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PARTIAL REGULARITY OF HARMONIC MAPS
FROM A RIEMANNIAN MANIFOLD INTO

A LORENTZIAN MANIFOLD

JIAYU LI AND LEI LIU

We study the partial regularity theorem for stationary harmonic maps
from a Riemannian manifold into a Lorentzian manifold. For a weakly sta-
tionary harmonic map (u, v) from a smooth bounded open domain �⊂Rm

to a Lorentzian manifold with Dirichlet boundary condition, we prove
that it is smooth outside a closed set whose (m−2)-dimensional Hausdorff
measure is zero. Moreover, if the target manifold N does not admit any
harmonic spheres Sl, l = 2, . . . , m− 1, we show (u, v) is smooth.

1. Introduction

Suppose (M, g) and (N , hN ) are two compact Riemannian manifolds of dimensions
m and n respectively. For a map u ∈C1(M, N ), the energy functional of u is defined
as

(1-1) E(u)= 1
2

∫
M
|∇u|2 d volg .

A critical point of the energy functional E is called a harmonic map. By Nash’s
embedding theorem, we can embed N isometrically into some Euclidean space RK

and the corresponding Euler–Lagrange equation is

1gu = A(u)(∇u,∇u),

where 1g is the Laplace–Beltrami operator on M with respect to g and A is the
second fundamental form of N ⊂ RK.

Harmonic map is a very important notion in geometric analysis which has been
widely studied in the past decades. Physically, harmonic maps come from the
nonlinear sigma model, which plays an important role in quantum field and string
theory. From the perspective of general relativity, it is natural to consider the targets
of harmonic maps to be Lorentzian manifolds. Geometrically, the link between
harmonic maps into S4

1 and the conformal Gauss maps of Willmore surfaces in S3
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also leads to such harmonic maps [Bryant 1984]. The work on minimal surfaces
in anti-de Sitter spaces and its applications in theoretical physics also shows the
importance of such maps [Alday and Maldacena 2009]. In this paper, we shall
focus on the interior partial regularity of stationary harmonic maps from a compact
Riemannian manifold of dimension m (≥ 3) into a Lorentzian manifold.

We now proceed to introduce the model. Let N ×R be a Lorentzian manifold
equipped with a warped product metric

h = hN −β(dθ)2,

where (R, dθ2) is the standard 1-dimensional Euclidean space and β is a positive
smooth function on (N , hN ). Since N is compact, there exist positive constants λ1

and λ2 such that

0< λ1 ≤ β(y)≤ λ2 <∞ and |∇β(y)| ≤ λ2 for all y ∈ N .
Set

W 1,2(M, N×R) :={u∈W 1,2(M,RK ), v∈W 1,2(M,R) |u(x)∈N for a.e. x ∈M}.

For (u, v) ∈W 1,2(M, N ×R), we consider the functional

(1-2) Eh(u, v;M)= 1
2

∫
M
{|∇u|2−β(u)|∇v|2} d volg,

which is called the Lorentzian energy of the map (u, v) on M. A critical point (u, v)
of the functional (1-2) is called a harmonic map from (M, g) into the Lorentzian
manifold (N ×R, h).

When the target manifold is a Lorentzian manifold, the existence of geodesics
was studied in [Benci et al. 1991] and Greco [1993; 1997] constructed a smooth
harmonic map via some developed variational methods. Recently, Han, Jost, Liu
and Zhao [Han et al. 2019] investigated a parabolic-elliptic system for maps and
got a global existence result by assuming either some geometric conditions on the
target manifold or small energy of the initial maps. The result implies the existence
of a harmonic map in a given homotopy class. The blowup behavior for Lorentzian
harmonic maps was studied in [Han et al. 2017b], and for approximate Lorentzian
harmonic maps and Lorentzian harmonic maps, flow from a Riemann surface was
studied in [Han et al. 2019; 2017a]. For the global weak solution of Lorentzian
harmonic map flow, one can refer to [Han et al. 2018]. The regularity theory was
studied in [Isobe 1998; Zhu 2013] for dimension 2 and in [Isobe 1997] for higher
dimensions on some kinds of minimal type solutions.

Via direct calculations, Zhu [2013] derived the Euler–Lagrange equations for
(1-2),

(1-3)
{
−1u = A(u)(∇u,∇u)− B>(u)|∇v|2 in M,
− div(β(u)∇v)= 0, in M,



PARTIAL REGULARITY OF HARMONIC MAPS 35

where A is the second fundamental form of N in RK, B(u) := (B1, B2, . . . , BK )

with
B j
:= −

1
2
∂β(u)
∂y j

and B> is the tangential part of B along the map u.

Definition 1.1. We call (u, v) ∈ W 1,2(�, N ×R) a weakly Lorentzian harmonic
map with Dirichlet boundary data

(u, v)|∂� = (φ, ψ)

if it is a weak solution of (1-3) with boundary data (φ, ψ).

Similar to harmonic maps, we introduce the notion of stationary Lorentzian
harmonic maps.

Definition 1.2. A weakly Lorentzian harmonic map (u, v) ∈ W 1,2(�, N ×R) is
called a stationary Lorentzian harmonic map if it is also a critical point of Eh with
respect to the domain variations; i.e., for any Y ∈ C∞0 (�,Rm), it holds

d
dt

∣∣∣
t=0

∫
�

1
2
(|∇ut |

2
−β(ut)|∇vt |

2) d volg = 0,

where ut(x)= u(x + tY (x)) and vt(x)= v(x + tY (x)).

Our first main result is the following small-energy regularity theorem.

Theorem 1.3. For m ≥ 2 and any α ∈ (0, 1), there exists an ε0 > 0 depending only
on m, α and (N , hN ) such that if (u, v) ∈W 1,2(�, N ×R) is a weakly Lorentzian
harmonic map satisfying

(1-4) sup
x∈Br0 (x0), 0<r≤r0

r2−m
∫

Br (x)
|∇u|2 d volg ≤ ε

2
0 ,

then (u, v) ∈ C∞(Br0/2(x0)). Moreover, it satisfies the estimate

(1-5) r0‖∇u‖L∞(Br0/2(x0))+ r0‖∇v‖L∞(Br0/2(x0))+ r1+α
0 ‖∇u‖Cα(Br0/2(x0))

+ r1+α
0 ‖∇v‖Cα(Br0/2(x0))

≤ C
(
r1−m/2

0 ‖(∇u,∇v)‖L2(Br0 (x0))+ r2−m
0 ‖(∇u,∇v)‖2L2(Br0 (x0))

+ r4−2m
0 ‖∇v‖4L2(Br0 (x0))

)
,

where C = C(m, λ1, λ2, α, N ) is a positive constant and

‖(∇u,∇v)‖2L2(Br0 (x0))
:= ‖∇u‖2L2(Br0 (x0))

+‖∇v‖2L2(Br0 (x0))
.

In this paper, we can get the following interior partial regularity theorem. For a
similar result for harmonic maps, one can refer to [Bethuel 1993; Evans 1991; Li
and Tian 1998]. For results on gauge theory, one can refer to [Tian 2000].
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Theorem 1.4. For m ≥ 2, let (u, v) ∈W 1,2(�, N ×R) be a stationary Lorentzian
harmonic map with Dirichlet boundary data (u, v)|∂�= (φ, ψ), where ψ ∈C1(∂�).
Then there exists a closed subset S(u) ⊂ �, with H m−2(S(u)) = 0, such that
(u, v) ∈ C∞(� \ S(u)).

Remark 1.5. The boundary assumption ψ ∈ C1(∂�) is used to derive the estimate
‖v‖W 1,p(�) for some p > m. See Lemma 2.1. In fact, by the classical theory of
the Laplace operator and the following proof in this paper, one may find that it is
enough to assume that ψ ∈W 1−1/p,p(∂�) for some p > m.

Furthermore, we have:

Theorem 1.6. Under the same assumption as the above theorem, if N does not
admit harmonic spheres Sl, l = 2, . . . ,m− 1, then (u, v) is smooth.

To prove the partial regularity results, we first need to establish the monotonicity
formula for stationary Lorentzian harmonic maps. Thanks to the elliptic estimates
of the v-equation of divergence forms, we can control the additional terms (corre-
sponding to harmonic maps) in the monotonicity formula. Secondly, we need to
study the energy concentration set of a blow-up sequence of stationary Lorentzian
harmonic maps. Here, we follow Lin’s scheme [1999] to get the first bubble which
is a nonconstant harmonic sphere. The proof is based on the analysis of defect
measure using geometric measure theory.

The rest of paper is organized as follows. In Section 2, we establish the mono-
tonicity formula for stationary Lorentzian harmonic maps which is crucial in the
proof of our main theorems. In Section 3, we prove the small-energy regularity
theorem, Theorem 1.3, and then the partial regularity theorem, Theorem 1.4, follows
immediately from a standard monotonicity formula argument. Theorem 1.6 will be
proved in Section 4.

2. Monotonicity formula

In this section, we firstly derive the monotonicity formula for stationary Lorentzian
harmonic maps. Secondly, for reader’s convenience, we recall a regularity theorem
in [Sharp 2014] which will be used in the proof.

Thanks to the divergence structure of v-equation, we have the following estimate.

Lemma 2.1. Let (u, v) ∈W 1,2(�, N ×R) be a weakly Lorentzian harmonic map
with Dirichlet boundary data (φ, ψ), where ψ ∈ C1(∂�). Then v ∈ W 1,p(�) for
any 1< p <∞ and

(2-1) ‖∇v‖L p ≤ C(p, λ1, λ2, �)‖ψ‖C1(∂�).
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Proof. Let v be the unique smooth solution of the equation{
1v = 0 in �,
v(x)= ψ on ∂�,

which satisfies
‖v‖C1(�) ≤ C(�)‖ψ‖C1(∂�).

We call v an extension of ψ and for simplicity, we still denote it by ψ ∈ C1(�).
It is easy to see that v−ψ ∈W 1,2

0 (�) is a weak solution of

− div(β(u)∇(v−ψ))= div(β(u)∇ψ).

By the standard theory of the second elliptic operator of divergence forms, see
Theorem 1 in [Meyers 1963], we obtain that v ∈ W 1,p for any 1 < p <∞ and
satisfies

‖∇v‖L p ≤ C(p, λ1, λ2, �)‖∇ψ‖L p ≤ C(p, λ1, λ2, �)‖ψ‖C1(∂�). �

Next, we derive the stationary identity for stationary Lorentzian harmonic maps.

Lemma 2.2. Let (u, v) ∈W 1,2(�, N ×R) be a weakly Lorentzian harmonic map.
Then (u, v) is stationary if and only if for any Y ∈ C∞0 (�,Rm), there holds

(2-2)
∫
�

(〈
∂u
∂xα

,
∂u
∂xγ

〉
−β(u)

〈
∂v

∂xα
,
∂v

∂xγ

〉
−

1
2
(|∇u|2−β(u)|∇v|2)δαγ

)
∂Y γ

∂xα
dx=0.

Proof. For any Y ∈C∞0 (�,Rm), let t ∈R small enough and y= Ft(x) := x+ tY (x)
and x = F−1

t (y). By Definition 1.2, (u, v) is stationary if and only if

d
dt

∣∣∣
t=0

∫
�

1
2
(|∇ut |

2
−β(ut)|∇vt |

2) dx = 0,

where ut(x)= u(Ft(x)) and vt(x)= v(Ft(x)).
On the one hand, by a standard calculation, see, e.g., [Lin and Wang 2008], we

have

(2-3) d
dt

∣∣∣
t=0

1
2

∫
�

|∇ut |
2 dx =

∫
�

(〈
∂u
∂xα

,
∂u
∂xγ

〉
−

1
2
|∇u|2δαγ

)
∂Y γ

∂xα
dx .

On the other hand, computing directly, we obtain

d
dt

∣∣∣
t=0

(1
2
β(ut)|∇vt |

2
)

=
1
2
∂β(u)
∂xα

Y α|∇v|2+β(u)
〈
∂v

∂xα
,
∂v

∂xγ

〉
∂Y γ

∂xα
+β(u)

〈
∂2v

∂xα∂xγ
,
∂v

∂xγ

〉
Y α

=
1
2
∂

∂xα
(β(u)|∇v|2)Y α +β(u)

〈
∂v

∂xα
,
∂v

∂xγ

〉
∂Y γ

∂xα
.
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Thus,

(2-4) d
dt

∣∣∣
t=0

1
2

∫
�

β(ut)|∇vt |
2 dx=

∫
�

β(u)
(〈

∂v

∂xα
,
∂v

∂xγ

〉
−

1
2
|∇v|2δαγ

)
∂Y γ

∂xα
dx .

Combining (2-3) with (2-4), we will get the conclusion of the lemma. �

Now, we can derive the monotonicity formula for stationary Lorentzian harmonic
maps.

Lemma 2.3. Let (u, v) ∈ W 1,2(�, N ×R) be a stationary Lorentzian harmonic
map. Then for any x0 ∈� and 0< r1 ≤ r2 < dist(x0, ∂�), there holds

(2-5) r2−m
2

∫
Br2 (x0)

(|∇u|2−β(u)|∇v|2) dx−r2−m
1

∫
Br1 (x0)

(|∇u|2−β(u)|∇v|2) dx

= 2
∫

Br2 (x0)\Br1 (x0)

|x − x0|
2−m

(∣∣∣∣∂u
∂r

∣∣∣∣2−β(u)∣∣∣∣∂v∂r

∣∣∣∣2) dx,

where ∂r = ∂/∂r = ∂/∂|x − x0|.

Proof. For simplicity, we assume x0= 0∈�. For any ε > 0 and 0< r < dist(0, ∂�),
let ϕε(x)= ϕε(|x |) ∈ C∞0 (Br ) be such that

0≤ ϕε(x)≤ 1 and ϕε(x)|B(1−ε)r = 1.

Taking Y (x)= xϕε(x) in the formula (2-2) and noting that

∂Y γ

∂xα
= ϕε(x)δα,γ +

xαxγ

|x |
ϕ′ε(x),

we have(
1− m

2

)∫
Br

(|∇u|2−β(u)|∇v|2)ϕε(x) dx

=

∫
Br

(
−

∣∣∣∣∂u
∂r

∣∣∣∣2+β(u)∣∣∣∣∂v∂r

∣∣∣∣2+ 1
2
(|∇u|2−β(u)|∇v|2)

)
|x |ϕ′ε(x) dx .

Letting ε→ 0, we get

(2−m)
∫

Br

(|∇u|2−β(u)|∇v|2) dx + r
∫
∂Br

(|∇u|2−β(u)|∇v|2)

= 2r
∫
∂Br

(∣∣∣∣∂u
∂r

∣∣∣∣2−β(u)∣∣∣∣∂v∂r

∣∣∣∣2),
which yields

d
dr

(
r2−m

∫
Br

(|∇u|2−β(u)|∇v|2) dx
)
= r2−m

∫
∂Br

(∣∣∣∣∂u
∂r

∣∣∣∣2−β(u)∣∣∣∣∂v∂r

∣∣∣∣2).
The conclusion of the lemma follows by integrating r from r1 to r2. �
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As a direct corollary of above monotonicity formula, we have:

Corollary 2.4. Let (u, v) ∈W 1,2(�, N ×R) be a stationary Lorentzian harmonic
map with Dirichlet boundary data (φ, ψ). Then for any x0 ∈� and 0< r1 ≤ r2 <

dist(x0, ∂�), there holds

r2−m
1

∫
Br1 (x0)

|∇u|2 dx

≤ r2−m
2

∫
Br2 (x0)

|∇u|2d x +C(m, p, λ1, λ2, �, ‖ψ‖C1(∂�))(r2)
2−2m/p.

Proof. By Lemma 2.3, we have

r2−m
1

∫
Br1 (z)
|∇u|2 dx

≤ r2−m
2

∫
Br2 (x0)

(|∇u|2−β(u)|∇v|2) dx + r2−m
1

∫
Br1 (x0)

β(u)|∇v|2 dx

+ 2
∫

Br2 (x0)

|x − x0|
2−mβ(u)|

∂v

∂|x − x0|
|
2 dx

≤ r2−m
2

∫
Br2 (x0)

|∇u|2 dx +C(m, λ2)(r2)
2−2m/p

‖∇v‖2L p

≤ r2−m
2

∫
Br2 (x0)

|∇u|2 dx +C(m, p, λ1, λ2, �, ‖ψ‖C1(∂�))(r2)
2−2m/p,

where the second inequality follows from Young’s inequality:

(2-6)
∫

Br

|x |2−m
|∇v|2 dx ≤ ‖∇v‖2L p‖|x |2−m

‖L p/(p−2)(Br )

≤ C(m, p, λ1, λ2, �, ‖ψ‖C1(∂�))(r)
2−2m/p. �

In the end of this section, we want to recall a regularity theorem for a system of
critical PDE in [Sharp 2014]. Systems of this form were introduced and studied
by [Rivière and Struwe 2008]. For this, let us first recall the definition of Morrey
spaces; see [Giaquinta 1983].

Definition 2.5. For p ≥ 1, 0< µ ≤ m, and a domain U ⊂ Rm, the Morrey space
M p,µ(U ) is defined by

M p,µ(U ) := { f ∈ L p
loc(U ) | ‖ f ‖M p,µ(U ) <∞},

where
‖ f ‖p

M p,µ(U ) := sup
Br⊂U

rµ−m
∫

Br

| f |p.

Theorem 2.6 [Sharp 2014, Theorem 1.2]. For every m ≥ 2 and p ∈
(m

2 ,m
)
, there

exists ε = ε(m, d, p) > 0 and C = C(m, d, p) > 0 with the following property.
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Suppose that u ∈W 1,2(B1,Rd), ∇u ∈M2,2(B1,Rd), �∈M2,2(B1, so(d)⊗∧1Rm)

and f ∈ L p(B1,Rd) satisfy

(2-7) 1u =� · ∇u+ f in x B1

weakly. If ‖�‖M2,2(B1) ≤ ε, then

‖∇
2u‖M2p/m,2(B1/2)+‖∇u‖M2p/(m−p),2(B1/2) ≤ C(‖u‖L1(B1)+‖ f ‖L p(B1)).

3. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Without loss of generality, we may assume r0 = 1 and

1
|B1|

∫
B1

v dx = 0.

Take a cut-off function η ∈ C∞0 (B1) such that 0≤ η ≤ 1, η|B7/8 ≡ 1 and |∇η| ≤ C .
By a direct computation, we get

div(β(u)∇(ηv))= div(β(u)∇ηv)+β(u)∇η∇v in B1.

Then according to the standard theory of the second elliptic operator of divergence
forms, see Theorem 1 in [Meyers 1963], we have v ∈W 1,2m/(m−2)(B7/8) and

‖∇v‖L2m/(m−2)(B7/8) ≤ C(m, λ1, λ2)(‖∇ηv‖L2m/(m−2)(B1)+‖β(u)∇η∇v‖L2(B1))

≤ C(m, λ1, λ2)‖∇v‖L2(B1),

where the last inequality follows from Sobolev’s embedding W 1,2 ↪→ L2m/(m−2)

and Poincaré’s inequality

‖v‖L2(B1) ≤ C(m)‖∇v‖L2(B1).

Using Theorem 1 in [Meyers 1963] and by a bootstrap argument, it is easy to
see that v ∈W 1,p(B3/4) for any 1< p <∞ and

(3-1) ‖∇v‖L p(B3/4) ≤ C(m, p, λ1, λ2)‖∇v‖L2(B1).

It is well known that the equation of u can be written in the form of (2-7) with

|�| ≤ C(N )|∇u| and | f | ≤ C(λ2, N )|∇v|2.

By Theorem 2.6 and (3-1), taking ε0 = ε0(m, p, N ) sufficiently small, we know
u ∈W 1,p(B5/8) for any m < p <∞ and

‖∇u‖L p(B5/8) ≤ C(m, p, λ1, λ2, N )(‖∇u‖L2(B1)+‖|∇v|
2
‖Lmp/(2+p)(B1))

≤ C(m, p, λ1, λ2, N )(‖∇u‖L2(B1)+‖∇v‖
2
L2(B1)

).
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Applying W 2,p estimates of the Laplacian operator, we obtain

‖∇u‖W 1,p(B9/16)

≤ C(m, p, λ2, N )(‖∇u‖2L2p(B5/8)
+‖∇v‖2L2p(B5/8)

+‖∇u‖L2(B5/8))

≤ C(m, p, λ1, λ2, N )(‖∇u‖L2(B5/8)+‖∇u‖2L2(B1)
+‖∇v‖2L2(B1)

+‖∇v‖4L2(B1)
)

and

‖∇v‖W 1,p(B9/16) ≤ C(m, p, λ1, λ2, N )(‖|∇u||∇v|‖L p(B5/8)+‖∇v‖L2(B5/8))

≤ C(m, p, λ1, λ2, N )‖∇v‖L2(B1)(1+‖∇u‖L2(B1)+‖∇v‖
2
L2(B1)

).

By Sobolev’s embedding theorem, we see that (∇u,∇v) ∈ Cα(B9/16) for any
α= 1−m/p ∈ (0, 1) and the estimate (1-5) holds. Then the high regularity follows
from the classical Schauder estimates of the Laplacian operator and a standard
bootstrap argument. �

Now, we prove our main theorem, Theorem 1.4.

Proof of Theorem 1.4. Define

(3-2) S(u) :=
{

x ∈�
∣∣∣∣ lim inf

r↘0
r2−n

∫
Br (x)
|∇u|2 ≥

ε2
0

2m

}
,

where ε0 > 0 is the constant in Theorem 1.3. It is well known that H n−2(S(u))= 0.
Next, we will show S(u) is a closed set and (u, v) ∈ C∞(� \ S(φ)).

For any x0 ∈� \ S(u) and ε > 0, there exists 0< r0 < ε such that

(3-3) (2r0)
2−m

∫
B2r0 (x0)

|∇u|2 dx <
ε2

0

2m .

Therefore,

(3-4) sup
z∈Br0 (x0)

r2−m
0

∫
Br0 (z)
|∇u|2 dx ≤ r2−m

0

∫
B2r0 (x0)

|∇u|2 dx <
2m−2ε2

0

2m .

By Corollary 2.4, we have

(3-5) sup
z∈Br0 (x0),0<r≤r0

r2−m
∫

Br (z)
|∇u|2 dx

≤ sup
z∈Br0 (x0)

r2−m
0

∫
Br0 (z)
|∇u|2 dx+C(m, p,λ1,λ2,‖ψ‖C1(∂�))(r0)

2−2m/p

≤
2m−2ε2

0

2m +C1(m, p,λ1,λ2,‖ψ‖C1(∂�))(r0)
2−2m/p

for some m < p <∞, where C1(m, p, λ1, λ2, ‖ψ‖C1(∂�)) is a positive constant.
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Taking

ε ≤

(
ε2

0

4C1(m, p, λ1, λ2, ‖ψ‖C1(∂�))

)2m/p−2

,

we get

(3-6) sup
z∈Br0 (x0), 0<r≤r0

r2−m
∫

Br (z)
|∇u|2 dx ≤

ε2
0

2
.

Then Theorem 1.3 tells us that (u, v) ∈ C∞(Br0/2(x0)), which implies Br0/4(x0)⊂

� \ S(u). �

4. Proof of Theorem 1.6

In this section, we will study the blow-up behavior of a sequence of stationary
Lorentzian harmonic maps {(un, vn)} with Dirichlet boundary data (φ, ψ) and with
bounded energy

E(un, vn)=
1
2

∫
�

(|∇un|
2
+ |∇vn|

2) dx ≤3.

Due to the weak compactness, we may assume un ⇀ u weakly in W 1,2(�, N ) and

µn := |∇un|
2dx→ µ := |∇u|2dx + ν

in the sense of Radon measures, where ν is a nonnegative Radon measure by Fatou’s
lemma and is usually called the defect measure.

Without loss of generality, we assume B1(0) ⊆ �. Similar to harmonic maps
[Lin 1999], we define the energy concentration set 6 as

(4-1) 6 =

{
x ∈ B1(0)

∣∣∣∣ lim inf
r↘0

lim inf
n→∞

r2−n
∫

Br (x)
|∇un|

2 dx ≥
ε2

0

2m

}
,

where ε0 is the constant in Theorem 1.3.
Denoting by spt(ν) the support set of ν and defining

sing(u) := {x ∈ B1(0) | u is not smooth at x},

we have:

Lemma 4.1. Suppose {(un, vn)} is a sequence of stationary Lorentzian harmonic
maps with Dirichlet boundary data (un, vn)|� = (φ, ψ) and bounded energy
E(un, vn)≤3; then the energy concentration set 6 is closed in B1 and

H m−2(6)≤ C(m, ε0,3).

Moreover, there holds

(4-2) 6 = spt(ν)∪ sing(u).
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Proof. For x0 ∈ B1 \6, by the definition of 6, we know that for any positive
constant

ε ≤

(
ε2

0

4C1(m, p, λ1, λ2, ‖ψ‖C1(∂�))

)2m/p−2

,

where C1(m, p, λ1, λ2, ‖ψ‖C1(∂�)) is the constant in (3-5), there exists a positive
constant r0 < ε and a subsequence of {n} (also denoted by {n}), such that, for any n,

(2r0)
2−m

∫
B2r0 (x)

|∇un|
2 dx <

ε2
0

2m ,

which implies (similar to deriving (3-6))

sup
z∈Br0 (x), 0<r≤r0

r2−m
∫

Br (z)
|∇un|

2 dx <
ε2

0

2
.

By Theorem 1.4, we know

(4-3) ‖∇un‖L∞(Br0/2(x0))+‖∇vn‖L∞(Br0/2(x0)) ≤ C(m, λ1, λ2,3, N )r−m/2
0 .

Then, it is easy to see that there exists a small positive constant r1= r1(m, r0, λ1,

λ2,3, ε0, N ), such that, whenever r ≤ r1,

sup
x∈Br0/4(x0)

r2−m
∫

Br (x)
|∇un|

2 dx <
ε2

0

2m+1 .

Thus, Br0/4(x0)⊂ B1 \6. So, 6 is a closed set.
It is standard to get H m−2(6)≤ C by a covering lemma; see [Lin 1999].
For (4-2), on the one hand, let x0 ∈ B1 \6. Then (4-3) holds and by standard

elliptic estimates of the Laplace operator, we have

(4-4) ‖un‖C1+α(Br0/4(x0))+‖vn‖C1+α(Br0/4(x0)) ≤ C

for some 0 < α < 1. Thus, up to a subsequence of {un, vn}, un → u strongly in
W 1,2 and u ∈ C∞(Br0/8(x0)), which implies that x0 /∈ sing(u) and x0 /∈ spt ν since
ν ≡ 0 on Br0/8(x0).

On the other hand, if x0 ∈6, by the definition, for any r > 0 sufficiently small,
we have

lim inf
n→∞

µn(Br (x0))

rm−2 ≥
ε2

0

2m+1 ,

which implies
µ(Br (x0))

rm−2 ≥
ε2

0

2m+1

for a.e. r > 0. Suppose x0 /∈ sing(φ); then

r2−m
∫

Br (x0)

|∇u|2 dx ≤
ε2

0

2m+2
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whenever r > 0 is small enough. Then we have

ν(Br (x0))

rm−2 ≥
ε2

0

2m+2

for all small positive r > 0 and x0 ∈ spt ν. �

Lemma 4.2. Under the same assumption as above lemma, the limit

(4-5) θν(x) := lim
r→0

ν(Br (x))
rm−2

exists for H m−2-a.e. x ∈6. Moreover,

ε2
0

2m ≤ θν(x)≤ C(m, λ1, λ2,3, N , ‖ψ‖C1(∂�))δ
2−m
0 ,

where δ0 := dist(B1(0), ∂�).

Proof. Let x ∈ � and si → 0, ti → 0 be two arbitrary positive sequences. By
Corollary 2.4, we have

(4-6)
µn(Bsi (x))

sm−2
i

≤
µn(Bt j (x))

tm−2
j

+C(m, p, λ1, λ2,3, N , ‖ψ‖C1(∂�))(t j )
2−2m/p

for si ≤ t j and some m < p <∞. Letting firstly i→∞ and secondly j→∞, we
get

lim sup
r→0

µ(Br (x))
rm−2 ≤ lim inf

r→0

µ(Br (x))
rm−2 .

Thus,

lim
r→0

µ(Br (x))
rm−2

exists. Noting that for H m−2-a.e. x ∈�,

(4-7) lim
r→0

r2−m
∫

Br (x)
|∇u|2 dx = 0,

we have

lim
r→0

ν(Br (x))
rm−2 = lim

r→0

µ(Br (x))
rm−2 .

It is easy to see from (4-6) (taking p = 2m) that

r2−mµ(Br (x))≤ C(3)δ2−m
0 +C(m, λ1, λ2,3, N , ‖ψ‖C1(∂�))δ0

≤ C(m, λ1, λ2,3, N , ‖ψ‖C1(∂�))δ
2−m
0 ,

which implies µ b6 is absolutely continuous with respect to H m−2
b6. By the

Radon–Nikodym theorem, we know that there exists a measurable function θ(x)
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such that

µ b6 = θ(x)H m−2
b6.

Noting that for H m−2-a.e. x ∈6,

22−m
≤ lim inf

r→0

H m−2(6 ∩ Br (x))
rm−2 ≤ lim sup

r→0

H m−2(6 ∩ Br (x))
rm−2 ≤ 1

and by (4-7), we have

ν b6 = θ(x)H m−2
b6

and
ε2

0

2m ≤ θν(x)= θ(x)≤ C(m, λ1, λ2,3, N , ‖ψ‖C1(∂�))δ
2−m
0 . �

Since ν is absolutely continuous with respect to H m−2
b6 and ν = 0 outside 6,

θν(x) is positive for ν-a.e. x ∈�. Hence by [Preiss 1987], we have:

Corollary 4.3. The set of energy concentration points 6 is (m−2)-rectifiable.

For any y ∈6 and λ > 0, we define a scaled Radon measure µy,λ by

µy,λ(A)= λ2−mµ(y+ λA).

A Radon measure µ∗ is called the tangent measure of µ at y if

µy,λ→ µ∗

in the sense of Radon measures as r ↘ 0; see [Federer 1969; Simon 1983].

Lemma 4.4. Suppose H m−2(6) > 0. Then there exists a nonconstant harmonic
sphere S2 into N.

Proof. Since 6 is (m−2)-rectifiable and H m−2(6) > 0, we know there exists a
point x0 ∈6 such that ν has a tangent measure ν∗ at x0 and

ν∗ = θν(x0)H m−2
b6∗,

where 6∗ ⊂ Rm is an (m−2)-dimensional linear subspace which is usually called
the tangent space of 6 at x0. Without loss of generality, we may assume x0 = 0
and 6∗ = Rm−2

×{(0, 0)}.
By a similar diagonal argument as that in [Lin 1999], there exists a sequence

rn→ 0 such that

µ̃1
n := |∇ũ1

n|
2dx→ ν∗

in the sense of Radon measures, where ũ1
n(x) := un(x0+ rnx).
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Set ṽ1
n(x) := vn(x0 + rnx). It is easy to see that (ũ1

n, ṽ
1
n) is also a stationary

Lorentzian harmonic map. By Lemma 2.3, we have

(4-8) r2−m
2

∫
Br2 (0)

(|∇ũ1
n|

2
−β(ũ1

n)|∇ṽ
1
n|

2) dx

− r2−m
1

∫
Br1 (0)

(|∇ũ1
n|

2
−β(ũ1

n)|∇ṽ
1
n|

2) dx

= 2
∫ r2

r1

r2−m
∫
∂Br (0)

(∣∣∣∣ ∂ ũ1
n

∂|x |

∣∣∣∣2−β(ũ1
n)

∣∣∣∣ ∂ṽ1
n

∂|x |

∣∣∣∣2) d H n−1 dr.

By Young’s inequality, there holds

(4-9)
∫

Br

|x |2−m
|∇ṽ1

n|
2 dx ≤ (rn)

2−2m/p
‖∇vn‖

2
L p(Brnr )

‖|x |2−m
‖L p/(p−2)(Br )

≤ C(m, p, λ1, λ2,3, N , ‖ψ‖C1(∂�))(rnr)2−2m/p.

Letting n→∞ in (4-8) and noting that

r2−m
2 ν∗(Br2(0))= r2−m

1 ν∗(Br1(0)),

we get

(4-10) lim
n→∞

∫
B2(0)

∣∣∣∣ ∂ ũ1
n

∂|x |

∣∣∣∣2 dx = 0.

Similarly, since ν∗y,r = ν∗ for any y ∈6∗ and r > 0, we also have

(4-11) lim
n→∞

∫
B2(0)

∣∣∣∣ ∂ ũ1
n

∂|x − y|

∣∣∣∣2 dx = 0 for y ∈6∗ ∩ B2.

This implies

(4-12) lim
n→∞

m−2∑
k=1

∫
B2(0)

∣∣∣∣∂ ũ1
n

∂xk

∣∣∣∣2 dx = 0.

Let x ′ = (x1, . . . , xm−2), x ′′ = (xm−1, xm), and define fn : Bm−2
1 → R by

fn(x ′) :=
m−2∑
k=1

∫
B2

1 (0)

∣∣∣∣∂ ũ1
n

∂xk

∣∣∣∣2(x ′, x ′′) dx ′′.

Then, (4-12) tells us
lim

n→∞
‖ fn(x ′)‖L1(Bm−2

1 (0)) = 0.

Denote by M( fn)(x ′) the Hardy–Littlewood maximal function; i.e.,

M( fn)(x)= sup
0<r<1/2

r2−m
∫

Bm−2
r (x)

fn(x ′) dx ′, x ∈ Bm−2
1/2 (0).



PARTIAL REGULARITY OF HARMONIC MAPS 47

By a weak L1-estimate, for any ρ > 0, we have

|{x ∈ Bm−2
1/2 (0) | M( fn) > ρ}| ≤

C(m)
ρ
‖ fn‖L1(Bm−2

1/2 (0)),

which implies ∣∣{x ∈ Bm−2
1/2 (0)

∣∣ lim sup
n→∞

M( fn) > 0
}∣∣= 0.

Combining this with Theorem 1.4, we know there exists a sequence of points
{x ′n ∈ Bm−2

1/2 (0)} such that (ũ1
n, ṽ

1
n) is smooth near (x ′n, x ′′) for all x ′′ ∈ B2

1 (0) and

(4-13) lim
n→∞

M( fn)(x ′n)= 0.

By the blow-up argument in [Lin 1999], we can find sequences {σn} and {x ′′n } ⊂
B2

1/2(0) such that σn→ 0, x ′′n → (0, 0) and

(4-14) max
x ′′∈B2

1/2(0)
σ 2−m

n

∫
Bm−2
σn (x ′n)×B2

σn (x
′′)

|∇ũ1
n|

2 dx =
ε2

0

C2(m)
,

where the maximum is achieved at the point x ′′n and C2(m) > 2m is a positive
constant to be determined later.

In fact, define

gn(σ ) := max
x ′′∈B2

1/2(0)
σ 2−m

∫
Bm−2
σ (x ′n)×B2

σ (x ′′)
|∇ũ1

n|
2 dx .

On the one hand, noting that (un, vn) is smooth near x ′n × B2
1 (0), we have

lim
σ→0

gn(σ )= 0.

On the other hand, for any σ > 0, when n is big enough, it must hold that
gn(σ )≥ ε

2
0/2

m, for otherwise, by Theorem 1.3, ũ1
n will converge strongly in W 1,2

to a constant map, which contradicts µ̃n → ν∗. Thus, there exists σn such that
gn(σn)= ε

2
0/C2(m) and we may assume the maximum is achieved at x ′′n . Next, we

show σn→ 0 and x ′′n → (0, 0).
If σn ≥ δ > 0, by Corollary 2.4, we have

ε2
0

C2(m)
= lim sup

n→∞
gn(σn)

≥ lim sup
n→∞

(
gn(δ)−C(m, p, λ1, λ2, �, ‖ψ‖C1(∂�))(rnδ)

2−2m/p)
≥
ε2

0

2m ,

which is a contradiction.
If x ′′n → x ′′0 ∈ B2

1/2(0) and x ′′0 6= (0, 0), for any σ < 1
2 |x
′′

0 |

ε2
0

2m ≤ lim sup
n→∞

gn(σ )≤ σ
2−mν∗(Bm−2

1 (0)× B2
2σ (x

′′

0 ))= 0.

This is also a contradiction.
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Let xn = (x ′n, x ′′n ) and

(ũ2
n(x), ṽ

2
n(x)) := (ũ

1
n(xn + σnx), ṽ1

n(xn + σnx)).

Then (ũ2
n(x), ṽ

2
n(x)) is a stationary Lorentzian harmonic map defined on Bm−2

Rn
(0)×

B2
Rn
(0), where Rn = 1/(4σn) which tends to infinity as n→∞.

By (4-13), we have

(4-15) lim
n→∞

sup
0<R<Rn

R2−m
∫

Bm−2
R (0)×B2

Rn (0)

m−2∑
k=1

∣∣∣∣∂ ũ2
n

∂xk

∣∣∣∣2 dx

= lim
n→∞

sup
0<R<Rn

(σn R)2−m
∫

Bm−2
σn R (x

′
n)×B2

σn Rn (x
′′
n )

m−2∑
k=1

∣∣∣∣∂ ũ1
n

∂xk

∣∣∣∣2 dx

≤ lim
n→∞

M( fn)(x ′n)= 0.

By (4-14), we get

(4-16)
ε2

0

C2(m)
=

∫
Bm−2

1 (0)×B2
1 (0)
|∇ũ2

n|
2 dx= max

x ′′∈B2
Rn−1(0)

∫
Bm−2

1 (0)×B2
1 (x
′′)

|∇ũ2
n|

2 dx .

By Corollary 2.4, for any R > 0, we obtain

(4-17)
∫

Bm−2
R (0)×B2

R(0)
|∇ũ2

n|
2 dx = (σn)

2−m
∫

Bm−2
σn R (x

′
n)×B2

σn R(x
′′
n )

|∇ũ1
n|

2 dx

≤ C(m, λ1, λ2, δ0,3,�, ‖ψ‖C1(∂�))R
m−2,

when n is big enough.
Let ζ ∈ C∞0 (B

m−2
1 (0)) and η ∈ C∞0 (B

2
1 (0)) be two cut-off functions such that

0≤ ζ ≤ 1, ζ |Bm−2
1/2 (0) ≡ 1, 0≤ ζ ≤ 1, and η|B2

1/2(0)
≡ 1. Similar to [Lin 1999], for

any R > 0, we define Fn(a) : Bm−2
6 (0)× B2

R(0)→ R as

Fn(a)=
∫

Bm−2
1 (0)×B2

1 (0)
|∇ũ2

n|
2(a+ x)ζ(x ′)η(x ′′) dx .

Computing directly, one has

∂Fn(a)
∂ak

=

∫
Bm−2

1 (0)×B2
1 (0)

∂

∂xk
|∇ũ2

n|
2(a+ x)ζ(x ′)η(x ′′) dx

= 2
∫

Bm−2
1 (0)×B2

1 (0)

〈
∂ ũ2

n

∂xl
,
∂2ũ2

n

∂xl∂xk

〉
(a+ x)ζ(x ′)η(x ′′) dx

=−2
∫

Bm−2
1 (0)×B2

1 (0)

〈
1ũ2

n,
∂ ũ2

n

∂xk

〉
(a+ x)ζ(x ′)η(x ′′) dx

− 2
∫

Bm−2
1 (0)×B2

1 (0)

〈
∂ ũ2

n

∂xl
,
∂ ũ2

n
∂xk

〉
(a+ x) ∂

∂xl
(ζ(x ′)η(x ′′)) dx .
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On the one hand, by (1-3), we have

−2
∫

Bm−2
1 (0)×B2

1 (0)

〈
1ũ2

n,
∂ ũ2

n

∂xk

〉
(a+ x)ζ(x ′)η(x ′′) dx

=−2
∫

Bm−2
1 (0)×B2

1 (0)

〈
B>(ũ2

n)|∇ṽ
2
n|

2,
∂ ũ2

n

∂xk

〉
(a+ x)ζ(x ′)η(x ′′) dx

≤ C
(∫

Bm−2
R+1 (0)×B2

R+1(0)
|∇ṽ2

n|
4 dx

)1/2(∫
Bm−2

R+1 (0)×B2
R+1(0)

∣∣∣∣∂ ũ2
n

∂xk

∣∣∣∣2 dx
)1/2

.

On the other hand, by Holder’s inequality, we have

−2
∫

Bm−2
1 (0)×B2

1 (0)

〈
∂ ũ2

n

∂xl
,
∂ ũ2

n

∂xk

〉
(a+ x) ∂

∂xl
(ζ(x ′)η(x ′′)) dx

≤ C
(∫

Bm−2
R+1 (0)×B2

R+1(0)
|∇ũ2

n|
2 dx

)1/2(∫
Bm−2

R+1 (0)×B2
R+1(0)

∣∣∣∣∂ ũ2
n

∂xk

∣∣∣∣2 dx
)1/2

.

Combining these together and letting n→∞, we obtain

∂Fn(a)
∂ak

→ 0, k = 1, . . . ,m− 2,

uniformly in Bm−2
2 (0)× B2

R(0) for any fixed R > 0.
Thus, for any a = (a′, a′′)= Bm−2

6 (0)× B2
R(0),∫

Bm−2
1/2 (a′)×B2

1/2(a
′′)

|∇ũ2
n|

2 dx ≤ Fn(a)≤ Fn((0, a′′))+C(m)
m−2∑
k=1

∣∣∣∣∂Fn(a)
∂ak

∣∣∣∣
≤

∫
Bm−2

1 (0)×B2
1 (a
′′)

|∇ũ2
n|

2 dx +C(m)
m−2∑
k=1

∣∣∣∣∂Fn(a)
∂ak

∣∣∣∣
≤

ε2
0

C2(m)
+C(m)

m−2∑
k=1

∣∣∣∣∂Fn(a)
∂ak

∣∣∣∣.
Therefore, when n is big enough, we have

(4-18) 62−m
∫

Bm−2
6 (0)×B2

6 (0)
|∇ũ2

n|
2(x ′, x ′′+ b) dx ≤

C(m)ε2
0

C2(m)
for all b ∈ B2

R(0).

Taking C2(m)≥ 2mC(m), by Corollary 2.4, we have

sup
x0∈B3(0), 0<r≤3

r2−m
∫

Br (x0)

|∇ũ2
n|

2(x ′, x ′′+ b) dx

≤ sup
x0∈B3(0)

32−m
∫

B3(x0)

|∇ũ2
n|

2(x ′, x ′′+ b) dx

+C(m, p, λ1, λ2, �, ‖ψ‖C1(∂M))(σnrn)
2−2m/p
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≤ 2m−262−m
∫

Bm−2
6 (0)×B2

6 (0)
|∇ũ2

n|
2(x ′, x ′′+ b) dx

+C(m, p, λ1, λ2, �, ‖ψ‖C1(∂M))(σnrn)
2−2m/p

≤
2m−2C(m)ε2

0

C2(m)
+C(m, p, λ1, λ2, �, ‖ψ‖C1(∂M))(σnrn)

2−2m/p
≤
ε2

0

2

for some m < p <∞, whenever n is large enough.
By Theorem 1.3, we know (ũ2

n, ṽ
2
n) subconverges to a Lorentzian harmonic map

(ũ, ṽ) in C1
loc(B

m−2
3/2 (0)×R2). Moreover, by (4-15)-(4-17), for any R > 0, we have∫

BR(0)

m−2∑
k=1

∣∣∣∣ ∂ ũ
∂xk

∣∣∣∣2 dx = 0,

and ∫
B1(0)
|∇ũ|2 dx =

ε2
0

C2(m)
,∫

BR(0)
|∇ũ|2 dx ≤ C(m, λ1, λ2, δ0,3,�, ‖ψ‖C1(∂�))R

m−2.

Furthermore, since∫
BR(0)
|∇ṽ|2 dx = lim

n→∞

∫
BR(0)
|∇ṽ2

n|
2 dx

≤ lim
n→∞

(rnσn)
2−2m/p Rm(1−2/p)

‖∇vn‖
2
L p = 0,

we know ṽ is a constant and ũ : R2
→ N is a nonconstant harmonic map with

finite energy. By the conformal theory of harmonic maps in dimension 2, ũ can be
extended to a nonconstant harmonic sphere. �

Proof of Theorem 1.6. The conclusion of Theorem 1.6 standardly follows from
Lemma 4.4 and the Federer dimensions reduction argument, which is similar to
[Schoen and Uhlenbeck 1982] for minimizing harmonic maps. We omit the details
here. �
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