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IMPROVED BUCKLEY’S THEOREM ON
LOCALLY COMPACT ABELIAN GROUPS

VICTORIA PATERNOSTRO AND EZEQUIEL RELA

We present sharp quantitative weighted norm inequalities for the Hardy–
Littlewood maximal function in the context of locally compact abelian
groups, obtaining an improved version of the so-called Buckley’s theorem.
On the way, we prove a precise reverse Hölder inequality for Mucken-
houpt A∞ weights and provide a valid version of the “open property” for
Muckenhoupt Ap weights.

1. Introduction and main results

The study of weighted norm inequalities for maximal type operators is one of
the central topics in harmonic analysis that began with the celebrated theorem
of Muckenhoupt [1972]. It states that the class of weights (nonnegative locally
integrable functions) characterizing the boundedness of the Hardy–Littlewood
maximal function M on the weighted space L p(Rn, wdx) is the so-called Muck-
enhoupt Ap class (see below for the precise definitions). It is important to remark
that Muckenhoupt’s result is qualitative, that is, it does not provide any precise
information on how the operator norm of M depends on the underlying weight
in w ∈ Ap. The first quantitative result on the boundedness for the maximal function
in Rn dates back to the 90s, is due to Buckley [1993], and gives the best possible
power dependence on the Ap constant [w]Ap . More precisely, Buckley proved

(1-1) ‖M‖L p(Rn,wdx)→L p(Rn,wdx) ≤ C[w]1/(p−1)
Ap

, 1< p <∞.

Recently a simpler and elegant proof was presented by Lerner [2008], who used a
very clever argument composing weighted versions of the maximal function. Since
then, finer improvements have been found. In particular, there is in [Hytönen et al.
2012] a sharp mixed bound valid in the context of spaces of homogeneous type.
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Our purpose here is to obtain sharp quantitative norm estimates in the context
of locally compact abelian groups (LCA groups). The modern approach to this
problem is to use a sharp version of the reverse Hölder inequality (RHI) with a
precise quantitative expression for the exponent to derive a proper open property for
the Ap classes. Then an interpolation type argument allows us to prove the desired
bound.

In the rest of the introduction we first describe in detail the context where we
will work in and then properly state the results that we will prove.

1A. Muckenhoupt weights and maximal functions on LCA groups. In the eu-
clidean setting, the standard way to introduce Ap weights is by considering averages
over cubes, balls or more general families of convex sets. In any case, the family
is built using some specific metric. In our context of LCA groups we lack such a
concept. However there are many LCA groups where we do have the possibility of
considering a family of base sets satisfying the other fundamental property of the
basis of cubes or balls: any point has a family of decreasing base sets shrinking to
it and, in addition, the whole space can be covered by the increasing union of such
a family.

In order to properly define the Ap classes, let us fix an LCA group G with
a measure µ that is inner regular and such that µ(K ) < ∞ for every compact
set K ⊂ G. Notice that µ does need to be the Haar measure because we do not
assume µ to be translation invariant. The reader can find a comprehensive treatment
of harmonic analysis on LCA groups in [Hewitt and Ross 1970; 1963; Rudin
1962]. The general assumption on the group will be that it admits a sequence of
neighborhoods of 0 with certain properties that we described in the next definition
(cf. [Edwards and Gaudry 1977, Section 2.1]).

Definition 1.1. A collection {Ui }i∈Z is a covering family for G if

(1) {Ui }i∈Z is an increasing base of relatively compact neighborhoods of 0,⋃
i∈Z Ui = G and

⋂
i Ui = {0}.

(2) There exists a positive constant D ≥ 1 and an increasing function θ : Z→ Z

such that for any i ∈ Z and any x ∈ G,
• i ≤ θ(i),
• Ui −Ui ⊂Uθ(i),
• µ(x +Uθ(i))≤ Dµ(x +Ui ).

We will refer to the third condition as the doubling property of the measure µ with
respect to θ and we will call D the doubling constant. In the case of Rn equipped
with the natural metric and measure, we can consider the family of dyadic cubes
of sidelength 2i or the euclidean balls B(x, 2i ) for i ∈ Z. The doubling constant
of the Lebesgue measure in this context is 2n and the function θ can be taken
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to be θ(i) = i + 1. Therefore, the intuition here is that the index i in the above
definition can be seen as a sort of radius or size of the given set Ui .

For each x ∈ G, the set x +Ui will be called a base set and the collection of all
base sets will be denoted by

(1-2) B := {x +Ui : x ∈ G, i ∈ Z}.

The notion of base sets allows us to define a direct analogue of the Hardy–
Littlewood maximal function:

(1-3) M f (x)= sup
x∈U∈B

−

∫
U
| f | dµ := sup

x∈U∈B

1
µ(U )

∫
U
| f | dµ,

where the supremum is taken over the sets U ∈ B with positive measure.
As we already mentioned, our purpose here is to prove sharp weighted norm

inequalities for this operator in L p(G, wdµ), where w is a weight on G. Firstly,
recall that the celebrated Muckenhoupt’s theorem asserts that the class of weights
characterizing the boundedness of M on L p(Rn, wdx), p> 1, is the Muckenhoupt
Ap class defined in Rn by

(1-4) [w]Ap(Rn,dx) := sup
Q

(
−

∫
Q
w dµ

)(
−

∫
Q
w1−p′ dµ

)p−1

<∞.

Here p′ denotes the conjugate exponent of p defined by the condition 1
p +

1
p′ = 1.

In the case of LCA groups the analogue of (1-4) is obtained by replacing the cubes
by base sets. More precisely, a weight w is an Ap = Ap(G, dµ) weight if

(1-5) [w]Ap := sup
U∈B

(
−

∫
U
w dµ

)(
−

∫
U
w1−p′ dµ

)p−1

<∞.

The limiting case of (1-5), when p = 1, defines the class A1; that is, the set of
weights w such that

[w]A1 := sup
U∈B

(
−

∫
U
w dµ

)
ess sup

U
(w−1) <+∞,

which is equivalent to w having the property

Mw(x)≤ [w]A1w(x) µ-almost everywhere x ∈ G.

As in the usual setting of Rn we will also often refer to σ := w1−p′ as the dual
weight for w. It is easy to verify that w ∈ Ap if and only if σ ∈ Ap′ .

The family of Ap classes is increasing and this motivates the definition of the
larger class A∞ as the union A∞ =

⋃
p≥1 Ap. There are many characterizations

of the class A∞ (see [Duoandikoetxea et al. 2016] or the more classical reference
[Grafakos 2004]). Some of them are given in terms of the finiteness of some A∞
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constant suitably defined. The classical definition consists in taking the limit on
the Ap constant as p goes to infinity, namely:

(1-6) (w)A∞ := sup
U∈B

(
−

∫
w dµ

)
exp −

∫
U

log(w−1) dµ.

However, the modern tendency is to consider the so-called Fujii–Wilson constant
implicitly introduced by Fujii [1977/78], and later rediscovered by Wilson [1987;
2008], and here we choose to follow this approach by defining the A∞ constant as

(1-7) [w]A∞ := sup
U∈B

1
w(U )

∫
U

M(wχU ) dµ,

where w(U )=
∫

U w dµ.

1B. Our contribution. As we have already seen, there is a proper — and natural —
way to define the Ap and A∞ classes on LCA groups having covering families. In
contrast with the case p <∞, it is not immediate that the weight w belongs to A∞
when any of constants defined on (1-6) and (1-7) is finite. In fact, a weight w is
in A∞ (that is, in some Ap) if and only if it satisfies the reverse Hölder inequality,
which says (

−

∫
U
wr dµ

)1/r

≤ C −
∫

Û
w dµ

for some r > 1 and where Û is an open set defined in terms of U (in the euclidean
case Û =U and in the case of spaces of homogeneous type, it is a dilation of U ).
This is a very well known result in the qualitative case. Concerning the quantitative
aspect, a sharp result in terms of [w]A∞ in the context of spaces of homogeneous
type was proved recently in [Hytönen et al. 2012].

Our first result is the following version of the RHI. Note that, as in [Hytönen
et al. 2012], we are able to precisely describe the exponent r in terms of the
constant [w]A∞ .

Theorem 1.2 (sharp weak reverse Hölder inequality). Let w ∈ A∞. Define the
exponent r(w) as

r(w)= 1+
1

4D10[w]A∞ − 1
,

where D is the doubling constant. Then, for a fixed U = x0+Ui0 ∈ B, the following
inequality holds:

(1-8)
(
−

∫
U
wr(w) dµ

)1/r(w)

≤ 2D2
−

∫
Û
w dµ,

where Û is the union of the base sets {x +Ui : x ∈U, i ≤ i0}.
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Once we have proven such RHI, we are able to provide a quantitative open
property for Ap classes. It is very well known that the Ap classes are open in the sense
that ifw∈ Ap for some p>1, thenw also belongs to some Ap−ε for some ε>0. But
the best possible ε in this property is not completely characterized. Another related
interesting and still open question (even in the euclidean setting) is to determine,
given a weight w ∈ A∞, the smallest p > 1 such that w ∈ Ap. There are some
estimates in [Hagelstein and Parissis 2016] but there is no proof of their sharpness.

Here we will deduce from Theorem 1.2 an open property for Ap classes in LCA
groups with some control on the constants. More precisely, given w ∈ Ap for
1< p<∞ we will obtain that w ∈ Ap−ε for ε= (p−1)/(C[σ ]A∞) with C = 4D10.
Further, [w]Ap−ε ≤ 2p−1 D4p−2

[w]Ap (see Lemma 3.1).
In a recent article, Sauer [2015] proved a weighted bound for the maximal

function for LCA groups following Lerner’s approach. Additionally, he asked
whether it is possible to obtain the sharp result from Buckley in this general setting.
In our main theorem we answer this question in the affirmative and moreover,
we provide a better mixed bound. By a mixed bound we understand a bound
that depends on [w]Ap and [w]A∞ of the form ϕ([w]Ap [w]A∞) where ϕ is some
nonnegative function, typically a power function. Since [w]A∞ ≤ [w]Ap always,
usually mixed type bounds are sharper than estimates involving only the Ap constant.

A result in this direction was obtained in [Hytönen et al. 2012] where the authors
proved an improvement of Buckley’s result (1-1) in terms of mixed bounds for
spaces of homogeneous type, namely

‖M‖L p
w→L p

w
≤ C([w]Ap [σ ]A∞)

1/p
≤ C[w]1/(p−1)

Ap
.

Our main result provides an extension of the above estimate to the context of
LCA groups and we will obtain it as a consequence of the RHI and the open property.
We remark here that the lack of geometry in this setting constitutes a major obstacle
to overcome.

Theorem 1.3. Let M be the Hardy–Littlewood maximal function defined in (1-3)
and let 1< p <∞. Then there is a structural constant C > 0 such that

(1-9) ‖M f ‖L p
w(G) ≤ C([w]Ap [σ ]A∞)

1/p
‖ f ‖L p

w(G).

In particular,
(1-10) ‖M‖L p(w) ≤ C[w]1/(p−1)

Ap
.

1C. Outline. The paper is organized as follows. In Section 2 we give some pre-
liminary results. We prove the engulfing property in this context that will be used
several times throughout the paper. We also define the local maximal function,
prove a crucial covering lemma (Lemma 2.7) and show a localization property of
the local maximal function. In Section 3 we give the proofs of the results described
in Section 1B.



176 VICTORIA PATERNOSTRO AND EZEQUIEL RELA

2. Preliminaries

In this section we provide some properties of covering families that we will use.
Furthermore, we will introduce a local maximal function which will be crucial to
proving the RHI.

As we already mentioned in the introduction, the family of dyadic cubes of
sidelength 2i or the euclidean balls B(x, 2i ) for i ∈ Z are covering families for
G = R. Other examples are presented below.

Example 2.1. (1) When G = T =
{
e2π i t
: t ∈

[
−

1
2 ,

1
2

)}
with the Haar measure,

consider Uk ⊆ G defined as U0 = T and for k ∈ N, Uk = {0} and

U−k =

{
e2π i t
: |t |< 1

2k+1

}
.

Then, {Uk}k∈Z is a covering family for T with θ(k)= k+ 1 and D = 2.

(2) For G = Z, take Ui = {k ∈ Z : |k| ≤ 2i−1
} for i ≥ 1 and Ui = {0} otherwise.

Then {Ui }i∈Z is a covering family for Z with θ(i)= i + 1 and D = 2.
(3) Let G be an LCA group with Haar measure µ and let H be a compact

and open subgroup of G with µ(H) = 1. Consider an expansive automorphism
A : G→ G with respect to H, which means that H ( AH and

⋂
i<0 Ai H = {0}.

If, additionally, G =
⋃

i∈Z Ai H, then {Ai H}i∈Z is a covering family for G. Indeed,
since H ( AH and H is a group, Ai H− Ai H = Ai H ⊆ Ai+1 H so θ(i)= i+1. To
see that the doubling property is satisfied, note that µA defined as µA(B) :=µ(AB)
for B ⊆ G a Borel set, is a Haar measure on G. Thus, there is a positive number α
such that µA = αµ. The constant α is the so-called modulus of A and is denoted
by α = |A|. Then, µ(Ai+1 H) = µA(Ai H) = |A|µ(Ai H) for i ∈ Z. Observe that
G/H is discrete and AH/H is finite, so AH is the union of finitely many cosets
of the quotient G/H, say {H + sj }

r
j=1. Therefore, |A| = |A|µ(H)= µ(AH)= r ,

and r ≥ 2 since H ( AH. Thus we can take D = |A| ≥ 2. A structure of this type
is considered in [Benedetto and Benedetto 2004] for constructing wavelets on LCA
groups with open and compact subgroups.

For a concrete example of this situation, consider the p-adic group G = Qp

where p ≥ 2 is a prime number consisting of all formal Laurent series in p with
coefficients {0, 1, . . . , p− 1}, that is,

Qp =

{∑
n≥n0

an pn
: n0 ∈ Z, an ∈ {0, 1, . . . , p− 1}

}
.

As a compact and open subgroup we can consider H = Zp which is

Zp =

{∑
n≥0

an pn
: an ∈ {0, 1, . . . , p− 1}

}
.
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Take A :Qp→Qp to be the automorphism defined as A(x)= p−1x . Then, A is
expansive with respect to Zp and it can be easily checked that Qp =

⋃
i∈Z Ai Zp.

Then, {Ai Zp}i∈Z is a covering family for Qp and in this case, D = |A| = p.

Let {Ui }i∈Z be a fixed covering family for G. From now on, we assume the
sets Ui to be symmetric. This is not a restriction at all because one can always
consider the new family of base sets formed by the difference sets Ui −Ui which
increases the doubling constant from D to D2. We denote 2Ui :=Ui−Ui =Ui+Ui .

Any covering family has the so-called engulfing property:

Lemma 2.2. Let U, V be two base sets such that U = x +Ui and V = y+Uj with
i ≤ j and x, y ∈ G. If U ∩ V 6=∅, then x +Ui ⊂ y+Uθ2( j).

Proof. There are two points ui ∈Ui and u j ∈Uj such that x + ui = y+ u j . Then
x = y+ ui − u j ∈ y+Uj −Uj ⊂ y+Uθ( j) and therefore

x +Ui ⊂ y+Uθ( j)+Uθ( j) ⊂ y+Uθ2( j)

(recall that we assume that the base sets are symmetric). �

Remark 2.3. For a given V ∈B, where B is the base of G defined as in (1-2), we will
denote by j (V ) ∈ Z the maximum integer such that V = x+U j (V ) for some x ∈ G.
To see that such a number exists, let us define N (V )={ j ∈Z : ∃ x ∈G, V = x+Uj }

and show that sup N (V )<∞. If sup N (V )=∞, we could find a sequence {xn}n∈N

of points in G and a sequence of integer indices {in}n∈N such that in → ∞ as
n→∞ and

V = xn +Uin for all n ∈ N.

By compactness of V we can assume (relabeling) that the sequence converges
to some x ∈ G, which we can assume to be the origin. Now we claim that, for
any j ∈ N, there is some m ∈ N such that Uj ⊂ xm +Uim and from this fact would
follow that µ(V ) =∞, but this implies that∞= µ(V )≤ µ(V ) <∞ which is a
contradiction. To verify the claim, fix Uj and choose n0 such that xn ∈ Uj and
in ≥ j for all n ≥ n0. Then,

Uj ∩ xn +Uin 6=∅

for all n ≥ n0. Furthermore, the above still holds if we replace xn by any xm with
m ≥ n ≥ n0 since xm ∈Uj and xm ∈ xm +Uin . Therefore by the engulfing property
(see e.g., Lemma 2.2) we obtain

Uj ⊂ xm +Uθ2(in) ⊂ xm +Uim

for any m such that im ≥ θ
2(in).

In order to introduce the local maximal function, we first define a local base for
a fixed base set U.
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Definition 2.4. Let U ∈ B be a fixed base set and let k := j (U ). The local base BU

is defined as

(2-1) BU := {y+Uj : y ∈U, j ≤ k}.

We also defined the enlarged set Û by the formula

(2-2) Û :=
⋃

V∈BU

V .

Lemma 2.5. Let U = x +Uk be a fixed base set in B and set k = j (U ). We then
have the following geometric properties:

(a) If V ∈ BU then V ⊂ x +Uθ(k).

(b) For any z ∈U,
Û ⊂ z+Uθ2(k),

where Û is as in (2-2). As a consequence of this last property, we obtain

µ(Û )≤ µ(z+Uθ2(k))≤ D2µ(z+Uk)

for any z ∈U. In particular, µ(Û )≤ D2µ(U ), since U = x +Uk .

Proof. (a) Let V = y+Uj with j ≤ k and take any z ∈ V. Then z = y+ u j with
u j ∈Uj ⊂Uk . Since y ∈U we can write y = x + uk , uk ∈Uk . Then we have

z = x + u j + uk ∈ x +Uk +Uk ⊂ x +Uθ(k).

(b) Let V ∈ BU , V = y+Uj with y ∈U, j ≤ k. By Lemma 2.2, since V ∩U 6=∅,
V ⊂ x +Uθ(k). Take any z ∈U, z = x + uk , uk ∈Uk . Then,

V ⊂ x+Uθ(k)= z−uk+Uθ(k)⊂ z−Uk+Uθ(k)⊂ z−Uθ(k)+Uθ(k)⊂ z+Uθ2(k). �

We now define the local maximal function as

(2-3) MU f (y) := sup
y∈V∈BU

−

∫
V
| f (z)| dµ(z)

for any y ∈ Û and MU f (y)= 0 otherwise.

Remark 2.6. (a) In [Hewitt and Ross 1970, Theorem 44.18], a version of the
Lebesgue differentiation theorem is proven with respect to the Haar measure for
LCA groups having D′-sequences (cf. [Hewitt and Ross 1970, Definition 44.10]).
A careful reading of the proof of [Hewitt and Ross 1970, Theorem 44.18] reveals
that the result is still true with the obvious changes for measures which are not
translation invariant. Thus, since a covering family is in particular a D′-sequence,
we have that the Lebesgue differentiation theorem holds in our context.
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(b) As a consequence of the Lebesgue differentiation theorem, we have the elemen-
tary but important property of the local maximal function:

f (x)≤ MU f (x) µ-almost everywhere x ∈U.

Consider now, for a fixed U ∈ B, the level set for the local maximal function
acting on a weight w at scale λ > 0:

(2-4) �λ := {x ∈ Û : MUw(x) > λ}.

A key instrument will be a Calderón–Zygmund (C–Z) decomposition of �λ. We
will obtain it by using an adapted version of a covering lemma from [Edwards and
Gaudry 1977, Lemma 2.2.1]. Although the proof follows standard arguments, we
include it here for completeness. When w is a nonnegative and locally integrable
function on G and V ⊆ G is relatively compact, we denote the average of w on V
as wV ; that is, wV = −

∫
V w dµ.

Lemma 2.7. Let U ∈ B be a fixed base set in G and let w be a nonnegative and
integrable function supported on Û . For λ > wÛ , define �λ as in (2-4). If �λ is
nonempty, there exists a finite or countable index set Q and a family {yi +Uαi }i∈Q

of pairwise disjoint base sets from BU such that:

(a) The sequence {αi }i∈Q is decreasing.

(b)
⋃
i∈Q

yi +Uαi ⊂�λ ⊂
⋃
i∈Q

yi +Uθ2(αi ).

(c) For any i ∈ Q,

λ < −

∫
yi+Uαi

w dµ.

(d) Given r > αi for some i ∈ Q,

(2-5) −

∫
yi+Ur

w dµ≤ D2λ.

Proof. Suppose that there is no finite sequence of points in �λ such that the
conclusion holds (in that case, there is nothing to prove). For x ∈�λ, define

(2-6) α(x)=max
{

j ∈ Z : ∃ V = y+Uj ∈ BU , x ∈ V, −
∫

V
w dµ > λ

}
.

Since V = y+Uj ∈ BU implies j ≤ j (U ), we have that α is well defined. Consider
now, for each x ∈�λ, a base set Vx ∈ BU , Vx := yx +Uα(x) such that x ∈ Vx . In
other words, one of the base sets in B containing the point x where the map α
attains its value. Observe that, in particular, α(yx)≥ α(x).

We start by picking x1 as an extremal point for α, that is α(x1) ≥ α(x) for all
x ∈�λ. Put α1=α(x1) and y1 := yx1 such that Vx1 = y1+Uα1 . Note that, since α1≤
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α(y1)≤ α(x1)= α1, we also have α(y1)= α1. Now suppose that we have chosen
the first n points y1, . . . , yn and their respective base sets Uα1, . . . ,Uαn such that

• the sets Vj := yj +Uαj , 1≤ j ≤ n, are pairwise disjoint,

• αj := α(yj )≥ α(x) for all x ∈ A j−1, where

(2-7) Aj :=�λ \
⋃
`≤ j

y`+Uθ2(α`), 1≤ j ≤ n.

Since we are assuming that this procedure never ends, Aj 6= ∅ for all 1 ≤ j ≤ n.
Therefore we can choose xn+1 ∈ An such that αn+1 :=α(xn+1)≥α(x) for all x ∈ An .
This means that there is a base set Vn+1 := yn+1+Uαn+1 and in particular wVn+1 >λ

and α(yn+1)= αn+1. Note that this construction produces a decreasing sequence
{αn}n∈N. Let’s see that Vn+1 ∩ Vj =∅ for all 1≤ j ≤ n. Supposing that this is not
the case, we could find u ∈Uαn+1 and v ∈Uαj for some j ≤ n such that

yn+1+ u = yj + v.

Since xn+1 ∈ Vn+1, we have that for some z ∈Uαn+1 ,

xn+1 = yn+1+ z = yj + v− u+ z ∈ yj +Uαj −Uαn+1 +Uαn+1 .

Since Uαn+1 ⊂Uα j and trivially Uα j ⊂Uθ(α j ), we get

xn+1 ∈ yj +Uθ2(α j ),

which is a contradiction by the choice of xn+1.
We are left to prove that this procedure exhausts the set �λ. If not, there is a

point x ∈ An with α(x)≤ αn for all n ≥ 1. Define the set S as

S := {yn : n ∈ N}.

Since
S ⊂ {z ∈�λ : α(z)≥ α(x)} ⊂ Û

and Û is contained in some base set (see item (b) in Lemma 2.5), we conclude that
S is relatively compact.

By monotonicity of α, we have Uαn ⊂Uα1 . Therefore the set

F :=
⋃

n

(yn +Uαn )⊂ S+Uα1

is also relatively compact and this implies µ(F) <∞. Now consider N ∈ Z such
that S ⊂ UN and an integer r > 0 such that θr (α(x)) ≥ N. Then for any n ∈ N,
yn ∈ S ⊂UN ⊂Uθr (α(x)) and thus 0 ∈ yn +Uθr (α(x)). Further, we get

UN = 0+UN ⊂ yn +Uθr (α(x))+UN ⊂ yn + 2Uθr (α(x)) ⊂ yn +Uθr+1(α(x)).
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The doubling property shows

µ(UN )≤ Dr+1µ(yn +Uα(x))

and this implies

µ(F)=
∑

n

µ(yn +Uαn )≥
∑

n

µ(yn +Uα(x))≥ D−(r+1)
∑

n

µ(UN )=∞.

This contradicts the condition µ(F) <∞ and we conclude with the proof of items
(a), (b) and (c) of the lemma.

We prove now item (d). To control the average on yi +Ur , we consider two
cases: first we consider r ≤ k := j (U ). Then yi +Ur ∈ BU and by maximality we
have −

∫
yi+Ur

w dµ≤ λ. Indeed, if not we would have αi = α(yi )≥ r > αi . Second,
where r > k, we have θ2(r) > θ2(k) and thus, by Lemma 2.5,

yi +Uθ2(r) ⊃ yi +Uθ2(k) ⊃ Û .

Therefore, since w = 0 almost everywhere Û c,

−

∫
yi+Ur

w dµ≤
µ(Û )

µ(yi +Ur )
−

∫
Û
w dµ≤ D2λ.

The lemma is now completely proven. �

Now we present a localization argument for the local maximal function MU . The
idea is better understood when considering the usual dyadic maximal function Md

Q
localized on a cube Q in Rn. Suppose that the level set�λ={x ∈ Q :Md

Qw(x)> λ}
for λ>wQ is decomposed into dyadic subcubes of Q such that Q =

⋃
i Qi and the

cubes Qi are maximal with respect to the condition wQi > λ. Then the conclusion
is that for any x ∈ Qi , the equality Md

Qw(x)= Md
Q(wχQi )(x) holds. In this more

general setting, the analogous result is contained in Lemma 2.8 which does not
have a direct proof as in the dyadic case.

For simplicity in the exposition, we introduce the following notation. Given
a base set of the form V = y + Uj , we denote by V ∗ the dilation of V by θ ,
i.e., V ∗ = y+Uθ( j). Further iterations of this operation are defined recursively, that
is, V ∗∗ = (V ∗)∗ and V n∗ for n iterations of the dilation operation.

Lemma 2.8. Let U ∈ B be a fixed base set and consider w = wχÛ a nonnegative
and integrable function on Û where Û is as in (2-2). For λ > wÛ , let �λ be defined
as above and let {Vi }i∈Q = {yi +Uαi }i∈Q be the C–Z decomposition of �λ given by
Lemma 2.7. Then, for L = D6, any i ∈ Q and any x ∈ V ∗∗i ∩�Lλ,

(2-8) MUw(x)≤ MU (wχV 4∗
i
)(x).

Proof. Let x ∈ V ∗∗i ∩�Lλ. Then there exists V ∈ BU , V = y+Uj , with y ∈U and
j ≤ j (U ) such that x ∈ V and wV > Lλ. We claim j ≤ θ2(αi ). To see that this is in



182 VICTORIA PATERNOSTRO AND EZEQUIEL RELA

fact true, suppose towards a contradiction, that j > θ2(αi ). Then, V ⊂ yi +Uθ2( j).
Indeed, if z ∈ V then z = y+w with w ∈Uj . On the other hand, since x ∈ V ∗∗i ∩V,
x = yi + u = y+ v with u ∈Uθ2(αi ) and v ∈Uj . Then

z = y+ v− v+w = x − v+w = yi + u− v+w.

Since Uθ2(αi )⊂Uj , we get that z ∈ yi+Uj+Uθ( j)⊂ yi+Uθ2( j). As a consequence,

−

∫
V
w dµ≤

µ(yi +Uθ2( j))

µ(V )
−

∫
yi+U

θ2( j)

w dµ.

We note that since θ2(αi ) < j, x ∈ V ∩ V ∗∗i ⊂ V ∩ (yi +Uj ) and then, by the
engulfing property we have that yi +Uj ⊂ y +Uθ2( j). Thus, using the doubling
property of the measure µ we obtain

µ(yi +Uθ2( j))

µ(y+Uj )
≤ D2µ(yi +Uj )

µ(y+Uj )
≤ D2µ(y+Uθ2( j))

µ(y+Uj )
≤ D4.

Furthermore, since θ2( j)≥ j > θ2(αi )≥ αi , by item (4) in Lemma 2.7,

−

∫
yi+U

θ2( j)

w dµ≤ D2λ

and we can conclude that

Lλ < −
∫

V
w dµ≤ D6λ= Lλ,

which gives a contradiction. Hence, the claim j ≤ θ2(αi ) holds.
Now, using Lemma 2.2 we have V ⊂ V 4∗

i and then

−

∫
V
w dµ= −

∫
V
wχV 4∗

i
dµ≤ M(wχV 4∗

i
)(x),

which proves inequality (2-8). �

3. Proof of the main results

We present here the proof of Theorem 1.2.

Proof of Theorem 1.2. Step 1. We start with the following estimate for the local
maximal function. Let U = x0 + Uk be a fixed base set. We claim that, for
ε = 1/(4D10

[w]A∞ − 1),

(3-1) −

∫
Û
(MUw)

1+ε dµ≤ 2[w]A∞

(
−

∫
Û
w dµ

)1+ε

.

Recall that we may assume that the weight w is supported on Û. Let �λ be defined
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as in (2-4). We write the norm using the layer cake formula as∫
Û
(MUw)

1+ε dµ=
∫
∞

0
ελε−1 MUw(�λ) dλ

=

∫ wÛ

0
ελε−1 MUw(�λ) dλ+

∫
∞

wÛ

ελε−1 MUw(�λ) dλ

= I+ II.

The first term is easily controlled by using the A∞ constant of w (see (1-7)):

I ≤ MUw(Û )wεÛ = w
ε

Û

∫
Û

MUw dµ

≤ wεÛ

∫
y+U

θ2(k)

MU (wχy+U
θ2(k)
) dµ

≤ wεÛ [w]A∞w(y+Uθ2(k))

= wεÛ [w]A∞w(Û ),

where y ∈U and we used Lemma 2.5 and the definition of [w]A∞ .
Now, for each λ > wÛ we consider {Vi }i∈Q the C–Z decomposition of �λ from

Lemma 2.7 to control II. We have

MUw(�λ)≤
∑

i

MUw(V ∗∗i ).

For any i ∈ Q we write V ∗∗i = V1∪V2 with V1 := V ∗∗i ∩�Lλ and V2 := V ∗∗i \�Lλ

where L = D6. Thus, by Lemma 2.8 and the A∞ property (1-7) we have

MUw(V ∗∗i )=

∫
V1

MUw dµ+
∫

V2

MUw dµ

≤

∫
V1

MU (wχV 4∗
i
)(x) dµ+ Lλµ(V2)

≤ [w]A∞w(V
4∗

i )+ Lλµ(V 4∗
i )= ([w]A∞wV 4∗

i
+ Lλ)µ(V 4∗

i )

≤ ([w]A∞λD2
+ Lλ)D4µ(Vi )≤ 2[w]A∞λD10µ(Vi ),

where in the last inequality we have used (2-5) and the doubling property of µ.
This gives

MUw(�λ)≤
∑

i

MUw(V ∗∗i )≤ 2[w]A∞λD10
∑

i

µ(Vi )

≤ 2[w]A∞λD10µ(�λ).
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Thus,

II ≤ 2[w]A∞D10
∫
∞

0
ελεµ(�λ) dλ

= 2[w]A∞D10 ε

ε+ 1

∫
Û

MUw
1+ε dµ.

Therefore, gathering all the estimations and averaging over Û,(
1− 2[w]A∞D10 ε

ε+1

)
−

∫
Û

MUw
1+ε dµ≤ w1+ε

Û
.

Choosing ε ≤ 1/(4[w]A∞D10
− 1) we get that 1− 2[w]A∞D10ε/(ε+ 1) ≥ 1

2 and
we obtain the desired estimate (3-1).

Step 2. Now we proceed to prove the main estimate (1-8). By Remark 2.6, we
have that w(x)≤ MUw(x) holds on U. Then we obtain∫

U
w1+ε dµ≤

∫
U
(MUw)

εw dµ≤
∫

Û
(MUw)

εw dµ.

Once again we use the layer cake formula combined with the C–Z decomposition
of �λ and proceeding much as above, we obtain∫

Û
(MUw)

εw dµ=
∫
∞

0
ελε−1w(�λ) dλ

=

∫ wÛ

0
ελε−1w(�λ) dλ+

∫
∞

wÛ

ελε−1w(�λ) dλ

≤ w(Û )wεÛ +
∫
∞

wÛ

ελε−1
∑

i

w(V ∗∗i ) dλ

≤ w(Û )wεÛ + D2
∫
∞

wÛ

ελε
∑

i

µ(V ∗∗i ) dλ

≤ w(Û )wεÛ + D4
∫
∞

wÛ

ελε
∑

i

µ(Vi ) dλ

≤ w(Û )wεÛ + D4
∫
∞

0
ελεµ(�λ) dλ

≤ w(Û )wεÛ +
D4ε

ε+ 1

∫
Û
(MUw)

1+ε dµ.

Therefore, averaging over U, using µ(Û )≤ D2µ(U ) and (3-1), we have

−

∫
U
w1+ε dµ≤ D2wε+1

Û
+

2D6ε[w]A∞

ε+ 1

(
−

∫
Û
w dµ

)1+ε

.
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By our previous choice of ε,

2D6ε[w]A∞

ε+ 1
≤

2D10ε[w]A∞

ε+ 1
≤

1
2

and we conclude that

−

∫
U
w1+ε dµ≤ 2D2

(
−

∫
Û
w dµ

)1+ε

. �

We present now some classical applications of the RHI to weighted norm in-
equalities for maximal functions. One crucial property of Ap classes is the well
known open condition. In the next lemma we provide a quantitative version of it.

Lemma 3.1. For 1 < p <∞, let w ∈ Ap. Then, for ε = (p− 1)/(C[σ ]A∞) with
C = 4D10 and σ = w1−p′, we have that w ∈ Ap−ε. Further,

[w]Ap−ε ≤ 2p−1 D4p−2
[w]Ap .

Proof. Let w ∈ Ap. The Ap−ε condition for w takes the form

sup
U∈B

(
−

∫
U
w dµ

)(
−

∫
U
w1−(p−ε)′ dµ

)p−ε−1

<∞.

Recall that the dual weight of w, σ =w1−p′ , is also in A∞. Therefore it satisfies an
RHI with exponent r(σ ) given by Theorem 1.2. Choose ε such that 1− (p− ε)′ =
(1− p′)r(σ ), namely ε = (p − 1)/(r(σ )′) which is equivalent to the condition
r(σ )= (p− 1)/(p− ε− 1). Then we obtain(

−

∫
U
w1−(p−ε)′ dµ

)p−ε−1

=

(
−

∫
U
σ (1−p′)r(σ ) dµ

)(p−1)/(r(σ ))

≤ (2D2
−

∫
Û
σ dµ)p−1,

for any U ∈ B. Now, for U = x +Uk ∈ B, recall that U∗∗ = x +Uθ2(k) and that
Û ⊂U∗∗. Then,(

−

∫
U
w dµ

)(
−

∫
U
w1−(p−ε)′ dµ

)p−ε−1

≤ C
(
−

∫
U∗∗

w dµ
)(
−

∫
U∗∗

σ dµ
)p−1

with C = 2p−1 D4p−2. We conclude that

[w]Ap−ε ≤ 2p−1 D4p−2
[w]Ap . �

In what follows we will need the fact that the maximal function M maps Lq,∞
w (G)

to itself with operator norm bounded by C[w]1/qAq
for some C>0. Without presenting

any details on weak norms and Lorentz spaces, we include here a quantitative
estimate on the size of level sets of the maximal function.
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Lemma 3.2. Let 1 ≤ q <∞ and let M be the maximal function defined in (1-3).
Then, for any f ∈ Lq

w(G),

(3-2) sup
λ>0

λqw({x ∈ G : M f (x) > λ})≤ D2q
[w]Aq‖ f ‖q

Lq
w
.

Proof. For any locally integrable function f and any λ > 0, let �λ be the level
set �λ := {x ∈ G : M f (x) > λ}. We also define some sort of truncated maximal
operator as follows: for any K ∈ Z, let MK be the averaging operator given by

(3-3) MK f (x)= sup
V∈BK (x)

−

∫
V
| f (z)| dµ,

where the supremum is taken over the subfamily BK of B consisting of all base sets
of the form y+Ui with y ∈ G and i ≤ K containing the point x , i.e.,

(3-4) BK (x) := {V = y+Ui : x ∈ V, i ≤ K }.

For each K we consider the corresponding level set �K
λ := {x ∈ G : MK f (x) > λ}.

We clearly have that the family {�K
λ } is increasing in K and also �λ =

⋃
K �

K
λ .

We therefore may compute the value of w(�λ) as the limit of w(�K
λ ). In addition,

we recall that the group G is σ -compact since G =
⋃

r∈Z U r . We will again use a
limiting argument to compute w(�K

λ ) as the limit of w(�K
λ ∩Ur ) with r→+∞.

Now for K ∈ Z fixed, choose r ∈ Z such that r ≥ K. A simple Vitali’s covering
lemma can be applied now to �K

λ ∩Ur . We want to select a countable subfamily of
disjoint base sets whose dilates cover �K

λ ∩Ur . More precisely, suppose that the
set �K

λ ∩Ur is nonempty. For each x ∈�K
λ ∩Ur , there exists a base set Vx of the

form Vx = yx +Uix such that

(3-5) −

∫
Vx

| f (z)| dµ > λ.

Since ix ≤ K for all x ∈�K
λ ∩Ur , there is some i1=max{ix}. We start the recursive

selection procedure by picking one of these largest base sets as V1 = y1+Ui1 . Now
suppose that the first V1, V2, . . . , Vk sets have been selected. We pick Vk+1 verifying
that Vk+1 = yk+1+Uik+1 where ik+1 =max{ix : yx +Uix ∩ Vj =∅, j = 1, . . . , k}.

This process generates a sequence of disjoint base sets {Vk}. We note that the
index sequence {ik} goes to −∞ as k goes to infinity. If not, since it is decreasing,
there would be some i0 = ik for all k ≥ k0. Then we have that Vk ∩Ur 6= ∅ and
ik ≤ K ≤ r and by the engulfing property, Vk ⊂ U∗∗r for all k ≥ k0. In particular,
the set S = {yk : k ≥ k0} ⊂U∗∗r is relatively compact. Then, considering the set

F =
⋃
k≥k0

Vk ⊂ S+Ui0

and proceeding as in Lemma 2.7 we get a contradiction.
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We claim now that
�K
λ ∩Ur ⊂

⋃
k∈N

V ∗∗k .

To verify this, consider some x ∈�K
λ ∩Ur and the corresponding Vx = yx +Uix .

Suppose first that Vx intersects some Vk . Let k0 be the smallest k ∈ N such that
Vx ∩Vk 6=∅. Then we have that ix ≤ ik0 , since ik0 was selected as the largest index
among all the sets Vx disjoint from V1, . . . , Vk0−1 (and by hypothesis Vx is one of
them). Then the engulfing property yields

Vx = yx +Uix ⊂ yk0 +Uθ2(ik0 )
= V ∗∗k0

.

We are left to consider the case when Vx ∩ Vk =∅ for all k ∈ N. But in this case,
we would have that ix ≤ ik for all k and this is a contradiction since we saw that
ik→−∞.

Summing up, we find a countable collection of base sets {Vk}k such that

−

∫
Vk

f dµ > λ and �K
λ ∩Ur ⊂

⋃
k

V ∗∗k .

Then we can compute

λqw(�K
λ ∩Ur )≤

∑
k

λqw(V ∗∗k )≤
∑

k

w(V ∗∗k )

(
−

∫
Vk

w−1/qw1/q
| f |
)q

≤

∑
k

w(V ∗∗k )

µ(Vk)q

(∫
Vk

w1−q ′ dµ
)q−1(∫

Vk

| f |qw dµ
)

≤ D2q
∑

k

w(V ∗∗k )

µ(V ∗∗k )q

(∫
V ∗∗k

w1−q ′ dµ
)q−1(∫

Vk

| f |qw dµ
)

≤ D2q
[w]Aq

∑
k

∫
Vk

| f |qw dµ

≤ D2q
[w]Aq‖ f ‖q

Lq
w
.

From this estimate we conclude that

λqw(�λ)≤ D2q
[w]Aq‖ f ‖q

Lq
w

for any λ > 0. �

Now we are able to present the proof of the sharp version of Buckley’s theorem
for the maximal function M on L p(G), p > 1.

Proof of Theorem 1.3. The idea is to use a sort of interpolation type argument,
exploiting the sublinearity of the maximal operator M and the weak type estimate



188 VICTORIA PATERNOSTRO AND EZEQUIEL RELA

for M from Lemma 3.2. For any f ∈ L p
w(G) and any t > 0, define the truncation

ft := f χ{| f |>t}. Then, an easy computation of the averages defining M gives

{x ∈ G : M f (x) > 2t} ⊂ {x ∈ G : M ft(x) > t}.

Now we compute the L p
w norm as follows:

‖M f ‖p
L p
w(G)
=

∫
∞

0
pt p−1w({x ∈ G : M f (x) > t}) dt

= 2p
∫
∞

0
pt p−1w({x ∈ G : M f (x) > 2t}) dt

≤ 2p
∫
∞

0
pt p−1w({x ∈ G : M ft(x) > t}) dt.

We recall the open property for Muckenhoupt weights: any w ∈ Ap also belongs
to Ap−ε for some explicit ε > 0 (see Lemma 3.1). Using the estimate of Lemma 3.2
for q = p− ε, we obtain

(3-6) ‖M f ‖p
L p
w(G)
≤ 2p pD2(p−ε)

[w]Ap−ε

∫
∞

0
tε−1

∫
G

f p−ε
t (x)w(x) dµ dt

=
2p pD2(p−ε)

[w]Ap−ε

ε

∫
G
| f (x)|pw dµ

≤
p22p−1 D6p−2

[w]Ap

ε
‖ f ‖p

L p
w(G)

,

where in the last inequality we used Lemma 3.1. Noticing that in Lemma 3.1,
ε = (p− 1)/(4D10

[σ ]A∞), we finally conclude from (3-6) that

‖M f ‖L p
w(G) ≤ C([w]Ap [σ ]A∞)

1/p
‖ f ‖L p

w(G)

and the proof of (1-9) is complete.
Finally, since [σ ]A∞ ≤ [σ ]Ap′

= [w]
p′−1
Ap

, (1-10) follows from (1-9). �
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