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We continue our investigations of the representation theoretic side of re-
flection positivity by studying positive definite functions ψ on the additive
group (R,+) satisfying a suitably defined KMS condition. These functions
take values in the space Bil(V ) of bilinear forms on a real vector space V .
As in quantum statistical mechanics, the KMS condition is defined in terms
of an analytic continuation of ψ to the strip

{z ∈ C : 0≤ Imz ≤ β}

with a coupling condition ψ(iβ + t) = ψ(t) on the boundary. Our first
main result consists of a characterization of these functions in terms of
modular objects (1, J) ( J an antilinear involution and 1> 0 selfadjoint
with J1J =1−1) and an integral representation.

Our second main result is the existence of a Bil(V )-valued positive def-
inite function f on the group Rτ = R o {idR, τ } with τ(t) = −t satisfy-
ing f (t, τ) = ψ(i t) for 0 ≤ t ≤ β. We thus obtain a 2β-periodic unitary
one-parameter group on the GNS space H f for which the one-parameter
group on the GNS space Hψ is obtained by Osterwalder–Schrader quanti-
zation.

Finally, we show that the building blocks of these representations arise
from bundle-valued Sobolev spaces corresponding to the kernels

(λ2
− d2/dt2)−1

on the circle R/βZ of length β.
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1. Introduction

In this note we continue our investigations of the mathematical foundations of
reflection positivity, a basic concept in constructive quantum field theory [Glimm
and Jaffe 1981; Klein and Landau 1983; Jorgensen and Ólafsson 1998; 2000;
De Angelis et al. 1986; Jaffe and Ritter 2007]. Originally, reflection positivity, also
called Osterwalder–Schrader positivity, arises as a requirement on the euclidean
side to establish a duality between euclidean and relativistic quantum field theories
[Osterwalder and Schrader 1973]. It is closely related to “Wick rotation” or “analytic
continuation” in the time variable from the real to the imaginary axis.

The underlying fundamental concept is that of a reflection positive Hilbert space,
introduced in [Neeb and Ólafsson 2014]. This is a triple (E, E+, θ), where E is a
Hilbert space, θ : E→ E is a unitary involution and E+ is a closed subspace of E
which is θ -positive in the sense that 〈θv, v〉 ≥ 0 for v ∈ E+.

In [Neeb and Ólafsson 2014], we introduced the concept of a reflection positive
cyclic representation (π, E, v), where (E, E+, θ) is a reflection positive Hilbert space
and v ∈ E a θ -fixed vector (or, more generally, a distribution vector). In the present
paper we shall see that, to treat reflection positive representations of the circle group
G = T corresponding to unitary representations of the dual group Gc ∼= R arising
from KMS states, or from their modular objects (1, J ),1 we are forced to work in
a more general framework, where the representations are generated by the image
of an R-linear map j : V → E from a real vector space V into the representation
space E and where j (V ) does not consist of θ -fixed vectors.

To explain the corresponding concept of a reflection positive representation,
we start with a symmetric Lie group, i.e., a pair (G, τ ), where τ ∈ Aut(G) is an
involution. Then we form the extended group Gτ := G o {1, τ }. Let (U, E) be a
unitary representation of Gτ and let j : V → E be a linear map from the real vector
space V to E . Then (U, E, j, V ) is called reflection positive with respect to a subset
G+ ⊆ G if the closed subspace E+ generated by U−1

G+ j (V ) defines a reflection
positive Hilbert space (E, E+,Uτ ). Generalizing the well-known Gelfand–Naimark–
Segal (GNS) construction leads to an encoding of representations generated by j (V )
in terms of form-valued positive definite functions ψ(g)(v,w) := 〈 j (v),Ug j (w)〉
[Neeb and Ólafsson 2015b].

This paper continues the investigations started in [Neeb and Ólafsson 2015b],
where we studied reflection positive representations of the circle group and their
connections to KMS states, which was largely motivated by the work of Klein and
Landau [1981] (see also [Cuniberti et al. 2001]). A long-term goal of this project is

1Recall that KMS stands for Kubo–Martin–Schwinger; see [Bratteli and Robinson 1981, §5.3.1] for
more on KMS states and their interpretation in quantum statistical mechanics as thermal equilibrium
states.
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to combine our representation theoretic approach to reflection positivity with KMS
states of operator algebras and Borchers triples corresponding to modular inclusions
[Buchholz et al. 2011; Borchers 1992; Longo 2008; Schlingemann 1999].

A crucial step in this direction is the concept of a positive definite function
satisfying a KMS condition that can be formulated as follows: First, let V be a real
vector space and Bil(V ) be the space of real bilinear maps V ×V →C. A function
ψ :R→Bil(V ) is said to be positive definite if the kernel ψ(t−s)(v,w) on R×V is
positive definite. For β > 0, we consider the open strip Sβ := {z ∈C : 0< Im z<β}.
We say that a positive definite function ψ :R→Bil(V ) satisfies the KMS condition
for β > 0 if ψ extends to a function Sβ→ Bil(V ) which is pointwise continuous
and pointwise holomorphic on the interior Sβ , and satisfies

ψ(iβ + t)= ψ(t) for t ∈ R.

The central idea in the classification of positive definite functions satisfying
a KMS condition is to relate them to standard real subspaces of a (complex)
Hilbert space; these are closed real subspaces V ⊆ H for which V ∩ iV = {0}
and V + iV is dense (cf. Definition 2.4). Any such subspace determines a pair
(1, J ) of modular objects, where 1 is a positive selfadjoint operator and J is
an antilinear involution satisfying J1J = 1−1. The connection is established
by V = Fix(J11/2) = {v ∈ D(11/2) : J11/2v = v}. Our first main result is the
following characterization of the KMS condition in terms of standard real subspaces.
Here we write Bil+(V )⊆ Bil(V ) for the convex cone of all those bilinear forms f
for which the sesquilinear extension to VC× VC is positive semidefinite.

Theorem 2.6 (characterization of the KMS condition). Let V be a real vector space
and ψ : R→ Bil(V ) be a pointwise continuous positive definite function. Then the
following are equivalent:

(i) ψ satisfies the KMS condition for β > 0.

(ii) There exists a standard real subspace V1 in a Hilbert space H and a linear
map j : V → V1 such that

(1) ψ(t)(v,w)= 〈 j (v),1−i t/β j (w)〉 for t ∈ R, v, w ∈ V .

(iii) There exists a Bil+(V )-valued regular Borel measure µ on R satisfying

ψ(t)=
∫

R

ei tλ dµ(λ), where dµ(−λ)= e−βλdµ(λ).

If these conditions are satisfied, then the function ψ : Sβ → Bil(V ) is pointwise
bounded.

The equivalence of (i) and (ii) in Theorem 2.6 describes the tight connection
between the KMS condition and the modular objects associated to a standard real
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subspace. Part (iii) provides an integral representation that can be viewed as a
classification result.

For a function ψ satisfying the β-KMS condition, analytic continuation leads to
the operator-valued function

ϕ : [0, β] → B(VC), 〈v, ϕ(t)w〉 = ψ(i t)(v,w).

This function satisfies ϕ(β)=ϕ(0), and hence extends uniquely to a (weak operator)
continuous function ϕ : R→ B(VC) satisfying

(2) ϕ(t +β)= ϕ(t) for t ∈ R.

Recall the group Rτ :=Ro {1, τ } with τ(t)=−t . In Theorem 4.5 we show that
there exists a positive definite function

f : Rτ → Bil(V ) satisfying f (t, τ )= ϕ(t).

The function f is 2β-periodic, hence factors through a function on T2β,τ :=

Rτ/Z2β∼=O2(R). This leads to a natural “euclidean” counterpart of the unitary one-
parameter group Ut =1

−i t/β associated to the KMS positive definite function ψ .
To understand the structure of the positive definite functions which arise in this
way, and the corresponding unitary representations of T2β,τ , we write f = f++ f−
with f+(β + t, τ ε)= f+(t, τ ε) (the bosonic part) and f−(β + t, τ ε)=− f−(t, τ ε)
(the fermionic part). Then f± are both positive definite and combine to a matrix
valued positive definite function

f ] :=
(

f+ 0
0 f−

)
: Rτ → M2(B(VC))∼= B(V 2

C)

(Lemma 4.12). Neglecting an additive summand which is constant, we can now
define a unitary representation of the subgroup P := (Zβ)τ on V 2

C
by

ρ(β, 1) :=
(

1 0
0 −1

)
and ρ(0, τ ) :=

(
1 0
0 i I

)
,

where I is a complex structure on V. Then we have the relation

f ](hg)= ρ(h) f ](g) for h ∈ P, g ∈ Rτ ,

which determines in particular how f ] is obtained from the function ϕ above. For
the special case where the real representation corresponding to ψ is isotypic, or the
associated modular operator 1 is a multiple of the identity, the GNS representation
(U f ],H f ]) can be realized on the Hilbert space completion of

0ρ := {s ∈ C∞(Rτ , V 2
C) : s(hg)= ρ(h)s(g) for all g ∈ Rτ , h ∈ P}
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with respect to the scalar product

〈s1, s2〉 :=
1

2β

∫ 2β

0
〈s1(t, 1), ((λ2

−1)−1s2)(t, 1)〉 dt, where 1=
d2

dt2 .

On this space, Rτ acts by right translation. This provides a natural “euclidean
realization” of our representation on the Riemannian manifold Tβ ∼=S1 in the spirit
of [De Angelis et al. 1986; Dimock 2004; Jaffe and Ritter 2007]. The “periodicity
in imaginary time” that we also observe here has been studied in detail from a
physics perspective by Fulling and Ruijsenaars [1987].

We conclude this paper with a short Section 5, in which we prove a version of
Theorem 2.6 for β =∞ which connects naturally to our previous work on dilations
of semigroups of contractions in [Neeb and Ólafsson 2015a]. In two appendices
we provide some background material. Appendix A recalls some facts on positive
definite kernels and discusses in particular the connection between complex and
real-valued kernels. Appendix B discusses standard real subspaces in terms of
skew-symmetric contractions on real Hilbert spaces. This perspective was crucial
for the present paper, and we expect it to be useful in other contexts as well.

In a subsequent paper [Neeb and Ólafsson 2019], we extend the results obtained
here for the group G =O2(R)= SO2(R)τ to more general groups such as On+1(R)

(where reflection positivity refers to the sphere Sn) and O1,n(R) (where reflection
positivity refers to the n-dimensional hyperbolic space Hn). Eventually, we would
like to see how our representation theoretic analysis can be blended with the existing
work on relativistic KMS conditions [Bros and Buchholz 1994; Gérard and Jäkel
2007] and in particular with [Barata et al. 2013; 2016]. The close connection
between modular objects (1, J ) and standard real subspaces was first explored
by Rieffel and van Daele [1977]. They also define a notion of a KMS condition
for a unitary one-parameter group (Ut)t∈R on a complex Hilbert space H with
a real subspace V ⊆ H. In our terms, their condition means that the function
ψ : R→ Bil(V ), ψ(t)= 〈v,Utw〉 satisfies the KMS condition for β =−1 (which
refers to a function on the strip {−1< Im z< 0}). From [Rieffel and van Daele 1977,
Proposition 3.7], one can easily derive the implication (ii)⇒ (i) of Theorem 2.6
(cf. also [Longo 2008, Proposition 3.7]). In this case, [Rieffel and van Daele 1977,
Theorem 3.8] even implies that Ut =1

−i t/β is the unique unitary one-parameter
group satisfying the KMS condition for β. From [Rieffel and van Daele 1977,
Theorem 3.9], one can also derive the implication (i)⇒ (ii). Instead of 1, Rieffel
and van Daele work with the bounded operator R = 2(1+1)−1 which is the sum
of the orthogonal projections of the real Hilbert space H onto the closed subspaces
V and iV. In our context, this operator appears as 1+ i Ĉ for the skew-hermitian
operator Ĉ = i 1−1

1+1 (Lemma 4.2).
In the context of free fields, the interplay between standard real subspaces and
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von Neumann algebras of operators on Fock space has already been studied by
Araki [1963] and Eckmann and Osterwalder [1973]. The connection between the
KMS condition and the modular theory of von Neumann algebras has already
been observed and studied in [Haag et al. 1967]. We refer to [Yngvason 1994]
for some particularly interesting concrete subspaces corresponding to fields on
light rays and to [Ramacher 2000] for descriptions of standard real subspaces in
terms of boundary values of holomorphic functions. Numerical aspects of the KMS
condition and rather general holomorphic extension aspects have recently been
studied in [De Micheli and Viano 2012].

Notation. We follow the “physics convention” that the scalar product 〈 · , · 〉 on a
complex Hilbert space is linear in the second argument.

For a real vector space V, we write Bil(V ) for the complex vector space of
complex-valued bilinear forms V × V → C. For h ∈ Bil(V ), we write h̄ for the
pointwise complex conjugate and put h>(v,w) := h(w, v) and h∗ := h̄>. We say
that h is hermitian if h̄ = h>, which means that Re h is symmetric and Im h is
skew-symmetric. We write Herm(V )⊆ Bil(V ) for the real subspace of hermitian
forms.

Every h ∈ Bil(V ) extends canonically to a sesquilinear form on VC (linear in the
second argument),

hC(v+ iw, v′+ iw′) := h(v, v′)− ih(w, v′)+ ih(v,w′)+ h(w,w′).

We may therefore identify Bil(V ) with the space Sesq(VC) of sesquilinear forms
on the complex vector space VC. We write Bil+(V )⊆ Bil(V ) for the convex cone
of all those bilinear forms f for which the sesquilinear extension to VC × VC is
positive semidefinite, i.e., for which h defines a positive definite kernel on V.

2. Positive definite functions and KMS conditions

Throughout this section V is an arbitrary real vector space. We recall from
Definition A.3 that a function ψ : R→ Bil(V ) is called positive definite if the
kernel K ((t, v), (s, w)) := ψ(t − s)(v,w) on R × V is positive definite. The
main result of this section is Theorem 2.6. This result leads in particular to the
analytic continuation of ψ to the strip Sβ . We also explain how the corresponding
representation of R can be realized in a Hilbert space consisting of holomorphic
functions on the strip Sβ/2 with continuous boundary values (Proposition 2.9).

We call a function ψ : Sβ→Bil(V ) pointwise continuous if, for all v,w ∈ V, the
functionψv,w(z) :=ψ(z)(v,w) is continuous. Moreover, we say thatψ is pointwise
holomorphic in Sβ , if, for all v,w ∈ V, the function ψv,w|Sβ is holomorphic. By
the Schwarz reflection principle, any pointwise continuous pointwise holomorphic
function ψ is uniquely determined by its restriction to R.
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Definition 2.1. For β > 0, let Sβ := {z ∈ C : 0 < Im z < β}. For a real vector
space V, we say that a positive definite function ψ : R→ Bil(V ) satisfies the KMS
condition for β > 0 if ψ extends to a function ψ : Sβ→ Bil(V ) which is pointwise
continuous, pointwise holomorphic on Sβ , and satisfies

(3) ψ(iβ + t)= ψ(t) for t ∈ R.

Lemma 2.2. Suppose that ψ : R→ Bil(V ) satisfies the KMS condition for β > 0.
Then

(4) ψ(−z)= ψ(z)∗ and ψ(iβ + z)= ψ(z) for z ∈ Sβ .

The function ϕ : [0, β]→Bil(V ), ϕ(t) :=ψ(i t) has hermitian values and satisfies

(5) ϕ(β − t)= ϕ(t) for 0≤ t ≤ β.

It extends to a unique pointwise continuous symmetric 2β-periodic function ϕ :R→
Herm(V ) satisfying

ϕ(β + t)= ϕ(t) for t ∈ R.

Proof. Note that ψ(−t)= ψ(t)∗ holds for every positive definite function ψ : R→
Bil(V ). By analytic continuation (and the Schwarz reflection principle), this leads
to the first part of (4). Likewise, condition (3) leads to the second part of (4). This
in turn implies (5), and the remainder is clear. �

Remark 2.3. Note that (4) implies in particular that ψ(iβ/2+ t) is real-valued
for t ∈ R (cf. [Rieffel and van Daele 1977, Proposition 3.5]).

We now introduce standard real subspaces V ⊆H and the associated modular
objects (1, J ).

Definition 2.4. A closed real subspace V of a complex Hilbert space H is said to
be standard if

V ∩ iV = {0} and V + iV =H.

For every standard real subspace V ⊆ H, we define an unbounded antilinear
operator

S : D(S)= V + iV →H, S(v+ iw) := v− iw, v,w ∈ V .

Then S is closed and has a polar decomposition S = J11/2, where J is an anti-
unitary involution and 1 a positive selfadjoint operator (cf. [Neeb and Ólafsson
2015b, Lemma 4.2]; see also [Bratteli and Robinson 1979, Proposition 2.5.11;
Longo 2008, Proposition 3.3]). We call (1, J ) the modular objects of V.

Remark 2.5. (a) From S2
= id, it follows that the modular objects (1, J ) of a

standard real subspace satisfy the modular relation

(6) J1J =1−1.
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If, conversely, (1, J ) is a pair of a positive selfadjoint operator 1 and an anti-
linear involution J satisfying (6), then S := J11/2 is an unbounded antilinear
involution with D(S) = D(11/2) whose fixed point space Fix(S) is a standard
real subspace. Thus standard real subspaces are parametrized by pairs (1, J )
satisfying (6) (cf. [Longo 2008, Proposition 3.2] and [Neeb and Ólafsson 2015b,
Lemma 4.4]).

(b) As the unitary one-parameter group 1i t commutes with J and 1, it leaves the
real subspace V = Fix(S) invariant.

We now come to the proof of Theorem 2.6.

Theorem 2.6 (Characterization of the KMS condition). Let V be a real vector
space and let ψ : R→ Bil(V ) be a pointwise continuous positive definite function.
Then the following are equivalent:

(i) ψ satisfies the KMS condition for β > 0.

(ii) There exists a standard real subspace V1 in a Hilbert space H and a linear
map j : V → V1 such that

(7) ψ(t)(v,w)= 〈 j (v),1−i t/β j (w)〉 for t ∈ R, v, w ∈ V .

(iii) There exists a Bil+(V )-valued regular Borel measure µ on R satisfying

dµ(−λ)= e−βλdµ(λ),

such that

ψ(t)=
∫

R

ei tλ dµ(λ)= µ̂(t).

If these conditions are satisfied, then the function

ψ : Sβ→ Bil(V )

is pointwise bounded.

Proof. (i) ⇒ (ii): From the GNS construction (Proposition A.4), we obtain a
continuous unitary representation (U,H) and a linear map j : V →H such that

ψ(t)(v,w)= 〈 j (v),Ut j (w)〉 for t ∈ R, v, w ∈ V .

We further assume that the range of the map

ζ : R× V →H, ζ(t, v) :=Ut j (v)

spans a dense subspace. Using Stone’s theorem, we write Ut=e−i t H for a selfadjoint
operator H on H and consider the positive selfadjoint operator

1 := eβH satisfying Ut =1
−i t/β for t ∈ R.
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With the B(H)-valued spectral measure P on R with H =
∫

R
λ d P(λ), we thus

obtain

ψ(t)(v,w)= 〈 j (v), e−i t H j (w)〉 =
∫

R

e−i tλ d P j (v), j (w)(λ),

where Pv,w =〈v, P( · )w〉. The KMS condition for ψ gives that, for each v ∈ V, the
function ψ(t)(v, v) extends holomorphically to Sβ , which implies that the integral∫

R
eβλ d P j (v), j (v)(λ) is finite, and hence that j (V )⊆ D(11/2) [Neeb and Ólafsson

2015b, Lemma B.4]. The uniqueness of analytic continuation (Schwarz’ principle)
now implies

(8) ψ(x + iy)(v,w)=
∫

R

e−i(x+iy)λ d P j (v), j (w)(λ)

= 〈1y/2β j (v),1−i x/β1y/2β j (w)〉

for v,w ∈ V and 0 ≤ y ≤ β. Since D(11/2) is U -invariant, we obtain from the
KMS condition,

〈11/2ζ(t, v),11/2ζ(s, w)〉 = 〈11/2 j (v),11/2Us−t j (w)〉 = ψ(iβ + s− t)(v,w)

= ψ(s− t)(v,w)= 〈ζ(t, v), ζ(s, w)〉.

This implies the existence of a unique antilinear isometry J :H→H with

Jζ(t, v)=11/2ζ(t, v) for all t ∈ R, v ∈ V .

Then

Us Jζ(t, v)=11/2ζ(t + s, v)= Jζ(t + s, v)= JUsζ(t, v) for t, s ∈ R, v ∈ V

shows that J commutes with every Ut . This implies that J11/2 J−1
=1−1/2, so

ζ(t, v)= J−111/2ζ(t, v)=1−1/2 J−1ζ(t, v),

which in turn implies

Jζ(t, v)=11/2ζ(t, v)= J−1ζ(t, v) for t ∈ R, v ∈ V .

Since the range of ζ is total, it follows that J−1
= J, so J is an anti-unitary involution.

Therefore (1, J ) is the modular object of the standard real subspace V1 := Fix(S)
for the unbounded antilinear involution S := J11/2 (Remark 2.5).

For v ∈ V , we now have j (v) ∈ D(S) = D(11/2) and Sj (v) = J11/2 j (v) =
J 2 j (v)= j (v), so that j (V )⊆ V1. This completes the proof of (ii).

(ii)⇒ (iii): For v,w ∈ V we have

ψ(t)(v,w)= 〈 j (v),1−i t/β j (w)〉 =
∫

R

ei tλ
〈 j (v), d P(λ) j (w)〉,

where P is the spectral measure of the selfadjoint operator L := − 1
β

log1 (the
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Liouvillian). We therefore consider the Bil+(V )-valued measure defined by

µ( · )(v,w) := 〈 j (v), P( · ) j (w)〉 = P j (v), j (w).

It remains to show that dµ(−λ)= e−βλdµ(λ), which means that r∗µ= e−βµ holds
for r(λ) = −λ. To verify this relation, we first observe that J L J = −L implies
that J P J = r∗P. This leads to

µ( · )(v,w)= 〈P( · ) j (w), j (v)〉 = 〈P( · )Sj (w), Sj (v)〉

= 〈P( · )J11/2 j (w), J11/2 j (v)〉

= 〈J P( · )J11/2 j (v),11/2 j (w)〉 = 〈(r∗P)( · )11/2 j (v),11/2 j (w)〉

= eβ · 〈(r∗P)( · ) j (v), j (w)〉 = eβ · (r∗µ)( · )(v,w).

This implies that µ= eβ · r∗µ.

(iii)⇒ (i): Condition (iii) implies that ψ(0)=µ(R) exists, so that µ is a pointwise
finite measure. Further, the relation r∗µ= e−βµ implies that the measure e−βµ is
also finite. Therefore the integral

(9) ψ(z) :=
∫

R

ei zλ dµ(λ)

exists pointwise and extends ψ to Sβ in such a way that this extension is pointwise
continuous on Sβ and pointwise holomorphic on the interior. The relation r∗µ=
e−βµ further leads to

ψ(iβ + t)=
∫

R

eλ(−β+i t) dµ(λ)=
∫

R

e−β(λ)eiλt dµ(λ)

=

∫
R

eiλt d(r∗µ)(λ)=
∫

R

e−iλt dµ(λ)= ψ(t).

Therefore ψ satisfies the KMS condition for β.

We finally assume that (i)–(iii) are satisfied and show that ψ is pointwise bounded
on Sβ . Since each ψ(z) extends to a sesquilinear form ψ(z)C on VC, in view
of the polarization identity, it suffices to show the boundedness of the functions
z 7→ ψ(z)C(v, v) for v ∈ VC. For the positive measure µv,v(E) := µ(E)C(v, v),
we obtain from (9) the estimate

|ψ(z)C(v, v)| ≤
∫

R

|e−iλz
| dµv,v(λ)=

∫
R

eλ Im z dµv,v(λ).

The convexity of the function on the right, the Laplace transform of the finite positive
measure µv,v, and ψ(βi)(v, v)= ‖11/2 j (v)‖2 <∞ now imply the boundedness
of ψ(z)C(v, v). �
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Remark 2.7. A special case worth noting arises from a C∗-dynamical system
(A,R, α) for V :=Ah := {A ∈A : A∗ = A} and an invariant state ω on A. Such a
state is a β-KMS state if and only if

ψ : R→ Bil(Ah), ψ(t)(A, B) := ω(Aαt(B))

satisfies the KMS condition for β>0 (cf. [Neeb and Ólafsson 2015b, Proposition 5.2;
Rieffel and van Daele 1977, Theorem 4.10; Bratteli and Robinson 1981]). If
(πω,Uω,Hω, �) is the corresponding covariant GNS representation of (A,R),

ω(A)= 〈�,πω(A)�〉 for A ∈A and Uω
t �=� for t ∈ R.

Therefore

ψ(t)(A, B)= ω(Aαt(B))= 〈�,πω(Aαt(B))�〉

= 〈�,πω(A)Uω
t πω(B)U

ω
−t�〉 = 〈πω(A)�,U

ω
t πω(B)�〉

for A, B ∈Ah . The corresponding standard real subspace of Hω is V1 := πω(Ah)�.

Corollary 2.8. If ψ : R→ Bil(V ) satisfies the β-KMS condition, then the kernel

(10) K : Sβ/2×Sβ/2→ Bil(V ), K (z, w)(ξ, η) := ψ(z−w)(ξ, η)

is positive definite.

Proof. This follows immediately from the following relation that we derive from (8):

K (z, w)(ξ, η)= ψ(z−w)(ξ, η)

= 〈1
−

i z
β j (ξ),1

−
iw
β j (η)〉 for ξ, η ∈ V, z, w ∈ Sβ/2. �

Now that we know from Corollary 2.8 that the kernel K in (10) is positive
definite, we obtain a corresponding reproducing kernel Hilbert space consisting of
functions on Sβ/2×V which are linear in the second argument and holomorphic on
Sβ/2 in the first. We may therefore think of these functions as having values in the
algebraic dual space V ∗ :=Hom(V,R) of V. We write O(Sβ/2, V ∗) for the space of
those functions f : Sβ/2→ V ∗ with the property that, for every η ∈ V, the function
z 7→ f (z)(η) is continuous on Sβ/2 and holomorphic on the open strip Sβ/2.

Proposition 2.9 (Realization of Hψ on O(Sβ/2, V ∗)). Assume that ψ :R→Bil(V )
satisfies the KMS condition for β >0 and letψ :Sβ→Bil(V ) denote the correspond-
ing extension and Hψ ⊆ O(Sβ/2, V ∗) denote the Hilbert space with reproducing
kernel

K (z, w)(ξ, η) := ψ(z−w)(ξ, η) for ξ, η ∈ V,
i.e.,

f (z)(ξ)= 〈Kz,ξ , f 〉 for f ∈Hψ , where Kz,ξ (w)(η)= ψ(w− z)(η, ξ).
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Then
(Uψ

t f )(z) := f (z+ t), t ∈ R, z ∈ Sβ/2,

defines a unitary one-parameter group on Hψ ,

j : V →Hψ , j (η)(z) := ψ(z)( · , η)

is a linear map with Uψ -cyclic range, and

ψ(t)(ξ, η)= 〈 j (ξ),Uψ
t j (η)〉 for t ∈ R, ξ, η ∈ V .

The anti-unitary involution on Hψ corresponding to the standard real subspace
V1 ⊆Hψ from Theorem 2.6 is given by

(11) (J1 f )(z) := f
(

z+
iβ
2

)
.

Proof. First we recall that the natural reproducing kernel Hilbert space Hψ =HK

is generated by the function K(w,η) satisfying

K(w,η)(z)(ξ)= 〈K(z,ξ), K(w,η)〉 = K (z, w)(ξ, η)

= ψ(z−w)(ξ, η).

As a function of z, the kernel K is continuous on Sβ/2 and holomorphic on the
interior. Therefore [Neeb 2000, Proposition I.1.9] implies that Hψ is a subspace of
O(Sβ/2, V ∗), where, for every f ∈Hψ and ξ ∈ V, we have

f (z)(ξ)= 〈K(z,ξ), f 〉.

That the formula for Uψ
t defines a unitary one-parameter group on Hψ follows

directly from the invariance of the kernel K under the action of R on Sβ by
translation.

Next we observe that

〈 j (ξ),Uψ
t j (η)〉 = 〈K(0,ξ),U

ψ
t K(0,η)〉

= 〈K(0,ξ), K(−t,η)〉 = ψ(t)(ξ, η).

To see that j (V ) is Uψ -cyclic, we have to show that the elements Uψ
t j (η) =

K(−t,η) form a total subset of Hψ . This means that any f ∈Hψ with

0= 〈K(t,η), f 〉 = f (t)(η)

for every t ∈ R and η ∈ V vanishes. As the function t 7→ f (t)(η) extends to a
continuous function on Sβ/2, holomorphic on the interior, it vanishes by the Schwarz
reflection principle. Further, η was arbitrary, so f = 0 follows.
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Now we turn to the involution J1. As K(w,η)(z)= ψ(z−w)( · , η), the operator
J1 on O(Sβ/2, V ∗), defined by the right hand side of (11) satisfies

(12) (J1K(w,η))(z)= K(w,η)

(
z+

iβ
2

)
= ψ

(
z+

iβ
2
−w

)
( · , η)

= ψ

(
iβ + z−

iβ
2
−w

)
( · , η)= ψ

(
z+

iβ
2
−w

)
( · , η)

= K(w+iβ/2,η)(z).

Here we have used that ψ(z)= ψ(iβ + z) (Lemma 2.2). From

〈K(w+iβ/2,η), K(z+iβ/2,ξ)〉 = K (z+ iβ/2, w+ iβ/2)(ξ, η)= ψ(iβ + z−w)(ξ, η)

= ψ(z−w)(ξ, η)= 〈K(z,ξ), K(w,η)〉,

it now follows that the operator J1 in (11) leaves the subspace Hψ invariant and
defines an antilinear isometry on this space. From the explicit formula it follows
that J1 is an involution. It is also clear that J1 commutes with the unitary operators
(Ut f )(z)= f (z+ t).

The relation Ut K(w,η) = K(w−t,η) leads by analytic continuation to

J1K(0,η) = K(iβ/2,η) =1
1/2K(0,η).

In the proof of Theorem 2.6, we have seen that, for η ∈ V and t ∈R, the anti-unitary
involution J corresponding to the associated standard real subspace V1 satisfies

J j (η)=11/2 j (η).

As both J and J1 commute with every Ut and the subset {Ut j (η) : t ∈ R, η ∈ V } is
total in Hψ , we conclude that J1 = J. �

3. Form-valued reflection positive functions

In this section we discuss reflection positivity on the level of form-valued positive
definite functions. This is particularly well adapted to reflection positive Hilbert
spaces (E, E+, θ), for which E+ is generated by elements of the form U−1

g j (v),
where g is contained in a certain subset G+⊆G which is not necessarily a subsemi-
group, and j : V →H is a linear map for which UG j (V ) spans a dense subspace
of E . In particular, we present a version of the GNS construction in this context
(Proposition 3.9) and we briefly discuss it more specifically for the trivial group
G = {1} (Section 3B) and the 2-element group (Section 3C). The latter case shows
explicitly that the cone of reflection positive functions does not adapt naturally
to the decomposition into even and odd functions. Put differently, if a reflection
positive representation decomposes into two subrepresentations, the summands
need not be reflection positive (see also [Neeb and Ólafsson 2014]).
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3A. Reflection positivity and form-valued functions. Let (G, τ ) be a symmetric
Lie group, i.e., G is a Lie group and τ ∈ Aut(G) with τ 2

= idG . In the following
we write Gτ := G o {1, τ } and g] := τ(g)−1 [Neeb and Ólafsson 2014]. In this
section we introduce reflection positive functions on Gτ with values in Bil(V ) for
a real vector space V.

Definition 3.1. Let E be a Hilbert space and let θ ∈U(E) be an involution. A closed
subspace E+ ⊆ E is called θ-positive if 〈θv, v〉 ≥ 0 for v ∈ E+. We then call the
triple (E, E+, θ) a reflection positive Hilbert space. For a reflection positive Hilbert
space we put N := {v ∈ E+ : 〈θv, v〉 = 0} and write q : E+→ E+/N , v 7→ v̂ = q(v)
for the quotient map and Ê for the Hilbert completion of E+/N with respect to the
norm ‖̂v‖Ê := ‖̂v‖ :=

√
〈θv, v〉.

Example 3.2. Suppose that K : X × X → C is a positive definite kernel on the
set X and that τ : X→ X is an involution leaving K invariant. We further assume
that X+ ⊆ X is a subset with the property that the kernel K τ (x, y) := K (τ x, y) is
also positive definite on X+.

Let E :=HK ⊆ CX denote the corresponding reproducing kernel Hilbert space
generated by elements (Kx)x∈X with 〈Kx , K y〉=K (x, y). Then the closed subspace
E+ ⊆ E generated by (Kx)x∈X+ is θ -positive for (θ f )(x) := f (τ x). We thus obtain
a reflection positive Hilbert space (E, E+, θ). We call such kernels K reflection
positive with respect to (X, X+, τ ).

Definition 3.3. Let G+ ⊆ G be a subset. Let V be a real vector space and let
j : V → H be a linear map whose range is cyclic for the unitary representation
(U, E) of Gτ . Then we say that (U, E, j, V ) is reflection positive with respect
to G+⊆G if, for E+ := span U−1

G+ j (V ), the triple (E, E+,Uτ ) is a reflection positive
Hilbert space.

Definition 3.4. Let V be a real vector space. We call a function ϕ : Gτ → Bil(V )
reflection positive with respect to the subset G+ of G if

(RP1) ϕ is positive definite and

(RP2) the kernel (s, t) 7→ ϕ(st]τ)= ϕ(sτ t−1) is positive definite on G+.

Remark 3.5. Let ϕ : Gτ → Bil(V ) be a positive definite function, so that the
kernel K ((x, v), (y, w)) := ϕ(xy−1)(v,w) on Gτ × V is positive definite. The
involution τ acts on Gτ × V by τ.(g, v) := (gτ, v) and the corresponding kernel
K τ ((x, v), (y, w)) := K ((xτ, v), (y, w))= ϕ(xτ y−1)(v,w) is positive definite on
G+× V if and only if ϕ is reflection positive in the sense of Example 3.2.

Positive definite functions on G extend canonically to Gτ if they are τ -invariant:

Lemma 3.6. Let V be a real vector space and let (G, τ ) be a symmetric Lie group.
Then the following assertions hold:
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(i) If ϕ : G → Bil(V ) is a positive definite function which is τ -invariant in the
sense that ϕ ◦ τ = ϕ, then ϕ̂(g, τ ) := ϕ(g) defines an extension to Gτ which is
positive definite and τ -biinvariant.

(ii) Let (U,H) be a unitary representation of Gτ , let θ := Uτ , let j : V → H
be a linear map, and let ϕ(g)(v,w)= 〈 j (v),Ug j (w)〉 be the corresponding
Bil(V )-valued positive definite function. Then the following are equivalent:

(a) θ j (v)= j (v) for every v ∈ V.
(b) ϕ is τ -biinvariant.
(c) ϕ is left τ -invariant.

Proof. (i) From the GNS construction (Proposition A.4), we obtain a continuous
unitary representation (U,H) of G and a linear map j : V →H such that

ϕ(g)(v,w)= 〈 j (v),Ug j (w)〉 for g ∈ G, v, w ∈ V .

As ϕ(g)(v,w)= ϕ(τ(g))(v,w), the uniqueness in the GNS construction provide a
unitary operator θ :H→H with

θUg j (v)=Uτ(g) j (v) for g ∈ G, v ∈ V .

Note that θ fixes each j (v). Therefore Uτ := θ defines an extension of G to a
unitary representation of Gτ on H. Hence ψ(g)(v,w)= 〈 j (v),Ug j (w)〉 defines a
positive definite Bil(V )-valued function on Gτ which satisfies

ψ(g, τ )(v,w)= 〈θ j (v),Ug j (w)〉

= 〈 j (v),Ug j (w)〉 = ϕ(g)(v,w) for g ∈ G, v, w ∈ V .

(ii) Clearly, (a)⇒ (b)⇒ (c). It remains to show that (c) implies (a). So we assume
that ϕ(τg)= ϕ(g) for g ∈ Gτ . This means that, for every v,w ∈ V, we have

〈 j (v),Ug j (w)〉 = ϕ(g)(v,w)= ϕ(τg)(v,w)

= 〈 j (v), θUg j (w)〉 = 〈θ j (v),Ug j (w)〉.

Since UGτ
j (V ) is total in H, this implies that θ j (v)= j (v) for every v ∈ V. �

Remark 3.7. (a) As Gτ consists of the two cosets G and Gτ = G × {τ }, every
function ϕ on Gτ is given by a pair of functions on G:

ϕ± : G→ Bil(V ), ϕ+(g) := ϕ(g, 1), ϕ−(g) := ϕ(g, τ ).

Then (RP2) is a condition on ϕ− alone, and (RP1) is a condition on the pair (ϕ+, ϕ−).

(b) If ϕ is reflection positive, then its complex conjugate ϕ is also reflection positive
because the convex cone of positive definite kernels on a set is stable under complex
conjugation. This implies in particular that Reϕ = 1

2(ϕ+ϕ) is reflection positive
(cf. Theorem A.13).
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The following lemma provides a tool which is sometimes convenient to verify
positive definiteness of a function on the extended group Gτ in terms of a kernel
on the original group G.

Lemma 3.8. Every function ϕ : Gτ → B(V ) leads to a M2(B(V ))-valued kernel

Q : G×G→ M2(B(V ))∼= B(V ⊕ V ), Q(g, h)=
(
ϕ(gh−1) ϕ(gτh−1)

ϕ(gτh−1) ϕ(gh−1)

)
,

and the function ϕ on Gτ is positive definite if and only if Q is positive definite.

Proof. That Q is positive definite is equivalent to the existence of a Hilbert space H
and a map

` : G→ B(H, V ⊕ V )∼= B(H, V )⊕2 with Q(x, y)= `(x)`(y)∗ for x, y ∈ G

(cf. [Neeb 2000, Theorem I.1.4]). If ` is such a map, then it can be written as
`(x)= (`1(x), `2(x)) with ` j (x) ∈ B(H, V ). We thus obtain

Q(x, y)= `(x)`(y)∗ =
(
`1(x)`1(y)∗ `1(x)`2(y)∗

`2(x)`1(y)∗ `2(x)`2(y)∗

)
and thus

`1(x)`1(y)∗ = `2(x)`2(y)∗ and `1(x)`2(y)∗ = `2(x)`1(y)∗.

Therefore

j : Gτ → B(H, V ), j (x, 1) := `1(x), j (x, τ ) := `2(x),

satisfies
j (x, 1) j (y, 1)∗ = `1(x)`1(y)∗ = ϕ(xy−1),

j (x, τ ) j (y, τ )∗ = `2(x)`2(y)∗ = ϕ(xy−1)

and
j (x, 1) j (y, τ )∗ = `1(x)`2(y)∗ = ϕ(xτ y−1),

j (x, τ ) j (y, 1)∗ = `2(x)`1(y)∗ = ϕ(xy−1).

We therefore have ϕ(xy−1) = j (x) j (y)∗ for x, y ∈ Gτ , and thus ϕ is positive
definite.

If, conversely, ϕ is positive definite and j :Gτ→ B(H, V ) is such that ϕ(x−1 y)=
j (x) j (y)∗ for x, y ∈ Gτ , then `(x) := ( j (x, 1), j (x, τ )) ∈ B(H, V ⊕ V ) defines a
map with Q(x, y)= `(x)`(y)∗ for x, y ∈ G. �

Proposition 3.9 (GNS construction for reflection positive functions). Let V be a
real vector space, let (U, E) be a unitary representation of Gτ and put θ := Uτ .
Then the following assertions hold:
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(i) If (U,H, j, V ) is reflection positive with respect to G+, then

ϕ(g)(v,w) := 〈 j (v),Ug j (w)〉, g ∈ Gτ , v, w ∈ V,

is a reflection positive Bil(V )-valued function.

(ii) If ϕ : Gτ → Bil(V ) is a reflection positive function with respect to G+, then
the corresponding GNS representation (Uϕ,Hϕ, j, V ) is a reflection positive
representation, where Hϕ ⊆ CGτ×V is the Hilbert subspace with reproducing
kernel K ((x, v), (y, w)) := ϕ(xy−1)(v,w) on which Gτ acts by

(Uϕ
g f )(x, v) := f (xg, v).

Proof. (i) For s, t ∈ G+, we have

ϕ(sτ t−1)(v,w)= 〈 j (v),Usτ t−1 j (w)〉 = 〈Us−1 j (v),UτUt−1 j (w)〉

= 〈θUs−1 j (v),Ut−1 j (w)〉,

so that the kernel (ϕ(sτ t−1))s,t∈G+ is positive definite.

(ii) Recall the relation ϕ(g)(v,w) = 〈 j (v),Ug j (w)〉 for g ∈ G, v, w ∈ V from
Proposition A.4. Moreover, (θ f )(x, v)= f (xτ, v), and

〈θUϕ

s−1 j (v),Uϕ

t−1 j (w)〉 = 〈 j (v),Uϕ

sτ t−1 j (w)〉 = ϕ(sτ t−1)(v,w),

so the positive definiteness of the kernel (ϕ(sτ t−1))s,t∈G+ implies that we obtain,
with E = Hϕ and E+ := span (Uϕ

G+)
−1 j (V ), a reflection positive Hilbert space

(E, E+, θ). �

3B. Reflection positivity for the trivial group. In this short section we discuss
the case of the 2-element group T = {1, τ } in some detail. It corresponds to Gτ

where G = {1} is trivial, but it already demonstrates how the intricate structure of
a reflection positive Hilbert space (E, E+, θ) can be encoded in terms of positive
definite functions on T.

A unitary representation (U, E) of T is nothing but the specification of a unitary
operator θ =Uτ on E . We write E = E1

⊕ E−1 for the eigenspace decomposition
of E under θ and p±1

: E→ E±1 for the orthogonal projections.
Suppose, in addition, that V is a real or complex Hilbert space and that j : V→ E

is a continuous linear map whose range generates E under the representation U,
i.e., the projections p±1( j (V )) ⊆ E±1 are dense subspaces. In view of the GNS
construction, the data (E,U, j, V ) is encoded in the operator-valued positive definite
function

ϕ : T → B(V ), ϕ(g)= j∗Ug j.

For a function ϕ : T → B(V ), let A := ϕ(1) and B := ϕ(τ). Then ϕ is positive
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definite if and only if A = A∗ ≥ 0, B = B∗, and the operator matrix(
ϕ(1) ϕ(τ )
ϕ(τ) ϕ(1)

)
=

(
A B
B A

)
∈ M2(B(V ))∼= B(V ⊕ V )

defines a positive operator (Lemma 3.8 and [Neeb 2000, Remark I.1.3]). This is
equivalent to

(13) |〈Bv,w〉|2 ≤ 〈Av, v〉〈Aw,w〉 for v,w ∈ V

(cf. Corollary A.9). Note that (13) holds if A = 1 and ‖B‖ ≤ 1. If, more generally,
A is invertible, then (13) is equivalent to ‖A−1/2 B A−1/2

‖ ≤ 1. Here A = j∗ j
basically encodes how V is mapped into E and B encodes the unitary involution θ .

The function ϕ is reflection positive with respect to G+ = {1} if and only if
B = ϕ(τ)≥ 0, which means that j (V ) is θ -positive. In this sense reflection positive
functions on T encode reflection positive Hilbert spaces (E, E+, θ) by θ = Uτ

and E+ := j (V ). A pair (A, B) of hermitian operators on V corresponds to a
reflection positive function ϕ : T→ B(V ) if and only if 0≤ B ≤ A. By the Cauchy–
Schwarz inequality, this is equivalent to (13) if A and B are positive operators. This
shows that

ϕ = ϕ0+ϕ1 with ϕ0(1)= A− B, ϕ0(τ )= 0 and ϕ1(1)= ϕ1(τ )= B,

where both functions ϕ0 and ϕ1 are reflection positive. The function ϕ0 corresponds
to the case where E+⊥θE+, so that Ê={0}, and the constant function ϕ1 corresponds
to the trivial representation of T, and hence to θ = 1, which means that q : E+→ Ê
is isometric.

Replacing V by E+, we see that reflection positive functions ϕ : T → B(E+) with
ϕ(1) = 1 encode reflection positive Hilbert spaces (E, E+, θ) for which p±1(E+)
is dense in E±1. By (13), these configurations are parametrized by the hermitian
contractions B = ϕ(τ) on E+. For v,w ∈ E+, we then have

〈v, θw〉 = 〈v, Bw〉.

Therefore the 1-eigenspace ker(B− 1) corresponds to the maximal subspace in E+
on which the map q : E+→ Ê is isometric. We also observe that ker B = ker q . In
this sense the operator B describes how Ê is obtained from the Hilbert space E+.

Remark 3.10. Suppose that θ is a unitary involution on E with the eigenspaces E±1.
If K ⊆ E is a θ -positive subspace, then clearly K∩ E−1

= {0} and this implies that
K is the graph 0(Z) of the operator

Z : D(Z) := {v+ ∈ E1
: (∃v− ∈ E−1) (v+, v−) ∈ K} → E−1, v+ 7→ v−.

That 0(Z) is a θ-positive subspace is equivalent to ‖Z‖ ≤ 1. Therefore the
closedness of K shows that D(Z) is a closed subspace of E1 (cf. [Jorgensen 2002,
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Lemma 5.1]). If p1(K)= D(Z) is dense in Ê , the closedness of D(Z) implies that
Z ∈ B(E1, E−1). The density of p−1(K)= Z(E1) is equivalent to Z having dense
range.

From this perspective, we can also generate the configuration (E, E+, θ) in terms
of E1. Then j (v)= (v, Zv)∈ E1

⊕E−1 defines a linear map j : E1
→ E whose range

is K. The corresponding B(E1)-valued positive definite function on T is given by

ψ(1)= j∗ j = 1+ Z∗Z and ψ(τ)= j∗θ j = 1− Z∗Z .

The polar decomposition of j : E1
→ K takes the form

j =U
√

j∗ j =U
√

1+ Z∗Z ,

where U : E1
→ K is unitary. Therefore the corresponding B(K)-valued positive

definite function on T is given by

ϕ(1)= 1 and ϕ(τ)=U
1− Z∗Z
1+ Z∗Z

U−1

because j∗ϕ(τ) j = j∗θ j = 1− Z∗Z implies

ϕ(τ)= ( j∗)−1(1− Z∗Z) j−1
=U (1+ Z∗Z)−1/2(1− Z∗Z)(1+ Z∗Z)−1/2U−1

=U
1− Z∗Z
1+ Z∗Z

U−1.

Relating this to the preceding discussion, we see that U ker Z ⊆ E+ is the maximal
subspace on which q is isometric and

U {v ∈ E1
: ‖Zv‖ = ‖v‖} =U ker(1− Z∗Z)= ker q.

In particular, q is injective if and only if Z is a strict contraction.

3C. Reflection positivity for the 2-element group. In this subsection, we take a
closer look at the 2-element group G = {1, σ } because it nicely illustrates that if a
reflection positive representation decomposes into two subrepresentations, then the
summands need not be reflection positive (see also [Neeb and Ólafsson 2014]). On
the level of positive definite functions, this is reflected in the fact that the cone of
reflection positive functions does not adapt to the decomposition into even and odd
functions.

We consider the 2-element group G := {1, σ }, which leads to the Klein-4-group

Gτ := G o {1, τ } ∼= Z/2Z×Z/2Z.

We consider reflection positivity with respect to the subset G+ := {1}.
Any unitary representation (U, E) of Gτ decomposes into four eigenspaces

E = E1,1
⊕ E−1,1

⊕ E1,−1
⊕ E−1,−1, Eε1,ε2 = {v ∈ E :Uσv = ε1v,Uτv = ε2v},
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and for θ :=Uτ , the subspace Eθ = E1,1
⊕E−1,1 is Uσ -invariant. For v= (a, b, c, d),

we then have

Uτv = (a, b,−c,−d) and Uσv = (a,−b, c,−d).

Assume E+ = Cv for a single vector v. Then reflection positivity corresponds to

〈v, θv〉 = |a|2+ |b|2− |c|2− |d|2 ≥ 0.

With respect to Uσ , we have

v = v1+ v−1 = (a, 0, c, 0)+ (0, b, 0, d)

and

〈Uσv, θUσv〉 = 〈v, θv〉 ≥ 0 and 〈Uσv, θv〉 = |a|2− |b|2− |c|2+ |d|2.

Therefore the subspace Cv+CUσv is θ -positive if and only if

±(|a|2− |b|2− |c|2+ |d|2)≤ |a|2+ |b|2− |c|2− |d|2,

which is equivalent to
|d| ≤ |b| and |c| ≤ |a|.

Clearly, these two conditions are strictly stronger than the θ -positivity of Cv.
For the corresponding positive definite function f (g)= 〈v,Ugv〉 we have

f (1)= |a|2+ |b|2+ |c|2+ |d|2, f (τ )= |a|2+ |b|2− |c|2− |d|2,

f (σ )= |a|2− |b|2+ |c|2− |d|2, f (στ)= |a|2− |b|2− |c|2+ |d|2.

Decomposing f = f1+ f−1 with respect to the left action of σ , we obtain

f1(1)= f1(σ )= |a|2+ |c|2, f1(τ )= f1(στ)= |a|2− |c|2

and

f−1(1)=− f1(σ )= |b|2+ |d|2, f−1(τ )=− f−1(στ)= |b|2− |d|2.

Both functions f±1(g)= 〈v±1,Ugv±1〉 are positive definite, but they are reflection
positive if and only if |c| ≤ |a| and |d| ≤ |b|.

Note that, even for Uσ = 1 and Uσ =−1, there exist nontrivial reflection positive
representations with 〈v, θv〉> 0.

4. Reflection positive functions and KMS conditions

In this section we build the bridge from positive definite functions ψ : R→ Bil(V )
satisfying the KMS condition for β > 0 to reflection positive functions on the group
T2β,τ ∼= O2(R). We have already seen in Lemma 2.2 that analytic continuation
leads to a 2β-periodic function ϕ :R→Bil(V ) satisfying ϕ(t +β)= ϕ(t) for t ∈R
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and ϕ(t)= ψ(i t) for 0≤ t ≤ β. In this section we show the existence of a positive
definite function f : Rτ → Bil(V ) with f (t, τ )= ϕ(t) for t ∈ R. By construction,
f is then reflection positive with respect to the interval [0, β/2] = G+ ⊆ G = R in
the sense of Definition 3.4.

Since we can build on Theorem 2.6, our first goal is to express, for a standard
real subspace V ⊆H, the Bil(V )-valued function

(14)
ϕ : [0, β] → Bil(V ),

ϕ(t)(v,w) := ψ(i t)(v,w)= 〈1t/2βv,1t/2βw〉 for v,w ∈ V, 0≤ t ≤ β

from (8) in the proof of Theorem 2.6 as a B(VC)-valued function. To this end, we
shall need the description of V in terms of a skew-symmetric strict contraction C
on V (Lemma B.9), and this leads to a quite explicit description of ϕ that we then
use to prove our main theorem.

4A. From form-valued to operator-valued functions. In the following it will be
more convenient to work with operator-valued functions instead of form-valued
ones. The translation is achieved by the following lemma. For its formulation,
we recall the polar decomposition of bounded skew-symmetric operators on real
Hilbert spaces.

Remark 4.1. (polar decomposition of skew-symmetric operators) Let D>=−D be
an injective skew-symmetric operator on the real Hilbert space V and let D = I |D|
be its polar decomposition. Then im(D) is dense because D is injective, and
therefore I defines an isometry V → V. From

I |D| = D =−D> =−|D|I−1
=−I−1(I |D|I−1)

it follows that I 2
=−1, i.e., that I is a complex structure and that |D| commutes

with I.

Lemma 4.2. Let V ⊆H be a standard real subspace with modular objects (1, J ),
let Ĉ := i 1−1

1+1 , and let C := Ĉ |V ∈ B(V ) be the skew-symmetric strict contraction
from Lemma B.9. We assume that ker C = {0}, so the polar decomposition C = I |C |
defines a complex structure I on V. Consider the skew-symmetric operator

D := log
(

1− |C |
1+ |C |

)
I.

Then the function ϕ(t)(v,w)= 〈1t/2v,1t/2w〉 from (14) has the form

(15) ϕ(t)(v,w)= 〈v, ϕ̃(t)w〉VC
for t ∈ [0, 1], v, w ∈ VC,

where the function ϕ̃ : [0, 1] → B(VC) is given by

ϕ̃(t)= (1+ iC)1−t(1− iC)t =
e−t |D|

+ e−(1−t)|D|

1+ e−|D|
+ i I

e−t |D|
− e−(1−t)|D|

1+ e−|D|
.
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Note that ϕ̃(0)= 1+ iC 6= 1 if C 6= 0.

Proof. Since C is a skew-symmetric contraction on V, the operators 1± iC on VC

are symmetric, so that we obtain a function

ϕ̃ : [0, 1] → B(VC), ϕ̃(t) := (1+ iC)1−t(1− iC)t , 0≤ t ≤ 1.

Therefore both sides of (15) are defined, and we have to show that

(16) 〈v, ϕ̃(t)w〉VC
= 〈1t/2v,1t/2w〉 for v,w ∈ VC.

For the skew-hermitian contraction Ĉ on H, we likewise obtain bounded operators

ϕ̂(t) := (1+ i Ĉ)1−t(1− i Ĉ)t , 0≤ t ≤ 1,

and the continuity of the inclusion VC ↪→H implies that

ϕ̂(t)|VC
= ϕ̃(t) : VC→ VC.

From the relation

1=
1− i Ĉ
1+ i Ĉ

,

we further obtain the identity

ϕ̂(t)= (1+ i Ĉ)1t

of selfadjoint operators on H. Let V ′
C

denote the domain of the (possibly) unbounded
selfadjoint operator 1−iC

1+iC on VC. Then, for 0≤ t ≤ 1, V ′
C

is a dense subspace which
is contained in the domain of

( 1−iC
1+iC

)t . For w ∈ V ′
C

, we have

ϕ̃(t)w = (1+ iC)
(

1− iC
1+ iC

)t

w for 0≤ t ≤ 1.

For v ∈ VC and w̃ :=
( 1−iC

1+iC

)t
w we now obtain with (39) from Lemma B.9 the

relation

〈v, ϕ̃(t)w〉VC
= 〈v, (1+ iC)w̃〉VC

= 〈v, w̃〉H =

〈
v,

(
1− iC
1+ iC

)t

w

〉
H

=

〈
v,

(
1− i Ĉ
1+ i Ĉ

)t

w

〉
H
= 〈v,1tw〉H = 〈1

t/2v,1t/2w〉H.

Since both sides of (16) define continuous hermitian forms on VC and the preceding
calculation shows that equality holds on a dense subspace, we obtain (16) for all
v,w ∈ VC.

Next we observe that the polar decomposition of D is given by

D =−I |D| and |D| = log
(

1+ |C |
1− |C |

)
.
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The operator |D| satisfies

(17) e∓|D| =
1∓ |C |
1± |C |

and 1+ e∓|D| =
2

1± |C |
.

Since i I is an involution with the two eigenvalues ±1, comparing the action on
both eigenspaces shows that, for 0≤ t ≤ 1, we have(

1− iC
1+ iC

)t

=

(
1− i I |C |
1+ i I |C |

)t

= e−t |D|i I .

The assertion of the lemma now follows from

ϕ̃(t)= (1+ iC)
(

1− iC
1+ iC

)t

= (1+ i I |C |)e−t |D|i I

= (1+ i I |C |)
(

et |D| 1− i I
2
+ e−t |D| 1+ i I

2

)
= e−t |D|(1+ |C |)

1+ i I
2
+ et |D|(1− |C |)

1− i I
2

= (1+ |C |)
(

e−t |D| 1+ i I
2
+ e−(1−t)|D| 1− i I

2

)
= (1+ e−|D|)−1(e−t |D|(1+ i I )+ e−(1−t)|D|(1− i I )

)
=

e−t |D|
+ e−(1−t)|D|

1+ e−|D|
+ i I

e−t |D|
− e−(1−t)|D|

1+ e−|D|
. �

Remark 4.3. (a) Since C is a strict contraction on V, 1+ iC is injective on VC, so

H̃ := log
(

1+ iC
1− iC

)
= log

(
1+ i I |C |
1− i I |C |

)
= i I |D| = −i D

also defines a selfadjoint operator on the complex Hilbert space VC.
Next we observe that H̃ is a restriction of

L := log
(

1+ i Ĉ
1− i Ĉ

)
=− log1,

the infinitesimal generator of the one-parameter group Ut =1
−i t . For the orthogonal

one-parameter group U V
t :=Ut |V ∈O(V ), it follows that its infinitesimal generator

is a skew-adjoint extension of the skew-adjoint operator D on V, and hence coincides
with D. We therefore have

(18) et D
=1−i t

|V for t ∈ R.

This provides an alternative characterization of the operator D in Lemma 4.2.



140 KARL-HERMANN NEEB AND GESTUR ÓLAFSSON

(b) Let (V, ( · , · )) be a real Hilbert space and (Ut)t∈R be an orthogonal strongly
continuous one-parameter group with skew-symmetric infinitesimal generator D,
i.e., Ut = et D for t ∈ R. Let us assume that ker D = {0}, i.e., the subspace V U of
U -fixed points in V is trivial. Then the polar decomposition D = I |D| can be used
to define a skew-symmetric contraction

C := (−I )
1− e−|D|

1+ e−|D|
with |C | =

1− e−|D|

1+ e−|D|
.

Then the hermitian form

h(v,w) := (v,w)+ i(v,Cw)

defines a positive definite kernel on V (Lemma A.10). Let H denote the correspond-
ing reproducing kernel space and let j : V→H be the natural map. By construction,
|C | has no fixed points, so that 1+C2 is injective, and therefore Lemma A.10(iii)
implies that the complex linear extension jC : VC → H is injective. As the real
part of h is the original scalar product on V, the inclusion V ↪→H is isometric, so
that V ∼= j (V ) is a standard real subspace of H. Since h is U -invariant, it defines
a unitary one-parameter group Û on H. Finally (18) implies that Ût = 1

−i t for
t ∈ R and the modular operator 1 corresponding to j (V ). This shows that every
orthogonal one-parameter group on a real Hilbert space is of the form (18) for a
naturally defined embedding V ↪→H as a standard real subspace.

Before we turn to the associated reflection positive functions, we need the fol-
lowing technical lemma on Fourier expansions of certain operator-valued functions.
In [Cuniberti et al. 2001], this is called the Matsubara formalism. (In view of
[Dereziński and Gérard 2013, Definition 18.49], we have

u+B (t)= G E,β(t) ·
2B(1− e−βB)

1+ e−βB ,

where G E,β is the euclidean thermal Green’s function associated to the positive
operator ε = B.)

Lemma 4.4. Let B ≥ 0 be a selfadjoint operator on the complex Hilbert space H
and let β > 0. We consider the operator-valued functions u±B :R→ B(H) satisfying

u±B (t +β)=±u±B (t) and u±B (t)=
e−t B
± e−(β−t)B

1+ e−βB for 0≤ t ≤ β.

Then u±B are weakly continuous symmetric 2β-periodic with the Fourier expansions

u+B (t)=
∑
n∈Z

cB
2ne2nπ i t/β and u−B (t)=

∑
n∈Z

cB
2n+1e(2n+1)π i t/β

with

cB
n = cB

−n =
(1− (−1)ne−βB)

1+ e−βB ·
2βB

(βB)2+ (nπ)2
for n ∈ Z.
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Proof. (a) Every 2β-periodic continuous function ξ :R→C has a Fourier expansion

ξ(t)=
∑
n∈Z

cneπ int/β with cn =
1

2β

∫ 2β

0
ξ(t)e−π int/β dt.

For the β-periodic function with u+(t) = u+λ (t) := (e
−tλ
+ e−(β−t)λ)/(1+ e−βλ)

for 0≤ t ≤ β we have u+(t +β)= u+(t), so that only even terms appear:

u+(t)=
∑
n∈Z

c2neπ i2nt/β, c2n =
1− e−βλ

1+ e−βλ
2βλ

(βλ)2+ (2πn)2
.

To obtain this formula, we first calculate

aλ,n :=
1
β

∫ β

0
e−tλe−π int/β dt =

∫ 1

0
e−(βλ+π in)t dt

=
1− e−(βλ+π in)

βλ+π i2n
=

1− (−1)ne−βλ

βλ+π i2n
.

Therefore

(1+ e−λβ)c2n = aλ,2n + e−βλa−λ,2n =
1− e−βλ

βλ+ 2nπ i
+ e−βλ

1− eβλ

−βλ+ 2nπ i

=
1− e−βλ

βλ+ 2nπ i
+

1− e−βλ

βλ− 2nπ i
=
(1− e−βλ)2βλ
(βλ)2+ (2nπ)2

For the 2β-periodic function with u−(t)= u−λ (t) := (e
−tλ
−e−(β−t)λ)/(1+e−βλ)

for 0≤ t ≤ β and u−(t +β)=−u−(t) only odd terms appear:

u−(t)=
∑
n∈Z

c2n+1eπ i(2n+1)t/β, c2n+1 =
2βλ

(βλ)2+ ((2n+ 1)π)2
.

This follows from

c2n+1 =
aλ,2n+1− e−βλa−λ,2n+1

1+ e−βλ

=
1

βλ+ (2n+ 1)π i
−

e−βλ(1+ eβλ)
1+ e−βλ

1
−βλ+ (2n+ 1)π i

=
1

βλ+ (2n+ 1)π i
+

1
βλ− (2n+ 1)π i

=
2βλ

(βλ)2+ ((2n+ 1)π)2
.

Note that

cn = c−n =
1− (−1)ne−βλ

1+ e−βλ
2βλ

(βλ)2+ (nπ)2
for n ∈ Z.
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(b) If P denotes the spectral measure of B, we have for v ∈H the relation

〈v, Bv〉 =
∫
∞

0
x d Pv,v(x) with Pv,v = 〈v, P( · )v〉.

This leads for 0≤ t ≤ 2β to

〈v, u±B (t)v〉 =
∫
∞

0
u±λ (t) d Pv,v(λ).

For the operator-valued Fourier coefficients, we thus obtain

〈v, cB
n v〉 =

∫
R

cn(λ) d Pv,v(λ)=
∫

R

1− (−1)ne−βλ

1+ e−βλ
2βλ

(βλ)2+ (nπ)2
d Pv,v(λ)

=

〈
v,
(1− (−1)ne−βB)

1+ e−βB

2βB
(βB)2+ (nπ)2

v

〉
.

This proves the assertion. �

4B. Existence of reflection positive extensions. We now come to one of our main
results on reflection positive extensions. It shows that, for every positive definite
function ψ : R→ Bil(V ) satisfying the β-KMS condition, there exists a reflection
positive function f : Gτ → B(VC) satisfying

ψ(i t)(v,w)= 〈v, f (i t, τ )w〉

for v,w ∈ V, 0≤ t ≤ β. Then the corresponding GNS representation (U f ,H f ) of
the group (T2β)τ ∼=O2(R) is a “euclidean realization” of the unitary one-parameter
group (1−i t/β)t∈R corresponding toψ in the sense that it is obtained by Osterwalder–
Schrader quantization from U f (cf. [Neeb and Ólafsson 2014]). The following
theorem generalizes the results of [Neeb and Ólafsson 2015b] dealing with the
scalar-valued case.

Theorem 4.5 (Reflection positive extensions). Let V ⊆ H be a standard real
subspace and let C = I |C | be the corresponding skew-symmetric strict contraction
on V. We assume that ker C = {0}, so that I defines a complex structure on V. We
define a weakly continuous function ϕ̃ : R→ B(VC) by

ϕ̃(t)= (1+iC)1−t/β(1−iC)t/β for 0≤ t≤β and ϕ̃(t+β)= ϕ̃(t) for t ∈R.

Write

ϕ̃(t)= u+(t)+ i I u−(t) with u±(t) ∈ B(V ), u±(t +β)=±u±(t).

Then

f : Rτ → B(VC), f (t, τ ε) := u+(t)+ (i I )εu−(t), t ∈ R, ε ∈ {0, 1},

is a weak-operator continuous positive definite function satisfying f (t, τ )= ϕ̃(t).
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It is reflection positive with respect to the subset [0, β/2] ⊆ R in the sense that the
kernel

f ((t, τ )(−s, 1))= f (t + s, τ ), 0≤ s, t ≤ β/2,

is positive definite.

Proof. We may, without loss of generality, assume that β = 1. Recall the operator D
from Lemma 4.2. With this lemma, we write

ϕ̃(t)= (1+e−|D|)−1(e−t |D|
+e−(1−t)|D|

+i I (e−t |D|
−e−(1−t)|D|)

)
for 0≤ t ≤ 1.

Using Lemma 4.4 with β = 1 and B = |D|, we get

ϕ̃(t)= u+
|D|(t)+ i I u−

|D|(t) for t ∈ R.

(a) We define f1 : Rτ → B(VC) by f1(t, τ ε) := u+
|D|(t) for t ∈ R, ε ∈ {0, 1}. To

see that f1 is positive definite, it suffices to verify this for its restriction to R

(Lemma 3.6), which follows from the positivity of the Fourier coefficients in the
expansion

u+
|D|(t)=

∑
n∈Z

c|D|2n e2nπ i t with c|D|2n =
1− e−|D|

1+ e−|D|
2|D|

|D|2+ (2nπ)21
≥ 0

(Lemma 4.4). Note that f1 is 1-periodic.

(b) Likewise, the function f2 : Rτ → B(VC) defined by f2(t, τ ε) := u−
|D|(t) for

t ∈ R, ε ∈ {0, 1}, is positive definite because the Fourier coefficients

c|D|2n+1 =
2|D|

|D|2+ ((2n+ 1)π)21
≥ 0 for n ∈ Z

are positive. Note that f2(t + 1, τ ε)=− f2(t, τ ε) for t ∈ R, ε ∈ {0, 1}.

(c) We now consider the function

f̃2(g) := h(g) f2(g) with h(t, τ ε)= (i I )ε for t ∈ R, ε ∈ {0, 1}.

Since h(g) commutes with f2(g′) for g, g′ ∈Rτ , the function f̃2 is positive definite
if h is positive definite (Lemma A.6). As h is constant on the two R-cosets and its
restriction to the 2-element subgroup {1, τ } is a unitary representation, h is positive
definite. We conclude that the B(VC)-valued function f := f1+ f̃2 on Rτ is positive
definite. �

Corollary 4.6. Let V be a real vector space and letψ :R→Bil(V ) be a continuous
positive definite function satisfying the β-KMS condition. Then there exists a
pointwise continuous function f : Rτ → Bil(V ) which is reflection positive with
respect to the subset [0, β/2] ⊆ R and which satisfies

f (t, τ )= ψ(i t) for 0≤ t ≤ β and f (t +β, τ)= f (t, τ ) for t ∈ R.



144 KARL-HERMANN NEEB AND GESTUR ÓLAFSSON

Remark 4.7. The function f̃2 in the proof of Theorem 4.5 is not reflection positive
because f̃2(β, τ ) is a negative operator. This also shows that the natural decom-
position f = f1 + f̃2 into even and odd parts is not compatible with reflection
positivity.

4C. Integral representation of reflection positive functions. We now describe an
integral representation of the reflection positive function f : Rτ → Bil(V ) which
corresponds to the decomposition of the corresponding unitary representation of Rτ .
With

ϕ̃(t)= (1+ iC)1−t/β(1− iC)t/β for 0≤ t ≤ β,

where C ∈ B(V ) is a skew-symmetric strict contraction, we first decompose V into
V0 := ker C and V1 := V⊥0 = CV . Then the polar decomposition C = I |C | yields
a complex structure I on V1. Accordingly, we write ϕ̃ = ϕ̃0 + ϕ̃1, where ϕ̃0 = 1
is constant. This component leads to the constant function f0(t, τ )= 1. We now
assume that V = V1, i.e., that C is injective. Then I is a complex structure on V.

Proposition 4.8. If ker C = {0} and P denotes the spectral measure of the sym-
metric operator |D| = 1

β
log 1+|C |

1−|C | on V, then we have the integral representation

(19) f (t, τ ε)=
∫
(0,∞)

u+λ (t)+ u−λ (t)(i I )ε d P(λ),

where u±λ : R→ R are defined by u±λ (t +β)=±u±λ (t) and

u±λ (t) :=
e−tλ
± e−(β−t)λ

1+ e−βλ
for 0≤ t ≤ β.

Proof. First we observe that |D| is a positive symmetric operator with trivial kernel
which commutes with I. We therefore have |D| =

∫
(0,∞) λ dP(λ). With the notation

from Lemma 4.4, we then have

f (t, τ ε)= u+
|D|(t)+ u−

|D|(t)(i I )ε for t ∈ R, ε ∈ {0, 1}.

From the integral representations u±
|D|(t)=

∫
(0,∞) u±λ (t) d P(λ), we obtain (19). �

Remark 4.9. (a) For 0≤ t ≤ β, we have in particular

f (t, τ ε)=
∫
(0,∞)

e−tλ
+ e−(β−t)λ

1+ e−βλ
1+

e−tλ
− e−(β−t)λ

1+ e−βλ
(i I )ε d P(λ).

(b) The most basic type is obtained for D= λ1, λ> 0, which, for 0≤ t ≤β, leads to

f (t, τ ε)=
(e−tλ

+ e−(β−t)λ)1+ (e−tλ
− e−(β−t)λ)(i I )ε

1+ e−βλ
= u+λ (t)1+ u−λ (t)(i I )ε.

The simplest nontrivial example arises for V = R2 with I =
( 0

1
−1

0

)
.
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(c) Every Borel spectral measure P on (0,∞) which commutes with I defines a pos-
itive operator |D|=

∫
∞

0 λ d P(λ) and we may put D :=−I |D|. Then ker |D|= 0, so

|C | :=
eβ|D|− 1
eβ|D|+ 1

= tanh
(
β|D|

2

)
is a symmetric contraction with trivial kernel commuting with I, and therefore
C := I |C | is a skew-symmetric contraction with polar decomposition I |C | and

|D| =
1
β

log
(

1+ |C |
1− |C |

)
.

4D. Characterizing reflection positive extensions. In Theorem 4.5 we obtained
positive definite extensions to all of Rτ for certain functions on the coset Ro {τ }.
In this section we describe an intrinsic characterization of those weakly continuous
reflection positive functions f : Rτ → B(VC) arising from this construction. First
we observe that we can recover ψ from f :

Lemma 4.10. If f : Rτ → Bil(V ) is reflection positive and pointwise continuous,
then there exists a unique β-KMS positive definite function ψ : R→ Bil(V ) with

f (t, τ )= ψ(i t) for 0≤ t ≤ β.

Proof. First we observe that the function ϕ(t) := f (t, τ ) has values in Herm(VC)

and satisfies

(20) ϕ(t +β)= ϕ(t) for t ∈ R.

Reflection positivity implies that the kernel ϕ
( t+s

2

)
for 0 ≤ t, s ≤ β is positive

definite. By [Neeb and Ólafsson 2015b, Theorem B.3], there exists a Bil+(V )-
valued measure µ such that

(21) ϕ(t)=
∫

R

e−λt dµ(λ) for 0< t < β.

The continuity of ϕ on [0, β] actually implies that the integral representation
also holds on the closed interval [0, β] by the monotone convergence theorem.
In particular, the measure µ is finite. Therefore its Fourier transform ψ(t) :=∫

R
ei tλ dµ(λ) is a pointwise continuous Bil(V )-valued positive definite function

on R. Further, (20) implies

(22) eβλ dµ(−λ)= dµ(λ),

and ϕ(t)=ψ(i t) holds for the β-KMS function ψ :R→Bil(V ) by Theorem 4.5. �

Before we describe a realization of the GNS representation (U f ,H f ) in spaces
of sections of a vector bundle, let us recall the general background for this.
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Remark 4.11. For a B(V )-valued positive definite function f : G→ B(V ), the re-
producing kernel Hilbert space with kernel K (g, h)=ϕ(gh−1)=Kg K ∗h is generated
by the functions

Kh,w := K ∗hw with Kh,w(g)= Kg K ∗hw = K (g, h)w = ϕ(gh−1)w.

The group G acts on this space by right translations

(Ugs)(h) := s(hg).

If P ⊆ G is a subgroup and (ρ, V ) is a unitary representation for which

f (hg)= ρ(h) f (g) for all g ∈ G, h ∈ P,

then

H f ⊆ F(G, V )ρ := {s : G→ V : s(hg)= ρ(h)s(g) for all g ∈ G, h ∈ P}.

Therefore H f can be identified with a space of sections of the associated bundle

V := (V ×P G)= (V ×G)/P,

where P acts on the trivial vector bundle V ×G over G by h.(v, g)= (ρ(h)v, hg).

To derive a suitable characterization of the functions f arising in Theorem 4.5, we
identify 2β-periodic function s on R with pairs of function (s0, s1) via s = s0+ s1,
where s0 is β-periodic and s1(β + t) = −s1(t). Accordingly, any 2β-periodic
function s : R→ VC defines a function

s̃ : R→ V 2
C, s̃ = (s1, s2) with s̃(β + t)=

(
1 0
0 −1

)
s̃(t).

In this sense, s̃ is a section of the vector bundle over Tβ with fiber V 2
C

defined by
the representation of βZ, specified by

ρ(β)=

(
1 0
0 −1

)
.

Splitting the B(V )-valued positive definite function

f : Rτ → B(V ), f (t, τ ε)= u+
|D|(t)+ u−

|D|(t)(i I )ε for t ∈ R, ε ∈ {0, 1}

into even and odd parts with respect to the β-translation, we obtain:

Lemma 4.12. For the subgroup P := (Zβ)τ ∼=Zβo{1, τ } of G :=Rτ , we consider
the unitary representation ρ : P→ U(V 2

C
) defined by

ρ(β, 1) :=
(

1 0
0 −1

)
and ρ(0, τ ) :=

(
1 0
0 i I

)
,

where I is a complex structure on the real Hilbert space V commuting with the
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positive operator |D|. Then

f ] : Rτ → B(V 2)∼= M2(B(V )), f ](t, τ ε) :=

(
u+
|D|(t) 0

0 u−
|D|(t)(i I )ε

)
is a positive definite function satisfying

(23) f ](hg)= ρ(h) f ](g) for h ∈ P, g ∈ G.

The corresponding GNS representation (U f ],H f ]) is equivalent to the GNS repre-
sentation (U f ,H f ).

Proof. The first assertion follows from

f ]((0, τ )(t, τ ε))= f ](−t, τ ε+1)=

(
u+
|D|(−t) 0

0 u−
|D|(−t)(i I )ε+1

)

=

(
u+
|D|(t) 0

0 u−
|D|(t)(i I )ε+1

)
and

f ](β + t, τ ε)=

(
u+
|D|(t) 0

0 −u−
|D|(t)(i I )ε

)
.

As the GNS representation (U f ,H f ) decomposes under the involution U f
β into ±1-

eigenspaces, this representation is equivalent to the GNS representation (U f ],H f ])

corresponding to f ]. �

Remark 4.13. (a) The preceding lemma implies that, if the complex structure I on
V is fixed, then the relation (23) determines f ] completely in terms of the function

[0, β] → M2(B(V )), t 7→ f ](t, τ )=
(

Reϕ(t) 0
0 i Imϕ(t)

)
,

so that ϕ determines f in a natural way.

(b) This lemma also shows that we may identify the Hilbert space H f ∼=H f ] as
a space of section of a Hilbert bundle V 2

×ρ G over the circle Tβ ∼= Rτ/H with
fiber V 2.

(c) Every function s : Rτ → V 2 satisfying s(hg) = ρ(h)s(g) for h ∈ (βZ)τ is
determined by its restriction s̃ to the subgroup R, which satisfies

s̃(β + t)= ρ(β, 1)s̃(t) for t ∈ R.

The action of τ is in this picture given by

(24) (τ.s̃)(t) := s(t, τ )= s((0, τ )(−t, 1))= ρ(τ)s̃(−t).
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Remark 4.14. (a) In view of (22), there exists a Bil+(V )-valued measure ν on
[0,∞) for which we can write

(25) dµ(λ)= dν(λ)+ eβλdν(−λ).

This leads, for 0≤ t ≤ β and ν = ν1+ iν2, to

(26) ϕ(t)=
∫
∞

0
e−tλ
+ e−(β−t)λ dν1(λ)+ i

∫
∞

0
e−tλ
− e−(β−t)λ dν2(λ).

In particular, the most elementary nontrivial examples correspond to the Dirac
measures of the form ν = δλ · (γ + iω), where δλ is the Dirac measure in λ > 0:

ϕ(t)= (e−tλ
+ e−(β−t)λ)γ + i(e−tλ

− e−(β−t)λ)ω = e−tλh+ e−(β−t)λh̄,

where h := γ + iω ∈ Bil+(V ). Writing ω(v,w)= γ (v,Cw) (Corollary A.9) and
replacing V by the real Hilbert space defined by the positive semidefinite form γ

on V, we obtain the B(VC)-valued function

ϕ̃(t)= (e−tλ
+e−(β−t)λ)+ iC(e−tλ

−e−(β−t)λ)= e−tλ(1+ iC)+e−(β−t)λ(1− iC)

for 0≤ t ≤ β, which leads to

f (t, τ ε)= (1+ e−βλ)(u+λ (t)1+ u−λ (t)|C |(i I )ε) for t ∈ R, ε ∈ {0, 1}.

(b) This can also be formulated in terms of forms. With γ (v,w)= 〈v,w〉V and

h(v,w)= γ (v,w)+ iω(v,w)= 〈v, (1+ iC)w〉VC
= 〈v, (1+ i I |C |)w〉VC

,

we get
f (t, τ ε)(v,w)= 〈v, (u+λ (t)1+ u−λ (t)|C |(i I )ε)w〉.

4E. Realization by resolvents of the Laplacian. We have seen in the preceding
subsection how to obtain a realization of the Hilbert space H f as a space H f ] of
sections of a Hilbert bundle V with fiber V 2

C
over the circle Tβ = R/βZ. In this

section we provide an analytic description of the scalar product on this space if
|D| = λ1 for some λ > 0. We shall see that it has a natural description in terms of
the resolvent (λ2

−1)−1 of the Laplacian of Tβ acting on sections of the bundle V.
On the circle group T2β , we consider the normalized Haar measure given by∫

T2β

h(t) dµT2β =
1

2β

∫ 2β

0
h(t) dt,

where we identify functions h on T2β with 2β-periodic functions on R.
As in Lemma 4.12, we write

f ](t, τ ε)=
(

u+λ (t)1 0
0 u−λ (t)(i I )ε

)
∈ B(V 2

C)
∼= M2(B(VC)),
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For χn(t)= eπ int/β we then have

u+λ =
∑
n∈Z

cλ2nχ2n and u−λ =
∑
n∈Z

cλ2n+1χ2n+1,

where

cλn = cλ
−n =

1− (−1)ne−βλ

1+ e−βλ
·

2βλ
(βλ)2+ (nπ)2

=
1− (−1)ne−βλ

1+ e−βλ
·
2λ
β
·

1
λ2+ (nπ/β)2

for n ∈ Z (the rightmost factors are called bosonic Matsubara coefficients if n is
even and fermionic if n is odd [Dereziński and Gérard 2013, §18]). With

(27) cλ
+
:=

1− e−βλ

1+ e−βλ
2λ
β
= tanh

(
βλ

2

)
2λ
β

and cλ
−
:=

2λ
β
,

we thus obtain

(28) cλ2n =
cλ
+

λ2+ (2nπ/β)2
, cλ2n+1 =

cλ
−

λ2+ ((2n+ 1)π/β)2
.

The following proposition shows that the positive operator (λ2
−1)−1 on the

Hilbert space of L2-section of V defines a unitary representation of Rτ which is
unitarily equivalent to the representation on H f (cf. Lemma 4.12).

Proposition 4.15. For λ > 0, let Hλ be the Hilbert space obtained by completing
the space

0ρ := {s ∈ C∞(Rτ , V 2
C) : s(hg)= ρ(h)s(g) for all g ∈ Rτ , h ∈ (Zβ)τ )}

with respect to

〈s1, s2〉 :=
1

2β

∫ 2β

0
〈s1(t, 1), ((λ2

−1)−1s2)(t, 1)〉 dt.

On Hλ we have a natural unitary representation Uλ of Rτ by right translation
which is unitarily equivalent to the GNS representation (U f ],H f ]). Here the
corresponding j-map is given by

(29) j : V →Hλ, j
(
v1

v2

)
=

√
cλ+
∑
n∈Z

χ2n

(
v1

0

)
+

√
cλ−
∑
n∈Z

χ2n+1

(
0
v2

)
.

Proof. We identify 0ρ with the space

{s ∈ C∞(R, V 2
C) : s(β + t)= ρ(β)s(t) for all t ∈ R}

(Remark 4.13). Then s =
( s+

s−
)
, where s+ is β-periodic and s− is β-antiperiodic.

Accordingly, we have an orthogonal decomposition Hλ =H+λ ⊕H−λ , where H±λ =
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{s ∈Hλ : s(β + t)=±s(t) for all t ∈ R}. Then Uλ is given by

(Uλ
t s)(x)= s(t + x) for t, x ∈ R and (Uλ

τ s)(x)=
(

s+(−x)
(i I )s−(−x)

)
.

From the Fourier expansion s =
∑

n∈Z χnsn and the orthonormality of the χn ,
we then derive

(30) 〈s1, s2〉Hλ
=

∑
n∈Z

〈s1,n, s2,n〉

λ2+ (nπ/β)2
.

For the map j : V →Hλ in (29), the image is Uλ
R-generating for Hλ because the

projection onto each Fourier component generates the first or the second component
of V 2

C
, according to parity. Therefore the unitary representation (Uλ,Hλ) is equiva-

lent to the GNS representation of the positive definite function f̃ : Rτ → B(V 2
C
),

given by
〈v, f̃ (g)w〉 = 〈 j (v),U τ

g j (w)〉Hλ
.

From

Uλ
(t,τ ε) j (v)=

√
cλ+
∑
n∈Z

χ2nχ2n(t)
(
v1

0

)
+

√
cλ−
∑
n∈Z

χ2n+1χ2n+1(t)
(

0
(i I )εv2

)
,

we derive with (28),

〈v, f̃ (t, τ ε)w〉 = cλ
+

∑
n∈Z

χ2n(t)
λ2+ (2nπ/β)2

〈v1, w1〉

+ cλ
−

∑
n∈Z

χ2n+1(t)
λ2+ ((2n+ 1)π/β)2

〈v1, (i I )εw2〉

=

∑
n∈Z

χ2n(t)cλ2n〈v1, w1〉+
∑
n∈Z

χ2n+1(t)cλ2n+1〈v2, (i I )εw2〉

= 〈v1, u+λ (t)w1〉+ 〈v2, u−λ (t)(i I )εw2〉 = 〈v, f ](t, τ ε)w〉.

This shows that f̃ = f ], which completes the proof. �

Remark 4.16. From u+λ =
∑

n∈Z cλ2nχ2n , it follows that

(λ2
−1)u+λ =

∑
n∈Z

cλ2n

(
λ2
+
(2πn)2

β2

)
χ2n = cλ

+

∑
n∈Z

χ2n = cλ
+
δ0,

where the latter relation means that

s+(0)=
1

2β

∑
n∈Z

∫ 2β

0
s+(t)χ2n(t) dt
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for every smooth β-periodic function s+ on R. This relation can also be written as

(λ2
−1)−1δ0 =

1
cλ+

u+λ .

From u−λ =
∑

n∈Z cλ2n+1χ2n+1, it follows that

(λ2
−1)u−λ =

∑
n∈Z

cλ2n+1

(
λ2
+
(2n+ 1)2π2

β2

)
χ2n+1 = cλ

−
χ1
∑
n∈Z

χ2n.

As every smooth β-antiperiodic function s− is of the form s− = χ−1s+, where s+
is β-periodic, we obtain, in the sense of distributions,

〈(λ2
−1)u−λ , s−〉 = cλ

−
s+(0)= cλ

−
s−(0)= 〈cλ−δ0, s−〉,

and therefore

(λ2
−1)−1δ0 =

1
cλ−

u−λ

on β-antiperiodic functions. Combining all this, we get

((λ2
−1) f ])(t, τ ε)=

(
(λ2
−1)u+λ 1 0

0 (λ2
−1)u−λ (i I )ε

)
= δ0

(
cλ
+

1 0
0 cλ

−
(i I )ε

)
as an operator-valued distribution on the space of smooth sections of V (cf. also the
discussion of thermal euclidean Green’s functions in [Dereziński and Gérard 2013,
Definition 18.49]).

5. The case β =∞

In the context of C∗-dynamical systems, it is well known that the positive energy
condition for the unitary one-parameter group implementing the automorphisms of
a C∗-algebra A in a representation can be viewed as a KMS condition for β =∞
(cf. [Bratteli and Robinson 1981]). For reflection positive representations of G =R,
this case corresponds to G+ = R+, which has been treated in [Neeb and Ólafsson
2014; 2015a] (cf. also the discussion of euclidean Green’s functions in [Dereziński
and Gérard 2013, Definition 18.48]). The following theorem makes this analogy
also transparent in the context of our Theorem 2.6.

If ψ : R→ Bil(V ) is a positive definite function satisfying the KMS condition
for β > 0, then its extension to Sβ is pointwise bounded (Theorem 2.6). This
observation explains the assumptions in the following theorem.

Theorem 5.1 (KMS condition for β =∞). Let V be a real vector space and let
ψ : R→ Bil(V ) be a pointwise continuous positive definite function. Then the
following are equivalent:
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(i) ψ extends to a pointwise bounded function on the closed upper half plane
which is pointwise holomorphic on C+.

(ii) There exists a Bil+(V )-valued regular Borel measure µ on [0,∞) satisfying

ψ(t)=
∫
∞

0
ei tλ dµ(λ).

(iii) The GNS representation (Uψ ,Hψ) has spectrum contained in [0,∞).

If this is the case, then the function

f (t, τ ε) := ψ(i |t |) for t ∈ R, ε ∈ {0, 1},

on Rτ is reflection positive with respect to R+ = [0,∞).

Proof. (i)⇒ (ii): First we use [Neeb and Ólafsson 2015b, Proposition B.1] to write
ϕ as the Fourier transform of a Bil+(V )-valued regular Borel measure µ on R:
ψ(t) =

∫
R

ei tλ dµ(λ). Evaluating in v ∈ VC, we obtain for the positive measure
µv,v := µ( · )(v, v) the relation

ψ(t)(v, v)=
∫

R

ei tλ dµv,v(λ).

This function extends to a bounded holomorphic function ψ on C+. In particular,
the Laplace transform L(µv,v)(t) = ψ(i t)(v, v) is bounded, which implies that
supp(µv,v) ⊆ [0,∞) (cf. [Neeb 2000, Remark V.4.12]). This implies that µ is
supported on [0,∞).

(ii)⇒ (iii): Write Ut := Uψ
t = ei t H with the selfadjoint generator H. We show

that H ≥ 0. Let E be the spectral measure of H, so that H =
∫

R
λ d E(λ) and

Ut =
∫

R
ei tλ d E(λ). It suffices to show that, for every f ∈ L1(R) for which the

Fourier transform f̂ (λ)=
∫

R
eiλt f (t) dt vanishes on R+, the operator

U f =

∫
R

f (t)ei t H dt =
∫

R

∫
R

f (t)ei tλ d E(λ) dt

=

∫
R

∫
R

f (t)ei tλ dt d E(λ)=
∫

R

f̂ (λ) d E(λ)= f̂ (H)

vanishes. For v,w ∈ V, we obtain with (ii) that

〈 j (v),U f j (w)〉 =
∫

R

f (t)〈 j (v),Ut j (w)〉 dt =
∫

R

f (t)
∫
∞

0
ei tλ dµv,w(λ) dt

=

∫
∞

0

∫
R

f (t)ei tλ dt dµv,w(λ)=
∫
∞

0
f̂ (λ) dµv,w(λ)= 0

if f̂ vanishes on R+. This proves that j (V ) ⊆ ker(U f ) and since U f is an inter-
twining operator and the subspace j (V )⊆Hψ is generating, it follows that U f = 0.
This implies that H ≥ 0.
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(iii)⇒ (i): Write Ut :=Uψ
t = ei t H and assume that H ≥ 0. The spectral calculus

for selfadjoint operators now implies that Ûz := ei zH , Im z ≥ 0 defines a strongly
continuous representation on the upper half plane C+ which is holomorphic on the
interior and whose range consists of contractions ([Neeb 2000, Chapter VI]). Then

ψ̂(z)(v,w)= 〈 j (v), Ûz j (w)〉 = 〈 j (v), ei zH j (w)〉, v, w ∈ V, Im z ≥ 0,

provides the bounded analytic extension of ψ to C+.
Now we assume that (i)–(iii) are satisfied. Writing ψ(t)(v,w)= 〈 j (v),Ut j (w)〉

for a linear map j : V →H and a unitary one-parameter group Ut = ei t H on H, we
have H ≥ 0 by (iii) and

f (t, τ ε)= 〈 j (v), e−|t |H j (w)〉,

so that the positive definiteness of f follows from the positive definiteness of the
function t 7→ e−|t |H on R [Neeb and Ólafsson 2014, Proposition 4.1]. �

Appendix A. Some background on positive definite kernels

In this appendix we collect precise statements of some basic facts on positive
definite kernels and functions to keep the paper more self-contained.

Form-valued positive definite kernels.

Definition A.1. Let X be a set and V be a real vector space. We write Bil(V )=
Bil(V,C) for the space of complex-valued bilinear forms on V. We call a map
K : X× X→Bil(V ) a positive definite kernel if the associated scalar-valued kernel

K [
: (X × V )× (X × V )→ C, K [((x, v), (y, w)) := K (x, y)(v,w)

is positive definite.2 The corresponding reproducing kernel Hilbert space HK [ ⊆

CX×V is generated by the elements K [
x,v, x ∈ X, v ∈ V, with the inner product

〈K [

(x,v), K [

(y,w)〉 = K (x, y)(v,w)=: K [((x, v), (y, w))=: K [
y,w(x, v),

so that, for all f ∈HK [ , we have

f (x, v)= 〈K [
x,v, f 〉.

We identify HK [ with a subspace of (V ∗)X by identifying f ∈HK [ with the function
f ∗ : X→ V ∗, f ∗(x) := f (x, · ). We call

HK := { f ∗ : f ∈HK [} ⊆ (V ∗)X

2This definition is adapted to our convention that scalar products are linear in the second argument.
Accordingly, a kernel K : X × X→ Bil(V ) is positive definite in the sense of Definition A.1 if and
only if the kernel (x, y) 7→ K (x, y)> is positive definite in the sense of [Neeb and Ólafsson 2015b].
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the (vector-valued) reproducing kernel space associated to K . The elements

Kx,v := (K [
x,v)
∗ with Kx,v(y)= K (y, x)( · , v) for x, y ∈ X, v, w ∈ V,

then form a dense subspace of HK with

(31) 〈Kx,v, K y,w〉 = K (x, y)(v,w).

Example A.2. If V is a complex Hilbert space, X is a set and K : X × X→ B(V )
is an operator-valued kernel, then K is called positive definite if the corresponding
kernel

K̃ : (X × V )× (X × V )→ C, K̃ ((x, v), (y, w)) := 〈v, K (x, y)w〉

is positive definite [Neeb 2000, Definition I.1.1], and this means that the kernel

K ′ : X × X→ Sesq(V )⊆ Bil(V ), K ′(x, y)(v,w) := 〈v, K (x, y)w〉

is positive definite.

If X = G is a group and the kernel K is invariant under right translations, then it
is of the form K (g, h)= ϕ(gh−1) for a function ϕ : G→ Bil(V ).

Definition A.3. Let G be a group and let V be a real vector space. A function
ϕ :G→Bil(V ) is said to be positive definite if the Bil(V )-valued kernel K (g, h) :=
ϕ(gh−1) is positive definite.

The following proposition ([Neeb and Ólafsson 2015b, Proposition A.4]) gener-
alizes the GNS construction to form-valued positive definite functions on groups.

Proposition A.4 (GNS-construction). Let V be a real vector space.

(a) Let ϕ : G→ Bil(V ) be a positive definite function. Then (Uϕ
g f )(h) := f (hg)

defines a unitary representation of G on the reproducing kernel Hilbert space
Hϕ ⊆ (V ∗)G with kernel K (g, h)= ϕ(gh−1) and the range of the map

j : V →Hϕ, j (v)(g)(w) := ϕ(g)(w, v), j (v)= K [

1,v,

is a cyclic subspace, i.e., Uϕ
G j (V ) spans a dense subspace of H. We then have

(32) ϕ(g)(v,w)= 〈 j (v),Uϕ
g j (w)〉 for g ∈ G, v, w,∈ V .

(b) If , conversely, (U,H) is a unitary representation of G and j : V →H a linear
map whose range is cyclic, then

ϕ : G→ Bil(V ), ϕ(g)(v,w) := 〈 j (v),Ug j (w)〉

is a Bil(V )-valued positive definite function and (U,H) is unitarily equivalent to
(Uϕ,Hϕ).
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Remark A.5. If ϕ : G→ Bil(V ) is a positive definite function, then (32) shows
that, if Ṽ := j (V ), which is the real Hilbert space defined by completing V with
respect to the positive semidefinite form ϕ(1), then

ϕ̃(g)(v,w)= 〈v,Ugw〉

defines a positive definite function

ϕ̃ : G→ Bil(Ṽ ) with ϕ̃(g)( j (v), j (w))= ϕ(g)(v,w) for v,w ∈ V .

Therefore it often suffices to consider Bil(V )-valued positive definite functions
for a real Hilbert space V for which ϕ(1) is a positive definite hermitian form
on V whose real part is the scalar product on V. In terms of (32), this means that
j : V →H is an isometric embedding of the real Hilbert space V.

Products of operator-valued kernels.

Lemma A.6. If K j : X × X → B(V ), j = 1, 2, are two positive definite kernels
with the property that

K1(x, y)K2(x ′, y′)= K2(x ′, y′)K1(x, y) for x, x ′, y, y′ ∈ X,

then the product kernel K := K1 · K2 is also positive definite.

Proof. Let x1, . . . , xk . We have to show that the operator

C := (K1(x j , xk)K2(x j , xk))1≤ j,k≤n ∈ Mn(B(V ))∼= B(V n)

is positive (cf. [Neeb 2000, Remark I.1.3]).
Let A j ⊆ B(V ) denote the von Neumann algebra generated by the values of K j .

Then A1 and A2 commute. Further, the matrices

A(`) := (K`(x j , xk))1≤ j,k≤n ∈ Mn(A`), `= 1, 2,

are positive, so [Lance 1995, Lemma 4.3] implies that the matrix

D := (K1(x j , xk)⊗ K2(x j , xk)) ∈ Mn(A1⊗A2)

is positive. Since C is the image of D under the canonical representation of
Mn(A1⊗A2) on V n , it follows that C is positive. �

From real to complex-valued kernels. In this section we take a brief look at
the interplay between real and complex-valued positive definite kernels. Here
Corollary A.9 is of central importance because it shows how the positive definiteness
of a complex-valued form h = γ + iω on a real vector space V leads to a skew-
symmetric contraction on the real Hilbert space Vγ .
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Lemma A.7. Let K : X × X → C be a positive definite kernel. Then the corre-
sponding Hilbert space HK ⊆ CX is invariant under complex conjugation such that
σ( f ) := f defines an antilinear isometry on HK if and only if K is real-valued.

Proof. The invariance requirement implies the relation

〈 f, Kx 〉 = f (x)= 〈Kx , σ ( f )〉 = 〈 f, σ (Kx)〉 for f ∈HK ,

and therefore σ(Kx)= Kx , i.e., K is real-valued. If, conversely, K is real-valued,
then HK =HR

K ⊕ iHR
K is an orthogonal sum of real Hilbert spaces, so that complex

conjugation acts on HK as an isometry. �

Proposition A.8. Let A, B : X × X → R be real kernels on the set X. Then the
kernel

K = A+ i B : X × X→ C

is positive definite if and only if

(a) A is positive definite, and

(b) there exists a skew-symmetric contractive operator C on the real reproducing
kernel Hilbert space HR

A ⊆ RX with

B(x, y)= 〈Ax ,C Ay〉 = (C Ay)(x) for x, y ∈ X.

Proof. Necessity: If K is positive definite, then so is K = A− i B, and this implies
that A = 1

2(K + K ) is positive definite. As A− i B = 2A− K is positive definite,
[Neeb 2000, Theorem I.2.8]3 implies the existence of a bounded operator D ≥ 0 on
the complex reproducing kernel Hilbert space HA ⊆ CX with

K y(x)= K (x, y)= 〈Ax , D Ay〉 = (D Ay)(x) for x, y ∈ X.

From Lemma A.7 we know that HA=HR
A⊕iHR

A. From the relation Ay+i By=D Ay

for every y ∈ X and the fact that B is real-valued it thus follows that D = 1+ iC
for a bounded operator C on HR

A satisfying C Ay = By for every y ∈ X. Now
D = D∗ ≥ 0 implies that C =−C> is a contraction and

B(x, y)= (C Ay)(x)= 〈Ax ,C Ay〉 for x, y ∈ X.

Sufficiency: Suppose, conversely, that A is positive definite and that C is a skew-
symmetric contraction on the real Hilbert space HR

A. Then the hermitian operator
1+ iC on HC

A is nonnegative, and therefore its symbol

K (x, y) := ((1+ iC)Ay)(x)= A(x, y)+ i(C Ay)(x)

is a positive definite kernel on X. �
3For two positive definite kernels K and Q on a set X, the relation HK ⊆ HQ is equivalent to

λQ − K being positive definite for some λ > 0, and this in turn is equivalent to the existence of a
bounded positive operator B on HQ with ‖B‖ ≤ λ satisfying K (x, y)= 〈Qx , B Qy〉 = (B Qy)(x) for
x, y ∈ X [Neeb 2000, Theorem I.2.8].
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Corollary A.9. Let V be a real vector space, let γ : V×V→R be a symmetric and
ω : V × V → R be a skew-symmetric bilinear form and consider the corresponding
hermitian form h := γ + iω. Then the following are equivalent:

(i) h is a positive definite kernel on V.

(ii) γ is positive semidefinite and there exists a skew-symmetric bounded operator
C on the real Hilbert space Vγ obtained by completing V/{v ∈ V : γ (v, v)= 0}
such that ω(v,w)= 〈[v],C[w]〉Vγ , where [v] denotes the image of v in Vγ .

(iii) γ is positive semidefinite and

(33) ω(v,w)2 ≤ γ (v, v)γ (w,w) for v,w ∈ V .

Proof. (i)⇔ (ii): In view of Proposition A.8, the kernel h is positive definite if and
only if the kernel γ is positive definite, i.e., γ is a positive semidefinite form, and
the kernel ω can be written as

(34) ω(v,w)= 〈[v],C[w]〉Vγ for v,w ∈ V,

where C is a skew-symmetric contraction on the real Hilbert space Vγ .

(ii)⇒ (iii): (34) and ‖C‖ ≤ 1 imply that

ω(v,w)2 ≤ ‖C‖2‖[v]‖2‖[w]‖2 = γ (w,w)γ (v, v).

(iii)⇒ (ii): Suppose, conversely, that γ is positive semidefinite and that (33) is
satisfied. Then ω defines a continuous bilinear form on the real Hilbert space Vγ
with norm ≤ 1. Hence there exists a skew-symmetric contraction C ∈ B(Vγ )
satisfying (34). This proves the corollary. �

Lemma A.10. Let h = γ + iω be a positive definite kernel as in Corollary A.9, let
Hh ⊆ Hom(V,C) be the corresponding reproducing kernel Hilbert space and let
j : V →Hh, j (v)= h( · , v) be the canonical map. The following assertions hold:

(i) j is injective if and only if γ is positive definite, i.e., defines an inner product
on V.

(ii) The complex linear extension jC : VC → Hh, v + iw 7→ j (v)+ i · j (w) is
injective if and only if

ω(v,w)2 < γ (v, v)γ (w,w) for 0 6= v,w ∈ V .

(iii) Suppose that γ is positive definite, that (V, γ ) is complete and that ω(v,w)=
〈[v],C[w]〉 for an operator C on HR

γ
∼= (V, γ ). Then jC is injective if and only

if ‖Cv‖< ‖v‖ for every nonzero v ∈HR
γ .

Proof. (i) In view of 〈 j (v), j (w)〉 = 〈h( · , v), h( · , w)〉 = h(v,w), we have
‖ j (v)‖2 = h(v, v) = γ (v, v), so that j is injective if and only if γ is positive
definite.
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(ii) First we calculate

‖ jC(v+ iw)‖2 = ‖ j (v)+ i · j (w)‖2 = γ (v, v)+ γ (w,w)+ 2 Re〈 j (v), i · j (w)〉

= γ (v, v)+ γ (w,w)+ 2 Re ih(w, v)

= γ (v, v)+ γ (w,w)+ 2ω(v,w).

Writingω(v,w)=〈γw,Cγv〉 as in (34), it follows that jC(v+iw)=0 is equivalent to

(35) 2〈γv,Cγw〉 = 〈γv, γv〉+ 〈γw, γw〉.

Next we observe that j (v) = −i · j (w) implies γ (v, v) = ‖ j (v)‖2 = ‖ j (w)‖2 =
γ (w,w), which leads to

〈γv,Cγw〉 = ‖γv‖2 = ‖γw‖2 = ‖γv‖ · ‖γw‖.

As C is a contraction, this is equivalent to Cγv = γw by the Cauchy–Schwarz
inequality.

If, conversely, there exists a nonzero v∈V with Cγv=γw and γ (v, v)=γ (w,w),
then jC(v+ iw)= 0 by (35). This proves (ii).

(iii) If (V, γ ) is complete, j (V )∼= (V, γ ) is closed in Hh . Therefore C j (V )⊆ j (V ),
and (iii) follows from the preceding discussion. �

Remark A.11. If V ⊆ H is a standard real subspace (Definition 2.4), then the
kernel h(v,w) := 〈v,w〉 on V has the property that the corresponding reproducing
kernel Hilbert space is H and the inclusion is the corresponding map j : V →H.
In particular, its complex linear extension is injective.

If, conversely, h = γ + iω is a positive definite bilinear kernel on a real vector
space V, then j (V ) is a standard real subspace of the corresponding complex Hilbert
space Hh if and only if (V, γ ) is complete (which is equivalent to the closedness
of j (V )) and the complex linear extension jC : VC → Hh is injective, which is
equivalent to j (V )∩ i · j (V )= {0} (cf. Lemma A.10(iii)).

Example A.12. Consider the context of Proposition A.8, where K = A+ i B is a
positive definite kernel and C ∈ B(HR

A) is such that By = C Ay for y ∈ X. Then

V := (1+ iC)HR
A ⊆HA

is a real subspace. For the isometric antilinear involution defined on HA by σ( f )= f ,
we then have for every f ∈HR

A the relation

〈σ(1+ iC) f, (1+ iC) f 〉 = ‖ f ‖2−‖C f ‖2 ≥ 0.

Therefore (HA, V, σ ) is a reflection positive real Hilbert space (Proposition B.3).
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Real parts of positive definite functions. Let ϕ : G → C be a positive definite
function on the group G. Then ϕ is also positive definite, so that Reϕ = 1

2(ϕ+ϕ)

is positive definite as well. From Lemma A.7(a) we know that a positive definite
function ϕ on G is real-valued if and only if the corresponding reproducing kernel
Hilbert space Hϕ is invariant under conjugation with ‖ f ‖= ‖ f ‖ for f ∈Hϕ . Based
on these observations, one would like to understand the set of all positive definite
functions with a given real part. A natural description of this set in the spirit of the
present paper is provided by the following theorem.

Theorem A.13 (Complex extensions of real positive definite functions). Let
ϕ :G→R be a positive definite function and let (Uϕ,HR

ϕ ) denote the corresponding
orthogonal representation on the real reproducing kernel space HR

ϕ ⊆ RG by right
translations: (Uϕ(g) f )(h) := f (hg). Then the following assertions hold:

(a) For each skew-symmetric contraction C on Hϕ commuting with Uϕ(G), the
function ϕC := ϕ+ iCϕ ∈Hϕ ⊆ CG is positive definite. Here we consider ϕ
as an element of the real Hilbert space HR

ϕ ⊆ RG.

(b) Each positive definite function ϕ̂ with Re ϕ̂ = ϕ is of the form ϕC for a unique
skew-symmetric contraction C on Hϕ commuting with Uϕ(G).

Proof. (a) Clearly Hϕ = HR
ϕ ⊕ iHR

ϕ is the Hilbert space complexification of HR
ϕ

(Lemma A.7). On Hϕ the operator B := 1+ iC is positive because it is hermitian
and ‖C‖ ≤ 1. Let K (x, y) := ϕ(xy−1) be the kernel corresponding to ϕ which
satisfies K y =Uϕ(y)−1ϕ. Then the associated kernel

K B(x, y) := 〈BK y, Kx 〉 = 〈BUϕ(y)−1ϕ,Uϕ(x)−1ϕ〉

= 〈Uϕ(y)−1 Bϕ,Uϕ(x)−1ϕ〉

= 〈Uϕ(xy−1)(1+ iC)ϕ, ϕ〉 = ((1+ iC)ϕ)(xy−1)

is positive definite (cf. [Neeb 2000, Lemma I.2.4]), and this means that ϕ+ iCϕ is
a positive definite function.

(b) If ϕ̂ = ϕ+ iψ is positive definite with ϕ, ψ real-valued, then write K = A+ i B
for the corresponding kernels:

K (x, y)= ϕ̂(xy−1), A(x, y)= ϕ(xy−1) and B(x, y)= ψ(xy−1).

Then Proposition A.8 implies that ϕ is positive definite and that there exists a
skew-symmetric contraction C ∈ B(HR

ϕ ) with

ψ(xy−1)= (C Ay)(x)= 〈CUϕ(y)−1ϕ,Uϕ(x)−1ϕ〉.

Since this kernel on G×G is invariant under right translations and Uϕ(G)ϕ is total
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in HR
ϕ , it follows that C commutes with Uϕ(G). This in turn leads to

ψ(xy−1)= 〈Cϕ,Uϕ(yx−1)ϕ〉 = (Cϕ)(xy−1)

and hence to ψ = Cϕ. �

Appendix B. Standard real subspaces via contractions

In this section we show how standard real subspaces can be parametrized in a very
convenient way by skew-symmetric contractions in real Hilbert spaces. The survey
article [Longo 2008] is an excellent source for the theory of standard real subspaces.

Skew symmetric contractions.

Lemma B.1. Let CV be a skew-symmetric contraction on the real Hilbert space E
and V := (1+ iCV )E ⊆ EC. For 0 6= v ∈ E , the following are equivalent:

(i) C2
V v =−v.

(ii) ‖CV v‖ = ‖v‖.

(iii) There exists 0 6= w ∈ V with 〈CV v,w〉 = ‖v‖‖w‖.

(iv) (1+ iCV )v ∈ V ∩ iV.

Proof. (i) ⇔ (ii): First we observe that ‖v‖2 − ‖CV v‖
2
= 〈(1 + C2

V )v, v〉. In
view of the positivity of 1+C2

V , the relation 〈(1+C2
V )v, v〉 = 0 is equivalent to

(1+C2
V )v = 0.

(ii)⇔ (iii) follows from max{〈CV v,w〉 : w ∈ E, ‖w‖ ≤ 1} = ‖CV v‖ ≤ ‖v‖.

(iv)⇔ (i): For w ∈ E , the condition (1+ iCV )v = i(1+ iCV )w is equivalent to
CVw =−v and w = CV v. Such an element w exists if and only if C2

V v =−v. �

Lemma B.2. For a skew-symmetric contraction CV on the real Hilbert space E
and V := (1+ iCV )E ⊆ EC, the following are equivalent:

(i) C2
V + 1 is injective.

(ii) ‖CV v‖< ‖v‖ for every nonzero v ∈ E.

(iii) 〈CV v,w〉< ‖v‖‖w‖ for nonzero elements v,w ∈ E.

(iv) V ∩ iV = {0}.

(v) The operators 1± iCV on EC are injective.

(vi) V + iV is dense in EC.

(vii) V is a standard real subspace.

Proof. The equivalence of (i)–(iv) follows immediately from Lemma B.1.
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Further, (iv) can also be formulated as: (1+ iCV )(v + iw) = 0 for v,w ∈ E
implies v+ iw = 0, which in turn means that 1+ iCV is injective. This in turn is
equivalent to 1− iCV being injective. Therefore (iv) is equivalent to (v).

As V + iV = (1+ iCV )EC = im(1+ iCV ), this complex subspace is dense if
and only if the hermitian operator 1+ iCV has dense range, and this is equivalent
to 1+ iCV being injective. Therefore (v) and (vi) are also equivalent.

Next we observe that V is closed because

‖(1+ iCV )v‖
2
= ‖v‖2+‖CV v‖

2
≥ ‖v‖2 for v ∈ E

shows that the range V of the operator 1+ iCV : E → EC is closed. Since (iv)
and (vi) are equivalent, they are therefore equivalent to V being a standard real
subspace. �

Proposition B.3. Let E be a real Hilbert space, CV be a skew-symmetric contrac-
tion on E , let EC be the complexification of E and let σ : EC→ EC, a+ib 7→ a−ib
be complex conjugation on EC. Then the real subspace

V := (1+ iCV )E ⊆ EC

has the following properties:

(i) Let E0= ker(C2
V+1) and E1= E⊥0 , so that E = E0⊕E1. Then C0 :=CV |E0 is

a complex structure on E0 and V0 := (1+iCV )E0⊆ EC is the (−i)-eigenspace
of CV . It coincides with V ∩ iV. In particular it is a complex subspace of EC.
The subspace V1 := (1+ iCV )E1 is a standard real subspace of E1,C.

(ii) If V = V1, then the corresponding modular objects are given by

(1, J )=
((

1− iCV

1+ iCV

)2

, σ

)
.

Proof. (i) For a, b∈ E , the relation CV (a+ib)=−i(a+ib) is equivalent to CV a=b
and CV b = −a, i.e., to a + ib ∈ V0. Therefore V0 is the (−i)-eigenspace of CV

in EC. From Lemma B.1(iv) we further obtain V ∩iV = V0. For V1 := (1+iCV )E1,
we thus have V1 ∩ iV1 = {0}, so that Lemma B.2(vii) implies that V1 is a standard
real subspace of E1,C.

(ii) If V = V1, then

(36) 1 :=

(
1− iCV

1+ iCV

)2

is a positive selfadjoint operator on EC with domain (1+ iCV )
2 EC. Further 11/2

=

(1− iCV )(1+ iCV )
−1 has domain VC
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Since σ1σ =1−1 by (36), S :=σ11/2 is an unbounded antilinear involution with

Fix(S)= {ξ ∈ D(11/2)= VC : Sξ = ξ}.

For ξ = (1+ iCV )v, v ∈ EC, we have

Sξ = σ11/2ξ = σ(1− iCV )v = (1+ iCV )σ (v),

so Sξ = ξ is equivalent to v ∈ V. We conclude that Fix(S)= V. This proves (ii). �

Remark B.4. Let C be a skew-symmetric contraction on the real Hilbert space E .
Then the selfadjoint operator C2

+ 1 is invertible if and only if −1 6∈ Spec(C2),
which is equivalent to 1 6∈Spec(iC), where iC is considered as a selfadjoint operator
on the complex Hilbert space EC. This, in turn, is equivalent to the invertibility of
1+ iC and hence to the boundedness of (1− iC)(1+ iC)−1.

Real reflection positivity and standard subspaces. In this section we relate stan-
dard real subspaces to reflection positive real Hilbert spaces of the form (EC, V, σ ),
where σ is the complex conjugation on the complexification EC of a real Hilbert
space. This sheds an interesting light on the close connection between standard real
subspaces and reflection positivity.

Lemma B.5. Let E be a real Hilbert space and EC be its complexification. On EC

we consider the antilinear isometry defined by σ(a+ ib) := a− ib. A real subspace
V ⊆ EC has the property that the form (v,w) 7→ 〈σv,w〉 is real-valued and
positive semidefinite on V if and only if there exists a skew-symmetric contraction
CV : D(CV )→ E with V = (1+ iCV )(D(CV )). The subspace V is closed if and
only if D(CV ) is closed.

Proof. First, let CV : D(CV ) → E be a skew-symmetric contraction and put
V := (1+ iCV )D(CV ). For v,w ∈ D(CV ), we then have

〈σ((1+iCV )v), (1+iCV )w〉= 〈(1−iCV )v), (1+iCV )w〉

= 〈v,w〉+〈−iCV v,w〉+〈v, iCVw〉−〈CV v,CVw〉

= 〈v,w〉−〈CV v,CVw〉= 〈(1+C2
V )v,w〉 ∈R.

Moreover 1+C2
V ≥ 0 implies that the form is positive semidefinite.

Conversely, let V ⊆ EC be a real subspace which is σ -positive in the sense
that the form f (v,w) := 〈σv,w〉 is real-valued and positive semidefinite. This
assumption implies that V ∩ i E = {0}. Hence there exists a real linear operator
CV : D(CV )→ E for which V = (1+ iCV )D(CV ). Since

〈σ(v+ iCV v),w+ iCVw〉 = 〈v− iCV v,w+ iCVw〉

= 〈v,w〉− 〈CV v,CVw〉+ i(〈CV v,w〉+ 〈CVw, v〉)
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is supposed to be real-valued,

〈CV v,w〉+ 〈v,CVw〉 = 0 for v,w ∈ E .

This means that CV is skew-symmetric on D(CV ). Further, the positivity assumption
implies that ‖CV v‖ ≤ ‖v‖ for v ∈ E .

The subspace V is closed if and only if the graph of CV is closed, which is
equivalent to the closedness of D(CV ) because CV is a contraction. �

Proposition B.6. Let E be a real Hilbert space, let CV be a skew-symmetric con-
traction on E , let EC be the complexification of E and let σ : EC→ EC, a+ ib 7→
a− ib be complex conjugation on EC. Then the real subspace

V := (1+ iCV )E ⊆ EC

has the following properties:

(i) V is closed and σ -positive, so that (EC, V, σ ) is a reflection positive real
Hilbert space.

(ii) V⊥ = iσ(V ), i.e., the bilinear form γσ (ξ, η) := 〈σξ, η〉 on V is real-valued.

(iii) The null space of the positive semidefinite form γσ on V coincides with the
(−i)-eigenspace V0 of CV on EC. If V0 = {0}, then the unbounded positive
operator

F :=

√
1− iCV

1+ iCV
: V → EC

satisfies ‖Fξ‖2 = 〈σξ, ξ〉 for ξ ∈ V, so that we can identify the real Hilbert
space completion V̂ of V with respect to γσ with F(V ). We further have
σ Fσ = F−1.

Proof. (i) The subspace V is closed because

‖(1+ iCV )v‖
2
= ‖v‖2+‖CV v‖

2
≥ ‖v‖2 for v ∈ E

shows that the range of the operator 1+ iCV : E→ V is closed.
For the complex conjugation σ on EC, we have for v,w ∈ E the relation

γσ ((1+iCV )v,(1+iCV )w)=〈σ(1+iCV )v,(1+iCV )w〉

= 〈(1−iCV )v,(1+iCV )w〉

= 〈(1+iCV )(1−iCV )v,w〉= 〈(1+C2
V )v,w〉 ∈R

and thus
γσ ((1+ iCV )v, (1+ iCV )v)= ‖v‖

2
−‖CV v‖

2
≥ 0.
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(ii) An element a+ ib ∈ EC (a, b ∈ E) is orthogonal to V with respect to the real
scalar product if and only if

0= Re〈a+ ib, v+ iCV v〉 = 〈a, v〉+ 〈b,CV v〉 = 〈a−CV b, v〉

for every v ∈ E ; this is equivalent to CV b= a, i.e., to a+ib= i(b−iCV b)∈ iσ(V ).

(iii) An element ξ := (1+ iCV )v ∈ V satisfies 〈σξ, ξ〉 = 0 if and only if C2
V v=−v,

which is equivalent to

(1− iCV )ξ = (1− iCV )(1+ iCV )v = (1+C2
V )v = 0,

i.e., to CV ξ =−iξ . This implies that V0 ⊆ V is the nullspace of γσ .
Now we assume that V0 = {0} and V = V1. As 1 ± iCV are nonnegative

hermitian operators on EC, they have a nonnegative square root and (1+ iCV )
−1/2

is an unbounded operator whose domain is√
1+ iCV EC ⊇

√
1+ iCV

√
1+ iCV EC = (1+ iCV )EC.

This leads to an unbounded symmetric operator

F :=

√
1− iCV

1+ iCV
: V → EC.

For ξ = (1+ iCV )v, v ∈ E , we have

Fξ =
√
(1− iCV )(1+ iCV )v =

√
1+C2

V v,

so ‖Fξ‖2 = 〈(1+C2
V )v, v〉 = 〈σξ, ξ〉. Therefore F : V → V̂ := F(V )⊆ EC is the

canonical map of the reflection positive real Hilbert space (EC, V, σ ). It satisfies

σ Fσ =

√
1+ iCV

1− iCV
= F−1. �

Remark B.7. Since Ut=1
−i t acts on the reflection positive Hilbert space (EC,V,σ)

by automorphisms, it induces on the corresponding real Hilbert space V̂ an or-
thogonal representation. The natural map

√

1+C2
V : E→ V̂ in Proposition B.6

intertwines the orthogonal representations Ut |E and Ut |V̂ .

The following proposition asserts that all standard real subspaces are of the form
described in Proposition B.3.

Proposition B.8. Let V ⊆ H be a standard real subspace with modular objects
(1, J ). Then E := Fix(J ) is a real Hilbert space with H ∼= EC and there exists
a skew-symmetric strict contraction CV : E → E with V = (1+ iCV )E. Then
D(1)∩ V is dense in V.
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Proof. First we observe that V is J -positive:

〈Jξ, ξ〉 = 〈J Sξ, ξ〉 = 〈11/2ξ, ξ〉 ≥ 0.

This implies the existence of a contraction CV : D(CV )→ E with

V = 0(CV ) := (1+ iCV )D(CV )

(Section 3B). That CV is strict follows from Lemma B.2. From the real orthogonal
decomposition H = V ⊕ i J (V ) [Neeb and Ólafsson 2015b, Lemma 4.2(iv)], we
now obtain

V⊥ = i J (V )= i(1− iCV )D(CV )= i0(−CV )= (CV + i1)D(CV ),

where ⊥ refers to the real-valued scalar product Re〈 · , · 〉 on H∼= E ⊕ i E .
If a ∈ E ∩D(CV )

⊥, then a ∈ V⊥ = i J (V ) = i0(−CV ) leads to a = CV 0 = 0.
Therefore D(CV ) is dense in E . As V is closed and 1+ iCV : D(CV )→ V is a
topological isomorphism, it follows that D(CV ) is closed, and thus D(CV )= E .

As γJ (ξ, η) := 〈Jξ, η〉 is real-valued on V (recall J V = (iV )⊥), we obtain for
v,w ∈ V the relation

0= Im〈J (1+ iCV )v, (1+ iCV )w〉 = Im〈(1− iCV )v, (1+ iCV )w〉

= Im〈(1− iC>V )(1− iCV )v,w〉 = −〈(C>V +CV )v,w〉,

so that C>V =−CV (Lemma B.5).
It remains to show that D(1)∩ V is dense in V. Since CV is a strict contraction,

the kernel of 1+C2
V is trivial, i.e., −1 is not an eigenvalue of C2

V . Let En ⊆ E
be the spectral subspace of C2

V for the subset [−1+ 1/n, 1]. This subspace is
CV -invariant and the union of these subspace is dense in E because −1 is not an
eigenvalue. As (1+ iCV )En ⊆ D(1), it follows that D(1)∩ V is dense in V. �

Contractions and modular objects. The following lemma describes the complex-
valued scalar product on a standard real subspace in terms of the corresponding
modular objects (1, J ).

Lemma B.9. Let V ⊆H be a standard real subspace, (1, J ) be the corresponding
modular objects and

〈v,w〉H = γ (v,w)+ iω(v,w)

be the corresponding hermitian positive definite form on V ; in particular 〈v,w〉V =
γ (v,w). Then

(37)
γ (v,w)=

1
2

(
〈v,w〉+ 〈11/2v,11/2w〉

)
,

ω(v,w)=
1
2i

(
〈v,w〉− 〈11/2v,11/2w〉

)
.
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In particular, we have a strict contraction C on V satisfying

(38) ω(v,w)= γ (v,Cw) and C = Ĉ |V ,

where

Ĉ = i
1− 1
1+ 1

= i
11/2
−1−1/2

11/2+1−1/2 = i tanh
(

log1
2

)
.

Moreover,

(39) 〈v,w〉H = 〈v, (1+ iC)w〉VC
for v,w ∈ VC,

so that the map
8 :=

√
1+ iC : VC→ VC

extends to a unitary isomorphism H ↪→ VC.

Proof. As V ⊆ D(11/2) and v = Sv = J11/2v or v ∈ V (Remark 2.5), we obtain

〈11/2v,11/2w〉 = 〈Jv, Jw〉 = 〈w, v〉 = 〈v,w〉 for v,w ∈ V .

This implies (37). Next we note that

B :=
1− 1
1+ 1

is a bounded operator on H which can also be written as

B =
11/2
−1−1/2

11/2+1−1/2 .

In this form we see that J B J =−B. We also note that B commutes with 1, and
hence preserves D(11/2). This leads to

SB = J11/2 B =−BS,

and therefore to BV = B Fix(S)⊆ i Fix(S)= iV. In particular, Ĉ := i B restricts
to a bounded skew-symmetric operator C : V → V. If v,w are contained in the
dense subspace V ∩D(1) of V (Proposition B.8), we obtain

γ (v,Cw)= 1
2

(
〈v,Cw〉+ 〈11/2v,11/2Cw〉

)
=

1
2〈(1+1)v,Cw〉

=
1
2〈v, (1+1)Ĉw〉

=
1
2i
〈v, (1−1)w〉 = ω(v,w).

Sinceω and γ ( · ,C · ) are continuous on V, they coincide on all of V. By Lemma B.2,
the operator C is a strict contraction. By (38), we have for v,w∈V the relation (39),
and since both sides are sesquilinear, it also holds for v,w ∈ VC. This implies the
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existence of an isometric extension 8 :H→ VC of the operator
√

1+ iC on VC.
To see that 8 is unitary, we observe that

im(8)⊥ = ((1+ iC)1/2VC)
⊥
= ker(1+ iC)1/2 = ker(1+ iC),

and this space is trivial by Lemma B.2. �
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