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FULLY NONLINEAR NONLOCAL SYSTEM

BIRAN ZHANG AND ZHONGXUE LÜ

We study the system involving fully nonlinear nonlocal operators:

Fα(u(x))= Cn,α PV
∫

Rn

G(u(x)− u( y))
|x− y|n+α

d y = f (u(x), v(x)),

Fβ(v(x))= Cn,β PV
∫

Rn

G(v(x)− v( y))
|x− y|n+β

d y = g(u(x), v(x)).

We will prove the symmetry and monotonicity for positive solutions to the
nonlinear system in whole space by using the method of moving planes. To
achieve it, a narrow region principle and a decay at infinity are established.
Further more, nonexistence of positive solutions to the nonlinear system
on a half space is derived. In addition, the symmetry and monotonicity in
whole space for positive solutions to a fully nonlinear nonlocal system

Fα(u(x))=−u p(x)+ vq(x), Fβ(v(x))=−v p(x)+ uq(x)

can be derived.

1. Introduction

We are interested in the general nonlinear system involving fully nonlinear nonlocal
operators:

Fα(u(x))= f (u(x), v(x)), Fβ(v(x))= g(u(x), v(x))

with

Fα(u(x))= Cn,α PV
∫

Rn

G(u(x)− u(y))
|x − y|n+α

dy,

where the PV stands for the Cauchy principal value, G is a nonlinear operator and
is at least local Lipschitz continuous with G(0)= 0 and 0< α, β < 2. The operator
Fα was introduced by Caffarelli and Silvestre [2009].
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In order to make the integral significative, we require

u(x) ∈ C1,1
loc ∩ Lα and v(x) ∈ C1,1

loc ∩ Lβ

with

Lα =
{

u : Rn
→ R

∣∣∣ ∫
Rn

|u(x)|
1+ |x |n+α

dx <∞
}
,

and Lβ is defined similarly.
The special case is that when G(·) is an identity map, Fα becomes the usual

fractional Laplacian (−1)α/2. It is the nonlocal nature of fractional operators that
makes them difficult to study. To circumvent this, Caffarelli and Silvestre [2007]
introduced the extension method, which turns the nonlocal problem involving the
fractional Laplacian into a local one in higher dimensions. A series of fruitful
results show that this method has been applied successfully to treat equations
involving the fractional Laplacian (see [Brändle et al. 2013; Chen and Zhu 2016;
Gilbarg and Trudinger 1977]). Another way is using the integral equations method,
such as the method of moving planes in integral forms (see [Cao and Chen 2013;
Cao and Dai 2013; Li and Zhuo 2010; Lu and Zhu 2012; Zhuo et al. 2016]) and
regularity lifting to investigate equations involving fractional Laplacian by showing
that they are equivalent to corresponding integral equations (see [Chen et al. 2005;
2006; 2015]). For more articles concerning the method of moving planes for
nonlocal equations and for integral equations, see [Gilbarg and Trudinger 1977;
Hang et al. 2009; 2012; Hang 2007; Lei et al. 2012; Li 2017; Li and Ma 2017;
Lu and Zhu 2011; 2012; Ma and Chen 2006; Ma and Zhao 2010; Wang and Niu
2017].

Chen, Li, and Li [Chen et al. 2017b] developed a systematic approach to carry out
the method of moving planes for equations involving fractional Laplacian directly.
Subsequently, by using this direct method, many authors investigated different
equations involving fractional Laplace; see, for example, [Cheng et al. 2017a;
2017b; Cheng 2017; Li and Ma 2017; Liu and Ma 2016; Zhang et al. 2017].

However, for the fully nonlinear nonlocal equations, so far as we know, there
is neither any corresponding extension method nor equivalent integral equations
that one can begin to work. Chen, Li, and Li [Chen et al. 2017a], developed a new
method that can deal with the fully nonlinear nonlocal equations directly. Then with
the help of the direct method of moving planes, Wang and Yu [2017] studied a fully
nonlinear nonlocal system where u(x) and v(x) belong to different nonhomogeneous
terms. Wang and Niu [2017] studied a fully nonlinear nonlocal system with special
nonhomogeneous terms which have u(x) and v(x) simultaneously while u(x) and
v(x) have positive coefficients.

In this paper, we extend the direct method in [Chen et al. 2017a] to more general
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fully nonlinear nonlocal systems:

(1-1)
Fα(u(x))= f (u(x), v(x)), x ∈ Rn,

Fβ(v(x))= g(u(x), v(x)), x ∈ Rn,

u(x) > 0, v(x) > 0, x ∈ Rn,

and

(1-2)

Fα(u(x))= f (u(x), v(x)), x ∈ Rn
+
,

Fβ(v(x))= g(u(x), v(x)), x ∈ Rn
+
,

u(x)≡ 0, v(x)≡ 0, x /∈ Rn
+
,

where f, g are continuous functions. It is worth mentioning that (1-1) is more
general than the system in [Wang and Yu 2017] and is different from the system in
[Wang and Niu 2017]. Because (1-1) can be allowed, u(x) or v(x) have negative
coefficients.

We first establish the narrow region principle and decay at infinity for the systems
and they will play important roles in carrying out the method of moving planes.

To state them, let

Tλ = {x ∈ Rn
| x1 = λ, λ ∈ R}

be the moving plane, and denote by

6λ = {x ∈ Rn
| x1 < λ}

the left region of the plane Tλ, by

xλ = (2λ− x1, x2, . . . , xn)

the reflection of x about Tλ, and let

Uλ(x)= uλ(x)− u(x), Vλ(x)= vλ(x)− v(x)

with

uλ(x)= u(xλ), vλ(x)= v(xλ).

For simplicity of notation, in the following, we denote Uλ(x) by U (x) and Vλ(x)
by V (x). Throughout this paper, we assume that

(1-3) G ∈ C1(R), G(0)= 0, and G ′(t)≥ c0 > 0 ∀ t ∈ R.

Theorem 1.1 (narrow region principle). Let �⊂6λ be a bounded narrow region
contained in the strip

{x | λ− l < x1 < λ}
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with small l > 0. Suppose that U (x) ∈ Lα ∩C1,1
loc (�), V (x) ∈ Lβ ∩C1,1

loc (�), U (x)
and V (x) are both lower semicontinuous on �, and satisfy

(1-4)

Fα(uλ(x))− Fα(u(x))+ c11(x)U (x)+ c12(x)V (x)≥ 0, x ∈�,

Fβ(vλ(x))− Fβ(v(x))+ c21(x)U (x)+ c22(x)V (x)≥ 0, x ∈�,

U (x), V (x)≥ 0, x ∈6λ \�,

U (xλ)=−U (x), V (xλ)=−V (x), x ∈6λ,

if c12(x) < 0, c21(x) < 0, and ci j (x), i, j = 1, 2, are bounded from below in �, then
for sufficiently small l, we have

(1-5) U (x)≥ 0, V (x)≥ 0 in �;

furthermore, if U (x) or V (x) equals 0 at some point in �, then

(1-6) U (x)= V (x)≡ 0, x ∈ Rn.

These conclusions hold for the unbounded region � if we further assume that

(1-7) lim
|x |→∞

U (x)≥ 0, lim
|x |→∞

V (x)≥ 0.

Theorem 1.2 (decay at infinity). Let� be an unbounded region in 6λ. Assume that
U (x)∈C1,1

loc (�)∩Lα(Rn), V (x)∈C1,1
loc (�)∩Lβ(Rn) are both lower semicontinuous

and satisfy

(1-8)

Fα(uλ(x))− Fα(u(x))+ c11(x)U (x)+ c12(x)V (x)≥ 0, x ∈�,

Fβ(vλ(x))− Fβ(v(x))+ c21(x)U (x)+ c22(x)V (x)≥ 0, x ∈�,

U (x), V (x)≥ 0, x ∈6λ \�,

U (xλ)=−U (x), V (xλ)=−V (x), x ∈6λ,

with

(1-9) c11(x), c12(x)∼ o
(

1
|x |α

)
, c21(x), c22(x)∼ o

(
1
|x |β

)
for |x | large

and c12(x), c21(x) < 0, then there exists a constant R0 > 0 depending only on ci j (x)
such that if

U (x̃)=min
�

U (x) < 0 and V (x̄)=min
�

V (x) < 0,

then

(1-10) |x̃ | ≤ R0 or |x̄ | ≤ R0.
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Based on Theorems 1.1 and 1.2, we apply the method of moving planes to
obtain symmetry and monotonicity of positive solutions to (1-1) in Rn , as well as
nonexistence of positive solutions to (1-2) on the half space Rn

+
.

Theorem 1.3. Assume that u(x)∈ Lα∩C1,1
loc (R

n), v(x)∈ Lβ∩C1,1
loc (R

n) are positive
solutions of system (1-1). Suppose that for some γ1, γ2 > 0,

(1-11) u(x)= o
(

1
|x |γ1

)
, v(x)= o

(
1
|x |γ2

)
as |x | →∞

and f, g are continuous functions satisfying

(1-12)
(i) for fixed t : −C1s p

≤ f ′1(s, t) < 0, 0< g′1(s, t)≤ C2sq
;

(ii) for fixed s : 0< f ′2(s, t)≤ C3t p, −C4tq
≤ g′2(s, t) < 0;

with min{pγ1, pγ2} ≥ α,min{qγ1, qγ2} ≥ β, and Ci > 0, i = 1, 2, 3, 4.
Then u(x) and v(x) must be radially symmetric and monotone decreasing about

some point in Rn .

Theorem 1.4. Assume that u(x) ∈ Lα ∩C1,1
loc (R

n
+
), v(x) ∈ Lβ ∩C1,1

loc (R
n
+
) are non-

negative solutions to system (1-2) where f, g are nonnegative continuous functions
and u, v are lower semicontinuous on Rn

+. Suppose

(1-13) lim
|x |→∞

u(x)= 0, lim
|x |→∞

v(x)= 0,

then u(x)≡ 0, v(x)≡ 0.

In Section 2, we prove Theorems 1.1 and 1.2 with a key inequality (2-2) below.
Sections 3 and 4 are devoted to the proofs of Theorems 1.3 and 1.4, respectively,
by using the previous results and the method of moving planes. In Section 5, we
will consider the fully nonlinear nonlocal system

Fα(u(x))=−u p(x)+ vq(x), x ∈ Rn,

Fβ(v(x))=−v p(x)+ uq(x), x ∈ Rn,

u(x), v(x) > 0, x ∈ Rn,

where p, q > 0. And it is a specific case of (1-1).

2. Proofs of Theorems 1.1 and 1.2

Let

Fα(u(x))= Cn,α PV
∫

Rn

G(u(x)− u(y))
|x − y|n+α

dy

= Cn,α lim
ε→0

∫
Rn\Bε(x)

G(u(x)− u(y))
|x − y|n+α

dy,
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and use c and C for general various positive constants that are usually different in
different contexts.

We first introduce a lemma which is often called the strong maximum principle
to F

α
.

Lemma 2.1. Let� be a bounded domain in Rn . Assume that u(x) ∈C1,1
loc ∩ Lα(Rn)

is lower semicontinuous on � and satisfies

(2-1)
Fα(u(x))≥ 0, x ∈�,

u(x)≥ 0, x∈�c.

If u(x) attains 0 somewhere in �, then

u(x)≡ 0, x ∈ Rn.

The proof of this lemma was completed in [Wang and Yu 2017], we omit the
details here.

Proof of Theorem 1.1. If (1-5) does not hold, without loss of generality, we assume
U (x) < 0 at some point in �. By the lower semicontinuity of U (x) on �, we know
that there exists some x̃ ∈� such that

U (x̃)=min
�

U (x) < 0.

It follows from (1-4) that x̃ must be in the interior of �. Then we have

(2-2) Fα(uλ(x̃))− Fα(u(x̃))

= Cn,α PV
∫

Rn

G(uλ(x̃)− uλ(y))−G(u(x̃)− u(y))
|x̃ − y|n+α

dy

= Cn,α PV
∫
6λ

G(uλ(x̃)− uλ(y))−G(u(x̃)− u(y))
|x̃ − y|n+α

dy

+Cn,α PV
∫
6λ

G(uλ(x̃)− u(y))−G(u(x̃)− uλ(y))
|x̃ − yλ|n+α

dy

≤ Cn,α PV
∫
6λ

G(uλ(x̃)− uλ(y))−G(u(x̃)− u(y))
|x̃ − yλ|n+α

dy

+Cn,α PV
∫
6λ

G(uλ(x̃)− u(y))−G(u(x̃)− uλ(y))
|x̃ − yλ|n+α

dy

= Cn,α PV
∫
6λ

2G ′(·)U (x̃)
|x̃ − yλ|n+α

dy

≤ 2Cn,αU (x̃)
∫
6λ

1
|x̃ − yλ|n+α

dy.
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Let D = {y | l < y1− x̃1 < 1, |y′− x̃ ′|< 1}, s = y1− x̃1, τ = |y′− x̃ ′|, and ωn−2 be
the area of an (n− 2)-dimensional unit sphere. Here we write x = (x1, x ′). Then
we have

(2-3)
∫
6λ

1
|x̃ − yλ|n+α

dy ≥
∫

D

1
|x̃ − y|n+α

dy =
∫ 1

l

∫ 1

0

ωn−2τ
n−2

(s2+ τ 2)(n+α)/2
dτ ds

=

∫ 1

l

∫ 1/s

0

ωn−2(st)n−2s
sn+α(1+ t2)(n+α)/2

dt ds

=

∫ 1

l

1
s1+α

∫ 1/s

0

ωn−2tn−2

(1+ t2)(n+α)/2
dt ds

≥

∫ 1

l

1
s1+α

∫ 1

0

ωn−2tn−2

(1+ t2)(n+α)/2
dt ds

≥ C
∫ 1

l

1
s1+α ds ≥

C
lα
.

Thus from (2-2) and the fact that c11(x) is bounded from below in �,

(2-4) Fα(uλ(x̃))− Fα(u(x̃))+ c11(x̃)u(x̃)≤
C
lα

U (x̃) < 0.

Together (2-4) with (1-4), we have

(2-5) U (x̃)≥−clαc12(x̃)V (x̃).

From (2-5) and the lower semicontinuity of V (x) on �, we know that there exists
x̄ in � such that

V (x̄)=min
�

V (x) < 0.

Similar to (2-4), it is easy to see that

Fβ(vλ(x̄))− Fβ(v(x̄))+ c22(x̄)V (x̄)≤
C
lβ

V (x̄) < 0.

Together with (2-5), for l sufficiently small, we have

0≤ Fβ(vλ(x̄))− Fβ(v(x̄))+ c21(x̄)U (x̄)+ c22(x̄)V (x̄)

≤
C
lβ

V (x̄)+ c21(x̄)U (x̃)

≤
C
lβ

V (x̄)− cc21(x̄)lαc12(x̃)V (x̃)

≤
C
lβ

V (x̄)− cc21(x̄)lαc12(x̃)V (x̄)

≤
C
lβ

V (x̄)(1− c21(x̄)c12(x̃)lα+β) < 0.
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This contradiction shows that (1-5) must be true. If � is unbounded, then (1-5) is
easily obtained by using (1-7).

To prove (1-6), without loss of generality, we suppose that there exists η ∈ �
such that

U (η)= 0.

Combining the fact

1
|x − y|

>
1

|x − yλ|
∀ x, y ∈6λ,

we have

Fα(uλ(η))−Fα(u(η))

= Cn,α PV
∫

Rn

G(uλ(η)−uλ(y))−G(u(η)−u(y))
|η−y|n+α

dy

= Cn,α PV
∫
6λ

G(uλ(η)−uλ(y))−G(u(η)−u(y))
|η−y|n+α

dy

+Cn,α PV
∫
6λ

G(uλ(η)−u(y))−G(u(η)−uλ(y))
|η−yλ|n+α

dy

= Cn,α PV
∫
6λ

[G(uλ(η)−uλ(y))−G(u(η)−u(y))]
(

1
|η−y|n+α

−
1

|η−yλ|n+α

)
dy

+Cn,α PV
∫
6λ

1
|η−yλ|n+α

(
G(uλ(η)−u(y))−G(u(η)−uλ(y))

+G(uλ(η)−uλ(y))−G(u(η)−u(y))
)

dy

= Cn,α PV
∫
6λ

[G(uλ(η)−uλ(y))−G(u(η)−u(y))]
(

1
|η−y|n+α

−
1

|η−yλ|n+α

)
dy

+Cn,α PV
∫
6λ

1
|η−yλ|n+α

(
G(uλ(η)−u(y))−G(u(η)−u(y))

+G(uλ(η)−uλ(y))−G(u(η)−uλ(y))
)

dy

= Cn,αG ′(·)
∫
6λ

(U (η)−U (y))
(

1
|η−y|n+α

−
1

|η−yλ|n+α

)
dy

+Cn,α

∫
6λ

G ′(·)U (η)+G ′(·)U (η)
|η−yλ|n+α

dy

≤−Cn,αc0

∫
6λ

U (y)
(

1
|η−y|n+α

−
1

|η−yλ|n+α

)
dy.

That is,

(2-6) Fα(uλ(η))− Fα(u(η))+ c11(η)U (η)

≤−Cn,αc
∫
6λ

U (y)
(

1
|η− y|n+α

−
1

|η− yλ|n+α

)
dy.
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If U (x) 6≡ 0, x ∈6λ, then (2-6) implies

Fα(uλ(η))− Fα(u(η))+ c11(η)U (η) < 0.

Together with (1-4), it is easy to see that V (η) < 0. This contradicts with (1-5).
Hence U (x) must be identically 0 in 6λ. Since

U (xλ)=−U (x), x ∈6λ,

it gives
U (x)≡ 0, x ∈ Rn.

Together with the first equation in (1-4), we see

V (x)≤ 0, x ∈6λ.

Noting we already have
V (x)≥ 0, x ∈6λ,

it must hold
V (x)= 0, x ∈6λ.

Recalling V (xλ)=−V (x), we deduce

V (x)≡ 0, x ∈ Rn.

Similarly, one can show that if V (x) attains 0 at some point in �, then both U (x)
and V (x) are identically 0 in Rn . This completes the proof. �

Proof of Theorem 1.2. Assume that there exists x̃ ∈� such that

U (x̃)=min
�

U (x) < 0.

Using the key inequality (2-2), we have

Fα(uλ(x̃))− Fα(u(x̃))≤ 2Cn,αc0U (x̃)
∫
6λ

1
|x̃ − yλ|n+α

dy.

For each fixed λ ∈ R, there exists C > 0 such that for x̃ ∈6λ and |x̃ | sufficiently
large,

(2-7)
∫
6λ

1
|x̃ − yλ|n+α

dy ≥
∫

B3|x̃ |(x̃)\B2|x̃ |(x̃)

1
|x̃ − y|

dy ∼
C
|x̃ |α

.

Hence, from (2-7) and (1-9), we have

(2-8) Fα(uλ(x̃))− Fα(u(x̃))+ c11(x̃)U (x̃)≤
C
|x̃ |α

U (x̃) < 0.

Together (2-8) with (1-8), it is easy to know

(2-9) V (x̃) < 0,
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and

(2-10) U (x̃)≥−cc12(x̃)|x̃ |αV (x̃).

From (2-9) and the lower semicontinuity of V (x) on �, there exists x̄ such that

V (x̄)=min
�

V (x) < 0.

Similarly to (2-8), we can derive

(2-11) Fβ(vλ(x̄))− Fβ(v(x̄))+ c22(x̄)V (x̄)≤
C
|x̄ |β

V (x̄) < 0.

Combining (1-8), (1-10), and (2-11), for λ sufficiently negative, it follows that

(2-12) 0≤ Fβ(vλ(x̄))− Fβ(v(x̄))+ c21(x̄)U (x̄)+ c22(x̄)V (x̄)

≤
C
|x̄ |β

V (x̄)+ c21(x̄)U (x̃)

≤
C
|x̄ |β

V (x̄)− cc21(x̄)c12(x̃)|x̃ |αV (x̃)

≤
C
|x̄ |β

V (x̄)− cc21(x̄)c12(x̃)|x̃ |αV (x̄)

≤
C
lβ

V (x̄)(1− c12(x̃)|x̃ |αc21(x̄)|x̄ |β) < 0.

The last inequality follows from assumption (1-9). This contradiction shows that
(1-10) must be true. �

3. Symmetry of solutions in the whole space Rn

Proof of Theorem 1.3. Choose an arbitrary direction for the x1-axis. Let

Tλ = {x ∈ Rn
| x1 = λ, λ ∈ R}, 6λ = {x ∈ Rn

| x1 < λ},

xλ = (2λ− x1, x ′), uλ(x)= u(xλ),

Uλ(x)= uλ(x)− u(x), Vλ(x)= vλ(x)− v(x).

Step 1: Starting moving the plane Tλ from −∞ to the right along the x1-axis. We
need to show that for λ sufficiently negative,

(3-1) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ.

By the assumption (1-11), for fixed λ and x ∈6λ, we know that

u(x)→ 0 as |x | → +∞.
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Since |xλ| → +∞, as |x | → +∞, we have

uλ(x)= u(xλ)→ 0.

Hence for x ∈6λ,

(3-2) Uλ(x)→ 0 as |x | → +∞.

Similarly, one can show that for x ∈6λ,

Vλ(x)→ 0 as |x | → +∞.

If
6−λ = {x ∈6λ |Uλ(x) < 0} 6=∅,

then by the lower semicontinuity of Uλ(x), there must exist some x̃ ∈6λ such that

Uλ(x̃)=min
6λ

U (x) < 0.

Let
I = f (uλ(x̃), vλ(x̃))− f (u(x̃), vλ(x̃)),

J = f (u(x̃), vλ(x̃))− f (u(x̃), v(x̃)).

Then

(3-3) I + J = f (uλ(x̃), vλ(x̃))− f (u(x̃), v(x̃))

= Fα(uλ(x̃))− Fα(u(x̃))

≤ 2Cn,αc0Uλ(x̃)
∫
6λ

1
|x̃ − yλ|n+α

dy

< 0.

By the mean value theorem and the assumption (1-12), we have

(3-4) I = f ′1(ξλ(x̃), vλ(x̃))Uλ(x̃) > 0 and J = f ′2(u(x̃), ηλ(x̃))Vλ(x̃),

where ξλ(x̃) is between uλ(x̃) and u(x̃); ηλ(x̃) is between vλ(x̃) and v(x̃). Together
(3-3) with (3-4) and (1-12), it is easy to see that

Vλ(x̃) < 0.

This implies that there exists some x̄ ∈6λ such that

Vλ(x̄)=min
6λ

V (x) < 0.

By the mean value theorem again, we have

Fα(uλ(x̃))− Fα(u(x̃))= I + J

≥ f ′1(ξλ(x̃), vλ(x̃))Uλ(x̃)+ f ′2(u(x̃), ηλ(x̃))Vλ(x̃).
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By the decay assumptions (1-11) and (1-12), we deduce that

f ′1(ξλ(x̃), vλ(x̃)), f ′2(u(x̃), ηλ(x̃))∼ o
(

1
|x̃ |α

)
.

Hence
Fα(uλ(x̃))− Fα(u(x̃))+ c11(x̃)Uλ(x̃)+ c12(x̃)Vλ(x̃)≥ 0,

where

c11(x̃)=− f ′1(ξλ(x̃), vλ(x̃)) and c12(x̃)=− f ′2(u(x̃), ηλ(x̃)).

Similarly, we have

Fβ(vλ(x̄))− Fβ(v(x̄))+ c21(x̄)Uλ(x̄)+ c22(x̄)Vλ(x̄)≥ 0,

where

c21(x̄)=−g′1(ξ̂λ(x̄), vλ(x̄)) and c22(x̄)=−g′2(u(x̄), η̂λ(x̄))

with

c21(x̄), c22(x̄)∼ o
(

1
|x̄ |β

)
.

Consequently, there exists R0 > 0, such that if x̃ and x̄ are negative minima of
Uλ(x) and Vλ(x) in 6λ respectively, then by (1-2) we know that

(3-5) |x̃ | ≤ R0 or |x̄ | ≤ R0.

Without loss of generality, we may assume

(3-6) |x̃ | ≤ R0.

Combining (3-2) with the fact that Uλ(x)= 0, x ∈ Tλ, it is easy to see if Uλ(x) < 0
at some point in 6λ, then Uλ(x) must have a negative minimum in 6λ. For λ
sufficiently negative, it contradicts (3-6). Hence we have for λ sufficiently negative,

(3-7) Uλ(x)≥ 0.

It follows that Uλ(x)≥ 0 in 6λ. Otherwise, there exists x̄ in 6λ such that

Vλ(x̄)=min
6λ

V (x) < 0.

From (2-11), we have

(3-8) Fβ(vλ(x̄))− Fβ(v(x̄))+ c22(x̄)Vλ(x̄) < 0.

Combining (1-8) with (3-7), however, we have

Fβ(vλ(x̄))− Fβ(v(x̄))+ c22(x̄)Vλ(x̄)≥ 0.
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This is a contradiction with (3-8) and Vλ(x) cannot attain its negative value in 6λ.
It follows that (3-1) must be true. This completes the preparation for the moving
planes.

Step 2: Keep moving the plane to the limiting position Tλ0 as long as (3-1) holds.
Let

λ0 = sup{λ |Uµ(x), Vµ(x)≥ 0, x ∈6µ, µ≤ λ}.

Obviously,

(3-9) λ0 <∞.

Otherwise, if λ0 =∞, then for any λ > 0,

u(0λ) > u(0) > 0, v(0λ) > v(0) > 0,

u(0λ)∼ o
(

1
|0λ|γ1

)
, v(0λ)∼ o

(
1
|0λ|γ2

)
, λ→∞.

This is a contradiction and (3-9) is true.
Now we point out that

(3-10) Uλ0(x)≡ 0, Vλ0(x)≡ 0, x ∈6λ0 .

If (3-10) is not true, then from the proof of Theorem 1.1, we only have the case
that Uλ0(x)≥ 0 and Vλ0(x)≥ 0 but Uλ0(x) 6≡ 0 and Vλ0(x) 6≡ 0.

In what follows, we will show that the plane Tλ can be moved further to the right.
More rigorously, there exists some ε > 0, such that for any λ ∈ [λ0, λ0+ ε),

(3-11) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ.

This contradicts the definition of λ0 and hence (3-10) must be true.
Now we prove (3-11) by using Theorems 1.1 and 1.2. From Theorem 1.1, we

have
Uλ0(x) > 0, Vλ0(x) > 0, x ∈6λ0 .

Let R0 be the constant determined in Theorem 1.2. It follows that for any δ > 0,

Uλ0(x)≥ c0 > 0, Vλ0(x)≥ c0 > 0, x ∈6λ0−δ ∩ BR0(0).

Together with the continuity of Uλ(x) and Vλ(x) with respect to λ, there exists
ε > 0, such that for all λ ∈ [λ0, λ0+ ε), we have

(3-12) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ0−δ ∩ BR0(0).

Suppose that (3-11) is not true. By the proofs of Theorems 1.1 and 1.2, we
know that if one of Uλ(x) and Vλ(x) becomes the negative minimum value at some
point in 6λ, then there exist x̃ and x̄ which are the negative minima of Uλ(x) and
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Vλ(x) in 6λ respectively. Additionally, by Theorem 1.2, at least one of them lies in
(6λ \6λ0−δ)∩ BR0(0). Here we consider two possibilities.

Case 1: One of the negative minima of Uλ(x) and Vλ(x) lies in BR0(0), i.e., in the
narrow region 6λ0+ε\6λ0−δ, and the other is outside of BR0(0). Without loss of
generality, we assume the negative minimum of Uλ(x) lies in BR0(0). From (2-5),
we have

(3-13) Uλ(x̃)≥−clαc12(x̃)Vλ(x̃)

and
0≤ Fβ(vλ(x̄))− Fβ(v(x̄))+ c21(x̄)Uλ(x̄)+ c22(x̄)Vλ(x̄)

≤
C
|x̄ |β

Vλ(x̄)+ c21(x̄)Uλ(x̃)

≤
C
|x̄ |β

Vλ(x̄)− cc21(x̄)c12(x̃)lαVλ(x̃)

≤
C
|x̄ |β

Vλ(x̄)− cc21(x̄)c12(x̃)lαVλ(x̄)

≤
C
|x̄ |β

Vλ(x̄)(1− c12(x̃)lαc21(x̄)|x̄ |β).

Hence,

(3-14) 1≤ c12(x̃)lαc21(x̄)|x̄ |β .

By (1-9), we know that c21(x̄)|x̄ |β is small for |x̄ | sufficiently large. Since l = ε+δ
is very narrow and c12(x̃) is bounded from below in 6λ0+ε\6λ0−δ , it is easy to see
that c12(x̃)lα can be small. Consequently,

c12(x̃)lαc21(x̄)|x̄ |β < 1.

This is a contradiction with (3-14) and (3-11) is proved.

Case 2: Both of the negative minima of Uλ(x) and Vλ(x) lie in BR0(0), i.e., they
are all in the narrow region 6λ0+ε\6λ0−δ.

Recalling (2-4),

(3-15) Fα(uλ(x̃))− Fα(u(x̃))+ c11(x̃)Uλ(x̃)≤
C
lα

Uλ(x̃) < 0,

where l = δ+ ε. Together with (1-4), it implies

(3-16) Uλ(x̃)≥−cc12(x̃)lαVλ(x̃).

Similarly to (3-15), we have

Fβ(vλ(x̄))− Fβ(v(x̄))+ c22(x̄)Vλ(x̄)≤
C
lβ

Vλ(x̄) < 0.
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Noting (3-16), for l sufficiently small, it gives

0≤ Fβ(vλ(x̄))− Fβ(v(x̄))+ c21(x̄)Uλ(x̄)+ c22(x̄)Vλ(x̄)

≤
C
lβ

Vλ(x̄)+ c21(x̄)Uλ(x̃)

≤
C
lβ

Vλ(x̄)− cc21(x̄)c12(x̃)lαVλ(x̃)

≤
C
lβ

Vλ(x̄)− cc21(x̄)c12(x̃)lαVλ(x̄)

≤
C
lβ

Vλ(x̄)(1− c12(x̃)c21(x̄)lα+β) < 0.

This contradiction shows that (3-11) has to be true.
Now we have proved that Uλ0(x) ≡ 0, Vλ0(x) ≡ 0, x ∈ 6λ0 . Since the x1-

direction can be chosen arbitrarily, we actually indicate that u(x) and v(x) are
radically symmetric about some point x0. Also the monotonicity follows easily
from the argument. This completes the proof of Theorem 1.3. �

4. Nonexistence of positive solutions on a half space Rn
+

In this section, we investigate the system (1-2).

Proof of Theorem 1.4. Based on (1-3), from the proof of Lemma 2.1 in [Wang and
Yu 2017], one can see that either

u(x) > 0, v(x) > 0 or u(x)≡ 0, v(x)≡ 0 for x ∈ Rn
+
,

where Rn
+
= {x ∈ Rn

| xn > 0}. In fact, assume u(x) 6≡ 0, and there exists x0
∈ Rn
+

such that u(x0)= 0, then

Fα(u(x0))=

∫
Rn

G(u(x0)− u(y))
|x0− y|n+α

dy =
∫

Rn

G(u(x0)− u(y))−G(0)
|x0− y|n+α

dy

=

∫
Rn

G ′(·)(u(x0)− u(y))
|x0− y|n+α

dy ≤ c0

∫
Rn

−u(y)
|x0− y|n+α

dy < 0,

i.e., 0≤ f (u(x), v(x))= Fα(u(x)) < 0, which is impossible. Hence if u(x) or v(x)
attains 0 somewhere in Rn

+
, then u(x)= v(x)≡ 0, x ∈ Rn .

Now we always assume that u(x) > 0 and v(x) > 0 in Rn
+

. Let us carry on the
method of moving planes to the solution u along the xn-direction.

Denote

Tλ = {x ∈ Rn
+
| xn = λ, λ > 0}, 6λ = {x ∈ Rn

+
| 0< xn < λ}.

Let
xλ = (x1, x2, . . . , 2λ− xn)
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be the reflection of x about the plane Tλ, and

Uλ(x)= uλ(x)− u(x), Vλ(x)= vλ(x)− v(x).

Using the key inequality (2-2) obtained in the proof of Theorem 1.1, we only need
to take 6 =6λ ∪Rn

−
, where Rn

−
= {x ∈ Rn

| xn ≤ 0}.

Step 1: It is obvious that, for λ≤ 0, we have

(4-1) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ Rn
−
.

For λ > 0 sufficiently small, 6λ is a narrow region, we have immediately

(4-2) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ.

Step 2: Since (4-2) provides a starting point, we move the plane Tλ upward as long
as (4-2) holds. Define

λ0 = sup{λ≥ 0 |Uµ(x)≥ 0, Vµ(x)≥ 0, x ∈6µ, µ≤ λ}.

We show that

(4-3) λ0 =∞.

Otherwise, if λ0 <∞, we show that the plane Tλ can be moved further up. To be
more rigorous, there exists some ε > 0, such that, for any λ ∈ (λ0, λ0+ ε),

Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ.

This is a contradiction with the definition of λ0. Hence, (4-3) holds.
By using Theorem 1.1, Theorem 1.2, and similar arguments as in Section 3, we

can prove that

Uλ0 ≡ 0, Vλ0 ≡ 0, x ∈6λ0, λ0 =∞,

which implies

u(x1, . . . , xn−1, 2λ0)= u(x1, . . . , xn−1, 0)= 0,

v(x1, . . . , xn−1, 2λ0)= v(x1, . . . , xn−1, 0)= 0.

This is impossible, because we have assumed that u(x), v(x) > 0 in Rn
+

.
Therefore, (4-3) must be valid and the solutions u(x), v(x) are increasing with

respect to xn . This contradicts (1-13) and completes the proof of Theorem 1.4. �
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5. Application to fully nonlinear nonlocal system

In this section, we consider

(5-1)

Fα(u(x))=−u p(x)+ vq(x), x ∈ Rn,

Fβ(v(x))=−v p(x)+ uq(x), x ∈ Rn,

u(x), v(x) > 0, x ∈ Rn.

Obviously, (5-1) is a specific case of (1-1) and we have the similar conclusion here.

Theorem 5.1. Assume that u(x)∈ Lα∩C1,1
loc (R

n), v(x)∈ Lβ∩C1,1
loc (R

n) are positive
solutions of system (5-1). Suppose that for some γ1, γ2 > 0, u(x), v(x) satisfy the
assumption (1-11) and

min{(p− 1)γ1, (q − 1)γ1}> α, min{(p− 1)γ2, (q − 1)γ2}> β.

Then u(x), v(x) must be radially symmetric and monotone decreasing about some
point in Rn .

By using Theorem 1.3, we can prove Theorem 5.1 directly. Notice that, if we let
f (u(x), v(x))=−u p(x)+ vq(x) and g(u(x), v(x))=−v p(x)+ uq(x), it is easy
to see that f, g satisfy the assumption (1-12). For convenience, we omit the proof
of Theorem 5.1 here.
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