§™ — End(R™*!) and R :]0, co[ x R"*! x
JOSm — Rm-ﬁ-l by

P(t7 y7 fx) = 8Ze(t’ y’ Oa Ov f? 0)(-x)a
(59) Q(tv yv fx) = 8u)e(tay70707 f’o)(x)9

R(t’ y’ fx) = age(ta ya 0’ 07 f’ 0)(x)
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Heuristically, for any given vectors U and V and for any given function g the
vectors P(t,y, f)U, O(t,y, fx)V and R(t, y, f,)g, measure the respective in-
finitesimal variations of the immersion e(z, y, f) at the point e(¢, y, f)(x) arising
from infinitesimal perturbations of the base point of the displacement of the centre,
and of the immersion itself in the directions of U, ¢tV and t°g respectively.

Now define p, ¢ :10, oo[ x R"*1x J0§™ — R+ and r:]0, co[ x R"T1x JO§™ —
R by

(p@,y, fx), U):=(Ale(t, y, f))P (. y, fOU, N, y, fr)),
(60) .y, fx), V) :=(Ale(t,y, f)) Q. y, [V, N, y, fr)),
rt,y, fx)g:=(Ae(t,y, L)R(E, y, fr)g, N, y, fx)).

Heuristically, p, ¢ and r measure the normal components of the above infinitesimal

variations.

Proposition 3.3.1.

(61) p(tv yv fx):cbl(t, yv fx)x+¢2(t’ y’ fx),

where

) [@1]eRIFI®QY, [X, Y, VFI®RY, [X. Y, VFIITl2.1.1.2.1.1.2),
(@] eRIFI®QY, [X, Y, VFI®R,, IX, Y, VFIITl2.1.12.1.12)-

Furthermore,

(63) [p]= (X, )+ O(T?).

Proof. Let d7 denote the formal partial derivative with respect to the variable
Z. In particular, [d; Exp,(z, y, x)|;=0] = 9z[Exp,(z, y, x)]|z=0. However, by
Proposition 2.5.3,

3z[Exp,(z, y, ¥)1lz=0 € R[X, Y1,
9z[Exp, (2, y, ¥)llz=0 = I + O(II X, Y||*).
Substituting #y and 7(1 + 2 f (x))x for y and x respectively therefore yields
[0.e(z, ty, t(1+ 1% f(x))x)];=0] € RFI® Rus[X, YT 2,1, 1),
[0.e(z, ty, t(1+ 17 f(x))x)|.=0] = I + O(T?),

so that —
[Ple RJAFIQR, X, YIITT2.1.1),

[Pl=1+ O(T?).

The result now follows from the self-adjointness of R (Proposition 2.1.1) and
Propositions 2.4.3 and 3.2.4. ]
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Proposition 3.3.2.

(64) Q(t’ Y, fx):tcbl(t’ Y, fx)x+t(b2(t’y’fx),
where

[@1]eRIFI®QY, [X, Y, VFI®RY, [X, Y, VFIITl2.1.12.1.12),

*, 3%, %

[@2] e RIFI® QY , [X, Y, VFI® R, [X. Y, VFIITl2.1.1.2.1.12)-

sk, ok LA Lo VOIS I, 112,11,

(65)

Furthermore,
(66) [q]=T(X, )+ O(T?).

Proof. Let oy denote the formal partial derivative with respect to the variable W.
In particular, [9,, Exp(y + tw, x)|w=0] = ow[Exp(y 4+ tw, x)]|w=o. However, by
Proposition 2.5.3,

dw[Exp(y + 1w, x)]llw=o € TRIX, Y1,
OwlExp(y + 1w, )llw=o =TI+ TO(|X, Y|?).

Substituting 7y and ¢(1 + ¢ f (x))x for y and x respectively therefore yields
[Bwe(z, 1y, (14 f (D)) |w=o] € TRAF1® R sl X, YT T2.1,1,5
[dwe(z, ty, t(1+1% £ () w0l = T1 + O(T),

so that _
[Q] € TRJIFI®RY X, Y[ TT1.1),

[01=TI+ O(T?).

The result now follows from the self-adjointness of R (Proposition 2.1.1) and

Propositions 2.4.3 and 3.2.4. (]
Proposition 3.3.3.

(67) [rle T°RJAF1® QY [X. Y, VFIIT2.1,1,2),

and

(68) [r1=T+0(").

Proof. Consider first the case where ¥ = 0 and observe that

e(t,0,0,0, f, g) = Exp(t(1 + 2(f (x) + g(x)))x).

In particular, since 2 is an exponential chart,

g Exp(t (1 +12(f (x) + g(x)))x) gm0 = £x,
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so that R(z, 0, fy) = 3x. Thus, by (43) and (44), since A(y)x = x and since
(x, Vf(x)) =0,

r(t,0, fo) =1 (x, N(t,0, f)) =N, 0"

The result for ¥ = 0 now follows by Proposition 3.2.2. The result for general ¥
follows by substituting for every generator R;,;,i, ']i4...ik+3 of R its own Taylor series

in Y about 0, as in the proof of Proposition 3.2.4. |

3.4. The Taylor series of the mean curvature. We end this section by determining
the Taylor series of the mean curvature function. First recall (from [Smith 2011],
for example) that

2

. t? -
3 Ric,, xPx7 — ;(n +A)f

69) H(@.Y, fo)~ ;(1 -
A 3

. .
vy Ric g xPxx" — 3 Ric,g.r xPxPY"

— %Ricpq;,s xPxIx"YS + 12 F(f) + 0(z5)>,
where F is a curvature polynomial. More generally,
Proposition 3.4.1.
(70) H(t,y, fx)
= LTe(@1) +Tr(®2) + L Tr(@sr*Hess(f) o 1) + (s, *Hess(f) o),

where

(71) — _ e
Q4 e RUFI®Q; LIX, Y, VFIITI2.1.1.2)-

Proof. We first consider the case where Y = 0. Recall that

1

(72) H = = f———z
VAl VA

(Vo VIV,
where A denotes the Laplace operator of the metric g. Furthermore, by (41),

(73) Vi=10-1BOPTf ().

Now observe that, for all vectors U,

1

Dy f(x) = LHess(f) o7 (U) + (U, T f (),
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where 7 is the orthogonal projection along x. Differentiating (73) therefore yields,
forall U,

o= .2
~(Y)pBo: T (1Y By Ees() omy W)

%(_) ( >B( )t Vf——(;)zw, VB +TU. V).

and, bearing in mind that B(y)y =y and (y, V f) =0, we obtain

Af="(5)  (4) T0Bo: 129 ) (1) 1B Hess(ry 0 m))

.
+ % TH(C, ) — (L) T, By 1)
= % Tr(®;) + Tr(P,) + % Tr(d31*Hess(f) o 1),
where
Py, @y, @3 € R[F1® Q) [X, VFI®R.,[X, VFIIT]21.2.1.2-

Likewise,

A A 1/t 3 5 S N N A
(Vo VI V) = 1 (L) (BOIAVL RV )+ (AWTE f. V), V)

(74) - (H)(AmDBO V2 FV )

4 - _ _
_ %(;) (12 (Hess o 1) B(Y)E2Y f, BV f).

However, for any symmetric bilinear form M;; and for any vector Vi,
88" My BIV BIVS = (8'P871YM (8,5 BEV)(8ir BL V)
= (8"787) M py (B8 V) (B} 8,5 V),
so that
(MBY)PY . BOPV f) = (M, W),

for some W € R,[F1® Q2 ,[X, VFI[TT2.1,2)-

Now, by (41), V f contains a term in x that does not carry a factor of r. We
need to show that this term in x is not repeated in any nontrivial component of (74).
However, since D,x = V,x =0, we have I"(x, x) =0, so that, for all U,

(AT (x, x), U) =0.
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Next, since g(y)(x, x) = 1 for all y, we obtain, for all vectors U,
0=2g((Vux,x)=g()(Dyx+TU,x), x),
so that

(AWMU, x), x) = (AT (x, U), x)
=—(A(y)Dyx,x) = —%(A(y)ﬂ(U), x)=0.

Finally, since Dxﬁf =0, and since (B(y)t2§f, x) =0 for all y, we have
(DB(y, )1’V f, x) = Dy (B()t*V f, x) =0,

and we conclude that the term in x is not repeated in any nontrivial component of
(74), as desired. It follows that

§(Vq V.V ) = 14t @5+ (@, A(Hess o)),

where
Dy, b5 € R[F1® QY [X, VFIIT2,1,2),
P e RFI® Qi*[X, VFEITT2.1,2-

The result for ¥ = 0 now follows by Proposition 3.2.2. The general case follows

by substituting for every generator Ri,i,i,7; s

about 0, as in the proof of Proposition 3.2.4. This completes the proof. (Il

of R its own Taylor series in Y

4. Asymptotic expansions and formal solutions

4.1. Asymptotic expansions. In order to save on notation, which would otherwise
quickly get out of hand, we shall no longer be so explicit about the definition of
curvature polynomials, leaving the reader to infer how they are constructed in each
case. We now reformulate the results of the previous sections in a manner that
will allow us to construct formal solutions later on. To this end, we introduce
the terminology of asymptotic expansions for functions defined near + = 0 as
follows. Let E be a finite-dimensional vector bundle over some finite-dimensional
base B. Let ¢ :]0, co[x E — R be a smooth function. Let (¢) be a sequence
of smooth functions, where, for all k, ¢, : E®* — R. For a formal power series
Ec(t) ~ Y poot*& ., in E, we write

(75) ¢, &)~ Y oo )

k=0
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to mean that for all N > 0, there exists a smooth function Ry : [0, co[x E®N+D R
such that

N N
(76) ¢><t, Zz"sx,k) =Y ' eGors - ) VT Ry (1 B0, - Een).
k=0 k=0

It is key to our definition that the remainder term Ry be smooth also at t =0, as it
would otherwise be of little use to us.

Proposition 4.1.1. There exists a sequence (Py) of curvature polynomials such that
for all formal power series Y ~_re o, t* Yy of vectors in R™ ! and f, ~> "7 o t* fi
of germs in J°S™, and for all vectors U,

(T7) 1{p(t, y, £, U)~1x, U+ 15CP(foer - fiswr Yo, -5 Yes), U),
k=0

and P, =0 for k <2.
Proof. By Proposition 3.3.1, there exists a smooth function P such that

(p(t. Y. ), U) = (x, U)+1*(P(t, Y, £), U).

Furthermore, since the coefficients of the Taylor series of P in 1 are all curvature
polynomials, there exists a sequence (Py) of curvature polynomials such that

o0
P(t7 Yv fx) ~ Ztkpk(fo,x’ ey fk,Xv Y07 aYk)

k=0
It follows that
o
Hp, Y, £, U)~t(x, UV Y 5 (Ps3(fon - fims Yoo ..o Yeea), U). O
k=3

Proposition 4.1.2. There exists a sequence (Qy) of curvature polynomials such
that for all formal power series Y ~ Y ;- XYy and V ~ Yo t*Vy of vectors in
R and f, ~ 52 o t* fix of germs in JOS™,

(78) t{q(t. Y, fx), V)

o0
~ Ztk(<x7 Vk—2> + Qk(fO,Xa LR ] fk—4,X7 YO’ ey Yk—47 VOv sy Vk—4))a
k=0

where Qi =0 for k < 3.

Proof. By Proposition 3.3.2, there exists a smooth function é such that

(Q(t’ Yv fx)’ V) :t<x’ V) +t3<§(tv Yv fx)v V)
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Furthermore, since the coefficients of the Taylor series of é in ¢ are all curvature
polynomials, there exists a sequence (Qy) of curvature polynomials such that

o0
(Q([, Y9 fx)v V> ~ Zthk(fO,xa ] fk,X7 YOa MR} Yk’ VO’ cee Vk)'
k=0

It follows that
t(q(ta Yv fx)a V)
o0

[0 0)
~ Ztk(x, Vi—2) + Z Ok—a(foxs - fi—axs Yo, oo, Yiea, Vo, ..o, Vies). O

Proposition 4.1.3. There exists a sequence (Ry) of curvature polynomials such that
for all formal power series Y ~_re o t* Yy of vectors in R" ! and f, ~> 72 o t* fi
and gy ~ > 72 o t* g« of germs in JOS™,

(79) (.Y, f)gx

oo
k(4 4 4
~ Zl (1" 8kx + R (Yo, ..., Yi—a, foxs -y fe—dxs 17 80xs -+ s 1 8k—4,x)),
k=0

where R, =0 for k < 4.

Proof. By Proposition 3.3.3, there exists a smooth function R such that (1, Y, fx) =
34 t7R(t Y, fy). Furthermore, since the coefficients of the Taylor series of Rint
are all curvature polynomials, there exists a sequence (Rk) of curvature polynomials
such that

x
Rt Y, f)~ Y t*Re(Yo. ..., Yo, foxr -+ fi).

k=0
Thus

[e's] k
t4R(ta Y, fx)ngZ Z 1Yo, ..., Y1, fO,x,---,ﬁ,x)(t4gk—l,x)-
k=0 =0
It follows that

IR(t,Y, fx)8x

o0 k

o _
~Y F g+ ) Z Ri(Yo..... Y1, foxr-o fr) (W groi—an). O
k=0

k=4 =0

Proposition 4.1.4. There exists a sequence (Hy) of curvature polynomials such that
for all formal power series Y ~ Z,fozo kY of vectors in R+ and f, ~ Z/fio t* frx
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of germs in J*S™,

1(H(t, Y, f)— %)

®0)

o0
~ Z i (—%(n +A) fix — i Ric,g.rs xPxIX"Y}_,
k=0

- % Ricpq;r xpqu]:_] + Hy (Yo, ..., Yik—3, fO,x, ceey fk*Z,x))’
where, by convention, Yy, = 0 for k < 0. Furthermore,

Hy = — 1 Ric,g xPx9,
81) 3 NCpq

H, = —% Ric g, xPx7x".

Proof. Consider the formula (69) for H. Trivially,
1 — 1
~(n+A) fe~ % 1+ B) fix,

r

o
k
. t .
P4 fNE :_ Padyr
3Rlcpq;rx x1Y 3 Ric g xPx1Y;_4,

k=1

2 ik
t . t .
7T Ric g, rs xPxIX"Y* ~ Z 7 Ric,q.r xPxIx"Y]_,.
k=2
Since F is a curvature polynomial, there exists a sequence (Fy) of curvature
polynomials such that

oo
F(fe)~ Dt Fe(foxs oo fi)-
k=0
In particular,

o
PF(fo)~ Zthk—z(fo,x, oy Jr—2.0)-
k=2
Finally, denote the remainder term in (69) by G, Y, f). Since every coefficient
in the Taylor series of G in ¢ about O is a curvature polynomial, there exists a
sequence (Gy) of curvature polynomials such that

oo
G(t. Y, )~ Y t*Ge(¥o. ... Y. foxr -+ frur)-
k=0
In particular,

o0
PG Y, )~ t5Gis(Yo, ... Yios, foxr - os feoa),
k=3
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and the result follows upon combining these terms. (Il

4.2. Flows of surfaces. We now extend our framework to the time-dependent case.
Thus, let M be an (m + 1)-dimensional Riemannian manifold with metric g, let R
be its Riemann curvature tensor, let S be its scalar curvature function, and suppose
that S is of Morse—Smale type. Let y : R — M be a complete integral curve of —V .S
with relatively compact image. In particular (see [Schwarz 1993]), y (¢) converges
exponentially to critical points of S as ¢ tends to +o00, and its derivatives to all
orders decay exponentially at infinity.

For convenience, we suppose that M has unit injectivity radius. We identify
the bundle y*T M with the product bundle R x R"™*! via parallel transport. For
all t € R, define the metric g, over R"*! by g, := Expjm g, where Exp,,(,) here
denotes the exponential map of M about the point y (¢). In particular, for all ¢, the
metric g; is of the type introduced in Section 2.1. Furthermore, the family (g;)
converges exponentially in the C{° sense to metrics g+ as ¢ tends to =00 and its
time derivatives to all orders also decay exponentially at infinity.

As in Section 2.5, for all ¢ € R, let Exp, : Q2 — R™*! be the exponential
map of g,. That is, for all (x, y) € Q,, the curve s — Exp,(x, sy) is the unique
geodesic with respect to g; leaving the point x in the direction of the vector y. For
s > 0, and for bounded functions ¥ € C°(R, R™*!) and fe CO(R x §™), define
e(s,Y, f):Rx 8§ — R™! by

(82) e(s,Y, f)(t, x) :=Exp,(sY(2), s(1 +s2f(t, x))x).

Heuristically, e(s, Y, f) is a continuous family of immersed spheres all of radius
approximately s, with centres displaced by the function Y. Composing with Exp,,,,
then yields a continuous family of small immersed spheres in M which move along
the geodesic y. We will show that for sufficiently small s and for correct choices
of Y and f, this family yields a forced mean curvature flow of immersed spheres
in M with forcing term 1/s.

For all k, let J¥(R, R"*!) denote the bundle of k-jets over R taking values
in R"*1. For all (k, 1), let J&/(R x §™, R) denote the bundle of (k, I)-jets over
R x §™ taking values in R, that is, the bundle of R-valued jets that are of order
at most k in R and at most / in §™. Observe that J*/(R x §™, R) is actually also
a bundle over R and we denote by J := J*! its fibrewise cartesian product with
JX(R, R™t1). In other words, an element of J*! is a pair (Y;, fi.x) where Y; is
the jet of an R™*!-valued function over R at the point ¢, and f; . is the jet of an
R-valued function over R x §™ at the point (7, x).

Define the functions N :]J0, oo[xJ — S§™ and H :]0, oo[xJ — R such that
for all s €]0, oo[ and for all (Yy, fix) € J, N(s, Y:, fr.x) and H(s, Y, f; ) are
respectively the outward-pointing unit normal of the immersion e(s, Y, f)(¢, -) at
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the point e(s, Y, f)(¢, x) and its mean curvature at that point, both with respect to
the metric g,. Define V :]0, oo[xJ — R"*! by

(83) V(Sv (Yh ft,x)) = 81‘ EXP;(II)(EXpy(r)(e(S’ Y’ f)(t +l", x)))|r:0-

Heuristically, this vector field measures the variation of the immersion e(s, Y, f) at
the point e(s, Y, f)(¢, x) as we move along the flow. Finally, define & :]0, co[x J —
R by

() G, Vi, fie)
= L(HG, (W, fu) = )+ 50V (s, (Ve f0), NG, (Vs f1.0)).

For all s, ®(s, -) is the forced mean curvature flow operator (with forcing term
1/s). In particular, it is a quasilinear parabolic partial differential operator whose
zeroes are (reparametrised) forced mean curvature flows with forcing term 1/s.

Proposition 4.2.1. There exists a sequence (Py) of curvature polynomials such
that for all formal power series (Y;, fi ) ~ Z/fio sk(y,, fi.x) of germs in J,

(s, Yr, frx)

2
M2

G sy

k=0
0
+ (L Lo+ D)) fiows
1 (m+1) b
(4_1 RlC; ab;cd X X xCYk—Z,l‘ — 2(m—_+_3)S[v§abank—2,t>
%Rlcmbcx X Yk r
+ @k (forxts - s fimrers S* fots s 8* frcans
(85) YO,ﬁ'-'aYk—3,t’Y0,t""9Y.k—4,t):|a

where Ric, and S; denote respectively the Ricci and scalar curvatures of M at
the point y (t), and, by convention, Yy = 0 for k < 0. Furthermore, the curvature
polynomials ®y and ®| are given by

(m+1) S.ax

2(m+3)

Remark. Importantly, since they are curvature polynomials, the functions (Py)
vary with ¢ only insofar as the curvature tensor itself, along with its derivatives,
vary, and the same can also be said for the remainder terms in the asymptotic series.
In particular, since the flow y has relatively compact image in M, the derivatives
of all these functions to all orders are uniformly bounded independent of s and z.

(86) by = —% Ricy, x%x, @, = —% Ricgp:c xxlx 4 220
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Remark. Observe that, as in Proposition 4.1.3, in every remainder term of this
asymptotic series, the term f; only ever appears accompanied by the factor s*.

Proof. Indeed

V(t, (Y, fi.0) =P, Vi, fr))y + Q, Ve, fr)Ys+ R, (Vi fr) i

Furthermore, since y is a gradient flow of S,

;- m+D ¢ a
y = 2(m+3)S;ax .
The result now follows by Propositions 4.1.1, 4.1.2, 4.1.3 and 4.1.4. (I

4.3. Parabolic operators I: the finite dimensional case. We first aim to determine
formal solutions of the equation ® (s, Y, ) = 0 for small values of s. To this end,
we introduce the following functional analytic framework. For a finite-dimensional
vector space E and for o €]0, 1], define the Holder seminorm of order o over
C%R, E) by

1f ) = FOI

(87) [fle := Supois—r <1 s — 1]

For all k£ and for all « €]0, 1], define the Holder norm of order (k, o) over Ck([R, E)
by

k
(88) 1 e = Y 110; £ llo + [0 f e

i=0

where || - ||o denotes the uniform norm. For all (k, «), define the Holder space of
order (k, o) by

(89) CHR, E) :={f € C*(R, E) | | fllx.c < 00}.

Recall that CX¢ furnished with the norm || - Ik constitutes a Banach space.
Define the operator P : Cl*(R, Rty —» CO*(R, R™+D by

9, m+l) Hess(S))Y.

©0) PY = (ar 2(m+3)

Observe that this operator corresponds to the first summand in the asymptotic
expansion (85) of ®. Furthermore, since S is of Morse—Smale type, P is Fredholm
and surjective. In addition, since every function in Ker(P) decays exponentially
at infinity [Schwarz 1993], the L? orthogonal complement Ker(P)* of Ker(P) in
Cho (R, R™*1) is well-defined. The restriction of P to Ker(P)' is invertible, and
we denote its inverse by G.
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We will also be interested in families of constant coefficient parabolic operators
over C}(R, E). Thus, for an invertible linear map A : E — E, which, for conve-
nience, we take to be symmetric with respect to some fixed metric over E, and for
€ >0, define P. : C'(R, E) - C°(R, E) by

oD Pef = (0 —A)f.

It follows from the invertibility of A that P, as also invertible. In fact, its Green’s
operator, which we denote by G, is given by

t [e¢]
0 Gfwy ==L [ VI pds L [V psyas,
€ J-co €Ji

where AT (resp. A™) denotes the composition of A with the orthogonal projection
onto the direct sum of its eigenspaces of positive (resp. negative) eigenvalue. In
order to obtain uniform estimates for the operator norm of G, it is useful to
introduce a weighting factor into the Holder norm. Thus, for all (k, &) and for all
€ > 0, define the weighted Holder norm of order (k, ) and weight € by

k
93) 1 e =Y € 10} £llo+ €10 f1a

i=0
Observe that, for all €, the norm || - ||, «.¢ 1s uniformly equivalent to the norm || - ||«

so that C*%(R x E) is also a Banach space with respect to every weighted Holder
norm.

Proposition 4.3.1. There exists B > 0, which only depends on the matrix A, such
that for all € > 0, and for all f € C**(R, E),

(94) IGeflltae = Bl fllo.a-

Proof. Since both P, and G, preserve the eigenspaces of A, we may suppose that
E =R and that A = A > 0. Thus,

Gef(t):—%/ e HI=DE £ () ds:—éfoooe_“/ef(t—s)ds.

—0o0

Now fix f € C%*(R, R). For all ¢,

Gefl =t [~ e ONr6ds = 171
0

and taking the supremum over all ¢ yields |G fllo < 1/X || f|lo. Likewise, for all
O<|t—1|<1,

|G f(1) —Ge f(1)] < %fo e f(t—s)— fH —9)] < %It—t/lo‘[f]a.
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Dividing both sides by |t —#’|*, and taking the supremum over all ¢ yields [G¢ [ ]y <
1/1[f]s. Combining these relations yields |G fllo.« < |AII™"[| fllo.o. Finally,
by definition of G, €9;Gc f = AGcf + f, so that €]|0;Ge fllo.a < AlGefllo.w +
| fllo.e <2Ilfllo.. This completes the proof. O

4.4. Parabolic operators II: the infinite-dimensional case. For all a €]0, 1], de-
fine the Holder seminorms of order o over CO(R x S™) by

|f @, x) = f(, )l

’

[f]x,oc = Supt,x;ﬁy

flx =y«
(95) | f(s,x)— f(t,x)]
[f]t,ot = Supx,0|t—s|51 |S _ t|a '

For all k € N, let Ci’;(IR x §™) be the set of all functions f : R x §” — R which are
continuously differentiable i times in the x direction and j times in the ¢ direction
for all i +2j < 2k. For all k € N and for all @ €]0, 1/2], define the inhomogeneous
Holder norm of order (k, o) over Cik (R x S™) by

n
96) 1 fllk.a.in
= Y IDLD/flo+ Y DD} fliaat+ D [DiD]flia
i+2j<2k i+2j=2k i+2j=2k
For all k, «, define the inhomogeneous Holder space of order (k, o) by

97 ChARx §™) :={f € CRRx ™) | || f llk.ccin < 00}

Recall that C ikn’” (R x S$™) furnished with the norm || - ||x.«.in coOnstitutes a Banach
space. More generally, for all (k, o) and for all € > 0, define the weighted inhomo-
geneous Holder norm of order (k, o) and weight € over C{;([R x §™) by

98) I fllkaine = Y_ € IDLD! flo
i+2j<2k
+ > €IDiD] flioa+ > €DLD] flia
i+2j=2k i+2j=2k
For all € > 0, the norm ||+ [[#,«.in,e 1S uniformly equivalent to the norm || || «.in SO that
Cikn’a (R x §™) is also a Banach space with respect to every weighted inhomogeneous
Holder norm.
For all s > 0, define the operator Q; : Ciln’“([RR x §™) — Cion’“([RR x S™) by
40
at
where, as in Section 3, A denotes the Laplacian of the standard metric over S§™.
Observe that this operator corresponds to the second summand in the asymptotic
expansion (85) of ®. Furthermore, the operator (m 4+ A) defines a self-adjoint

(99) gﬁ:@ +%m+&ﬁ;
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operator over L%(S™) with kernel #;, the space of restrictions to S™ of linear
functions over R”*!. In particular, (m + A) restricts to an invertible mapping of
the orthogonal complement ’;’-llL to itself. With this in mind, for all k and for all «,
we define

(100) CE*(R x $™)

= {f € Cikn’“([Rx S™) I/ ft, x)x"dVol=0V1 < §m+1}.
Sm

It follows from the classical theory of parabolic operators that, for all s, Q; restricts

to an invertible mapping from Ciln’“([R x S$™) into Cion’“ (R x $™). Uniform norm

estimates for Green’s operators in the infinite-dimensional setting differ significantly

from those obtained in the finite-dimensional setting. Indeed,

Lemma 4.4.1. There exists B > 0 such that for all s <1 and forall f € (Afion’a (RxS™)

(101) IH £l inst < Bs™* 0 fllo.cin-

Remark. Although it may appear that this weaker estimate is merely a consequence
of the naive approach to the proof, the study of solutions of the heat equation in
euclidean space appears to indicate that it is probably optimal.

Remark. Alternatively, it may appear that this weaker estimate arises from the
unusual definition (98) of the weighted inhomogeneous Holder norm. Indeed, it
would surely have made more sense to have multiplied the third summand of (98)
by a factor of €%, thereby eliminating the factor of s~* from (101). However, we
have chosen the above definition so that the operator s*3; has unit norm with respect
to the norms || - ||} 4.in.s+ and || - [l0,«,in» Which ensures that other factors of s do
not enter into our reasoning in places where they would present a greater technical
nuisance.

Proof. For all s > 0, define the isomorphism D; of Cik’“([R{ x §™) by Ds f(t,x) =

n

f(s*.x). Forall s < 1, and for all f € Cip®(R x $™), | Dy fllo.ain < I|.fllo.c.in-

On the other hand, for all s < 1 and for all f € Cil’“([R{ x 8™, ||D;1f||1’a’inss4 <

n

t‘4°‘||f||1,a,in. However, for all s, Q; = DS_l Q1 D;g. The result follows. O

Observe that #, is really the space of eigenfunctions of A of eigenvalue m.
More generally, the decomposition of LZ(S™) into eigenspaces of A actually yields
better estimates for || Hy f ||} 4 in ¢4 In the case where f(z, -) is the restriction to
S™ of an s-dependent polynomial function of bounded order. Indeed, for all /, let
H; C LZ(S’") be the space of spherical harmonics of order [ over S™, that is, the
space of eigenfunctions of the operator A with eigenvalue /(m + [ — 1). Recall
that, for all [, #; is the restriction to S of the space of homogeneous harmonic
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polynomials of order I over R™*!. In particular, any polynomial of order I over
R™+! restricts to an element of Ho @ - - - @ H; over S,,. Now define

(102) Hy =@l _g ;e Hi-

Observe that 7i[1 is contained in Hf‘ for all [. Furthermore, for all / and for all (k, @),
Ch*(R, 7:11) naturally identifies with a subspace of c ikn’a(IR x §™). In particular, for
all s, Q restricts to a mapping from C1%(R, H)) to CO%(R, #;). Furthermore, this
restriction is invertible for all s, and Proposition 4.3.1 now yields

Proposition 4.4.2. Foralll €N, there exists B; > 0 such that for all f € C%%(R, 7:[51)
and for all €,
||Hsf||1,ot,in,s4 =< Bl”f”O,oz,in-

4.5. More on spherical harmonics. A tensor T''* is said to be isotropic when-
ever

i Ik P Jleefk — iteik

(103) Ay AGT =T ,
for all iy, ..., iy and for every special-orthogonal matrix A. Given two symmetric
tensors 7" and T,'"", their symmetric product is given by

il eeikal ig(l)--lo(k) qrio (k1) Lo (k+1)
(104) (MO =3 Ty T, :

O‘EE/{V[

where ik,z denotes the set of permutations of the set {1, ...,k + [} such that

o(l)<---<o(k)ando(k+1) <--- <a(k+1). Let § be as in Section 2.1. In
particular, § is symmetric and isotropic. Furthermore, for all k, its k-th symmetric
power 8% is also a symmetric and isotropic tensor. In fact, up to rescaling, these
are the only ones.

Lemma 4.5.1. The space of symmetric, isotropic tensors of order k is 1-dimensional
when k is even, and O-dimensional when k is odd.

Proof. Indeed, the space of symmetric tensors of order k is isomorphic to the space
of homogeneous polynomials of the same order. However, since an SO(m + 1)-
invariant polynomial is constant over every sphere centred on the origin, it is
determined by its restriction to any straight line passing through the origin. When,
in addition, this polynomial is homogeneous, it is determined by its value at a single
point. This space thus has dimension at most 1. Now observe that the restriction of a
homogeneous polynomial to a straight line through the origin is even when its order
is even, and odd when its order is odd. However, by SO(m + 1)-invariance again,
the restrictions of the polynomials considered here are always even. It follows
that there are no nontrivial symmetric, isotropic tensors of odd order, and that
every symmetric isotropic tensor of even order k is a scalar multiple of §©*. This
completes the proof. U
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Given the tensor T/!/*+2_define the contraction §_T by
(105) (5LT)i1mik — 5qui1"'ikpq,

Lemma 4.5.2. For any symmetric tensor T of order k,

(106) L OT)=m+2k+ DT +50LT).
Proof. Observe that
1o, T)il---ik+2 — Z Sipla Tl ip—1iptieig—tigt1ixs2
1<p<q<k+2

Thus,
.. iedgy2 8, . kg tikg2 itk
81k+11k+2 60OT) = 81k+11k+28 T

+ Sivirives E Siptk2 il dp—1ip41.i41

1<p<k
+8ik+lik+2 Z Siptktl il potip1 kit
1<p<k
+ Z 8ipiq(8l_k+lik+2Til---ip—lip+l---iq—liq+l---ik+2)
1<p.q<k
=[(m+ DT +2kT +80O (8LT)]*,
and the result follows. O
Lemma 4.5.3. Forall k,
(107) 889 = k(m + 2k — kD,

Proof. We proceed by induction. First observe that §.§ = (m + 1). Next, suppose
that it holds for k, then, by (106) and the inductive hypothesis,

SLSOK+D _ SL(S @5ok)
= (m+4k +1)8°% +5 © (5.8°%)
= ((m 44k + 1) + k(m + 2k — 1))5°*
= (k+ D(m +2(k + 1) — D5,
and the result follows. (]

Lemma 4.5.4. Forall k,

Vol($™)(m = DI o
kKlm+2k— DI

(108) . .
/ x'" . x"+ dVol = 0.

/ XL x% dVol =
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Proof. For all [, denote
el i ]
M, .—/mx ...x'"dVol.

Since M; is symmetric and isotropic, it follows by Lemma 4.5.1 that M; vanishes
when [ is odd, and when [ =: 2k is even M; = C;.8%% for some constant C. It

remains to show that
. Vol(S™)(m — !

©kNm 42k — D!

k

for all k. We prove this by induction on k. Indeed, Cy = Vol(S™). Now suppose
that it holds for k. Since ||x||> = 1 over S™, for all k,

(BLMa41) "% =810y i f X't x"+2 dVol

SU'I
:/ x'tL L x dVol = My,
'm

so that, by (107) and the induction hypothesis,
m —_1n
1 - Vol(S"™)(m—1)!!

Crt1 = (k+D)(m+2k+1) ©~ k+D!m+2k+1)1"

and the result follows. O

Proposition 4.5.5. The functions (x") 1<i<m+1 constitute an orthogonal basis of H,
with respect to the L? inner product over S™.

Proof. These functions trivially constitute a basis of ;. Further, by Lemma 4.5.4,
forall 1 <i,j<m+1,

o Vol(S™) .
/x’xfdvm: oIS™) i
, (m+1)

and orthogonality follows. U

Let IT: L*>(S™) — H; be the orthogonal projection.

Proposition 4.5.6.
. 1)
1 l'[(lR yaxbye _ mED o a):’
(109) 7 Ricgp;c x%x"x 2m+3) S.ax 0
and, for any fixed vector V ,
1p: a,b_cyd _ (m+1) a b)_
(110) H<4R10ah;cdx KV S S VP ) = 0,

Remark. Observe that (110) corresponds to the third summand in the asymptotic
series (85) of .
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Proof. Indeed, bearing in mind Lemma 4.5.4, forall 1 <i <m 41,

/(%Ricab;cx“xbxc— m+l S;ax“)xidVol

2(m+3)

_ 4(m\fi()~§n’;)+3) RiCap.e (5905 4 89¢8P1 4 841 b¢) — %S;aaai.
The first relation now follows by the second Bianchi identity and the second follows
upon taking its formal derivative. (]
Proposition 4.5.7.
(111) (4 Ricg xx%) = 0,
and, for any fixed vector V ,
(112) (4 Ricap;c xx"V) = 0.

Remark. Observe that (112) corresponds to the fourth summand in the asymptotic
series (85) of ®.

Proof. The first relation follows directly from Lemma 4.5.4 and the second relation
follows upon taking the formal derivative. ([

4.6. Formal solutions.

Theorem 4.6.1. There exist increasing sequences (Cy) of positive constants and
(ny) of positive integers with the property that, for all s, there exist canonical
sequences (Yy.5) € CH*(R, R" ) and (fi. 5) € CL* (R x $™) such that, for all k,

(113) fk,S € Cl’a(R’ ilnk)’ ”fk,s”l,oz,in,s4 <, ”Yk,s”l,a < Cy,

and, for all N,

=

-1

(114) “CD(S, s Y,
0

< Cys .
0,a,in

M=

k
N fk,s)
0

Proof. We prove this by induction. First define the projection IT : Cikn’“([RR x §™) —
Ch (R, Hy) by

~
Il
~
Il

(m—+1)
Vol(S™) g

m—+1
()t x) =) f(t, x)x" dVolx'.
i=0

That is, for each ¢, TI(f)(z, - ) is the Lz-orthogonal projection of the function f (¢, -)
onto ;. Observe that for all [, for all f € C'%(R, #;) and for all s,

(115) o, f =0,
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so that, by Proposition 4.5.7, the terms up to order k in the asymptotic expansion
of T1® only depend on the asymptotic expansions of f and Y up to order k — 2.
Finally, define IT+ :=Id —TII.

Fix s > 0, and define fy; := —H;®o. By Proposition 4.5.7, &g € CO*(R, 7:[2),
and since the restriction of Qg H; to this space equals the identity, it follows that with
fo.s so defined, the term of order O in the asymptotic expansion (85) of @ vanishes.
Furthermore, by Proposition 4.4.2, there exists Cop > 0 such that || fo 5|11 4.in.s¢ < Co
for all s. Finally, by Propositions 4.5.6 and 4.5.7, the terms of order O and 1 in the
asymptotic expansion of [1® both vanish.

Now suppose that we have defined Co, ..., Ci, 1o, ..., By foss -+ fhoss Y055
..., Yx_1¢ such that the terms up to order k£ and k + 1 in the asymptotic expansions
of @ and I[1d respectively all vanish, for all s, and for all 0 <[ <k:

1 ~
fl,S eC H(Rv Hn;)v ||fl,S”1,a,in,s4 =<C,

and forall0 </ <k -1,
1Y sll,e < Ci.

Define

) 4 47
Yis =—=Gollo®ra(foss---s fioss S Jos0-os8 fr—2s,
Yo, . s Y15, Y05, .., Yios),

and define fiy1:= —Hj HL"IJk-H,s, where
—(1R; poa rys  _ (m+1) pyd _1ln: P ayr
lI’k+1,s—<4 Ricpg:rs XPXIXT Y}y 2(m+3)S;pqx Yi_y5)—3Ricyg xPx Yy
4 4 ;
+ Pi1(foss oo Si=t,5:8 fo50 -5 8 fr=3.5s
Yo, Yk22,Y05,...,Yk_35).

Since ®;; is a curvature polynomial, and since f; takes values in 7:ln, for all
0 <[ <k, there exists ny4 > ny such that HL\IIH],S(I, -) is an element of 7:lnk+]
for all s and for all . By hypothesis, the term of order k + 1 in the asymptotic
expansion of T1® vanishes, and so, since the restriction of Qs H; to C 0o (R, 7:lnk )
equals the identity, with fi41 s so defined, the term of order k£ + 1 in the asymptotic
expansion of & vanishes. Finally, observe that the function ®; (-, ..., ) is
bounded, and since its derivatives are uniformly bounded in ¢, it is uniformly
Lipschitz. There therefore exists B > 0 such that, for all s,

||(Dk+l,s ||0,a,in < B,

and by Proposition 4.4.2, there exists Cyyj > Cy such that, for all s,

[ fk+l,s [ La,in,s* = Cr+1-
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In like manner, since PG equals the identity, by Propositions 4.5.6 and 4.5.7, with
Yk s so defined, the term of order k 42 in the asymptotic expansion of [1® vanishes.
Furthermore, upon increasing Cy if necessary, we may suppose that, for all s,

1Yisle < Ck.

We have therefore constructed sequences (Cy), (nr), (Yk.s) and (fx s) satisfying
the conclusions of the theorem such that

00 00
qD(S, ZskYk,s, Zskfk,s) ~ 0.
k=0 k=0

Observe that the partial sum of & up to order N only involves terms up to order
N —1in Y. Furthermore, the time-derivative of f only ever appears together with a
factor of s*. Thus, for all N > 0, there exists a smooth function Ry with uniformly
bounded derivatives such that for all s and for all (z, x),

N—-1 N
k k
®(s5. X oM 35" )
k=0 k=0

N+1 Y Y
=S RN(S, YO,S,[a sy YN—I,S,[» YO,S,I? sy YN—I,S,[»
4 4 £
fN,s,t,x, ceey fN,s,t,x, N fO,s,t,)m ey S fN,s,l,x)-

The function Ry is bounded, and since its derivatives are uniformly bounded in ¢, it
is uniformly Lipschitz. Thus, upon increasing Cy if necessary, it follows as before

that
N—1 N
H (D<S, Z skYk,s,;, Zskfk,s,z,x>

k=0 k=0

< CkSNJrl. O
0,a,in

4.7. Exact solutions. We recall the classical inverse function theorem (see [Rudin
1976], for example).

Theorem 4.7.1 (inverse function theorem). Let E and F be Banach spaces. Let
Q be a neighbourhood of 0 in E. Let ® : Q — F be a C? mapping. Suppose that
there exists A, B > 0 such that

ID®O) ' <A, |D*®(x)|<BVYxeQ.

If e .= ||P0O)| < %AZB, and if Byac(0) € Q, then there exists a unique point
x € Byac(0) such that ©(x) =0.

We now obtain existence.

Theorem 4.7.2. For all sufficiently small s, there exist canonical functions Yy €
CH (R, R™ Y and f, € CiL’“([R? x 8" such that ®(s, f;, Yy) = 0. Furthermore,



ETERNAL FORCED MEAN CURVATURE FLOWS II: EXISTENCE 231

there exists a sequence (Cy) of positive numbers such that if (Yy ;) and (fi. ) are
as in Theorem 4.6.1, then, for all N,

N N
k k
’ Y, — E N Yk,s fs' - § N fk,s
k=0 k=0

Remark. In particular, as observed following (84) of @, it follows that e(s, Y, f)
is, up to reparametrisation, an eternal forced mean curvature flow with forcing
term 1/s. Observe, however, that the definition (82) of e(s, Y, f) differs slightly
from (5) given in the introduction. It is nonetheless straightforward to see that, for
sufficiently small s, the two are equivalent.

< CNSN+1.

1,a,in,s4

9
1,

Proof. Let TI and T+ be as in the proof of Theorem 4.6.1. Define the mapping
W 110, OO[XCl’a(R, Rm-‘rl) X Ciln’a(lR % Sm) — CO,a(R’ Rm+]) % Cl()r{a(R x S™) by

W(s, Y, f):=("Mod(s,Y, ), It od(s, Y, f)).

Consider the asymptotic series (85) for @ up to order 2 in s. Substituting fo; = f,
fl,s = f2,s = O, YO’_y =Y and Yl,s = 0, y161dS

s (Mo ®)(s, Y, f) = PY + (o R)(f, s* f) +s(Mo R)(s, f,s* £, ),
(Mo ®)(s, Y, f) = Qs f — s Ricp, xPx? +5R3(s, .5 £, Y, Y),

for functions R;, R, and R3 which are smooth at s = 0. Differentiating with respect
to Y and f, it follows that

P A(s,Y, f)
0 O

where, for all R > 0, there exists €, C >0 such thatif s <e andif || Y |l1 o+ fll1.0.in <
R, then |A(s, Y, flo.ain, 1B, Y, flo.ain < C. In particular, by (101), we may
suppose that DW (s, Y, f) is invertible with | DW (s, Y, f)| < Cs~%. Furthermore,
we may likewise suppose that for all such s, ¥ and f, D>W(s, Y, f) < C.

Let (Ci), (Yxs) and (fi s) be as in Theorem 4.6.1. Upon reducing € if necessary,

we may suppose that, for all s < €,

(116) DY (s, Y, f)= < )-i—sB(s,Y, 3R

2u

N
@ ?Y’ E ’
(s, Yo, fo+sf1) 1c?

and it follows by the inverse function theorem that for all such s, there exists a
unique pair (Y, f) such that || Yy[l1,o + || fsll1,ains* < §%/2C% and ®(s,7, ) =0.
Now fix N > 0. Upon reducing ¢ further if necessary, we may suppose that for all
s <€,

N-1 N

2a
CD(s, ZskYk, Zskfk) < sVt < :?

k=0 k=0
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and it follows by the inverse function theorem again there for all such s, there exists
a unique pair (Y', ') such that | Y] [l1.o + Il /Il 1.0.in.s¢ <2C>s¥T17% < 5*/2C? and
®(s, Y, f') =0. By uniqueness, Y’ =Y and f’ = f. It follows that for all N > 0,
there exists €, C > 0 such that for s < €,

Ny N
-2 -2t h
k=0 k=0

The result follows. O

< CSNJrlfa.

9
l,a

1,a,in,s4

Appendix: Genericity

For the reader’s convenience, we derive the linearisation of the gradient flow operator
and sketch the prove that the space of riemannian metrics with scalar curvature of
Morse—Smale type is dense in every conformal class.

Proposition A.1.1. The linearisation of the gradient flow operator (1) is given by
0 m—+1

Proof. Let ¢ :] — ¢, €[ xR — R and define the section X of ¢*T M by
. m+1
X(s,t) :=¢y0; + 3 +3)¢ Vs,

where ¢*V S denotes VS o ¢p. Taking the covariant derivative in the s direction
yields
m+1
2(m+3)
1
= (6" V), (6:0) + 50t 6" (Hess(8) (9:0,)

:L(¢*as)~ O

(@"V)o, X = (@" V), ($40) + 5~ — == (@" V), (#7VS)

Theorem A.1.2. Let M be a manifold. The set of complete metrics over M with
scalar curvature of Morse—Smale type is generic (that is, of the second category in
the sense of Baire) in every conformal class.

Sketch of proof. Let g be a riemannian metric over M. For convenience, we shall
suppose that M is compact and that we have already shown that the scalar curvature
of g is of Morse type. Now, for a given smooth function ¢ over g, define

g:= 4 g.
The scalar curvature of g is given by

S=e )1V,
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where S denotes the scalar curvature of g. The linearisation of the scalar curvature
operator about ¢ = 0 is thus

Ly = —%(Aqﬁ—l—n&p).

Let y : R — M be a gradient flow line of S. For all k, let H*(y*T M) denote
the Sobolev space of sections of the bundle y*7T M whose distributional derivatives
up to and including order k are square integrable over R. Let Lo : H' (y*T M) —
H®(y*T M) be the operator given by (1). By a standard transversality argument
[Guillemin and Pollack 1974], it suffices to show that the operator

__m+1l
2(m+3)

m—+1

(118) L(X, ¢) = LQX—FW

Li¢ ¢VS

defines a surjective map from C®(M) x H'(y*T M) into H°(y*T M). To this end,

recall first that the formal dual of L is given by
d m+1

Ly:=——+

ot T a(my3) Hes®)-

Since S is of Morse type, Lo and Lg are both Fredholm and the image of Ly is
the orthogonal complement of Ker(Lf) in L>(y*T M) (see [Schwarz 1993]). It is
thus sufficient to show that Ker(L) lies in the image of L or, equivalently, that no
nontrivial element of Ker(L) is orthogonal to every element of Im(L).

Let Y be a nontrivial element of Ker(L(). Let ¢ € C°°(M) be any function such
that

+0o0
f ((Vy)oy,Y)dr #0.

o0

Let €2 be an open subset of M that does not intersect y. By the classical theory of
elliptic operators, there exists ¢ € C°°(M) such that

(L1 —¥)ma =0,
so that
+00
/ (VLig) oy, Y)dt #0.

o0

It remains the address the third term in (118). To this end, denote X := . Since
y is a gradient flow of S, we have

m+1
X=———"-—(V .
2(m+3) V&ey
Furthermore, upon differentiating the gradient flow equation, we see that Lo X = 0.
Next, since S is of Morse type (see [Schwarz 1993]), there exists C > 0 such that,
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forallt e R,
(119) IX @), 1Y ()]l < Ce1VE,
Now choose B > 0 and let g € CSO(R) be such that

&+doi-pp=0 and |gllre <[@lr~.

Since
Lo(gX) =

by (119), we have

V LogX)— " _(4vS$)oy, Y}dr <4C?| ¢l p~e B/C.

2(m—+3)

Since this may be made arbitrarily small by choosing B sufficiently large, it follows
that there exists g € C3°(R) such that

+00
/ (L(gX, ¢),Y)dt #0. O

o.¢]
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SYMMETRY AND NONEXISTENCE OF SOLUTIONS FOR A
FULLY NONLINEAR NONLOCAL SYSTEM

BIRAN ZHANG AND ZHONGXUE LU

We study the system involving fully nonlinear nonlocal operators:
G(u(x)—u(y))

peo X =yt

G(v(x) —v(y)
|x — y|"+#

Fo(u(x)) = Cp,o PV dy = f(u(x), v(x)),

Fp(o) = Cog PV [ dy = g(u(x), v(@)).

We will prove the symmetry and monotonicity for positive solutions to the
nonlinear system in whole space by using the method of moving planes. To
achieve it, a narrow region principle and a decay at infinity are established.
Further more, nonexistence of positive solutions to the nonlinear system
on a half space is derived. In addition, the symmetry and monotonicity in
whole space for positive solutions to a fully nonlinear nonlocal system

Fy(u(x)) =—u’(x)+v1(x), Fgw(x))=—-v"(x)+u?(x)

can be derived.

1. Introduction

We are interested in the general nonlinear system involving fully nonlinear nonlocal
operators:

Fo(u(x)) = fulx),v(x)), Fg(v(x)) =gu(x), v(x))
with
G (u(x) —u(y)) J
" |x _ y|n+a

Fo(u(x)) :Cn,ot PV/ s
where the PV stands for the Cauchy principal value, G is a nonlinear operator and
is at least local Lipschitz continuous with G(0) =0 and 0 < «, 8 < 2. The operator
F, was introduced by Caffarelli and Silvestre [2009].

The work was partially supported by NSFC(No.11271166), sponsored by Qing Lan Project.
MSC2010: 35B06, 35B09, 35B50, 35B53.

Keywords: fully nonlinear nonlocal operator, narrow region principle, decay at infinity, method of
moving planes.
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In order to make the integral significative, we require

1lﬁL and v(x)eC

loc

a_{u R"—)R)/ |u(x)| x<oo},
a1+ | x|n+a
and Lg is defined similarly.

The special case is that when G(-) is an identity map, F, becomes the usual
fractional Laplacian (—A)®/2. It is the nonlocal nature of fractional operators that
makes them difficult to study. To circumvent this, Caffarelli and Silvestre [2007]
introduced the extension method, which turns the nonlocal problem involving the
fractional Laplacian into a local one in higher dimensions. A series of fruitful
results show that this method has been applied successfully to treat equations
involving the fractional Laplacian (see [Brindle et al. 2013; Chen and Zhu 2016;
Gilbarg and Trudinger 1977]). Another way is using the integral equations method,
such as the method of moving planes in integral forms (see [Cao and Chen 2013;
Cao and Dai 2013; Li and Zhuo 2010; Lu and Zhu 2012; Zhuo et al. 2016]) and
regularity lifting to investigate equations involving fractional Laplacian by showing
that they are equivalent to corresponding integral equations (see [Chen et al. 2005;
2006; 2015]). For more articles concerning the method of moving planes for
nonlocal equations and for integral equations, see [Gilbarg and Trudinger 1977;
Hang et al. 2009; 2012; Hang 2007; Lei et al. 2012; Li 2017; Li and Ma 2017;
Lu and Zhu 2011; 2012; Ma and Chen 2006; Ma and Zhao 2010; Wang and Niu
2017].

Chen, Li, and Li [Chen et al. 2017b] developed a systematic approach to carry out
the method of moving planes for equations involving fractional Laplacian directly.
Subsequently, by using this direct method, many authors investigated different
equations involving fractional Laplace; see, for example, [Cheng et al. 2017a;
2017b; Cheng 2017; Li and Ma 2017; Liu and Ma 2016; Zhang et al. 2017].

However, for the fully nonlinear nonlocal equations, so far as we know, there
is neither any corresponding extension method nor equivalent integral equations
that one can begin to work. Chen, Li, and Li [Chen et al. 2017a], developed a new
method that can deal with the fully nonlinear nonlocal equations directly. Then with
the help of the direct method of moving planes, Wang and Yu [2017] studied a fully
nonlinear nonlocal system where u(x) and v(x) belong to different nonhomogeneous
terms. Wang and Niu [2017] studied a fully nonlinear nonlocal system with special
nonhomogeneous terms which have u(x) and v(x) simultaneously while u(x) and
v(x) have positive coefficients.

In this paper, we extend the direct method in [Chen et al. 2017a] to more general

ulx)ecC ﬂLﬁ

loc

with
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fully nonlinear nonlocal systems:

Fo(u(x)) = fu(x),v(x)), xeR",
(1-1) Fg(v(x)) = g(u(x),v(x)), x€eR",
u(x)>0, v(x)>0 xeR"
and
Fo(u(x)) = fu(x),v(x)), xeR],
(1-2) Fg(v(x)) =gu(x),v(x)), xeRL,
ux)=0, vx)=0, x¢R",
where f, g are continuous functions. It is worth mentioning that (1-1) is more
general than the system in [Wang and Yu 2017] and is different from the system in
[Wang and Niu 2017]. Because (1-1) can be allowed, u(x) or v(x) have negative
coefficients.
We first establish the narrow region principle and decay at infinity for the systems

and they will play important roles in carrying out the method of moving planes.
To state them, let

={xeR"|x1=A1eR)}
be the moving plane, and denote by
Y ={x eR" | x1 <A}
the left region of the plane 7, by
x* = QA —x1,%X2, ..., Xn)
the reflection of x about 73, and let

Us(x) = u; (x) —u(x), Vi(x)=v:(x) —v(x)
with
w () =u(x),  vix) =vEh).

For simplicity of notation, in the following, we denote U, (x) by U (x) and V, (x)
by V (x). Throughout this paper, we assume that

(1-3) GeC'(R), GWO)=0, and G'(t)>cy>0 VieR.

Theorem 1.1 (narrow region principle). Let 2 C X, be a bounded narrow region
contained in the strip

x| A=1l<x1 <A}
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with small | > 0. Suppose that U(x) € L N Cpol (R), V(x) € Lg N Cl (R), U(x)
and V (x) are both lower semicontinuous on Q, and satisfy

Fo(u(x)) = Fo(u(x)) +cti()Ux) +c2(x)V(x) =0, x €,

Fg(vy.(x)) — Fg(v(x)) +c21(x)U(x) + c2(x)V(x) =0, x €,
U(x), V(x) =0, x e\ Q,

U =-U), VOh=-V©), xex,,

(1-4)

ifcia(x) <0, c21(x) <0, and c;j(x), i, j =1, 2, are bounded from below in 2, then
for sufficiently small I, we have

(1-5) Ux)>0, Vx)=0 in Q;

Sfurthermore, if U(x) or V (x) equals O at some point in <2, then

(1-6) Ux)=Vx)=0, xeR"

These conclusions hold for the unbounded region Q2 if we further assume that

-7 lim U(x)=0, lim V(x)=0.

|x]—o00 |x|—o00

Theorem 1.2 (decay at infinity). Let Q2 be an unbounded region in ¥). Assume that
Ux)e c! (NLL(R"), V(x)e c! (2)NLg(R™) are both lower semicontinuous

loc loc

and satisfy

Fo(up(x)) — Fo(u(x)) + cn(x)U(x) +cn(x)V(x) 20, x €L,

Fg(v(x)) = Fp(v(x)) + c1(0)U (x) + cnn(x)V(x) >0, x € Q,
U(x), V(x) =0, xe%;\Q,

UxM=-Ux), VE"=-V(), x €%,

(1-8)

with

1 1
(1-9) 611(X),61z(X)~0<—>, Czl(X),sz(x)NO(W) for |x| large

|x|*

and c12(x), c21(x) <0, then there exists a constant Ry > 0 depending only on c;;(x)
such that if

Ux) = ngn Ux)<0 and V(x) =rrgn V(x) <0,
then

(1-10) IX| < Ro or [X] = Ro.



SYMMETRY AND NONEXISTENCE OF SOLUTIONS FOR A NONLOCAL SYSTEM 241

Based on Theorems 1.1 and 1.2, we apply the method of moving planes to
obtain symmetry and monotonicity of positive solutions to (1-1) in R”", as well as
nonexistence of positive solutions to (1-2) on the half space R .

Theorem 1.3. Assume that u(x) € Laﬂcl’l(R"), v(x)€Lg ncL! (R™) are positive

loc loc
solutions of system (1-1). Suppose that for some y1, y» > 0,

1 1
(1-11) u(x):0<|x|yl), v(x):0<|x|y2> as |x| — oo

and f, g are continuous functions satisfying

() forfixedt: —Cis? < f{(s,1) <0, 0<gi(s,1)<Cas?;

(1-12)
(i) forfixeds: 0< fy(s,1) <Cst?, —Cat? <gh(s,1) <0;

with min{pyy, py2} > o, min{gy1, g2} > B,and C; > 0,i = 1,2, 3, 4.
Then u(x) and v(x) must be radially symmetric and monotone decreasing about
some point in R".

Theorem 1.4. Assume that u(x) € Ly N Cl (RL), v(x) € Lg N Cyil (RY) are non-

loc loc
negative solutions to system (1-2) where f, g are nonnegative continuous functions

and u, v are lower semicontinuous on R',. Suppose

(1-13) lim u(x)=0, | llim v(x) =0,

|x|—o00
thenu(x) =0, v(x) =0.

In Section 2, we prove Theorems 1.1 and 1.2 with a key inequality (2-2) below.
Sections 3 and 4 are devoted to the proofs of Theorems 1.3 and 1.4, respectively,
by using the previous results and the method of moving planes. In Section 5, we
will consider the fully nonlinear nonlocal system

Fy(u(x)) = —uP(x)+v?(x), xeR",
Fg(v(x)) =—v"(x)+ul(x), xeR",
u(x), v(x) >0, x e R",

where p, g > 0. And it is a specific case of (1-1).

2. Proofs of Theorems 1.1 and 1.2

Let

G(M(X)—u(y))d
no x =yt

Fo(u(x)) = Cp o PV /
— Cya lim G(u(x) —u(y)) J
=0 Jrnp. )y X —yI"T
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and use ¢ and C for general various positive constants that are usually different in
different contexts.

We first introduce a lemma which is often called the strong maximum principle
to F,.

Lemma 2.1. Let Q2 be a bounded domain in R". Assume that u(x) € Cllo’c1 N Ly (R™)
is lower semicontinuous on Q and satisfies

Fo(u(x)) =0, x e,

(2-1)
u(x) >0, xeQf.

If u(x) attains 0 somewhere in 2, then

u(x)=0, xeR".

The proof of this lemma was completed in [Wang and Yu 2017], we omit the
details here.

Proof of Theorem 1.1. If (1-5) does not hold, without loss of generality, we assume
U (x) < 0 at some point in €2. By the lower semicontinuity of U (x) on Q, we know
that there exists some X € 2 such that

U(x) =mS%n U(x) <0.

It follows from (1-4) that X must be in the interior of 2. Then we have

(2-2)  Fo(u;.(%)) — Fo(u(x))

=Chq PV/ G (u;,(x) — Mxl(y)) —|nfa(u(x) — u(y))

=C,,aPV/ G(MA(X)—ux(y))—G(u(X)—u(y))
’ % X =yt

‘e, PV/ Gu (X) —u(y)) — Gu(x) — u,x(y))
’ 5 |X — yh|rre
<c,., PVf G (U (X) —u (y)) — Gu(x) — u(y))
’ o |x _ |n+a
i C,., PVf G(u; (x) — u(y)) — G(u(x) — Mx()’))
> o |x _ |n+a

2G'(HU(X)
= Cn,a PV/ "'—)xYH-Dldy
5 X = y*]
. 1
=200 | Ty
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Let D={y|l<yi—X <1, |y =X'|<1},s =y =X, =y —%’|, and w, > be
the area of an (n — 2)-dimensional unit sphere. Here we write x = (x1, x’). Then
we have

1 Wy — 27,'
23 Fpw A drd
( ) %, |)'~C'_y)»|n+0l y—/D |x_y|n+o{ //0 (S +T2)(n+a)/2 N
A R (D s N
B L Jo snre(l 4 2)nte)/2 tds
_ R 1/s wn—Ztn72 did
o ;s oo (1 4¢2)nte)/2 tas
1 1 )
1 Y
z/ 1 / O drds
;o ostte o (14 2)nte)/
1
1 C
> C/ o ds > .
;S +o ]2

Thus from (2-2) and the fact that ¢y (x) is bounded from below in €2,

C
(2-4) Fy(uy (X)) — Fo (X)) +crii(Du(x) < l—aU()?) <0.
Together (2-4) with (1-4), we have
(2-5) UX) > —cl%np(X)V(x).

From (2-5) and the lower semicontinuity of V (x) on Q, we know that there exists
X in €2 such that

Vx)= rrgn V(x) <O.
Similar to (2-4), it is easy to see that
Fg (v (X)) — Fg(v(X)) +cn(x) V(x) < I%V(i) <0.
Together with (2-5), for [ sufficiently small, we have
0 < Fg(ua(x)) — Fg(v(x)) + c21(X)U (X) + c22(X) V (X)

C

=EV® + 21 (DU (X)
C

= pV® - cea1 (D)% ca(X)V (X)
C

= pVE - cea1 (D)% e (X)V (X)

C
= FV@a- e (X)enp@®I?) <0,
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This contradiction shows that (1-5) must be true. If 2 is unbounded, then (1-5) is
easily obtained by using (1-7).

To prove (1-6), without loss of generality, we suppose that there exists n € Q2
such that

U(n) =0.
Combining the fact

1 1
> A
lx =yl [x—y*]

Vx,ye,

we have

Fo(u.(m)—Fo (u(n))

=CMPV/ G(ur(m)—ur(y)—Gu@m—u(y)) dy
’ n [n—y|"te

=CWPV/ G (uy. (M) —u, () =G () —u(y)) dy
E)" |n_y|n+a
+C”PV[ G(up(m)—u(y)—Gw(n)—ux(y)) dy
’ N |n—y*|nte
1 1
=Cuo PV [G(ux(n)—ux(y))—G(u(n)—u(y))]( - Y )dy
N =yl |n—y*|rte
1
+CuV[ e (O —u) =G ()~ )
+G (up (M) —u;, () =G (u()—u(y))) dy
1 1
=Cnq PV [G(ux(n)—ux(y))—G(u(n)—u(y))]( — - Wx) dy
s, [n—yl [n—y*|
+Cn,aPV/ e (G () —u () =G () —u(y))
, M= y*]

+G ()~ () =G (u(m) —us (y))) dy

1 1
= Cn,aG/(')/ (U(n)—U(y))< ) dy
)

In—ylrre |p—y|rte
+Cmf G'(HUM+G' (HU ()
Py

|n_yk|n+a dy

1 |
< —Cpac U()( - >d.
e 0/:A P\ =y~ p=yiprre )

That is,

(2-6)  Fy(u;(n) — Fo(u(n) +c11(mU ()

1 1
<-c, c/ U(y)( - )dy~
s, In—ylte |p—yr|rte
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IfU(x) #0, x € Xy, then (2-6) implies

Fo(u;(n) — Fo(u(n)) +c1i(mUn) <O.

Together with (1-4), it is easy to see that V() < 0. This contradicts with (1-5).
Hence U (x) must be identically 0 in X;. Since
Ueh=-U), xeZ,,
it gives
Ux)=0, xeR"

Together with the first equation in (1-4), we see

Vix)<0, xeX,.
Noting we already have
Vix)=0, xeX,
it must hold
Vix)=0, xeX.
Recalling V (x*) = —V (x), we deduce
Vix)=0, xeR"
Similarly, one can show that if V (x) attains O at some point in €2, then both U (x)
and V (x) are identically 0 in R". This completes the proof. (I

Proof of Theorem 1.2. Assume that there exists X € Q2 such that
U(x) =IrgnU(x) <0.

Using the key inequality (2-2), we have

1

Fo13,(8)) = Fa(u(®) = 2C,0coU (%) =

= dy.
5, X —

For each fixed A € R, there exists C > 0 such that for x € X, and |X| sufficiently
large,

(2-7) / L s / Ly~ €
- _ y > — y ~ — .
5, [X =yt Byjs (9)\Bays (8) 1X — | x|«

Hence, from (2-7) and (1-9), we have

C
(2-8) Fo(uy (%)) — Fo(u(x)) + cnn(x)U(x) < WU@) <0.
Together (2-8) with (1-8), it is easy to know

(2-9) V(%) <0,
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and

(2-10) U(x) = —ccrp(0)]x|*V (%).

From (2-9) and the lower semicontinuity of V (x) on Q, there exists x such that
V)= msgn Vx)<O.

Similarly to (2-8), we can derive

C
(2-11) Fg(vr (%)) = Fg(v(X)) + c2(x)V (¥) < WV(J?) <0.

Combining (1-8), (1-10), and (2-11), for A sufficiently negative, it follows that
(2-12) 0 < Fg(vy.(x)) — Fg(v(x)) + c21(X)U (X) + c22(x) V (X)
< S V@O +en®UE
|x|P
C
< —5 V@) —cea(@)en(@)[X|*V ()
|x|P
C
< —5 V@) —cea(@)en(@)[X|*V(x)
|x|P
C
< l—ﬂV(i)(l — cn@F|*en @ %)) < 0.

The last inequality follows from assumption (1-9). This contradiction shows that
(1-10) must be true. O

3. Symmetry of solutions in the whole space R”
Proof of Theorem 1.3. Choose an arbitrary direction for the x;-axis. Let
Th={xeR"|x1=A, AR}, Si={xeR"|x1 <A},
xXr=Qh—xx), wx) =u?),

Up(x) =u;(x) —ux), Vi(x)=uvi(x)—v(x).

Step 1: Starting moving the plane 75 from —oo to the right along the x;-axis. We
need to show that for A sufficiently negative,

(3-1 Up(x) 20, Vilx) =0, xeX.
By the assumption (1-11), for fixed A and x € X,, we know that

u(x) — 0 as x| — +o0.
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Since |x*| — 400, as |x| — 400, we have
u;(x) = u(x)‘) — 0.
Hence for x € X,
(3-2) U, (x) — 0 as |x|] > +o0.
Similarly, one can show that for x € %,

Vi(x) — 0 as |x| = 4o0.
If
Y, ={xeX|Uwx) <0} #4,

then by the lower semicontinuity of U, (x), there must exist some X € X, such that

U, () =minU (x) < 0.
Py

Let
I = fup(X), vp(¥)) — f(u(x), vi(x)),
J = f(x), vi(x)) — fux), v(x)).
Then
(3-3) I+J = f(u(x), vi(X)) — fu(x), v(x))
= Fy(us (X)) — Fo(u(X))
=< 2Cn,aCOU)~()?) ! dy

Y |.5C~ _y)hln+a
< 0.

By the mean value theorem and the assumption (1-12), we have
G4 I=fEE, u@E)UE) >0 and T = fuE), 0 () Vi),

where &, (X) is between u; (X) and u(X); n; (X) is between v, (X) and v(x). Together
(3-3) with (3-4) and (1-12), it is easy to see that

Vi(x) <O.
This implies that there exists some x € X, such that

Vi(x) =minV(x) <O0.
Z

By the mean value theorem again, we have
Fo(u, (X)) — Fou(x)) =1+J
> f1En(X), v (ENULE) + fu(X), 0, () Vi (D).
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By the decay assumptions (1-11) and (1-12), we deduce that

1
FIEE), ). A, m@) ~ 0(—).

x|
Hence
Fo(u3 (X)) — Fo(u(x)) +c11(X) U (%) + c2(x) Vi (X) > 0,
where
ci1(®) = —f{(E(X), v (®) and  c12(X) = — fr(X), N (%)).

Similarly, we have

Fg(0(X)) = Fg(v(X)) + c21(X)Up(X) + c22(X) Vi (X) = 0,

where

e1(X) = =g (E(F), v (X)) and  en(F) = —gh(u(X), 1. (X))
with

1
e31(0), e (%) ~ O(W)

Consequently, there exists Ry > 0, such that if X and x are negative minima of
U, (x) and V, (x) in X, respectively, then by (1-2) we know that

(3-5) |X| <Ro or [x] < Ro.
Without loss of generality, we may assume
(3-6) IX| < Ro.

Combining (3-2) with the fact that U, (x) =0, x € T, it is easy to see if U, (x) <0
at some point in ¥, then U, (x) must have a negative minimum in X,. For A
sufficiently negative, it contradicts (3-6). Hence we have for A sufficiently negative,

(3-7) U, (x) = 0.
It follows that U, (x) > 0 in X,. Otherwise, there exists x in X, such that
Vi(x) =minV(x) <O.
2
From (2-11), we have
(3-3) Fp(v;.(%)) — Fp(v(X)) + ca(x) Vi (x) <O.
Combining (1-8) with (3-7), however, we have

Fg(0(X)) — Fg(v(x)) + c22(X) V(X)) = 0.
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This is a contradiction with (3-8) and V; (x) cannot attain its negative value in X, .
It follows that (3-1) must be true. This completes the preparation for the moving
planes.

Step 2: Keep moving the plane to the limiting position 7}, as long as (3-1) holds.
Let
Ao = sup{A | UM()C), V;L(x) >0, x € Eu, n =< A}.
Obviously,
(3-9) Ao < 00.

Otherwise, if Ay = oo, then for any A > 0,

u(M >u0)>0, v(0") > v0) >0,

) ~of 0 ~o ), 1o
u o |O}L|V1 , U o W y .

This is a contradiction and (3-9) is true.
Now we point out that

(3-10) Up() =0, Vi,(x)=0, xeI,.

If (3-10) is not true, then from the proof of Theorem 1.1, we only have the case
that U,,,(x) > 0 and V),(x) > 0 but Uj,(x) # 0 and V,,(x) #0.

In what follows, we will show that the plane 7; can be moved further to the right.
More rigorously, there exists some € > 0, such that for any A € [Ag, Ag + €),

(3-11) Up(x) 20, Vi(x)=0, xeX,.

This contradicts the definition of Ay and hence (3-10) must be true.
Now we prove (3-11) by using Theorems 1.1 and 1.2. From Theorem 1.1, we
have
Uy,(x)>0, V,,(x)>0, xe,.

Let Ry be the constant determined in Theorem 1.2. It follows that for any 6 > 0,
Uyy(x) >co>0, Vy(x)>co>0, xeX,_5NBg0).

Together with the continuity of U, (x) and V; (x) with respect to A, there exists
€ > 0, such that for all A € [Ag, Ag + €), we have

(3-12) Up(x) >0, Vi(x)=>0, xe€Z;,_sNBg,(0).

Suppose that (3-11) is not true. By the proofs of Theorems 1.1 and 1.2, we
know that if one of U, (x) and V, (x) becomes the negative minimum value at some
point in %, , then there exist X and x which are the negative minima of U, (x) and
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V,.(x) in X, respectively. Additionally, by Theorem 1.2, at least one of them lies in
(2 \ X5,—5) N Bg,(0). Here we consider two possibilities.

Case 1: One of the negative minima of U, (x) and V) (x) lies in Bg,(0), i.e., in the
narrow region X;,c\2,,—s. and the other is outside of Bg,(0). Without loss of
generality, we assume the negative minimum of U, (x) lies in Bg,(0). From (2-5),
we have

(3-13) Up(X) = —cl®cin(X) Vo (%)

and
0 < Fg(vy(x)) — Fg(v(x)) + c21(X) Uy (x) + c22(X) Vi (X)

C
< — Vi (%) + 21 (X) Uy (%)

~ |x|P
C _ . . .
< —Vi(X) —cca1(X)cin(X)I* Vi(X)
X8
C
< — HE Vi(X) — cca1 () e (X)I* Vi (X)
C N p
< — HE Vi(X)(1 = c1200)1%c21(X)[x]7).
Hence,
(3-14) 1 < crpn(®)%e (3)|x1P.

By (1-9), we know that ¢ (¥)|X|? is small for | x| sufficiently large. Since [ =€ +§
is very narrow and c12(x) is bounded from below in ;1.\ Xj,—s, it is easy to see
that c12(x)[* can be small. Consequently,

crn(®%er (¥)[x)P < 1.

This is a contradiction with (3-14) and (3-11) is proved.

Case 2: Both of the negative minima of U, (x) and V) (x) lie in Bg,(0), i.e., they
are all in the narrow region X; ¢\ Xs,—s-
Recalling (2-4),

- - - .. C -
(3-15) Fo(u3 (%)) — Fo(u(X)) + cti(X)Us(X) < l—aUA(x) <0,
where [ = § 4 €. Together with (1-4), it implies
(3-16) Up(¥) = —ccrn(D)I* Vi ().

Similarly to (3-15), we have

C
Fg(v,.(x)) — Fg(v(x)) + c22(¥) Vo (x) = l—ﬁVA(i) <0.
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Noting (3-16), for [ sufficiently small, it gives
0 < Fp(va (X)) — Fg(v(X)) + c21(X) U (X) + c22(%) V(%)

Cc
ST V(%) + 21 (0) Us.(X)

C
=5V (X) = cea1(X)e12 () Vi (X)

Cc
=5V (X) = cear(X)e12 (D)1 Vi (x)

C
= 5 V@O0 = cn@®en®IH) <0.
This contradiction shows that (3-11) has to be true.
Now we have proved that U,,(x) =0, V,,(x) =0, x € %,,. Since the x;-
direction can be chosen arbitrarily, we actually indicate that u(x) and v(x) are

radically symmetric about some point x°. Also the monotonicity follows easily
from the argument. This completes the proof of Theorem 1.3. (I

4. Nonexistence of positive solutions on a half space R,

In this section, we investigate the system (1-2).

Proof of Theorem 1.4. Based on (1-3), from the proof of Lemma 2.1 in [Wang and
Yu 2017], one can see that either

u(x)>0, v(x) >0 or u(x)=0, v(x)=0 forxe [R'jr,

where R = {x € R" | x,, > 0}. In fact, assume u(x) # 0, and there exists x0 e R’
such that u#(x%) = 0, then

0y _ o B
Fa(u(xo)):/ G(u(x”) u(y))d :/ Gu(x) —u(y)) — G(0) oy

|x0—y|”+°‘ |x0_y|n+oz

=/ G/’ —u()) dy<co/ )
n - R ’

|x0_y|n+oz " |x0—y|"+0‘

ie., 0< f(u(x), v(x)) = F,(u(x)) <0, which is impossible. Hence if u(x) or v(x)
attains 0 somewhere in R, then u(x) = v(x) =0, x € R".

Now we always assume that u(x) > 0 and v(x) > 0 in R}.. Let us carry on the
method of moving planes to the solution u along the x,-direction.

Denote

Ti={xeR |x,=%,1>0}, Xy={xeRL|0<x, <A}
Let

xkz(xl,xz,...,Z)»—xn)
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be the reflection of x about the plane 7;, and
Up(x) =up(x) —u(x), Vi(x)=wvi(x)—v(x).

Using the key inequality (2-2) obtained in the proof of Theorem 1.1, we only need
to take ¥ = X; UR”, where R” = {x e R" | x,, < 0}.

Step 1: It is obvious that, for A <0, we have

4-1) Un(x) >0, Vi(x)>0, xeR".

For A > 0O sufficiently small, X, is a narrow region, we have immediately
4-2) Uy(x)=0, Va(x)=0, xeX,.

Step 2: Since (4-2) provides a starting point, we move the plane 7, upward as long
as (4-2) holds. Define

ko= sup{r = 0] Uy(x) = 0, Vju(x) = 0,x € By, ju < A).
We show that
4-3) Ao = 00.

Otherwise, if A9 < 0o, we show that the plane 7) can be moved further up. To be
more rigorous, there exists some € > 0, such that, for any A € (Ao, Ag + €),

U, (x) >0, Vilx) >0, xeX.

This is a contradiction with the definition of Ag. Hence, (4-3) holds.
By using Theorem 1.1, Theorem 1.2, and similar arguments as in Section 3, we
can prove that

Uyw=0, V=0, xeX, i =00,
which implies
u(xy, ..., xn_1,2x0) =ulxy, ..., x,-1,0) =0,
v(xy, ..., Xn_1,200) = v(x1, ..., X,—1,0) =0.
This is impossible, because we have assumed that u(x), v(x) > 0 in R}

Therefore, (4-3) must be valid and the solutions u#(x), v(x) are increasing with
respect to x,. This contradicts (1-13) and completes the proof of Theorem 1.4. [
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5. Application to fully nonlinear nonlocal system

In this section, we consider
Fo(u(x)) =—-u?(x)+vi(x), xeR",
(5-1 Fg(v(x)) = —vP(x) +uf(x), xeR",
u(x), v(x) >0, x e R".
Obviously, (5-1) is a specific case of (1-1) and we have the similar conclusion here.

Theorem 5.1. Assume that u(x) € L, ﬂCllo’cl (R"),v(x) € Lg ﬂCIL’Cl (R™) are positive
solutions of system (5-1). Suppose that for some y1, y» > 0, u(x), v(x) satisfy the

assumption (1-11) and

min{(p — Dy1, (¢ — Dy1} >, min{(p — Dys, (¢ — Dy2} > B.

Then u(x), v(x) must be radially symmetric and monotone decreasing about some
point in R".

By using Theorem 1.3, we can prove Theorem 5.1 directly. Notice that, if we let
fux),v(x)) =—u?(x)+v9(x) and g(u(x), v(x)) = —v?(x) +u(x), it is easy
to see that f, g satisfy the assumption (1-12). For convenience, we omit the proof
of Theorem 5.1 here.
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